50376 1985 67

Nº d'ordre : 1278

THÈSE

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE 3ème CYCLE

Spécialité mécanique des Solides

par

Dominique NKOUNKOU-TOMODIATOUNGA

CONTRIBUTION A L'ETUDE DE LA STRUCTURE ET DES LOIS DE COMPORTEMENT D'UN ACIER INOXYDABLE A DISPERSOIDES DE TYPE Z10C13

Soutenue le 27 Juin 1985 devant la Commission d'Examen

MM.	J.	FOCT	Président
	G.	MESMACQUE	Rapporteur
	J.C.	GASC	Examinateur
	F.	MOREAU	Examinateur
	Ρ.	CHARLIER	Examinateur
	R.	TAILLARD	Examinateur

UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE Septembre 1983

DOYENS HONORAIRES DE L'ANGIENNE FACULTE DES SCIENCES

MM. R. DEFRETIN, H. LEFEBVRE, M. PARREAU.

PROFESSEURS HONORAIRES DES ANCIENNES FACULTES DE DROIT ET SCIENCES ECONOMIQUES, DES SCIENCES ET DES LETTRES

MM. ARNOULT, Mme BEAUJEU, BONTE, BROCHARD, CHAPPELON, CHAUDRON, CORDONNIER, CORSIN, DECUYPER, DEHEUVELS, DEHORS, DION, FAUVEL, FLEURY, P. GERMAIN, GLACET, GONTIER, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LASSERRE, LELONG, Mme LELONG, LHOMME, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, PEREZ, ROIG, ROSEAU, ROUELLE, SAVARD, SCHILTZ, WATERLOT, WIEMAN, ZAMANSKI.

PROFESSEUR EMERITE

M. A. LEBRUN.

ANCIENS PRESIDENTS DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

MM. R. DEFRETIN, M. PARREAU, J. LOMBARD, M. MIGEON.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. J. CORTOIS.

PROFESSEURS - CLASSE EXCEPTIONNELLE

м.	CONSTANT Eugène	Electronique	
м.	FOURET René	Physique du Solide	
м.	GABILLARD Robert	Electronique	
м.	MONTREUIL Jean	Biochimie	
м.	PARREAU Michel	Analyse	
М.	TRIDOT Gabriel	Chimie appliquée	
м.	VIVIER Emile	Biologie cellulaire	
м.	WERTHEIMER Raymond	Physique atomique et molécu	laire

PROFESSEURS - 1ère CLASSE

BACCHUS Plerre	
BEAUFILS Jean Pierre	
BIAYS Pierre	
BILLARD Jean	
BOILLY Bénoni	
	BACCHUS Pierre BEAUFILS Jean Pierre BIAYS Pierre BILLARD Jean BOILLY Bénoni

Astronomie Chimie physique Géographie Physique du solide Biologie

.../...

Μ. BOUGHON Pierre Μ. BOURIQUET Robert М. BREZINSKI Claude CELET Paul М. Μ. CHAMLEY Hervé Μ. COEURE Gérard Μ. CORDONNIER Vincent М. DEBOURSE Jean-Pierre Μ. DYMENT Arthur M. ESCAIG Bertrand M. FAURE Robert М. FOCT Jacques M. GRANELLE Jean-Jacques М. GRUSON Laurent М. GUILLAUME Jean HECTOR Joseph М. Μ. LABLACHE COMBIER Alain Μ. LACOSTE Louis Μ. LAVEINE Jean-Pierre М. LEHMANN Daniel Mme LENOBLE Jacqueline M. LHOMME Jean Μ. LOMBARD Jacques M. LOUCHEUX Claude Μ. LUCQUIN Michel M. MAILLET Pierre M. PAQUET Jacques м. POUZET Pierre M. PROUVOST Jean M. ROUSSEAU Jean-Paul Μ. SALMER Georges М. SEGUIER Guy м. STANKIEWICZ François м. TILLIEU Jacques Μ. VIDAL Pierre ZEYTOUNIAN Radyadour Μ.

Algèbre Biologie végétale Analyse numérique Géologie générale Géotechnique Analyse Informatique Gestion des entreprises Mécanique Physique du solide Mécanique Métallurgie Sciences économiques Algèbre Microbiologie Géométrie Chimie organique Biologie végétale Paléontologie Géométrie Physique atomique et moléculaire Chimie organique biologique Sociologie Chimie physique Chimie physique Sciences économiques Géologie générale Analyse numérique Minéralogie Physiologie animale Electronique Electrotechnique Sciences économiques Physique théorique Automatique Mécanlque

PROFESSEURS - 2ème classe

M. AL FAKIR Sabah М. ALLAMANDO Etienne ANCIAN Bernard Μ. M. ANTOINE Philippe М. BART André Mme BATTIAU Yvonne M. BEGUIN Paul M. BELLET Jean M. BERZIN Robert BKOUCHE Rudolphe Μ. М. BODARD Marcel м. BOIVIN Jean-Claude Μ. BONNELLE Jean-Pierre М. BOSCQ Denis Μ. BOUQUELET Stéphane BRASSELET Jean-Paul Μ.

.

Algèbre Electronique et électrotechnique Spectrochimie Analyse Biologie animale Géographie Mécanique Physique atomique et moléculaire Analyse Algèbre Blologie végétale Chimie minérale Catalyse Probabilités Biