LILLE ASSA

THESE

PRÉSENTÉE À L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

> POUR OBTENIR LE GRADE DE DOCTEUR ES SCIENCES NATURELLES

> > par Bruno Mistiaen

Les phenomènes récifaux et leur environnement dans le Dévonien d'Afghanistan (Montagnes Centrales)

T II LES STROMATUPORES

282-2

50376 1985 282-2

INTRODUCTION

Les Stromatopores sont bien représentés dans les environnements récifaux et pararécifaux du Dévonien des Montagnes Centrales d'Afghanistan. Mais, contrairement à d'autres groupes fossiles (Brachiopodes, Tétracoralliaires) qui ont déjà fait l'objet de monographies détaillées (A. Dürkoop, 1970; G. Plodowski, 1970; D. Brice, 1971...), les Stromatopores n'ont jamais été étudiés, bien que leur présence, voire leur abondance, ait été signalée à plusieurs reprises. Il faut toutefois préciser, que certains calcaires dits "à Stromatopores" n'en sont pas. Ils s'agit en réalité de calcaires à Tabulés ou à Bryozoaires.

Certaines citations se rapportent aux régions que j'ai visitées: - A. Boutière et D. Brice (1966, p. 1940) reconnaissent plusieurs espèces dans le Dévonien de la région de Ghujurak: Clathrodictyon cf. regulare, Actinostroma cf. hebbornense, Stromatoporella sp., Stromatopora cf. concentrica et S. cf. hüpschii.

- U. Jux (1969, p. 686-687) remarque l'importance du groupe, dans le Frasnien des environs de Caraghsang, affleurements situés légèrement au Sud du secteur précédent; il indique la présence des genres Actinostroma, Amphipora et vraisemblablement Stachyodes.

- A. Dürkoop, 1970, p. 167 souligne l'importance des faunes de Coraux et de Stromatopores dans les récifs dévoniens de ces mêmes régions (Sud-Est du Dasht-e Nawar).

- J. Poncet et A.F. de Lapparent (1975, p. 48) notent également la présence de restes de Stromatopores dans plusieurs coupes de la même région.

- Par ailleurs, j'ai moi-même cité (in D. Brice et B. Mistiaen, 1980, p. 851), dans le même secteur (coupe de Dewal), plusieurs espèces dont Stromatopora e.g. concentrica, Actinostroma sp., Clathrocoilona sp., Stromatoporella sp., Amphipora sp.

- Enfin, toujours dans les Montagnes Centrales, mais plus au Nord (région de Tezak), D. Brice (1970, p. 310), J. Blaise et al. (1971; R. Desparmet et Ch. Montenat 1972, p. 402-405), signalent la présence de Stromatopores dans plusieurs niveaux dévoniens, en particulier dans les coupes de Spina Kada, du Koh-e Zardak et du Koh-e Giru.

Dans la région de Malestan, située juste au Sud-Est du secteur étudié, M. Dubreuil et D. Vachard (1979), P. Bordet et al. (1985) notent la présence, au Givétien et au Frasnien, de quelques niveaux à Stromatopores dont Keega (= Stachyodes).

Les Stromatopores semblent moins bien représentés dans le Dévonien de la zone axiale d'Afghanistan. Les seuls décrits et figurés (D. Brice, 1965), appartiennent au genre Amphipora (A. cf rudis, A. sp. 1 et A. sp. 2) et proviennent du Frasnien du Pic de Zard Sang où le genre Stachyodes avait déjà été signalé par ailleurs (A.F. de Lapparent et D. Le Maître, (1963, p. 188).

L'étude de ce groupe important restait donc à faire. C'est l'objet de ce mémoire.

PREMIERE PARTIE

QUELQUES MISES AU POINT

SUR LA TERMINOLOGIE

EMPLOYEE

١

•

SOMMAIRE

1.	ELÉMENTS SQUELETTIQUES	5
	1.1. ELÉMENTS VERTICAUX	5
	1.2. ELÉMENTS HORIZONTAUX	5
	1.3. DISSÉPIMENTS ET VÉSICULES MARGINALES	6
	1.3.1. Définition	6
	1.3.1. LOCALISATION ET RÔLE	6
2.	STRUCTURE COENOSTÉALE	7
	2.1. REMARQUES AU SUJET DE LA TERMINOLOGIE	7
	2.2. TERMINOLOGIE UTILISÉE DANS CE TRAVAIL	8
3.	LA MICROSTRUCTURE	9

١

Il ne me semble pas nécessaire de développer ici, en un long préambule à l'étude systématique, tout un chapitre sur la terminologie relative à la structure et à la microstructure des Stromatopores; cet aspect a déjà été amplement abordé dans de nombreux travaux (O .V. Bogoyavlenskaya 1968; J.J. Galloway 1957; J.J. Galloway et J. St Jean 1957; E. Flügel 1958, 1959; V.K. Khalfina et V.I. Yavorsky 1973; B. Mistiaen 1976; C.W. Stearn 1966a, 1980). La plupart des termes employés dans les descriptions le sont dans le sens habituellement admis (J.J. Galloway 1957, p. 350-360); quelques uns nécessitent cependant une mise au point ou feront l'objet de remarques.

1. ELEMENTS SQUELETTIQUES

Le coenosteum ou squelette du Stromatopore est essentiellement formé de deux types d'éléments, des éléments horizontaux et des éléments verticaux, auxquels peuvent s'ajouter localement des dissépiments; ces élements figurés délimitent, entre eux, des espaces vides.

1.1. Eléments verticaux (radiaires): piliers, coenostèles

Le terme de pilier (radial), déjà utilisé par H.A. Nicholson, est fréquemment employé dans un sens très large, pour désigner tous les éléments verticaux franchissant un espace interlaminaire et réunissant donc deux laminae (Y. Dehorne 1920, p. 21).

- Dérivé étymologiquement du latin pila = colonne, le terme évoque cependant un élément à section ronde, arrondie ou au moins "of irregular shapes as long as they are circumscribed" (C.W. Stearn 1980, p. 886), comme c'est d'ailleurs souvent le cas.

- Lorsque les éléments verticaux n'ont pas cette morphologie en colonne mais prennent l'aspect de "murailles" plus ou moins continues et contournées, il convient de les appeler coenostèles (O.V. Bogoyavlenskaya 1968).

- Toutefois le qualificatif plus général d'élément vertical (ou radiaire pour les formes dendroïdes) me semble parfois préférable pour décrire les coupes verticales (longitudinales et transversales des formes dendroïdes) où l'on ne peut préjuger de l'allure de ces éléments dans l'espace.

J'emploierai donc, dans les descriptions, les termes avec les sens définis ci-dessous:

<u>éléments verticaux (radiaires)</u> - à section tangentielle subcirculaire = <u>piliers;</u> - à section tangentielle irrégulière (vermiforme, méandriforme...) = <u>coenostèles</u>.

1.2. <u>Eléments horizontaux (concentriques):</u> laminae et coenostromes

Les éléments coenostéaux horizontaux (concentriques chez les formes dendroïdes) bien définis, sont appelés laminae; ceux qui sont irréguliers, difficiles à distinguer, sont désignés sous le nom de coenostromes (cf. C.W. Stearn 1980, p. 886).

1.3.1. Définition

Les dissépiments sont des éléments coenostéaux se présentant sous forme de fines cloisons, horizontales ou obliques, et recoupant les espaces interlaminaires et les canaux astrorhizaux.

1.3.2. Localisation et rôle

Bien développés et abondants chez certains genres - Pseudoactinodictyon - (ou chez certaines espèces), ils sont rares, voire absents, chez d'autres - Actinostroma -. Ils sont préférentiellement développés dans les canaux astrorhizaux. Leur présence permet d'ailleurs bien souvent de différencier ces derniers des espaces interlaminaires dépourvus de dissépiments.

Chez plusieurs des espèces décrites dans ce travail, les dissépiments sont manifestement absents de la partie supérieure des latilaminae alors qu'ils sont bien développés plus bas dans le coenosteum (cf. *Stictostroma uralense*, fig. 44 c; *Hermatostroma perseptatum*, fig. 101 D; pl. XVI, fig. 7). Deux explications peuvent être envisagées.

- Les dissépiments ont existé mais ont été détruits dans la partie supérieure du coenosteum et conservés plus bas; toutefois, dans bien des cas, il n'y a aucune trace d'érosion et la nouvelle latilamina se développe en continuité avec la précédente.

- Les dissépiments n'ont jamais existé dans la partie sommitale de la latilamina qui correspondrait à la zone où se trouvait localisé le tissu vivant du Stromatopore; outre le rôle de soutien qu'ils pouvaient jouer, ils auraient effectivement servi à isoler cette zone supérieure, habitée, du reste du coenosteum abandonné par l'organisme (C.W. Stearn, 1975, p. 96, fig. 4 à 7; C.W. Stock, 1984, fig. texte 2).

Remarque. Chez l'une des espèces citées précédemment, Hermatostroma perseptatum, cette absence de dissépiments dans la partie sommitale des latilaminae s'accompagne d'une absence de vésicules marginales autour des éléments coenostéaux. Il me semble possible d'envisager que les vésicules marginales, à l'instar des dissépiments, aient aussi contribué à consolider la partie inférieure du coenosteum et à l'isoler de la partie sommitale vivante. Dans cette hypothèse, les vésicules marginales (zone vésiculaire externe), habituellement considérées comme un caractère de la microstructure, devraient être prises en considération au niveau de la structure, au même titre que les dissépiments. Il ne s'agirait pas de "cellules" (au sens microstructural du terme), localisées à la périphérie, mais de dissépiments accolés aux parois coenostéales. C'est d'ailleurs la position que semble adopter C.W. Stearn (1980) dans sa classification des Stromatopores, où il fait abstraction des caractères microstructuraux mais conserve cependant la présence de vésicules marginales parmi les critères génériques du genre Hermatostroma. Je dois d'ailleurs signaler que les vésicules marginales existent ailleurs que chez le genre Hermatostroma; j'en ai observées en particulier chez un spécimen de Stachyodes verticillata (pl. XVIII, fig. 6), dans le matériel afghan.

Ces différentes observations sur les dissépiments et les vésicules marginales rejoignent une autre constatation faite chez beaucoup de Stromatopores: la partie sommitale des latilaminae montre des éléments coenostéaux plus fins, mieux distincts que dans les parties sousjacentes (voir Stictostroma cf. brylkini, fig. 50 B; pl. VII, fig. 10). Une explication analogue pourrait en être donnée: les zones profondes du coenosteum seraient progressivement abandonnées et calcifiées, au fur et à mesure de la croissance du Stromatopore. Toutefois, certains genres, tel Actinostroma, sont dépourvus de dissépiments et ne montrent pas d'épaississement du squelette. Il est possible d'imaginer que, chez ces formes, l'ensemble du coenosteum était occupé par le tissu vivant ou d'envisager que les séparations secrétées par l'organisme n'étaient pas fossilisables.

Ce processus de croissance et de migration de l'aninal vers la partie supérieure du squelette est connu dans d'autres groupes: Tétracoralliaires, Tabulés. Ceci n'implique pas pour autant des affinités avec les Coelentérés. On connaît aussi, chez les Eponges à squelette calcaire, telle *Merlia normani*, un processus analogue de croissance. Le tissu vivant y est toujours localisé à la partie supérieure; tandis qu'en-dessous, dans le squelette, on observe des cryptes avec des amas de cellules gemmulaires ayant vraisemblablement des possibilités de régénérescence. J. Vacelet (1980, p. 229) propose d'expliquer la reprise de croissance des latilaminae des Stromatopores à partir de telles cellules de régénération.

2. STRUCTURE COENOSTEALE

Les éléments du squelette, définis précédemment, sont associés entre eux pour donner différents types de structure coenostéale. De nombreux termes ont été utilisés pour désigner l'aspect de la structure, tant en coupe verticale qu'en coupe tangentielle. Toutefois, il subsiste encore de nombreux problèmes de terminologie. Dans ce qui suit, je commencerai par donner des exemples et des remarques montrant la nécessité de préciser le sens de certains termes couramment employés ou d'en définir de nouveaux.

2.1. <u>Remarques</u> <u>au sujet de la terminologie couramment</u> \ <u>employée</u>

- L'expression de structure réticulée, synonyme de l'"amalgamate structure" des auteurs anglais (J.J. Galloway, 1957) est fréquemment employée (D. Le Maître 1934, M. Lecompte 1952, B. Mistiaen 1976, 1980) pour désigner une structure où les éléments coenostéaux sont très imbriqués les uns dans les autres et où il est difficile, voire impossible, de les différencier. Le qualificatif de réticulé prête cependant à confusion car il fait penser à une structure régulière, où les éléments se recoupent à angle droit, comme dans le réticule d'un oculaire. Il semble donc préférable de proscrire de tels termes pour en utiliser d'autres, moins équivoques (com. pers. C.W. Stearn).

- Le qualificatif de structure vermiculée évoque l'existence d'éléments contournés et discontinus, or il est parfois utilisé pour désigner des éléments reliés entre eux en une maille d'aspect très continu (D. Turnsek 1970, p. 23, 25; V. Zukalova 1971, pl. XVIII, fig. 4).

- L'emploi du même qualificatif pour caractériser l'allure des éléments figurés et la forme des espaces vides est équivoque et peut entrainer des confusions. Il me semble préférable et plus logique de réserver les termes descriptifs aux seuls éléments figurés, tout en décrivant éventuellement l'allure des espaces vides. Il en résulte que certains qualificatifs, qui font directement allusion aux espaces vides, sont à éviter. - Enfin, la structure coenostéale s'observe à la fois en sections verticale et tangentielle; il est préférable d'utiliser des termes différents pour décrire les deux types de section (com. pers. C.W. Stearn).

2.2. <u>Terminologie utilisée</u> dans ce travail

Les termes proposés et utilisés dans ce travail sont les suivants (fig. 1).

2.2.1. En coupe verticale

Structure quadrillée: éléments coenostéaux bien individualisés, relativement minces et perpendiculaires entre eux; (= trabéculaire); ex: Actinostroma.

> N.B. les éléments verticaux peuvent être superposés (ou continus) ou au contraire disposés en quinconce.

SECTION TANGENTIELLE

	动	鐵
PONCTUEE	CATENIFORME	HEXACTINELLOÏDE
気影	B	
VERMIFORME	MEANDRIFORME	CRIBLEE
	COALESCENTE	

Fig. 1 - Différents types de structures coenostéales reconnues chez les Stromatopores.

- 8 -

- Structure vésiculaire: éléments coenostéaux surtout représentés par des éléments convexes, superposés; ex: Clathodictyon.
- Structure enchevêtrée: éléments coenostéaux irréguliers peu ou pas différenciés; (= réticulée, "amalgamate"); ex: Stromatopora.

2.2.2. En coupe tangentielle.

Structure ponctuée: éléments circulaires isolés, correspondant essentiellement aux sections arrondies des piliers; ex: Actinostroma (section au niveau des piliers).

Les éléments circulaires précédents peuvent être partiellement réunies entre eux et donner les deux types de structures suivantes.

- Structure caténiforme: (Lecompte, 1951; du latin catena = chaine); structure correspondant à une maille discontinue formée par les sections arrondies de piliers, réunies par quelques processus linéaires; ex: Atelodictyon.
- Structure hexactinelloIde: structure correspondant à une maille formée par des laminae réduites à des processus radiaires autour des piliers et leur donnant un aspect étoilé; ex: Actinostroma (section au niveau des laminae).

Enfin, quatre autres types de structure sont encore reconnus.

- Structure vermiforme: éléments coenostéaux (coenostèles) donnant des sections d'épaisseur à peu près constante, irrégulières et contournées mais discontinues; ex: Stictostroma.
- Structure méandriforme: structure analogue à la précédente mais beaucoup plus continue; (= labirynthoide); ex: Stromatopora.
- Structure criblée: structure caractérisée par des plages très continues, seulement percées d'ouvertures arrondies; ex: Salairella.
- Structure coalescente: plages coenostéales sans ouvertures ou avec des ouvertures très réduites et peu nombreuses; ex: Clathocoilona.

3. MICROSTRUCTURE

La microstructure des Stromatopores constitue sans doute l'un des problèmes les plus complexes et les plus controversés que pose le groupe, ilest étroitement lié celui des relations entre les Stromatopores du PaléozoIqué et ceux du MésozoIque (B. Mistiaen, 1984b) et celui de la classification du groupe.

De nombreux termes ont été utilisés pour la décrire. C.W. Stearn (1966a) en recense et en définit quatorze; mais ils pourraient, en fait, dériver de deux types fondamentaux (C.W. Stearn, 1975, 1977), trabéculaire et sphérulitique, analogues aux microstructures connues chez les Sclérosponges.

Il est évident que certains aspects observés sont dus à la diagenèse et plusieurs auteurs (C.W. Stearn, 1966a, p. 83; J. St. Jean, 1967, p. 420; B.H.G. Sleumer, 1969, p. 23; D. Turnsek, 1970, p. 19) ont souligné qu'il existe souvent des passages d'un type de microstructure à un autre (cellulaire - mélanosphérique en particulier). De tels passages se retrouvent aussi dans le matériel afghan et dans le matériel du Boulonnais que j'ai étudié antérieurement (B. Mistiaen, 1976).

Jusqu'à présent les données concernant la microstructure sont essentiellement basées sur des observations en lames minces. Peu d'études ont été réalisées au M.E.B. (C.W. Stearn, 1977). Il serait sans doute judicieux de développer ce dernier type d'observation, d'utiliser d'autres moyens d'approche (lames ultra-minces...) et de confronter les résultats obtenus par ces différentes techniques. Toutefois la mauvaise conservation du matériel afghan ne m'a pas permis d'appliquer ces méthodes.

Les termes utilisés pour décrire les caractères de la microstructure, dans ce travail, sont ceux définis par C.W. Stearn (1966a).

١

DEUXIEME PARTIE

BIOSTRATIGRAPHIE, BIOGEOGRAPHIE

\

"... L'ENSEMBLE DE LA PALÉONTOLOGIE DÉMONTRE QUE TOUS LES GROUPES FOSSILES PEUVENT SERVIR EFFICASSEMENT EN BIOSTRATIGRAPHIE..."

F. LETHIERS, 1982, p. 358

SOMMAIRE

,

Int	TRODUCTION	13
1.	BIOSTRATIGRAPHIE	L3 13 17
2.	CORRÉLATIONS BIOGÉOGRAPHIQUES	21 21
	DES ESPÈCES 2.3. Application à quelques modèles de reconstitution.	22 24

\

INTRODUCTION

L'analyse de la répartition des faunes de Stromatopores me conduit:

- Premièrement, à reconnaître plusieurs grands ensembles fauniques dans lesquels on peut discerner quelques associations.

- Deuxièmement, à examiner les corrélations biogéographiques avec d'autres régions du globe.

- Troisièmement, à souligner quelques tendances évolutives dans la succession stratigraphique de certaines des espèces reconnues.

J'examinerai ensuite succinctement le problème des relations entre les formes du Paléozofque et celles du Mésozofque

1. BIOSTRATIGRAPHIE

Les éléments de base de cette analyse sont les tableaux de répartition, établis pour une quinzaine de coupes où les Stromatopores sont présents (fig. 2 à 16) et le tableau général de répartition des Stromatopores dans le Dévonien des Montagnes Centrales d'Afghanistan (fig. 17).

1.1. Ensembles fauniques

Ces différents tableaux mettent en évidence, de façon plus ou moins constante, l'existence de trois grands ensembles fauniques, l'un emsieneifélien, le second essentiellement givétien, le troisième frasnien.

?			Fra	asnien		inf	érie	eur							_			Fras	nien	moy	en
F. de Qutun termes 5	6789) 10	F. 11	de 12 13	14	Bad 15	ragi 16	ha 17	18	19	20	21	22	23	24	25	26	F. d 27	u Kol	h-e	Giru
Stictostroma Clathrocoilon Stachyodes au Hermatostroma	saginatu a spissa strale schluet	um a teri		x												x x x	x x x	L			

Fig. 2 - Tableau de distribution des espèces de Stromatopores dans la coupe du Koh-e Zardak (coupe 1).

	Givétien		Fr	. inf.	Fras	nien mo	yen	·		}	Fam.
termes	F. de Qutun	2	F. de B 3	adragha 4	F.d 5	u Koh-e 6	Giru 7	8	9	10	11
Actinostro	oma crassum		x								
Atopostrom	na sp.		x								
Salairella	buecheliensis		x								
Taleastrom	na boiarschinovi		x								
Stachyodes	s verticillata		x								

Fig. 3 - Tableau de distribution des espèces de Stromatopores dans la coupe de Badragha nord (coupe 3).

		(Sivéti	ier	1				F	ras	snie	en :	infé	érie	eur						F	rasi	nie	n m	oyen		
	F.	de	Qutur	ו						F.		de		Bac	drag	gha					F.	. dı	u K	oh-i	e Gir	ru	
termes				4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 2	26	27
Stictostroma Stachyodes a	ura	alen ralo	nse B		x															x-							x

Fig. 4 - Tableau de distribution des espèces de Stromatopores dans la coupe de Sultali (coupe 7).

	Eifélien ?		Giv	ét	ien		?					Fr	asn.	. i	nf.		Fr	•mo	yen	8 5	sup.	Fam.
	F. de Qutun	Γ			F.	du		Sin	Gha	r							F.	du	Koł) -6	• Gi	ru
termes	1 2	3	45	6	78	9 1	0 1	11 12	13	14	15	16	17	18	19	20	21		2	22		23
Clathrocoi Taleastrom Actinostro Hermatostro Stachyodes	lona obliterata a simplex na filitextum oma afghanense cf. verticilla	ta	x x		x x x																	
Clathrocoi	lona spissa															X						
Stictostro	na saginatum		_			_										X						

Fig. 5 - Tableau de distribution des espèces de Stromatopores dans la coupe du Koh-e Qutun (coupe 8).

	Dévoni	Giv?-Fra	s? Frasnien moyen	
termes	Formation d 1 2 3 4 5 6 7	le Qutun 8 9 10 11 2 13 14 1	du Sin G 15 16 17 18 19	har du Koh-e Giru 20 21 22
Stromatopora huep Atelodictyon cf. Atelodictyon aggr Stictostroma sagi Stromatoporella g	schii x connectum egatum natum ¡ranulata		x x x x x	

Fig. 6 - Tableau de distribution des espèces de Stromatopores dans la coupe de Takhtakay (coupe 9).

	Givétien	?	Frasnien	
termes	F. du Sin G 123456	ihar 789	F. du Koh-e Giru 10 11	
Actinostroma devonense Atelodictyon aggregatum Hermatostroma cf. schlu Actinostroma perlamina	x n x Jeteri x tum x			
Stachyodes australe			x	

Fig. 7 - Tableau de distribution des espèces de Stromatopores dans la coupe de Tanabed (coupe 12).

	Ems. Eif. Giv.	Frasnien moyen
F. de Bokan	F. du Sin Ghar	F. du Koh-e Giru
termes	4 5 6 7 8 9 10 11 12	
Hermatostroma afg Hermatostroma sch	hanense x lueteri x	

Fig. 8 - Tableau de distribution des espèces de Stromatopores dans la coupe du Sin Ghar (coupe 17).

		Givétien	Frasnien moyen	Dév.moy. Giv. à Fras.
termes	F. de Bokan	F. du Sin Ghar 30	F. du Koh-e Giru 31	F. d'Olsenak 9 14 à 21
Atelodicty	on cf. connectu	m x		
Hermatostr	oma schlueteri			X
Clathrocoi	lona spissa			l î
Stromatopo	rella uralense			x

Fig. 9 - Tableau de distribution des espèces de Stromatopores dans la coupe du Spin Ghar (coupe 18).

termes	Emsie F. (10.12.15	en de Ca 5.22	Eif. awak 38.5	<u>.</u> ;3.	Frasnien inférieur Mb. du Quark-e Bodak .119.127.129e.129f.129g	Frasnien moyen F. du Koh-e Giru 130
Bifariostroma sp. Pseudostromatoporella sp Stromatopora e.g. concentric Clathrodictyon cellulosum Hermatostroma cf. schlueter: Stictostroma saginatum Stachyodes australe Stictostroma uralense	x ;a x))	(X- (x	-x -x	x xx xx	•

Fig. 10 - Tableau de distribution des espèces de Stromatopores dans la coupe de Bokan (coupe 29).

	Emsien						?	•			Givé	tie	n Fr.in	if.	Fr. moyen	1
termes	F. de Bokan 8	9	10 1	1 12	2 13	14	Caw 15	/ak 16	17	18	19 20	21	22 23	,24	Koh-e Gir 25 26	·υ
Stromatopora e.g. c Taleastroma yangdon	oncentrica x- gi	x					x				-					
l Gerronostroma Lemni Taleastroma boiarsc	SCUM hinovi						X									
Clathrocoilona obli Stromatopora huepsc	terata hii						Ŷ		x x							

Fig. 11 - Tableau de distribution des espèces de Stromatopores dans la coupe de Cawak (coupe 30).

		_	Giv	éti	en			Fras	nien moye	n
termes	F. 20	de 21	Dewal 22 23	24	25	26	27	F. d 28	u Koh-e G	iru
Hermatostroma perseptatum Stictostroma uralense	x									
Hermatostroma afghanense Stachyodes e.g. verticilla	ta				x	x				
Clathrocoilona spissa								,	x (coupe	ouest)

Fig. 12 - Tableau de distribution des espèces de Stromatopores dans la coupe de Sayed Tabib nord, coupe centre (coupe 34).

	Ei	fél	ier	n ?	?		Gi	vét	ien	?				
termes	F.	de 2	Ca	awak 34	F. 5	de 6	De 7	wal 8	9	10	11	12	 	
Actinostroma verrucosum												x		
Atelodictyon cf. connectum Taleastroma boiarschinovi												x x		

Fig. 13 - Tableau de distribution des espèces de Stromatopores dans la coupe du Qajir (coupe 37).

Fig. 14 - Tableau de distribution des espèces de Stromatopores dans la coupe de Dewal (coupe 39).

	Fr.inf.	Frasnien moyen	?	Famennien
Formation termes	de Dewal 18 19	Formation du K 20	oh-e Giru	.3 44
Clathrocoilona spissa Stachyodes australe Stachyodes costulata ?	x x			-x

Fig. 15 - Tableau de distribution des espèces de Stromatopores dans la coupe de Ghujurak sud (coupe 41).

	Fr. inf.? Fr.moy. Frasnien supérier	ur_
termes	F. de Dewal F. du Koh-e Giru 10 11 12 13 14 15 16 17 18 19 20 21	
Clathrocoilona spissa Stachyodes australe	xx	

Fig. 16 - Tableau de distribution des espèces de Stromatopores dans la coupe de Caragsang (coupe 42).

L'ensemble faunique d'âge emsien-eifélien est, apparemment, extrêmement pauvre en espèces mais il convient de souligner qu'il n'a été en fait repéré et échantillonné que dans deux coupes (celles de Bokan et Cawak) où les faciès sont tout à fait défavorables au développement de constructions récifales.

Par contre les Stromatopores sont abondants au Givétien et au Frasnien; ils sont présents et ont été récoltés dans la plupart des coupes levées. Ces deux ensemble montrent cependant des caractères nettement différents.

Au Givétien on note en effet une grande diversité d'espèces (une trentaine y sont reconnues), tandis qu'au Frasnien inférieur et surtout moyen, au contraire, les espèces sont beaucoup moins nombreuses (trois seulement pour le Frasnien moyen). J'ai déjà eu l'occasion (B. Mistiaen, 1976) d'observer une distribution tout à fait analogue à propos des faunes givétiennes et frasniennes de Stromatopores du Boulonnais. Cette constatation est à mettre en parallèle avec la grande diversité de faciès observée au Givétien et qui devait correspondre un grand nombre de niches écologiques; cette diversité contraste avec l'homogénéisation des faciès et de la paléogéographie constatée à partir du Frasnien (moyen).

Il est encore intéressant de noter, par ailleurs, que ces ensembles fauniques, givétien et frasnien, n'ont en commun que de rares espèces. Parmi celles-ci, on peut citer en particulier *Clathrocoilona spissa* dont la grande répartition stratigraphique peut, en partie, s'expliquer par la nature même de l'espèce, aux éléments coenostéaux très épaissis, difficiles à caractériser; c'est une espèce qui, dans le Dévonien du Boulonnais (B. Mistiaen, 1982, p. 92), présente aussi une très grande répartition.

1.2. Associations

Au sein des différents ensembles fauniques précédemment reconnus, on peut noter l'existence d'associations. Elles sont souvent très mal exprimées et peu caractérisées mais se retrouvent malgré tout de façon relativement constante, dans plusieurs des coupes étudiées, et permettent d'établir certaines corrélations entre les formations récifales.

On peut noter en particulier la présence de toute une série d'espèces (Atelodictyon aggregatum, Hermatostroma schlueteri, H. perseptatum, H. afghanense, Stictostroma uralense) qui caractérisent la partie supérieure du Givétien et la base du Frasnien.

L'une des plus typiques est celle qui concerne le Frasnien inférieur, avec la présence de *Stictostroma saginatum* et de *Stachyodes australe*, parfois acconpagnés de *Clathrocoilona spissa*; cette même association existe aussi dans la totalité des niveaux à Stromatopores repérés dans le Frasnien du Boulonnais (B. Mistiaen, 1976).

Enfin, le tableau de répartition des Stromatopores, établi pour ceux du Dévonien des Montagnes Centrales d'Afghanistan (fig. 17), peut être comparé à un tableau analogue (fig. 18) donnant la répartition stratigraphique mondialement reconnue de ces mêmes espèces, obtenu à partir des données fournies par différents auteurs et corellé avec les subdivisions internationales (zones à Conodontes et Tentaculites). Quelques remarques, relatives à l'extension stratigraphique de certains taxons, peuvent être faites.

- Le genre *Bifariostroma* KHALFINA, connu uniquement jusqu'ici au Dévonien moyen (C.W. Stearn, 1979, p. 231) et le genre *Pseudostromatoporella* KAZMIERCZAK, connu du Dévonien moyen au Strunien, sont en fait déjà présents au Dévonien inférieur; ils ont été tous deux repérés dans la coupe de Bokan au Daléjien (Emsien supérieur au sens allemand).

- De même le genre Euryamphipora KLOVAN, connu jusqu'ici du Frasnien au Strunien (Ibid.), est déjà présent au Givétien.

- Enfin, le genre Atopostroma YANG ET DONG, signalé jusqu'alors dans le seul Dévonien inférieur, se prolonge dans le Dévonien moyen, jusque dans le Givétien.

	Sil.	Emsien	Eifélien	Givétien		Frasnien	
					inférieur	moyen	supérieur.
Labechia cf. venusta YAVORSKY	+++						
Bifariostroma sp.		++					
Pseudostromatoporella sp.	1	++					
Stromatopora concentrica GOLDFU	ISS .	++++	+++++++++++	++++			}
Clathrodictyon cellulosum NICHO	LSON ET MUR	[E+	+++++				
Taleastroma yangdongi nov. sp.		++					
Stromatopora huepschii (BARGATZ	(KY)	1	?++	+++++			
Taleastroma boiarschinovi (YAVO	IRSKY)			-+++++			
Atelodictyon cf. connectum YANG	ET DONG			++++++			j j
Clathrocoilona spissa (LECOMPTE	:)		?	+++++++++++++++++++++++++++++++++++++++	********	+++++++++	
Gerronostroma lemniscum (LECOMP	TE)			+++++			
Clathrocoilona obliterata (LECO	IMPTE)			+++++			1
Actinostroma verrucosum (GOLDFU	(22)			++++			
Euryamphipora sp.		1	}	*******)
Stromatoporella granulata (NICH	IOLSON)	•		+++++++++	+++++		
Habrostroma ? paucicanaliculata	(LECOMPTE)	1	l	+			
Atelodictyon strictum (LECOMPTE	.)			-+++			
Stachyodes verticillata (M'COY)		Į		+++++++++++	+++++		
Stictostroma cf. brylkini (YAVO)RSKY)	{	1	+++			
Habrostroma incrustans (HALL ET	WHITFIELD)	1		+			
Taleastroma simplex (YANG ET DO	NG)			+	i		
Salairella buecheliensis (BARGA	TZKY)	ł		+			
Actinostroma crassum LECOMPTE			1	+			
Atopostroma sp.				+			
Hermatostroma afghanense nov. s	sp.	ł		+++	+++		
Atelodictyon dewalense nov. sp.			ļ	-+-			
Atelodictyon aggregatum LECOMPT	E	1			+++++ ?		
Stictostroma uralense (YAVORSKY	()			+	++++ ?		
Hermatostroma schlueteri NICHOL	SON		1	+	++++ ?		
Actinostroma devonense LECOMPTE	•				•+++		
Hermatostroma perseptatum LECOM	1P T E				-++++++	•	
Actinostroma filitextum LECOMP1	E			+			
Actinostroma perlaminatum LECOM	1P T E			+			
Anostylostroma sp.				?	+++++		
Stachyodes costulata LECOMPTE				?	+++++++++++++++++++++++++++++++++++++++	 ++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
Stictostroma saginatum (LECOMPI	TE)				*++++++++++		
Stachyodes australe (WRAY)					*****	+++++++++++++++++++++++++++++++++++++++	*****

Fig. 17 - Tableau schématique de distribution des différentes espèces de Stromatopores reconnues dans le Paléozoïque des Montagnes Centrales d'Afghanistan. Ce tableau a été établi à partir des différents tableaux de distribution par coupe (fig. 2 à 16) et des attributions d'âge les concernant, en tenant compte de l'ordre d'apparition des espèces dans la coupe de Dewal qui a été échantillonnée avec le plus de détail. +++ = présence certaine de l'espèce; --- = présence probable; ? = présence douteuse.

•
20)
à
(Légende,
18
Fig.

-

	Zones à Céphalopodes	Zones à Tenteculiter	Zones à Grantolites	Zones à Constantes	R R		Ľ	T		_								
A				Siphonodella	2	\square	ē	₽										_
د ا ا				Protognathodus														
a B	Wocklumeria			U costatus M L			str.	Fa2d		:								
v a	Clymenia			styriacus M L	a D			J										
IV R III	Platyclymenia			U velifer M L	RIE		E	- e		****								
				marginifera U L	UPE		enie	La la										
	Cheiloceras			rhomboidea U U	S		L an											
IIA				crepida M L	=			a la-b										
post- do IS				triangularis M				-		÷					_		+	
Iδ	Crickitea holzapfeli			L Um gigan U	N O I			<u>f 3a-b</u>		*****							****	****
				L	-		5			Ŧ							ŧ	-
τy	Manticoceras cordatum			Ancyrognathus U triangularis M L			rasnie	- 12									****	****
? 1ß				U asymmetricus M L				F23								****	+++++	****
				dengleri U				Ŷ	÷	÷			Ī		1	Ŧ	Ŧ	Ŧ
· 102	Pharciceras lumulicosta			hermanni- U cristatus L	E N		tien	Ê		Ì							+++++++++++++++++++++++++++++++++++++++	
In1	Moenioceras			U Varcus M L	H O Y		Givé	Gia-d		Ĭ				ļ		*****	****	****
				ensensis				-	Ī	Ī	Ī				İ	++ ~	+	
				kockelianus	2		lien	C 02		÷				Ì				
	Anarcestes	N.sulcata		australis		ľ	Ifé	م	ŧ	ŧ.	::		ŧ	:				
		N.holvnensis		partitus		e	۳	6		:	:			÷	_			
		N.richteri		patulus		e] i		٥r	:		+ -							
	Sellanarcestes	N.cancellata		serotinus	5	Dal	5		÷	‡	::		: :	:				
	Gyroceras	N.elegana		laticostatus		Ð	as i		•	+	‡ '	• •	• ‡	:				
		N.barrandei N.praecursor		gronbergi	~	Ξ	Ξ				t		t	: ‡				
	Anetoceras	N.zlichovensis		dehiscens	μ	<u> </u>	Ē				<u> </u>		_			_		
		G.strangulata	M.yukonensia M.thomasi M.fanicum	kindlei		aguie	genie											
		P.geinitziana	M.falcarius M.bercymicus	sulcatus		٦	Sie											
ļ		P.intermedia	in the cynicab	pesavis delte	>	5	e											
		N.bohemica :	M.praehercynicus	derca	<u> </u>	0 V	nie											
}			Mundfamia	woschmidti		C.F.	÷											
		L		woschmidti	Z	-	اق					_						
(1)	(2)	(<)	(5)	(3)		2				-								
					2	Ĩ				-	1015	11 50						
						Fer					N L	-			9N			
						2				-	-	2	_	5	8			ជ
					5	-1	-				ה היו היו	2	2	RSK	Ξ	~	Ē	M
													Ĩ	AVO	ANG	P 16	M	5
								>		Ę	3		ARG	5		COM	EC	1
								a c K		1				Ň	ctu	Ξ	Ĭ	ata
								A VO.		e11		i j		hin	9UUG	23	scu	ter
								2		ore		1 a o b o) sole	Irsc	ວິ	spis	inni	11 di
										to b	ິ່		, a) o i		2	= Ic	13 0
					1			2	e e		0 1 2 7 2 4		ora	1	Yon	1101	L OIL	1 lor
								ŗ	ost.	Str			t oo	t s	fct	000	osti	000
					1				ari.	opn	0 4 1 0		200	See	lod	thr	ronu	thr
								de l	e if	r se		Lal.	Str.	Ial	I te	Cla	Geri	S. La
					<u> </u>		_				-					-	د.	

SILURIEN	DEV	. INF	ERIEUR	DEV.	MOYEN	DEVON	IEN	SUPERIE	EUR		CAR
Lld Wen Lud Pri.	Lochkovien	Praguien	Zlich Dalej	ien							
	Gedinnien	Siegenien	Emsien	Eifélien	Givétien	Frasnien		Famennien		Stru.	lourn.
				Cola-b Co2a-d	Gia-d Fla-c	F2a - F2i F3a-b	Fala-b	fa 2 a -	- C	Fa2d-In1	a
Actinostroma verrucosum (GOLDFUSS)	[*******	****						
Euryamphipora	1			-	*********	*****					
Stromatoporella granulata (NICHOLSON)	ľ		/	*******	*****						
Habrostroma ? paucicanaliculata (LECOMPIE)			******	•••••	*****						
Atelodictyon strictum LECOMPTE				*******	****						
Stachyodes verticillata (Mº COY)					********	******					
Stictostroma brylkini (YAVORSKY)					******	******					
Habrostroma incrustans (HALL ET WHITFIELD)					+++++++	***********					
Taleastroma simplex (YANG ET DONG)			*********	••••	+++						
Salairella buecheliensis (BARGATZKY)			**********	**********	*****						
Actinostroma crassum LECOMPTE					-++++++++	* * * * * *					
Atopostroma		?	**********	• • • • • • • • • • • • • • • •	****						
Hermatostroma afghanense nov. sp.					-+++++						
Atelodictyon dewalense nov. sp.					-+++						
Atelodictyon aggregatum LECOMPTE					*******						
Stictostroma uralense (YAVORSKY)				•	*	+++					
Hermatostroma schlueteri NICHOLSON					*******	+					
Actinostroma devonense LECOMPIE					-+++++++	*****					
Hermatostroma perseptatum LECOMPTE					+++++	+					
Actinostroma filitextum LECOMPTE	{	1			+	+++++					
Actinostroma perlaminatum LECOMPTE					*						
Anostylostroma	•••••	*******	*********	•••••	******	*****	******	**********	******	++	
Stachyodes costulata LECOMPTE					*****	+++++					
Stictostroma saginatum (LECOMPTE)						+					
Stachyodes australe (WRAY)	ļ					+					

Fig. 18 - Tableau de répartition des principaux genres et espèces de Stromatopores reconnus dans les Montagnes Centrales d'Afghanistan, du Silurien au Dévonien supérieur. Les répartitions (mondiales) sont replacées par rapport à l'échelle biostratigraphique internationale basée sur les zones à Conodontes, à Céphalopodes, à Tentaculites et à Graptolites; il en résulte des indéterminations (?). Les limites des séries dévoniennes sont conformes aux décisions du dernier Congrès Géologique International (Moscou, 1984). L'ordre des espèces est le même que celui de la figure 17. [1] [2] [3] d'après M. HOUSE ET W. ZIEGLER, 1977; M. HOUSE, 1985; J.G. JOHNSON, G. KLAPPER ET W.R. TROJAN, 1980; G. KLAPPER ET W. ZIEGLER, 1979. [4] et [5] d'après I. CHLUPAC, 1982. Lochkovien, Praguien, Zlichovien, Daléjien: étages bohémiens. Cola-b...Fa2d-Tnla: Zonation de E. MAILLEUX ET F. DEMANET, 1929. Strunien d'après R. CONIL, E. GROESSENS ET H. PIRLET, 1976.

2. CORRELATIONS BIOGEOGRAPHIQUES

Introduction

La distribution géographique de chacune des espèces de Stromatopores reconnues dans le Dévonien des Montagnes Centrales d'Afghanistan a été reportée sur un planisphère actuel, avec des indications d'âge. Cette façon fixiste de procéder a été adoptée car il m'a semblé arbitraire de choisir, à priori, un modèle de reconstitution.

L'ensemble des données des cartes de distribution a été repris en un schéma de répartition unique (fig. 19). Je le commenterai avant de le transposer sur plusieurs modèles de reconstitutions molibistes proposés par différents auteurs. Il met en évidence des relations paléogéographiques certaines avec d'autres régions du globe. Toutefois, avant de les analyser et d'en tirer des conclusions, il m'apparaît nécessaire de le considérer de façon critique et de procéder à quelques réflexions préalables afin d'en justifier ou d'en relativiser la fiabilité.

2.1. Remarques d'ordre général

2.1.1. Les comparaisons qui suivent seront forcément incomplètes, par manque d'informations; il faut en effet tenir compte du fait que la connaissance des Stromatopores est encore très sporadique et inégale et que, dans de nombreuses régions, le groupe mériterait d'être étudié; en Europe occidentale, où l'on connait sans doute la plus forte densité en études, il reste encore beaucoup de travaux à faire. Dans des régions plus proches de l'Afghanistan, comme l'Iran, ou le Pakistan (région de Nowshera), en Birmanie (Etats Shan), des calcaires à Stromatopores sont connus mais n'ont jamais fait l'objet d'étude particulière. A titre d'exemple, pour illustrer ce propos, je soulignerai que, sans les récentes monographies sur les Stromatopores du Guangxi, Chine (J. Yang et D. Dong, 1979) ou du Canning Basin, Australie (A.E. Cockbain, 1984), rien n'apparaîtrait des affinités des représentants du groupe de la faune afghane avec ces deux régions.

2.1.2. Une deuxième réflexion critique s'impose, relative aux espèces que je décris dans ce travail. Un grand nombre d'entre elles, près d'un tiers, sont des espèces définies par M. Lecompte dans le Bassin de Dinant, en Belgique. Ayant précédemment travaillé sur les faunes de Stromatopores du Dévonien du Boulonnais, qui montrent beaucoup d'affinités avec celle du Bassin de Dinant, j'ai pensé, au vu de ces résultats, avoir été influencé par mes études antérieures. Or, l'analyse des espèces reconnues en Chine et en Australie, dans les deux monographies précédemment citées, m'a convaincu du contraire; en effet:

- 181 espèces sont décrites dans le Dévonien de la province de Guangxi (Chine), par J. Yang et D. Dong (1979); 75 d'entre elles sont rapportées à des espèces préexistantes, dont un tiers définies par M. Lecompte;

- 26 espèces sont décrites dans le Dévonien du Canning Basin (Australie) par A.E. Cockbain (1984); 23 d'entre elles sont rapportées à des espèces préexistantes dont la moitié environ (11) définies par de M. Lecompte.

2.1.3. Par contre, les relations semblent relativement peu marquées avec les faunes dévoniennes d'U.R.S.S., sauf avec celle du Kuznetsk. Ceci ne traduit pas forcément l'absence d'affinités mais rend certainement compte de la difficulté d'utiliser les travaux des auteurs soviétiques où sont définis de trop nombreux taxons dont très peu sont utilisables, faute d'une description et de comparaisons suffisantes. A titre d'exemple, je rappellerai ce que souligne C.W. Stearn (1979, 1980), sur 49 nouveaux genres de Stromatopores établis entre 1967 et 1978, 43 ont été proposés par des paléontologues soviétiques !

2.1.4. Les relations mises en évidence sont aussi fonction de la notion plus ou moins large de l'espèce qu'ont les différents auteurs. Ainsi, on note seulement quatre espèces communes sur les dix-huit que reconnaît l'auteur, entre les faunes dévoniennes de Stromatopores d'Afghanistan et celles du Dévonien des Asturies (Espagne); mais parmi celles-ci, 12 sont laissées en nomenclature ouverte, tandis que les listes synonymiques des 6 autres traduisent une conception très large de l'espèce.

2.2. Commentaires des cartes de répartition des espèces

Ces remarques faites, l'analyse des différentes cartes de répartition et de la carte récapitulative (fig. 19) montre les caractères suivants.

- La faune de Stromatopores des Montagnes Centrales d'Afghanistan montre de nettes affinités avec celles d'Europe occidentale (Ardennes, Boulonnais, Moravie...), des provinces du Yunnan, du Guangxi et du Gueizhou en Chine, du Bassin du Kuznetsk en U.R.S.S. et du Canning Basin en Australie occidentale.

- Elle présente aussi, a un degré moindre, des affinités avec l'Oural (région du Timan), les régions de Buchan et de Lilydale en Australie orientale et avec l'Alberta (Canada).

- Par contre on note peu d'affinités avec le reste du continent américain.

Fig. 19 - Carte de répartition mondiale des différentes espèces de Stromatopores reconnues dans le Dévonien des Montagnes Centrales d'Afghanistan. (Di = Dévonien inférieur; Dm = Dévonien moyen; Ds = Dévonien supérieur; D = Dévonien indifférencié; chaque point indique la présence d'une espèce commune avec l'Afghanistan).

Fig. 20 - Reconstitution paléogéographique à la fin du Dévonien moyen (d'après J.G. Johnson, 1979, fig.7). Les zones hachurées correspondent au Domaine du Vieux Monde reconnu par l'auteur pour les faunes de Brachiopodes; les pastilles noires situent les zones de forte affinité (gros points) et de moyenne affinité (petits points), relatives aux faunes de Stromatopores pour l'ensemble du Dévonien. L'Afghanistan constitue un jalon intéressant entre les différents éléments du Domaine du Vieux Monde précédemment reconnu. Les affleurements de Chine (Guangxi) ne sont pas positionnés sur ce schéma.

2.3. Application à quelques modèles de reconstitution

Trois modèles de reconstitution paléogéographique ont été repris (fig. 20 à 22); sur chacun j'ai positionné les différentes régions précédemment reconnues avec lesquelles la faune de Stromatopores des Montagnes Centrales d'Afghanistan présente des affinités importantes (pastilles de grande taille) ou moyennes (pastilles de petite taille).

- La figure 20 reprend le schéma de J.G. Johnson (1979, p. 302) proposé pour les domaines d'extension des Brachiopodes au Dévonien moyen. L'Afghanistan (central) n'est pas représenté sur la carte; il faut le positionner à l'Est de l'Arabie (J. Boulin, 1980, fig. 6 B). On constate que les principales aires précédemment reconnues s'incrivent parfaitement dans le domaine du Vieux Monde, distingué par A.J. Boucot pour les Brachiopodes et confirmé par d'autres groupes fossiles, notamment les Coraux (W.A. Oliver, 1977).

Cette constatation permet d'intégrer l'Afghanistan à ce domaine; il constitue un jalon, en particulier entre l'Australie occidentale et l'Europe.

- La reconstitution de A.J. Boucot et J. Gray (1983), proposée pour le Frasnien, est reprise dans la fig. 21. Les différentes régions considérées s'inscrivent assez bien dans la "zone aride" reconnue par les auteurs, à l'exception toutefois de la Chine et de l'Afghanistan qui, comme dans la reconstitution précédente, n'est pas précisément indiqué; en le situant comme sur la reconstitution précédente, il occupe une position relativement proche du pôle sud indiqué par les auteurs. G.

Fig. 21 - Reconstitution paléogéographique au Frasnien (d'après A.J. Boucot et J. Gray, 1983, fig. 2). Les différentes régions dont les faunes de Stromatopores présentent des affinités avec celle de l'Afghanistan (pastilles noires) se situent pratiquement toutes dans la "zone aride" reconnue par les auteurs, ou en sont très proches, à l'exception de l'Afghanistan et de la Chine. Smith (com. pers.) aboutit à une constatation analogue en replaçant, sur différentes reconstitutions paléogéographiques, les affleurements de calcaires récifaux de la région de Nowshera au Pakistan (K.W. Stauffer, 1968).

D'une façon générale, se pose toujours, dans ces reconstitutions, le problème de la largeur de l'océan qui s'ouvre, à l'Est, en particulier entre les affleurements d'Australie et de Chine, considérablement éloignés, ce qui rend problématique leur peuplement par une même faune, les stades larvaires des organismes concernés étant vraisemblablement incapables de supporter des transports aussi importants. A titre indicatif les stades larvaires de coraux actuels ne survivent guère plus de deux à trois semaines avant de trouver un endroit favorable pour s'y fixer (H. Schuhmacher, 1977, p. 52). Il faut donc envisager une migration de proche en proche, le long des côtes.

- Par contre, le schéma de M.J. Rickard et L. Belbin (1980), qui propose une reconstitution plus "compacte", semble poser moins de problèmes. Les différentes régions concernées et en particulier l'Afghanistan, sont assez bien regroupées autour du paléo-équateur présumé; la Chine (Province du Guangxi) et le Bassin du Kuznetsk en sont cependant assez éloignés.

Fig. 22 - Reconstitution paléogéographique au Dévonien (d'après M.J. Rickard et L. Belbin, 1980). Les affleurements de Dévonien d'Afghanistan sont nettement situés au niveau de l'Equateur; par contre, le Bassin du Kuznetsk et la province de Guangxi (Chine) en sont quelque peu éloignés.

- 25 -

Il serait sans doute intéressant de développer ce type d'analyse en reprenant systématiquement les aires de répartition des différentes espèces de Stromatopores décrites, en confrontant les résultats obtenus à d'autres modèles de reconstitution paléogéographiques et en comparant ces observations avec celles menées parallèlement pour d'autres groupes; cette démarche ne pourra cependant se faire qu'après une révision systématique précise des taxons retenus (cf. remarques du § 2.1.).

١

TROISIEME PARTIE

POSITION SYSTEMATIQUE, COMPREHENSION DU GROUPE ET CARACTERES EVOLUTIFS

SOMMAIRE

1.	POSITION SYSTÉMATIQUE	29
2.	RELATIONS ENTRE LES STROMATOPORES DU PALÉOZOÏQUE ET CEUX DU MÉSOZOÏQUE	29
3.	CARACTÈRES ÉVOLUTIFS DU GROUPE	30

١

1. POSITION SYSTEMATIQUE DU GROUPE

La place des Stromatopores dans le monde vivant est un problème extrêmement controversé que j'ai déjà eu l'occasion d'évoquer précédemment (B. Mistiaen, 1973, 1976). Les auteurs anciens ont placé tour à tour les Stromatopores parmi les Spongiaires, les Hydrozoaires, les Foraminifères, les Bryozoaires ou les Algues. Toutefois, jusqu'en 1970 environ, la plupart des spécialistes s'accordaient pour les considérer comme des Hydrozoaires. L'historique des différentes positions adoptées jusqu'alors a été présenté par M. Lecompte (1956) et J.J.Galloway (1957).

Les récents travaux de W.D. Hartman et T.E. Goreau (1970a, b), de C.W. Stearn (1972, 1975, 1977), de G. et H. Termier (1975a, b, c), de J. Vacelet (1980, 1983, 1984) ont mis en évidence des affinités certaines avec les Spongiaires. Quelques auteurs ne partagent toutefois pas cet avis et considèrent les Stromatopores comme des Hydrozoaires (P. Cornet, 1975; K. Mori, 1976, 1978, 1984) ou comme des Algues (J. Kazmierczak, 1980, 1981, 1982).

Je considère, comme d'ailleurs la plupart des spécialistes actuels, que les Stromatopores constituent un groupe d'organismes très proche des Spongiaires.

2. RELATION ENTRE LES STROMATOPORES DU PALEOZOIQUE ET CEUX DU MESOZOIQUE

De nombreux auteurs ont déjà abordé le problème des relations entre les Stromatopores du Paléozoïque et ceux du Mésozoïque. J'ai précédemment exposé les raisons qui peuvent conduire à les considérer comme appartenant à un seul ordre (B. Mistiaen, 1984b, p. 1246, fig. 1A).

L'argument de leur "non présence", du Strunien au Jurassique, utilisé pour \considérer deux ordres distincts, a déjà fait l'objet d'explication. On a considéré que ces organismes auraient véçu, au cours de la période concernée, dans des biotopes très particuliers, telles des cavités sous-marines (P. Cooper, 1974), comme c'est le cas de certaines Eponges hypercalcifiées actuelles (J. Vacelet, 1967a, b, 1981). Par analogie avec ces mêmes Eponges, on peut envisager une autre explication qui n'est d'ailleurs pas contradictoire avec la précédente. Les Stromatopores auraient pu survivre, au cours de cette période, sans secréter de tissus durs, fossilisables; cette modification de leur métabolisme semble pouvoir être mise en corrélation (B. Mistiaen, 1984b) avec des variations de la pression en CO₂ mises en évidence par P.A. Sandberg (1983) dans des carbonates non squelettiques.

Les éventuelles modifications que connaîtraient, au cours de ces mêmes périodes, d'autres organismes à squelette carbonaté, sont susceptibles de confirmer ou d'infirmer cette hypothèse. On peut évoquer les transformations que présentent les Tétracoralliaires, dont les représentants du Carbonifère diffèrent nettement de ceux du PaléozoIque inférieur par la présence d'une columelle. Par contre, d'autres groupes comme les Ostracodes (F. Lethiers, 1982, fig. 22) pourraient avoir été moins sensibles au phénomène évoqué.

L'étude détaillée, en particulier de la microstructure, des derniers représentants de Stromatopores paléozofques, au Strunien, est aussi susceptible d'apporter des informations intéressantes.

3. CARACTERES EVOLUTIFS DU GROUPE DANS LE DEVONIEN D'AFGHANISTAN

L'analyse de la répartition verticale de certaines espèces permet de faire ressortir quelques tendances vraisemblablement évolutives qui seront seulement évoquées ici et reprécisées dans l'étude systématique des espèces concernées.

N.B. Il convient toutefois de souligner qu'il faut éviter les conclusions phylogénétiques trop hâtives, surtout pour un groupe chez lequel l'impact qu'a pu avoir l'environnement est important. Il est en effet souvent difficile de faire la part des caractères évolutifs et des modifications liées au milieu.

Dans la coupe de Dewal, les espèces rattachées au genre Atelodictyon montrent, en fonction de leur position stratigraphique, des caractères progressivement différents.

Cette évolution se marque par une diminution très lente mais très sensible, lorsqu'on compare les termes ultimes, de la densité en éléments coenostéaux, principalement les laminae; l'on passe de formes qui ont en moyenne jusqu'à 39 laminae sur 5 mm, à des formes qui n'en ont plus que 19. (cf. fig. 42 et discussion des espèces rattachées au genre Atelodictyon). C'est donc essentiellement une évolution vers des formes caractérisées par un tissu coenostéal de plus en plus ouvert que l'on observe. Cette constatation rejoint les conclusions de V. Zukalova (1980, p. 677) sur les tendances évolutives de représentants du genre Actinostroma dans le Dévonien de Moravie. Elle observe des formes à tissu relativement dense (Actinostroma stellulatum, A. densatum...) qui passent à des formes aux éléments de plus en plus espacés et aux éléments verticaux épaissis telles A. clathratum, A. devonense puis A. tabulatum crassum, A. dehorneae.

La même lignée évolutive existe aussi, plus ou moins nettement exprimée, dans le Givétien du Boulonnais (B. Mistiaen 1976, p. 225).

Chez d'autres groupes de Stromatopores (*Taleastroma*, *Stromatopora*) la même tendance évolutive vers un élargissement de la structure coenostéale ne se manifeste apparemment pas.

A côté de cette variation, orientée et continue, qui semble correspondre à une anagenèse typique, on relève aussi, chez les mêmes espèces, d'autres variations coenostéales qui paraissent plus aléatoires. C'est le cas des épaississements des laminae qui s'observent dans certains niveaux et qui peuvent se retrouver de façon discontinue au sein d'un même coenosteum. Un tel caractère pourrait plutôt correspondre à une réaction vis à vis de modifications de l'environnement ? Il se retrouve encore chez d'autres espèces, appartenant à des genres très différents, telle Hermatostroma afghanense.

for d'ect- fre e le'en for d'ect- fre e le'en de lais etimile des espera.

(*) decempte (1951, p.81) converse que les cauteires que la Stancher provillosa de A. Bozetzby De sufequent exactement a tope de latrat "" mais ne rejecte pas la régle de primbé et vissere A. elette

Actinostroma NICHOLSON, 1886b,

Espèce-type: Actinostroma clathratum NICHOLSON, 1886a.

DIAGNOSE

Coenosteum massif, tabulaire ou parfois lamellaire. Eléments coenostéaux bien différenciés, se recoupant à angle droit en un quadrillage régulier. Piliers continus. Laminae réduites à des sortes de prolongements horizontaux des piliers réunis entre eux et donnant, en coupe tangentielle, une maille hexactinelloIde tout à fait caractéristique. Microstructure compacte ou spongieuse, piliers présentant parfois un axe sombre et une microstructure j'en jet d'eau".

DISCUSSION

opinions Emises par differents auteurs s entre les espèces Actinostroma

5

résumant les

Tableau

Ø

Le genre Actinostroma est l'un des genres de Stromatopores les plus répandus et les plus fréquemment cités. E. Flüget et E. Flüget , Kahle (1968) en reconst 114 (La plujeur des) auteurs s'accordent (pun lui) reconnaître, comme espèce-type, A. clathratum. Plusieurs d'entre eux, hependeur, deur B.H.G. Sleumer (1969), A.E. Cock bain (1984), considèrent 21'espèce de H.A. Nicholson comme un synomyme de A. papillosum (BARGATZKY, 1881a). L'étude de spécimens du Boulonnais que j'ai effectuée précédemment (B. Mistiaen, 1976, 1980) m'a amenée à différencier les deux espèces et à comidérer A. devonanse LECOMPTE, 1951 comme une espèce autonome, bien que l'és par ailleurs Je andline, dans a travenil, le même foint de vue.

BARGATZKY 1881a	· ·			Strome gong papillosa
NICHOLSON 1886-88	var. 1	Actinostroma var. 2	clathatim 1 var. 3	
LECOMPTE 1951	Actinostroma clathratum A. clathratum A. septatum robustum sp.nov. var.nov	? -> Y.	Actinostroma -> devonense ->	Actinostroma clathratum X (1)
FLUGEL E. 1959	Actin clath	ostroma ratum	Actinostroma papillosum	
SLEUMER 1969		Actinost papillo	roma Isum	
ZUKALOVA 1971	Actinostroma clathratum	Actinostroma papillosum	Actinostroma devonense	Actinostroma papillosum
MALLET 1975	Actinostroma clathratum	*****	Actinostroma papillosum	R
COCKBAIN 1984		Actinostroma papillosum	;	- <u> </u>
-	Actinutium		Actulon	Achilon

1.100.....

relatives aux trois espèces, concernées. ← Actinostroma devonense LECOMPTE, 1951.
Pl. I, Juz. 1-h. 1888 - Actinostroma clathratum var. 3 - Nicholson H.A., p. 131, pl. XIII, fig. 1-2. 1951 - Actinostroma devonense nov. sp. - Lecompte M., p. 88, pl. II, fig. 3-6, pl. III, fig. 1-3. hur 1961 - Actinostroma devonense LECOMPTE. - Stearn C.W., p. 941, pl. 106, fig. 5-6. 1968 - Actinostroma devonense LECOMPTE. - Flügel E. et Flügel-Kahler E., p. 132 (avec liste synonymique depuis 1888). 1971 - Actinostroma devonense LECOMPTE. - Zukalova V., p. 33, pl. IV, fig. 1-5. 50 1814 11.4.118.9.0 0 - 2 1981 - Actinostroma devonense LECOMPTE. - Dong D.Y., p. 103, pl. 1, fig. 3-4.

Le tableau pérédent résume les opinions de différents auteurs

flex

LECTOTYPE

o'reltre an

#6

HS -> Désigné par V. Zukalova, 1971, p. 32. Spécimen de M. Lecompte, Hamoir 7817, no4409, I.R.S.N.B., Bruxelles; figuré par M. Lecompte (1951, pl. II, fig. 6).

MATERIEL ET GISEMENTS

2 spécimens, 3 lames, 4 sections. Echantillon de R. Desparmet: AF DES. 217/2. Coupe de Tanabed: AF-78 Ta 3/9.

DESCRIPTION

Z

CARACTERES EXTERNES

Fragments provenant de coenostea subsphériques à hémisphériques; le plus grand atteint une diXaine de centimètres de diamètre; le plus petit ne dépasse guère 4 à 5 cm. Pas de caractères visibles.

CARACTERES INTERNES

Coupe verticale Structure coenostéale assez régulière, quadrillée.

Laminae rectilignes ou parfois un peu arquées entre deux piliers voisins, épaisses de 30 à 50 µms environ; 17 à 20 sur 5 mm; d'aspect plus discontinu (?) chez le spécimen AF 78 Ta 3/9, très mal conservé.

Piliers plus épais que les laminae (A20 à A50), souvent très rectilignes; 11 à 15 sur 5 mm.

Chambres des espaces interlaminaires bien arrondies, atteignant 200 à 300 mm s de diamètre.

Coupe tangentielle.

Maille hexatinelloïde, en partie masquée par la recristallisa-tion; piliers à section plus ou moins circulaire.

MICROSTRUCTURE

En partie oblitérée par la mauvaise conservation des spécimens. Localement (spécimen AF-DES 217/2), piliers avec une zone centrale sombre atteignant jusqu'à 0,060 mm de largeur.

DISCUSSION

Ces deux spécimens présentent tous les caractères du genre Actinostroma NICHOLSON, 188(D)

Ils correspondent parfaitement à A. devonense LECOMPTE, 1951. Ils se différencient légèrement du matériel type de Belgique par une densité de piliers un peu plus faible (11 à 15 sur 5 mm au lieu de 15 à 19 chez les spécimens belges); à ce titre ils sont très proches des formes de Moravie décrites par V. Zukalova [] . Les spécimens canadiens décrits par C.W. Stearn (1961) se caractérisent par une densité coenostéale plus élevée et h'appartienment prodéspèce mais sam à rattacher, en partie à <u>A. clathet</u> Micholsor, 1886 (C. W. Steam, 1866 6, j. 19); Les spécimens du Boulonnais que j'ai décrit précédemment (B. Mistiaen, 1980) sous le nom de Actinostroma cf. devonense diffèrent uniquement des spécimens afghans par leurs laminae un peu moins nombreuses.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE 15 (43.7).

Le lectotype de A. devonense provient du Frasnien (F2 h) du Bassin ξ de Dinant (Belgique) pu' l'espète at oursi presente dans le givelien. er derhints Saute Com L'espèce a été signalée : dans le Givetien et le Frasnien de Muravie (Tchécoslovaquie) (Pologne); ş - dans la partie supérieure du Dévonien moyen, Formation de Dingzonglong, Xizang oriental (Tibet) Les spécimens afghans ont été récoltes: - l'un en éboulis; <u>Formation</u> des <u>Calcaires</u> du Sin ghan <u>l'autre dans la coupe de Tanabed,</u> ; <u>Givétien (supérieur ?)</u>. / 200e est probablementenene présente / dans le Givétien du Provilonnées (France)

ş

Actinostroma crassum(LECOMPTE, 1951). Pl.I, Pis. 5-7.

- v * 1951 Actinostroma tabulatum var. crassum var. nov. Lecompte M, p. 103, pl. VII, fig. 3.
- non 1951 Actinostroma crassum sp. nov. Yavorsky V.I., p. 6, pl. 1, fig. 1-2 (=Squameofavosites pour V.I. Yavorsky, 1963).
 - 1963 Clathrostroma sp. Flügel E., p. 330, pl. 1; pl. 2, fig. 1 et 3.
 - 1967 Actinostroma tabulatum crassum LECOMPTE. Chlupac I. et , al., p. 67.
 - - 1971 Actinostroma tabulatum crassum LECOMPTE. -Zukalova V., p. 37, pl. VI, fig. 1-2.
 - 1980 Actinostroma tabulatum crassum LECOMPTE.- Zukalova V., p. 677.

LECTOTYPE

Ϊ

Désigné par E. Flügel (1959, p. 139). Spécimen de M. Lecompte: Rance 52, nº 4342, I.R.S.N.B., Bruxelles; figuré par M. Lecompte (1951, pl. VII, fig. 3).

MATERIEL ET GISEMENTS 5

(3 spécimens, 3 lames, 6 sections). Coupe de <u>Badragha:</u> AF-75 Ba 11/14; /20;/23.

DESCRIPTION

CARACTERES EXTERNES

Petits fragments de coenostea vraisemblablement hémisphériques; le plus grand mesure 2 cm de hauteur et 5 cm de diamètre. Pas de caractères visibles.

CARACTERES INTERNES

Coupe verticale

Maille quadrillée, cù dominent les éléments verticaux.

Laminae relativement épaisses (ເວັດ ຊິຍ ແມ່ນ ແລະ, rarement plus); continues ou discontinues et parfois réduités à des dissépiments; 20 à 25 sur 5 mm.

Piliers dominant nettement la structure coenostéale, très épais (۱۸۶۵ ک معبر تروی ک د ۲۸۶ et très continus, recoupant de nombreuses laminae là cù la section est bien orientée; marqués par un alignement vertical de grosses ponctuations au niveau de chaque lamina lorsque la coupe ne passe pas par l'axe du pilier; 16 à 18 environ sur 5 mm.

Chambres des espaces interlaminaires hautes de Aco à ASO any services arrondies mais souvent réunies latéralement entre elles.

Coupe tangentielle.

Sections des piliers circulaires ou polygonales, larges de (A2) à A80 المسلم; maille hexactinelloïde bien développée, parfois empâtée, au-nivoau-des laminae.

MICROSTRUCTURE.

D'aspect compact à spongieux ; la mauvaise conservation des échantillons ne permet toutefois pas de la préciser davantage.

DISCUSSION

La structure coenostéale quadrillée, la présence de piliers continus et d'une maille hexactinelloIde, permettent de rattacher ces spécimens au genre Actinostromal NICHOLSON, 1886yb.

Localement, les sections verticales imparfaitement orientées peuvent laisser croire qu'il existe deux sortes d'éléments verticaux: de gros piliers continus et d'autres, plus minces, réduits à un seul espace interlaminaire; cet aspect, uniquement dû à l'obliquité des sections, évoque le genre *Bifariostroma* KHALFINA, 1968.

Par leurs caractères ces spécimens correspondent parfaitement à A. crassum (LECOMPTE, 1951). Ils n'en diffèrent que très légèrement par leur densité en piliers un peu plus faible (AGA).

"Comme le signale V. Zikalova (1971, p. 37) la forme décrite et figurée par E. Flügel (1963, p. 330, pl. 1, pl. 2, fig. 1 et 3) sous le nom de Clathrostroma sp. est à rattacher à A. crassum.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le lectotype de A. crassum provient du Frasnien(F2 g) du Bassin de Dinant, Belgique.

L'espèce a été signalée :

- à la base du Dévonien supérieur de la région de Münster (Allemagne); - dans le Givétien et le Frasnien de Tchécoslovaquie;

de la province ce Gueizhou ichted)

Les spécimens afghans proviennent de la coupe de Badragha; ils ont été récoltés dans le Membre récifal de Baghalak de la Formation des Calcaires noirs de Badragha; Givétien (supérieur ?).

> Actinostroma H. filitextum LECOMPTE, 1951. PP. I, fiz. 8-10; PP. II, fiz. 6.

v * 1951 - Actinostroma filitactum nov. sp. - Lecompte M., p. 121, pl. XIII, fig. 1. HOLOTYPE Spécimen de M. Lecompte, Senzeille 31b, no 6935, I.R.S.N.B., Bruxelles; figuré par M. Lecompte (1951, pl. XIII, fig. 1).

MATERIEL ET GISEMENT (1 spécimen, 2 lames) Coupe de Kohe Qutun: (AF 78 KK 10/3.)

DESCRIPTION

CARACTERES EXTERNES

Fragments de coenosteum lamellaire à tabulaire, haut de 3 à 4 cm et large de 8 à 10 cm. Pas de caractères visibles.

CARACTERES INTERNES

Coupe verticale

Structure coenostéale régulière, localement perturbée par des tubes de vers (symbiontes ?)

Latilamination très faiblement exprimée; en bandes épaisses de 1 à 3 mm, limitées par une lamina plus épaisse et continue et constituées par une alternance de zones à piliers sombres mieux individualisés et à laminae rectilignes et de zones à piliers moins distincts et à laminae généralement moins régulières et anastomosées.

Laminae 'souvent fines (25à 3° mu), prenant parfois l'allure de dissépiments mais localement plus épaisses (400) généralement régulières et planes ou légèrement convexes et anastomosées selon les zones des latilaminae; 26 à 32 sur 5 mm, 30 en moyenne.

Piliers nettement plus épais que les laminae (150 µm mm en moyenne mais localement jusqu'à 100), généralement bien rectilignes et continus sur plusieurs mm (jusqu'à 5 mm), parfois un peu tortueux; 14 en moyenne sur 5 mm; apparaissant localement sous forme de ponctuations de 0,100 mm de diamètre environ, là cù ils sont recoupés latéralement un peu manyoulement H.S. Malgré la mauvaise conservation du spécimon, Th ne semble pas qu'il existe de piliers réduits à un seul espace interlaminaire.

Espaces interlaminaires aux chambres typiquement allongées horizontalement, presque rectangulaires, atteignant 300 à 400 mm de largeur et A00 à 450 mm de hauteur.

Pas de canaux astrorhizaux visibles.

Coupe tangentielle.

Maille hexactinelloïde typique, plus ou moins développée selon les endroits et localement empâtées. Piliers à section polygonale à circulaire, de १० ک ۲ ۲ مار de diamètre.

-

=)

MICROSTRUCTURE

Du-type Compacts. Ligne sombre diffuse accompagnant localement les laminae. Piliers à bordure généralement plus sombre et à partie centrale plus claire, surtout visibles en section tangentielle.

DISCUSSION

Sa leur structure quadrillée et la présence d'une maille hexacti-Par nelloIde, ce spécimen appartient au genre Actinostroma NICHOLSON, 1886b. Certaines portions de la lame verticale, à laminae plus irrégu-lières, évoquent des espèces du genre Labechia MILNE-EDWARDS & HAIME, 1851.

Il rappelle beaucoup A. filitextum LECOMPTE, 1951 et ne se diffé-

L'holotype de A. filitaxtum provient du Frasnien moyen (F2 g) du Bassin de Dinant (Belgique).

🥟 Le spécimen afghan a été récolté dans la coupe du Koh-elQutun, Formation des Calcaires notante Badragha; Givition Supériour ? Construite du Sin ghan Francen niferiem,

> Actinostroma perlaminatum LECOMPTE, 1951. PC.II, fis. 4-5 1951 - Actinostroma perlaminatum nov. sp. - LECOMPTE M., p. 120,

pl. XII, fig. 4, 4a. 1980 - Actinostroma cf. perlaminatum LECOMPTE - Mistiaen B., p. v 187, pl. III, fig. 7-9.

en lamine encer on for the fisher (22 à 25 our 5mm)

HOLOTYPE

Spécimen de M. Lecompte, Surice 51e, nº4186, I.R.S.N.B. Bruxelles; figuré par M. Lecompte (1951, pl. XII, fig. 4).

MATERIEL ET GISEMENT.

3 spécimens, 3 lames, 6 sections. Coupe de Tanabed: AF 78 Ta 4/4; /7; /8.

DESCRIPTION

CARACTERES EXTERNES

Petits coenostea ou fragments de coenostea noduleux; le plus grand atteint 3 cm de diamètre. Pas de caractères visibles.

CARACTERES INTERNES

Coupe verticale

Laminae fines (30 280), généralement planes ou faiblement ondulées, rarement anastomosées; 36 à 40 sur 5 mm (de 6 à 9 sur 1 mm).

Piliers un peu plus épais que les laminae (50 & 400_____), souvent continus au travers d'une dizaine de laminae; un peu plus irréguliers et plus épais dans les zones astrorhizales; jusqu'à 23 à 25 sur 5 mm.

Chambres des espaces interlaminaires souvent très allongées horizontalement (مالا مند المالة), hautes de 60 à 30 بالمالة , parfois un peu plus (1/50 مالا ماله),

Astrophizes causant quelques ondulations dans le coenosteum, marquées par une irrégularité des piliers et par des chambres coenostéales plus arrondies atteignant 250 met de diamètre.

Coupe tangentielle.

Ebauche de maille hexactinelloïde, visible par endroits, mais localement détruite par la recristallisation. Sections arrondies des piliers, larges de 60 à 80 m.

MICROSTRUCTURE.

Spongieuse. Piliers localement fibreux en coupe verticale.

DISCUSSION

Les spécimens décrits appartiennent au genre Actinostroma NICHOL-SON, 1886b.

Ils sont très proches, spécifiquement, de A. perlaminatum LECOMPTE, 1951; ils diffèrent très légèrement du spécimen ardennais par des astrorhizes de taille un peu plus faible et une densité en laminae qui n'atteint jamais celle signalée par M. Lecompte (jusqué'à 50 ou 60 sur 5 mm dans certaines régions coenostéales). Par ces derniers caractères, ils sont pratiquement identiques aux spécimens du Boulonnais que j'ai décrits (B. Mistiaen, 1980) sous le nom de A. cf perlaminatum; ces derniers ont des laminae très légèrement moins nombreuses et un peu plus irrégulières.

NTRIBUTON REPARTITION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

L'holotype de <u>A. perlaminatur</u> provient du Givétien du Bassin de Dinant (Belgique).

L'espèce est sans doute présente dans le Givétien du Boulonnais (France).

Q

Les spécimens afghans proviennent de la coupe du Koh-e Tanabed, et de dans la Formation des Calcaires noire de Bedregne; Givétien (supérieur?), our Francieur Inférieur. ne'éfant du Sin Ghen;

\

Actinostroma verrucosum (GOLDFUSS, 1826.) Pl-II, frz. 1-3; 1826 - Ceriopora verrucosa nobis. - Goldfuss/A., p. 33, pl. X, fig. 6a, b, c. 1886a - Actinostroma verrucosum Goldf. sp. - Nicholson H.A., p. 228. \hat{c} 1968 \hat{c} - Actinostroma verrucosum (GOLDFUSS). - Flügel E. et Flügel-Kahler E., p. 465-469 (avec liste synonymique depuis 1826). ? 1969 - Actinostroma verrucosum ? (GOLDFUSS). - Sleumer B.H.G., p. 32-34, pl. XVIII; fig. 3, pl. XX, fig. 4. 1970 - Actinostroma verrucosum (GOLDFUSS). - Turnsek D., p. 10, 22, pl. III, fig. 1-2. C1971 C - Actinostroma verrucosum (GOLDFUSS). - Kazmierczak J., p. 130-133, 135. 1971 - Nexililamina verrucosa (GOLDFUSS). - Mallet C.W., p. 241. 1971 - Actinostroma verrucosum (GOLDFUSS). - Zukalova V., p.36, pl. V, fig. 5-6. partim v. <u>21976</u> - Actinostroma sp. aff. stellulatum maureri HEINRICH - Mishaen Bin. Brice D. et al., p. 143-144. partim v. 21977c - Actinostroma verrucosum (GOLDFUSS). - (Brice D. et al., (Misticen B.in p. 144. 1980 - Actinostroma verrucosum (GOLDFUSS). - Mistiaen B., p. \ 185, pl. II, fig. 7-9; pl. III, fig. 1-3.

HOLOTYPE

Spécimen de A. Goldfuss. Musée de Paléontologie, Université de Bonn. Figuré par M. Lecompte (1951, pl. IX, fig. 1, 1a).

MATERIEL ET GISEMENT (2 spécimens, 3 lames, 4 sections).

(Échantillon de R. Desparmet, sen éboulis), Eurpe du koh-e Zarduk: (AF-DES 217/1 Coupe du Koh-e Kagir: (AF 76 K 13/6.)

DESCRIPTION

CARACTERES EXTERNES

Fragments provenant de coenostea tabulaires atteignant quelques centimètres de hauteur et une dizaine de centimètres de diamètre. Nombreux mamelons visibles en surface, distants de 8 à 10 mm, avec des traces de canaux astrorhizaux.

CARACTERES INTERNES

Coupe verticale

Coenostea présentant des ondulations plus ou moins accentuées, distantes de 1 à 1,5 cm.

Laminae d'aspect continu, à limite supérieure régulière et à limite inférieure moins nette; relativement fines (30 µm) mais localement épaissies (préférentiellement dans les creux des ondulations, en particulier dans l'échantillon AF 76 K 13/6) et atteignant alors une centaine de microns; régulièrement espacées, au nombre d'une trentaine sur 5 mm en moyenne mais un peu plus distantes (24 ou 25 seulement) dans l'axe des ondulations, là cù elles sont épaissies.

Piliers généralement continus, épais de 50 à 100 µm, parfois plus dans l'axe des ondulations (150 à 180 µm); plus évasés à leur partie sommitale qu'à leur base; au nombre de 25 sur 5 mm, parfois un peu moins, 21 seulement.

Chambre des espaces interlaminaires arrondies ou ovales, atteignant le plus souvent 150 µm de diamètre; fréquemment réunies latéralement à deux ou trois; pas de dissépiments.

Astrorhizes à l'origine des ondulations coenostéales, se traduisant par des galeries plus hautes (200 à 250 µm) aux piliers plus épais; pas de dissépiments astrorhizaux.

Coupe tangentielle

Nombreuses structures concentriques juxtaposées, distantes en moyenne de 8 mm, correspondant aux sections des ondulations. Maille hexactinelloïde plus ou moins développée, nette localement, ailleurs, sections de piliers étoilées ou arrondies atteignant jusqu'à 60 ou 90 um de diamètre; quelques plages plus denses au niveau des laminae complexes, présentant des perforations; canaux astrorhizaux plus ou moins distincts, en réseau étoilé centré sur les sections d'ondulations, atteignant 260 à 300 µm de largeur chez le spécimen à laminae épaissies (AF 76 K 13/6) cù ils sont mieux visibles.

MICROSTRUCTURE.

De type compact mais affectée par la diagénèse.

DISCUSSION

d

Je rattache ces spécimens au genre Actinostroma NICHOLSON, 1886b; ils présentent en effet en section tangentielle, au moins localement, une maille hexactinelloïde caractéristique. Ce caractère ne permet pas de les rapprocher du genre Atelodictyon LECOMPTE, 1951, avec lequel ils possèdent cependant en commun d'autres traits (cf. plus loin).

Spécifiquement ils sont très proches de A. verrucosum (GOLDFUSS, 1826); les densités et épaisseur en éléments coenostéaux coincident assez bien avec les données fournies par M. Lecompte pour le type ((....). M. Lecompte (1951), sans doute influencé par le matériel ardennais, met l'accent, dans sa discussion de l'espèce, sur la présence de laminae

Fig. (F - Actinostroma verrucosum (GOLDFUSS, 1826). Dessins, d'après les lames minces AF DES 217/16 (A) et AF 76 K 13/6 (B). Coupes tangentielles montrant la maille hexactinelloïde. (Comparer avec la fig. 12).

\

localement complexes, épaissies; "Le caractère des lamelles (épaisses, à structure effrangée vers le bas, à limite rectiligne vers le haut) . . . est si particulier ... que j'estime devoir le retenir, au premier chef, dans la diagnose de l'espèce, bien qu'il n'ait jamais été signalé antérieurement" (M. Lecompte, 1951, p. 110). rieurement" (M. Lecompte, 1951, p. 110). M. Lecompte modifie donc sensiblement, à mon avis, le sens de l'espèce. En effet, les laminae complexes, épaissies peuvent exister chez d'autres genres, tel Atelodictyon LECOMPTE, 1951, comme le signale d'ailleurs M. Lecompte lui-même pour A. aggregatum LECOMPTE, 1951. C'est ce caractère (laminae complémentaires complexes) que C.W. Mallett (1971) retient pour fonder le genre Nexililamina. J'ai déjà discuté et rejeté ce dernier genre (B. Mistiaen, 1976, 1980). Il me semble en effet que le caractère "laminae complexes" ne puisse, à lui seul, justifier l'établissement d'un nouveau genre dans la mesure où certaines zones coenostéales ne comportent que des laminae normales. A.E. Codk bain (1984, p. 17) semble adopter la même position.

Kazmierczak (1971, p. 131) souligne le caractère particulier de A. J. verrucosum et d'espèces voisines, telle A. stellulatum NICHOLSON, 1889, chez lesquelles les laminae sont épaisses et finement réticulées et les piliers "limited to one interlaminar space". Ces caractères rappellent beaucoup le genre Atelodictyon sensu M. Lecompte (cf. discussion de ce genre).

C.W. Stearn (1980, p. 896) signale aussi la position un peu marginale de l'espèce verrucosum, au sein du genre Actinostroma et pense qu'elle pourrait présenter des relations avec le genre Schistodictyon LESSOVAYA, 1970.

Les sections verticales des spécimens afghans sont très voisines des sections verticales d'autres échantillons que je rattache à Atelodictyon strictum LECOMPTE, 1951. Elles n'en diffèrent en fait que par des ondulations coenostéales plus accentuées. Je ne les sépare que sur le seul critère de la présence d'une maille hexactinvilloide visible en coupe tangentielle, tandis qu'elle est totalement inexistante dans les spécimens rattachés à A. strictum (comparez les fig. Let Let cf. discussion nour l'étude des espèces de Atelodiction) pour l'étude des espèces de Atelodiction).

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le type de A. verrucosum provient du Dévonien moyen-de Bensberg (Allemagne).

L'espèce a été fréquemment signalée (51 citations dans E. Flügel et E. Flügel-Kahler, 1968). Elle est, entre autre, présente dans :

- le Dévonien des Asturies (Espagne),
 le Dévonien moyen de Teighmouth (Angleterre),
- le Dévonien moyen du Sauerland, de l'Eifel (Allemagne),
- le Dévonien moyen du Maroc,

X

- le Dévonien moyen du Bassin du Kuznetsk (U.R.S.S.),
- le Couvinien et le Givétien du Bassin de Dinant (Belgique),
- le Givétien du Boulonnais,

Elle est sans doute aussi presente dans

le Lower Jiwozhai Member (Givétien) du district de Dushan, Gueizhou (Chine),

- le "Lower Frasnian" (équivalent probable de la Formation de Fromelennes en Ardenne = Givétien, cf. B. Mistiaen 1982) de Moravie (Tchécoslovaquie).

(Tchécoslovaquie). L'espèce n'a jamais été signalée dans le continent américain. Les spécimens afghans ont été récoltés:

- l'un en éboulis,

Q

- l'autre, à la coupe du Qagir; partie inférieure de la Formation de Dewal, divétion Dévonien moyen (Givéhen?).

а,

Atelodictyon LECOMPTE, 1951. = p. p. Clathertona VAVORSKY 1960 Espèce-type: Atelodictyon fallax LECOMPTE, 1951.

DIAGNOSE

Coenosteum lamellaire ou massif. Eléments coenostéaux bien différenciés. Lamina bien développées, donnant, en section tangentielle, une maille *Nouvent* caléniforme impensate, empâtée. Piliers parfois juperposés mais limités à un seul espace interlaminaire. Astrorhyzes souvent bien développées. Microstructure compacte.

DISCUSSION

M. Lecompte (1951, p. 124) propose le genre Atelodictyon pour des formes intermédiaires entre le genre Actinostroma NICHOLSON, 1886<u>b</u>, ohos qui² les piliers constituent les éléments prépondérants, et le genre Clathrodictyon NICHOLSON & MURIE, 1878, ches qui les laminae dominent.

Les auteurs qui ont discuté de ce genre ont parfois mis l'accent sur des caractères différents.

M. Lecompte souligne, dans la diagnose du genre, les relations avec le genre Actinostroma, marquées par la présence de "piliers ... qui émettent des prolongements déterminant, en coupe tangentielle, des structures hexatinelloIdes ..."; il parle aussi de la dépendance des laminae par rapport aux piliers. De ce fait, beaucoup d'auteurs (C.W. Stearn, 1963, p. 565, 1966a p. 87, 1966b, p. 46; N.R. Fischbuch, 1969, p. 169; C.W. Stock, 1982, p. 661) ont considéré la discontinuité des laminae comme le caractère fondamental du genre. Ainsi pour C.W. Stearn (1966a, p. 87), le genre Atelodictyon se caractérise, en section verticale, par des laminae qui forment un réseau discontinu et qui sont parfois épaissies et dues à l'expansion latérale des sommets des piliers. La continuité apparente des laminae, bien visible chez les spécimens figurés par M. Lecompte, serait due, d'après C.W. Stearn (op. cit.), à la forte épaisseur des lames taillées dans le matériel belge. Toutefois C.W. Stearn, en 1969 (p. 760), après avoir pu examiner l'holotype de A. fallax, souligne la grande continuité des laminae, formées de tissu sombre et leur indépendance par rapport aux piliers. Quelques autres auteurs (J.J. Galloway et J. St Jean 1957, p. 122; V. Zukalova, 1958, p. 340; 1971, p. 41) signalent aussi la continuité des laminae, au moins chez certaines espèces du genre.

J'ai pu examiner les types <u>M. Lecompte</u> des différentes espèces quite réunit dans son genre et je me rallie <u>entièrement à cette dernière</u> opinion; en effet les laminae y apparaissent toujours très continues et il me semble que leur netteté et leur continuité ne sont pas seulement imputables à l'épaisseur des lames car, comme le montrent d'ailleurs assez nettement les figurations de l'espèce-type, *A. fallax*, par M. Lecompte (1951, pl. XV, fig. 1a, en particulier), les laminae sont toujours mieux marquées que les piliers et bien continues. D'ailleurs M. Lecompte, dans les descriptions de chacune des espèces/qu'il rattache à

eleur aspet discontinu n'at que tis local

son genre, insiste sur ce caractère; en ce qui concerne A. fallax, (op. cit., p. 125) il parle en particulier de laminae "minces ... tranchantes, uniformément pigmentées ou bordées d'un très mince liseré noir"; pour A. strictum LECOMPTE, 1951, il parle aussi de "lamelles ... rectilignes et tranchantes" (op. cit., p. 128). Un tel caractère des laminae semble d'ailleurs déjà présent chez plusieurs espèces du genre Actinostroma; ainsi les figurations de A. verrucosum (GOLDFUSS, 1826) de M. Lecompte (1951, pl. IV, fig. 5a, 8a; pl. X, fig. 1, 1a, 2, 2a) montrent parfaitement cet aspect; il en est de même des figurations de A. stellulatum NICHOLSON, 1889 de M. Lecompte (<u>ibid.</u>, pl. XI), espèce dont l'appartenance au genre Atelodictyon a d'ailleurs déjà été envisagée (C.W. Stearn, 1966a, p. 87; B. Mistiaen, 1980, p. 189).

 \sim

J. Kazmierczak (1971, p. 127) met, quant à lui, l'accent sur la forme des éléments verticaux qui ne sont pas, à son avis, des piliers mais des "murailles". M. Lecompte (1951, p. 133) signale déjà la présence de sections caténiformes ou méandriformes de piliers, toutefois certaines de ses figurations (pl. XV, fig. 1d; pl. XVI, fig. 1a, 4b) montrent aussi, à côté de ces sections, d'autres sections arrondies ou étoilées, avec un début de maille hexactinelloïde, qui correspondent à des piliers s.s. tout à fait caractéristiques.

Atelodictyon strictum LECOMPTE, 1951.

Pl.II, fis.7-110 fix the Etg

- v * 1951 Atelodictyon strictum nov. sp. Lecompte M. p. 126, pl. XV, fig. 3, pl. XVI, fig. 1-3.
 - <u>1968</u> Atelodictyon strictum LECOMPTE. Flügel E. et Flügel-Kahler E., p. 410.
 - 1979 Atelodictyon strictum LECOMPTE. Yang J. et Dong D., p. 23, pl. 4, fig. 4-6.
 - 1980 Atelodictyon strictum LECOMPTE.- Mistiaen B., p. 189, pl. IV, fig. 1-4.
 - 1982 Atelodictyon strictum LECOMPTE. Dong D. et Wang C., p. 11, pl. II, fig. 1-2.

HOLOTYPE

Spécimen de M. Lecompte, Couvin 8011, no 7396. I.R.S.N.B., Bruxelles. Figuré par M. Lecompte (1951, pl. XV, fig. 3,3a).

MATERIEL ET GISEMENT (25 spécimens, 33 lames, 37 sections).

Coupe de Dewal: 4 🧲 AR-76 D 73/7,; AF (76 D 52/\$; AF X6 D 50/3; /4; /5; AF 76 D5./; AF 76 D ¥9/2; /3; /4; AF 76 D 48/1; /2; /4; /5; AF 76 D 47/2; /4; /5; AF 7 D 45/1; AF 76 D 43/4 (douteux); AF/76 D 42/1; AF 76 D 41 χ 5; /7 (douteux); AF 76 D 40/2; (AF 76 D 37/14; /16 (douteux); D 40/2; D41/5; /7 (douteux); D43/4; D43/4 (douteux); Coupe de Samsersang (échantillon de R. Desparmet): D45/1; D47/2; /4; 5; (AF-DES 336 1) D48/1;/2; /4; /5; D50/3; /4; /5; D52/9; D73/7.

DESCRIPTION

CARACTERES EXTERNES

Coepostea ou fragments provenant de coenostea généralement subsphériques ou tabulaires, de dimensions variables (quelques centimètres à 30 cm de diamètre, en moyenne 5 à 10 cm). Quelques coenostea lamellaires, atteignant 1 cm de hauteur et associés à des colonies d'*Alveolites*. Latilamination parfois très nette sur les cassures altérées. Mamelons distants de 1 cm environ, visibles par endroits.

CARACTERES INTERNES

Coupe verticale

Structure d'ensemble régulière et plane avec de très faibles ondulations.

Latilamination à peine visible voire inexistante chez certains spécimens, un peu plus prononcée chez d'autres; en zones successives épaisses de 5 mm environ; limitées par 2 ou 3 laminae plus sombres (micritisées?) parfois accompagnées par quelques laminae plus irrégulières, anastomosées; dans certains spécimens, latilamination discontinue : les limites des latilaminae ne se situant pas exactement au même niveau dans tout le coenosteum (cf. fig. 2013).

Laminae généralement continues, à limite supérieure nette parfois accompagnée d'une fine ligne sombre et à limite inférieure un peu plus irrégulière; épaisseur assez variable : 50 à 100 µm parfois un peu plus; par endroits, laminae rectilignes et régulièrement espacées, parallèles entre elles; en d'autres endroits d'une même lame mince, laminae plus irrégulières, localement interrompues et assez fréquemment anastomosées; au nombre de 30 à 37 en moyenne sur 5 mm, mais localement jusqu'à une dizaine sur 1 mm.

Piliers atteignant couramment 90 µm d'épaisseur, fréquemment évasés à leur partie sommitale et confondus avec la lamina; généralement bien superposés dans certains spécimens ou dans certaines zones coenostéales, moins nettement dans d'autres, parfois très irrégulièrement distribués localement; au nombre de 24 à 28 en moyenne sur 5 mm.

Espaces interlaminaires formés de galeries arrondies, assez fréquemment réunies entre elles latéralement, de hauteur très variable (30 à 180 µm), les plus grandes étant de nature astrorhizale; pas de dissépiments.

Astrorhizes nombreuses, bien développées, superposées, mais très étalées latéralement et ne provoquant que de très faibles ondulations coenostéales; canaux centraux larges de 120 à 150 µm; canaux latéraux se traduisant par des galeries de grande taille, dépourvues de piliers et se prolongeant fréquemment sur un demi-centimètre de longueur.

Coupe tangentielle (

Section de laminae et de piliers généralement disposés en zones concentriques alternées; section des piliers circulaires (75 à 100 µm de diamètre), parfois réunies à 2 ou 3 (maille caténiforme); plages denses à l'emplacement des laminae, montrant parfois de très fines perforations. A la limite des deux zones, très localement, légère amorce d'une maille hexactinelloïde.

MICROSTRUCTURE.

Compacte à spongieuse, parfois fibreuse dans les piliers; laminae prenant localement un aspect finement fibreux ou poreux transversalement (fig. 4) ou encore marquées, à leur sommet, par une sorte d'alignement de très fins granules sombres ou par une ligne sombre plus continue. En coupe tangentielle, certains piliers munis d' une ponctuation centrale sombre.

\

Fig. 1 - Atelodictyon strictum LECOMPTE, 1951.
Dessins, d'après les lames minces AF DES 336'/1 (A) et AF 76 D 47/2c (B). Coupes tangentielles. Sections de piliers circulaires (A) ou localement réunies entre elles et amorcant une maille caténiforme (B); pas de véritable maille hexactinelloïde. Au niveau des laminae, de petites perforations. Quelques ponctuations sombres au centre de certains piliers (B).

\

 \mathbf{N}

Fig. 13 - Atelodictyon strictum LECOMPTE, 1951. Dessin, d'après la lame mince AF DES 336'/1. Coupe verticale. Par endroits, aspect transversalement poreux des laminae qui semblent alors formées de fines granulations sombres.

DISCUSSION

Par leur aspect général en coupe verticale et l'absence de maille hexactinelloïde en coupe tangentielle, ces spécimens se rattachent au genre Atelodictyon LECOMPTE, 1951, mais leur allure en coupe verticale rappelle beaucoup le genre Actinostroma NICHOLSON, 1886b.

97

Ils sont spécifiquement très proches de A. strictum LECOMPTE, 1951 (cf. remarque générale ci-après), et en particulier de l'holotype de l'espèce. Ils présentent, entre autre, la même disposition, très typique, du réseau des astrorhizes à l'origine de "petits bombements mamelonnaires très plats" (M. Lecompte, 1951, p. 127). Ils possèdent aussi une densité en éléments coenosteaux tout à fait comparable; les laminae sont peut être un peu plus serrées dans les spécimens de l'Ardenne mais M. Lecompte signale, à ce sujet, de fortes variations. La seule différence légère réside dans la tendance un peu plus marquée à la superposition des piliers ce qui confère aux coupes, dans les spécimens d'Afghanistan, un aspect un peu plus régulier; mais, dans le même coenosteum, à côté de zones ayant cet aspect régulier il existe des zones aux piliers moins superposés. M. Lecompte signale d'ailleurs la superposition locale des piliers dans son matériel.

L'un des spécimens que M. Lecompte figure (pl. XVI, fig. 2a), et qui est de paratype 7401, présente une maille hexactinelloîde très nette et ne peut, à mon avis, appartenir à l'espèce. La coupe verticale de ce spécimen, que M. Lecompte figure aussi (pl. XVI, fig. 2), montre de plus un aspect assez différent de celui de l'holotype. Il s'agit, à mon avis, d'un Actinostroma.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE. (13. 12)

Le type de Atelodictyon strictum provient du Couvinien (Co2c) du Bassin de Dinant (Belgique).

L'espèce a été signalée dans: 🐔

- le Membre de Liuzhuo de la Formation de Tungkanglin (=Dongganlin) partie médiane du Dévonien moyen du Guangxi et du Yunnan oriental (Chine).

- la base du Membre du Griset, Formation de Blacourt, Givétien (moyen), Boulonnais (France).

Les spécimens afghans ont été récoltés:

- à la coupe de Dewal, dans la partie moyenne d**e la Formation de** récliminé Dewal, au dessus de niveaux qui ont livré des *Stringocephalidae* (D. Brice et B. Mistiaen, 1980), Givétien;

- à la coupe du Samsersang (échantillon de R. Desparmet), dans la Formation des Calcaires noirs de Badragha, Givétien.

Atelodictyon aggregatum LECOMPTE, 1951

Pl.III, Piz. 1-3.

1951 - Atelodictyon aggregatum nov. sp. - Lecompte M., p. 128, pl. XVI, fig. 4.

HOLOTYPE Spécimen de M. Lecompte, Senzeille 648 n 7408, figuré par M. Lecompte, 1951, pl. XVI, fig. 4.

MATERIEL ET GISEMENT (3 échantillons, 6 lames).

Coupe de Takhtak ay: AF 78 Tak 3/3; /4. Coupe de Tanabed: AF 78 Ta 3/2.

DESCRIPTION

CARACTERES EXTERNES

Fragments de colonies de taille moyenne; le plus gros fragment atteint 10 cm de hauteur. Mamelons visibles sur quelques échantillons, distants de 6 à 10 mm et peu élevés (environ 1 mm de hauteur). Latilamination visible extérieurement sur 1 échantillon (AF 78 Tak 3/4), marquée par des bandes centimétriques alternativement plus claires et plus sombres.

CARACTERES INTERNES

Coupe verticale

Latilaminae visibles sur certaines lames (AF 78 Tak 3/4), larges de 1 cm en moyenne et regroupant une trentaine de laminae; limitées entre elles par une zone plus sombre, formée par 3 ou 4 laminae, où la structure est un peu plus confuse et où l'on peut évoir un peu de micrite dans les galeries. Ces limites pourraient correspondre à des périodes d'apport plus important de boue micritique, ou (et) à des périodes (phénomène saisonnier) de moindre activité de l'organisme (croissance ralentie, réaction plus faible de rejet de la boue déposée). N.C. L'écartement entre deux laminae voisines, au sein des latilaminae successives, montre une rythmicité évidente comme en témoigne la figure foertaines portions de cette courbe peuvent exactement se superposer. On note par ailleurs que, dans chaque latilamina, les laminae sont d'abord relativement serrées, puis plus espacées, puis à nouveau serrées; cependant les limites visibles entre les latilaminae ne coincident pas exactement avec l'écartement le plus faible entre deux laminae voisines

Rythmicité des espacements mesurés entre les sommets de deux laminae sucessives sur un échantillon de Atelodictyon agregatum LECOMPTE, 1951.

Fig

13 - Diagramme montrant l'écartement des laminae dans plusieurs latilaminae successives chez un échantillon de Atelodictyon aggregatum. Mesures effectuées sur la lame mince AF 78 Tak 3/4a. On note une rythmicité évidente. L'écartement entre deux laminae successives varie de 133 à 500 um (les différentes dimensions retenues correspondent aux divisions du micromètre utilisé); les limites de latilaminae (zone plus sombre avec un peu de micrite) ne coincident pas systématiquement avec les zones d'écartement minimum entre les laminae. Ondulations du coenosteum très variables selon les spécimens. Laminae très continues, à surface supérieure très plane. Dans l'échantillon le mieux conservé (AF 78 Tak 3/4), laminae localement limitées, à leur partie supérieure, par une fine ligne plus sombre (cristaux plus petits ?) qui donne l'impression de recouper les piliers. Partie inférieure des laminae dessinant parfois des franges plus ou moins marquées, compactes ou au contraire perforées, Epaisseur des laminae, 30 à 50 µm en moyenne, mais atteignant parfois 150 à 200 µm, ou plus, au niveau des franges. Au nombre de 18 à 20 en moyenne sur 5 mm, leur densité peut localement baisser jusqu'à 13 ou, au contraire, atteindre 26 laminae sur 5 mm chez certains échantillons. Laminae généralement plus serrées et d'allure un peu plus irrégulière à la base et au sommet des latilaminae, un peu plus espacées au centre (cf. précédemment).

Piliers régulièrement développés, au nombre de 24 à 26 en moyenne sur 5 mm, épais de 50 à 80 μ m, faiblement évasés à leur sommet et participant alors à l'épaississement infralaminaire; localement, des ouvertures dans les franges laminaires, donnant l'impression que certains piliers sont ramifiés (bifurqués ou trifurqués) à leur extrémité supérieure; assez nettement superposés, on les suit parfois, là cù la rectitude de la coupe le permet, à travers une quinzaine de laminae ou plus.

Espaces interlaminaires formés de chambres un peu plus hautes que larges, bien arrondies à leur partie supérieure, du fait de l'élargissement des piliers.

Astrorhizes pas ou peu marquées, se traduisant par quelques chambres un peu plus grandes que la moyenne et généralement situées dans l'axe d'ondulations.

Coupe tangentielle

Sections ponctuées des piliers larges de 60 à 120 µm, étoilées ou plus rarement caténiformes; plages opaques, finement perforées (petites ouvertures de 50 µm de diamètre au plus) au passage des laminae; à la limite de ces deux zones, ébauche de maille hexactinelloïde formée par quelques liens entre les piliers. Sections d'astrorhizes un peu plus distinctes qu'en coupe verticale, avec des canaux atteignant 150 µm de diamètre.

MICROSTRUCTURE

Compacte ou parfois floconneuse. Localement dans les laminae des granulations atteignant environ 30 um, irrégulièrement alignées. Assez souvent, bord supérieur des laminae limité par un axe sombre très mince (8 à 10 µm).

DISCUSSION

L'allure et la structure des laminae finement perforées en section tangentielle mais apparaissant très "tranchantes" en section verticale m'autorisent à rattacher ces spécimens au genre *Atelodictyon* LECOMPTE, 1951 s.s. (cf. discussion du genre).

La superposition assez nette des piliers et l'aspect général des lames en section verticale rappellent fortement le genre Actinostroma NICHOL-SON, 1886b. L'existence de laminae à structure effrangée vers le bas évoque plus précisément certaines formes décrites sous le nom de A. verrucosum GOLDFUSS, 1826 et en particulier certains des spécimens du Bassin de Dinant rattachés à cette espèce par M. Lecompte et illustrés par lui (1951, pl. X, fig. 1a). Toutefois d'autres caractères de la coupe tangentielle, en particulier l'absence d'une véritable maille hexactinelloIde1, ne permettent de rattacher ces formes afghanes au genre Actinostroma. þuo

Avec leurs laminae "surlignées" par un axe noir, leurs piliers un peu élargis à leur sommet et participant à l'épaississement des éléments horizontaux, ces spécimens afghans rappellent beaucoup le genre Atopostroma YANG & DONG, 1979. Toutefois ils n'en possèdent pas la microstructure originellement reconnue par les auteurs chinois et s'en différencient en outre par leurs piliers moins nettement superposés.

Enfin ils ne possèdent pas les piliers bobiniformes du genre Gerronostroma YAVORSKY, 1931.

Ils me semblent spécifiquement très proches de A. aggregatum LECOMPTE, 1951; ils en possèdent les caractères suivants : allure tranchante et densité de laminae, piliers rectilignes et souvent superposés, présence d'épaississements infralaminaires; ils n'en diffèrent que très légèrement par une densité en piliers un peu plus faible.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel type de Atelodictyon aggregatum provient du Givétien du Bassin de Dinant (Belgique).

Les spécimens afghans proviennent de Sim coupes de Tachtakay, 113 ont éaltés vers la base (?) de la Formation de Tachtakay, 113 ont été réaltés vers la base (?) de la Formation des Calendones du Sin gRan Givétien (on Frances inférieur? à la coupe de Takla Ray).

Atelodictyon cf. connectum YANG & DONG, 1979.

Pl. 111, fis. 4-8; pl. 14, fis. 1-3, fis. take p. 4.

cf. 1979 - Atelodictyon connectum sp. nov. - Yang J. et Dong D., p. 22, pl. 4, fig. 7-8.

MATERIEL ET GISEMENT. (18 spécimens, 30 lames, 34 sections). Coure a Denal: 5 AF 76 D 88/1; /2; /3; D82/2; 1; D 93 ~ 1;

AF 16 D 9212; 14;

Coupe du Oligir: AF 76 K 13/2; /4; Coupe du Spinghar: AF 78 SpG 1/9; /25; /27 ; /28; /29; /30; /31; Coupe du Talliany:? AF 78 Tak 4/2; /5; /3.

TYPE.

CARACTERES EXTERNES

Coenostea ou fragments de coenostea hémisphériques, atteignant en moyenne une dizaine de centimètres de diamètre (50 cm pour le plus grand), ou tabulaires, hauts de 5 à 10 cm en moyenne. Ondulations et latilaminations visibles latéralement sur certains fragments altérés. En surface, très larges "mamelons" très surbaissés, distants de plusieurs centimètres.

CARACTERES INTERNES

Coupe verticale

Coenosteum présentant de larges ondulations. Structure d'aspect très dense, aux éléments généralement serrés et à limite souvent mal définie.

Laminae souvent bien continues, épaisses de 50 à 60 µm en moyenne mais parfois beaucoup plus fines (15 µm), à limite supérieure relativement nette et parfois marquée d'une ligne sombre (A) distribuées, le plus souvent, à raison de 29 à 42 sur 5 mm (34 en moyenne); localement très rapprochées et parfois même anastomosées.

Piliers généralement moins marqués que les laminag, répais de 60 à 100 µm; fréquemment surperposés et d'aspect continu, au moins localement; au nombre de 25 en moyenne sur 5 mm; souvent évasés à leur sommet mais jamais bifurqués.

Espaces interlaminaires souvent très réduits; chambres arrondies en forme de voûte à leur sommet, plus planes à leur base; parfois de forme plus irrégulière ou localement réunies latéralement; atteignant le plus souvent 40 à 60 um de hauteur.

Astronhizes assez bien développées chez certains spécimens :AF 76 K 13/422 et /4:, AF 76 D88 /12 et /3:, AF 76 D 93 a /12, à peine marqué chez d'autres; très nettement superposées dans l'axe des ondulations où les canaux astronhizaux peuvent atteindre 400 um de diamètre; prolongées latéralement, sur parfois plusieurs millimètres, par des galeries de taille supérieure à normale, atteignant 250 um de hauteur, dans lesquelles les piliers sont moins nombreux, voire absents. Dissépiments astronhizaux rares ou absents.

Coupe tangentielle

← Structure d'aspect souvent très dense au niveau des laminae (peut être dû en partie à la mauvaise conservation).

Au niveau des piliers, sections irrégulèrement arrondies, larges de 60 à 150 μ m, ou, plus souvent, maille caténiforme (AF 76 K 13/2) maille hexactinelloïde inexistante ou à peine ébauchée localement chez quelques échantillons (AF 76 D 92/423).

- Fig. 15 Atelodictyon cf. connectum YANG ET DONG, 1979. Dessins, d'après la lame mince AF 76 D 92/4a. Coupe verticale montrant l'aspect dense de la structure coenostéale, l'écartement assez variable des laminae et la superposition des piliers, bien visible localement (B).

١.

\

Fig. 16 - Atelodictyon cf. connectum YANG ET DONG, 1979. Dessins d'après les lames minces AF 76 K 13/2a (A) et AF 76 D 93a/1a (B). Coupes tangentielles. Plages d'aspect très dense (structure coalescente) au niveau des laminae; ponctuations et amorce de maille caténiforme au niveau des sections de piliers. Astrorhizes bien visibles, au centre de structures concentriques distantes de 1 cm ou plus; canaux astrorhizaux centraux larges de 300 à .350 µm, canaux latéraux ramifiés, par fois assez nombreux et bien distincts, atteignant 200 à 250 µm de diamètre.

MICROSTRUCTURE.

Aspect compact à spongieux mais difficile à observer par suite de la mauvaise conservation des échantillons. Parfois une ligne ou une bordure un peu plus sombre à la partie supérieure des laminae, plus ou moins développée selon les spécimens. Localement, laminae présentant un aspect transversalement fibreux.

RAPPORTS ET DIFFERENCE

Je rattache les spécimens décrits ci-dessus au genre Atelodictyon LECOMPTE, 1951, sensu M. Lecompte. Ils en possédent en effet les caractères fondamentaux: 4, éléments coenosteaux bien différenciés avec des piliers parfois superposés et des laminae bien marquées; absence de véritable maille hexactinelloIde. Ce dernier caractère les différencie du genre Actinostroma NICHOLSON, 1886 b.

Ils n'ont pas les piliers bifurqués caractéristiques du genre Anostylostroma PARKS, 1936.

Ils rappellent le genre *Apotostroma* YANG & DONG 1979 par leur laminae bien définies mais s'en distinguent toutefois par leur microstructure.

Spécifiquement les spécimens afghangrappellent A. connectum YANG & DONG, 1979 par l'aspect général assez compact du tissu coenostéal. Ils en différent par leurs laminae un peu plus nombreuses et continues (27 à 30 seulement sur 5 mm chez la forme chinoise) au lieu de 30 à 40 le plus souvent chez les spécimens afghans.

Ils sont encore assez proche de A. strictum LECOMPTE, 1951 mais s' en écartent cependant par une série de petites différences: aspect général un peu plus régulier, système astrorhizal moins développé, laminae plus régulières, moins fréquemment anastomosées et légèrement plus nombreuses, piliers beaucoup moins souvent interrompus, chambres coenostéales moins hautes. Quelques lames (AF 76 D 92/4) montrent, dans certaines plages où la structure est un peu plus lâche et irrégulière, un aspect pratiquement identique à celui reconnu chez les spécimens rattachés, dans ce travail, à A. strictum.

Il convient de souligner que certains des caractères reconnus chez ces échantillons (chambres coenostéales plus petites ...) pourraient n'être dus qu'à la conservation moins bonne des spécimens et les deux espèces reconnues ici, être plus voisines encore.

N.B. Les spécimens de la coupe du Spin Ghar (AF 78 SpG 1) sont les moins bien conservés de tous et présentent des zones recristallisées où l'append générale est assez différent (aspect *confertum*). Les piliers y apparaissent comme épaissis (120 à 150 µm), parfois presque accollés et

les laminae y sont peu distinctes, la lamination n'étant plus visible que par les espaces interlaminaires qui se présentent sous forme de fissures (pl. "" fig. 8); toutefois, dans d'autres zones, on retrouve une structure tout à fait comparable à celle/précédemment décrite, De plus, le spécimen AF 76 D 88/2a présente aussi, mais très localement, des modifications diagénétiques tout à fait comparables.

DISTRIBUTION & REPARTITION STRATIGRAPHIQUE

Le matériel type de *A. connectum* provient de la partie inférieure du Membre de Fulang, membre supérieur de la Formation de Tungkanglin (partie supérieure du Dévonien moyen) de la province de Guéngxi (Chine).

Les spécimens afghans ont été récoltés dans quatre coupes; différentes-

- coupes de Dewal et du Kagir, partie inférieure de la Formation de Dewal, (à la coupe de Dewal, quelques mètres sous des niveaux à Stringocéphalidée, Brice et Mistiaen, 1980), Givétien;

- coupe de Takitakay; sommet de la Formation gréso-dolomitique de Qutun, Dévonien moyen;

- coupe du Spin Ghar; Formation des Calcaires réafant gris du Sin ghar, 3, Givétien?

Atelodictyon sp. dewalense Pl. 10, lig. 4-10;

MATERIEL ET GISEMENTS (16 spécimens, 24 lames, 29 sections).

DESCRIPTION

CARACTERES EXTERNES

Coenostea ou fragments provenant de coenostea tabulaires ou plus souvent hémisphériques, toujours de grande taille (le plus grand atteint 60 cm de diamètre). A la surface de beaucoup de spécimens, nombreux mamelons, hauts de 2 mm environ et distants de 1 à 1,5 cm, montrant parfois des traces de canaux astrorhizaux plus ou moins visibles. nettes

- 39 -

CARACTERES INTERNES

Coupe verticale

Coenostea caractérisés par de larges ondulations plus ou moins marquées selon les spécimens, parfois très surbaissées (spécimen AF 76 D 32/2; ½ 2 mm ou moins de hauteur entre les sommets des ondulations distantes de 1 cm), parfois plus accentuées (spécimen AF 76 D 32/2:: 4 à 6 mm de hauteur).

Structure quadrillée plus ou moins régulière; laminae et piliers bien développés mais d'allure et de densité variable; selon les endroits (), 12).

Laminae généralement bien marquées, régulières, très rarement anastomosées; continues ou localement formées de granulations juxtaposées (mais cet aspect est vraisemblablement dû à la recristallisation); assez épaisses (90 à 150 µm); limite supérieure généralement nette et parfois marquée par un liseré plus sombre (peut être d'origine diagénétique ?); partie inférieure des laminae souvent épaissie et à limite irrégulière, épaississement auquel participent les piliers et qui forme une sorte de "frange" atteignant par endroit, chez certains spécimens, 300 à 400 µm d'épaisseur; densité moyenne de l'ordre de 20 à 26 laminae sur 5 mm mais très variable dans le détail (2 à 7 sur 1 mm).

Piliers bien développés et assez épais (80 à 120 µm, rarement 150 µm), traversant les laminae ou recoupés par elles mais assez nettement superposés; typiquement élargis à leur sommet et parfois à leur base; au nombre de 21 à 26 sur 5 mm, rarement plus (24 ou 25 en moyenne).

Espaces interlaminaires de hauteur variable selon l'écartement des laminae, constitués de chambres généralement arrondies ou ovales, parfois allongées horizontalement, ou de forme plus irrégulière.

Astrorhizes peu marquées, caractérisées, dans l'axe des ondulations, par des galeries aux chambres de plus grandes dimensions (300 µm de hauteur) que les chambres normales et, latéralement, par des galeries dépourvues de piliers sur parfois plus d'un millimètre de longueur; rares canaux astrorhizaux verticaux.

Coupe tangentielle

Structures concentriques, correspondant aux sections des ondulations astrorhizales, parfois très rapprochées (50 à 10 mm); sections (arrondies) de piliers, larges de 120 µm de diamètre environ, parfois réunies entre elles à 2 ou 3, pour donner une maille caténiforme. Plages souvent très collection de la Romogènes au niveau des laminae, localement percées de petites ouvertures arrondies (20 à 30 µm de diamètre) et piquetés de taches arrondies plus sombres correspondant au passage des piliers. Section des "franges" présentant une structure plus aérée, formant une maille aux éléments épais d'une trentaine de microns et aux vides souvent bien arrondis atteignant 30 à 60 µm de diamètre.

MICROSTRUCTURE

Compacte à spongieuse; aspect parfois fibreux longitudinalement, surtout visible dans les piliers et manifestement d'origine diagénétique. Sommet des laminae souvent marqué par une ligne un peu plus sombre,

Fig. 18 - Atelodictyon sp.

Dessins, d'après la lame mince AF 76 D 32/3a. Coupe verticale. Aspects très variables dans un même coenosteum.

A: structure quadrillée régulière, assez lâche.

B: zone à laminae fortement épaissies, avec une limite inférieure irrégulière.

C: structure beaucoup plus irrégulière, à laminae très fines (probablement à proximité d'une astrorhyze ?).

D: structure plus dense, aux éléments coenostéaux très serrés.

\

Fig. 2 - Atelodictyon sp. Dessin, d'après la lame mince AF 76 D32/3b. Coupe tangentielle montrant de grosses ponctuations, plus ou moins réunies entre elles, aux emplacements des piliers, et des plages denses, finement perforées, à l'emplacement des laminae.
apparaissant parfois granuleuse. En coupe tangentielle, certains piliers avec une légère ponctuation centrale plus sombre, large d'une dizaine de microns.

DISCUSSION

0 лc',

J'attribue ces spécimens au genre Atelodictyon LECOMPTE, 1951. Ils entrent, à mon avis, dans la compréhension du genre tel qu'il a été défini et discuté par M. Lecompte qui signale en particulier, que les · le fait :piliers peuvent parfois être superposés.

L'allure des sections verticales est typiquement celle de représentants du genre Actinostroma NICHOLSON, 1886b. Toutefois, les sections tangentielles ne montrent jamais de maille hexactinelloîde typique au passage des laminae.

Les sections verticales, avec leurs piliers parfois bien superposés et évasés à leurs extrémités évoquent le genre Gerronostroma YAVORSKY, 1931 mais les piliers ne sont jamais vraiment bobiniformes.

L'allure d'ensemble de la structure coenostéale rappelle le genre Atopostroma YANG & DONG, 1979; mais les spécimens afghans n'en possédent pas la microstructure (cf. discussion du genre).

Certains des spécimens décrits ci-dessus possèdent des caractères très voisins de ceux reconnus chez A. strictum LECOMPTE, 1951. D'autres montrent, par l'allure, la taille et la densité des éléments coenostéaux ainsi que parla présence locale d'un épaississement infralaminaire, un aspect presque identique à certaines sections verticales de Actinostroma verrucosum GOLDFUSS, 1826 (cf. remarques ci-dessous).

DISTRIBUTION CEOGRAPHIQUE ET REPARTITION STRATICAA PHIQUE.

Tout le opérimens provienneur de le confe de Denne; il avrété réalté dan le moyanne le le Fomerir de Dance (Girétien). Remarque sur les relations entre les espèces Atelodictyon cf. connectum, A. strictum, A. sp. et Actinostroma verrucosum.

L'ensemble des spécimens décrits ci-dessus, recueillis dans les différents niveaux de la coupe de Dewal sur environ 120 m de couches (échantillons AF 76 D 93 à D 32), constitue une série presque continue dans laquelle on passe progressivement de formes rattachées ici à A. cf. connectum à d'autres qui, en coupe verticale, évoquent étonnamment Actinostroma verrucosum. Cette série évolutive se marque, dans ses grandes lignes, par une diminution de la densité en éléments coenostéaux; elle se caractérise aussi par une tendance progressive à la superposition de plus en plus nette des piliers, mais ce dernier caractère est toutefois sujet à de fortes variations à l'intérieur d'un même coenosteum.

J'ai hésité longtemps avant de séparer et de ranger sous des dénomina-

tions spécifiques différentes l'ensemble de ces spécimens. Cependant, lorsqu'on compare les termes ultimes de cette série (AF 76 D 92/4 et AF 76 D 32/3 par exemple) il est impossible, à mon avis, de les regrouper sous un même nom. Les coupures sont toutefois difficiles à établir; celles que j'ai adoptées ici, après de nombreuses hésitations, tiennent compte à la fois de la densité en laminae et de l'allure générale des sections en coupe verticale.

La figure 20 illustre en partie cet exemple d'anagénèse. je précise cidessous le détail des variations successives.

- Dans les niveaux inférieurs (AF 76 D 93 - D 88, = A. cf. connectum) le tissu coenostéal apparaît très serré et régulier.

- Dans les niveaux sus-jacents (AF 76 D 73 - D 50 = A. strictum) l'aspect général devient plus irrégulier, ceci essentiellement à cause du développement plus important du système astrorhizal; on observe en particulier de grandes variations dans la hauteur des galeries (AF 76 D 50/5; D 49). Cet aspect est déjà présent, mais de façon très localisée, dans certaines zones (bordures de coenosteum) de spécimens des niveaux inférieurs (AF 76 D 92/4).

- Puis, très progressivement, (spécimens AF 76 D 48/D 47, = A. strictum) les sections verticales montrent une tendance dé plus en plus nette à la superposition des piliers et à leur épaississement sommital; elles prennent donc à nouveau un aspect général plus régulier mais pour une autre raison car les astrorhizes restent bien développées et l'écartement entre les laminae demeure variable (AF 76 D 48/2). L'allure de ces spécimens (AF 76 D 48/1) rappelle celle du genre Atopostroma YANG & DONG, 1979 mais ils n'en possèdent absolument pas la microstructure. Toutefois, localement cette régularité, due à la superposition des piliers, peut être interrompue (AF 76 D 47/2a).

- En même temps, une autre particularité se développe (AF 76 D 47 - D 40, = A. strictum); les laminae ont tendance à s'épaissir dans les creux des ondulations (AF 76 D47/5, D 41/7); les sections rappellent alors étonnamment celles de Actinostroma verrucosum.

- Avec les spécimens des niveaux encore sus-jacents (AF 76 D 38 - D_{37} , = A. strictum) l'épaississement des laminae se confirme.

- Dans les mêmes niveaux, certains spécimens (= Atelodictyon sp.) montrent en outre une réduction du nombre des laminae. Les piliers restent bien superposés.

- Enfin, les derniers échantillons de la série (AF 75 D 32 = A. sp.) conservent l'écartement plus important des laminae signalé précédemment; l'aspect des sections verticales peut être très régulier. Cependant, dans une même lame (AF 76 D 32/3a), à côté de plages très régulières on rencontre des plages aux laminae moins épaisses, localement anastomosées, tout à fait identiques aux plages observées dans certains spécimens lors des étapes précédemment décrites.

Bifariostroma KHALFINA, 1968.

- = Clathrostroma YAVORSKY. 1960; sensu K. Mori 1968; J. Yang et D. Dong, 1978.
- non Clathrostroma YAVORSKY, 1960; sensu V.I. Yavorsky (=Atelodictyon).
 - = Oslodictyon MORI, 1978.

Espèce-type : Actinostroma bifarium NICHOLSON, 1886a.

DIAGNOSE

"Coenosteum lamellaire ou "en forme de bosse", laminae régulières, en maille polygonale. Piliers de deux types; les uns épais et longs, les autres minces et courts. Tissu compact. Astrorhizes présentes. (V.K. Khalfina, 1968).

DISCUSSION

dere nme

Le genre Bifariostroma a été créé pour des espèces précédemment rattachées au genre Actinostroma NICHOLSON, 1886b mais qui se caractérisent par la présence de deux types de piliers.

Deux autres genres, & Clathrostroma YAVORSKY, 1955 et Oslodictyon MORI, 1978, ont été proposés ou utilisés pour recevoir des espèces présentant aussi ce caractère (fig. 21) ion valider,

En 1960, V.I. Yavorsky fonde le genre Clathrostroma pour des formes óccupant une position intermédiaire entre les genres Actinostroma et Clathrodictyon NICHOLSON & MURIE, 1878; les laminae et les piliers y sont bien différenciés et ces derniers se répartissent en deux catégories: x certains sont continus et traversent les laminae comme dans le genre Actinostroma, d'autres sont réduits à un seul espace interlaminaire.

Le genre Clathrostroma pose quelques problèmes quant à la désignation de son espèce-type.

- V.I. Yavorsky, lors de la création du genre en 1960, nomme, comme espèce-type, C. lekense dont la description n'est malencontreusement publiée que l'année suivante avec six autres espèces nouvelles.
- E. Flügel et E. Flügel-Kahler (1968), ainsi que K. Mori (1978, p. 135) basant sur l'article 68 c du Code International de Nomenclature 88 Zoologique, estiment que l'espèce-type du genre est, par monotypie. C. stolbergenense YAVORSKY, 1960, la seule espèce décrite par l'auteur lors de la création de son genre. thalfan et V.I. yoursty (1971) adupteur a point de vac.
- Par contre V.G. Kromych (1974, 1976) choisit comme espèce type C. implicitum, une troisième espèce de V.I. Yavorsky (1961), plus représentative du genre selon lui. Ce faisant il modifie assez sensiblement la compréhension de Clathrostromas 🛋 De fait, dans la diagnose du genre qu'il donne en 1974 (p. 40), il met l'accent sur la présence

de laminae complémentaires résultant d'extensions latérales,"en ombelle" des piliers) bet aspect est en effet très net dans la figuration de C. implicitum de V.I. Yavorsky (1961, pl. VI, fig. 5); 1e caractère apparaît aussi nettement dans les figurations de C. même umbellata KHROMYCH (V.G. Khromych, 1974, pl. VI, fig. 2). Ce caractère (laminae complémentaires complexes) correspond pratiquement à celui retenu par C.W. Mallet (1971) pour fonder le genre Nexili-J'ai déjà discuté et rejeté ce dernier genre (B. lamina. Mistiaen 1976, 1980) Il me semble en effet que le caractère "laminae complexes" ne peut, lui seul, justifier l'établissement d'un nouveau genre dans la mesure où, a cotte de cas laminae " complexes," 11 existe Koujours des laminas normales. A.E. Cock bain (1984, p. 1) semble adopter la mamy position.

Q. ...

discus'

de Activestin Vermaan

GOLDFUSS

1826)

lef.

- Enfin E. Flügel (1963), K. Mori (1968), J. Yang et D. Dong (1979) ainsi que C.W. Stearn (1980) de se base¹ sur l'article 68 a du même Code (article prioritaire sur l'article 68 c), considèrent, avec raison, que l'espèce-type du genre est bien celle désignée en 1960 par V.I. Yavorsky, C. lekense.

K. Mori (1978), estime en outre que le genre russe n'est pas valable, car mal défini et basé sur une espèce (C. stolbergenaise) qui, sele le; appartiendrait **En Tait** au genre Anostylostroma PARKS, 1936. K. Mori (1978, p. 135) propose donc un nouveau genre: Solodictyon, avec, comme espèce-type, O. henningsmoeni MORI, 1978. La diagnose de ce genre est pratiquement identique à celle de Clathrostroma donnée par V.I. Yavorsky.

C.W. Stearn (1980 p. 895), dans sa classification des Stromatopores, considère le genre Oslodictyon comme un synonyme plus jeune du genre Clathrostroma.

Les espèces que K. Mori inclut, en 1978, dans son nouveau genre sont, outre l'espèce-type, "Clathrostroma" klintense MORI, 1968, "Clathrodictyon" burmantovskiense YAVORSKY, 1955 et "Actinostroma" intertextum var. suevicum NICHOLSON, 1886a. Par contre il exclut du genre C. stolbergenense (cf. ante) et apparemment toutes les autres espèces de Clathrostroma de V.I. Yavorsky (1960, 1961). Se faisant, K. Mori met l'accent sur un caractère déjà souligné par V.I. Yavorsky (1961) dans sa diagnose de Clathrostroma, à savoir la présence de piliers continus parmi d'autres qui ne le sont pas. Cependant, au vu des figurations de V.I. Yavorsky (1961, pl. IV, fig. 8; pl. V, fig. 1, 3, 5, 8; pl. VI, fig. 2, 3, 5), ce caractère ne semble pas fondamental. Il apparaît plutôt, comme le constate V.G. Khromich (1974, p. 40), que certains piliers superposés donnent l'impression d'être continus mais qu'il n'existe pas deux sortes de piliers bien différenciés.

Il est donc évident qu'il existe une certaine distorsion entre la diagnose de *Clathrostroma* proposée par V.I. Yavorsky et les figurations des espèces qu'il met dans son genre, ou tout au moins que V.I. Yavorsky insiste trop, dans sa diagnose, sur un caractère qui n'est pas essentiel.

Par contre, les espèces figurées par K. Mori (1968, 1976), ou celles qu'il inclut dans genre Oslodictyon montrent plos nettement deux sortes d'éléments verticaux de gros piliers traversant le tissu parmi lesque

h en 1978

coenostéal. Il en est de même des trois espèces de *Clathrostroma* décrites et figurées par J. Yang et D. Dong (1979), dont "C." bifarium eur est-lespèce type du genre *Bifariostroma*. Les conceptions qu'ont du genre *Clathrostroma* V.I. Yavorsky, d'une part, et K. Mori ainsi que les auteurs chinois, d'autre part, sont donc totalement différentes et s'opposent, à mon avis, à la mise en synonymie des genres *Clathrostroma* (sensu V.I. Yavorsky) et Oslodictyon. Il suffit, pour s'en assurer, de rappeler le sort de *Clathrodictyon burmantovskiense* YAVORSKY, 1955, espèce que l'auteur russe n'a jamais placée dans son propre genre *Clathrostroma* tandis que K. Mori la range dans Oslodictyon.

En 1967, V.I. Yavorsky (note infrapaginale p. 6) constate que son genre *Clathrostroma* présente "tous les caractères, y compris les liens (arm)", du genre *Atelodictyon* LECOMPTE, 1951 et qu'il tombe par conséquent en synonymie avec ce dernier.

C.W. Stearn (1980, p. 895) n'adopte pas cette position car il considère que la structure des laminae est totalement différente. J'ai discuté précédemment de l'allure des laminae du genre Atelodictyon (cf. p.) etje pense que Clathrostroma sensu V.I. Yavorsky est à mettre en synonymie avec de dernier genre.

Austral la performan la flace de

Bifariostroma sp. Pl.V, fig. 1-4; fig. teste 25.

MATERIEL ET GISEMENT (1 spécimen, 2 lames.) Coupe de Bokan: AF 75 Bo 37/6.

DESCRIPTION

CARACTERES EXTERNES

Fragment de coenosteum tabulaire de grandes dimensions (25 cm de diamètre, 8 cm de hauteur). Traces de lamination régulière sur les surfaces altérées.

CARACTERES INTERNES

Coupe verticale

Structure coenostéale régulière du dominent les laminae.

Latilamination plus ou moins développée, dessinant des bandes larges de 2 à 4 mm en moyenne qui regroupent une dizaine à une vingtaine de laminae.

Laminae bien développées, épaisses de 50 à 400 mm réparties à raison de 20 à 24 sur 5 mm; dans l'ensemble très régulières et

En anclusion, dans ce travail, fadefte la position timé suivete dear le talle suivate (cf. fi, 24) Bifanicotian EHALFINA, 1968 Atelodiety LECONPTE 1951 = Carhaline Yoursky, 1950 = Clathrestiena sensu noki, 1968 - Clashatine semme Yaz et Dis 1978 = Oslochictzn HURI, 1578

(1)

hh

rarement anastomosées mais d'allure plus irrégulière et ondulées dans le détail; généralement rebroussées vers le haut au contact des gros piliers. Piliers de deux sortes; la plupart limités à un seul espace

Piliers de deux sortes; la plupart limités à un seul espace interlaminaire, rarement superposés, parfois formés par l'inflexion des laminae, en nombre assez variable (15 à 20 sur 5 mm mais localement de 3 à 6 sur 1 mm), d'épaisseur sensiblement égale à celle des laminae; d'autres continus à travers une dizaine d'espaces interlaminaires, traversant même parfois les limites des latilaminae, distants au minimum de 1 mm (0 à 4 ou 5 sur 5 mm) et atteignant $h_{00} \approx h_{50}$ m d'épaisseur.

Espaces interlaminaires formés de chambres généralement ovales, aplaties horizontalement et hautes de 1450 mm en moyenne.

Astrorhizes peu visibles; pas de canaux verticaux; canaux latéraux correspondant sans doute à des espaces interlaminaires un peu plus hauts (jusqu'à 2.50) où les piliers sont moins nombreux.

Coupe tangentielle.

Sections circulaires de gros piliers, atteignant 450 مسر de diamètre au maximum, mais relativement peu visibles. Sections arrondies ou plus irrégulières, méandriformes de petits piliers, larges de 100 à 120 مسر 120

Laminae donnant des plages relativement denses.

Astrorhizes dessinant un réseau de canaux ramifiés, larges de boo juit à disposition plus ou moins rayonnante.

MICROSTRUCTURE

Laminae et petits piliers à tissu compact ou spongieux, parfois transversalement poreux dans les laminae. Gros piliers spongieux, avec une zone centrale plus claire, décolorée large de 100 à 150 mm parfois traversée d'un axe sombre.

DISCUSSION

Les caractères de ce spécimen sont tout à fait ceux du genre/Bifariestrom ostroma KHALFINA, 1960; il en possède l'aspect d'ensemble de la structure coenostéale rappelant les genres Actinostroma NICHOLSON 1886b ou Clathrodictyon NICHOLSON & MURIE, 1878 mais traversée par de gros piliers continus.

Il diffère du genre Taleastroma GALLOWAY & ST JEAN, 1957, par sa structure coenostéale et sa microstructure, et du genre Plectostroma NESTOR, 1964, par la présence de laminae bien définies.
Il présente de grandes ressemblances autor Difficulty

Il présente de grandes ressemblances avec Bifariostroma bifarium (NICHOLSON, 1886a); il possède en particulier la même densité en éléments coenostéaux, mais il s'en distingue néanmoins par des laminae plus régulièrement réparties, moins ondulées et par ses gros piliers continus plus discrets.

 Le spécimen afghan rappelle fortement "Clathrodictyon" burmantov- skiense YAVORSKY, 1955, espèce que K. Mori (1978, p. 135) inclut dans son genre Oslodictyon, Il n'en diffère que par une densité un peu plus faible en éléments horizontaux, 25 à 30 sur 5 mm chez Set & burmantov-skiense, d'après la figuration de V.I. Yavorsky, 1955 (pl. XVII, fig. 3-

 \mathbf{n}

51

66

Fig. 5 - Bifariostroma sp. Dessin, d'après la lame mince AF 75 Bo 37/6a. Coupe verticale montrant les deux types de piliers, les plus larges présentant une zone axiale plus claire. 4), contre 20 à 24 chez le spécimen afghan.

Il évoque aussi *Bifariostroma klintense* (MORI, 1968), par l'allure relativement discrète des pillers continus, mais le nombre de laminae est nettement plus élevé (30 à 35 parfois 40 sur 5 mm) chez l'espèce silurienne de K. Mori.

Le spécimen afghan diffère enfin très nettement de l'espècetype de "Clathrostroma", C.lekense YAVORSKY, 1961 (et, d'une façon générale, des autres espèces figurées par V.I. Yavorsky en 1961 sous ce nom générique) par ses éléments horizontaux beaucoup plus constants et la distinction plus évidente entre les piliers normaux, de petite taille, et les piliers épais nettement plus continus.

N.D. La forme décuite par A.E. Cockbain (1984, p. 18, pl. 2D, 5 A-D) sous le nom de <u>Actinostieme</u> windfanieum n.sp. me vaille affalteres

Typiquement au geme Bifaricohama.

DISTRIBUTION GEOGRAPHIQUE ETREPARTITION STRATIGRAPHIQUE le spécimen décit provent de le coupe de Bothen, = - lare de la Formation de lawale (Sifélier? ou Empireus).

- Anostylostroma PARKS, 1936.
- p.p. Atelodictyon LECOMPTE, 1951 IN C.W. Stearn, 1961.
- = p.p. Plectostroma NESTOR, 1964 in J. Yang et D. Dong, 1979.

Espèce-type: Anostylostroma hamiltonense PARKS, 1936.

DIAGNOSE

Coenosteum lamellaire à massif. Eléments coenostéaux bien différenciés. Laminae continues, souvent fines ou moyennement épaisses; foram des sources à leurs sommets; en coupe tangentielle, sections circulaires ou vermiculées, rares pseudo 'ring-pillars'. Dissépiments peu développés, ne remplacant pas les laminae. Microstructure compacte ou spongieuse parfois transversalement poreuse ou fibreuse.

DISCUSSION

Les relations avec d'autres genres voisins sont abordées dans la discussion de l'espèce décrite.

Anostylostroma. sp. PC. I, fiz. 8-9; pl. vi, fiz. 1-2: fiz. texte 26,27

MATERIEL ET GISEMENT : 6

(7 spécimens- 5 lames) Coupe du Spin Ghar: 6 AF 78 SpG 16/1, 58 SpG 18/39; 1/40.

DESCRIPTION

Ħ

CARACTERES EXTERNES

Coenosteum subsphérique, de 8 cm de diamètre présentant latéralement quelques traces de lamination.

CARACTERES INTERNES Coupe verticale

Aspect général assez irrégulier et variable selon les endroits, avec de fréquentes ondulations, des arrêts de croissance marqués par de petites zones plus sombres (épithèque = "basal layer" cf. A.E. Cock bain, 1984, p. 11-12), des intercalations de micrite ou des plages amygdaloïdes de calcite spathique.

amygdaloIdes de calcite spathique. Laminae très irrégulièrement espacées, localement très écartées (jusqu'à 1 mm), au nombre d'une dizaine en moyenne sur 5 mm; très fines (épaisseur 30 µm) et d'aspect très continu dans l'ensemble mais

 \mathbf{n}

Fig. 26 - Anostylostroma'sp. Dessin, d'après la lame mince AF 78 SpG 16/1a. Coupe verticale montrant l'aspect général très irrégulier; dissépiments localement alignés.

9

Fig. 27 - Anostylostroma'sp. Dessin, d'après la lame mince AF 78 SpG 16/1a. Coupe verticale montrant l'écartement très variable des laminae et la grande irrégularité des piliers, fréquemment subdivisés.

parfois formées, dans le détail, par un alignement de granules; parallèles aux ondulations coenostéales mais présentant localement un parcours plus irrégulier, fripé, avec de petits replis.

Eléments verticaux généralement fins $(60 \pm 120 \text{ J})$, un peu plus épais dans certaines zones, réduits à un espace interlaminaire et égaux ou inférieurs à la hauteur de celui-ci; parfois superposés; souvent bifurqués, tordus, anastomosés et relayés par des dissépiments ou d'autres éléments verticaux; parfois très ramifiés (a-terre-ment); densité difficile à évaluer, de l'ordre d'une vingtaine ou un peu moins sur 5 mm.

Espaces interlaminaires de forme et de taille extrêmement irrégulières; dissépiments assez nombreux, souvent bombés et plus ou moins alignés, traversant horizontalement ou plus souvent obliquement les espaces interlaminaires.

Astrorhizes bien développées, à l'origine des larges ondulations coenostéales; canaux centraux atteignant Goo and de diamètre ou un peu plus, traversés de quelques dissépiments convexes; canaux latéraux très vite confondus avec les espaces interlaminaires.

Coupe tangentielle

Structure irrégulière, éléments coenostéaux épais d'un dixième de millimètre environ, délimitant entre eux des vides arrondis ou vermiculés de taille variable et localement recoupés par des vides arrondis plus petits (30 à 60). Larges sections arrondies de canaux astrorhizaux.

MICROSTRUCTURE

Tissu irrégulièrement compact à spongieux. Piliers parfois striés verticalement; \tâches diffuses, mieux individualisées par endroits et alternant avec des vacuoles parfois nombreuses, au moins localement, et d'asez grande taille (20230 Jun 2000 plus); en coupe tangentielle, aspect mélanosphérique avec des vacuoles.

DISCUSSION

Il présente cependant, par rapport à l'aspect habituel du genre, "une grande complexité et une irrégularité anormale des éléments verticaux, souvent mal individualisés en tant que piliers.

Par ce dernier caractère, le spécimen décrit rappelle beaucoup une série de genres, *Tienodictyon* YABE & SUGIYAMA, 1941; *Hammatostroma* STEARN, 1961; *Intexodictyon* YAVORSKY, 1963; *Plexodictyon* NESTOR, 1966 qui se caractérisent par des laminae compactes, régulières et un tissu interlaminaire enchevêtré (C.W. Stearn, 1969). Il se distingue cependant de ces genres par d'autres caractères et en particulier du genre *Tienodictyon*, le plus proche, par ses laminae très fines et l'absence de zonation dans le tissu interlaminaire cù domine l'orientation verticale.

Il rappelle aussi un genre très proche, Pseudoactynodictyon FLUGEL E.,

(&5.E)

1958, par ses larges espaces interlaminaires de hauteur variable, ses éléments verticaux subdivisés mais il s'en distingue toutefois par ses éléments verticaux rarement superposés et ne traversant en aucun cas les laminae. J.A. Pagerstrom (1982, p. 25) a discuté en détail des relations entre les deux genres Anostylostroma et Pseudoactinodictyon et de la difficulté d'attribution de certaines espèces; les critères de différenciation qu'il retient pour Anostylostroma s'appliquent parfaitement au spécimen afghan.

Le matériel afghan présente avec A. hamiltonense PARKS, 1936, l'espèce-type du genre, un certain nombre de points communs, en particulier les vacuoles surtout localisées dans les sommets élargis des piliers (cf. W.A. Parks, 1936, p. 47, pl. VIII, fig. 1-2; J.J. Galloway, 1957, p. 434, pl. 31, fig. 5; pl. 33, fig. 6; C.W. Stearn, 1966a, p. 91, pl. 15, fig. 3); il en diffère cependant nettement par une densité beaucoup plus faible en laminae et des éléments verticaux plus irréguliers et plus serrés.

Il me semble très proche de Atelodiction ordinatum (STEARN, 1961) par la densité en éléments coenostéaux et l'allure irrégulière des éléments verticaux. La seule différence réside dans le fait que, chez la forme afghane, les éléments verticaux atteignent presque toujours la lamina supérieure, ce qui n'est pas le cas chez l'espèce canadienne où ils sont relayés par des dissépiments; mais cet espace sans piliers, situé dans la partie supérieure des espaces interlaminaires, pourrait être uniquement de nature astrorhizale. C.W. Stearn (op.cit., p. 939) signale aussi pa ailleur que l'abondance des pores dans les piliers suggère des relations avec le genre Trupetostroma PARKS, 1936 mais que l'aspect des laminae exclut ce rapprochement; c'est aussi tout à fait le cas pour le spécimen afghan. C.W. Stearn rapporte le spécimen canadien qu'il décrit au genre Atelodictyon LECOMPTE, 1951; dans an description (op. cit. p. 937) il parle de "laminae ... not continuous but ... made up in section of compact granules" comparent. J'ai discuté précédemment (cf. p.) de la conception du genre Atelodictyon et de la présence de laminae continues chez l'espècetype, A. fallax LECOMPTE, 1951. Il me semble que l'espèce canadienne trouve mieux sa place dans le genre Anostylostroma.

J. Yang et D. Dong (1979, p. 36, pl. 11, fig. 5 et 6) ont décrit et figuré, sous le nom de *Plectostroma guangxiense* DONG, 1974, une forme dont l'aspect, en coupe verticale, rappelle beaucoup le spécimen d'Afghanistan. Elle se caractérise aussi par des laminae fines (0,30 à 0,40 mm), très espacées (5 à 10 sur 5 mm) et une certaine irrégularité du tissu interlaminaire; les éléments verticaux ne semblent pas recouper les laminae et sur la photo des auteurs chinois, quelques-uns semblent se subdiviser vers leur sommet et s'étaler sous la lamina. La forme chinoise me semble difficilement pouvoir appartenir au genre Plectostroma NESTOR, 1964 qui se caractérise au contraire par des éléments verticaux très continus et des éléments horizontaux discontinus et pourrait se rattacher au genre Anostylostroma; toutefois la coupe tangentielle illustrée par 🗯 J. Yang et D. Dong montre une structure presque hexactinelloïde, frès différente de ce que j'observe dans le matériel afghan. Le spécimen afghan évoque encore Anostylostroma pseudocolumnae (RIABI-NIN, 1941) mais s'en différencie cependant nettement par une densité en laminae beaucoup plus faible.

DIST. GEOG ET REP. STRAT. Le openier décent forvers de la compe de spin gha, Fonction d'Olienale, gristien on Francien. Pseudost romat oporella KAZMIERCZAK, 1971.

🔹 p.p. Stromatoporella NICHOLSON, 1886b, سوغ

- p.p. Stictostroma PARKS, 1936.
- = p.p. Clathrodictyon NICHOLSON & MURIE, 1878, in M. Lecompte, 1951.
 - = Stictostromella GALLOWAY & ST JEAN, 1954 (non publié).
 - * Stictostromella GALLOWAY & ST JEAN, 1954, in M.A. Fritz et H.W. Waines, (nomen nudum).

A DESCRIPTION OF A DESC

Stictus trema

Espèce-type : Peeudostremateporella huronense (PARKS, 1936).

DIAGNOSE

Ħ

Laminae bien exprimées, compactes, avec de nombreux foramina. Piliers limités à un espace interlaminaire, droits (bobiniformes ou cylindriques) ou irrégulièrement courbés. 'Ring-pillars' fréquents, formés par l'invagination des laminae. Beaucoup de dissépiments. Microstructure fibro-normale.# (J. Kazmierczak, 1971, p. 77).

DISCUSSION

Le genre Pseudostromatoporella est proposé par J. Kazmierczak pour des espèces possédant les caractères structuraux du genre Stromatoporella NICHOLSON, 1886b (en particulier des 'ring-pillars') mais s'en distinguant par leur microstructure.

J. Kazmierczak (1971, p. 77-78) choisit, comme espèce-type du genre, Stichoshima S, 1936. - Bene (1971) . histonane (2), que son suteur rangeait dans le momense PARKS, 1936. TRIS, NOS

genre Stadedtroma PARKS, 1936

Martinene

Stictostroma a été établi par W. A. Parks selon un Le genre processus tout à fait inhabituel - comme le reconnaît d'ailleurs l'auteur lui-même - et irrecevable. Il repose en effet sur la présence nette d'un seul des deux caractères suivants, reconnus chez le genre -Stromatoporella: ? / fring-pillars' et laminae poreuses; ou encore sur la présence diffuse de ces deux caractères. De ce fait, W. A. Parks est pratiquement amené à proposer, pour son genre, deux cogénotypes (espè-ces-types); mammillata «NICHOLSON, 1873), à laminae poreuses mais sans 'ring-pillars' et & Fiense PARKS, 1936, à laminae non poreuses et 'ring-pillars'. Cette façon de procéder a été, par la suite, largement discutée.

D. Le Maître (1949, p. 517) signale les difficultées de détermination qu'entraîne une telle définition générique mais conserve le genre tel quel.

Les auteurs successifs qui ont discuté de ce genre ont adopté deux positions très différentes, en fonction de l'importance relative que les uns et les autres accordent à la présence de 'ring-pillars'

. Première position: abandon du genre Stictostroma.

l'importance des 'ring-pillars'; il considère qu'ils ne constituent pas

A8

un caractère générique propre au genre Stromatoporella mais qu'ils peuvent aussi se rencontrer chez des représentants du genre Clathrodictyon NICHOLSON & MURIE, 1878; il estime par ailleurs que l'aspect de la microstructure de la fibre peut dépendre de processus de recristallisation. Aussi propose-t-il de répartir les espèces de Stictostroma de W. A. Parks dans les genres Stromatoporella et Clathrodictyon, (The strong).

- B. H. G. Sleumer (1968, 1969) laisse entendre, lui aussi, que le genre Stictostroma est, au moins en partie, synonyme du genre Stromatoporella; il considère en outre que les 'ring-pillars' ne constituent pas même un caractère spécifique (donc encore moins générique) mais peuvent se rencontrer chez certains spécimens.
- A. E. Cock bain (1984, p. 33) ne reconnaît pas, lur non plus, le genre de W. A. Parks. Il souligne, à juste titre, que le genre Stictostroma PARKS, 1936 n'est pas valide, en vertu de l'article 13 b du Code International de Nomemclature Zoologique et précise que le nom générique devrait être attribué à J. J. Galloway et J. St. Jean (1957) qui, les premiers, ont désigné une espèce-type. Par ailleurs, A. E. Cock bain considère que la définition du genre Stictostroma n'est pas suffisamment différente de celle du genre Stromatoporella.

. <u>Deuxième position</u>: importance des 'ring-pillars'. La plupart des autres auteurs, au contraire, (J. J. Galloway 1957, p. 437; J. J. Galloway et J. St. Jean 1957, p. 130; J.J. St Jean, 1960, p. 245; C. W. Stearn 1966<u>a</u>, b; 1983; P. K. Binkhead 1967 ...) estiment que la présence de 'ring-pillars' constitue le caractère générique fondamental du genre Stromatoporella qui permet de le différencier du genre Stictostroma. Toutefois J. St Jean (1960) signale la difficulté d'attribution générique de certaines formes (non citées) dont les caractères semblent intermédiaires. Ces auteurs conservent donc le genre Stictostroma pour les espèces à microstructure "poreuse" mais dépourvues de 'ring-pillars'. "The genus is a useful one for the reception of species that have the microstructure of Stromatoporella but do not have fring pillars' (C.W. Stearn, 1966a, p. 97). De l'analyse de ces différentes opinions, il résulte que le sort

- De l'analyse de ces différentes opinions, il résulte que le sort des deux espèces-types retenues par W. A. Parks est tout à fait paradoxal. Stictostroma mammillatum est en effet considéré comme une Stromatoporella par les premiers mais pas par les seconds et, inversement, Stictostromoma erlense est regardé comme une Stromatoporella par les seconds mais pas par les premiers ! (fig. SN-
- A ce point de la discussion, j'adopte l'opinion la plus couramment admise (dunaième printion) et considère le genre Stictostroma PARKS, 1936, emend. GALLOWAY & ST JEAN, 1957 comme valide, avec comme espèce-type S. mamilliferum nom. nov. GALLOWAY & ST JEAN, 1957, pro S. mammillata NICHOLSON, 1873, non
 Strongton & mammillata SCHMIDT, 1858]. Il me semble en effet que le ringorigen de

pillars' constitues un caractère strutural suffisamment important pour presence de le relenir comme enterie un critère générique.

Jou leur absace

Il convient maintenant d'examiner la position systématique des espèces de Stictostroma de W.A. Parks, en particulier celle de "S." eriense, la "deuxième espèce-type", exclues du genre ear possédant des à course du fussence de 'ring-pillars' et rattachées par beaucoup d'auteurs au genre Stromatoporella.

Prin cela, 11 importe de préciser la microstructure de car especies. Dans sa description de "S." eriense, W. A. Parks note (1936, p. 82, 83): "The fibre shows little or no evidence of porous, canaliculate, or cellular structure...S. eriense...is characterized by non-porous laminae...". L'espèce a été plusieurs fois redécrite par la suite.

- M. Lecompte (1951, p. 137, 138) examine et figure des paratypes de l'espèce; il décrit la fibre comme compacte.

J. Galloway et J. St. Jean (1954, non publié, in M. A. Fritz et R. H. Waines 1956, p. 92) érigent le genre Stictostromella pour les espèces à tissu compact et 'ring-pillars', (= deuxième groupe de W. A. Parks), avec en particulier Stictostromella eriense. Ils y placent aussi Clathrodictyon ohioense PARKS, 1936 (nom in coll., Royal Ontario Museum). Toutefois, dans une communication de J. J. Galloway, de 1956 (M. A. Fritz et R. H. Waines, 1956, addendum, p. 126), J. J. Galloway et J. St. Jean renoncent au genre Stictostromella et le considèrent comme synonyme de Stromaty oporella car les espèces concernées posséderaient aussi des pores dans leur laminae.

- M. A. Fritz et R. H. Waines (1956) utilisent le genre Stictostromella, caractérisé par un tissu compact. Ils y rangent S. eriense, S. ohiense, et deux eutres espèces nouvelles.

- J. J. Galloway et J. St. Jean (1957, p. 1369) at tribuent au genne matoporella les espèces S. eriensis et S. huronensie dui possèdent, selon eux, un tissu poreux, aux pores difficiles à apercevoir. Ils décrivent et figurent (*ibid.*, p. 145-147; pl. 10, fig. 2a-b) des spécimens de S. eriensis et notent que le tissu est "compact, finely fibrous transversely, with transverse portes in places" '; plus loin ils concluent que la microstructure de l'espèce se caractérise par "...the fibrous tissue in which the transverse portes are easily overlocked."

(Ils décrivent et figurent aussi (*ibid.*, p. 139-141; pl. 9, fig. 1a-d) un spécimen de Stromatoporella huronensis, autre espèce du deuxième groupe de W. A. Parks, dont ils soulignent qu'elle est très voisine de S. eriensis gine s'en différenciété que par la présence de mamelons et par des "ring-pillars" moins nombreux. Ils décrivent le tissu de cette espèce comme ".mostly transversely fibrans, and porous in places" poreux par enducite" et signalent que W. A. Parks n'a pas vu les tubulures transverses cependant présentes chez le type de l'espèce. N.B. Il convient de souligner ici que les caractères microstructuraux que J. J. Galloway et J. St. Jean décrivent dans les espèces concernées sont tout à fait conformes au type de microstructure qu'ils attribuent au genre Stromatoporella (*ibid.*, p. 130)[®] conselu to finely porous and fibrans

Par ailleurs, 11s font tomber en synonymie trois espèces de Clathrodictyon de W.A. Parks (1936), "C". ohioense, "C." townsendi et "C". insulare qu'ils attribuent au genre Anostylostroma PARKS, 1936, sous le nom de A. insulare.

- J. J. Galloway (1960, p. 622, pl. 71, fig. 2-5) décrit et illustre

i)

deux spécimens de Stromatoporella eriensis qui possèdent un tissu " transversalement fibreux et sans aucun doute poreux".

- C. W. Stearn (1966a, p. 95) observe chez Stromatoporella eriensis une ligne axiale claire ou, plus rarement, sombre, par inversion de la microstructure.

- B. H. G. Sleumer (1969, p. 42) considère que beaucoup d'espèces, dont "Stictostroma" eriensis et "S." huyénsis, sont probablement des synonymes de Stromatoporella selwyni NICHOLSON, 1892. Il décrit sous ce nom des formes d'Espagne qui présentent originellement une microstructure ordinicellulaire (sensu B. H. G. Sleumer 1969, non C. W. Stearn 1966a), fréquemment modifiée secondairement pour donner une vague zonation ou une ligne médiane claire dans les laminae ou encore pour prendre un aspect compact, spongieux, transversalement fibreux ou poreux.

- J. Kazmierczak (1971, p. 77, 87) propose le genre Pseudostromatoporella pour une série d'espèces, habituellement rattachées au genre Stromatoporella, qui en possèdent les caractères structuraux mais s'en distinguent par leur microstructure de type fibro-normal. L'espèce-type choisie par J. Kazmierczak est *MS, huronensis* dont il décrit et figure (*ibid.*, pl. XIII, fig. 1) un spécimen de Pologne qui présente une microstructure fibro-normale passant dune microstructure compacte dans les parties moins bien conservées de la colonie. Dans sa discussion, il compare P. huronensis à P. erlensis et à ? P. solitaria NICHOLSON, 1892; il considère ces trois espèces comme très proches, peut être même synonymes. J. Kazmiengele ne foir pas allusion au gene Stictostomella.

- C. W. Stearn (1980, p. 891, 897) estime que *Pseudostromatoporella* est vraisemblablement un synonyme de *Stromatoporella*, l'absence de laminae tripartites étant due à la diagénèse. Il souligne toutefois que si la microstructure du genre est bien originelle, il doit être rangé parmi les Clathrodictyidae. Il convient de rappeler que M. Lecompte considérait "*Stictostroma" eriense* comme un *Clathrodictyon*.

- J. A. Fagerstrom (1982, p. 37) ne reconnaît pas le genre de J. Kazmierczak et le considère comme un synonyme probable de Stromatoporella. Il souligne que d'après J. Kazmierczak (1971, p. 87) le genre regrouperait des espèces possédant "des 'ring-pillars', des cellules et des microlaminae". Le paragraphe de J. Kazmierczak incriminé me semble toutefois devoir être compris autrement, à la lecture de la diagnose du genre Pseudostromat popella aù J. Kazmierczak (ibid., p. 77) spécifie clairement que la microstructure est fibro-normale, et à la lumière des conceptions de J. Kazmierczak concernant la microstructure. J. Kazmierczak se rallie en effet à l'opinion de B. H. G. Sleumer selon laquelle il convient de séparer, au sein du genre Stromatoporella, les espèces présentant une microstructure "microlaminate and vacuolate" de celles possédant une microstructure "ordinicellulaire".

> N.B. Une partie de la confusion vient sans doute du fait que B. H. G. Sleumer (1969) utilise, pour décrire les microstructures, les mêmes termes que ceux employés par C. W. Stearn (1966<u>g</u>) mais dans des sens parfois très différents **May 1009** et que J. Kazmierczak modifie, à mon

avis, le sens donné par B. H. G. Sleumer. Ainsi J. Kazmierczak (1971, p. 87) précise que la microstructure "microlaminar" de B. H. G. Sleumer correspond à ce qu'il appelle microstructure fibro-normale.

* J. Kazmierczak (1971, p. 39-41) définit la microstructure fibronormale, par analogie avec celle reconnue chez les Anthozoaires (M. Kato, 1963), comme formée par des microcristallites de CaCO₃ dont les grands axes sont orientés perpendiculairement à la surface de secrétion, uni-, bi- ou multilatéralement. Les laminae correspondaient généralement à un dépot unilatéral, les piliers à un dépôt multilatéral. J. Kaz-

mierczak note que ce type de microstructure correspond à la microstructure compacte ou transversalement fibreuse des auteurs.

- * * B. H. G. Sleumer (1969, p. 17) reconnaît quatre types principaux de microstructure dont :
 - la microstructure compacte;

- la microstructure "microlaminate (= tripatite, multilayered)" qui caractérise les laminae formées par "plus d'une couche" de tissu, séparées par des espaces vides (couches claires); le tissu des piliers est, dans ce cas, plus ou moins compact;

- la microstructure ordinicellulaire (sensu B. H. G. Sleumer);

- la microstructure cellulaire.

Il apparaît donc que la correspondance n'est pas tout à fait exacte entre la microstructure fibro-normale de J. Kazmierczak et la microstructure "microlaminate" de B. H. G. Sleumer. Par ailleurs les microstructures "microlaminate" et ordinicellulaire, nettement différenciées selon B. H. G. Sleumer, sont souvent considérées comme très voisines par la plupart des autres auteurs (voir C. W. Stearn, 1966a, p. 78).

Dans le même travail (1982, p. 39), J.A. Fagerstrom décrit aussi des spécimens de Stromatoporella sriense (?) dont les mieux conservés présentent, dans leurs laminae, une microstructure trilaminaire.

De cette discussion H resort deux constatations.

". Les espèces concernées (deuxième groupe destictostroma de W.A. Parks) ont été décrites avec des caractères microstructuraux divers.

- Pour certains, la microstructure est originellement de type compact (fibro-normal).

- Pour d'autres, la microstructure est originellement de type poreux: 7 * trilaminaire pour les uns; les auteurs concernés soulignent

- alors fréquemment que l'aspect compact serait dû à des modifications secondaires;
- * transversalement poreux (et fibreux) pour les autres qui signalent toutefois que le caractère poreux est difficile à observer (cf. discussion du genre Stromatoporella)

Je considère que la microstructure compacte, observée par bélicoup d'auteurs dans les espèces eitées précédemment, est originelle ou tout au moins qu'elle ne peut résulter d'une modification diagénétique d'une structure originellement porcuse.

. Une deuxième constation peut être faite. Deux de ces espèces, "Stictostroma" eriense et "S." huronense que plusieurs auteurs ont souligné être très voisines (W. A. Parks 1936, p. 84, "This species [S. huronense] is closely related to S. eriense"; J. 1957, p. 140, 146; J. Kazmierczak 1971, p. 79) ont été attribuées, la première au genre Stictostromella GALLOWAY & ST. JEAN, 1954, la seconde,

1

The soview of the decise of a very the soview of the decise of the decise of a very the decise of a very the lives of a very the very the lives of a very the lives of a very the very the Pseudostromatoporella KAZMIERCZAK, 1971, chacune en tant qu'espèce-type. De la comparaison des deux diagnoses (2000) il ressort qu'il n'y a pas, à mon avis, de différences fondamentales; je considère donc ces deux genres comme synonymes.

63

I I I I	Diagnose de <i>Stictostromella</i> GALLOWAY & ST. JEAN, 1954 D'après M.A. Fritz et R. H. Waines, 1956, p. 92.	I I I I I I	Diagnose de Fssudostromatoporella KAZMIERCZAK, 1971, p. 77.	I I I -I
IIIIIIII	Squelette composé de laminae régulières et de piliers distincts; laminae et cystes s' invaginant en "rings- pillars"; tissu compact.	IIIIIIIIIIIII	Laminae bien exprimées, compactes, avec de nombreux foramina. Piliers limités à un espace interlami- naire, droits (bobiniformes ou cy- lindriques) ou irrégulièrement courbés.'Rings-pillars' fréquents, formés par l'invagination des la- minae. Nombreux cystes et dissépi- ments.Microstructure fibro-normale.	

Toutefois le genre qui aurait l'antériorité *Stictostromella* GALLOWAY & ST. JEAN, 1954, n'est pas de genre valide et ne peut être retenu car, en vertu de l'article 9 (3) du Code International de Nomenclature, une indication étiquetée dans un musée n'a pas valeur de publication. Il ne peut non plus être attribué à M.A. Fritz et R.H. Waines (1956) qui ne désignent pas d'espèce-type (Article 13 b du Code); ils font seulement allusion aux indications manuscrites portées par J.J. Galloway et J. St Jean sur les étiquettes des deux espèces destictostroma de W.A. Parks : S. eriense et S. ohioense. C'est donc 1e genre Pseudostromatoporella KAZMIERCZAK, 1971 qu'il convient de retenir.

Les relations de Pseudostromatoporella avec les genres voisins sont résumées schématiquement dans le tableau suivant.

i den un

1 S_ KME , we willing	Ĩ	+		M	I	С	R	0	8	T	R	U	C	T	U	R	E	I 7
triputite meen Frit	I	S	+	C +	0	M [f	P 1brc	A C -rad:	T Lée]	E	I I		P 0 [R tril	E .amin	U S aire	E] ·	I
Hore of not the the head not been of Not when		T R U C T	avec 'ring- pillar	I I s'I	P 86	udo	stra	omat oj	pore	lla	I I I I		Str	omat	opor	ella	***	I I I I
your de	I I I	U R E	sans 'ring- pillar	I I s'I		Cl	athr	rodic	tyon		I I I I		St	icto	str0	ma		1 1 1 1
		24	K.p.	62		er) I	V . R	> • (p. 6	211)			- a rta (a ti	27 44 49 49 49 49	

What write your decline Pssudostromatoporella Sp Pl: V, flg. 5-7; 45 July 245

64

MATERIEL ET GISEMENT

1 spécimen, 3 lames, 5 sections. Coupe de Bdkan AF 75 BO 37/1

DESCRIPTION

CARACTERES EXTERNES

Fragment atteignant 5 cm de hauteur provenant d'un coenosteum massif, sans doute hémisphérique. Pas de caractères visibles.

CARACTERES INTERNES.

Coupe verticale

Structure coenostéale réticulée à quadrillée.

Latilamination très peu marquée, avec des zones successives d'épaisseur variable (3-4 mm à plusieurs centimètes), parfois soulignées par une zone un peu plus sombre, aux éléments coenostéaux plus fins et plus irréguliers.

Laminae bien développées, épaisses de 60 à 90 um; localement interrompues; planes et régulières dans l'ensemble; présentant, dans le détail, un parcours plus irrégulier, finement ondulé, parfois même un tracé en zig-zagy au sommet des latilaminae, laminae plus rectilignes; 20 ou 21 sur 5 mm (rarement 23). junqu'à

Piliers toujours réduits à un espace interlaminaire, très rarement superposés et comme formés par l'inflexion des laminae, 16 en moyenne (15 à 18) sur 5 mm; épaisseur identique ou un peu supérieure à celle des laminae (jusqu'à 120 µm ou un peu plus); 'ring-pillars', atteignant jusqu'à 250 um de largeur, assez fréquents mais peu visibles.

Chambres des espaces interlaminaires souvent bien arrondies ou un peu ovales, larges de 150 à 180 um; dissépiments rares.

Astronhizes assez bien développées; canaux axiaux peu marqués; larges de 600 µm, canaux latéraux horizontaux bien visibles, toujours parallèles à la lamination, atteignant 550 µm de hauteur et se poursuivant de façon discontinue sur plusieurs centimètes de longueur, rares dissépiments plats;

Coupe tangentielle

Structure irrégulière, aux éléments épais de 100 à 120 jun. Espaces méandriformes larges de 180 à 200 jun. Sections de piliers isolées, arrondies, de 120 jun de diamètre, localement nombreuses. Sections annulaires de 'ring-pillars' atteignant 200 à 280 jun de diamètre.

MICROSTRUCTURE

du, en grande Partie, à la présence de mumbrens (ing-pàliars (liz. 25))

\

67

Fig. 29 – Pseudostromatoporella sp. Dessín, d'après la lame mince AF 75 Bo 37/1. Coupe verticale. Nombreux "ring-pillars". Aspect compact à spongieux parfois faiblement fibro-radié avec une zone axiale un peu plus sombre, localement granuleuse.

- 66 -

DISCUSSION

Je rattache ce spécimen au genre *Pseudostromatoporella* KARZMIER-CZAK, 1971. Il en possède en effet à la fois les caractères structuraux et microstructuraux discutés et reconnus précédemment. Il n'en diffère que par la rareté en dissépiments. Mais, si dans la diagnose du genre, J. Kazmierczak (1971, p. 77) signale la présence d'abondants dissépiments, dans la description de certaines espèces, *P. damnoniensis* (NICHOL-SON, 1886a), il précise (*Ibid.*, p. 80) que les dissépiments sont très rares ou absents.

Le spécimen décrit diffère, du genre Stromatoporella NICHOLSON, 1886b par sa microstructure et du genre Clathrodictyon NICHOLSON & MURIE, 1879, par la présence de "ring-pillar".

Localement, les sections verticales aux laminae ondulées évoquent aussi le genre *Ecclimadictyon* NESTOR, 1964, mais les piliers y sont toujours mieux définis.

Di . C. et P.S. - Le 0 jécimen cleart provient de la cupe de Borken; El a eté reichtet vens la base de la Formation de Carrah, Eufélien?, Ou sommet de l'Emoien Clathiolictyon NICHCLSON & MURIE, 1878.

Espèce-type : Clathrodictyon vesiculosum NICHOLSON & MURIE, 1878.

DIAGNOSE

Coenostea lamellaires ou massifs. Laminae continues, généralement finement ondulées, dominant la structure coenos'éale; piliers limités à un seul espace interlaminaire, apparaissant souvent comme des prolongements des laminae. Microstructure compacte.

DISCUSSION

Le genre *Clathrodictyon* a été utilisé dans des sens plus ou moins larges, parfois sensiblement différents; les auteurs successifs ont mis l'accent tantôt sur l'importance des laminae d'aspect vésiculaire, tantôt sur la présence de piliers réduits à un seul espace interlaminaire (cf. C.W. Stearn 1966a, p. 89-91).

Clathrodictyon cellulosum NICHOLSON & MURIE, 1378.

Pl. VI, fiz. 3-5; fronte 20, 31

- * 1878 Clathrodictycn cellulosum, NICH. & MURIE. Nicholson
 & H.A. et Murie J., p. 221, pl. II, fig. 6-10.
 - 1968 Clathrodictyon cellulosum NICHOLSON & MURIE. Flügel E. et Flügel-Kahler E., p. 64-65 (avec liste synonymique deputs 1878).
- non 1951 Clathrodictyon aff. cellulosum NICHOLSON & MURIE.-Lecompte M., p. 140, pl. XVII, fig. 2-2a.
- non 1957 Stromatoporella cf. cellulosa (NICHOLSON & MURIE). -Galloway J.J. et St Jean J., p. 144, pl. 10, fig. 1a, b.

MATERIEL ET GISEMENT (2 spécimen; 4 lames, 6 sections).

Coupe de Box an: 4F75B042/8; Bo 83/2.

DESCRIPTION

CARACTERES EXTERNES

Fragment haut de 3 cm environ, provenant d'un coenosteum apparenment massif; traces de lamination visibles sur une face latérale altérée. Pas d'autres caractères visibles.

CARACTEPES INTERNES

Laminae opparemment planes at plane mais, dans le détail, légèrement arquées de pilier en pilier; continues, rarement interrompues par quelques foramEn§; épaisses de 40 à 120 µm; localement un peu plus irrégulières et anastomosées; au nombre d'une vingtaine en moyenne sur 5 mm (18 à 22).

Piliers toujours limités à un seul espace interlaminaire et jamais superposés; droits ou plus ou moins obliques 😹, prolongeant en quelque sorte les incurvations des laminae ou prenant l'allure de dissépiments; épaisseur variable (60 à 180 µm); densité variable mais généralement assez faible (une couzaine en moyenne sur 5 mm mais de 2 à 4 sur 1 mm).

Espaces interlaminaires aux chambres souvent rectangulaires plus allongées que hautes, aux contours arrondis, atteignant 120 à 200 pm environ de hauteur et de 200 pm à plus d'un mm de largeur.

Astronhizes peu développées, se manifestant dans le tissu coencstéal par des galeries de plus grande taille (200 à 250 µm), traversées par quelques dissépiments vésiguleux ou obliques.

Coupe tangentielle (15) Aspect très irrégulier, aux éléments coenostéaux enchevêtrés; tantôt des plages assez denses, tantôt des éléments plus espacés. arrondis, allongés ou à contours plus anguleux, réunis par des dissépiments et dessinant une maille fortement irrégulière; très localement, sections plus ou moins rondes de piliers, larges de 100 à 200 µm. Canaux astrorhizaux larges de 250 à 300 µm, au parcours très irrégulier.

MICROSTRUCTURE

Aspect compact à spongieux, parfois fibreux (mais par diagénèse ?).

DISCUSSION

Les caractères structuraux sont ceux du genre Clathrodictycn NICHOLSON & MURIE, 1878. Ce qui est observable de la microstructure est conforme à cette attribution générique ('ép. discussion de <u>Poendostionatopoella</u>).

Par ses astrorhizes peu développées, le spécimen décrit correspond tout à fait au genre Simplexodictyon EUGOYAVLENSKAYA, 1965; toutefois, comme le sculigne C.W. Stearn (1980, p. 889, 895), le faible développement des astrophizes ne peut être utilisé comme un critère générique valable et

Fig. - Clathrodictyon cellulosum NICHOLSON ET MURIE, 1878. Dessin, d'après la lame mince AF 75 Bo 83/2. Coupe verticale. Laminae continues; piliers réduits à un espace interlaminaire. Chambres coenostéales très allongées.

\

- 20-

Fig. The Clathrodictyon cellulosum NICHOLSON ET MURIE, 1878. Dessins, d'après la lame mince AF 75 Bo 83/2c. Coupe tangentielle. Aspect irrégulier des éléments coenostéaux; plages denses (A) ou éléments espacés et à nombreux dissépiments (B). Quelques foramens. Simplexodicton est à considérer comme un synonyme de Clathrodictyon.

Spécifiquement, je rattache le spécimen afghan à *C. cellulosum* NICHOLSON & MURIE, 1878. Cette espèce se caractérise par des laminae relativement épaisses et des chambres coenostéales "made up of rows of large oval vesicles".

V.I. YAVORSEY (1955) décrit (p. 53) et figure (pl. XX, fig. 7-8), sous le nom de *Clathrodictyon cellulosum*, une forme avec laquelle le spéamer afghen point de grades ressentitances; avec lo epécimes afghand densité coenostéale analogue, éléments coenostéaux assez épais, piliers localement très distants.

> J.J. Galloway et J.St. Jean (1957, p. 145) discutent de la position générique de l'espèce de H.A. Nicholson et J. Murie et considèrent qu'elle appartient au genre *Stromatoporella* NICHOLSON, 1886b; leur position est essentiellement basée sur la figuration de l'espèce donnée par H.A. Nicholson en 1887 (pl. 2, fig. 8) qui diffère sensiblement, selon eux, de celles de H.A. Nicholson et J. Murie, 1878 (pl. II, fig. 6-10) et de H.A. Nicholson, 1886b (fig. 11 A-B; pl. I, fig. 2).

> J.J. Galloway et J.St. Jean interprètent en effet les sections annulaires représentées par H.A. Nicholson (1887, pl. II, fig. 8) comme des sections de "ring-pillars"; cependant ces sections atteignent et dépassent même 0,30 mm de lumière et 0,50 mm de diamètre extérieur, ce qui me paraît excessif pour des "ring-pillars"; dans la figuration **, 60** J.J. Galloway et J. St Jeang (19574, pl. 10, fig. 1b) de l'espèce) la lumière des sections de "ring-pillars" atteint à peine 0,10 mm. Far leurs dimensions, " Thes pourraient plutôt correspondre, à mon avis, à des sections de tubes de Caunopores ? (slles sont d'ailleurs représentées par H.A. Nicholson à l'aide d'un grisé différent de celui utilisé pour le reste du tissu coenostéal).

les section

des illustration

de H. A. Nicholson

1tè

De plus, la description de J.J. Galloway et J.St. Jean de l'espèce diffère sensiblement de celle de H.A. Nicholson; S. cf. *cellulosa* sensu J.J. Galloway et J.St. Jean (1957, p. 145) se caractérise par de "... thin laminae, thin closely spaced pillars... abondant ringpillars...", alors que H.A. Nichols en (1387, p. 11) parle d'une fibre squelettique épaisse et d'espaces interlaminaires "which vary in length from about half a millin. up to 2 millim. or more"; la densité en laminae semble aussi d'égèrement différente: 6 à 8 sur 2 mm, pour J.J. Galloway et J.St. Jean 1957; 4 sur 1 line (= 2,1166 mm) ou 3 sur 1 mm pour H.A. Nicholson et J. Murie 1878 et H.A. Nicholson 1887.

C.W. Stearn (1966a, p. 90) adopte la position de J.J. Galloway et J.St. Jean et rattache l'espèce Sellulosium" au genre Stromatoporella.

La forme décrite et figurée par M. Lecompte (1951, p. 140, pl. XVII, fig. 2), sous le nom de C. aff. cellulosum, possède des "ring pillars" bien développés, une densité en laminae allant de 16 à 20 sur 5 mm et de nombreux piliers; elle appartient effectivement au genre Stromatoporella; ou, plus vraisembltlement, au genre Pseudostromatoporella KAZMIERCZAK, 1971, caractérisée par une microstructure de type compact; elle est très proche de Stromatoporella cf. cellulosa NICH & MURIE, sensu J.J. Galloway et J.St. Jean 1957.

Le spécimen afghan rappelle encore des formes du Boulonnais que j'ai

-71-

décrites précédemment (B. Mistiaen, 1980) sous le non de Clathrodictyon cf. anygdaloides subvesioulosum LECOMPTE, 1951. Comme le font remarquer J.J. Galloway et J.St. Jean (1957, p. 145), les sections verticales et tangentielles des spécimens de M. Lecompte (1951, pl. XVIII, fig. 3, 3a, 3b) montrent des "ring-pillars" et l'espèce ardennaise appartient au genre Stromatoporella (on Candonama repuella)

Par ses chambres coenostéales plus larges que hautes, le spécimen rappelle aussi une espèce silurienne, *C. linnaresoni* NICHOLSON, 1887, mais s'en différencie cependant nettement par sa structure moins dense.

DISTRIBUTION GEOGRAFHIQUE & REPARTITION STRATIGRAPHIQUE

Les spécimens de H.A. Nicholson et J. Murie de C. cellulosum proviennent du Corniferous Limestone (= Onondaga Formation), Dévonier moyen) de Wainfleet, Ontario (Canada).

L'espèce a été reconnue dans l'horizon à *Indospirifer* (Givétien) du bord S.W. du Bassin du Kuznetsk (U.R.S.S.).

Le spécimen afghan a été récolté à la coupe de Bokan, vers le milieu de la Formation de Cawak (Dévonien moyen).

Clathrocoilona YAVORSKY, 1931.

p.p. Stromatoporella NICHOLSON, 1886b sensu M. Lecompte, 1951 et V.I. Yavorsky, 1955. p.p. ? Styloporella KHALFINA, 1956.

detyle

DIAGNOSE

Eléments squelettiques très épaissis et souvent indistincts, délimitant des chambres coenostéales arrondies, parfois extrêmement réduites. Microstructure cellulaire, ou apparemment compacte par altération (cf. discussion); laminae pouvant présenter une ou plusieurs "fissures" axiales claires.

DISCUSSION

Le genre *Clathrocoilona* est un genre utile pour regrouper les espèces de Stromatopores à tissu très épaissi, empâté, où les éléments horizontaux et verticaux ne sont parfois plus reconnaissables. Il possède, de ce fait, peu de caractères de diagnose. Les sections montrent généralement des plages plus ou moins uniformes, percées de chambres arrondies.

La microstructure du genre pose problème(cf. C.W.Stearn, 1966a, p. 98); elle a fait l'objet de nombreuses discussions et a été très diversement interprétée, à partir des illustrations de V.I. Yavorsky, de matériel topotypique ou parfois d'autres espèces rattachées au genre, mais rarement à partir de l'observation directe du matériel de l'espèce-type.

V.I. Yavorsky, le fondateur du genre, la décrit comme compacte; mais beaucoup d'auteurs, à la suite de J.J. Galloway (1957), l'ont considérée comme cellulaire. Les différentes conceptions exprimées tour à tour nécessitent une mise au point historique présentée ci-aprés, qui reprend en partie celles déjà développées par C.W. Stearn (1966a, p.98), V. Zukalova (1971, p. 55) et C.W. Stock (1980, p. 671).

- V.I. Yavorsky en 1931 (p. 1395 et 1407) et en 1955 (p. 38) décrit le tissu comme compact.

Ü

- V.K. Khalfina (1955c, p. 188) lui reconnaît ce même caractère.

- Par contre, J.J. Galloway (1957, p. 416, 419, 452) ainsi que J.J. Galloway et J. St Jean (1957, p. 89, 221) considèrent que les illustrations des sections tangentielles de V.I. Yavorsky montrent des "macules" ou des pores.

- J.J. Galloway (1960, p. 634) et C.W. Stearn (1962, p. 14) considèrent aussi que le tissu est de type "maculate". 25

- Toutefois ce dernier auteur \$1966a. (p. 98, 1966b, p. 46) estime que la description donnée par de V.I. Yavorsky et l'opinion qu'il émet prévallent sur les interprétations postérieures; il considère donc que le genre se caractérise par un tissu compact.

Par la suite ces deux conceptions ont été tour à tour adoptées par les différents auteurs.

- V.I. Yavorsky (1962b, p. 161) ne précise pas la microstructure du genre mais il le range dans la famille des *Actinostromatidae*, caractérisée par une microstructure de type compact.

- P.K Birk head (1967, p. 80) considère que le tissu est "maculate".

- C.W. Stearn et P N. Mehrotra (1970, p. 11) décrivent une espèce de *Clathrocoilona* possédant une microstructure cellulaire; ils soulignent les divergences de conception concernant les caractères microstructuraux du genre.

- Pour V. Zukalova (1971, p. 55) la microstructure est finement tubulée ou cellulaire.

- V.G. Khromych (1974, p. 36, 1976, p. 54) la considère comme compacte.

- En 1976, Y.G. Lessovaya publie une révision du genre basée sur l'observation des originaux de l'espèce-type, *C. abeona* YAVORSKY, 1955. Elle y reconnaît une microstructure de type cellulaire, avec des alignements de "microcellules" dans les laminae et les piliers.

- J. Yang et D. Dong (1979) décrivent et figurent plusieurs espèces de *Clathrocoilona* qui, d'après leurs illustrations, possèdent une microstructure d'aspect plutôt compact ou spongieux, apparamment per cellulaire.

- B. Mistiaen (1980, p. 196) attribue au genre une microstructure de type compact mais décrit plusieurs espèces chez lesquelles la microstructure apparait "irrégulièrement mélanosphérique, parfois cellulaire".

- Pour C.W. Stock (1982, p. 671) la microstructure de *Clathro*coilona est originellement microréticulée ou cellulaire, mais peut devenir compacte par altération.

Il apparaît donc que la microstructure du genre *Clathrocoilona* est de type cellulaire; mais il convient toutefois de souligner deux points.

. La microstructure cellulaire, reconnue chez le genre, n'est pas une microstructure typiquement cellulaire (mélanosphérique ou micro-

.7

réticulée), telle qu'on peut l'observer habituellement chez les espèces des genres Stromatopora GOLDFUSS 1826, ou Salairella KHALFINA, 1960d.

Par contre, beaucoup d'espèces rattachées au genre montrent une microstructure plutôt spongieuse, voire compacte, ou vaguement mélanosphérique, ter, par exemple les illustrations de *C. spissa* (LECOMPTE, 1951), pl. XXVII, fig. 1c).

Plusieurs autres genres de Stromatopores sont assez proches de *Clathrocoilona*.

Les relations avec le genre *Stictostroma* PARKS, 1936 ont été discutées à plusieurs reprises *MMY.* (C.W. Stearn, 1966a, p. 98; C.W. Stock 1982, p. 671); elles sont en partie fonction de la microstructure reconnue au genre *Clathrocoilona*.

Certains auteurs (J.J. Galloway 1957, p. 453; V. Zukalova 1971, p. 53; B. Mistiaen 1980, p. 201, 202) ont noté les ressemblances avec le genre Synthetostroma LECOMPTE, 1951 mais considèrent les deux genres comme distincts. Plusieurs autres, par contre, (H. Nestor 1966, p. 23; J. Kazmierczak 1971, p. 71, 97; Y.G. Kosareva 1976, p. 14-15; C.W. Stock 1982, p. 671) regardent le genre Synthetostroma LECOMPTE, 1951 comme par synonyme de Clathrocoilona.

Clathrocoilona spissa (LECOMPTE, 1951) Pl. II, f.j. 6-8; f.s. teste (3423)

v '	ł	1951 -	Stromatoporella spissa nov. sp Lecompte M., p. 187, pl.
			XXVII, fig. 1-4.
		1968 -	Clathrocoilona spissa (LECOMPTE) Flügel E. et Flügel-
			Kahler E., p. 399 (avec liste synonymique depuis 1951).
		1971 -	Clathrocoilona spissa (LECOMPTE) Zukalova V., p. 56, pl.
			XV, fig. 1-2.
•	?	1971 -	Stromatopora spissa (LECOMPTE) Kazmierczak J., p. 92, pl.
			XXI, fig. 2.
		1972 -	Stromatoporella spissa LECOMPTE Lacroix D.,p. 209.
		1975 -	Stromatoporella spissa LECOMPTE Cornet P. An. 1a, 2a, 3a,
			3c, 4a, 5a, 6a, 7a, tabl. III.
v	•	1976 -	Clathrocoilona spissa (LECOMPTE) (Brice D. et al., p. 143- (Mislow)
			144 .
v.	•	1977 -	Stromatoporella spissa LECOMPTE Brice D. et al., p. 144 . (Mistiven Bin
		1980 -	Clathrocoilona spissa (LECOMPTE) Mistiaen B., p. 196, pl.
9			7, fig. 3-9.
		1984-	Clathrocoilona spissa (LECOMPTE) Cock bain A.E., p. 25, pl.
		•	11 A-D.

HOLOTYPE

Spécimen de M. Lecompte Surice 18, no 7164, I.R.S.N.B., Bruxelles; figuré par M. Lecompte (1951, pl. XXVII, fig. 1).

MATERIEL ET GISEMENTS (21 spécimens, 23 lames, 25 sections).

Coupe du Koh-e Qutun (échantillon de R. Desparmet): ~ CAF DES 342/4.>-Coupe du Koh-e Zardak (échantillon de R. Desparmet): C. d. Koh-e Zadah (AF DES 70-70; AF 78 KZ 3/7) AF78K23/7 Coupe de Caragsang: 5 (AF 73 J 2/6: /7; /10; /12; /14; 5 AF 76 Ca 2/1; /2; /3; /4; /6; 5 10 Ca 7. Coupe de Ghoujerak : 🥿 AF 76 G 23/2. Coupe Ouest de Saïd Habib Nord: 5 AF 76 SH 11'/1. Coupe de Dewal: 🗩 AF 76 D 22/7; D41/2; D43/3; D82/1; D93 # 76 D 4363; AP TO D 87/1; AF 70 0 93. Coupe du Spin Ghar: AF 78 SpG 18/8; /29.

DESCRIPTION

CARACTERES EXTERNES

Coenostea d'aspect extérieur lamellaire à tabulaire de petite taille (le plus grand atteint 4 cm de hauteur et une dizaine de centimétres de diamètre) mais correspondant le plus souvent à des superpositions de petites formes encroûtantes associées à d'autres organismes finement lamellaires (Tabulés...) pour constituer des "colonies" de taille plus importante (

CARACTERES INTERNES

Coupe verticale

Latilamination fréquemment développée, de taille millimétrique à centimétrique.

Structure coenostéale extrêmement dense, éléments coenosteaux souvent très empâtés, indiscernables densité et épaisseur des laminae et des piliers généralement impossibles à mesurer; au sommet des latilaminae cependant, piliers souvent mieux différenciés mais aux caractères très variables de 90 à 350 µm et au nombre d'une quinzaine en moyenne sur 5 mm (mais de 2 à 6 sur 1 mm selon les endroits).

Chambres coenostéales souvent très bien arrondies, de taille très variable (120 à 450 µm), distribuées de façon très désordonnée sauf

\

Fig. 3 - Clathrocoilona spissa (LECOMPTE, 1951). Dessin, d'après la lame mince AF 78 SpG 18/29b. Coupe verticale. Association d'un coenosteum lamellaire de l'espèce avec une colonie de Tabulé de même morphologie.

and a state of the second s

Interaction of the second secon

Fig. 36 - Clathrocciona spissa (LECOMPTE, 1951). Dessin, d'après la lame mince AF 76 Ca 2/6. Coupe verticale. Deux endroits de la même lame mince montrant l'épaisseur et l'écartement très variable des piliers au sommet des latilaminae.

\

au sommet des latilaminae; dissépiments pratiquement absents.

Astrorhizes peu développées, rarement visibles; sections de canaux astrorhizaux correspondant vraisemblablement aux chambres de grande taille, rarement recoupées de dissépiments. ------

,

÷i

÷.,

Coupe tangentielle

Aspect très variable selon les endroits; quelques plages formées de ponctuations arrondies larges de 120 à 250 µm, alternant avec de larges plages denses, percées de quelques perforations et traversées par des canaux astrorhizaux contournés et ramifiés, larges de 300 à 350 µm, \$cumular mieux visibles qu'en coupe verticale.

ee dontaienia Mar, MICROSTRUCTURE

Aspect le plus souvent hétérogène, irrégulièrement compact à spongieux; par endroits, aspect vaguement cellulaire. Chez quelques spécimens (AF 76 D 43/3) tissu apparemment constitué de granules (diamètre 30 à 50 µm) accollés et laissant entre eux de**\$** petits vides ou de minuscules fissures. Ligne sombre ou fissure axiale visibles dans quelques laminae.

DISCUSSION

Ces spécimens appartiennent typiquement au genre *Clathrocoilona*. Ils en possèdent le tissu coenostéal très épaissi et aussi la microstructure présentant à la fois un caractère spongieux et finement cellulaire.

Spécifiquement ils correspondent parfaitement à C. spissa (LECOMPTE, 1951); ils s'en distinguent uniquement par leur pauvreté en dissépiments. Les spéciments relachés par R.E. Gockbain à l'éspèce muitrent une structure comos tale plus aérée, aux éléments relationment biun distinct; ils me semblent asses proches de <u>C. cMittrata</u> (LECOMPTE, 1977) Ils rappellent encore C. inconstant STEARN, 1962 (cf. rem. ci-après) mais possédent toutefois des laminae beaucoup moins définies et un tissu coenostéal plus dense.

Remarque

On retrouve, dans beaucoup des spécimens étudiés, un caractère déjà signalé par A.E. Cock bain pour des spécimens australiens qu'il rettacte à cut espèce, à savoir une association fréquente avec d'autres organismes finement lamellaires: Bryozoaires, Tabulés (Alveolites, Aulostegites), autres Stromatopores (Stachyodes australe ...) ou Algues (Girvanella Sphaerocodium). Dans ce dernier cas (il s'agit plus particulièrement de spécimens provenant des coupes de Caragsang [AF 76 Ca 2/4], du Spin-Ghar et de Saïd Habib), les Algues forment un feutrage plus ou moins épais, superposé à chaque latilamina du Stromatopore, et constituânt toujours une couche distincte, "L'association" ne semble pas plus intime qu'une simple superposition et se traduit en fait par une compétition, elle ne correspond pas à celle décrite par C.W. Stearn (1966b, p. 46) chez une espèce du genre, C. inconstans STEARN, 1962. Toutefois, chez l'un des spécimens (AF 76 G 23/2), la base de chaque latilamina apparaît un peu plus sombre et pourrait renfermer des algues.

ð 4

Fig. SA-

١

Clathrocoilona spissa (LECOMPTE, 1951).
Dessin, d'après la lame mince AF 78 SpG 18/29b. Coupe verticale dans un spécimen lamellaire associé à des Algues (Sphaerocodium sp.).

Fig. & - Clathrocoilona spissa (LECOMPTE, 1951). Dessin, d'après la lame mince AF 76 Ca 2/4b. Coupe tangentielle dans un spécimen associé à des Algues Sphaerocodium sp.).

\

- de Moravie (Tchécoslovaquie); - les "Givetian-Frasnian transitional beds" (J. Kazmierczak, 1971, p. 93) des Monts Sainte Croix (Pologne);
- le Givétien et le Frasnien du Boulonnais (France);

L'espèce a été signalée dans :

Dinant (Belgique).

que);

- le Dévonien supérieur du Conning Basin (Australie).
- Elle at voursenblablement ancer présente dans le Dévouren aféricus des Montagnes Rochauses (témaster). Les spécimens afghans proviennent de:
- coupe du Koh-e Zardak, sommet de la Formation des calcaires noirs de Badragha (Frasnien ? inférieur);
- coupe du Koh-e Qutun, partie supérieure de la Formation du Sin Ghan 🕿 (Frasnien);
- coupe du Spin-Ghar, niveau récifal de la Formation d'Olsenak (ginition on Frasnien); . That (Dévenien meyen);

Sayed Tabib- coupe de Said-Habib, Conches & Bryozucies de la Formation du toh-e girn (Forisnien sypéritur);

- coupe de Dewal, Formation de Dewal (Givétien & Frasnien);
- coupe de Ghoujerak Sud, Formation de Dewal (Critician) : Frasnien 3);
- coupe de Caragsang, Formation de Dennel (givétien au Expansie) et ch Kuh-e-gin ______ (Frasnien);
- coupe du vallon de Borgod (Hajigak), calcaires du Frasnien.

Clathrocoilona obliterata (LECOMPTE, 1951). P1. VI , fig. 9-10; pl. VII, log. 1-2; frs. 5-1-2

- * 1951 Stromatoporella obliterata nov. sp. Lecompte M., p. 185, pl. XXVI, fig. 2.
 - 1968 Clathrocoilona obliterata (LECOMPTE). Flügel E. et Flügel -Kahler E., p. 291 (avec liste synonymique depuis 1951).
 - 1980 Clathrocoilona obliterata (LECOMPTE). Mistiaen B., p. 197, pl. VIII, fig. 1-5.

1984 - Clathocuitina ofina (LECOMPTE). - Cockbain A.E., p. 25, pl. MA-D. Ĵ.

HOLOTYPE

Spécimen de M. Lecompte Couvin 3, no 7531, I.R.S.N. Belgique, Bruxelles; figuré par M. Lecompte, 1951, pl. XXVI, fig. 2.

84

MATERIEL ET GISEMENT (11 spécimens, 16 lames).

Coupe de Zond Sang: AF 2 Z 6; /143; /144; /152. Coupe du Koh-e Qutun (échantillon de R. Desparmet): AF DES Ku 13. Coupe de Dewal: AF 76 D 41/2; /15; D45/4; D59/4. AF 76 D 5/41. Coupe de Box an Sud: AF 76 BS 9/1; /2.

DESCRIPTION

CARACTERES EXTERNES

Coenostea le plus souvent très finement lamellaires, en encroûtements millimétriques, associés à d'autres organismes lamellaires.

CARACTERES INTERNES

Coenostea le plus souvent encroûtants, se développant, en lamelles épaisses de quelques millimètres, autour de Tétracoralliaires solitaires, de Tabulés massifs (k, k), et alternant parfois avec d'autres organismes encroûtants (Algues, Bryozoaires, Tabulés, autres Stromatopores...).

<u>Coupe verticale</u> Latilamination **très** bien développée, en très fines zones ne regroupant parfois que quelques laminae et séparées par de fines intercalations de feutrages algaires (Sphaerocodiumsp. Girvanella »p). Eléments coenostéaux souvent bien différenciés, localement plus épaissis,

empâtés, mais restant généralement distincts. Laminae épaisses de 60 à 150 µm, irrégulièrement ondulées, distantes de 180 à 450 µm, parfois moins.

Piliers souvent bien individualisés, bobiniformes et localement (<u>thes often</u>) superposés; d'épaisseur tres variable (60 à 200 µm) et très diversement écartés mais de 1 à 6 sur 1 m selon les endroits; localement, dans de petites galeries situées au sommet des latilaminae (fre éléments verticaux extrêmement nombreux (plus d'une dizaine sur 1 mm) et très fins (30 µm d'épaisseur).

très fins (30 µm d'épaisseur). Espaces interlaminaires de hauteur très variable; (60 dhour) arrondies, allongées ou de forme plus irrégulière.

Astrorhizes peu développées et ne provoquant guère d'ondúlations coenostéales; se repérant toutefois nettement par des chambres de grandes dimensions atteignant 300 à 400 µm de hauteur et jusqu'à 5 mm de longueur, traversées de dissépiments droits ou bombés; obliques ou plus horizontaux.

Coupe tangentielle

(Elles sont difficiles à réaliser étant donné l'épaisseur très faible des coenostea).

86

٠į.

H

Fig. A-

١

Clathrocoilona obliterata (LECOMPTE, 1951). Dessin, d'après la lame mince AF 76 D 41/15. Coupe verticale dans un spécimen encroûtant une branche de Thamnopora sp. Localement, piliers extrêmement nombreux, au sommet d'une latilamina.

j;

臣與

Fig. A - Clathrocoilona obliterata (LECOMPTE, 1951). Dessin, d'après la lame mince AF 76 D 41/2. Coupe verticale dans un spécimen à latilamination nette. Piliers bien visibles au sommet de la figure et, localement, au sommet des lati-laminae successives.

Structure souvent très aérée, avec des sections arrondies ou irrégulières, larges de quelques centaines de microns, réunies entre elles par des éléments plus fins (50 µm) prenant l'allure de dissépiments.

MICROSTRUCTURE

Aspect spongieux à granuleux du tissu coenostéal, percé de minuscules pores ou traversé de microfissures irrégulières. Localement, aspect plutôt mélanosphérique à cellulaire. Axes sombres ou fissures axiales discontinues plus ou moins visibles dans certaines laminae.

DISCUSSION

X

Ces spécimens présentent parfaitement les caractères du genre Clathrocoilona YAVORSKY, 1931.

Spécifiquement, ils correspondent bien à C. obliterata (LECOMPTE, 1951). Ils en possèdent les caractères essentiels: structure coenostéale aux éléments distincts, superposition fréquente des piliers, astrorhizes peu développées, et montrent une densité en éléments coenostéaux tout à fait comparable. Par rapport au type, ils présentent moins de zones épaissies, empâtées, et leurs éléments coenostéaux sont de dimensions très légèrement plus faibles.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

N

Le type de *C. obliterata* provient du Dévonien moyen (Couvinien) de la région de Couvin, Bassin de Dinant (Belgique).

L'espèce a été accomme à la partie inférieure du Membre du Griset de la Formation de Blacourt (base du Givétien moyen), dans le Boulonnais (France).

Les spécimens afghans ont été récoltés dans: - coupe du Koh-e Qutun (échantillon de R. Desparmet), portre inférieure de la Formation en Sin Ghan (givétien); - coupe de Bok an Sud, Formation de Cawak, (Givétien ?);

- coupe de Dewal, Formation de Dewal (Givétien);

- coupe de zond song perturier du (Fàasmen).

Elle est peut être encore présente dans le Francien du Éaning Basin (Australie).

53-

\

1

- Clathrocoilona obliterata (LECOMPTE, 1951). Dessin, d'après la lame mince AF 2 Z 144/d. Coupe tangentielle dans un spécimen associé à des tubes d'Auloporidé. Structure irrégulière aux éléments très fins (nombreux dissépiments); cet aspect est vraisemblablement dû à la présence du Tabulé.

Espèce-type: Stictostroma mamilliferum nom.nov. GALLOWAY & ST JEAN, 1957 pro Stromatopora mamillata (NICHCLBGN, 1873).

DIAGNOSE

0

nn

Coenostea lamellaires ou massifs. L-minae bien définies, plus ou moins foraminées. Piliers limités à 'n seul espace interlaminaire, rarement superposés, cylindriques ou, plus souvent, bobiniformes. Microstructure originellement ordinicellugaire ou trilaminaire (axe clair ou gombre); tissu des piliers compact.

jgénéralement

DISCUSSION

Le genre *Stictostroma* a été établi par W.A. Parks de façon tout à fait inhatituelle (cf. p. , discussion de *Pseudostromatoporella* KAZMIERCZAK, 1971). J.J. Gelloway et J. St Jean (1957, p. 125) ont proposé de conserver le genro, en l'émendant. C'est dans ce sens que je l'utilise ici.

Stietostroma diffère uniquement de Stromatoporella NICHOLSON, 1886 par l'absence de "ring-pillars". Toutefois la distinction est moins nette qu'on ne pourrait le croire et de nombreux auteurs ont souligné cette difficulté.

" Pour J.J. Gailoway (1957, p. 435, 536), J.J. Galloway et J. St Jean (1957, p. 125, 126) *Stictestrona* diffère de *Stromatoporella* "in laking typical ring-pillars, but small rings may occur"; ils soulignent encore qu'on observe, en section tangentielle, des piliers "round, rarely hollow rings, but not well-formed ring-pillars".

* Pour J. St Jean (1960, p. 245) "the two genera grade into each other causing difficulty in the assignment of certain species".

* J. Kazmierczak (1971, p. 87) aborde aussi le problème; il souligne, à juste titre, que les sections de "ring-pillars" peuvent se confondre avec des sections de foramens et propose de diviser les espèces du genre *Stromatcporella* en deux groupes, sans toutefois leur attrituer de rang systématique:

- celles avec des "ring-pillars" caractéristiques et abondants;

* Le même auteur (1962, p.187) souligne à nouseau les ressoullances entre les deux genres : "<u>Sticketin</u> is identical to <u>Strongtoppella</u> in all respects, except for the absence or near absence of ring-fillars".

Laminae bien développées mais très fréquemment interrompues par des foramens/et alors souvent prolongées par des dissépiments, sauf dans la partie supérieure des latilaminae; épaisses de 60 à 100 µm en moyenne et au nombre de 20 à 25 sur 5 mm.

Piliers droits ou un peu tortueux, très légèrement élargis à leurs extrémités, un peu plus épais que les laminae (100 à 150 µm) sauf au sommet des latilaminae cù ils ne dépassent parfois pas 50 µm d'épaisseur; très rarement superposés excepté au sommet des latilaminae; au nombre de 17 à 19 environ sur 5 mm, mais parfois jusqu'à 5 sur 1 mm. Localement, aspect de "ring-pillars" dù à prise foramens situés entre deux piliers normaux.

Chambres des espaces interlaminaires arrondies ou allongées horizontalement, haute de 50 à 250 µm; localement alignées vorticalement, uniquement séparées par des dissépiments et évoquant alors des tubes pseudozooïdaux; parfois réunies horizontalement sur près de 1 mm; rares dissépiments sauf à proximité des astrorhizes.

Astrophizes bien développées, provoquant de légères ondulations dans le coenostéum. Canal central large de 250 à 300 µm, traversé de fréquents dissépiments, horizontaux, droits ou très légèrement convexes plus rarement obliques. Canaux latéraux larges de 200 µm environ, rapidement confondus avec les espaces interlaminaires.

Coupe tangentielle

Structure ponctuée à vermiculée passant localement à une structure plus méandriforme, plus ou moins fermée Sections de piliers arrondies ou plus ou moins irrégulièrement allongées (vermiculées), larges de 100 à 120 µm, réunies entre elles par quelques dissépiments. A l'intersection des laminae, plages aux éléments méandriformes, entourant çà et là des cuvertures arrondies (foramens) larges de 60 à 120 µm, parfois isolées pouvantérement, forsqu'elles sont isolées, des sections de "ring-pillars" (1990) Quelques sections d'astronhizes sous forme de vides irrégulièrement étoilés se prolongeant parfois par quelques canaux contournés, larges de 180 µm.

MICROSTRUCTURE

Aspect compact à fibreux; très localement, ligne axiale sombre visible dans les laminae et traversant les piliers. Dans le spécimen le moins (conservé (AF 76 D 27/11), aspect moiré des éléments coenostéaux qui apparaisent fissurés transversalement, comme s'ils avaient subi une sépachion et une fissuration.

N.B. Tous les spécimens sont recoupés de tubes de caunopores. Es sont traversés de dissépiments d'allure et de densité très variables. La paroi de ces tubes est épaisse de 60 à 150 µm et leur lumière atteint jusqu'à 0,65 mm. Ceux du spécimen AF 78 SpG 18/25 sont de taille un peu plus petite. Dans les spécimens les moins bien conservés (AF 76 D 27/7 en particulier) certains tubes présentent un contact très irrégulier avec le tissu du Stromatopore, leur limite apparaît comme partiellement micritisée sous forme d'indentations plus sombres (AF 76 D 27/7

67

On observe encore, chez quelques spécimens, des sections hélicoIdales de Vers possédant une paroi relativement mince (30 µm) et très sombre.

- 95 -

Æ.

 \mathcal{C}

Fig. 44 - Stictostroma uralensis (YAVORSKY, 1955). Dessin, d'après la lame mince AF 76 & 22/6. Coupe verticale de différentes zones montrant des aspects légèrement différents. A: nombreux foramens et dissépiments donnant lieu à des "tubes pseudozooïdaux"; B: dissépiments at à structure un peu plus

dissépiments moins abondants et à structure un peu plus Br dense; voire absents dans C: la partie

dissépiments rares, supérieure.

Fig. 45 - Stictostroma uralens & (YAVORSKY, 1955). Dessin, d'après la lame mince AF 76 D 27/3. Deux aspects différents d'une même section tangentielle. Localement (A), structure méandriforme, aérée, avec des sections de foramens évoquant des "ring-pillars"; ailleurs (B), aspect beaucoup plus dense (structure criblée à coalescente).

Ö E

λ

Fig. 46 - Stictostroma uralens & (YAVORSKY, 1955). Dessin, d'après la lame mince AF 76 D 27/10. Aspects encore différents d'un autre spécimen en coupe tangentielle. A: structure criblée à coalescente, au niveau d'une lamina; B: structure ponctuée à vermiforme, correspondant aux intersections de piliers.

Fig. 47 - Stictostroma uralensles (VAVORSKY, 1955). Dessin, d'après la lame mince AF 76 D 22/6. Coupe tangentielle. Structure typiquement méandriforme.

Fdg.

\

 Stictostroma uralens & (YAVORASKY, 1955).
Dessin, d'après le spécimen AF 76 D 27/7. Coupe tangentielle.
Aspect très irrégulier et aéré, avec de nombreux dissépiments, à proximité de tubes de caunopores. Noter la limite très irrégulière d'un des tubes de caunopore.

DISCUSSION

0

N

Je rattache ces spécimens au genre Stictostroma PARKS, 1936 émend GALLOWAY & ST JEAN, 1957.

Ils possèdent en effet les caractères du genre Stromatoporella NICHOL-SON, 1336, à l'exception de "ring-pillars" caractéristiques. Les quelques sections annulaires visibles en coupe tangentielle sont toujours intimement localisées dans, cu à proximité, des laminae et correspondent plutôt, à mon avis, à des foramens. Il en est de même des structures observées en coupes verticales (cf. description) et qui pourraient elles aussi évoquer des "ring-pillars". La microstructure des spécimens afghans n'est pas typique du genre; elle semble assez fortement modifiée par la diagénèse. Comme le signale C.W. Stearn (1956a, p. 96), les laminae, "where well preserved, enclose an axial line of cellules but in more commen states of preservation have either an axial lighter zoneor are transversoly porcus". La microstructure trilaminaire n'est visible que très localement et de façon très peu distincte.

X

i, k

De ce fait les formes afghanes présentent des analogies avec le genre Clathrocoilona YAVORSKY 1931 dont la microstructure est originellement de type cellulaire mais souvent d'aspect compact (cf. discussion de ce genre). Toutefois les éléments coencstéaux sont considérablement plus épais chez Clathrocoilona. C.W. Stearn (1966a p. 98) signale les relations entre les deux genres et propose d'utiliser pour les distinguer : "A convenient line... where the thickness of the laminae reaches the leight of the galleries". Sur ce critere les échantillons décrits se rattachent parfaitement au genre Stictostroma.

Je rattache ces spécimens à Stictostroma uralenté (YAVORSKY, 1935). Ils se caractérisent en effet, à mon avis, par la présence de nombreux foramens comme dans l'espèce russe. La seule différence est une densité un peu plus faible en laminae chez les spécimens afghans. V.I. Yavorsky attribue une densité de 7 laminae par millimètre, ce qui me semble un peu élevé au vu de la figuration où l'on en dénombre le plus souvent 6, parfois 5; chez les spécimens afghans on en compte 5 par millimètre. L'espèce russe est aussi traversée de tubes de Cauncpores. V.I. Yavorsky attribuait la forme au genre Stromatoporella et en faisait une variété de S. loutouguini YAVORSKY, 1931. 11 me semble que uralensis se différencie nettementApar ses laminae plus nombreuses, plus épaisses et très fréquemment interrompues, ainsi que par ses piliers eux aussi plus nombreux et plus épais et plus réguliers de <u>S. loutouguini</u>; je considère qu'elle constitue une espèce autonome. Par ailleurs elle je la_ appartient, à mon avis, typiquement au genre Stictostroma; les figurations de V.I. Yavorsky ne montrent pas de "ring-pillars" mais uniquement des sections de foramiter

Spécifiquement, les spécimens afghans sont encore proches de "Stromatoporella" laminata (BARCATZKY, 1881a), espèce que certains auteurs considèrent comme appartenant au genre Stromatoporella et d'autres au genre Stictostroma selon qu'ils reconnaissent ou non, dans le spécimen type, des "ring-pillars" (cf. A.E. Cocktain, 1934, p. 33). Cependant, indépen-

- 100 -

damment de l'absence de "ring-pillars", les spécimens afghans diffèrent de "Stromatoporella" laminata par leurs astrorhizes moins bien développées, la présence de foramens beaucoup plus nombreux et aussi par une microstructure ordinicellulaire (trilaminaire) beaucoup moins bien exprimée.

-101 -

Par leur densité en éléments coenostéaux, les spécimens afghans rappellent Stictostroma maclareni STEARN, 1966b qui est parfois aussi accompagnée de tubes de caunopores. Ils s'en différencient toutefois nettement par la présence de nombreux foramens et d'éléments coencetéaux un peu plus ópais (ainsi que par les caractères microstructuraux mais cette différence ne correspond qu'à une différence de conservation).

Par la densité et la taille de leurs éléments coenostéaux, ils rappellent aussi Stictostroma teplovkense (Yavorsky, 1955) mais ils en diffèrent à mon avis par la présence de foramens plus nombreux encore et de dissépiments moins nombreux et plus horizontaux.

Ils rappellent enfin Stictostroma kolymense (YAVORSKY, 1961) et en particulier les formes de Pologne figurées par J. Kazmierczak (1971, pl. XVI) et rattachées à cette espèce; ils s'en distinguent toutefois par leurs piliers moins neutement superposés et leur laminae moins nombreuses.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel type de S. uralensie provient du Dévonien moyen de rivière Sosva, Cural (U.R.S.S.).

Les spécimens afghans ont été récoltés:

- coupe du Spin Ghar, niveau récifal de la Formation d'Olsenak du Spin Char (Bénenite Courte (Giverien ou Prasmien ?); - coupe de Dewal, partie supérieure de la Formation de Dewai (France ?).

- confes du toh-e girle & base de la Formaria de Badragha (Givetien); - confe de Sayed-Tabil-, Formaria de Denal (Givetien);

Stictostroma cf.brylkini (YAVORSKY, 1955).

PP. VII, fis. 10; pl. Viu, lis. 1-5; Fintente 50.

hty galle 1955 - Stromatoporella bryikini sp. nov. - Yavorsky V.I., p. 119 pl. LXIII, fig. 1-9; pl. LXIV, fig. 1.

MATERIEL ET GISEMENT (11 specimens; 16 lames).

Coupe de Dewal: AF76D40/2; D44/2; D43/4; D44/4; D45/1 ---AF 76 D #1/2; AF 791 D 43/1; AF\76 D 44/1; AF 76 D 45/1; AF 76 D 48/3; AF 16 D 49/1; AF 76 D 52/1: /3 F 76 D 65/1; 2. Région de Ghouk, gisement nº 8(in D. Brice, 1971, fig. 5): \subset (AF 3 GK 8/28.)

DESCRIPTION

CARACTERES EXTERNES

Coenostea lamellaires à tabulaires, le plus grand, haut de 6 cm et atteignant une dizaine de centimètres de diamètre; larges ondulations parfois visibles sur les surfaces latérales altérées.

CARACTERES INTERNES

Coupe verticale

Latilaminae plus ou moins marquées selon les spécimens. Chez certains (AF 76 D 52/1), en bandes épaisses de plusieurs centimètres, parfois séparées par de petites intercalations de biosparite; partie sonmitale des latilaminae à structure plus régulière, presque quadrillée (piliers mieux superposés, éléments plus fins) et à dissépiments moins nombreux, voire absents (fig.50); base de la latilamina suivante marquée par une zone un peu plus soubre et des éléments coenestéaux très épais. Chez d'autres spécimens au contraire (AF 76 D 65/2), latilaminae très étroites (1 à quelques millimètres seul-ment), souvent associées à d'autres organismes finement lamellaires (encroûtants): Bryozoaires, Aulostegites sp. Algues (Girvanella sp.), ou alternant parfois avec des plages amygdaloïdes de calcite spathique renfermant localement quelques biociastes; structure souvent assez régulière dans la totalité de ces

٣,

.

Stictostroma cf. brylkini (YAVORSKY, 1955).

Dessins, d'après la lame mince AF 76 D 52/1. Coupe verticale. A: zone très épaissie, à l'emplace-ment d'une astrorhize; les éléments 76 D 52/1. coenostéaux sont totalement indistincts, sauf au sommet de la lati-laminae où ils se différencient et où le structure est un peu plus régulière. B: autre endroit de la même lame,

d'aspect beaucoup plus régulier, à structure presque quadrillée.

latilaminae étroites, rappelant celle des sommets des latilaminae chez les spécimens à large latilamination.

Structure coencetéale dominée par des laminae d'épaisseur importante mais variable (30 à 120 µm), très discontinues, interrompues (\$5574) et localement relayées par des dissépiments; au nombre de 14 à 22 sur 5 mm (17 à 19 le plus souvent).

Piliers droits ou bobiniformes, rarement superposés, sauf au sommet des latilaminae; épaisseur un peu supérieure à celle des laminae mais aussi très variable (100 à 150 µm, parfois jusqu'à 350 µm); en nombre très variable (6 à 16 sur 5 mm, localement plus nombreux jusqu'à 5 sur 1 mm dans certains espaces interlaminaires de petite taille).

Chambres coenostéales rondes, ovales ou de formes plus irrégulières mais à contour arrondi; de taille très variable (diamètre, 120 à 500 µm, le plus souvent voisin de 250 µm); dissépimente localement abondants à très abondants mais quasi absents dans le sommet des latilaminae.

Astronhizes bien développées, le plus souvent très nettement superposées et à l'origine d'ondulations coenostéales et de "colonnes" distantes de 6 à 8 mm; canaux verticaux atteignant 350 µm de diamètre, canaux latéraux vite confondus avec les espaces interlaminaires ordinaires (mais parfois repérables, à cause de l'absence de piliers sur plus de 5 mm de longueur); tissu coenostéal extrêmement épaissi dans l'axe des "colones" astronhizales, avec des plages atteignant ou dépassant même un centimètre de largeur (K. SAB, SOP).

Rem. En un endroit de la lame mince AF 76 D 52/1, le Stromatopore est en contact avec une colonie d'*Alveolitess*, La compétition manifeste entre les deux organismes se marque par un tissu coenostéal très irrégulier, une structure très aérée avec des vides coencstéaux de grande taille et de nombreux dissépiments.

On observe encore, çà et là dans le coenosteum, des sections réniformes de tubes de Vers parasites possédant une fine paroi sombre et atteignant près de 2 mm de largeur pour C,6 mm de hauteur; elles sont particulièrement abondantes dans la partie du coenosteum en contact avec l'*Alveolites* et sont peut être en partie à l'origine de l'allure très irrégulière et inhabituelle du tissu coenostéal.

Coupe tangentielle

Aspect général souvent très irrégulier, avec des zones concentriques plus denses, constituées d'éléments très épais et percées d'ouvertures plus ou moins arrondies, de taille variable (100 à 400 µm), traversées de canaux astrorbizaux larges de 300 µm environ, au parcours très contourné. Très localement, des ponctuations arrondies ou plus irrégulières (sections de piliers) larges de 120 à 250 µm; ailleurs, une structure méandriforme. Dissépiments nombreux par endroits.

Certaines sections fortement perturbées par la présence d'autres organismes (constructeurs, Vers...) ou de plages amygdalofdes de calcite spathique toujours bien délimitées par une fine ligne sombre ayant l'aspect des dissépiments et correspondant au bord du tissu coenostéal.

Fig. 51 - Stictostroma cf. brylkini (YAVORSKY, 1955). Dessins, d'après la lame mince AF 76 D 65/2. Coupe verticale montrant les variations de la structure coenostéale. Structure localement très ouverte (à gauche du schéma), beaucoup plus épaissie ailleurs (à droite du schéma).

MICROSTRUCTURE

Aspect spongieux cu irrégulièrement compact, parfois fibreux; localement aspect vaguement mélanosphérique ou encore très finement cellulaire (?) avec de petites cellules inférieures à 10 µm mais aucune trace de véritable microstructure cellulaire s.s., ordinicellulaire ou trilaminaire.

DISCUSSION

Je rattache ces spécimens au genre *Stictostroma* PARKS, 1936 emend. GALLOWAY & ST JEAN.

Par leurs éléments coenostéaux fortement épaissis, ils rappellent beaucoup le genre *Clathrocollona* YAVORSKY, 1931 auquel j'ai pensé un moment pouvoir les rattacher; cependant laminae et piliers restent toujours suffisamment individualisés pour que l'on puisse en publiculior les dénombrer.

Par la présence de "colonnes" astrophizales bien développées, surtout visibles dans les grandes lames taillées chez les spécimens à latilaminae épaisses, ils évoquent le genre Stylodictyon NICHOLSON & MURIE, 1878 (= Syringostroma NICHOLSON, 1375)), mais rappellent surtout le genre Styloporella KHALFINA, 1956, considéré au départ par son auteur comme un sous-genre de Stromatoporella NICHOLSON, 1886 et caractérisé par des astrophizes nettement superposées, mises en évidence par un épaississement très marqué des éléments coenostéaux à leur contact.

Il convient copendant de souligner que l'épaississement du tissu coenostéal autour des canaux astronhizaux est un caractère très fréquent chez beaucoup de Stromatoporella et de genres voisins qui, par ailleurs, possèdent des astronhizes généralement bien développées (cf. S. izylensis YAVORSKY, 1957, pl. XXVII, fig. 7; "S." saginata LECOMPTE, 1951, pl. XXIII, fig. 1-2...). Ce caractère ne me semble donc pas pouvoir être retenu comme un critère générique et les espèces de "Shyloponella" sont à rattacher, à mon avis, certaines au genre Stromatoporella, d'autres éventuellement au genre Clathrocoilona cu Stictosuroma.

Spécifiquement les spécimens afghans me semblent très proches de "Stromatoporella" brylkini #YAVORSKY, 1955. Ils montrent la même irrégularité dans l'épaisseur et la densité des éléments coenostéaux, dans la superposition des piliers, la répartition des dissépiments. Les astrorhizes dependant sont un peu plus étroites chez les spéciments d'Afghanistan.

V.I. Yavorsky rattachait son espèce au genre *Stromatoporella*; toutefois, si les laminae sont localement interrompues et laissent la place à des dissépiments, dans aucune des figurations de l'auteur on n'observe de véritables "ring-pillars" caracteristiques du genre.

Ils rappellent encore une espèce chinoise de genre, C. irregularis YANG & PONG, 1979, qui possède, elle aussi, des mamelona astrophizaux soulignés par un tissu connetéal épaissi

Dans le même trafail, les auteurs décrivent encere plusieurs autres espèces douvelles qu'ils rattachent au genre Stromatopora GOLDFUSS, 1826; quelques nnes de ces espèces (S. interrupta, S. iniqua et, à un moindre degré, S. irregularis) ne paraissent plutôt se rattacher au genre Clathrocoilona, par leur caractères structuraux et ce que l'on peut voir, sur les illustrations, des caractères microstructuraux.

Les spécimens afghans me semblent encore très proches d'une espèce américaine, Stromatoporella indubia, décrite par P.K. Bakhead (1967); cette espèce se caractérise par des colonnes aux éléments coenostéaux épaissis et possède une densité en laminae et piliers tout à fait comparable à celle observée chez les spécimens afghans. P. K. Birkhead la rattache au genre Stromatoporella bien qu'elle se caractérise par "the... obscureness of the ring-pillars".

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel type de **5.** brylkini provient du Frasnien du Bassin du Kuznetsk (URSS).

Les spécimens afghans ont été récoltés dans: <u>moyenne</u> - coupe de Dewal, a dans plusieurs niveaux de la partie supérieurs de la Formation de Dewal (Givétien)Auférieur?)

- région de Ghouk, gisement nº8, Frasnien.

Stictostroma saginate	(LECOMPTE,	1951)
pe.vin, fiz.	6-11; 15	texte 53-56.

1.10~

~

V	*1 951	-	Stromatoporella saginata nov. sp Lecompte M., p. 171,
			pl. XXII, flg. 5-7, pl. XXIII, fig. 1-3.
	1957	-	Stromatoporella saginata LECOMPIE Galloway J.J., p.
			452.
	1957	-	Clathrocoilona saginata (LECOMPTE) Gallowsy J.J. et St
			Jean J., p. 243,255.
	1066a	-	Clathrocoilona sociulty (LECOMPTE) - Stearn C.W. D.
	Tyota	-	of 08_00
	1000		90,90-99. Olathropoilong pagingta (LECOMUTE) Elioci E ot Eligel-
	1300	-	Vablam E. m. 220 E20
			Kanler E., p. 3/3,034.
	1972	-	Stromatoporella Baganata LECOMPTE Lacroix D., p. 209.
	1975	-	Stromatoporella saginata LECOMPTE Cornet P., p. 17,
			156, 158, 185, 187, pl. XII, fig. B, Tabl. III ; An. 2a,
			4a, 5a, 6a, 7.
v	. 1976	-	Stromatoporella saginata LECOMPTE Brice D. et alif., Misticen B.in
			p. 144-145.
v	. 1976	-	Stromatoverella saginata LECOMFTE, - Mistiaen B., p. 125.
•			ril. VI. fig. 3.
v	1977		Strongtonousla saginata I FLOMPTE -/Frice D et alit. Mistiger B.
•	• 10//		
2	1082		alathmomorilana of gaginata (IECOMPTE) Stephen C.W. D.
	1903	-	$\frac{1}{2} \frac{1}{2} \frac{1}$
			949, IIg. $9.6-8$,
nc	n 1984		Clathrocollena saginata (LECOMPTE) Cock bain A.E., p.
			25, pl. 10 A-D.

HCLCTYPE

Spécimen de M. Lecompte Rance 8275, n**0** 7502. I.R.S.N.E., Bruxelles, Figuré par M. Lecompte (1951, pl. XXIII fig. 1a-c).

MATERIEL ET GISEMENT (10 spécimens, 16 lames, 17 sections).

 $\frac{\text{Coupe du Koh-e Zardak:}}{AF-DES 70/7C (spécimen dc R. Desparmet);}$ $\frac{AF}{AF 78} \frac{78}{KZ} \frac{2/2}{3/4;} \frac{75}{75;} \frac{77}{75;}$ $\frac{AF}{AF 78} \frac{78}{KZ} \frac{3/4;}{7/4.} \frac{75;}{77;} \frac{77}{K}$ $\frac{Coupe da Koh-e Qutun:}{AF-DES 327/2 (spécimen de R. Desparmet).}$ $\frac{AF 78 Tak 3/7;}{AF 75 Bo 198/1:} \frac{299}{299}$ $\frac{AF 75 Bo 198/1:}{75 Bo 198/1:} 299$

DESCRIPTION

CARACTERES EXTERNES

Coenostea lamellaires épais de C,5 à 3 cm et larges de 5 à 10 cm ou plus, très souvent associés à d'autres organismes lamellaires; pas de caractères visibles. - 111 -

CARACTERES INTERNES

Coupe verticale

Lamellos englobées dans la roche, généralement de faible épaisseur (quelques millimètres à 2 ou 3 cm au maximum), mais très souvent associées à d'autres organismes lamellaires: Algues (Sphaerocodium), Tabulés (Alveolites), ou autres Stramatopores (Clathrocoilona spissa, Stachyodes australe...).

Ondulations d'origine astronhizale d'amplitude extrêmement variable selon les spécimens; à peine marquées chez certains, très développées chez d'autres et projetant alors vers le haut des expansions dendrolides plus ou moins accentuées, sur les flancs desquelles les laminae sont très fortement redressées parfois presque verticalement.

Latilaminae plus ou moins marquées selon les spécimens, épaisses de quelques millimètres à parfois près d'un centimètre, localement séparées, chez certains spécimens (AF 78 Tak 3/7b), par des intercalations de sédiment micritique ou biosparitique ou par des plages amygdaloïdes de calcite spathique, au-dessus desquelles le Stromatopore poursuit sa croissance par l'intermédiaire ou non d'une couche basale (épithèque).

Laminae relativement continues; d'épaisseur souvent très variable (30 μ m à parfois près de 200 μ m); dans la même lame, alternance de zones à laminae fines et d'autres à laminae épaisses; laminae fréquemment interrompues et remplacées par des dissépiments; 20 à 25 laminae sur 5 mm.

Piliers souvent épais (100 à 150 μ m), localement superposés mais plus généralement disposés en quinconce; légèrement bobinirormes; au nombre de 20 à 25 au maximum sur 5 mm.

Nombreuses structures pouvant être interprétées comme des "ring-pillars", a correspondant à des foramens encadrés de piliers (fig.54-55).

Espaces interlaminaires formés de chambres arrondies ou allongées horizontalement, hautes de 80 à 200 µm; rares dissépiments.

Astrorhizes bien visibles et provoquant des ondulations coenostéales plus ou moins marquées (Structure); canal (ou canaux) axial large de 300 à 450 µm (un peu plus chez le spécimen AF DES 327/2); canaux latéraux larges de 250 µm environ; dissépiments astrorhizaux peu développés.

Coupe trangentielle

Le plus souvent, éléments coenostéaux disposés en zones plus ou moins concentriques et régulières autour des sections d'astrorhizes; parfois aspect plus irrégulier. Au passage des laminae, plages généralement denses, percées de foramens atteignant 120 à 150 µm de diamètre. -1110

\

Fig. Stictostroma saginata (LECOMPTE, 1951). Dessin, d'après la lame mince AF 78 Tak 3/7b. Coupe verticale. Latilaminae séparées par une intercalation amygdaloïde de calcite spathique. La base de la latilamina supérieure commence par une zone à structure irrégulière constituée par des éléments coenostéaux très fins ("basal layer").

(9

Fig. 54 -Stictostroma saginata (LECOMPTE, 1951). Dessín, d'après la lame mince AF 78 KZ 7/4. Coupe verticale. Laminae fréquemment interrompues par des foramens, ce qui pourrait laisser croire à la présence de "ring-pillars".

.

44 - 15

 \mathbf{n}

*

\

Í

η

П 1

Sections des piliers rondes ou vermiformes, larges de 90 à 200 µm, parfeis reliées entre elles par des disséguments. Pas de véritables "ring-pillars" mais un'quementéssections annulaires en bondue commune ciéne aux-lawinae (surtout visibles chez le spécimen AF 78 KZ 3/7; fig. 56)).

situres

Sections circulaires ou ovales de canaux astrorhizaux centraux atteignant parfois 400 à 450 µm de largeur; canaux latéraux plus ou moins visibles, de taille un peu plus faible.

MICROSTRUCTURE

Ligne axiale claire, visible localement dans les laminae; très localement encore, microstructure typiquement cellulaire ou typiquement mélanosphérique, mais le plus souvent microstructure d'aspect compact à spongieux. Dans la même lame mince (AF 73 KZ 3/5, AF 78 KZ 7/4), on observe parfois côte à côte ces différents aspects de la microstructure.

DISCUSSION

Je rattache des spécimens au genre Stictosproma PARKS, 1936, emend. GALLOWAY & ST JEAN, 1957. Ils en possèdent en effet les caractères structuraux et microstructuraux.

Spécifiquement, ils me semblent correspondre assez bien à Stictostroma saginatiz (LECOMPTE, 1951). Ils ne diffèrent, des données fournies par M. Lecompte, que par une donsité en laminae un peu plus faible, 20 à 25 sur 5 mm contre 12 à 13 sur 2,5 mm dans le matériel type; toutefois, comme le montrent d'ailleurs certaines figurations de M. Lecompte, (pl. XXII, fig. 6a) la densité en laminae peut descendre à une vingtaine seulement sur 5 mm. M. Lecompte rattachait son espèce au genre Stromatoperella NICHOLSON, 1886; mais il convient de rappeler que M. Lecompte, d'une part, n'accorde pas c'importance générique aux "ring-pillars" et que, d'autre part, il ne reconnaît pas le genre de W.A. Parks. Les originaux de M. Lecompte ne possédent pas de "ring-pillars" tout au plus, en coupe tangentielle, les "...piliers apparaissent en forte ponctuations... rarement semi-lunaires" (M. Lecompte, 1951, p. 172-173) et ne peuvent donc, à mon avis, appartenir au genre Stromatoporella.

Plusieurs auteurs (J.J. Calloway et J. St Jean, 1957; C.W. Stearn, 1966a, 1983; A.E. Cock bain 1984) considèrent que saginata appartient au genre Clathrocoilona YAVOESKY, 1931. Il est vrai, comme le fait remarquer M. Lecompte lui-même, que le tissu coenostéal est parfois fortement épaissi; toutefois il convient de sculigner que:

- premièrement, l'empâtement du tissu n'est pas un caractère constant et qu'à côté de zones épaissis il en existe d'autres à éléments coenostéaux plus dégagés. De plus, ces zones ne correspondent pas uniquement au sommet des latilaminae qui, chez le genre Clathrocollona montvent souvent des éléments coenostéaux bien définis;

- deuxièmement, l'épaississement du tissu squelettique n'est jamais tel qu'il empêche le dénombrement des éléments coenostéaux;

- enfin la microstructure typiquement trilaminaire à ordinicellu-

 \mathbf{n}

Fig. 55 -Stictostroma saginata (LECOMPTE, 1951). Dessin, d'après la lame mince AF 78 KZ 3/7a. Coupe tangentielle. Au niveau des laminae, sections circulaires de foramens; sections de piliers ponctuées ou vermiformes mais pas de "ring-pillars".

 $\boldsymbol{\prec}$

Stromatoporella NICHOLSON, 1886.

oral

Espèce-type : Stromatopopolita granulata NICHOLSON, 1873.

DIAGNOSE

, soment

Coenostea lamellaires, encroûtants, parfois massifs. Laminae bien définies, interrompues en par des foramens. Piliers bobiniformes, réduits à un seul espace interlaminaire, rarement superposés; la plupart pleins, certains creux (= "ring-pillars"). Microstructure normalement ordinicellulaire.

DISCUSSION

Le genre Stromatoporella a été très largement discuté et diversement interprété. Les points de désaccord portent à la fois sur des caractères structuraux et sur la microstructure. J'ai déjà abordé certains aspects concernant le genre Stromatoporella dans la discussion du genre Pseudostromatoporella KEZMIERCZAK, 1971.

Plusieurs auteurs (C.W. Stearn, 1966a, p. 93; B.H.G. Sleumer 1968; 1969, p. 37; J. Kazmierczak 1971, p. 77; J. St Jean 1977; A.E. Cock bain 1984, p. 33...) ont débattu des caractères structuraux attribués au genre. Les différentes positions adoptées ont été plusieurs fois résumées, elles différent essentiellement sur l'importance systématique qu'il convient d'accorder aux "ring-pillars".

* Pour H.A. Nicholson (1886), M. Lecompte (1951 p. 137), Sleumer (1968, p. 14; 1969, p. 41)... les "ring-pillars" ne caractérisent pas le genre *Stromatoporella*; ils peuvent aussi exister chez d'autres genres, en particulier chez *Clathrodictyon* NICHOLSON & MURIE, 1878.

* La plupart des autres auteurs cependant, après W.A. Parks, 1936 qui a révisé le matériel type de H.A. Nicholson, considèrent que les caractère essentiel du geure réside dans la présence de "ring-pillars".

J'adopte, dans ce travail, cette deuxième position, tout en soulignant, après d'autres (J. St Jean, 1950; J Kazmierozak, 1971), l'existence de "ring-pillars" rares, mal exprimés cu douteux chez certaines espèces de Stromatoporalla¹⁴ et la présence de structures (sections de foranens) rappellant des "ring-pillars" chez des représentants d'autres genres. Il convient d'évoquer en particulier le cas de "Stromatoporella" laminata (BARGATZKY, 1831a) espèce chez laquelle J.A. Fagerstrom et C.W. Stearn ne reconnaissent pas de "ring-pillars" dans les figurations du type, tandis que A.E. Cock bain pense en observer **Sec** (A.E. Cock bain, 1984, p. 33). La microstructure du genre Stromatoporella a aussi fait l'objet de très nombreuses discussions, en particulier par C.W. Stearn 1966a (p.93-96). Flusieurs auteurs en ont déjà rappelé l'historique. Il convient de souligner que :

.

ł.

1

ł

į.

- E.A. Nicholson (1892) considère que le tissu est finement poreux ou traversé de minuscules tubulures irrégulières;

- N.A. Parks (1936, p. 92-93) réfute l'interprétation de H.A. Nicholson; il estime en effet que l'aspect poreux correspond, en réalité, dans les sections les mieux conservées, à un arrangement régulier de "pores" sans communication vers le haut cu le bas et que la structure finament réticulée, dans les trois dimensions, caractéristique du genre Stromatopora, ne se retrouve chez aucune espèce de Stromatoporella.

- Pour M. Lecompte (1951, p. 1566), au contraire, la structure de la fibre "ne diffère en rien de celle qu'on observe chez le genre Stromatopora".

J.J. Galloway (1957, p. 436), J.J. Galloway et J. St Jean (1957, p. 130), J.J. Galloway (1950, p. 622), J. St Jean (1960, p. 245), J.J. Galloway et G.M. Ehlers (1960, p. 75), F.K. Binkhead (1907, p. 51) attribuent, dans l'ensemble, au genre, une microstructure porsuse plus ou moins grossière ou fine, transversalement fibreuse, avec parfois des tubulures anastomosées.

- C.W. Stearn (1966, p. 78, 94) introduit le terme de ordinicellulaire pour désigner la microstructure des laminae caractérisée par un alignement central de petites cellules, définition qui correspond parfaitement à-celle de W.A. Park's (1936, cf. ante).

- B.H.G. Sleumer par contre (1969, p. 37) considère qu'il existe, chez les représentants du genre *Stromatoporella*, deux types de microstructure primaires totalement différents;

. le type "microlaminate", présent chez *S. granulata* (NICHOLSON, 1873), tien qu'il soit impossible de savoir, sans une révision, si les originaux de H.A. Nicholson présentent ce type de microstructure ou le second (B.H.G. Sleumer, 1969, p. 40);

. le type "ordinicellulaire", sensu B.H.G. Sleumer, (c'est à cire comportant une ou plusieurs rangées de cellules).

- J. Kazmierczak (1971, p. 86) adopte, lui aussi, un point de vue un peu particulier et considère que le genre se caractérise par une microstructure réticulée plus ou moins condensée.

Je considère, dans ce travail, que le genre Stromatoporella se caractérise par une microstructure ordinicellulaire (sensu C.W. Stearn 1966a, non B.H.C. Sleumer 1969), malheureusement très fréquemment oblitérée par la diagénèse, pour prendre alors différents aspects (C.W. Stearn 1966a, p. 94-95).

Plusieurs genres sont voisins du genre Stromatoporella.

- Le plus proche, *Stictostroma* PARKS, 1936, émend. GALLOWAY & ST JEAN, 1957, ne s'en distingue que par l'absence de "ring-pillars".

- Le genre Pseudostromatoporella XAZMIERCZAK, 1971, n'en diffèrerait que par sa microstructure (cf. discussion de ce genre);

- Le genre Clathrodictyon NICHULSON & MURIE, 1878, par l'absence de

s'en écute

"ring-pillars", une microstructure compacte et des éléments coencstéaux moins différenciés

- Le genre Clathrocoilona YAVORSKY, 1931 se différence par l'abience pillars", des éléments coenostéaux plus épais et, en partie, par sa microstructure.

Stromatoperella granulata (NICHOLSON, 1873)

PC. 1X, Piz. 1-3; 1873 - Stromatopora granulata sp. nov. - Nicholson H.A., p. 94, pl. IV, fig. 3, 3a. 1951 - Stromatoporalla decora nov. sp. - Lecompte M., p. 164, pl. XXIV, fig. 6. 21968) - Stromatoporella granulata (NICHOLSON). - Flügel E. et Flügel-Kahler E., p. 180-182, 573 (avec liste synonymique depuis 1873). 1968 - Stromatoporella granulata (NICHOLSON). - Sleumer B.H.C., p. 10, fig. 1-22. 1959 - Stromatoporella ? granulata (NICHOLSON). - Sleumer B. H.G., p. 39, pl. 24, fig. 3 - pl. 27, fig. 2. 1971 - Stromatoporella granulava (NICHOLSON). - Zukalova ¥., p. 52, pl. XI, fig. 1-4. 1976 - Stromatoporella cf. decora LECOMPIE.- Mistiaen B., p. 131, pl. VI, fig. 4. Stromatoporella laminata (BARGATZKY)-/Brice D. et al., p./Mistaen Big 1976 -143, 144. 1977 - Strematoporella granulata (NICHOLSON). - St Jean J., p. 233- 240. 1977 - Elstromatoporella decora LECOMPTE. - Brice D. et al., p./Migliaen B.1. 139, 140, 144. 1980 - Stromatoporella laminata (BAEGATZKY). - Mistiaen E., p. //199, pl. VIII, fig. 8-9, pl. IX, fig. 4-2.

NEOTYPE

La question du spécimen-type de l'espèce a été largement discutée par J. St Jean (1977) qui propose à la Commission Internationale de Nomenclature Zoologique de redésigner, comme néotype, le spécimen de H.A. Nicholson (1836a) n**0** 329, provenant d'Arkona. MATERIEL ET GISEMENT (5 spécimens, 5 lames, 7 sections).

Coupe de Tak tak ay: AF 78 Tak 3/7. Coupe de Dewal: AF 76 D 38/8; D56/1; AF 76 D 56/1; AF 76 D 80/1; /a.

DESCRIPTION

CARACTERES EXTERNES

Coenostea lamellaires, atteignant au maximum 2 cm de hauteur et larges de 8 à 10 mm, enrobés dans la roche; pas de caractères visibles.

CARACTERES INTERNES

Ccupe verticale

Laminae très régulières, même dans le détail (sauf à proximité des astrorhizes), pratiquement jamais anastomonées, dessinant de larges ondulations; épaisses de 80 à 100 µm; au nombre de 20 à 22 sur 5 mm; rares foraments (25).

Piliers très irrégulièrement distribués, rarement superposés, d'épaisseur très variable (60 à 250 μ m, parfois jusqu'à 300 μ m); droits ou légèrement obliques, cylindriques ou plus souvent bobiniformes; une quinzaine en moyenne sur 5 mm; "ring-pillars" bien développés (15.60)

Espaces interlaminaires réguliers, aux chambres circulairés ou quadrangulaires à contours arrondis, hautes de 120 à 250 µm; rares dissépiments colliques.

Astronhizes de grande taille, très bien développées, provoquant des ondulations coenostéales hautes de 2 à 4 mm, ainsi qu'un épaississement et une irrégularité des éléments coenostéaux à leur contact. Canaux axiaux, souvent multiples, atteignant 300 à 350 µm de diamètre, traversés de quelques dissépiments. Canaux latéraux recoupés transversalement, sous forme de chambres arrondies dispersées dans les galeries, ou longitudinalement et se repérant par des galeries de grande taille avec beaucoup moins de piliers.

Coupe tangentielle

Caractérisées par de nompreuses sections de "ring-pillars" complètes ou incomplètes (en fer à cheval).

Plages laminaires plus ou moins denses ou aérées selon les endroits, percées d'ouvertures circulaires larges de 120 à 150 µm, correspondant aux foramens ou à la base de "ring-piliars". Plages interlaminaires aux sections de piliers rondes ou plus irrégulières, larges de 100 à 200 µm et aux sections de "ring-pillars" atteignant le plus souvent 300 µm de diamètre extérieur et 120 à 150 µm, de lumière (mêmes dimensions que les foramens). Dissépiments souvent assez longs et plus cu moins nombreux selon les endroits, reliant les différents éléments. Sections étoilées de canaux astrornizaux larges de 300 à 600 µm, se prolongeant latéralement sur parfois plus d'un centimètre.

-123-

Fig. R - Stromatoporella granulata (NICHOLSON, 1873) Dessin, d'après la lame mince AF 76 Tak 3/7b. Coupe verticale. Aspect régulier et continu des laminae. Microstructure cellulaire visible dans les laminae supérieures.

 \mathbf{n}

X73

Fig. **G**-Stromatoporella granulata (NICHOLSON, 1873). Dessin, d'après la lame mince AF 76 D 38/8. Coupe verticale. Sections de "ring-pillars". La fissure axiale claire présente dans les laminae se redresse à l'approche du "ring-pillar".

1

Fig. 61 - Stromatoporella granulata (NICHOLSON, 1873). Dessin, d'après la lame mince AF 76 D 38/8. Coupe tangentielle. Nombreuses sections de "ring-pillars" tout à fait indépendantes des laminae où l'on observe, par contre, des sections de foramens. Laminae traversées par de fines tubulures claires.

Fig. 62 - Stromatoporella saginata (NICHOLSON, 1873). Pessin, d'après la lame mince B-FFa 85 (spécimen du sommet du Vembre du Griset, Formation de Blacourt, Boulonnais, France). Supe tangentielle montrant des tubulures analogues mais igurquées.

DISCUSSION

Les spécimens décrits présentent tous les caractères du genre Stromavoporella NICHCLSON, 1886 et en particulier des "ring-pillars" caractéristiques.

Je rattache, spécifiquement, les spécimens à Stromatoporella granulata (NICHOLSON, 1873). Ils possèdent en particulier des éléments coenostéaux de densité et d'épaisseur tout à fait comparables. Les "ring-pillars" sont bien développés et abondants chez certains spécimens afghans (AF 76 D 38/8), présents mais moins nombreux chez d'autres; toutefois, je ne pense pas devoir subdiviser les spécimens sur ce critère.

Le matériel décrit présente encore des variations dans l'allure générale, régulière ou irrégulière, du coenosteum, les régions plus ondulées prennent en particulier un aspect parfois assez différent, avec des éléments coenostéaux plus minces; elles rappellent fortement les spécimens de M. Lecompte illustrés sous le nom de Stromatoporella decora LECOMPTE, 1951 et des spécimens boulonnais que j'ai rapprochés de cette espèce (B. Mistiaen,; 1976). Je considère ici, après B.H.G. Sleumer (1968) que S. decora est un synonyme de S. granulata. J. Kazmierczak (1971, p. 67) a déjà souligné "... the necessity of a considerable reduction in the number of the species of <u>Stromatoporella</u>, most of which were separated on the basis of insignificant differences in the number of laminae or pillars on adefinite section of coenosteum".

Les spécimens du Boulonnais que j'ai précédemment décrits (B. Mistiaen, 1980) sous le nom de S. laminata sont aussi tout à fait comparables à ceux étudiés ici. "Stromatoporella" laminata est consicérée, par plusieurs auteurs (C.W. Stearn, 1966a; comme appartenant au genre Stictostroma PARKS, 1936, car les lames dans les types ne semblent pas montrer de "ring-pillars", cf. discussion de Stictostroma uralensia (YAVORSKY, 1955), p.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel sur lequel H.A. Nicholson a primitivement asé l'espèce Stromatoporella granulata provient du Dévonien de l'Onondaga Formation (anciennement "Corniferous Limestone"), sommet du Dévonien inféricur base du Dévonien moyen (cf. J. St Jean 1977, p. 234) de l'Ontario (Canada). Le néotype proposé par J. St Jean provient du Hamilton Group, Dévonien moyen, de l'Ontario (Canada).

L'espèce a été signalée! dans

- les Lilydale Limostones (Dévonien inférieur) de Victoria (Australie);

- le Couvinien du Bassin de Dinant (Belgique);
- le Dévonien moyen des Monts Cantabriques (Espagne);
- le Givétien du Boulonnais (France);
- le Givétien du Bassin du Kuznetsk (U.R.S.S.);
- le "Lower Frasnien" (= ? Givétien supérieur, cf. B. Mistiaen, 1932) du Karst Morave, Tchécoslovaquie.
 - Los spécimens afghans ont été recueillis :
- à la coupe du Taktakay, dans la Formation du Sin ghar (givétien ou Francen): Lens - à la coupe de Dewal, dans la Formation des Calcaires récifaux de
- Dewal (Givétien).

Gerronostroma YAVORSKY, 1931.

-130-

Espèce-type : Gerronostroma elegans YAVORSKY, 1931.

DIAGNOSE

Eléments coenostéaux bien définis. Laminae continues. Piliers bobiniformes, bien superposés. Microstructure poreuse.

DISCUSION

Comme le souligne C.W. Stearn (1966a, p. 101), le genre Gerronostroma, proposé par V.I. Yavorsky en 1931, a été, par la suite, abondamment mais presque exclusivement utilisé par des auteurs soviétiques, sur 38 espèces reconnues par E. Flügel et E. Flügel-Kahler (1968) 32 sont le fait d'auteurs soviétiques.

En créant le genre, V.I. Yavorsky (1931, p. 1392-1393, 1046) lui attribue une microstructure compacte; il le compare essentiellement au *Actinostroma* NICHOLSON, 1886b dont il se différencie par l'absence de processus radiaires.

Plusieurs auteurs par la suite (V. Zukalova, 1971, p. 29) ont conservé, pour la microstructure, l'acception de V.I. Yavorsky; certains (M. Lecompte 1956, p. F 127) vont même jusqu'à considérer Gerronostroma comme un synonyme de Actinostroma.

Cependant J.J. Galloway et J. St Jean (1957, p. 89, 148, 151-152), se basant sur un topotype de V.I. Yavorsky, considèrent que la microstructure du genre est "transversely porous, vacuolate".

C.W. Stearn (1966a, p. 101), après avoir examiné les spécimens de J.J. Galloway et J. St Jean, y reconnaît aussi une microstructure poreuse, proche de celle observée chez certains spécimens des genres *Stictostroma* PARKS, 1936 et *Stromatoporella* NICHOLSON, 1886b. C.W. Stearn souligne surtout les liens entre les genres *Gerronostroma* et *Stictostroma*, la différence essentielle étant la superposition des piliers chez le premier genre.

Gerronostroma & lemnisca LECOMPTE, 1951. Pl. X, fig. A-3; fig. Eak 65-67. v * 1951 - Stromatoporella lemnisca nov. sp. - Lecompte M., p. 191, pl. XXVIII, fig. 4-5. i 1968i- Clathrocoilona lemnisca(LECOMPTE). - Flügel E. et Flügel-Kahler E., p. 241,533. i 1971i- Stromatoporella lemnisca LECOMPTE. - Zukalova V. p.; v. i 1977i- Stromatoporella lemnisca LECOMPTE. - JBrice D. et al. p. 139, *Misthemen* B. 144. v 1976 - Stromatoporella lemnisca LECOMPTE. - Mistiaen B., p. 133, pl. VII, fig. 3. ? 1984 - <u>Elarkocoilona</u> <u>Acginate (LECOMPTE)</u>. - Cockbain A. E., p. 25, pl. HOLOTYPE

Spécimen de M. Lecompte, Surice 17b, n**2**7250, I.R.S.N.B., Bruxelles; figuré par M. Lecompte (1951, pl. XXVIII, fig. 4).

MATERIEL ET GISEMENT (2 spécimens, 2 lames, 2 sections).

Coupe de Bok an Sud:-AF 76 BS 7/2 Coupe de Dewal: CAF 76 D 69/1

DESCRIPTION

CARACTERES EXTERNES Non observés.

CARACTERES INTERNES

Coupe verticale

Petites formes finement lamellaires, encroûtantes ne dépassant pas 0,5 cm d'épaisseur (f_{13} .65).

Laminae d'épaisseur meyennap variable (30 à 100 µm mais localement jusqu'à 240 µm chez le spécimen AF 76 D 69/1). Parfois réduites à une microlamine (ou remplacées par un dissépiment). Au nombre d'une dizaine sur deux millimètres (mais localement jusqu'à 7 sur 1 mm).

Piliers épais (120 à 200 µm rarement 300 µm, bobiniformes et très <u>souvents bien superposés</u> 6 à 8 sur 2 mm.

Chambres des espaces interlaminaires arrondies, atteignant 120 à 180 µm de diamètre.

Astrorhizes très larges, au canal central atteignant parfois 360 µm, mais ne provoquant pas de fortes ondulations astrorhizales; dissépiments astrorhizaux nombreux.

131

\

1 mm

,

78

Fig. 6 Gerronostroma lemnisca (LECOMPTE, 1951). Dessins, d'après la lame mince AF 76 BS 7/2. Coupe verticale. Piliers épais et bien superposés.

Coupe tangentielle

(Etant donné la morphologie de ces deux spécimens en lamelles très fines, je n'ai pu y réaliser de coupes tangentifies correctes).

Plages plus ou moins denses, percés de petites ouvertures arrondies, **dc**60 à 100 µm de diamètre **d** 60 Quelques sections arrondies ou vermiformes de piliers larges de 80 à 150 µm.

MICROSTRUCTURE

Aspect général spongieux (dû à la diagenèse ?) à cellulaire; fine ligne sombre parfois visible dans les laminae, apparaissant localement formées, à fort grossissement, par de petits granules sombres (diamètre 15 µm environ), réunis entre eux par un mince filament ne dépassant pas 5 µm d'épaisseur; d'autres laminae avec une fissure axiale discontinue.

DISCUSSION

Je rattache ces spécimens au genre *Gerronostroma* YAVORSKY, 1931. Ils en possédent en particulier la structure très régulière, aux piliers bien superposés. La microstructure n'est cependant pas suffisamment bien conservée pour confirmer le rattachement à ce genre.

Ils évoquent aussi le genre *Stictostroma* PARKS, 1936; toutefois, la nette superposition des piliers s'oppose à ce rattachement.

L.

Spécifiquement, ils correspondent très bien à la description et aux illustrations de G. **5** lemniscé (LECOMPTE, 1951) : même morphologie, éléments coenostéaux de taille et de densité identique, nombreux dissépiments astrorhizaux, caractères microstructuraux en partie identiques. L'un des spécimens décrits se différencie très légèrement par des laminae un peu plus fines et des canaux astrtorhizaux de taille un peu supérieure à celle donnée par M. Lecompte.

M. Lecompte rattachait son espèce au genre *Stromatoporella* NICHOLSON, 1886b; elle ne possède toutefois pas les "ring-pillars" caractéristiques.

J.J. Galloway et J. St Jean (1957, p. 255) classent l'espèce de M. Lecompte dans le genre *Clathrocoilona* YAVORSKY, 1931. La présence d'éléments coenostéaux très bien individualisés et celle de piliers très nettement superposés ne permettent pas, à mon avis, à ce rattachement. Je plan l'ajere de m. le gene <u>Gerrenstan</u>.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le type de *Gerronostroma 🕢 lemnisda* provient du Givétien du Bassin de Dinant (Belgique).

L'espèce a el é rencontre d'ans le Membre du Griset (Formation de Blacourt, Givétien) du Boulonnais (France).

Les spécimens d'Afghanistan ont été récoltés :

/ coupe de Bokan Sud, Formation de Cawak, Givétien;

(- coupe de Dewal, Formation des Calcaires récifaux de Dewal, une dizaine ← de mètres environ au-dessus de niveaux qui ont livré des <u>Stringocepha-</u> ← lidée (D. Brice et B. Mistiaen, 1980), Givétien.

Elle pourrait encore être présente dans le Dévouven supériren (Famennien) du Canving Basin (Austalie).

\

79

Fig. 117 -Gerronostroma lemnis (a (LECOMPTE, 1951). Dessin, d'après la lame mince AF 76 D 69/1. Coupe tangentielle un peu oblique. Structure méandriforme des laminae, percées de foramens.

.

coenostea de morphologie variable, le plus souvent noduleux mais parfois lamellaires, tabulaires ou encore subhémisphériques; toujours de petite taille (quelques centimètres), le plus gros spécimen est un coenosteum tabulaire atteignant 5 à 6 cm de hauteur. Pas de caractères visibles. , quadriller,

CARACTERES INTERNES Coupe verticale

0

G

Structure généralement très régulière, localement perturbée par de petits noeuds astrorhizaux bien localisés ou par des tubes de Vers (cf. Streptindytes), parasites ou commensaux assez fréquents. Quelques ondulations de très faible amplitude.

Latilaminae nettement exprimées, épaisses de 3 à 4 mm, formées d'une alternance de zones à piliers bien visibles (un peu plus épais) et de zones à piliers moins visibles; généralement limitées par quelques laminae plus irrégulières et plus serrées.

Laminae généralement bien planes et tranchantes, un peu plus irrégulières et ondulées là cù elles sont serrées; épaisses en moyenne d'une trentaine de microns; densité élevée (35 à 40 sur 5 mm en moyenne) mais en nombre très variable dans le détail (5 à 11 laminae sur 1 mm).

Piliers nettement superposés, relativement épais (75 à 100 µm, parfois un peu plus), n'atteignant pas toujours la lamina inférieure; jamais bifurqués mais presque toujours très évasés à leur sommet et à l'origine d'un épaississement des laminae; au nombre de 26 à 30 sur 5 mm_

Chambres des espaces interlaminaires le plus souvent arrondies à leur sommet et plus planes à leur base; hautes de 100 à 110 µm en moyenne; plus fréquemment en communication latéralement les unes avec les autres dans les zones à laminae serrées.

Astrorhizes peu visibles; certaines petites déformations très localisées dans la structure coenostéale (petits noeuds irréguliers dus à l'inflexion vers le bas des laminae, tout à fait analogues à l'aspect figuré par M. Lecompte , 1951, pl. XIII, fig. 2, chez Actinostroma reversum ...) pouvant correspondre à des astrorhizes ou être causées par la proximité d'un organisme parasite (Vers) inclus dans le coenosteum.

Coupe tangentielle

Sections arrondies des piliers (60 à 100 µm de diamètre) souvent réunies entre elles pour donner des chaînettes (structure caténiforme) ou des mailles qui ne présentent cependant jamais une structure hexactinelloide typique. Plages denses au passage des laminae.

MICROSTRUCTURE

Laminae parcourues par une ligne sombre, granuleuse, "emballée" dans un tissu un peu plus clair; piliers spongieux, piquetés de petites taches plus sombres mesurant environ 15 µm de diamètre et prenant alors un aspect mélanosphérique. Ces caractères pourraient n'être en fait qu'une altération diagénétique d'une microstructure originellement compacte à spongieuse.

DISCUSSION

Les caractères structuraux de ces spécimens, en particulier la présence de piliers épais nettement superposés et la grande continuité des laminae, permettent de les rattacher au genre Atopostroma YANG & DONG, 1978; toutefois la microstructure des spécimens afghans est très mal conservée et il n'est pas certain qu'elle soit identique à celle de l'espèce-type: "maculate with small vacuoles" (J. Yang et D. Dong, 1978, p. 89). Les granulations visibles dans les laminae pourraient laisser croire à une certaine discontinuité de ces dernières; il me semble cependant que cet aspect discontinu des laminae soit un caractère secondaire; de plus, en coupe tangentielle, les plages où sont recoupées les laminae ont un aspect très dense, sans foram**in**é visibles.

ハらう

La présence de piliers réduits à un seul espace interlaminaire et de laminae tranchantes évoquent le genre *Atelodictyon* LECOMPTE, 1951, auquel ils pourraient appartenir si leur microstructure était de type compact; toutefois la grande régularité dans la superposition des piliers est un caractère inhabituel chez ce genre.

Cette nette superposition des piliers, qui leur donne localement un aspect continu, évoque encore le genre Actinostroma NICHOLSON, 1886b; et certaines des formes décrites et figurées par Lecompte (M.) (1951, pl. IX, fig. 5-5a) sous le nom de A. verrucosum (GOLDFUSS, 1826), me semblent très proches des spécimens afghans, sauf en ce qui concerne la densité en éléments coenostéaux et les caractères microstructuraux.

Les spécimens afghans rapellent un peu A. tuntouense, l'espèce-type du genre, et plus précisément les échantillons de l'Arctique canadien de cette espèce décrits par C.W. Stearn (1983); ils s'en distinguent cependant nettement par une densité en éléments coenostéaux bien supérieure.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Tous les spécimens afghans proviennent de la coupe de Badragha; ils ont été récoltés dans le Membre récifal de Baghalak, Formation des Calcaires noirs de Badragha (Qivirien); Stromatopora GOLDFUSS, 1826.

Espèce-type : Stromatopora concentrica GOLDFUSS, 1826.

Le genre Stromatopora GOLDFUSS, 1826 est le plus ancien des genres de Stromatopores; de ce fait il a été très largement utilisé, et, souvent dans un sens trop **entry:**. E. Flügel et E. Flügel-Kahler (1968) en recensent plus de deux cents espèces. Avec la création successive de genre voisins nouveaux, le genre Stromatopora a connu de nombreux émendements et sa compréhension a été progressivement restreinte.

DIAGNOSE.

FSTROM

(oene tean massife, en, plus rarement le daire. Structure coenostéale typiquement rétionlée, aux éléments assez épais, mal différenciés; prédominence des coenostèles; lamination très peu marquée. Tubes pseudozooïdaux irréguliers, peu développés, voire inexistants. En coupe tangentielle structure féticulée ou vermiculée. Microstructure cellulaire à mélanosphérique ou microréticulée.

DISCUSSION.

De nombreux auteurs (en particulier M. Lecompte 1952, p.263-267; J.J. Galloway 1957, p. 446, 448-449; C.W. Stearn 1966, p. 110-111 112-113, 115-116, 118-119; 1983, P. 555; J. Kazmierczak 1971, p. 89, 119; V. Zukalova 1971, p. 60-61; C.W. Stock 1979, p. 337 ...) ont déjà discuté des relations entre le genre Stromatopora et des genres voisins: Syringostroma NICHOLSON, 1875; Parallelopora BARGATZKY, 1881 []a; Salairella KHALFINA, 1955; Taleastroma GALLOWAY, 1957; Parallelostroma NESTOR, 1966; Syringostromella NESTOR, 1966; Habrostroma FAGERSTROM, 1982.

Les relations du genre Stromatopora avec le genre Ferestromatopora YAVORSKY, 1955 sont délicates; elles sont développées plus loin, dans la discussion de l'espèce-type S. concentrica GOLDFUSS, 1826.

Never Ite à matte Stromatopora concentrica GOLDFUSS, 1826. B1. / fig. 1 + 10 v* 1826 - Stromatopora concentrica nobis. - Goldfuss A., p. 22, pl. VII, fig. 5a-c. と <u> 1968</u> - Stromatopora concentrica GOLDFUSS. - Flügel E. & Flügel-Kahler E., p. 83-89 (avec liste synonymique depuis 1826). 1969 - Stromatopora concentrica GOLDFUSS. - Sleumer B.H.G., p. 45, partim [*] p1. 35, fig. 3. 1969 - Stromatopora huepschii (BARGATZKY) ? - Sleumer B.H.G., p. 46, partim pl. 36, fig. 2. 1970 - Stromatopora concentrica GOLDFUSS. - Turnsek D., p. 175-187, pl. 6, fig. 1-3, pl. 14, fig. 2. incensitie . Stromatoporg concentrica GOLDFUSS. p. (98, pl./70, fig./. v. 1976 - Stromatopora concentrica GOLDFUSS. - Brice D. & al., p. 144. v. 1977 - Stromatopora concentrica GOLDFUSS. - (Brice D. & al., p. 144. Minteen b v. 1980 - Stromatopora concentrica GOLDFUSS. - Mistiaen B., p. 208, pl. XII, fig. 7-9; pl. XIII, fig. 1-2. 14° 1978/- Stronatopora congentrica GOLDFUSS-1979 - Stromatopora concentrica GOLDFUSS. - Yang J. & Dong D., p. 52, pl. 22, fig. 5-6. 1982 - Stromatopora concentrica GOLDFUSS. - Dong D. & Wang C., p. 17, pl. IX, fig. 1-2. petrimen de A. Goldfuss (1826, pl.VIII, fry.5), figuré par M. Recompté (1052, pl. LIII, fiz. 2). institute de Paleontologie, Univertité de Born. LECTOTYPE. MATERIEL 4 spécimens - 5 lames - 7 sections). Coupe de Botan : 5 AF 75 BO 42/3:/44/8. AF 75 80 44/8 Devel ; <> AF 76 D 83/9; 83/2. -AF-76-D-87/2 DESCRIPTION.

CARACTERES EXTERNES. ou fragments de coenostea

Coenostea lamellaires, tabulaires ou hémisphériques, de taille très variable; le plus petit mesure 7 cm de long et 2 cm de haut, le plus grand atteint 50 cm de diamètre. Latilamination plus ou moins visible localement. Faibles ondulations. Surface granuleuse visible par endroit;, avec quelques traces à peine distinctes d'astrorhizes.

CARACTERES INTERNES

Coupe verticale

Latilamination souvent faiblement marquée, en zones épaisses de 4 à 5 mm. Structure coenostéale réticulée, localement plus régulière.

ЛЦ2 - 192-

<u>Coenostromes</u> souvent irréguliers, obliques et réduits à des anastomoses entre les éléments verticaux; parfois plus réguliers, horizontaux et continus, en particulier chez le spécimen AF 76 D 87/2; épais de 150 µm en moyenne, mais localement remplacés par des éléments beaucoup plus finsode type microlaminae; 14 à 17 environ sur 5 mm.

<u>Coenostèles</u> souvent irréguliers à la base des latilaminae, mieux individualisés au sommet, quelques-uns parfois continus sur la presque totalité d'une latilamina; droits ou très légèrement tortueux, très rarement bifurqués et d'épaisseur assez variable (150 à 400 µm); au nombre de 12 à 16 sur 5 mm, 13 ou 14 en moyenne.

Espaces coenostéaux généralement arrondis ou ovales, de taille variable (120-300 µm), parfois anastomosés horizontalement (AF 76 D 87/2) ou encore réunis verticalement, très localement, à la partie supérieure des latilaminae, pour former des mores de tubes pseudozooïdaux (AF 76 D 83/9).

Pas d'<u>astrorhizes</u> visibles; quelques chambres coenostéales de taille (400 µm) supérieure à la moyenne; pouvant correspondre à des sections de canaux astrorhizaux.

Coupe tangentielle.

Structure coenostéale réticulée ou vermiculée selon les endroits, aux éléments épais, en moyenne, de 150 à 250 µm.

Localement des sections arrondies (de piliers) atteignent 210 à 240 سر de diamètre.

Espaces coenostéaux arrondis ou très irréguliers, larges en moyenne de 150 à 200 um.

Localement quelques galeries de taille un peu plus grande (jusqu'à 300 µm), à disposition rayonnée, pouvant correspondre à des canaux astrorhizaux.

MICROSTRUCTURE.

Très localement tissu typiquement mélanosphérique (AF 75 BO 44/8) mais _jle plus souvent, forte recristallisation qui masque les caractères microstructuraux; on devine alors à peine la microstructure mélanosphérique.

DISCUSSION.

nin

Je rattache ces spécimens afghans au genre Stromatopora GOLDFUSS, 1826.

Fig. 1. - Tobleau comparatif de mensurations re quelques

feils a melte

all in

preferred our litery

. . . .

- Stromatopora concentrica. GOLDFUSS, 1826. Fig.

Mistiaen, 1980

Tableau comparatif de quelques mensurations.

Ils en possèdent la structure (essentiellement réticulée) et la microstructure (mélanosphérique).

-164-

La présence d'éléments verticaux, localement mieux individualisés et continus, à la partie supérieure des latilaminae mais aussi parfois dans l'ensemble du coenosteum - caractère surtout observable chez le spécimen AF 76 D 87/2 ne me semble pas constituer un critère suffisant pour les rattacher au genre *Taleastroma* GALLOWAY, 1957; en effet les éléments verticaux ne se répartissent pas en deux catégories (continus et limités à un espace interlaminaire) comme c'est le cas chez le genre américain (cl. Cusumin, des Taleastroma).

Spécifiquement, les formes décrites me semblent assez proches de l'espècetype du genre, S. concentrica GOLDFUSS, 1826. Le matériel type de l'espèce est très mal conservé et, mis à part l'illustration d'une section oblique par M. Lecompte (1952, pl. LIII, fig. 1), n'a jamais été correctement figuré (J.J. Galloway et J.St. Jean, 1957, p. 165), mets a été diversement interprété (K. Mori, 1970, p. 121). —_____J'ai pu examiner une série de lames minces conservée à l'Institut de Paléontologie de Bonn et très vraisemblablement taillées par M. Lecompte, dans l'original de A. Goldfuss provenant de Gerolstein.

La lame numérotée "Lecompte 32.2" est la mieux orientée; elle présente le même état de conservation que celle figurée par M. Lecompte en 1952, à savoir un remplissage des galeries sombre ou clair. Je la figure dans ce travail (pl. X, fig X \$U^{(r)}) (Cette lame (pdxxxxxx)digxxxxx montre une zonation (latilamination ?) assez faible, en bandes larges de (0,30 à 0,50 mm, le plus souvent limitées entre elles par<u>fine lamina sombre</u>. Le tissu coenostéal est essentiellement couver aux éléments coenostéaux épais de 125 à 180 µm, mais localement, les éléments verticaux s'individualisent plus ou moins nettement sans jamais cependant délimiter couver man de souldant de souldant de la la duar entre de souldant de la la duar entre té souldant de souldant de la la duar entre de souldant de la la duar entre té souldant de souldant de la la duar entre de souldant de la la duar entre te souldant de souldant de la la duar entre de souldant de la la duar entre la source de souldant de la la duar entre de souldant de la la la coenostèles sur 5 mm et d'après M. Lecompte, leur nombre atteint 14 à 16 sur 5 mm au sommet des latilaminae où ils sont épaissis (300 µm). Les éléments horizontaux (coenostromes) sont plus irréguliers; on peut estimer leur densité à une quinzaine sur 5 mm. Les dissépiments sont assez fréquents et parfois continus pour formet lalue. K

La lame ne présente nullement l'aspect de l'illustration de H.A. Nicholson (1891*a*, pl. XI, fig. 18) où l'on observe de longs éléments verticaux tortueux et de nombreux tubes pseudozooïdaux.

Les spécimens afghans me semblent assez proches, par la taille et la densité de leurs éléments, de l'original de A. Goldfuss: Ils s'en différencient légèrement par une structure plus dense et par des coenostèles un peu mieux individualisés, au moins à la partie supérieure des laminae; notons que fout de out dernier caractère les spécimens afghans présentent une assez large variation, aussi je les rattache "au groupe" de S. concentrica. Les formes ardennaises que M. Lecompte (1952) rattache à S. concentrica sont très proches de l'original de Goldfuss, comme le souligne d'ailleurs M. Lecompte lui-même. Corrector, En se basant essentiellement sur les données fournies par H.A. Nicholson (1891a), J.J. Galloway (1957, p. 446-448) considère que les spécimens de M. Lecompte n'appartiennent pas à l'espèce mais sont à rattacher à Ferestromatopora tyrganensis YAVORSKY, 1955; ce point de vue a été suivi par plusieurs auteurs (C.W. STEARN, 1966a; E. Flügel & E. Flügel-Kahler, 1968). 7

Toutefois B.H.G. Sleumer (1969, p. 46) et D. Turnsek (1970, p. 176, 187) n'adoptent pas l'opinion de Galloway et considèrent que les spécimens ardennais de M. Lecompte sont caractéristiques de S. concentrica; je rejoins l'opinion émise par ces auteurs. Il semble par ailleurs (B. Mistiaen, 1980, p. 208) que l'espèce russe présente, au vu de l'illustration de son auteur, une structure coenostéale de de de de de de distinguer des éléments horizontaux et verticaux. Il convient de souligner à nouveau ici l'importance de l'orientation de la lame mince; une section oblique dans un stromatopore à éléments relativement bien différenciés montrera un aspect beaucoup plus-reticulé.

B.H.G. Sleumer (1969) va d'ailleurs plus loin et estime que F. tyrganensis constitue une variante écologique de S. concentrica.

Le type de S. concentrica provient du Dévonien moyen d'**la serve** Gerolstein:

L'espèce a été très fréquemment citée (159 citations dans E. Flügel et E. Flügel-Kahler, 1968) and sous le nom de S. concentrica, ont parfois été décrits des Stromatopores appartenant à des genres très différents. Une concentre des sous de la concentre

= le Couvinien de Bassin de Dinant (Belgign);

w orly

plati

nou Nich

Mir Yive .

- le Givétien des France (Childensies, Deux-Sèvres, Vosges}, Boulonnais (France)
- la partie inférieure et moyenne du Dévonien moyen de Chine AGuangxi, Yunnan oriental (Chine)

- Le Dévonien moyen d'U.R.S.S. (Kalyman rivière Kolyman Estionie) fl. R.S.S); - la base du Dévouen supérieur dittérient Timan (URSI);

7 le Dévonien moyen d'Europe d'appages de Monts Cantabriques de destruite (région (Espagne); de Buchan) and Turaine - le Dévonien des Slovaquie (Monts Karavanke), Slovenie (Tchéroslovaquie). Les spécimens afghans proviennent de : - coupe de Bokan : base de la Formation de partie inférieure du Dévonien moyen, - coupe de Dewal : base de la Formation_sde (Givétien ?). are all there bete Dewal, unefted -Matron Courintingia; le plevanien moyen " d'Aughalie (Victoria onental: nézier de Buchan), Hom Er Ropper 19376; des Résid de Suchan De Study 1992 travaux Alus récents aut mentre que l'aige des Caloxies et Buchan des un per étérétaire fin Pragien HE.H. (Siegemen & Emoren) forf GM Philif for Pedden 1967, 1968; Emsen John JA Tia kent in JA Talent & HiBank 1968. Eyloren on the lase du Convinci fon J.S Tell en D. Hill, 1970 c le Dévenien mayen " (Australie) de la régin de Buchan, Victoria oriental de Dévenien mayen " (Australie) & Victoria oriental : région (Australie) de Buchan) (Selan E. Ripper 1937 b); V des travaux Vrécents (D.L. Struzz & coll., 1972), attor l'age des calcaires de Buchan Caves est un peu plus ancien : fin Pragien (Siegenien à Envien) sele Aren G.M. Phillip et A.E. H. Pedder, 1363, 1968 Francien terminal Equin J. A. Talent in, J.A. Talent et M.R. Bank, 1968) Emsien on base du Couvinier Jour J.S. Jell et D. Hill, 1970c;

\$23 177 Ś Distribution (géographique et répartition stratigraphique partielle de Stromatopora concentrica GOLDFUSS, 1826. N.B. Toute les cete ce at fa par en cepte skule celle qui, c' le une cles elle authe cetar 2 Jécende Elastaden d'A. de N. F. polemi Scottese: seif Des. Cand N : for our fule de la fizze. Her Soc Econ. Palar. & geil rentition a Der.

instructed.	143 1 * les trêma ne sent être utilisé
Shinell ward of and ?	dans en nom zoologique, et " Cocle a
man 9 Jor	As Stime Kiphin (International de Almenda tine Costogrague,
hi dona cauel	Ken Ne *
autor	- Stromatopora hapschii (BARGATZKY, 1881a).
1. dite	rt. X 11, frs. 7-60
v ^{ov} partim *	881a - Caunopora hüpschii n. sp Bargatzky A., p. 62.
Junta de la companya de la	886 - Stromatopora hupschii, Barg., sp Nicholson H.A., p. 26,
When charting	92, pl. X, fig. 8-9.
mest hom	891 - Stromatopora húpschii (BARGATZKY) Nicholson H.A., p. 176,
du gr	pl. 22, fig. 3-7, figtexte 20.
how to ch	968 - Caunopora hüpschii, BARGATZKY Flügel E. & Flügel-Kahler E.,
0 m of	p. 190-192 (avec liste synonymique depuis 1881).
h partim?	969 - Stromatopora huepschi (BARGATZKY) ? - Sleumer B.H.G., p. 46, pl.
Alub	36, fig. 1 et 3, pl. 38, fig. 1.
partim?	969 - Stromatopora concentrica GOLDFUSS Sleumer B.H.G., p. 45,
No. Alon	pl. 34, fig. 1, pl. 35, fig. 4.
**************************************	969 - Stromatopora huepschil (BARGATZKY) Fischbuch N.R., p. 174,
(white	pl. VI, fig. 1-5.
	974 - Stromatopora Mipsohii (BARGATZKY), -/ p. 98, pl. 70, fig. 2.
A invis	975 - Stromatopora hilpschii (BARGATZKY) Cornet P., An. 1a, 2a, 3a,
	5a, Tab. III.
	977 - Stromatopora hupschii (BARGATZKY) (Brice D. & al., p. 144.
	9/8 Stromatopora nupeonit (BARGATZKY), -X pi. 13, iig. 1.
	9/9 - Stromatopora nupschii (BARGAILKI) Yang J. & Dong D., p. 52,
γ	pl. 22, iig. 7-8.
v./	980 - Stromatopora Rupschil (BARGAILKI) Mistiaen B., p. 209,
	pl. XIII, IIg. 5-0.
	982 - Stromatopora nupschil (BARGAIZKI) Dong D. & Wang C., p. 19,
	982 - Stromatopora hüpschii (BARGATZKY) Fagerstrom J. A., p. 13.
MATERIEL.	5
Course de Donal	1 spécimens - 17 lames - 18 sections)
AF 76 D 7	
(7	/2
7	/2
7	/4
1 1 7	/6
alignment 1 7	/2
7	/3
8	/1
Gupacosta	See
(AF 76 BS Compede To	2 Catany
2 AF 78 T	ik 6 -
/ LECTOTUP	. Spécimen de A. Banatzky nº 16, fisul par M. Lecampte (1952, pl. LII, / j. 2)
	Institut de Paléontalogie, Université de Bunn.

CARACTERES EXTERNES

Coenostea lamellaires ou plus souvent massifs (hémisphériques), pouvant atteindre une dizaine de centimètres de hauteur et 20 à 25 cm de diamètre. Ondulations très développées et profondes chez un seul spécimen, peu marquéeSchez les autres. Latilamination peu visible. Localement, fine granulation en surface.

∕150 - 1⁄1 -

CARACTERES INTERNES

Coupe verticale.

Latilamination présente dans tous les spécimens mais plus ou moins développée; en zones larges de 2 à 8 mm; chez certains spécimens (AF 76 D 83/4) zones de croissance successives séparées par de petites intercalations lenticulaires de sédiment et débutant par une épithèque basale formée d'un tissu très irrégulier, plus aéré et plus sombre que le reste du coenosteum. Structure coenostéale réticulée, aux éléments verticaux toutefois mieux différenciés, surtout vers le sommet des latilaminae. Eléments horizontaux réduits le plus souvent à quelques coenostromes mal définis, irréguliers, épais de 150 µm parfois plus (jusqu'à 300 µm), et à des dissépiments localement assez nombreux (jusqu'à 6 ou 7 sur 1 mm) et plus ou moins continus latéralement.

- Eléments verticaux mieux exprimés que les éléments horizontaux, représentés par des coenostèles épais de 100 à 200 µm, parfois plus, plus ou moins distincts selon les spécimens et généralement mieux individualisés à la partie supérieure des latilaminae; au nombre de 12 à 15 sur 5 mm; localement en contact les uns avec les autres.
 de petité taille, souvent inférieure a celle des eléments coencibeiana
- - Astrorhizes généralement très peu développées; quelques canaux atteignant 300 um de diamètre, recoupés de rares dissépiments; chez certains spécimens (AF 76 D 83/4), canaux astrorhizaux plus nombreux dans l'épithèque **basente** à la base des latilaminae.

<u>Coupe tangentielle</u>. Structure rétieurée, parfois très <u>compacte</u>, localement vermieulée, aux éléments épais de 120 à 150 µm; ouvertures irrégulières, méandriformes ou parfois circulaires, larges de 90 à 150 µm ou plus.

Pas de traces d'astrorhizes.

MICROSTRUCTURE.

K- Cellulaire à mélanosphérique, dans les endroits les mieux conservés;
 ailleurs, aspect irrégulièrement compact.
 N.B. Huit des onzes échantillons présentent des tubes de Caunopore. Pour la plupart
 Autor diamètre varie de 450 à 500 µm, and une époissent des passis, de l'ordre de

the paris atterprent emission

60 µm; dans l'échantillon AF 76 BS 9/3 les tubes sont un peu plus petits (360 et 390 µm) et é parois plus épaisses (90 µm). de dismôtre) DISCUSSION.

151

d'épaisseur anvian

12 -

Par leurs caractères structuraux et microstructuraux ces spécimens afghans appartiennent au genre Stromatopora GOLDFUSS, 1926, bien que certains d'entre eux, dépourvus de tubes de Caunopores (AF 76 D 76/3), évoquent, par leur structure coenostéale d'aspect plus réticulée, le genre Ferestromatopora YAVORSKY, 1955 que certains auteurs (K.Mori, 1970, p. 121) considèrent comme synonyme deStromatopora

Spécifiquement, ils correspondent bien à Stromatopora hipschii (BARGATZKY, 1881a). Par rapport au type, figuré par M. Lecompte (1952, pl. LII, fig. 2), ils possèdent des éléments verticaux très légèrement plus épais et un peu moins continus. Le matériel décrit présente toutefois une assez grande variation dans l'allure générale du tissu coenostéal, avec des spécimens à structure essentiellement réticulée (AF 76 D 76/3) et d'autres où les coenostèles sont mieux exprimés, au moins localement, (AF 76 D 83/4).

L'orientation des lames pourrait expliquer, mais en partie seulement, cette variation. Il me semble toutefois arbitraire de tenter une subdivision car les formes intermédiaires existent. M. Lecompte (1952, p. 269) signale d'ailleurs une certaine variation dans l'ensemble du matériel type. Les échantillons afghans entrent, à mon avis, sans problème dans la marge de variation de l'espèce.

Ils sont aussi assez proches d'autres formes afghanes que j'ai rapportées à S. concentrica GOLDFUSS, 1826. Les trois spécimens dépourvus de tubes de Caunopores présentent en particulier de grandes ressemblances avec cette espèce et j'ai hésité avant de les placer dans l'une plutôt que dans l'autre des deux espèces. Ils s'en diffèrencient toutefois par leurs éléments verticaux un peu moins épais et moins continus, leurs éléments horizontaux plus souvent réduits à des dissépiments et, peut être aussi, par la tendance plus marquée au développement de tubes pseudozooïdaux.

Les spécimens décrits et figurés par B. H. G. Sleumer (1968), sous le nom de S. cf. huepschii montrent une très grande variation dans la densité des éléments coenostéaux (fig.), une partie de ce matériel espagnol se situe, à mon avis, hors des limites de l'espèce; par contre certaines formes que B. H. G. Sleumer rattache à S. concentrica GOLDFUSS, 1826 me semblent appartenir à S. huepschii (B. Mistiaen 1980, p.208). Les formes décrites par N.R. Fischbuch (1969), sous le nom de S. huepschii, possèdent des tubes pseudozooïdaux bien développés et pourraient appartenir au genre Salairella KUALFINA, 1960, peut être à S. bacheliensis (BARGATZKY, 1881a). C.W. Stearn (1983) décrit et figure, sous le nom de S. cf. hupschii, des formes qui, à mon avis, diffèrent sensiblement de l'espèce par leurs éléments un peu plus épais, la prédominence des éléments horizontaux et la rareté des dissépiments (fig.).

t.r

știm

ى تىلار

by W Juit

	COENOSTROMES							COENOSTELES								AUTRES
•	Nombre sur 5 mm Epais					Epaisseur	aisseur Nombre sur 5 mm Epaisseu:								DOMINANTS	CARACTERE S
S. hupschii type de Bargatzky	10		15		20	9	5		10		1	5		0 120- 180سیر	pili ers	nombreux dissépiments
este du matériel Matériel-type																
h <i>h pechii</i> BARG. travail				T	Π	mىر300–150								mىر100-200	coenostěl	les I
cf. <i>hkpachii</i> B. Ce travail			•			Ą								سىر300 – 150 – 150 –	piliers	forte recristal- lisation
5. hüpschii BARG. ecompte, 1952						60–170µm						•	-+-4	mىر25 0-2 50		nombreux dissépiments
S.cf. <i>huepschii</i> B. Sleumer, 1968						 20-300µm								 nrبر100–500	verticau et horizonta	k 1ux
5. huepschii B. Fischbuch, 1979						9								 mىر200–150	piliers	tubes pseudozooidau
ang & Dong, 1979					+	3		?-							********	
5. hupschii BARC. Mistiaen, 1980						120–150µm		-+-+-			▶ 	╈╼┿	╺┥╍┝╺┝╸	 ۱50 بسر		dissépiments fréquents
6. cf.hupschii B. Stearn, 1983						<u> </u>						T -†.		200-400μπ		rares dissépiments

*.....

103-DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE Le type de S. hapschii provient du Givétien de Allemagne, région de Buche Allemagne). L'espèce a été signalée en particulier dans: - dems le Dévonien moyen d'Angleterre, d'Allemagne, d'Espagne, d'Italie, deet de la province du Belgique, d'u.R.S.S.; d'Australie; des le givétien de maine dens la partie supérieure du Dévonien moyen de maine (Yunnan oriental Guangxi (Chu)) - dans le Frasnien de Belgiquel Barrin de Dinan J. Belgique). - Les spécimens afghans proviennent : - coupe de Dewal: + partie inférieure de la Formation de Dewal, Givétien 🔏 Stringocéphales (D. Brice & B. Mistiaen, 1980); - coupe de Bokan Sud: # base de la Formation de ,Givétien ?; - coupe de Taktakay: # Formation gréso-dolomitique de Qutun, + Dévonien moyen (Eifélien ?). du bassin du (- strun le Dévonien moyen " (au sens russe du 'reme) d'Het. Kuznetskett Öural méridional (U.R.S.S.); (- Amole Givitien (horigani Indespinifie) du bassin du des le "Dévouven moyen" (= en réalité Dévouven n'éven-lase de la résin de Bullant Victoria oriente (Australie); (Vintoria oriental : ce'ara de Bullant de la victoria oriental (Australie); le Dévouien, des U.S.A. (Californie : Mt Klamath). des Honto Klamathey Californie (U.S.A.).

Stromatopora sp. cf. S. hupschii (BARGATZKY, 1881c).

- 91 -
Stromatopora sp. cf. S. htpschii (BARGATZKY, 1881a). Pl. XII Iz 7-9.

16

partim #1881a - Caunopora hüpschii n. sp. - Bargatzky A., p. 62.

MATERIEL

DESCRIPTION

CARACTERES EXTERNES.

Fragments de coenostea tabulaires à massifs, pouvant atteindre une dizaine de centimètres de hauteur et une quinzaine de centimètres de diamètre. Ondulations coenostéales plus ou moins développées selon les spécimens mais généralement assez faible. Latilamination peu épaisse (quelques mm.) visible localement.

CARACTERES INTERNES.

Coupe verticale

Structure coenostéale très dense, réticulée ou plus régulière à éléments verticaux dominants; fortes ondulations dans certains spécimens.

Latilamination plus ou moins visible selon les spécimens, généralement peu exprimée, en bandes épaisses de 5 à 8 mm en moyenne, présentant une structure plus rétienlée à la base, plus régulière au sommet.

<u>Eléments horizontaux</u> peu marqués, voire inexistants, réduits parfois à quelques jonctions entre les piliers ou, plus souvent, à des microlaminae (ou des fissures ?) assez continues; 12 à 15 microlaminae sur 5 mm, mais parfois plus (localement microlaminae distantes de 120 µm).

Piliers assez régulièrement développés, surtout dans les zones supérieures des latilaminae; épais de 150 à 250-300 µm et presque accollés les uns aux autres; souvent mieux individualisés au sommet des latilaminae et en nombre assez variable : 11 à 17 sur 5 mm (14 ou 15 en moyenne).

Espaces coenestéaux plutôt allongés verticalement entre les piliers et souvent très réduits (60 µm), parfois inexistants et représentés par une fissure ou une simple concentration de granules sombres qui limite deux piliers voisins.

Pas d'astrorhizes visibles

Coupe tangentielle.

S. J. Defelii revoi Synighten beforen Steer 1963, p. 12-13 Employ op Klove 1566 p 28 --in redt.

Structure réticulée à compacte, localement ponctuée, aux éléments atteignant 300 µm de diamètre.

156

MICROSTRUCTURE

Fortement modifiée par le recristallisation qui affecte tous les spécimens, plutic Très localement, aspect apparenment mélanosphérique ou cellulaire, parfois microréticulée. Microlaminae (ou fissures ?).

<u>N.B</u>. Trois des cinq spécimens décrits sont traversés de tubes de Caunopores, aux 4---- parois épaisses de 45 µm ou moins et atteignant 400 à 500 µm de diamètre.

DISCUSSION.

Par leurs caractères structuraux et ce qui est encore discernable de leur microstructure, ces spécimens appartiennent, à mon avis, au genre *Stromatopora* GOLDFUSS, 1826.

Ils ne possèdent pas les longs éléments verticaux continus des genres Syringostroma NICHOLSON, 1875 et Taleastroma GALLOWAY, 1957 Ils rappelent beaucoup les formes décrites par C.W. Stearn (1962, 1963) sous le nom de Taleastroma ? confertum puis de Syringostroma ? confertum (C.W. Stearn, 1966b, 1968) et considérées par la suite (P.K. Birkhead et J.W. Murray, 1970; C.W. Stearn. 1975) comme résultant de modifications diagénétiques affectant des stromatopores appartenant à des genres très différents : Stromatopora, Stachyodes, tefois C. Stock Trupetostroma, Syringostroma, Parallelopora, Actinostroma ... Ter (1982, p. 675), sur la base des dimensions des éléments coenosteaux, considère ? Syringostroma confertum comme une espèce valide. La densité en éléments verticaux les seuls que l'on puisse raisonnablement compter - 🧤 observée dans les échantillons afghans - diffère assez nettement des densités fournies par différents auteurs pour S. ? confertum et en particulier de celle du paratype, relevée par C. Stock, (1982), l'holotype étant totalement recristallisé (fig. 1985). Cette constatation renforce bien l'idée que "l'aspect confertum" est dû à la diagénèse et ne permet pas de rattacher les spécimens afghans à l'espèce S. ? confertum. La densité en éléments verticaux des spécimens étudiés est volsine de celle des spécimens précédemment rattachés à Stromatopora hipschii (BARGATZKY, 1881a) dont ils me semblent très proches; la présence de tubes de Caunopores, si elle ne "constituer un argument, sufficant ne s'oppose pas, bien au contraire, à une telle hypothèse. La différence essentielle entre ces spécimens et S. hupschii réside dans la régularité beaucoup plus marquée de faistructure coenostéale; la recristallisation, accompagnée d'un épaississement diagénétique des piliers au détriment de la calcite spathique des galeries (R. Riding, 1974, p. 146; C.W. Stearn, 1975, p. 1645) pourrait expliquer cet aspect plus régulier. Il convient en outre de souligner que certains des spécimens que j'ai rattachés à S. hupschii (AF 76 D 70/2) montrent aussi, mais localement, dans des zones recristallisées, un aspect comparable à celui observé chez les spécimens décrits ici.F

0 19

															_					C	OEN	osi	TEL	28							 	_	 	•	Nombre
		<u> </u>										-		Nor	nbr	e	8 U	r	5	धवा	۱										 		 	Epaisseur	aminae
Taleastrom ?	ľ	1	Π	1	15	1	T	1						6.	$\overline{}$			r.		, 	T	Ì	35		Γ	Π		-4	Ť	1	43	1		150 200	<u>sur 5 m</u>
Confertum n.sp. Stearn, 1962 b						-			\ 			₩ ₩	()) # 1		-				- 	 ar	 aty 	 pe !	 cf.	 s	 too	 :k, 	19	 82: 	-					80-240µm mī = 130µm	
^r .?confertum S T . Stearn, 1963																																		mىر 300	
Syringostroma ? Confertum (ST) Stearn, 1966 b																						T							T					mىر 200	
Syringostroma ? BP. Klovan,1966									T														-	-										250–400µu	,
Actinostroma Papillosum(BARG) Birkhead et Murray, 1970																																		120-280 m = 170μm	n n
Syringostroma? Confertum (ST) Fischbuch, 1970b																•																		بىر250–50	32,5-4
? Syringostroma Confertum (SV) Stock, 1982						T							<u> </u>					T 	Ì															80-330µr m = 170µr	
Stromatopora cf. hupschii (BARG.) ce travail		•				,,,		T		Γ																								50 - 300µı	n 12-15

À57

il semble que

Ainsi, dans la coupe de Dewal (niveaux D 68 à D 83) fon observe une variation progressive de l'état de conservation des échantillons; les niveaux inférieurs (D 83, 81, 76, 75, 73) seraient mieux conservés que les niveaux supérieurs (D 69, 68).

en Velton

157

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION GEOGRAPHIQUE.

Les spécimens afghans proviennent tous de la coupe de Dewal, partie inférieure de la Formation de Dewal, Givétien.

Salairella KHALFINA, 1960 d.

Espèce-type : Salairella multicea KHALFINA, 1960 d.

DIAGNOSE :

Structure coenostéale dominée par de longs coenostèles continus, réguliers ou légèrement contournés, délimitant entre eux des "tubes pseudozooïdaux" bien développés. En coupe tangentielle, structure rétrévuée aux vides subcirculaires. Microstructure cellulaire, mélanosphérique ou microréticulée.

DISCUSSION:

A surfering age Salairella b**#**cheliensis (BARGATZKY, 1881a) Pl. XII, fiz. 10-12; pexill, f.s. 1. * 1881a – Caunopora bücheliensis n. sp. – Bargatzky A., p. 62. 1886b - Stromatopora bücheliensis Barg. sp. - Nicholson H.A., p. 23, p1. X, fig. 5-7. 1968 - Caunopora bücheliensis BARGATZKY. - Flügel E. & Flügel-Kahler E., p. 53-54 (evec liste synonymique depuis 1886). 21969 - Stromatopora hvepschii (BARATZKY). - Fischbuch N.R., p. 174, pl. VI, fig. 1-5+~ LECTO TYPE i Spécimen de A.Barga te ky 6.375, fizuré far A. Lecompte (1352, pl. L, fiz. 3-3a). Institut de MATERIEL. MATERIEL. 3 spécimens (dont 1 douteux) - 4 lames - 6 sections. AF 75 Ba 11/2 AF 75 Ba 11/13 ? AF 75 Ba 11/26 DESCRIPTION 9 CARRCTERES EXTERNES

Fragments de coenostea de petite taille, lamellaires, atteignant au maximum 2 cm de hauteur. Latilamination visible localement.

CARACTERES INTERNES

Coupe verticale

Structure coenostéale réticulée, marquée par la prédominance des éléments verticaux.

) Latilamination quasi

Eléments horizontaux réduits à quelques rares <u>coenostromes</u> d'épaisseur très variable (60-300 µm) ou à des dissépiments plus ou moins continus et prenant localement l'allure de microlaminae; au nombre d'une dizaine sur 5 mm.

<u>Coenostèles</u> bien développés, droits ou légèrement tortueux, atteignant parfois 3 à 5 mm de longueur; épais de 150 à 200 µm, parfois moins; 15 à 19 sur 5 mm (16 ou 17 en moyenne).

Espaces coenostéaux formés de chambres arrondies, atteignant 120 à 150 juin de diamètre, ou allongées verticalement et très souvent réunies entre elles pour former des tubes pseudozooïdaux mais communiquant rarement latéralement.

Pas d'astrorhizes visibles

Coupe tangentielle.

Structure réticulée à vermiculée, aux éléments coenostéaux larges en moyenne de 150 à 200 µm; vides arrondis ou méandriformes. Pas d'astrorhizes visibles.

MICROSTRUCTURE.

E-Tissu typiquement cellulaire à microréticulé, localement mélanosphérique. N.B. Le coenosteum est traversé de nombreux tubes de Launopores dont la lumière atteint 600 µm de diamètre et les parois 60 à 80 µm d'épaisseur en moyenne. Ces tubes presentent souvent de nombreux planchers (jusqu'à 6 ou 7 sur 5 mm) concaves ou même infundibuliformes. Ils montrent aussi des ramifications latérales sous forme de tubes horizontaux dont le diamètre intérieur ne dépasse guère 180 µm.

17 .

DISCUSSION.

Par leur caractères structuraux (prédominance de coenostèles longs et réguliers) et microstructuraux, ces spécimens se rattachent typiquement au genre Salairella KHALFINA, 1960.

Je les rapporte à l'espèce S. bücheliensis (BARGATZKY, 1881a) ils en possèdent les longs coenostèles très continus de densité comparable quoique très légèrement plus élevée, 15 à 19 sur 5 mm au lieu de 14 à 15 chez le type (fig. J. A. Fagerstrom (1982, p. 18) assigne au genre Syringostroma NICHOLSON, 1875 (- les spécimens que M. Lecompte (1952) rapporte à Parallelopora bücheliensis Cependant les spécimens de M. Lecompte ne possèdent absolument pas les deux types de piliers (piliers longs, épais et continus = "mégapiliers"; piliers courts, réduits à un espace interlaminaire) caractéristiques du genre Syringostroma et se rattachent, à mon avis, parfaitement à l'espèce de A. Bargatzky pu genre Salairella. D'après les données fournies par C.W. Stearn (1983, p. 556), jes spécimens afghans semblent encore assez proches de S. prima KHROMICH, 1971 qui possède des coenostèles en nombre identique mais moins continus et plus minces (120 µm en moyenne contre 150 à 200 µm chez les spécimens afghans).

Ils se différencient quelque peu des formes du Boulonnais que j'ai décrites sous le nom de S. cf. bücheliensis (B. Mistiaen, 1980) par leurs coenostèles un peu et par conséquent leur tubes pseudozooïdaux de diamètre plus réduit, plus épaie ainsi que par leurs dissépiments (microlaminae ?) moins nombreu

de Büchel (Allemagn

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE $(\vartheta$

Le type de S. bucheliensis provient du Givétien de Bienel, Allemagne

- L'espèce a été signalée dans-in partientier dans:
- l'Eifélien d' L. B. G. G. Bassin du Kuznetsk (u. A. S. S) (Belgigne);

Inli - le Couvinse et le fivitien du Betrand (Bassin de Dinent [Berge 177 - le Dévonien moyen d'Europe : Angleterre, Autriche, Belgique, France, Pologne (- le Dévonien inférieur d'Australie) et de Bassin d'Ancenis (France).

Les spécimens afghans proviennent tous de la coupe de Badragha; ils ont été récoltés dans le Membre récifal de Baghalak, Formation des calcaires noirs de Badragha; Givétien.

		Nombre sur 5 mm												Epaisseur
Caunopora bücheliensis type de Bargatzky	10				15				20	Ť		2	5	
Salairella bicheliensis (BARG.) ce travail					┢								T	سر 200 - 150
Stromatopora bücheliensis (BARG.) Nicholson, 1886						Ī			┢					
Parallelopora bücheliensis (BARG.) Lecompte, 1952									T					150 - 200 Jum
Stromatopora cf.bücheliensis (BARG.) Mistisen, 1980					-				-					mu 150 – 100
Salairella prima KHROMICH Stearn, 1983					┢				4					100 - 250 µm m = 120 µm

Fig. 6 - Salairella b#cheliensis (Bargatzky, 1881a). Tableau comparatif de quelques mensurations.

The second

;;

0

ful .**C** 1

KAZ MIERCZAK, 197 = Necosyrin gootiona RETRI YANG & DUNG, 1973 = gligttosta Taleastin Gly EARN 1982. Itco Km Taleastroma GALLOWAY, 1957. : Taleastroma cummingsi GALLOWAY & ST. JEAN, 1957. type Espèce/ a de Startful vert kid calle de ins de Store DIAGNOSE. Structure coenostéale réticulée, traversée par de longs élémente verti-Microstructure mélanosphérique ou cellulaires partie centrale des éléments verticaux prenant souvent un aspect compact et clair d'origine secondaire (diagen de gar nèse). Ru Jet i i gni et DISCUSSION. selon son auteur, Le genre Taleastroma GALLOWAY, 1957 se caractérise par un tissu réticulé traversé par de longs piliers - et non gun des coenostéles - dont la partie centrale est compacte et claire tandis que les bordures possèdent une microstructure mélanosphérique ou cellulaire identique à celle du reste des éléments coenosteaux. Dans sa description, J.J. Galloway (1957, p. 448) parle de "piliers longs et fins, de 0,06 à 0,20 mm de diamètre" toutefois, il inclut dans son genre des espèces comme Taleastroma vitreum GALLOWAY, 1960 ou pachytextum (LECOMPTE, 1952) qui possèdent des piliers nettement plus épais; ils atteignent 0,34 mm chez 7: vitreum (J.J. Galloway 1960, p. 631) et 0,35 mm chez T. pachytextum (Lecompte, 1952, p. 275). Dans la discussion du genre, J.J. Galloway compare Taleastroma à Stromatopora GOLDFUSS, 1826; ce dernier genre se différencie par l'absence de piliers et la 🗅 présence de tubes pseudozooïdaux mieux individualisés. C.W. Stearn, (1980) compare aussi Taleastroma à Stromatopora; seule la présence de longs piliers, chez Taleastroma, différencie les deux genres qui présentent tous deux une structure rétieuree. J.J. Galloway, en 1960 (p. 630), redonne une description du genre et insiste sur la présence de piliers longs et fins, composés de tissu compact avec des bordures "maculate"; cependant il ne reprend pas, comme élément de diagnose du genre, l'aspect clair de la zone centrale compacte des piliers. D'ailleurs, dès 1957 (p. 384-385), l'année où il crée le genre Taleastroma, J. J. Galloway considère que "la partie centrale claire des piliers est de faible valeur systématique bien que la largeur de la zone de couleur claire, ainsi que la largeur du pilier lui-même, puissent cons-tions et les figurations de J.J. Galloway, se rencontre chez certaines espèces T. conicomamillata (GALLOWAY & ST JEAN, 1957), T. vitreum GALLOWAY, 1960, mars pas chez d'autres, T. lenzi GALLOWAY, 1960. L'origine de ces piliers à partie centrale compacte et comme "décolorée" a été longuement discutée, en particulier par C.W. Stearn (1966a, p. 112-113). C.W. Stearn considère ce caractère comme secondaire et pouvant d'ailleurs résulter de différents processus diagénétiques. J'adopte ici entièrement l'opinion de C.W. Stearn

(1966) concernant l'origine diagénétique des zones centrales, claires des longs piliers de Taleastroma. Il **m** semble d'ailleurs que les mêmes modifications diagénétiques s'observent chez d'autres genres, très éloignés de Taleastroma, mais qui possèdent aussi des éléments verticaux épais. Ainsi H.A. Nicholson (1886b-1892; fig. 18, 19; pl. I, fig. 8, 10, 13; pl. XII, fig. 1; pl. XX, fig. 2-3) illustre plusieurs espèces: Actinostroma clathratum NICHOLSON, 1886a, Labechia conferta (LONSDALE, 1839), L. serotina NICHOLSON, 1885, qui montrent très nettement dans leurs piliers une zone centrale claire que l'auteur anglais interprète comme un canal axial. J'ai déjà signalé cet aspect (B. Mistiaen, 1980, p. 184, pl. II, fig. 5,6) chez un "Actinostroma" bifarium NICHOLSON, 1886a) du Givétien du Boulonnais (Decenter de 1951, pl. VII, fig. 1) montre d'ailleurs nettement ce même caractère. Je le retrouve encore, dans le matériel afghan, chez un spécimen de Bifariostroma sp. (fig.27; pl. V, fig. 3). C'est, à mon avis, un processus diagénétique analogue qui pourrait dectr les parois de certains Tabulés: Caliapora battersbyi MILNE EDWARDS & HAIME, 1851 Magnotic de Certains Tabulés: Caliapora battersbyi MILNE EDWARDS & HAIME, 1851 Magnotic de Certains Tabulés: Caliapora battersbyi MILNE EDWARDS & HAIME, 1851 Magnotic de Certains

161

En 1979, J. Yang et D. Dong créent le genre *Glyptostroma*. Ils le comparent à *Taleastroma*. Les caractères retenus par les auteurs chinois pour différencier les deux genres sont assez minimes:

Taleastroma	Glyptostroma
Petits piliers épais.	Petits piliers grêles. Absence de petits piliers épais.
Tubes pseudozooïdaux incomplets	Absence de tubes pseudozooïdaux incomplets

Il ne me semble pas que l'épaisseur des piliers puisse constituer un caractère générique valide; par ailleurs, le degré de développement des tubes pseudozooidaux est un caractère difficile à saisir.

Il convient en outre de rappeler que l'espèce-type choisie par J. Yang et D. Dong pour *Glyptostroma* rend ce genre invalide (19.5). Les auteurs chinois se basent en effet sur un Stromatopore entrifié par V.I. Yavorsky (1955, pl. LVI, fig. 1-2) sous le nom de *Stromatopore beuthii*

(BARGATZKY, 1881a); or les spécimens types de "S" beuthii de A. Bargatzky appartiennent au genre Hermatostroma NICHOLSON, 1886b (Lecompte, 1952, p. 253; cw Stærn, 1366b, p. 108 1997, p. 553) En 1980, C. W. Stearn (1898-899), discute de ce problème et propose de considérer Glyptostroma X comme un synonyme plus jeune de Taleastroma.

> En 1983, C.W. Stearn examine à nouveau la question et propose le genre Glyptostromoldes, nom nouveau pour Glyptostroma, avec comme espèce type G. simplex (YANG & DONG, 1979). La diagnose du genre reste essentiellement celle donnée par les auteurs chinois. Toutefois C.W. Stearn parle de longs coenostéles continus et non plus de piliers. Or les figurations de certaines espèces rattachées au genre montrent fréquemment, en coupe tangentielle, des sections subcirculaires de piliers relativement bien individualisées et plus ou moins isolées du reste du tissu coenostéal. C'est le cas de "Glyptostroma" sinense YANG & DONG 1979 (J. Yang et D. Dong 1979, pl. 36, fig. 2), de "G." pachytextum YANG & DONG, 1979 (ibid., fig. 4). Cependant chez d'autres espèces "G." simplex YANG & DONG, 1979 (ibid., pl. 35, fig. 6; C.W. Stearn, 1983, fig. 6c), "G." boiarshinovi (YAVORSKY, 1955) (V.I. Yavorsky, 1955, pl. XXV, fig. 4-5; J. Yang et D. Dong, 1979, pl. 36, fig. 6), "G." oblique YANG & DONG, 1979 (J. Yang et D. Dong, 1979, pl. 35, fig. 8), "G." liujingense YANG & DONG (ibid., pl. 36, fig. 8), ces sections circulaires sont moins nettes, voire inexistantes; en coupe tangentielle, on observe une structure reticules ("amalgamate network" des auteurs de langue anglaise).

Il semble donc que les longs éléments verticaux caractéristiques du genre sont, selon les cas, bien individualisés ou plus ou moins intégrés au reste du tissu coenostéal et peuvent être considérés, tantôt comme des piliers, tantôt comme des coenostèles.

Par ailleurs C.W. Stearn, toujours en 1983, signale que les chambres des galeries sont rarement superposées pour former des tubes pseudozooïdaux; la distinction entre *Glyptostromoîdes* (ex *Glyptostroma*) et *Taleastroma* basée sur le degré de développement des tubes pseudozooïdaux apparaît donc à nouveau délicate à établir. Enfin C.W. Stearn compare, pur aussi, *Glyptostromoîdes* à *Taleastroma* et laisse entendre que le seul caractère distinctif serait la présence de piliers à centres clairs chez *Taleastroma*. Deux constatations peuvent être faites:

Q

partie centrale claire

Q

- Si cette décoloration est essentiellement d'origine diagénétique (C.W. Stearn, 1966), elle ne peut être retenue comme critère générique;

/**5**7

Plusieurs espèces chinoises de "Glyptostroma" ("G." sinense, "G" pachytextum) décrites par J. Yang et D. Dong en 1979 possè dent manifestement des piliers avec une zone centrale nettement plus claire, tant en coupe verticale que tangentielle. De plus, l'axe de ces piliers est parfois occupé par une fine ligne sombre en coupe verticale - un point sombre en coupe tangentielle - . (Cet aspect est tout à fait identique à celui précédemment signalé chez "Actinos-troma" bifarium). La présence de piliers à centres clairs ne permet donc pas de différencier Glyptostromoïdes de Taleastroma.

En définitive, je retiens l'opinion exprimée par C.W. Stearn en 1980 et considère le genre *Glyptostroma* - et par conséquent *Glyptostromoîdes* comme synonyme du genre *Taleastroma*.

Un dernier point reste à préciser. J. Yang et D. Dong, en 1979, ont décrit et figuré une nouvelle espèce sous le nom de *Glyptostroma pachytextum*; en fonction de ce qui a été dit précédemment je considère que cette espèce est à rattacher au genre Taleastroma; or Stromatopora pachytexta LECOMPTE, 1952 a déjà été réattribué au genre Taleastroma (J. J. Galloway, 1957; J. St. Jean, 1960; C. W. Stearn, 1966: P. K. Birkhead, 1967; J. Yang et D. Dong, 1979). L'espèce chinoise doit donc être renommée.

de <u>Glyptostroma</u>

Lors de la création, les auteurs chinois incluent aussi dans leur nouveau genre une espèce américaine, Hermatostroma logansportense GALLOWAY et ST JEAN, 1957. Or J. Kazmierczak, dans un travail antérieur (1971, p. 117), ayazz fondé le genre Neosyringostroma avec, comme espèce type, N. logansportense dont il a examiné l'holotype. De plus, J. Kazmierczak inclut dans la synonymie de l'espèce une partie des spécimens que H.A. Nicholson (1886b-1891b) attribue à Stromatopora beuthii BARGATZKY, 1881a, ainsi que le matériel rapporté par V.I. Yavorsky à la même espèce en 1951 et 1955 et qu'il a observé; or, c'est sur ce matériel, rappelons le, que J. Yang et D. Dong s'appuyent pour créer leur genre Glyptostroma Pour son auteur, le genre Neosyringostroma se caractérise par ses "laminae planes ou irrégulièrement ondulées, à microstructure réticulée, recoupées par de longs piliers en colonne, à microstructure homogène ou trabéculaire,...(des) dissépiments rares ou absents". Dans sa discussion, J. Kazmierczak ne compare son nouveau genre qu'à des genres qui possèdent aussi une microstructure de type cellulaire, microréticulée ou mélanosphérique; il met l'accent sur la présence de piliers "en colonne" caractérisés par une microstructure de type microréticulée à leur périphérie passant à une microstructure de type homogène (compacte) en leur centre. C.W. Stearn (1980) dans la classification qu'il propose des Stromatopores_du Paléozoïque ne prend pas en considération la microstructure; il émet l'hypothèse que le même type de microstructure aurait pu apparaître indépendamment chez diffé-

-ailleurs assez rents groupes de Stromatopores. C.W. Stearn modifie fortement la compréhension du genre Neosyringostroma en considérant que le caractère fondamental réside dans la présence de laminae ondulées - identiques, bien que plus épaisses, à celles du genre Ecclimadictyon NESTOR, 1964 - traversées par de longs piliers circulaires. Il propose de regrouper ces deux genres, ainsi que les genres Actinodictyon PARKS 1909, Neobeatricea RUKHIN, 1938 et Plexodictyon NESTOR, 1966, dans la nouvelle famille des Ecclimadictyidae STEARN, 1980 qui se caractérise essentiellement par la présence de laminae ondulées en chevrons ou/zig-zag, s'anastomosant régulièrement. Dans le spécimen de l'espèce-type provenant de Pologne, figuré par J. Kazmierczak 🔨 (1971, pl. XXXII, fig. 1 / a), ce caractère est assez⁴marqué; il l'est un peu moins dans la figuration du type (J.J. Galloway et J. St Jean, 1957, pl. 21, fig. 2a); > enfin chez le "Stromatopora" beuthij-figuré par H.A. Nicholson (1886b, pl. V, 4) fig. 13), les laminae sont quasi inexistantes, laissant la place à des dissépiments. De plus chez d'autres espèces que J. Kazmierczak rapporte à son nouveau genre Neosyringostroma, les laminae ne présentent pas du tout cet aspect en chevron; ainsi chez "Syringostroma" hifunou <u>1962 (pl. V, fig. 4-5; pl. VI, fig. 1)</u> sont de fines lignes sombres ... mar definies ... traversant les s"; de même chez "Parallelopora" urazovensis YAVORSKY, pili **9**63 (p1. XX, ne apparaissent tres fines et absolument pas ndulées. Il fig. donc que Neosyringostroma emendre sensi a fasta 1980 ne peut semble regrouper toutes les espèces originellement places dans le genre par son auteur. Par ailleurs, J. Yang et D. Dong 1979, incluent dans leur genre "Glyptostroma" que je considire comme synonyme de Taleastroma - outre "G" beuthii les espèces

- 26 -

suivantes : Stromatopora pseudotyrganica KHALFINA, 1960 et Stromatopora boi arschinovi YAVORSKY 1961, que J. Kazmierczak place, quant à lui, dans son genre Neosyringostroma.

relevour

h ch hilita

.w. stea

Neosyringostroma sensu J. Kazniczak, 1971 présente donc de grandes ressemblances avec le genre Taleastroma; selon son auteur (1971, p. 117) Neosyringostroma diffère de Taleastroma par la prégence de piliers en colonnes et d'une microstructure reticulée du squelette entre les piliers". J. Kazmierczak considère (1971, p. 105) que Taleastroma possède aussi des piliers ou des coenostèles fortement développées mais il semblerait que **empré**, pour J. Kazmierczak, **true Neosyringostroma se caractérise par la présente de longs éléments verticaux mieux** individualisés que chez Taleastroma (cf. J. Kazmierczak, 1971, fig. 10 A 3 et 18 f).

Je considère dans ce travail que *Neosyringostroma* est un synonyme plus jeune de *Taleastroma*.

good discussion

HE TAL 2 Jévé Takastroma sp. d. T. July here You to To Pl. XIII, frz. 2-P. Orgen a name. cf. * 1979 - Glyptostroma pachytextum gen. et sp. nov. - Yang J. & Dong D., p. 66, pl. 36, fig. 3-4 non 1952 - Stromatopora pachytexta nov. sp. - Lecompte M., p. 273, pl. LIV, fig. 6, pl. LV, fig. 1-2

MATERIEL (2 spécimens - 3 lames - 6 sections) AF 75 BS 5/3 AF 75 BS 5/4

DESCRIPTION.

CARACTERES EXTERNES

Fragments de coenostea lamellaires à tabulaires, hauts de quelques centimètres et atteignant 8 à 10 cm de diamètre. Surface granuleuse, avec traces d'un réseau rétriculé très lâche.

CARACTERES INTERNES

<u>Coupe verticale</u> Structure coenostéale téticulée dominée par les éléments verticaux, sans

he Julie

latilamination visible.

••*[**

9

<u>Coenostromes</u> assez irréguliers, épais de 150 à 300 µ ou un peu plus, localement discontinus (mais cet aspect peut être dû à la recristallisation importante et à la dolomitisation qui affecte les échantillons; densité évaluée à 8 w sur 5 mm. Eléments verticaux surtout représentés par de longs <u>piliers</u>, continus sur parfois plus de 1 cm, distribués à raison de 6 - rarement 7 - sur 5 mm, épais de 300 à 450 µm; entre ces longs piliers, de rares coenostèles.

Chambres des espaces coenosteaux hautes de 600 à 900 µm, souvent plus larges que hautes et généralement reliées entre elles au moins apparemment, ce dernier caractère pouvant être dû à la recristallisation.

Pas d'astrorhizes visibles.

<u>Coupe tangentielle</u> venniforme

Structure le plus souvent vermiculée, localement ponctuée ou réticulée; sections de piliers ovales ou arrondies, atteignant 350 à 400 pm de diamètre, au Cy nombre de 16 à 20 sur 10 mm².

Fig. \$ - Dessin, d'après lames minces, des piliers de Taleastroma sp.
à large zone centrale, claire, recristallisée. Comparez aux figures
(x et(y), représentant des aspects diagénétiques vraisemblablement analogues chez Caliapora battersbyi MILNE EDWARDS & HAIME, 1881 (fig. \$\scil>\$) et chez Favosites sp. (fig. \$\scil>\$)
9a - lame mince AF 75 BS 5/4 b 9b - lame mince AF 75 BS 5/3 \$\scil>\$ détails
9c - lame mince AF 75 BS 5/4a : aspect général.

MICROSTRUCTURE.

Zone axiale des piliers de couleur plus claire, présentant un aspect homogène, nettement dû, localement, à la recristallisation, zone périphérique des piliers et reste des éléments coenostéaux plus sombres, spongieux ou vaguement mélanosphériques.

DISCUSSION.

Ces spécimens appartiennent typiquement au genre Taleastroma GALLOWAY, 1957.

Spécifiquement, ils me semblent très proches des formes chinoises décrites par J. Yang et D. Dong (1979) sous le nom de *Glyptostroma pachytextum*; ils présentent la même allure, la même densité en éléments de taille comparable. Si, comme je le pense, le genre *Glyptostroma* doit être considéré comme un synonyme du genre *Taleastroma*, l'espèce chinoise doit être renommée; le p. de l'espèce Mulle Faleur yous dencri. Repire

Les spécimens afghans étant mal conservés et la recristallisation qui les affecte ne permettant pas d'effectuer des observations et des mesures précises, je les rapporte avec une légère réserve à l'espèce chinoise.

Ils rappellent encore *T. pachytextum* (LECOMPTE, 1952) et *T. vitreum* GALLOWAY, 1960 - deux espèces assez proches l'une de l'autre, à éléments coenostéaux relativement peu nombreux et épais - mais ici la densité en éléments coenostéaux est encore un peu plus faible et l'épaisseur moyenne des piliers est nettement supérieure.

Ils évoquent aussi *T. sinense* (YANG of DONG, 1979) mais chez cette dernière espèce les éléments verticaux sont encore plus épais, atteignant 500 à 600 jum en A moyenne.

Ils se distinguent enfin nettement de *T. cumingsi* (GALLOWAY & ST JEAN, 1957) l'espèce-type du genre, qui possède des piliers beaucoup plus minces et nettement plus nombreux.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel type de T. Jandachyt/hour acres provient du Dévonien moyen de Chine (Mingtong Formation), Angling de Chine (Chine) (Chine)

Les spécimens afghans proviennent tous de la coupe de lokan Sud; ils ont Eté récoltés au sommet de la Formation quartzitique du Col Rouge; (Dévonien moyen ?).

- se -

Taleastroma boiarschinovi (YAVORSKY, 1961).

- 25 ·

P1.
$$\chi_{1/1}$$
, fig. $g = 10$
xiv f_{15} 1-9

★ 1961 - Stromatopora boiarschinovi sp. nov. - Yavorsky V. I., p. 42, pl. XXV, fig. 3-5.

1971 - ? Neosyringostroma boiarschinovi (YAVORSKY). - Kazmierczak J., p. 118.

1979 - Glyptostroma boiarschinovi (YAVORSKY). - Yang J. & Dong D, p. 67, pl. 36, fig. 5-6.

1983 - Glyptostromoides boiarschinovi (YAVORSKY). - Stearn C.W., p. 555.

MATERIEL. 16 spécimens - 29 lames - 36 sections. AF 75 Ba 11/4; /11; /16; /17; /21; /22; /28; /29 Carped Bard AF 76 BS 7/3; /4 Carped Davel AF 76 D 94/3 Carped Fath ? |AF 76 K 13/8 Matériel de R. Desparmet : carpede Ghoujeck. Charaghan AF-0C 73 AF-0C 75 Q 6

- AF-0C 76
- AF-OC 194

DESCRIPTION.

CARACTERES EXTERNES.

Fragments de coenostea souvent lamellaires, hauts de quelques centimètres, présentant parfois quelques larges ondulations; coenostea parfois tabulaires ou plus rarement massifs et pouyant atteindre alors une duinzaine de centimètres de diamètre. Quelques mamelons visibles chez certains spécimens, hauts de 2 mm environ et distants de 8 mm à 1 cm. Faible latilamination plus ou moins visible selon les A spécimens. Surface supérieure localement finement granuleuse avec quelques traces de canaux astrorhizaux.

CARACTERES INTERNES.

Coupe verticale.

Latilaminae plus ou moins marquées selon les spécimens, larges de 4 à 6 mm, constituées par une zone inférieure à structure réticulée occupant environ les trois quarts, ou plus, de la latilamina, et par une zone supérieure beaucoup plus réduite et ne dépassant guère un millimètre d'épaisseur, généralement un peu plus sombre, aux éléments verticaux plus réguliers et plus serrés.

Longs piliers épais de 300 à 350 µm, parfois plus (420 µm), pouvant traverser l'ensemble de la structure coenostéale et visibles parfois sur plus de 5 mm (fig. AF 76 BS 7/4); généralement distant de 2 à 3 mm ou plus, parfois plus rapprochés chez certains spécimens et atteignant alors la densité de 6 à 7 sur 5 mm (fig. AF 76 B/a 11/21) ou au contraire peu développés chez d'autres (AF 76 BS 7/3, AF 76 K 13/8), mais cette impression pourrait n'être que le résultat d'une mauvaise orientation des sections ((is. 21 b).

Bandes inférieures réticulées des latilaminae essentiellement constituées de <u>coenostromes</u> irréguliers épais de 150 µm en moyenne; localement, on peut évaluer leur densité à 13 à 15 environ sur 5 mm; <u>coenostèles</u> très peu développés; <u>espaces</u> <u>coenostéaux</u> aux chambres parfois arrondies, plus souvent irrégulières et tortueuses, allongées horizontalement sur 2 à 3 mm et hautes de 150 à 250 µm; rares dissépiments horizontaux ou obliques, plans ou légèrement concaves ou convexes, localement continus.

Partie supérieure des latilaminae à éléments verticaux généralement assez bien individualisés, épais de 200 à 300 µm; 12 à 14 sur 5 mm; réunis ou traversés par des <u>éléments horizontaux</u> parfois réduits à des microlaminae épaisses d'une vingtaine de microns et distantes de 150 à 250 µm; <u>chambres coenostéales</u> arrondies et souvent superposées (ébauches de tubes pseudozooïdaux), séparés par des dissépiments localement continus et plus nombreux que dans la partie inférieure des latilaminae.

Astrorhizes rarement visibles; canaux centraux atteignant 300 à 400 jum de diamètre, recoupés de dissépiments légèrement convexes et assez nombreux; canaux latéraux vite confondus avec les espaces coenostéaux (fig. 44).

Coupe tangentielle.

Structure généralement réticulée, aux éléments méandriformes épais de 150 à 200 µm; localement, structure plus dense, avec des ouvertures circulaires larges de 200 µm; ailleurs, sections arrondies de piliers atteignant 350 à 400 µm de diamètre (fig.**%**, AF 75 Ba 11/17a).

MICROSTRUCTURE.

Variable selon les spécimens ou les endroits d'une même lame mince; généralement mélanosphérique ou cellulaire, avec des mélanosphères ou des cellules atteignant 30 µm de diamètre; parfois aspect plus homogène (compact). En coupe verticale, partie inférieure des latilaminae à microstructure plus souvent cellulaire, partie supérieure à microstructure d'aspect plus homogène. Gros piliers continus avec une zone centrale compacte parfois plus sombre et une zone périphérique nettement cellulaire {ou mélanosphérique}, fig de et 15 per caractère très

Taleastroma boiarschinovi (YAVORSKY, 1961). Dessin, d'après la lame mince AF 75 BS 7/4. Coupe verticale. Structure réticulée avec de longs piliers (P) continus traversant les limites des latilaminae (P). Eléments verticaux mieux exprimés au sommet des latilaminae (zone plus sombre).

ì

accentué chez certains spécimens (AF 75 Ba 11/4; 16; 17) l'est beaucoup moins chez d'autres (AF 75 Ba 11/11; 21; 28; 29; AF 76 BS 7/3; 4; AF OC 7506) AF OC 76). <u> P_{a} , </u>

- 40 -

ドミン

the tules

14.16. Ceux-ci sont parfois limités à une latilamina, mais parfois, lorsque les tubes de Caunopores s'arrêtent, il semble que ce soit, au moins dans certains échantillons, plutôt préférentiellement à la limite entre les deux zones constituant une latilamina (AF 75 Ba 11/16). Cependant dans bien des cas les tubes de Caunopores se poursuivent d'une latilamina à la suivante sans aucune modification apparente de leurs caractères (diamètre, épaisseur des parois, orientation du tube ...).

On n'observe pas non plus de modification, tent au^clong de ces tubes, de Gaunopores, soit au-dessus soit en-dessous de la limite des latilaminae (au cas où ces tubes auraient eu une croissance en avance ou en retard par rapport à celle du tissu coenostéal).

La croissance rythmée du Stromatopore ne semble donc géner en rien celle du faunopore; elle pourrait donc correspondre à une période d'arrêt tree brève. En Marcune Julle d'inguen

(compender of the stand of the

18.

Taleastroma boiarschinovi (YAVORSKY, 1961).Fig. 14 - Dessin d'après la lame mince AF 75 Ba 11/11.?)Coupe un peu oblique, avec sections de canaux
astrorhizaux (A) et de tubes de Caunopora (C).

18-1

Taleastroma boiarschinovi (YAVORSKY, 1961). Fig 15 - Dessin d'après la lame mince AF 75 Ba 11/17a. Coupe tangentielle. Structure réticulée avec sections arrondies de gros piliers sombres (P) et sections de tubes de Caunopora (C).

182

Taleastroma baiarschinovi (YAVORSKY, 1961). Fig. 16 - Dessin d'après la lame mince AF 75 BS 9/3c. Coupe verticale. Nombreux tubes de Caunopora. (C) parfois recoupés très tangentiellement et donnant alors des éléments verticaux allongés analogues à de longs piliers.

Actinostroma papillosum(BARG) Birkhead et Murray, 1970	120-280,um m = 170,um
Syringostroma ? confertum (S.) Fischbuch, 1970b	в 50-250µm 32 ,5- 45
? Syringostroma confertum (S.) Stock, 1982	80-330μm n = 170μm
Stromatopora cf. httpschii (BARG.) Ce travail	^{50-300μm} 12-15

Fig. 5 - Aspect "confertum" STEARN, 1962b. Tableau comparatif de quelques mensurations.

	┝			 	<u>E1</u>	me	nte	h h	or	ízc	nt	au	x		.			 		E	lém	ent	8 V	ert	ica	ux	 	
•.	<u> </u>			<u>N</u>	omt 5	re	81	1r	5	<u>mm</u>						paisseur		 	1	iom	bre	ธบ	r 5	1	n		 00	Epaiss
Stromatopora bolarschinovi sp. nov. Yavorsky, 1961		† .							2		•	• • •		••								•						160-20
Matériel afghan : AF 75 Ba 11/4 AF 75 Ba 11/6 AF 75 Ba 11/6 AF 75 Ba 11/11 AF 75 Ba 11/11 AF 75 Ba 11/21 AF 75 Ba 11/22 AF 75 Ba 11/29 AF 76 BS 7/3 AF 76 BS 7/4 AF 0C 73 AF 0C 75 Q6 AF 0C 76																سر150 →												300-35 → 45
Glyptostroma boiarschinovi(YAVORSKY) Yang et Dong, 1979			-												15	i0-230سير												300-40
	10			 1	5				2	0				2	5		5	 		10				15			 20	
Glyptostroma simplex sp.nov. Yang et Dong, 1979																												
Matériel afghan: AF DES Ku 11 AF DES Ku 14 AF DES Ku 15																ىسىر 150												250-3
Glyptostromoides simplex YANG ET DONG Stearn, 1983								•							1	mىر200–50								•				200-4

DISCUSSION.

Les spécimens décrits correspondent parfaitement au genre Taleastroma GALLOWAY, 1957.

La microstructure cellulaire très développée dans la partie périphérique des grands piliers, à centre compact évoque le genre *Hermatostroma* NICHOLSON, 1886b mais il ne s'agit pas d'une zone vésiculaire périphérique.

Spécifiquement, les spécimens afghans me semblent très proches de Taleastroma boiarschinovi (YAVORSKY, 1961); ils n'en diffèrent que par leurs éléments horizontaux localement mieux développés, un peu plus épais et leurs gros piliers légèrement plus larges: 300 à 350 µm (parfois même un peu plus) au lieu de 160 à 200 µm (d'après V. I. Yavorsky, 1961, p. 42, mais sur la figuration, pl. XXV, fig. 3, certains piliers atteignent manifestement 300 µm).

Ils rappellent aussi T. simplex(YANG &DONG, 1979) et en particulier les spécimens de la Formation de Blue Fiord que C.W. Stearn rapporte à cette espèce et qui montrent le même type de structure partiellement rétruiée à la base des latilaminae et plus nettement quadrillée dans leur partie supérieure qui est toujours très réduite et où les microlaminae sont plus nombreuses; ils s'en distinguent cependant par des éléments coenostéaux un peu plus épais et moins serrés. Les spécimens afghans diffèrent de T. cumingsi (GALLOWAY & ST. JEAN, 1957), l'espèce.

Les specimens afgnans différent de T. cumingst (GALLOWAY & ST. JEAN, 1957), l'espèce. type du genre, par leurs longs piliers nettement plus épais et par une densité plus faible en éléments coenostéaux.

N.B. Certaines sections un peu obliques montrent une structure réticulée plus marquée où les grands piliers sont peu ou pas apparents; elles rappellent beaucoup des sections de Stromatopora concentrica GOLDFUSS, 1826.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE.

Le type de T. boiarschinovi provient du Dévonien moyen (Eifélien) de Cascindu Kovenetsk) for the coucles de Salairskie

Tous les spécimens afghans proviennent de la coupe de Badragha; ils ont été récoltés dans le Membre récifal de Baghalak. Formation des calcaires noirs de Badragha, Givétien.

> Équivalent de la partie inférieure de l'étage Telengition, correspondat à la lasse de l'Empiren en Eurose accidentale. Écl. Hubban de corrélation de la S.D.S. Francfort, 7182)

Taleastroma simplex (YANG ET DONG, 1979.

Pl. XIV, fig. 10-12.

1979 - Glyptostroma simplex gen. et sp. nov. - Yang J. et Dong D., p. 66, pl. 36, fig. 7-8.
1983 - Glyptostromoides simplex (YANG ET DONG). - Stearn C.W., p. 553, fig. 6A-C.

MATERIEL. Gule de Kutum AF DES Ku 11 AF DES Ku 14 AF DES Ku 15

DESCRIPTION.

CARACTERES EXTERNES.

Fragments de coenostea lamellaires à tabulaires atteignant 5 cm de hauteur et larges d'une dizaine de centimètres. Très fortes ondulations se traduisant en surface par des très larges mamelons, ou des rides, distants de 2,5 à 3 cm Traces de latilamination peu visibles.

CARACTERES INTERNES.

Coupe verticale.

Structure coenostéale réticulée.

Latilaminae plus ou moins nettement exprimées, larges de 4 mm environ, limitées par une zone étroite à éléments verticaux souvent mieux différenciés, commercie de la riemano).

Eléments horizontaux (<u>coenostromes</u>) épais de 150 µm en moyenne mais localement réduits à des microlaminae; au nombre d'une quinzaine environ sur 5 mm (14 à 16).

Quelques éléments verticaux représentés par des <u>piliers</u> bien individualisés, continus, épais de 250 à 350 µm, traversant parfois toute l'épaisseur d' une latilaminae ou plus,; distants de un à plusieurs millimètres. Reste des éléments verticaux représentés par des <u>coenostèles</u>, individualisés uniquement dans la partie supérieure des laminae où ils sont au nombre de 14 à 18 sur 5 mm. Espaces interlaminaires aux chambres arrondies, larges de 180 µm, ou plus irréguliers.

Pas de trace d'astrorhizes.

Coupe tangentielle.

Structure réticulée à vermiculée, marquée par des zones concentriques successives plus ou moins denses. Localement, des canaux astrorhizaux ramifiés à disposition étoilée, atteignant 300 µm de largeur.

MICROSTRUCTURE.

De type cellulaire à mélanosphérique, plus ou moins nette; localement (au sommet des latilaminae) aspect plutôt compact.

DISCUSSION.

30

Par leurs caractères structuraux (coenosteum de structure réticulée, traversé par de longs éléments verticaux mieux différenciés) et microstructuraux, les spécimens décrits appartiennent typiquement au genre *Taleastroma* GALLOWAY, 1957.

Spécifiquement, ils correspondent bien à T. simplex (YANG & DONG, 1979) et en particulier aux formes de l'île Ellesmere que C. W. Stearn rapporte à cette espèce. Ils sont très proches des formes afghanes précédemment décrites sous le nom de T. boiarschinovi (YAVORSKY, 1961) dont ils ne se distinguent que par une densité coenostéale un peu plus forte, notamment en éléments verticaux (fig. 76).

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel type de *T. simplex* provient de la partie moyenne de la Formation de Mingtang, Dévonien moyen de la région de Liujing, province de Guangxi (Chine).

L'espèce a été signalée dans la Formation de Blue Fiord, d'âge Zlichovien, de l'île Ellesmere (Arctique canadien).

Les spécimens afghans proviennent tous de la coupe du Koh-e Qutum; ils ont été récoltés à la base de la Formation dus calcaires noirs de Badragha, d'âge Dévonien moyen (? Givétien).

(Emoiten meyer)

- 50 - 189

Habrostroma FAGERSTROM, 1982. в — = Ferestromatopora YAVORSKY, 1955.-Mistiaen, 1976, 1980. ? p. p. = Stromatopora GOLDFUSS, 1826.-/Stock, 1984.

C.W-

Atizarimes et non beurs

ebcan to

6 L \

Espèce-type : Habrostroma proxilaminata FAGERSTROM, 1964 .

DIAGNOSE

. .:

, vargue Hearn "tele

withing with

nice limine

for y velta

wa tor

10 mm

l.

A. ty.

#

enderctie Coenosteum de taille et de forme variables; structure réticulée;/microlaminae 1003, bien définies constituant l'élément prédominant; éventuellement laminae plus épaisses moins bien définies; piliers très variables peu marqués ou au contraire bien superposés et dominant la structure coenostéale; microstructure cellulaire d'émélanosphérique de fon spongieuse. Les cuactries du gone out eneurielleur la et l'infertore des mino laninae

DISCUSSION

Le genre Habrostroma a été créé par J.E. Fagerstrom pour regrouper un ensemble d'espèces anciennement rattachées au genre Stromatopora GOLDFUSS mais qui possèdent des microlaminae bien exprimées. Comme le souligne J.E. Fagerstrom, la séparation de ces deux genres est parfois difficile par le fait qu'il existe des formes chez lesquelles les éléments verticaux dominent la structure tandis que les éléments horizontaux (microlaminae) existent mais ne sont pas prépondérants. De plus ces microlaminae (structure originelle des Stromatopores pour J.A. Fagerstrom) peuvent être partiellement altérées lors de la diagénèse. J.A. Fagerstrom signale d'ailleurs l'existence d'espèces intermédiaires entre les deux genres, telle Stromatopora vesiculos(um) (LECOMPTE, 1951). Les relations de Habrostroma avec d'autres genres voisins : Syringostroma NICHOLSON, 1875, Parallelostroma NESTOR, 1966, Climacostroma YANG & DONG, 1979 sont largement discutées par J.A. Fagerstrom (1982); je reviendrai, sur certains aspects lors des discussions concernant les espèces.

TYPE.

Habrostroma incrustans (HALL & WHITFIELD, 1873). PLAST, fis. 1-4; fis. 124

- 1873 Stromatopora (Cgenostroma) incrustans n. sp.- Hall J. Whitfield R.P., p. 227, pl. 9, fig. 3. J 1873]- Caunopora planulata n. sp.- Hall J. & Whitfield R.P.,
 - p. 228, pl. 9, fig. 2.
- 1878 Caunopora planulata PHILL.- Nicholson H.A. 📽 Murie J., non pl. 2, fig. 4-5.
 - 1879, 1 Coenostroma (Caunopora) incrustans HALL. Dawson J.W., p. 56.
 - 1879] Caunopora (Coenostroma) planulata HALL.- Dawson J.W., p. 56. er.
 - 1968 Clathrocoilona ? incrustans (HALL 😰 WHITFIELD).- Flügel E. & Flügel-Kahler E., p. 114 (avec liste synonymique depuis 1873).
 - 1968 Parallelopora ? Stromatopora planulata (HALL BT WHITFIELD). - Flügel E. & Flügel-Kahler E., p. 320 (avec liste 1 Misticen Bily ex synonymique depuis 1873).
 - 1976 Stromatopora ? planulata (HALL # WHITFIELD).-/Brice D. &
 - 1980 Stromatopora Jplanulata (HALL ET WHITFIELD). Mistiaen B., Kp. 214, pl. XV, fig. 4-8.
 - 1984]- Stromatopora incrustans HALL & WHITFIELD.- Stock C.W., ¥p.782, fig. 3E-H, 4A-I.

MATERIEL: 2 spécimens- 4 lames - 4 sections - Coupe de Dewal.

AF 76 D43/3, AF 76 D43/8. DESCRIPTION 2 # CARACTERES EXTERNES.

Ŧ

 $\mathbf{X}_{\mathbb{C}}$

e lenzo

At icina

èls

5. (NECHOLSON, 1873).

مع

Eu

Ø, bold

liqu

bes

#

⇒5

ď

Fragments de petits coenostea plutôt lamellaires emballés dans un calcaire bioclastique.

- 51-190

CARACTERES INTERNES.

Coupe verticale

Structure coenostéale assez régulière mais perturbée par de nombreux canaux astrorhizaux.

Pas de véritable latilaminae mais des zones de croissance successives séparées par une limite un peu plus sombre.

Laminae très fines et réduites à des microlaminae souvent très continues, au nombre assez constant de 38 en moyenne sur 5 mm. mais d'écartement variable dans le détail (30 à 180 µm).

Eléments verticaux (coenostèles) nettement superposés, parfois sur plusieurs marté larges de 120 à 150 um en moyenne et au nombre de 20 à 22 sur 5 mm.

Espaces interlaminaires (galeries) arrondis ou un peu aplatis horizontalement, un peu moins larges que les piliers; très souvent superposés pour former des tubes pseudozooïdaux.

Système astrorhizal bien développé, se caractérisant par de nombreux et gros canaux arrondis dont le diamètre atteint fréquemment 300 à 450 µm,t qui pertubent localement la régularité du tissu coenostéal; présence-de dissépiments astrorhizaux plus ou moins développés, légèrement convexes ou concaves, dent certains semblent prolonger les microlaminae.

Coupe tangentielle. where

Structure rétionlée aux éléments épais de 100 à 120 µm environ et aux ouvertures souvent bien arrondies ju parfois méandriformes, larges de 120 µm.

Astrorhizes bien développées, avec un ou plusieurs canaux centraux pouvant atteindre 600 µm de diamètre et des canaux latéraux bien ramifiés, larges de 300 µm.

MICROSTRUCTURE.

Microlaminae épaisses d'une quinzaine de um. Tissu coenostéal de type cellulaire à microréticulé, aux cellules (ou vacuoles) d'assez grande taille, atteignant 30 µm, ce qui rend localement la distinction difficile entre de petits espáces interlaminaires et les vides de la microstructure. Eléments coenostéaux bordés par une fine zone plus sombre sans doute d'origine diagénétique. «Localement, piliers présentant une ligne axiale sombre plus ou moins granuleuse et très fine (10 à 15 µm).

En coupe tangentielle la microstructure apparaît plus nettemént mélanosphérique avec des éléments présentant une bordure sombre encore plus nettel Pl. V, (is. 4).

DISCUSSION

Les spécimens décrits me semblent pouvoir se rattacher au genre Habrostroma FAGERSTROM, 1982. Ils en possèdent en particulier les microlaminae bien développés; elles sont cependant un peu moins nombreuses, moins continues et moins tranchées que chez la plupart des espèces placées par J.A. Fagerstrom dans son genre. Ils possèdent aussi de grandes astrorhizes, caractère inhabituel chez le genre.

Ils rappellent aussi le genre Parallelostroma NESTOR, / 1966 en particulier par la microréticulation assez nette des éléments squelettiques et la continuité des éléments horizontaux. Cependant Kh. Nestor insiste, dans sa diagnose du genre (p. 52-53,85), sur la présence de "laminae très épaisses", ce qui n'est pas du tout le cas chez le spécimen afghan.

									LAMIN	AE									P	PILIE	RS		
		L	Nombre sur 5 mm.										Nombre sur 5 mm.				Epaisseur						
Stro incr Stoc NY NY US	omatopora rustans H.& W. Ek, 1984 SM 332 SM 214 SNM 327458	10	,1 	5	20	25	.30	35			5 5	р 5 	5	6p	65	<u>7</u> 01		5	20	25		0 35	m =200 µm m =180 µm m =200 µm
Habr insc ce t	rostroma erustans(H.&W) eravail					-																	mىر 150–120
"Cau plan l.m. in L	nopora" nulata H.& W. de Nicholson .ecompte, 1952								9									(•)				mىر 200–120
S. p H.& Gall	olanulata ? W. oway, 1960																() /					
S.? plan Mist	cf. wulata (H.& W.) miaen, 1980		•	,																			سر 300–100

Fig. 21 - Habrostroma inscrustans (HALL & WHITFIELD, 1873). Tableau comparatif de quelques mensurations des éléments coenostéaux, d'après différents auteurs. () = mesures effectuées sur les illustrations.

Toutefois, pour Kh. Nestor, les laminae très épaisses de Parallelostroma sont "composées de très fines microlaminae réticulées"; or, J.A. Fagerstrom (1982, p. 11) signale que par diagenèse, chez certains spécimens de Habrostroma plusieurs microlaminae peuvent fusionner pour donner des "laminae moins denses"; de telles laminae pourraient ressembler à celles de Parallelostroma, la seule différence étant alors (J.A. Fagerstrom, 1982, p. 12) l'aspect plus désordonné des petites cellules arrangées au hasard dans les laminae de Habrostroma. J.A. Fagerstrom n'exclut pas la possibilité que les deux genres ne seraient basés que sur des différences dues à la diagénèse mais, dans l'attente d'une révision de l'espèce-type du genre russe, P. typica (ROSEN, 1867), il considère les deux genres comme valides, point de vue qué j'adopte ici; *4

- 84 - 133

P. Sturr Brig

mi Veriel

đ

with this genera

daltan

a the pre-

san ble

. C. Sleuner

B

vertica

"ament

få

Er Con

Les spécimens afghans font partie de toute une série d'éspèces anciennement attribuées au genre *Stromatopora* GOLDFUSS 1826 mais que la présence de microlaminae bien développées ne permet plus de rattacher au genre *Stromatopora* émend. (sensu J.A. Fagerstrom, 1982).

J.A. Fagerstrom a discuté (1982, p. 12) des relations entre Habrostroma et Climacostroma YANG & DONG, 1979, genre aux piliers rarement superposés. J'adopte ici sa position. -> TSYP 1

Les spécimens décrits montrent une bordure sombre entourant les éléments coenostéaux, qui pourrait correspondre à l'altération diagénétique d'une zone vésiculaire externe. Sur la base de ce caractère, j'ai pensé un moment les rattacher à *Hermastostroma* NICHOLSON, 1886 mais d'autres caractères de la microstructure (tissu microréticulé) m'en ont dissuadé. *2

Plus d'une vingtaine d'espèces, précédemment attribuées aux genres Stromatopora, Syringostroma ou Ferestromatopora ont été assignées de façon plus ou moins certaine par J.A. Fagerstrom, en 1982, au genre Habrostroma.

D'autres espèces encore appartiennent vraisemblablement à ce genre; c'est le cas, à mon avis, de Stromatopora incrustans HALL & WHITFIELD, 1873 = S. planulata (HALL & WHITFIELD, 1873) dont C.W. Stock, (1984) a révisé le matériel type. C.W. Stock (p. 785, 786) discute de l'attribution générique de cette espèce qui a été placée tour à tour, par différents auteurs, dans les genres Stromatopora, Stromatoporella NICHO-LSON, 1886b, Syringostroma WICHCLEON, -1873, Trupetostroma PARKS, 1936, Parallelopora BARGATZKY, 1881a, Clathrocoilona YAVORSKY, 1931. Il examine en particulier les relations de S. incrustans avec les genres Parallelopora, Salairella KHALFINA, 1960 et Parallelostroma; il considère que l'arrangement des laminae et des piliers en grille régulière n'est pas un caractère typique du genre Stromatopora mais conclut toutefois que c'est le genre qui convient le mieux pour accueillir l'espèce de J. Hall & R.P. Whitfield. C. W. Stock ne fait pas allusion au genre Habrostroma dont il ne pouvait en effet avoir connaissance au moment οù il révisait les faunes de J. Hall et R.P. Whitfield Mar ses microlaminae bien définies, ses éléments verticaux plus ou moins nettement superposés, l'espèce de J. Hall et R.P. Whitfield se rattache, à mon avis, au genre Habrostroma, bien que les microlaminae y soient moins nettement exprimées que chez d'autres espèces de Habrostroma, dont l'espèce-type H. proxilaminata (FAGERSTROM, 1961a).

(2)

Les spécimens afghans correspondent bien, par leur allure générale et leur densité coenostéale à l'espèce américaine (fig.). Par leurs piliers bien superposés, ils sont très proches de l'hypotype figuré par C.W. Stock (1984, fig. 4G) ou encore du topotype de H.A. Nicholson no 425 P 5808 (figuré par M. Lecompte, 1952, pl. L, fig. 1) et que j'ai examiné. J'ai décrit (B. Mistiaen, 1980), sous le nom de Stromatopora ? planulata une forme du Boulonnais qui en diffère sensiblement par ses piliers nettement moins superposés et ses microlaminae moins nettes et moins nombreuses. Le spécimen boulonnais rappelle beaucoup plus un autre topotype de la collection H.A. Nicholson que j'ai aussi examiné, nº 423 P 5799(figuré par M. Lecompte, 1952, pl. L, fig. 2). Le spécimen figuré par H.A. Nicholson et J. Murie (1878), pl. 2, fig. 4-5), sous le nom de Caunopora planulata, possède, au vu des figurations des auteurs, des laminae bien exprimées, épaisses et me semble très différent de l'espèce américaine.

Fig. 22 - Distribution géographique et répartition stratigraphique de Habrostroma inscrustans (HALL & WHITFIELD, 1873).

sec.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE Le matériel type de H. incrustans provient du Dévonien supérieur (Frania) des U.S.A. (près de Rockford, Iowa). L'espèce a été reconnue : - dans le Frasnie du Canada (Territoires du NW); dans le Givétien supérieur de France (Boulonnais). Is Les spécimens afghans proviennent de la coupe de Dewal; partie Supérieure de le Formation de Dewal, Givétien. de Eerro Jordo Nemba (Lime treek Formatin) ivetien Framie moyor à suférieur

-56-195

 $\left(\right)$

?Habrostroma paucicanaliculata (LECOMPTE, 1952).

1952 - Parallelopora paucicanaliculata nov. sp.- Lecompte M., p. 294, pl. LI, fig. 1-2.

1955 - Stromatopora dybowskii sp. nov. - Yavorsky V.I., p. 89, pl. XLVII, fig. 1-5.

MATERIEL

?

mall mente

popecines.

1 spécimen, 2 lames, 2 sections. AF 76 D 73/3

DESCRIPTION

CARACTERES EXTERNES.

Fragment assez grande taille (hauteur: 4 à 5 cm; largeur: cm], provenant d'un coenosteum tabulaire. Vague trace de lamination.

CARACTERES INTERNES

Coupe verticale

Latilamination faiblement développée, en bandes d'épaisseur variable.

12

Structure réticulée à quadrillée où dominent les éléments verticaux.

Laminae généralement peu marquées, le plus souvent réduites à des microlaminae qui, localement, traversent toutes très nettement, les piliers (ce caractère n'est pas visible partout, il est parfois oblitéré par la recristallisation ?); par endroits, laminae atteignant 60 à 120 um d'épaisseur ou un peu plus (150 µm); 20 à 25 environ sur 5 mm, ou un peu plus mais localement jusqu'à 6 sur 1 mm.

Eléments verticaux épais de 120 à 180 µm; très nettement superposés et réguliers, au nombre de 18 à 20 environ sur 5 mm.

Espaces interlaminaires généralement arrondis, larges de 100 à 150 µm. souvent superposés pour former des "tubes pseudozoofdaux" plus ou moins bien exprimés.

Astrorhizes très peu visibles, canaux verticaux étroits, (180 um), dépassant à peine la largeur des espaces interlaminaires.

N.B. Le coenosteum est traversé par de nombreux tubes de Caunopores, larges de 350 à 380 um (diamètre intérieur), aux parois assez épaisses (90 um).

Coupe tangentielle.

Structure réticulée à maille assez fermée, aux éléments épais de 120 µm environ, aux vides le plus souvent arrondis, larges de 90 à 180 µm; 'sections d'astrorhizes aux canaux astrorhizaux larges de 130 à 180 jum, à disposition étoilée ou plus irrégulière.

MICROSTRUCTURE

Cellulaire à microréticulée, localement mélanosphérique, souvent altérée par recristallisation; microlaminae. Par endroits, surtout en coupe tangentielle, éléments entourés d'une bordure plus sombre (=modification diagénétique ?).

DISCUSSION.

Le spécimen décrit a tous les caractères du genre Stromatopora GOLDFUSS, 1826, s.l. La présence de microlaminae continues ne permet toutefois pas de le rattacher à ce genre s.s. (cf. J.A. Fagerstrom, 1982, p. 11). Il appartient typiquement au groupe de stromatopores à "microstructure cellulaire et microlaminae", défini par J.A. Fagerstrom · (Ibid.,p. 8).

La présence d'éléments verticaux bien superposés et dominant la structure coenostéale rappelle beaucoup le genre Syringostroma NICHOLSON, 1875, toutefois le spécimen décrit ne présente absolument pas de "mégapiliers" (J.A. Fagerstrom, 1982, p. 17) caractéristique du genre.

Dessin d'après la lame mince AF 76 D 73/3a, dans une zone à microlaminae bien visibles et piliers plus ou moins superposés. Section de tube de *Caunopora* (C).

Je le rattache, avec réserves, au genre Habrostroma FAGERSTROM, 1982. Il n'en présente pas, à première vue, l'aspect habituel, en particulier celui de l'espèce type H. proxilaminata (FAGERSTROM, 1961a) avec des microlaminae bien exprimées et des éléments verticaux peu superposés. Spécifiquement le spécimen afghan me paraît très proche de "?.

Habrostroma" paucicanaliculata (LECOMPTE, 1952); Il en possède l'aspect général, la densité en éléments coenostéaux, la microstructure. J.A. Fagerstrom (1982), qui a revu les types de l'espèce belge déterminée par M. Lecompte sous le nom de Parallelopora paucicanaliculata, l'attribue au genre Syringostromą; j'ai revu les types de M. Lecompte et ils ne possèdent pas de "mégapiliers" et ne peuvent donc pas, à mon avis, appartenir au genre Syringostroma.

M. Lecompte compare son espèce à "Parallelopora" goldfussi BARGATZKY, 1881a qui en diffèrent essentiellement par des astrorhizes de très à l'orgine pourcies valientato à dorn de grande taille. V.I. Yavorsky (1955) a décrit sous le nom de Stromatopora dybowskii une forme tout à fait comparable, qui possède, au vu des figurations de l'auteur (pl. XLVII, fig. 2-3), une densité en éléments coenostéaux pratiquement identique et ne se différencie que par des dissépiments peut être un peu plus nombreux. Comme le spécimen afghan, certains spécimens russes sont traversés de tubes de Caunopora. Je considère donc

S. dybowskii comme synonyme de ? H. paucicanaliculata, mais avec une certaine réserve, n'ayant pu revoir le matériel type. N.B. Il semble que la figure 3 (pl. XLVII) de V.I. YAVORSKY est à l'envers; C.W. Stearn (1971, p. 755-756) a énuméré une série de critères (convexité des laminae, des dissépiments ...) permettant l'orientation des coupes verticales.

9

DISTRIBUTION GEOGRAPHIQUE & REPARTITION STRATIGRAPHIQUE Le type de ? H. paucicanaliculata provient du Givétien supérieur (Gid), du Bassin de Dinante, l'espèce y est encore présente dans le Gib.

dybowskii est signalé dans l'"Eifelien" au sens russe du terme (cou-S. ches à "Conchidium" pseudobaschkiricum) de Edenation & Bassin du Kouznetsk [us].Dans la région de l'Oural, les couches à pseudobaschkiricus correspondent (cf. A.N. Kodalevitch et V.V. Tchernoui, 1979) au sommet de la zone à Polygnathus serotinus (= Dalejien p.p.; G. Klapper et W. Ziegler, 1979, p. 204) elle même équivalente d'une partie de l'Emsien supérieur d'Europe occidentale (cf. tableau de corrélation, S.D.S., Franckfort, 1982).

Le spécimen afghan provient de la coupe de Dewal; il a été récolté dans la partie moyenne de la Formation de Dewal, dans des bancs situés à quelques mètres au-dessus de niveaux à Stringocephalus aff. burtini (cf. D. Brice et B. Mistiaen, 1980); Givétien.

- 528 - 198

	- 600 - 18°		
			•
			•
			•
	· · ·		
			•
			· · · ·
		• • • • •	• •
· · · · · · · · · · · · · · · · · · ·			
2			
	. LAMINAE	PILIERS	Diamètre des
	Nombre sur 5 mm.	Nombre sur 5 mm. Epaisseum	Canaux astrorhizaux
Parallelopora Paucicanaliculate nov. sp. Lecompte, 1952		15 20 120-200μm	400 maximum سر
Habrostroma Paucicanaliculatu (LEC.) ce travai		سىر120-180	مسر 180 م
Parallelopora goldfussi BARG. type d'après Lec		120-140میر	jusqu'ā 1200 مسر
de Nicholson			
dybowskii sp. no Yavorsky 1955	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Tableau comparatif de quelques mensurations des éléments coenostéaux de ? Habrostroma paucicanaliculata (LECOMPTE, 1952) et d'espèces voisines. () = mesures effectuées sur les illustrations.

•

.

Hermatostroma NICHOLSON, 1886b. = Argostroma YANG & DONG, 1979.

Espèce-type : Hermatostroma schlueteri NICHOLSON, 1892.

DIAGNOSE

`/.

Coenosteum souvent massif. Eléments coenostéaux bien différenciés, structure quadrillée. Laminae généralement épaisses, avec une microlamia axiale, continue, claire ou sombre; parfois réduites à cette dernière. Piliers épais, bobiniformes, réduits à un seul espace interlaminaire mais souvent bien superposés. Microstructure compacte (ou cellulaire?); zone vésiculaire externe très caractéristique développée autour des piliers (et des laminae).

DISCUSSION

Le caractère fondamental du genre qui permet de le différencier sans problème des autres genres de stromatopores (C.W. Stearn 1966a, p. 108) réside dans la présence d'une zone vésiculaire enveloppant les éléments coenostéaux. Toutefois il existe des formes qui font la transition avec le genre voisin *Trupetostroma* PARKS, 1936, dépourvu de zone vésiculaire mais possédant des vacuoles sur les bordures de leurs piliers (C.W. Stearn, 1980, p. 897).

C.W. Stearn (1966b, p. 109) considère que le genre est diphylétique et regroupe des espèces à tissu cellulaire et d'autres (dont l'espèce-type) à tissu compact.

J. Kazmierczak (1971, p. 122) est d'un avis contraire et estime qu'aucune espèce du genre ne possède une microstructure nettement réticulée (microréticulée).

J. Yang et D. Dong (1979) ont défini le genre Argostroma que je considère comme un synonyme de Hermatostroma (cf. discussion de H. typicum). Africanense

filling u

Hermatostroma schlueteri NICHOLSON, 1892.

Pl. XV, fin 9-11; pe XVI) fro A.

1886b-Hermatostroma Schluteri n. sp. - Nicholson H.A., p. 105, pl. III, fig. 1-2, fig.texte 1,16.

- * 1892 Hermatostroma Schluteri NICHOLSON. Nicholson H.A., p. 215, pl. XXVIII, fig. 12-13, fig.texte 29-31.
- ? 1952 Hermatostroma polymorphum nov. sp. Lecompte M., p. 258, pl. XLVII, fig. 3-4; pl. XLVIII, fig. 1-3.
 - 1955 Hermatostroma verchorense sp. n. Riabinin SV.N., p. 30, pl. 21, fig. 1-2.
 - 1955 Hermatostroma djejimense sp. n. Riabinin V.N., p. 31, pl. 21, fig. 3-5.
 - 1968 Hermatostroma schlüteri NICHOLSON. Flügel E. C. Flügel-Kahler E., p. 380-381 (avec liste synonymique depuis 1886).

X

 \checkmark

- 1971 Hermatostroma schlüteri NICHOLSON. Kazmierczak J., p. 125, pl. XXXV, fig. 2a-b.
- 1971 Hermatostroma cf. schlüteri NICHOLSON. Zukalova V., p. 84, pl. XXVIII, fig. 5.
- 1974 Hermatostroma schlüteri NICHOLSON. Flügel E., p. 172, pl. 24, fig. 1; pl. 27, fig. 2.

1979 - Hermatostroma schlüteri NICHOLSON. - Yang J. G. Dong D., p. 69, pl. 37, fig. 1,2.

- 1982 Hermatostroma schluteri NICHOLSON. Dong D. et Wang C., p. 23, pl. XIII, fig. 2-8.
- 1984 Hermatostroma schlueteri NICHOLSON. Cockbain A.E., p. 27, pl. 16 A-D.

A02

_&13-11 MATERIEL 🥵 spécimens. 🝠 lames AF 75 Bo 191/1 ?;AF78 KZ 2/4 AF 78 SIG 5/2; /4 AF 78 SpG 18/22 AF 78 SpG 18/23 1 AF 78 Sp 6-17

+ AF78 Sco 5/4) 7 Tenebea) 7 AF78 Ta 3/5-

DESCRIPTION CARACTERES EXTERNES

Fragments de coenostea sans doute tabulaires à hémisphériques; le plus grand haut de 7 cm. Quelques traces de lamination sur les surfaces érodées. Plusieurs coenostea avec quelques mamelons très surbaissés distants de 1 cm ou plus.

CARACTERES INTERNES

Structure coenostéale quadrillée, régulière, avec de légères ondulations, sans latilamination.

Laminae d'épaisseur assez variable, 150 µm en moyenne, à parcours très régulier; le plus souvent accentuées par une ligne sombre centrale (asse) épaisse; au nombre de 12 ou 13, parfois seulement 9 ou 10, sur 5 mm.

Piliers droits, le plus souvent bien superposés, un peu évasés à leurs extrémités (bobiniformes), épais de 120 à 150 µm, parfois 180 µm; au nombre de 13 à 16 sur 5 mm.

Espaces interlaminaires/arrondis, de forme quadrangulaire ou, plus souvent, un peu allongés verticalement, ou encores réunis horizontalement, parfois plus irréguliers; dissépiments rares.

Astrorhizes de petite taille, discrètes et ne causant que de faibles ondulations coenostéales; canaux axiaux atteignant au maximum 500 um de diamètre; canaux latéraux vite confondus avec les espaces interlaminaires; dissépiments un peu plus abondants dans les canaux astrorhizaux que dans les autres espaces coenostéaux.

Coupe tangentielle Structure ponctuée à vermidulée, plus rarement néticulée, aux éléments larges de 120 à 200 µm, localement disposés de façon concentrique autour de canaux astrorhizaux larges de 400 µm.

MICROSTRUCTURE

En coupe verticale, tissu spongieux, parfois vaguement mélanosphé-rique; dans les laminae, axe sombre discontinu, granuleux, généralement épais; dans les piliers, parfois (fine axe sombre lui aussi discontinu ou dédoublé; membranes marginales plus ou moins visibles mais très nettes dans les endroits les mieux conservés.

En coupe tangentielle, aspect très variable selon les endroits; localement éléments très sombres, à microstructure compacte, entourés d'une membrane marginale très bien développée; ailleurs, tissu mélanosphérique "taches" granuleuses sombres, de grande taille, 30 à 50 µm, à peu nombreuses, membranes marginales moin/s visibles,

DISCUSSION

Ces spécimens appartiennent typiquement au genre Hermatostroma NICHOLSON, 1892.

- Hermatostroma schlueteri NICHOLSON, 1886b.

Fig.

Dessin en coupe verticale d'après la lame mince AF 78 SpG 18/23. Microlaminae sombres bien visibles dans les laminae et axes sombres plus ou moins distincts dans les piliers. (Comparez avec la Pl. V, fig. 10; le même spécimen, recristallisé, semble montrer, en photo, une structure plus dense).

	 				-66-201					
			LAMINAE							
	 	Nombre	e su <u>r 5 mm</u>		Epaisseur		Nombre	Epaisseur		
matostroma	<u> </u>	15	20	25	٦ 	10		20	25	1
cholson, 1892										
(pes: 386 Danées 386c Compte 386g S2 386h					سر 170–100 سر 150–150 سر 150					سىر200-220→500 سىر300-250-300 سىر300-250
Bit Bit <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>مسر150–120 مسر150–100</td>										مسر150–120 مسر150–100
echlüteri ^{ICH.Kazmierczak}					90–160µm		()			130–250 س ر
cf. schlüteri ICH. Zukalova 971					108-216μπ <u>160</u>					108-160-€16µm
ang & Dong, 1979					120–180µn					m. 190–170
^{schlue} teri NICH. ^{ockbain} ,11984					سر114–56 مىر114–56					m ر 51-132
ermatostroma olymorphum typel ov.sp. type 2 scompte type 3 siz type 4			· · · · · · · · · · · · · · · · · · ·	•			•	•		
Polymorphum EC. Zukalova					108-216µr 160					میرو 108–2 160
Polymorphum EC. Stock, 1980					- 70-290 150					سىر10 80-3 80 150
ermatostroma riguam n. sp. ockbain, 1984	nomb-E4	- impossi	ble à compter	denombres	ىر 56-3 30					

Hermatostroma sohlueteri NICHOLSON, 1886b. Tableau comparatif de quelques mensurations des éléments coenostéaux de l'espèce et d'espèces mises en synonymie ou voisines. Données de différents auteurs. () = mesures effectuées sur les illustrations.

de sindete explym

not make vanice is

revoir Enkalova | vallens maande et mund modifier fen les vellees remei sy I ou 2 mm

Je les rattache à l'espèce-type du genre, H. schlueteri NICHOLSON, 1892. Ils en possèdent, en effet, l'aspect général très régulier, la densité en éléments coenostéaux, la microstructure et en particulier les microlaminae axiales sombres et les axes sombres des piliers toutefois moins exprimés que chez l'holotype. L'une des seules différences, minime, consiste en la présence de dissépiments parfois un peu plus nombreux que dans l'holotype figuré par M. Lecompte (1952, pl. XLV, fig. 1) et qui en est particulièrement dépourvu. Le matériel afghan est généralement assez mal conservé et présente dans son ensemble et plus particulièrement dans les zones recristallisées un aspect plus dense, moins aéré, car les espaces coenostéaux se distinguent mal des éléments; mais certains endroits mieux conservés (figure) sont tout à fait caractéristiques de l'espèce.

-GA - 206

J. Kazmierczak (1971, p. 126) considère comme synonyme de H. schlueteri deux espèces de V.N. Riabinin (1955), H. verchovense et H. djejimense, que leur auteur établit sur la base de légères diffèrences dans les dimensions des éléments coenostéaux et sur la présence d'astrorhizes. Les spécimens afghans possèdent aussi des astrorhizes, mais de petite taille. Je me range à l'opinion de J. Kazmierczak.

Le même auteur met aussi and automation over H. schlueteri une partie des spécimens de H. polymorphum LECOMPTE, 1952 de éléments coenostéaux peu épais (tures 3 et 4 de M. Lecompte dont l'holotype) M. Lecompte ne compare pas son espèce avec H. schlueteri. Les spécimens concernés se fractérisent cependant, au dire de M. Lecompte (1952, p. 259)^{ec}au moins en ce qui concerne le type 4, par la présence de "nombreux septes interlaminaires" qui ne sont toutefois guère visibles sur les illustrations de l'auteur (pl. XLVII, fig. 3). Les autres types (1 et 2) reconnus par M. Lecompte (en particulier la lame 17864, Couvin 56, type 1, figurée pl. XLVII, fig. 4 et que j'ai examinée) diffèrent essentiellement, à mon avis, des types 3 et 4 par une forte recristallisation qui estompe les limites entre les piliers et masque les membranes marginales; ils rappellent, à ce titre, mes spécimens d'Afghanistan. A.E. Cockbain (1984, p. 26) considère que ces types 1 et 2 de H. polymorphum de M. Lecompte pourraient être synonymes de H. ambiguum COCKBAIN, 1984, espèce chez laquelle les membranes marginales sont peu distinctes, voire absentes, par altération diagénétique. Il me semble toutefois que les laminae et leur microlaminae sont nettement mieux exprimées et plus continues chez les formes ardennaises de M. Lecompte que chez l'espèce australienne où elles sont "irrégulièrement développées" et dont le nombre sur 5 mm est impossible à évaluer (A.E. Cockbain, 1984, p. 26).

D'autres auteurs (V. Zukalova, 1971; C.W. Stock, 1980) considèrent cependant *H. polymorphum* comme une espèce autonome. Pour V. Zukalova (1971, p. 84), *H. polymorphyum* se diffèrencie de *H. schlueteri* par une densité en piliers un peu plus élevée. Au vu des figurations des types de *H. schlueteri* (M. Lecompte, 1952, pl. XLV, fig. 1a) et de *H. polymorphum* (*ibid.*, pl. XLVII, fig. 3a) il est visible que la remarque de V. Zukalova est pleinement justifiée mais que les deux espèces sont extrêmement voisines. Il conviendrait de réexaminer en détail le matériel type et des topotypes pour décider ou non de leur synonymie.

Les spécimens afghans se distinguent de H. episcopale par leurs piliers un peu moins nombreux, leurs dissépiments beaucoup plus rares et la régularité de la structure coenostéale.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le type de H. schlueteri provient du Dévonien moyen (vétien?) (Calcaires de Hebborm) du Allemagne (distingent de Paffrath dans le Massif Schisteux Rhénan (Allemagne).

- L'espèce a encore été reconnue dans :
- le Givétien supérieur et la base du Frasnien des (Pologne) (Monts Sainte

-68-207

- Croix), le "Frasnien inférieur" (équivalent de la Formation de Fromelennes, Descrip de Dinant B. Mistiaen, 1982), d**é** F1, Givétien supérieur, du Bassin de Dinant, B. Mistiaen, 1982), de Fenécoslovaquier Karst Morave (Tchecoslowque)
- dans le Givétien du Allemagne (Sauerland (Allemasm),
- dans, la partie supérieur du Dévonien moyen (Formation de Tungkonglin) de Chine #Guangxi etd.Yuhnan oriental (...),
- le Givétien et le Frasnien du Australie (Canning Basin (Australie), 5
- le "Frasnien" duU.R.S.S. -(Timan (µ.R.S.S.).

Les spécimens d'Afghanistan proviennent des coupes : - de Bokan; base de la Formation récifale de Quarkone Bodak, Frasnien;

- du Koh-e Zardak, sommet de la Formation des Calcaires noirs de Badragha, Frasnien; - du Spin Ghar, partie inférieure de la Formation des pélites calcaires

jaunâtres du Spin-Ghar; partie-inférieure du Dévonien moyen;

- du Sin Char, partie supérieure de la Formation des Calcaires gris récifaux du Sin Ghar, d'âge givétien (reste de Stringocephalus? dans les mêmes bancs).

d'Olsenate (givétien, en Frasmien).

- 72- 209

Hermatostroma perseptatum LECOMPTE, 1952.

v * 1952 - Hermatostroma perseptatum nov. sp. - Lecompte M., p. 251, pl. XLV, fig. 2.
<u>1968 - Hermatostroma perseptatum LECOMPTE.</u> - Flügel E. & Flügel-Kahler E., p. 314[
non 1971 - Hermatostroma perseptatum LECOMPTE. - Kazmierczak J., p. 124, pl. VIII, fig. 6; pl. XXXIV, fig. 2a-b.
1971 - Hermatostroma perseptatum LECOMPTE. - Zukalova V., p. 83, pl. XXVII, fig. 3-6.
1979 - Hermatostroma perseptatum LECOMPTE. - Yang J. (Dong D., p. 69, pl. 37, fig. 3-4.
1984-- THermatostroma perseptatum LECOMPTE. - Cockbain A.E., p. 26,

HOLOTYPE Spécimen de M. Lecompte, Couvin 6150, n**0** 17175, I.R.S.N.B. Bruxelles: figuré par M. Lecompte (1952, pl. XLV, fig. 2).

MATERIEL : 2 spécimens, 5 lames. 6 sections. AF 76 D 28/1. AF 76 D 28/2. Compe centrale, Manifere Said Habib Nord, AF 76 SH29/2 (mel central). DESCRIPTION

pl. 14 A-D.

CARACTERES EXTERNES

Fragments de coenostea tabulaires; le plus grand atteint 7 à 8 cm de hauteur et 15 cm de diamètre. Quelques ondulations. Latilamination plus ou moins visible latéralement.

CARACTERES INTERNES

Coupe verticale

Zones de croissance successives (latilaminae?), avec localement à leur base une épithèque ("basal layer") plus sombre, à structure réticulée très fine (épaisseur des éléments voisine de 20 µm, petits atteignant 50 µm).

Larges ondulations coenostéalestrès surbaissées, dues aux astrorhizes distantes de 1 à 1,5 cm. Structure coenostéale quadrillée.

Laminae pouvant atteindre 100 à 120 μ m d'épaisseur, parfois 150 μ m avec leur zone vésiculaire externe; régulières et rectilignes mais très fréquemment interrompues, laissant parfois la place à une microlamina très fine (10 à 15 μ m) ou à un dissépiment légèrement bombé, plus fin encore; 14 à 18 sur 5 mm, jusqu'à 21 localement chez le spécimen AF 76 D 28/1;

Piliers relativement longs et minces (100 à 120 µm), très légèrement évasés à leurs extrémités et nettement superposés, parfois sur une dizaine d'espaces interlaminaires; 14 à 18 sur 5 mm, 15 ou 16 le plus souvent; plus minces, plus irréguliers et un peu plus nombreux au sommet des zones de croissance.

Espaces interlaminaires arrondis ou ovales, de dimensions assez variables (100 à 200 µm); très souvent réunis verticalement du fait de l'interruption des laminae et traversés de dissépiments convexes, parfois anastomosés, souvent nombreux (jusqu'à 6 ou 8 sur 1 mm) sauf au sommet des zones de croissance où ils sont absents.

Astrorhizes bien développées; canaux axiaux atteignant 0,60 mm de diamètre. Canaux latéraux d'assez grande taille (0,25-0,45 mm, parfois un peu plus) acquérant rapidement un trajet horizontal en s'éloignant du canal central; localement, nombreux dissépiments astrorhizaux convexes plus ou moins anastomosés.

Fig. 30 A et B. - Hermatostroma perseptatum (LECOMPTE, 1952).

Dessin, en coupe verticale, de deux endroits de la même lame mince AF 76 D 28/2.

- A Zone à éléments horizontaux bien développés et grandes vésicules marginales.
- B Zone où dominent les éléments verticaux; vésicules marginales de-petite taille.

- 7F. - 240

Dessin, en coupe verticale, de différents endroits de la même lame mince AF 76 D 28/1.

A - Zone à nombreuses vésicules marginales de grande taille.

B - Zone avec quelques vésicules marginales de taille plus petite.

C - Zone à combreux disségiments, sans vésibules marginales;

D - Sommet d'une some de croissances absence de dissériments et de vésicules marconstas

 -273-142

onche vetre

; the far visibles chy le Afternen AF763H25\$ /2

<u>Coupe tangentielle</u> Structure <u>rétieulé</u>e ou vermiquiée, aux éléments épais de 120 um en moyenne, réunis entre eux par des dissépiments. Canaux astrorhizaux souvent très irréguliers, atteignant 350 µm de diamètre, voir plus.

MICROSTRUCTURE

analsmot

do controlor averefre Alis averefre Alis Tissu spongieux; vésicules marginales souvent mieux développées autour des piliers, un peu moins fréquentes autour des laminae, absentes de la partie supérieure des zones de croissance (cf. rem.); microlaminae somores assez nettes chez l'un des spécimens (AF 76 D 28/1), plus souvent remplacées par une fissure axiale claire très fine (inférieure à 10 µm) chez & autre (AF 76 D 28/.2).

Tissu spongieux ou encore mélanosphérique en coupe tangentielle; vésicules marginales mieux visibles qu'en coupe verticale.

<u>Rem</u>. : Ainsi que je l'ai signalé dans la description, au sommet des zones de croissance plusieurs caractères diffèrent. On note en particulier l'absence de dissépiments et de vésicules marginales autour des éléments coenostéaux. Il est peu vraisemblable que cette absence soit due à une érosion. Il semble que ces zones buvàient correspondre aux endroits où se trouvaien les parties vivantes de l'animal. Non ¹ seulement les dissépiments, mais aussi peut-être les vésicules marginales, auraient comme rôle d'isoler le tissu vivant de la partie inférieure non "habitée" du squelette et de consolider ce dernier; ils seraient secrétés progressivement par l'organisme, au cours de sa croissance.

3. 11

DISCUSSION

Les spécimens décrits se rattachent parfaitement au genre Hermatostroma NICHOLSON, 1886, en particulier par leurs caractères microstructuraux_JIIs me semblent très proches, spécifiquement, de H. perseptatum LECOMPTE, 1952, en particulier par la densité et l'épaisseur de leurs éléments coenostéaux (un peu plus importantes cependant chez le spécimen AF 76 D 28/.1). Les seules différences résident dans les astrorhizes un peu plus larges (et les axes sombres des laminae un peu moins marqués chez le spécimen AF 76 D 28/2). J. Kazmierczak (1971) a décrit et figuré sous le nom de H. perseptatum une espèce qui s'en différencie assez nettement par des\ piliers trois fois plus épais et nettement moins nombreux.

Par l'abondance des dissépiments, les spécimens afghans se distinguent aisément d'autres espèces à densité en éléments coenostéaux sensiblement voisine.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le type de H. perseptatum provient du Givétien supérieur (F1b) du Bassin de Dinant Marchalle (Belgine).

L'espèce a été signalée :

- martine au sommet du Givetien ou à la base du Frasnien de Horavic Moravie (Tchécoslovaquie),

- dans le Frasnien die <u>Canning Basin</u> (Australie (, Canning Basin),

- dans la partie inférieure du Membre de Fulong, Formation de Tungkonghin (partie supérieure du Dévonien moyen)

Les spécimens afghans proviennent de:-la coupe de Dewal : partie supérieure de la Formation de Dewal, Givétien (7supérieur),

-le coupe de Said Habris Nord, Formetic de Deval, Givêtren. Sayed Tabib

I

Fig. 33 - Distribution géographique et répartition stratigraphique de Hermatostroma perseptatum (LECOMPTE, 1952).

÷

			•	** ***		
	to make the second s				+ + +	· · · · · · · · · · · · · · · · · · ·
			•			
4						
	•	1				
		\	•			
	•	Ň				
•	•		•			
						•
:						
1						
•						
,						
	1		• •			
•						
,						
•						
-						
	•					
•						
•						
,						
4						
1				,		
1						
4						
· •						
	•					
	· · · · · · · · · · · · · · · · · · ·		•			

i

-76-201 afstanene Sp. nov Hermatostroma typicun (YANG & DONG, 1979). pe. XVI, fis. ort; pe xtil, fig 1-10. 1979 - Argostromd typicum gen. et spl nov. - Yang J. et Dong D., p. 46, pl. 20, fig. 4.
v 1980 - Hermatostroma cr. cimacense (LECOMPTE, 1952). Mistiaen B., p. 206, pl. XII, fig. 276. 1982 - Argostroma typicum YANG et DONG. - Dong D. et Wang C., p. 15, pl. VI, 18. 7-8. pl Hildrighe pourfe .-MATERIEL 39 octionens - dont 2 très mal conservées, douteux. 49 lames minces. 62 sections lif & out (AF 76 D 22/?) AF 76 D 22/3; 4/6; /7; /13 AF 76 D 32/5 AF 76 D 37/9; /12; /13 AF 76 D 38/4; /5; /6; 7 ;/10; /11; /12; /14; /15; /16; /18;/21;55 AF 76 D 40/3;/4;/5;/6;/7;/8 AF 76 D 41 /2;/9 AF 76 D 42 /3 any outre och AF 76 D 43/9 ? AF 78 KK 10 /2 ang an Sin ghan ? AF 78 SiG 6 /11

DESCRIPTION CARACTERES EXTERNES

Coenostea ou fragments de coenostea noduleux (diamètre 3 à 5 cm) ou plus souvent tabulaires ou subhémisphériques, certains atteignant plusieurs dizaines de centimètres de diamètre. Plusieurs avec de très petits mamelons, parfois à peine visibles, distants de 4 à 6 mm et atteignant à peine 1 mm de hauteur et 2 mm de diamètre. Quelques traces d'astrorhizes associées aux mamelons.

CARACTERES INTERNES

Micone

<u>Coupe verticale</u> Coenosteum souvent très ondulé. Pas de véritable latilaminae mais parfois des bandes successives, d'épaisseur très variable, mal délimitées par une lamina un peu plus pigmentée.

Lamina parfois réduite à une microlamina peu marquée, épaisse d'une vingtaine de microfé, parfois nettement plus épaisses, surtout à proximité des astrorhizes, et atteignant alors, avec la zone vésiculaire externe, jusqu'à 150 à 180 µm (AF 76 D 38/15). Dans le matériel provenant de la coupe de Dewal (D) on note une certaine variation de ce caractère : chez les coenostea des niveaux inférieurs (D 42, 38, 37) les laminae sont souvent de type épaissi, dans ceux des niveaux supérieurs (D 32,22) elles semblent plus souvent réduites à des microlaminae. Au nombre de 16 à 20 sur 5 mm (17,4 en moyenne pour 47 mesures), très légèrement moins nombreuses lorsque les laminae sont plus épaisses.

Piliers constituant les éléments dominants du coenosteum, très réguliers et toujours bien superposés sauf chez les quelques spécimens à coenosteum plus irrégulier;/ généralement traversés par les microlaminae? (;) bobiniformes, épais de 90 à 120 µm environ mais atteignant avec leurs membranes périphériques 150 à 180 µm en moyenne parfois un peu plus localement jointifs; répartis à raison de 13 à 16 environ sur 5 mm

Fig. 34 A & B - Hermatostroma typicum (YANG & DONG, 1979).
Dessin, en coupe verticale, de deux endroits de la même lame mince AF 76 D 38/15. (CFCL 4119)
A - Zone à éléments horizontaux dominants.
B - Zone à éléments verticaux dominants.

rarement 12 ou 18 (14,5 en moyenne pour 76 mesures). Dans quelques spécimens présentant des ondulations/(AF 76 D 38/12), les piliers apparaissent plus serrés et plus minces formant des sortes de structures en "colonnes", analogues à celles observées chez certains représentants du genre Anostylostroma PARKS, 1936.

- Flor - 9.07 an miren his ander le timo

Chambres des espaces interlaminaires typiquement arrondies ou en forme de "tonnelets", atteignant 150 à 200 µm de diamètre, parfois un peu plus; superposés et localement séparées uniquement par les microlaminae qui peuvent prendre l'allure de dissépiments et se bomber ou s'incurver légèrement; rarement réunies latéralement, sauf au voisinage des astrorhizes; peu ou pas de dissépiments, en dehors des microlaminae.

Astrorhizes souvent très bien développées, de grande taille; canaux centraux atteignant jusqu'à 0,60 mm de diamètre, traversés de rares dissépiments convexes; canaux latéraux un peu plus petits, 0,45 mm au maximum, prenant très rapidement un parcours horizontal parallèlement aux espaces interlaminaires, sur parfois plusieurs mm de distance; donnant ailleurs de larges sections subcirculaires comme découpées à l'emporte-pièce dans le tissu coenostéal.

Coupe tangentielle Structure outfit a malufun

Eléments coenostéaux généralement disposés en structures concentriques, parfois centrées sur les astrorhizes, atteignant jusqu'à 1 cm de diamètre et alternant avec d'autres structures concentriques, plus petites (2 à 5 mm de diamètre), (assez régulières (AF 76 D 22/6) ou plus) (Irrégulières (AF 76 D 38/14),

(Irrégulières (AF 76 D 38/14), Structure vermiculée à rétérulée, aux éléments larges de 200 µm en moyenne; localement ponctuée, aux sections arrondies de piliers atteignant 150 à 200 µm de diamètre.

Sections d'astrorhizes avec un ou plusieurs canaux centraux larges de 0,45 à 0,55 mm mais pouvant atteindre parfois 0,75 mm; canaux latéraux parfois fortement ramifiés (AF 76 D 38/14) dépassant rarement 0,350 à 0,400 mm, à disposition étoilée plus ou moins régulière.

MICROSTRUCTURE

(mécutilion)

1.1.1.10

Microlamina sombre traversant les piliers et à laquelle la lamina est parfois réduite. Membranes périphériques vésiculaires surtout bien développées autour des piliers à avec parfois des vésicules marginales atteignant 50 µm de largeur. Zone centrale des piliers compacte à spongieuse, parfois vaguement fibreuse.

En coupe tangentielle, centre des éléments coenostéaux spongieux ou parfois vaguement mélanosphériques.

N.B. Localement, dans certaines parties d'un coenosteum (AF 76 D 27/7) ou parfois dans la totalité de certains autres (AF 76 D 38/41) le tissu coenosteal montre des caractères microstructuraux totalement différents que je considère comme résultant de modifications d'origined diagénétique. Les éléments coenosteaux apparaissent alors entourés par une bordure sombre qui peut atteindre 50 µm de largeur tandis que la partie centrale est occupée par un tissu plus clair qui montre une continuité entre laminae et piliers; les microlaminae ne sont plus visibles,/ localement cependant, on arrive à en discerner quelques unes. Le contact entre la zone centrale et la zone périphérique est souvent très irrégulier et présente parfois des indentations plus ou moins nettes(fig. ' cet aspect rappelle tout à fait celui observé chez les spécimens afghans de *Taleastroma* sp. décrits précédemment où l'on a aussi la partie centrale de piliers épais recristallisée, sparitique, entourée d'une zone plus sombre, micritique.

ma || elk

h

Fig. 35 - Hermatostroma typicum (YANG & DONG, 1979)

Dessin, en coupe verticale, d'après la lame mince AF 76 D 38/5. Eléments horizontaux uniquement représentés par des dissépiments. Nombreuses vésicules marginales.

(Jaaboje CFCL4198) - -

Fig. 36 - Hermatostroma typicum (YANG &DONG, 1979).

Dessin, en coupe verticale, d'après la lame mince AF 76 D 38/4; spécimen très recristallisé. Pas de vésicules marginales visibles mais des bordures sombres autour des éléments coenostéaux L'aspect de la lame rappelle parfaitement le genre Argostroma YANG & DONG, 1979.

(Jampe UECLA120)

DISCUSSION

lumpretic

altere ter or their mot

we serve species

Les spécimens décrits appartiennent au genre Hermatostroma NICHOL-SON, 1886 4 ; ils en possèdent, au moins dans les portions de coenosteum les mieux conservés, la microstructure à zone vésiculaire externe tout à fait caractéristique du genre.

-81-20

Les zones de coenosteum que je considère comme diagénétiquement modifiées (cf. description ci-dessus) présentent tout à fait les caractères retenus par J. Yang et D. Dong (1979) dans la diagnose de leur nouveau genre Argostroma. Les auteurs placent le genre dans la famille des Actinostromatidae NICHOLSON, 1886b et le comparent aux genres Trupetostroma PARKS, 1936 et Gerronostroma YAVORSKY, 1931. C.W. Stearn (1980, p. 892, 898), dans sa classification des Stromatopores paléozofques place, mais avec réserve, le genre Argostroma dans la famille des Hermatostromatidae NESTOR, 1964 et le compare aussi au genre Trupetostroma. Etant donné les caractères microstructuraux décrits et discutés précédemment, je considère le genre Argostroma comme un synonyme plus jeune du genre Hermatostroma. En regardant attentivement la figuration de Argostroma typicum YANG & DONG 1979 (pl. 20, fig. 3), on observe d'ailleurs, en plusieurs endroits et en particulier légèrement à droite du centre de la photo, des traces de microlaminae qui recoupent incontestablement les piliers. Ce caractère est encore mieux visible sur la figuration de la même espèce par D. Dong et C. Wang (1982, pl. VI, fig. 7); il n'est pas du tout en contradiction, bien au contraire, avec le rattachement au genre Hermatostroma. A.E. Cockbain (1984, p. 26) signale aussi que, probablement par altération diagénétique, la membrane périphérique peut sembler absente. qui for denser per aper align Plusieurs auteurs ont décrit et illustré sous des attributions génériques et spécifiques diverses, des formes que je-rapproche-de Hermatostroma, aspect Argostroma. Ainsi J. Kazmierczak (1971, p. 106, pl. XXVI, fig. 2) figure sous le nom de Taleastroma confertum STEARN #(nommé par erreur *T. pachytextum* dans la légende de la planche) un stromatopore qui présente tout à fait le même aspect. Il en est de même du *Trupeto*stroma densum ZUKALOVA, 1971 illustré par l'auteur (pl. XXIV, fig. 5-6). Le Taleastroma steleforme STEARN, 1975 (pl. V, fig. 1) montre aussi un aspect analogue, avec des piliers clairs à bordures sombres.

ð

Spécifiquement, les spécimens afghans me semblent très proches de l'espèce chinoise H. typicum (YANG & DONG, 1979). Ils présentent en effet une densité coenostéale presque identique La seule différence, assez minime, consiste en une structure générale plus régulière, des laminae légèrement plus fines et parfois moins bien exprimées. J'ai pense un moment pouvoir séparer les spécimens afghans en deux groupes, en fonction justement du degré de développement des laminae; mais on retrouve une certaine variation de ce caractère au sein d'un même coenosteum (fig. .). Par ailleurs, le degré de développement des laminae ne semble pas correspondre à une évolution dans le temps; les spécimens avec des laminae épaisses et continues (AF-76 D 38/16; /18; /21; /55; AF 76 D 40/3) se situent plutôt chronostratigraphiquement vers le bas de la série mais coexistent avec d'autres à laminae plus fines. Ce caractère pourrait être en relation avec les conditions paléoécologiques ?

Les spécimens décrits sont encore assez proches de H. cimacense (LECOM-(PTE, 1952)⁴/et plus encore de formes boulonnaises que j'ai rapprochées de cette espèce\(B. Mistiaen, 1980) et qui présentent une densité en lami-<u>nae</u> un peu plus faible que chez le matériel type de l'espèce.

Ils évoquent\encore plusieurs espèces à piliers bien superposés : H. parkesi LECOMPTE, 1952, H. polymorphum LECOMPTE, 1952, ainsi que H. schluteri NICHOLSON, 1886 L, l'espèce-type du genre, mais s'en distinguent cependant par une structure moins aérée, un peu moins régulière, des laminae moins nettement exprimées, moins continues et moins épaisnum de de 22à 25). de de enne (154, 1800) nedenste + fulle en la finde de enne (154, 1800) ses.

Ì					82 - 221							
İ				PILIERS		LAMINAE						
			Nombre	sur 5 mm		Epaisseur	Nombre sur 5 mm	Epaisseur				
;	Argostroma 1) Com n.sp. Yang 1 Dong, 1979	10	15	20	25	mىر150∸20		mىر200–150				
	Eeimatostroma proven (Y.& D.) ce travail AF 76 D22/3 /6 /7 /13 D32/5 D37/13 D38/4 /5 /6 /7 /10 /11 /12 /15 /16 /18 /21 /55 D40/3 /4 /7 /8 D41/2 /9											
!	D42/3 D43/9 total des mesures	+ + -	90% des val 16 et 20	eurs entre $\overline{m} = 17,4$		90–180 m	897 des valeurs entre 13 et 16 m = 14,5	150=180µm ➔ 240				
۰ ۱	cimacense (LEC) Nistiaen, 1980				••	ىر200~150		سر250–200 سر250				
	inccense nov. sp Lecompte, 1952							س ر 200				

18. 37 - Hermatostroma (YANG & DONG, 1979). Tableau comparatif de quelques mensurations des éléments coenostraux de l'espèces et de formes voisines.

.

....

. 1

.

1

à interser

۰.

83-192 <u>ې</u> S° R et répartition stracigraphique de Hermatostroma typicum (YANG & DONG, 1979). 38 Distribution geographiqu

DISTRIBUTION GEOGRAPHIQUE ET RAPARTITION STRATIGRAPHIQUE

Calcaires gris récifaux du Sin Ghar, Givétien.

de Mingtang (Dévonien moyen) de Lingting (province du Cuanxie Chine). Lingting (Dévonien moyen) de Lingting (province du Cuanxie Chine).

Les spécimens afghans ont été récoltés : - dans la coupe de Dewal; dans la Formation de Dewal (Givétien), au dessus de bancs renfermant des Stringocephalidae (D. Brice & B. Mistiaen, 1980). - dans la coupe du Koh-e Quutun; vers la base de la Formation des Calcaires

noirs de Badragha, Givétien. - dans la coupe du Sin Ghar; vers la partie supérieure de la Formation des

Stachyodes BARGATZKY, 1881b

1881b - Stachyodes Bargatzk y A., p. 688. 1901 - Stachyodella nobis - Delage S. & Hérouard E., p. - 162.

1907 - Stachyodetta novis - verage ... Espèce-type : Stachyodetta verticillata (MC-COY, 1850). Stiene tofra (Caunofora) Mada, Mada,

DIAGNOSE

Morphologie habituellement dendroïde mais aussi lamellaire. Un ou plusieurs canaux axiaux. Tissu coenostéal souvent très dense composé de piliers radiaires et laminae concentriques plus ou moins distincts, surtout à la périphérie. Microstructure striée.

DISCUSSION

megulia

A. Bargatzky a crée en 1881, le genre Stachyodes d'après une petite forme dendroïde, provenant du Dévonien du Paffrath (Allemagne) qu'il nomme S. ramosa. Il en donne une description et deux schémas assez sommaires. H.A. Nicholson (1886b] p. 107) considère que l'espèce allemande est synonyme de Stromatopora (Caunopora) verticillata McCoy, 1850 qui devient donc l'espèce-type du genre Stachyodes (cf. discussion de S. verticillata). G. Gurich (1896) crée le genre Sphaerostroma, non utilisé par la suite et considéré (W. Gogolzyk, 1959, § 381) comme un synonyme de Stachyodes.

V. Zukalova (1971) cependant propose de reconnaître dans le genre Stachyodes, deux sous-genres :

- Stachyodes (Stachyodes) BARGATZKY, 1881, pour les espèces à laminae fines, peu exprimées;
- 🍸 Stachyodes (Sphasrostroma) GURICH, 1896, pour celles à laminae épaisses et bien définies, ainsi que des piliers individualisés pratiquement dès le centre.

La subdivision proposée semble intéressante pour certaines espèces aux caractères bien tranchés mais d'autres, aux caractères intermédiaires (A.E. Cockbain, 1984, p. 30), posent des problèmes. Ainsi V. Zukalova (1971, p. 104) propose de placer dans le sous-genre Sphaerostroma deux espèces de C.W. Stearn 1963 : S. spongiosum et S. thomasclarki qui possèdent cependant, la première une zone axiale au tissu rétieulé, la seconde des laminae peu définies (C.W. Stearn, 1963, p. 662).

Les relations avec des genres voisins, à morphologie également dendroide, Idiostroma WINCHELL 1867, Claidictyon SUGIYAMA, 1939, Dendrostroma LECOMPTE, 1952 sont clairement exposées par C.W. Stearn (1962, p. 8).

Le genre Vicinustachyodes YAVORSKY, 1961 est considéré par C.W. Stearn (1980, p. 891) comme un synonyme probable de Clavidictyon.

N.B. Y. Delage et E. Hérouard (1901, p. 162) propose de nom Stachyodella en remplacement de Stachyodes BARGATZKY, par un AlGyonaire, de E.P. Wright

et Th. Studer récolté lors des campagnes du Challenger de 1873 à 1876. Il apparaît toutefois que la publication de E.P. Wright et Th. Studer est de 1889; elle est donc postérieure au travail de A. Bargatzky 1881; De plus, Stachyodes WRIGHT & STUDER ne semble pas avoir été réutilisé depuis pour un élévonaire; il est devenu nomen oblitum.

Stachyode La verticillata (M³COY, 1850). Pl. XVIII, fiz. 1-6; fiz. teste 109-172. 1850 - Stromatopora (Caunopora) verticillata (McCorr. - MeCoy 1851 - Stromatopora (Caunopora) &verticillata (McCOY). - McCoy F.M., p 67, fig. a.b. 1881 - Stachyodes ramosa. - Bargatzky A., p. 691, fig. 1-2. 1968 - Stromatopora verticillata McCOY. - Flügel E. & Flügel-Kapler, p. 469-471 (avec liste synonymique depuis 1950 - 23 réf.). 1970 - Stachyodes verticillata (M'COY). - Fischbuch N.R., p. 1080, pl. 149, fig. 1-3 1971 - Stachyodes (Stachyodes) verticillata (MC'COY). - Zukalova V., p. 99, pl. XXXII, fig.6, pl. XXXIII, fig. 4,5; pl. XXXVII, fig. 5 1972 - Stachyodes verticillata (Mac COY). - Lacroix D., p. 208. 1975 - Stachyodes verticillata (MC COY). - Cornet P., tabl. h Mistieen B. III, ann. 2a, 3a, 4a, 6a. 1976 - Stachyodes ex. gr. verticillata (M'COY). - Brice D. & ۷. al., p.144. 1976 - Stachyodes (Stachyodes) verticillata (MC COY). - Zukalova V., p. 373. A Mietiaen B-in partim v. 1977 - Stachyodes sp. - (Brice & al., p. 144. 1980 - Stachyodes verticillata (M'COY). - Mistiaen B., p. 217, pl. XVII, fig. 3-5. 1984 - Stachyodes ramosa BARGATZKY. - Cock bain A.E., p. 28. 1984 - Stachyodes verticillata (M'COY). - Cock bain A.E., p. 28. ? 1984 - Stachyodes costulata LECOMPTE. - Cock bain A.E., p. 28, pl. 19 A-D,20. MATERIEL ET GISEMENT : / spécimens; une vingtaine de sections. Carlede Koh. e Butm. 1 AF 78 KKg/2 AF76D27/1; /5; Coupe de Dewal : AF 76 D 29/1; /5; /7; /8; /9; /10; /11. Cape de San e Pori AF-DES 147, 788 Rep. de Otak AF750K5/1 DESCRIPTION CARACTERES EXTERNES.

Rameaux atteignant 1 à 1,5 cm de diamètre, longs de plusieurs centimètres; parfois branchus et localement accolés; noyés dans une gangue calcaire et associés à des branches de Thamnopora.

CARACTERES INTERNES.

de dromite aner grand mais variable

Coenostea dendroïdes d'assaz_gnand diamètre (5 à 18 mm, 12 à 15 le plus souvent) prenant parfois, par anastomose de plusieurs branches, un aspect noduleux.

Coupe transversale

Canal axial (astrorhizal) unique, pouvant atteindre 0,60 mm de diamètre, ou canaux axiaux multiples, de taille plus petite (0,18 à 0,25 mm).

Deux zones coenostéales assez différentes par leurs caractères structuraux et microstructuraux mais mal délimitées entre elles et passant progressivement de l'une à l'autre.

- Zone axiale, large de 4 à 5 mm, de structure irrégulière, plus ou moins dense selon les sections, aux éléments coenostéaux épais de 0,100 à 0,200 mm environ et aux chambres coenostéales souvent bien arrondies larges de 0,060 à 0,150 mm, les plus grandes pouvant se confondre avec les sections de canaux astrorhizaux.

- Zone périphérique plus régulière, d'épaisseur variable (f) w⁵ (1,8 à 4 mm). Eléments radiaires (piliers) bien individualisés et nettement superposés, épais de 0,150 mm en moyenne et en nombre assez constant (7, parfois 6, sur 2 mm). Eléments concentriques (laminae) peu développés, marqués par de faibles microlaminae ou des fissures dans les piliers ou encore par quelques jonctions entre ceux-ci; densité difficile à évaluer, jusqu'à 4 à 7 sur 1 mm. Louberent, membreus qui melle lipite licente

Espaces coenosteaux allongés radialement, souvent (absez) étroits (0,060 à 0,100 mm au maximum mais parfois réduits à une fissure); dans certains de ces espaces, nombreux dissépiments (jusqu'à une dizaine ou un peu plus sur 1 mm), un peu convexes vers l'extérieur; quelques espaces arrondis, plus larges (2,150 à 2,300 mm) de nature astrorhizale.

Coupe longitudinale

Canaux axiaux (assez étroits (0,150-0,180 mm) et tortueux.

- Zone centrale à structure réticulée ou un peu plus régulières. Piliers épais en moyenne de 0,100 à 0,150 mm, disposés en faisceaux divergents Éléments horizontaux rarement continus et peu marqués, régulièrement incurvés, semi-elliptiques en arc de cercles superposés, assez distants dans l'axe des branches (une dizaine sur 5 mm mais parfois distantes de 1 mm) mais beaucoup plus rapprochées latéralement.

- Zone périphérique assez régulière. Piliers prolongeant ceux de la zone centrale, s'incurvant progressivement pour s'arrêter perpendiculairement à la paroi; 15 à 17 sur 5 mm. Laminae très peu marquées.

MICROSTRUCTURE

Aspect variable selon les régions coenostéales et l'orientation des sections. Partie centrale à microstructure le plus souvent typiquement mélanosphé-

929

Par enchuit, les oléments come telun présenreur des arte de véricules marginales (fig. 112) qui 186 reffellent étonnamment la minstruction du geme Hermatistiona

rique (plus rarement cellulaire) en coupe transversale; en coupe longitudinale, piliers striés (hs. 444, c). &

Zone périphérique à microstructure vaguement striée ou fibreuse; localement (préférenciellement à la base de section d'astrorhizes ou d'autres espaces coenostéaux: (fig. A0 9 or A10) for 1 bouquets de fibres orientés vers le centre de l'organisme (origine secondaire ?).

DISCUSSION

Les spécimens décrits appartiennent au genre Stachyodes BARGATZKY, 1881bl

Ils correspondent, à mon avis, parfaitement à l'espèce-type du genre : S. verticillata (MOCOY, 1850).

Le matériel type est insuffisamment décrit et figuré (cf. A.E. Cock bain, 1984) pour comparer valablement les spécimens afghans. Toutefois les caractères de ces derniers correspondent bien aux descriptions détaillées de l'espèce données par M. Lecompte (1952), W. Gogolzyk (1959) et V. Zukalova (1971).

En créant le genre Stachyodes, A. Bargatzky propose comme espèce-type (1881b, p. 691) S. ramosa dont il donne une brève description et des dimensions. H.A. Nicholson (1886b) p. 107) et après lui la plupart des auteurs considèrent l'espèce de A. Bargatzky comme un synonyme de Stromatopora (Caunopora) verticillata qui devient donc l'espèce-type du genre. Toutefois, A.E. Cock bain (1984, p. 28) prenant en compte les différences de dimensions et soulignant que ces deux formes sont insuffisamment décrites et n'ont jamais été refigurées, considère qu'elles ne sont peut être pas synonymes et qu'il est "imprudent d'utiliser ces deux noms à l'heure actuelle".

Il apparaît toutefois qu'il n'y a pas de séparation entre les dimensions de S. ramosa et celle de S. verticillata (fig.13). De plus, H.A. Nicholson (1886b, p. 107; 1892, p. 223) pose déjà le problème de la taille des rameaux et base sa position sur l'examen d'une "grande série de spécimens ... collectés dans la localité type de Bargatzky".

A.E. Cock bain (1984) figure sous le nom de S. costulata LECOMPTE des formes qui me semblent assez proches de mes spécimens afghans et ne pas appartenir à l'espèce ardennaise. Les sections transversales (A.E. Cock bain, 1984, pl. 19A) montrent en effet, une zone centrale relativement basse, à structure essentiellement réticulée et sans piliers radiaires distincts.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel type de S. verticillata provient des calcaires dévoniens de la région de Teignmouth (Angleterre).

L'espèce or largement répandue, elle a été signalee, en le autre, dans ;

- le Dévonien moyen des Bergisches Land (Allemagne);

- le Dévonien moyen des Alpes Carniques (Italie);

- le Givétien de Ville-Dé-d'Ardin, Deux-Sèvres, et du Boulonnais (France);

- le Givétien et le Frasnien du versant Est de l'Oural septentrional (U.R.S.S.);

1.0 pin

- le Givétien et le Frasnien du Bassin de Dinant, le Frasnien (Formation d'Aisemont) du Bord sud du Bassin de Namur (Belgique).

- le Civétien et le "Frasnien inférieur" (= équivalent de la Formation de Fromelennes, B. Mistiaen, 1982) du Karst Morave (Tchécoslovaquie);
 - le Dévonien moyen et supérieur (Swan Hills Formation) de l'Alberta (Canada);

- le Frasnien de Kadzielnia (Pologne).

١

feiser

Elle est sans doute présente dans le Frasnien (Pillara Limestone et Sadler Limestone) du Canning Basin (Australie occidentale) [A.F. Cuckhaun, 4934].

Les spécimens afghans proviennent: terms de la coupe de Dewal; ITs ont-été-récoltée dans le partie supérleure de la Formation de Dewal, à 25 m environ sous les premiers bancs datés du Frasnien par Conodontes (M. Weyant in D. Brice & B. Mistiaen, 1980, p. 852).

- coupe du koh-e Qutun 12 For and Senglar ves la milien de la Fintun du Sin Ghan (Givertien); - coupe de Sar-e Pori, lare de la Formation du Sin ghan (Give tien).

		Stachyodes costulata LECOMPTE, 1952.
		Pl. XVIII, fis. 7-8; fig. teate 115.
v *	1952	- CStachyodes costulate nov. sp Lecompte M., p. 309, pl.
•	-	LXIV. fig. 3. 51. LXV. fig. 1-4.
	1062	-1
	1902	- byrengoserena bejaroun n. sp Stearn C.w., p. 12, p.
		V, fig. 4-5; pl. VI, fig. 1-2.
	1967	- Stachuccles costulata LECOMPTE Yayorsky V.I., c. 34.
		al VUT Stand her VUTT Stand a VUTT Stand
		pi. Ati, i.g. 1-4; pi. Avii, i.g. (; pi. Aviii, iig.)-5.
	1968	- Stachyodes Acefulata LECOMPTE Flügel E. et Flügel-
		Kahler E., p. 107, 565 (avec liste synonymique depuis
		13017•

	1970		Stachyodes costulata LECOMPTE Stearn C.W. et Mehrotra
			P.N., p. 18, pl. IV, fig. 3-4.
	1970 b	-	Syringostroma ? costulatum (LECCMPTE) Fishbuch M.R.,
			p. 1079,pl. 148, fig. 5-7.
	1971		Stachycdes (Stachyodes) costulara LECOMPTE Zukalova V.
•			p. 101, pl. XXXIV, fig. 5-6.
	1972		Stachyodes costulata LECOMPTE Lacroix D., p. 208.
non	1973	-	Stachuodes costulata LECOMPTE Mistiaen B., p. 74, pl.
			III. fig. 5-7 (=Stachuodes ex. gr. verticillata).
?	1974	-	Stachuodes costulate LECOMPTE Khromych V.G. p. 62, pl.
			XVI. fig. 1. pl. XVII. fig. 2.
	1975	-	Stachuodes costulata LECOMPTE Stearn C.W., p. 1663.
	1975	-	Stachyodes costulata LECOMPTE Cornet F., p. 158, 164.
			166, 175, 185, Table III, An. 1a, 4a, 5a, 6a, 7.
	1976	**	Stachuodes costulata LECOMPTE - Khronych V.G., p. 63. pl.
			X. fig. 2.
non	1976	_	Stochuodes sp. aff. costulata LECOMPTE - Mistiaen B., p.
.1011	1710		188 pl XIV fig 4-9 (-Stachundes australe).
	1070	_	Stachuodes costulata LECONPTE - Yang J et Dong D
	1212	-	81 m ² Hig 0_10
	1021		Charly provide another 1700MPTE Dana D n 100 D V
	190	••	fig 5.6
•	1092		116, J-D. Ctockyolan apotulate I ECOMOTE Stade C 11 n 675 pl ll
ſ	1902	-	Stading daes costulula LECOMPIE Stock C.W., p. 070, pi. 4,
	1001		$\frac{118}{24} = \frac{118}{24} = 1$
non	1984	-	Studryoues costulata LECOMPTE. A.E. COCK DAIN p. 20, pl.
			19 E-D, 20 A. (=Stachyodes verticiliata Y). (

MATERIEL ET GISEMENT

Coupe de Dewal: AF 76 D 69/1; engrar ghujurk: ? AF7562/1

DESCRIPTION

 \mathcal{O}

CARACTERES EXTERNES

Coenostea dendroïdes, enrobés dans la roche.

CARACTERES INTERNES

Coenostea dendroïdes atteignant 12 à 15 mm de diamètre; parfois anastomosés ou présentant une morphologie plutôt lamellaire.

121

Coupe transversale

Canal axial souvent très réduit (200-300 um). Eléments coenostéaux peu différenciés dans la partie centrale mais mium différenciés à la périphérie (frg. 115).

Fartle centrale de dimensions assez réduites, parfois presque inexistante, atteignant au plus 2 à 3 mm de diamètre, rarement plus;

aspect très dense, avec quelques ouvertures arrondies, larges de 50 à 80 um; localement des piliers rayonnant plus ou moins individualisés.

Partie périphérique constituée par des éléments radiaires (piliers) très larges (300 µm), périodiquement en contact entre eux; au nombre d'une quarantaine sur le pourtour d'une branche de 6 mm de diamètre (de 5 à 8 sur 2 mm). Entre les piliers, des espaces arrondis ou plus irréguliers, larges de 50 à 150 µm.

N.B. Les limites entre les piliers et les espaces sont souvent difficiles à discerner; toutefois, fréquemment un "remplissage" partiel sombre (micritique ?), des vides permet de faire la distinction.

Coupe long tudinale

Canal axial peu visible.

Zones de croissance arquées plus ou moins nettes.

Partie centrale peu développée à structure confuse; éléments coenostéaux apparaissant parfois sous forme de grosses ponctuations Larges de 300 µm environ, plus ou moins juxtaposées ou délimitant entre elles des vidés subcirculaires de petite taille.

Partie périphérique mieux développée, à larges piliers subparallèles épais de 240 à 360 µm, s'infléchissant pour s'orienter très vite perpendiculairement à la parci externe; le plus souvent 12 à 14 sur 5 mm. Eléments concentriques (laminae) très peu visibles. Espaces intracoenosteaux arrondis,

MICROSTRUCTURE.

١

Oblitérée presque constamment par la mauvaise conservation (recristallisation) des spécimens. Très localement toutefois, aspect veguement mélanosphérique.

DISCUSSION

, *i

Les spécimens décrits appartiennent typiquement au genre Stachyodes BARGATZKY, 1381b.

Ils correspondent assez bien à S. costulata LECOMPTE, 1952. Ils se distinguent toutefois légèrement par des canaux exiaux de plus petite taille et par des piliers moins serrés (5 à 8 au lieu de 12 sur 2 mm).

Les spécimens que V.G. Khromych (1974) rapportent à S. costulata montrent une structure plus fine, plus aérée; ils ne me semblent pas appartenir à l'espèce de M. Lecompte. Par contre les formes que V.G. Khromych illustre la même année (pl. XVII, fig. 1) sous le rom de Stachyodes angulata sp. rov. me paraissent assez proches de S. costulata.

C.W. Stock (1932) décrit et figure aussi, sous le nom de S. costulata, des formes à éléments coenostéaux assez bien différenciés, à laminae épaisses dons la région centrale et très fines (microlaminae) dans la région périphérique; par ces caractères, les formes décrites par C.W. Stock diffèrent, à mon avis, de l'espèce ardennaise.

C.W. Stock exclut par ailleurs de l'espèce les spécimens que V.T. Yavorsky (1957), C.W. Stearn et P.N. Mehrotra (1970), Yang J. et Dong D. (1979) y plaçaient; il considére en effet que le diamètre des branches (seul caractère mesurable chez ces spécimens très recristallisés) est inférieur à celui habituellement reconnu chez l'espèce.

Il apparaît toutefois que le caractère "aspect recristallisé" est un caractère quasi constant chez l'espèce. Pour C.W. Stearn (1975, p. 1664) *Stachyodes costulata* "appears to be a diagenetic species". S'il en est ainsi, deux solutions sont capendant à envisager :

- ou l'on a regroupé, sous le nom de S. costulata, des espèces différentes mais présentant les mêmes modifications diagénétiques;

- ou il s'agit d'une espèce particulière dont le coenosteum est plus sensible que celui d'autres à des modifications diagénétiques.

J'ai tendance à opter pour la seconde possibilité. Des arguments peuvent toutefois être avancés pour ou contre ces deux hypothèses.

Contre : S. costulata a une répartition stratigraphique assez large (Givétien et Frasnien) qui pourrait laisser croire que plusieurs espèces sont concernées.

Pour : on observe parfois, côte à côte dans la même lame mince, une section de S. ccstulata et une section d'un autre Stromatcpore, voire d'une autre espèce de Stachyodes dont le tissu coenostéal ne montre pas de modifications diagénétiques aussi poussées. C'est le cas en particulier de l'illustration de C.W. Stearn et P.N. Mehrotra (1970, pl. IV, fig. 3).

A.E. Cock bain (1934) a aussi décrit, sous le nom de *Stachyodes costulata* des formes que j'ai tendance à rapprocher de *S. verticillata* (M'COY, 1850).

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel type de *Stachycdes costulata* provient du Frasnien ("F2g") du Bassin de Dinant (Belgique).

- L'espèce a encore été signalée dans:
- les Formations d'Aisemont et de Rhisnes (Frasnien) des bords Sud et Nord du Bassin de Namur (Belgique);
- le Frasnien de la région d'Omolon, Sibérie (UR.S.S.);
- Le Givétien et le Frasnien inférieur des Heilig-Kreuz Gebirge (Pologne);
- la Kweilin Formation (Dévonien supérieur) du Guanxi (Chine);
- le Dévonien moyen et supérieur de l'Albefta (Canada);
- le "Frashien" (= ? Givétien supérieur, of. B. Mistiaen, 1982) du Karst Morave (Tchécoslovaquie);
- la Dingzonglong Formation (Givétien) du Xizang (Tibut);
- l'Olgivie Formation (Civétien) des Nahoni Ranges, Yokon (Canada);
- (- le Dévonien Auférieur des Monts Ulackan, Sibérie (U.R.S.S). Les spécimens afghans ont été requeillis:
 - coupe de Dewal, vers le milieu de la Formation récifale de Dewal, Givétien.

A.E. Cøckbain (1984) figure sous le nom de S. costulata LECOMPTE des formes qui me semblent assez proches de mes spécimens afghans et ne pas appartenir à l'espèce ardennaise. Les sections transversales (4A.E. Cox bain, (1984, pl. 19A) montrent en effet une zone centrale relative-ment basse, à structure essentiellement reticulée et sans piliers radiaires distincts. DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE perficillata provient des calcaires dévàmatériel type de S. niens de la région de Telgnmouth (Angleterre) L'espèce a été signalige dans : le Dévonier moyen du Parfrath de Bergisches Land (Allemagne); le Dévonien moyen des Alpes Carniques (Italie); le Givétien de Vi/Ile-Dé-d'Ardig, Deux-Sèvres X et du Boulonnais (Erance) et de Frasnien dy versant Est de /l'Oural septentrional -le\Qivétien (U.R.S.S.); - le Givétien et le Frasnien du Bassin de Dinant, le Frasnien (Formation d'Aisemont) du Bord sud du Bassin de Namur (Belgique). de Fromelennas, B. Mistigen 1982) du Karst Morave (Tchécoslovaquie); - Le Dévonien moyen et supérieur (Swan/Hille Formation) de l'Alberta (Canada) - le Frasnien de Kadzielnia (Pologne), Elle /est / sans doute présente dans le Frasnien / Rillara Limestone Sadler Dimestone) /du Canning Basin (Australie occidentale). Les spécimens alghans proviennent tous de la coupe de Dewal. Ils ont été récoltés dans la partie supérieure de la Formation de Dewal, à 25 m environ sous les premiers bancs datés du Frasnien par Conodontes (M. Weyant in R. Brice & B. Mistiaen, 1980, p. 852).

	1967	- Keega australe Wray, n. sp Wray J.L., p. 18, pl. 3,
		fig. 1-6, fig-texte 6.
	1967	- Keega australe WRAY Wray J.L., p. 851-852, pl. I, fig.
		3,5,7.
p.p.	1967	- ? Syringostroma confertum STEARN Stearn C.W., p. 800,
		pl. 4b.
	1969	<i>– Keega. –</i> Wray J.L., p. 1368, fig. 15–16.
	1970	- Keega sp. cf. K. australe WRAY Wray J.L. et Playford
		P.E., p. 548, pl. 2, fig. 5.
	1972	- Keega Wray J.L., p. 582.
	1972	- Keega sp Machielse S.W., p. 224-226, pl. 16, fig. 1-3,

pl. 17, fig. 1-3. 1974a - Stachyodes australe (WRAY). - Riding R., p. 572, pl. 85, fig. 5. - Stachyodes jonelrayi n. sp. - Stearn C.W., p. 1664, pl. 1975a 4, fig. 3-6. 1976 - Stachyodes sp. aff. costulata LECOMPTE.- Mistiaen B., p. V 188, pl. XIV, fig. 4-9. v 1976 - Stachyodes sp. aff. costulata LECOMPTE. - Mistiaen B. in Brice D. et al., p. 145, tabl. V. - Keega .- Wray J.L., p. 72. 1977 1977 - Syringostroma ? confertum STEARN.- Mistiaen B. in Brice D. et al., p. 142 et tabl. - Keega.-Mistiaen B., p. 107. 1980 1981 - Stachyodes. - Montjoy E.W. et Riding R., p. 308, fig. 9. - Stachyodes australe (WRAY). - Cockbain A.E., p. 28, pl. : 1984 - Keega . - Bordet et al. , p. 1985

HOLOTYPE.

Spécimen de J.L. Wray, G.S.W.A., F 6160; figuré par J.L. Wray 1967, pl. 56, fig. 3-5.

MATERIEL ET GISEMENT (plus d'une centaine de sections).

Coupe de Koh-e Zardak : AF DES 70 AF DES 70.70/2; AF 78 KZ 2/1; AF 78 KZ 3/2; Coupe de Ghoujerak: AF G 7/4; AF 73 G 3 /3; /6; AF 75 G 2 /1; AF 76 G 23 /1; 2; Coupe de Caragsang: AF 73 J 4 eb; Coupe de Bokan: AF 75 Bo 200 d/2; AF 75 Bo 200 e/1; AF 75 Bo 200 f/1; AF 75 Bo 200 g/1; /3; Coupe de Dewal: AF 76 D 22 /3; /4; /5; /6; /7; /10; /13; /14; /15; /16; AF 76 D 22. /1; /4; /8; /11; AF 76 D 27 /9; AF 76 D 30 /2; Coupe du Barik Ghar: AF 78 BG 11/8; Coupe de Tanabed: AF 78 Ta 8/1; 2.

DESCRIPTION.

CARACTERES EXTERNES.

Spécimens uniquement repérés en lames minces, se présentant toujours sous forme de bioclastes de petites dimensions ou de fines lamelles encroûtantes, atteignant au maximum 3 à 4 cm de longueur.

CARACTERES INTERNES.

Coupe verticale.

Lamelles (latilaminae) de faible épaisseur, 2 à 6 mm, rarement plus (10 mm), mais pouvant parfois se superposer; composées de deux zones successives très différentes (); 147).

Partie inférieure (= couche basale) plus sombre, épaisse de O,3 à 4 mm selon les spécimens; perforée d'ouvertures arrondies plus ou moins nombreuses, de tailles très diverse et atteignant parfois 250 à 300 μ m de diamètre. Eléments coenostéaux pas (ou très peu) visibles; structure très typique, en croissants successifs emboités et allongés horizontalement, correspondant à une certaine lamination ((c. 44%).

Passage souvent très progressif à la zone supérieure d'allure très différente, épaisse de 0,6 à 5 mm (inexistante dans certaines sections qui pourraient toutefois correspondre à des sections tangentielles de base de coenostea ?); de couleur beaucoup plus claire et prenant un aspect plus recristallisé (microstructure "confertum" de C.W. Stearn); structure coenostéale plus distincte, souvent très compacte, dominée par des piliers presque jointifs, épais de 180 µm environ, à bordure irrégulière, sombre, souvent un peu mieux individualisés vers le sommet et au nombre d'une vingtaine sur 5 mm; vague trace de laminae recoupant les piliers (6 environ sur 1 mm ?). Espace coenostéaux presque inexistants ou réduits à des fissures entre les piliers. Cà et là, quelques ouvertures bien arrondies, atteignant 180 à 240 µm, sans doute de nature astrorhizale.

Coupe tangentielle.

Plages denses, alternativement claires et sombres, percées d'ouvertures arrondies ou de canaux (astrorhizaux) pouvant atteindre 3 à 4 m de longueur (AF 76 D 22 /4b).

MICROSTRUCTURE.

Zones inférieures sombres présentant parfois une microstructure striée pouvant prendre un aspect presque microréticulé.

Zones supérieures claires apparemment très recristallisées; aspect fibreux fréquent, en bouquets s'épanouissant vers le bas, souvent bien développés sous les ouvertures (chambres coenostéales).

DISCUSSION.

Par leurs caractères morphologiques, structuraux et microstructuraux, ces formes correspondent parfaitement à celles décrites sous le

nom de Keega WRAY, 1967 et considérées par l'auteur comme appartenant à une famille incertaine d'Algues Rhodophycées. Toutefois J.L. Wray signale que la couche basale est "intimately associated with ... stromatoporoids ... and encrusted by thin, lamellar stromatoporoids". R. Riding (1974a) redécrit "Keega" et le réinterpréte comme la couche basale d'un Stromatopore du genre Stachyodes.

Deux espèces de *Stachyodes* de morphologie lamellaire et possédant une "couche basale" ont été décrites, *S. australe* (WRAY, 1967) et *S. jonelrayi* STEARN, 1975a.

C.W. Stearn distingue son espèce de l'espèce australienne sur la base de trois critères déjà reconnus par S. Machielse (1972) :

- l'épaisseur de la "couche basale",
- l'épaisseur de la zone supérieure,
- la taille des ouvertures dans la couche basale.

Il retient surtout comme élément de diagnostic, l'épaisseur de la zone supérieure, très fine, indistincte, voire absente chez *S. australe* mais pouvant atteindre 3 mm chez l'espèce canadienne *S. jonelrayi*.

Le matériel type de S. *australe*, ainsi que des hypotypes que j'ai pu obtenir en prêt et observer (grâce à l'obligence de J.H. Lord, directeur du Geological Survey de Perth, que je tiens à remercier), montrent en effet une zone supérieure extrêmement réduite, voire inexistante. Toutefois R. Riding, dans son travail sur la révision de l'espèce, basée sur le matériel type, figure (1974a, pl. 85, fig. 4) un spécimen australien qui présente une zone supérieure atteignant environ 2 mm d'épaisseur. Par ailleurs, comme le signale déjà A.E. Cock bain (1984, p. 28), S. Machielse (1972, pl. XVII, fig. 1) illustre une forme canadienne de "Keega" à couche supérieure d'épaisseur très faible. A.E. Cock bain considère de ce fait que les deux espèces, S. *australe* et []

S. jonelrayi sont identiques; ses illustrations de spécimens australiens (A.E. Cock bain 1984, pl. 18, fig. A-E) montrent aussi effectivement des latilaminae possédant une couche supérieure diversement développée, parfois assez épaisse (plusieurs millimètres).

L'un des spécimens afghans (AF 76 D 22/6) apporte un argument complémentaire concernant la forte variation d'épaisseur de la couche supérieure. Il est formé de plusieurs latilaminae successives d'épaisseur très différentes (0,7 mm et 1 cm) dont la couche supérieure varie quant à elle de 0,2 à 5 mm.

J'ai retrouvé les mêmes caractères dans un spécimen provenant · la Formation de Ferques (Frasnien du Boulonnais); la couche supér cure varie en épaisseur, selon les endroits, de 0,25 à 5 mm.

J'adopte donc le point de vue de A.E. Cockbain et considère que S. jonelrayi est un synonyme de S. australe.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Les types de *S. australe* proviennent tous du Frasnien du Canning Basin (Australie occidentale).

L'espèce est présente:

de

- dans les Formations Leduc et Grosmont du Ancient Wall Reef Complex (Frasnien) de l'Alberta (Canada)

- dans le Membre des Noces (Formation de Beaulieu), les Membres de Fiennes, du Bois et de la Parisienne (Formation de Ferques), Frasnien du Boulonnais (France).

Elle est encore présente, très vraisemblablement dans le Frasnien de Belgique et de Pologne.

Les spécimens afghans ont été récoltés:

- coupe du Koh-e Zardak dans la partie supérieure de la Formation des Calcaires noirs/Badragha (Frasnien);

- coupe de Ghoujerak, extrême sommet de la Formation de Dewal (Fronnieu) et Formation du Koh-e given (Franden);

- coupe de Caragsang, dans la Formation da kuhe giru (Faunien);

- coupe de Bokan, dans le Mombre de Quark-e engene Bodak, Formation de Conche (Francen); - coupe de Dewal, vers le sommet de la Formation de Dewal, (Givétien supérieur 2 et Estatute):

supérieur ? et Francen); - coupe du Barik Ghar, Formation d'Olsenate (Francian probable);

- coupe de Tanabed, au sommet de la Formation du Sin gher (Frasmer),

Euryamphipora KLOVAN, 1966.

-248-

60 1955 - Klovan J.E., p. 14. 1966 b - Stearn C.W., p. 64. 1980 - Stearn C.W., p. 891. 1984 - Cock bain A.E., p. 18 (= Amphipora).

Espèce-type : Euryamphipora platyformis KLOVAN, 1966.

DIAGNOSE

Coenostea en lames très fines, n'excédant pas 2 à 3 mm d'épaisseur, limitées par des parois nettes. Vésicules marginales. Tissu fibreux ou poreux.

Structure quadrillée on plus inégulice

DISCUSSION

ì

J.E. Klovan établit le genre Euryamphipora sur la base de la morphologie en lame qui le différencie du genre Amphipora SCHULZ, 1883. Il considère que c'est une forme tabulaire, "en plaques" horizontales.

A.E. Cock bain (1984) propose une interprétation différente; il suppose qu'il s'agit d'une forme érigée, aplatie latéralement, à croissance verticale et non horizontale. Pour A.E. Cock bain certaines formes dendroïdes où les branches restent en contact et en relation entre elles, feraient la transition entre les genres Amphipora (dendroïde) et Euryamphipora (lamellaire). A.E. Cock bain considère donc Euryamphipora comme un synonyme de Amphipora.

Les spécimens (tous de petits débris) que j'attribue ici à <u>Euryam</u>phipora ne me permettent pas de préciser leur mode de croissance. El est difficile d'y retrouver l'aspect symétrique qui résulterait d'une croissance verticale (cf. la reconstitution proposée par A.E. Cock bain, 1984, fig. 10). Il serait intéressant d'effectuer des usures sériées dans du matériel bien conservé pour infirmer ou confirmer l'hypothèse de A.E. Cock bain,

Quelque que soit le mode de croissance, il semble qu'il^Ny ait <u>peu</u> par de forme intermédiaire (branches anastomosées) et je considère dans ce travail le genre *Euryamphipora* comme valide.

Euryamphipora sp. re. xx, fis. 5-9;

MATERIEL ET GISEMENT

Une dizaine de sections. Coupe de Takitakay, échantillon de R.D. Desparmet: AF DES 103 b.

Un spicimen (fie encicite nettement in aguille de Brachiofsde mais Je le rattache augence arec doute. tra-1.

Coupe de Dewal: AF 76 D 41/3 AF 76 D 47/3 9 AF 76 D 83/4 démie fate og de Brilier veren 1 con de (fis 122)

DESCRIPTION

CARACTERES EXTERNES

Non observés; les spécimens sont uniquement repérés en lames minces.

CARACTERES INTERNES

Petits fragments (bioclastes) de coenostea très vraisemblablement lamellaires, atteignant en moyenne 5 à 10 mm de longueur et épais de 1 à 1,5 mm; limités sur leur deux faces, inférieure et supérieure, par une bordure toujours très continue. épaisse de 0,030 à 0,050 mm (§. 4.21-421) Structure infégulière en quadrillé gélégents coenostéaux épais de 0,060 à 0,090 mm en moyenne, parfois plus; espaces très irréguliers, ou arrondis, larges de 0,250 mm parfois situés préférentiellement en bordure.

MICROSTRUCTURE Aspect spongieux à fibreux.

DISCUSSION

Les différents spécimens afghans rappellent beaucoup les formes décrites par C.W. Stearn (1966b) sous le nom de Euryamphipora ? sp. Comme les spécimens canadiens, ils se caractérisent par l'absence de vésicules marginales bien développées. S'agissant de débris millimétriques, on pourrait croire que la zone périphérique, avec les vésicules marginales, plus fragile, a été érodée lors d'un transport de ces bioclastes. Toutefois les différents fragments de coenostea présentent, sur leurs deux faces, et parfois à façon très nette, des limites continues (fig.No-W1). Ces limites ne peuvent en aucun cas correspondre à des bordures de bioclastes micritisés; elles sont trop continues et, de plus, elles n'existent pas aux extrémités latérales, cassées de ces fragments; enfin, dans les mêmes lames minces, on observe des débris d'autres Stromatopores ou de Bryozoaires qui ne présentent pas de limites.

1. 1. 1. 1. 2. Y.

lu Haliques

Le genre Euryamphipora a été uniquement signalé au Canada par J.E. Klovan (1966) et par C.W. Stearn (1966). Je pense l'avoir retrouvé dans des échantillons, provenant d'un sondage de la Sarre, qui m'ont été confiés par le Dr A. Muller de l'Université d'Aix-la-Chapelle; le matériel allemand est cependant très recristallisé et dolomitisé et ne permet pas une détermination générique certaine.

Labechia MILNE EDWARDS & HAIME, 1851.

DIAGNOSE

Coenostea lamellaires, encroûtants ou massif (noduleux, subcylindriques) constitués par de nombreux dissépiments convexes traversés par de longs et forts piliers à section arrondie. Microstructure d'aspect compact.

cf. 1955 - Labechia venusta sp. nov. - Yavorsky V.I., p. 64, pl. XXVIII, fig. 3-4.

TIPE .

MATERIEL ET GISEMENT (2 spécimens, 2 lames, 3 sections).

Coupe de Safedak: AF 78 Saf 1/2; /3.

DESCRIPTION

CARACTERES EXTERNES

Petits coenostea noduleux à columnaires, larges de 2 cm environ et atteignant 2,5 à 3,5 cm de hauteur; inclus dans la roche; l'un d'eux à limites latérales très irrégulières. Pas de caractères visibles extérieurement.

CARACTERES INTERNES

<u>Coupe verticale</u> Structure vésiculaire.

Eléments coenostéaux essentiellement représentés par un empilement désordonné de dissépiments vésiculeux, aplatis, légèrement convexes, très fins (épaisseur souvent inférieure à 10 µm, parfois un peu plus, 30 à 50 µm); taille des vésicules atteignant ou dépassant 1 mm en largeur mais rarement plus de 0,5 mm en hauteur ((:

Çà et là, de gros éléments verticaux (piliers) épais de 150

jum, rarement 180 jum, parfois un peu tortueux, distants de 1 mm ou plus, traversant jusqu'à une dizaine de vésicules et plus ou moins évasés à leur contact (($i_3.123$).

Aucune structure astrorhizale.

Coupe tangentielle.

Grosses sections arrondies, larges de 150 µm, correspondant aux intersections des piliers et au nombre de 55 à 65 environ sur 25 mm²; réunies entre elles par des éléments vésiculeux fins, souvent contournés, aux allures de dissépiments dans l'une des lames, sections de piliers alignées selon une disposition rayonnée ((1) - 125).

Zonation concentrique plus ou moins marquée par un épaississement périodique des éléments vésiculaires.

MICROSTRUCTURE

Tissu des piliers d'aspect compact.

DISCUSSION

Par la présence de piliers continus (se traduisant, en coupe tangentielle, par des sections arrondies) et d'éléments horizontaux vésiculaires, ces spécimens se rattachent parfaitement au genre *Labechia* MILNE-EDWARDS & HAIME, 1851.

Certaines coupes tangentielles, où les sections de piliers apparaissent alignées et parfois presque contiguës, évoquent le genre *Labechiella* YABE & SUGIYAMA, 1930; mais cet aspect, observable seulement très localement, n'est pas caractéristique des échantillons et n'est dû, à mon avis, qu'à l'orientation de la coupe.

Spécifiquement, ils rappellent plusieurs espèces de Labechia décrites par des auteurs russes.

Ils sont très proches de L. *venusta* YAVORSKY, 1955, dont ils ne se distinguent que par des piliers un peu moins épais et des vésicules de taille légèrement plus petite.

Ils sont aussi très voisins de *L. sibirica* YAVORSKY, 1955; le seul caractère distinctif réside dans la plus forte densité en piliers chez l'espèce russe.

Leur allure générale et la forme des vésicules rappellent encore *L. polaris* GORSKY, 1938. Toutefois, chez cette dernière espèce, les vésicules sont de taille plus petite et les piliers plus épais et plus nombreux.

Ce dernier caractère les distinguent encore de L. aequalis, YAVORSKY, 1967, une espèce très voisine de L. polaris qui possède des piliers très légèrement plus serrés encore.

Leur aspect général rappelle encore *L. tumulosa* YAVORSKY, 1955 mais, ici aussi ils s'en différencient par leurs piliers moins épais.

DISTRIBUTION GEOGRAPHIQUE ET REPARTITION STRATIGRAPHIQUE

Le matériel type de *L. venusta* provient du Wenlockien de Pockamennaia Tunruska

Les spécimens afghans ont été récoltés, à la coupe du Safedak, dans une série schisto-gréseuse épaisse et mal datée, sans doute en partie silurienne dans sa partie inférieure et passant, dans sa partie supérieure, au Dévonien (Forma Fin d'Olsenak).

PLANCHE I

•

.

PLANCHE I

Fig. 1 - 4. Actinostroma devonense LECOMPTE, 1951.

- 1 Coupe verticale dans le spécimen GFCL 4048 (AF 78 Ta 3/9).
 x 10.
 Structure quadrillée à piliers très continus. Net contraste entre les laminae assez fines et les piliers un peu plus épais.
- 2 Coupe verticale dans le spécimen GFCL 4049 (AF DES 217/2).
 x 10.
 Contraste moins marqué entre les laminae et les piliers.
- 3 Id. x 5. Vue d'ensemble; dans certaines zones moins bien conservées, les éléments coenostéaux paraissent moins épais.
- 4 Coupe tangentielle dans le même spécimen. x 10.
 Maille hexactinelloïde bien développée.
- Fig. 5 7. Actinostroma crassum (LECOMPTE, 1951).
 - 5 Coupe verticale dans le spécimen GFCL 4050 (AF 75 Ba 11/14). x 5. Structure quadrillée où dominent nettement les éléments verticaux.
 - 6 Id. x 10. Piliers et laminae localement réduits à de grosses ponctuations.
 - 7 Coupe tangentielle dans le spécimen GFCL 4051 (AF 75 Ba 11/20).
 x 10.
 Maille hexactinelloIde par endroits très empâtée.

Fig. 8 - 10. Actinostroma filitextum LECOMPTE, 1951.

- 8 Coupe verticale dans le spécimen GFCL 4052 (AF 78 KK 10/3).
 x 5.
 Faible latilamination. Constraste très marqué entre les laminae et les piliers.
- $9 Id. \times 10.$
- 10 Coupe tangentielle dans le même spécimen. x 5. Maille hexactinelloïde bien visible. Sur la droite de la photo, sections circulaires de piliers montrant une partie centrale plus claire. (cf. pl. II, fig. 6).

Les spécimens figurés et les types (GFCL...) sont conservés dans les collections de la Faculté Libre des Sciences de Lille, 13, rue de Toul 59046 Lille Cedex.

PLANCHE II

PLANCHE II

Fig. 1 - 3. Actinostroma verrucosum (GOLDFUSS, 1826).

- 1 Coupe verticale dans le spécimen GFCL 4054 (AF DES 217/1).
 x 10.
 Structure régulière, marquée par de larges ondulations et un léger épaississement des piliers au niveau des astrorhizes.
- 2 Coupe tangentielle dans le même spécimen. x 5.
 Nombreuses sections concentriques d'ondulations astrorhizales, aux canaux astrorhizaux peu visibles. Maille hexactinelloïde.
- 3 Coupe tangentielle dans le spécimen GFCL 4055 (AF 76 K 13/6).
 x 5.
 Canaux astrorhizaux bien développés. Maille hexactinelloîde moins nette mais visible localement.
- Fig. 4 5. Actinostroma perlaminatum LECOMPTE, 1951.
 - 4 Coupe verticale dans le spécimen GFCL 4056 (AF 78 Ta 4/4).
 x 5.
 Structure quadrillée très fine.
 - 5 Coupe tangentielle dans le spécimen GFCL 4136 (AF 78 Ta 4/8). x 5.
- Fig. 6. Actinostroma filitextum LECOMPTE, 1951.

Coupe tangentielle dans le spécimen GFCL 4053 (AF 78 KK 10/3). x 25.

Ebauche de maille hexactinelloIde autour des piliers qui montrent très souvent une zone centrale plus claire. (cf. pl. I, fig. 10).

Fig. 7 - 11. Atelodictyon strictum LECOMPTE, 1951.

.

7 - Coupe verticale dans le spécimen GFCL 4057 (AF 76 D 47/2). x 5.

Hauteur variable des espaces interlaminaires due au système astrorhizal bien développé.

- 8 Id. x 10. Détail d'une astrorhize. Les canaux latéraux se confondent très rapidement avec les galeries.
- 9 Coupe tangentielle dans le même spécimen. x 5.
 Structures concentriques irrégulières.
- 10 Id. x 10. Piliers réunis entre eux pour former une maille caténiforme. Petites perforations dans les laminae.
- 11 Coupe verticale dans le spécimen GFCL 4058 (AF DES 336'/1). x 25. Laminae continues, à limite supérieure souvent très nette, renfermant localement de petites perforations ou des granulations sombres.

. '

PLANCHE III

\

PLANCHE III

Fig. 1 - 3. Atelodictyon aggregatum LECOMPTE, 1951.

- 1 Coupe verticale dans le spécimen GFCL 4059 (AF 76 Tak 3/4).
 x 10.
 Laminae à limites supérieures nettes et à limites inférieures effrangées, avec, dans leur épaisseur, quelques petites perforations.
- 2 Coupe verticale dans le même spécimen. x 5.
 Maille caténiforme; petites perforations visibles au niveau des laminae.

١

- $3 Id \times 25$.
- Fig. 4 8. Atelodictyon cf. connectum YANG et DONG, 1979.
 - 4 Coupe verticale dans le spécimen GFCL 4060 (AF 76 D 93a/1).
 x 10.
 Structure coenostéale régulière où dominent les laminae. Nombreuses sections de canaux astrorhizaux latéraux.
 - 5 Coupe verticale dans le spécimen GFCL 4061 (AF 76 D 88/1).
 x 5.
 Piliers localement mieux développés que dans le spécimen précédent.
 - 6 Coupe verticale dans le spécimen GFCL 4062 (AF 76 K 13/2).
 x 5.
 Structure coenostéale aux éléments moins distincts.
 Astrorhizes superposées.
 - 7 Coupe verticale dans le spécimen GFCL 4063 (AF 78 SpG 1/25).
 x 5.
 Spécimen partiellement recristallisé; localement (centre de la

photo) laminae distinctes, ailleurs (parties droite et gauche de la photo) piliers dominant la structure coenostéale.

 $8 - Id. \times 10.$

. .

Détail de la photo précédente montrant l'allure des piliers recristallisés, prenant un aspect "confertum".

PLANCHE IV

.

•

.

 \mathbf{n}

.

• .

PLANCHE IV

Fig. 1 - 3. Atelodictyon cf. connectum YANG et DONG, 1979.

- 1 Coupe tangentielle dans le spécimen GFCL 4060 (AF 76 D 93a/1).
 x 5.
 Structure coenostéale arérée; canaux astrorhizaux bien visibles.
- 2 Coupe tangentielle dans le spécimen GFCL 4062 (AF 76 K 13/2).
 x 5.
 Structure coenostéale un peu plus dense que chez le spécimen précédent.

X

3 - Id. x 10. Maille caténiforme.

- Fig. 4 10. Atelodictyon dewalense nov. sp.
 - 4 Coupe verticale dans le paratype GFCL 4064 (AF 76 D 32/2).
 x 5.
 Aspect variable de la structure coenostéale (dû, mais en partie seulement, à de légères différences d'orientation de la section): en haut et à gauche de la photo, structure quadrillée; à droite, laminae épaissies.

5 - Id. x 5. Autre endroit de la même lame mince montrant un aspect encore différent, avec des laminae très serrées.

- 6 Coupe verticale dans l'holotype GFCL 4065 (AF 76 D 32/3).
 x 10.
 Zone à structure coenostéale régulièrement quadrillée.
- 7 Id. x 10.
 Autre endroit de la même lame mince (section un peu oblique);
 laminae très épaissies, effrangées à leur base mais avec une limite supérieure très nette.
- 8 Id. x 10.
 Autre endroit de la même lame; aspect encore différent: laminae beaucoup plus serrées que dans les deux endroits précédents.
- 9 Coupe tangentielle dans le même spécimen. x 5.
 Pas de maille hexactinelloïde mais quelques jonctions entre des piliers voisins: maille caténiforme.
- 10 Id. x 25. Détail de la photo précédente; petites perforations dans les laminae.

PLANCHE V

.

PLANCHE V

- Fig. 1 4. Bifariostroma sp.
 - 1 Coupe verticale dans le spécimen GFCL 4066 (AF 76 Bo 37/6).
 x 5.
 Latilamination assez nette. Deux sortes de piliers, certains peu épais et réduits à un espace interlaminaire, d'autres beaucoup plus gros et continus. Laminae souvent rebroussées au contact des gros piliers.
 - 2 Coupe tangentielle dans le même spécimen. x 5.
 Sections des larges piliers très peu apparentes.
 - 3 Coupe verticale dans le même spécimen. x 10. Larges piliers avec une partie centrale fréquemment plus claire.
 - 4 Coupe tangentielle dans le même spécimen. x 25.
 Quelques sections de larges piliers à centre clair.
- Fig. 5 7. Pseudostromatoporella sp.
 - 5 Coupe verticale dans le spécimen GFCL 4067 (AF 75 Bo 37/1). x 10. Nombreux "ring-pillars".
 - 6 *Id.* x 5. Vue générale de la section montrant l'aspect en "zig-zag" des laminae.
 - 7 Coupe tangentielle dans le même spécimen. x 10.
 Nombreuses sections de "ring-pillars".
- Fig. 8 9. Anostylostroma ? sp.
 - 8 Coupe verticale dans le spécimen GFCL 4068 (AF 78 SpG 16/1).
 x 10.
 Aspect très irrégulier, dû à l'écartement variable des laminae et à la morphologie des piliers.
 - 9 Id. x 44. Piliers parfois anostomosés, très souvent bifurqués, subdivisés à leur sommet.

PLANCHE VI

,

 \backslash
PLANCHE VI

- Fig. 1 2. Anostylostroma ? sp.
 - 1 Coupe oblique dans le spécimen GFCL 4068 (AF 76 SpG 16/1). x 10.

Aspect très irrégulier; gros canaux astrorhizaux.

- 2 Coupe tangentielle dans le même spécimen. x 20.
 Nombreuses perforations dans les éléments coenostéaux qui correspondent aux intersections des ramifications des piliers.
- Fig. 3 5. Clathrodictyon cellulosum NICHOLSON et MURIE, 1878.
 - 3 Coupe verticale dans le spécimen GFCL 4069 (AF 75 Bo 83/2).
 x 5.
 Galeries coenostéales aux chambres très allongées.
 - $4 Id. \times 10.$
 - 5 Coupe tangentielle dans le même spécimen. x 5. Aspect très irrégulier.

Fig. 6 - 8. Clathrocoilona spissa (LECOMPTE, 1951).

- 6 Coupe verticale dans le spécimen GFCL 4070 (AF 76 SpG 18/8).
 x 5.
 Aspect très dense du tissu coenostéal, un peu plus aéré au sommet des zones de croissance; association avec des Tabulés (Aulostegites sp.).
- 7 Coupe verticale dans le spécimen GFCL 4071 (AF 76 D 22/7).
 x 5.
 Coenosteum lamellaire développé sur un autre stromatopore (*Hermatostroma* sp.). Même aspect que précédemment.
- 8 Coupe tangentielle dans le spécimen GFCL 4072 (AF 76 D 41/2).
 x 10.
 Structure coenostéale très dense; sections arrondies de piliers.
- Fig. 9 10. Clathrocoilona obliterata (LECOMPTE, 1951).
 - 9 Coupe verticale dans le spécimen GFCL 4073 (AF 76 BS 9/2). x 5. Coenosteum encroûtant un Alvéolitidé et intimement associé à des algues (Sphaerocodium sp.).

10 - Id. x 10.

Le stromatopore alterne avec des couches de cellules de *Sphaerocodium* sp. Chaque encroûtement de stromatopore ne comporte pas plus de deux ou trois laminae.

PLANCHE VII

 $\mathbf{1}$

.

•

•

PLACNCHE VII

Fig. 1 - 2. Clathrocoilona obliterata (LECOMPTE, 1951).

- 1 Coupe dans le spécimen GFCL 4074 (AF 2Z 6). x 3.
 Coenosteum encroûtant et se développant à l'intérieur du calice d'un Tétracoralliaire puis à son tour encroûté par un Tabulé (Alvéolitidé).
- 2 Coupe verticale dans le spécimen GFCL 4075 (AF 76 D 41/2).
 x 10.
 Coenosteum encroûtant un Tabulé (*Thamnopora* sp.).
- Fig. 3 9. Stictostroma uralense (YAVORSKY, 1955).
 - 3 Coupe verticale dans le spécimen GFCL 4076 (AF 76 D 22./6). x 5. Latilamination plus ou moins visible; nombreux tubes de caunopores.
 - 4 Id. x 10. Laminae fréquemment interrompues (foramens) et remplacées par des dissépiments.
 - 5 Coupe tangentielle dans le spécimen GFCL 4077 (AF 78 SpG 18/25). x 5.
 Nombreuses sections de tubes de caunopores de petite taille.
 - 6 Coupe tangentielle dans le spécimen GFCL 4076 (AF 76 D 2/6).
 x 10.
 Structure vermiforme.
 - 7 Coupe tangentielle dans le spécimen GFCL 4078 (AF 76 D 27/3).
 x 5.
 Nombreuses sections de tubes de caunopores à paroi épaisse.
 - 8 Id. x 21,5.
 Détail de la photo précédente; section d'un tube de caunopore à paroi très épaisse et à limite irrégulière.
 - 9 Id. x 44. Deux sections de tubes de caunopores aux parois d'épaisseur très variable.
- Fig. 10. Stictostroma cf. brylkini (YAVORSKY, 1955).

Coupe verticale dans le spécimen GFCL 4079 (AF 76 D 52/1). x 5. Net épaississement des éléments coenostéaux au niveau des astrorhizes. Eléments plus fins au sommet des latilamines.

PLANCHE VIII

PLANCHE VIII

Fig. 1 – 5. Stictostroma cf. brylkini (YAVORSKY, 1955).

- 1 Coupe verticale dans le spécimen GFCL 4080 (AF 76 D 48/3).
 x 10.
 Zone à éléments coenostéaux bien distincts.
- 2 Id. x 10.
 Autre endroit de la même lame montrant l'épaississement des éléments coenostéaux autour des astrorhizes.
- 3 Id. x 20. Laminae souvent interrompues par des foramens et remplacées par des dissépiments; mais pas de "ring- pillars".
- 4 Coupe tangentielle dans le spécimen GFCL 4079 (AF 76 D 52/1).
 x 5.
 Aspect général avec les sections des zones astrorhizales au tissu coenostéal très épaissi.
- 5 Id. x 10. Détail. Très forte variation d'épaisseur des éléments coenostéaux.
- Fig. 6 11. Stictostroma saginatum (LECOMPTE, 1951).
 - 6 Coupe verticale dans le spécimen GFCL 4081 (AF 78 KZ 3/5). x 5.
 - 7 Id. x 10. Détail d'une astrorhize.
 - 8 Id. x 10.
 Autre endroit. Laminae discontinues, localement remplacées par des dissépiments mais pas de "ring-pillars".
 - 9 Id. x 25.
 Même remarque que pour la photo précédente. Microstructure cellulaire à mélanosphérique visible localement; ligne axiale claire dans certaines laminae.
 - 10 Coupe tangentielle dans le spécimen GFCL 4082 (AF 78 KZ 3/8). x 5. Structure ponctuée à méandriforme, aux éléments coenostéaux fins, caractéristiques de l'espèce (en haut et à gauche de la photo), au contact d'une structure beaucoup plus compacte et grossière (en bas et à droite de la photo) appartenant à *Clathrocoilona spissa*.

11 - Id. x 10. Détail de la photo précédente montrant le contact très intime entre les deux espèces.

F ILL

PLANCHE IX

Ι

PLANCHE IX

Fig. 1 - 9. Stromatoporella granulata (NICHOLSON, 1873).

- 1 Coupe verticale dans le spécimen GFCL 4083 (AF 76 D 38/8).
 x 5.
 Vue d'ensemble.
- 2 Id. x 10. Détail d'une astrorhize bien développée. Sur la gauche de la photo, quelques "ring-pillars". Ligne axiale claire visible dans certaines laminae.
- 3 Coupe verticale dans le spécimen GFCL 4084 (AF 76 D 56/1).
 x 10.
 Coenosteum encroûté par un Tabulé (Alveolites) sp.
- 4 Coupe verticale dans le spécimen GFCL 4085 (AF 78 Tak 3/7).
 x 10.
 Coenosteum recouvert par un Stachyodes sp.
- 5 Coupe verticale dans le spécimen GFCL 4086 (AF 76 D 80a/1).
 x 25.
 Quelques sections de "ring-pillars" bien visibles. Microstructure cellulaire; ligne axiale claire, discontinue, très nette localement.
- 6 Id. x 5. Tubes de caunopores.
- 7 Id. x 10. Autre endroit de la même lame mince avec des tubes de caunopores.
- 8 Coupe tangentielle dans le spécimen GFCL 4083 (AF 76 D 38/8).
 x 5.
 Quelques sections de canaux astrorhizaux. Nombreuses sections de "ring-pillars". Vers le bas de la photo, dans les sections de laminae, nombreuses et fines tubulures.
- 9 Id. x 10 Détail de la photo précédente.

BU

PLANCHE X

.

.

.

.

.

PLANCHE X

Fig. 1 - 3. Gerronostroma lemniscum (LECOMPTE, 1951).

- 1 Coupe verticale et en partie tangentielle dans le spécimen GFCL 4087 (AF 76 D69/1). x 5. Coenosteum lamellaire encroûtant un Tabulé.
- 2 Id. x 10. Piliers nettement superposés, laminae localement très fines.
- 3 Coupe verticale dans le spécimen GFCL 4088 (AF 76 BS 7/1).
 x 10.
 Petit coenosteum lamellaire développé sur une colonie de Alveolites sp.
- Fig. 4 10. Atopostroma sp.
 - 4 Coupe verticale dans le spécimen GFCL 4089 (AF 75 Ba 11/18).
 x 5.
 Piliers nettement superposés et légèrement évasés à leur sommet.
 - 5 Coupe oblique dans le spécimen GFCL 4090 (AF 75 Ba 11/1).
 x 10.
 Epaississements infra-laminaires bien visibles.
 - 6 Coupe verticale dans le spécimen GFCL 4089 (AF 75 Ba 11/18).
 x 10.
 Détail de la figure 4.
 - 7 Coupe verticale dans le spécimen GFCL 4090 (AF 75 Ba 11/1).
 x 5.
 Petites zones à structure coenostéale plus dense, où les laminae sont légèrement infléchies, et qui pourraient correspondre à la proximité d'organismes parasites ou à des "noeuds" astrorhizaux.
 - 8 Id. x 10. Détail de la photo précédente.
 - 9 Coupe tangentielle dans le spécimen GFCL 4090 (AF 75 Ba 11/1).
 x 5.
 Sections arrondies des piliers, plus ou moins réunies entre elles, pour donner une maille caténiforme.
 - 10 *Id.* x 10. Détail de la photo précédente.

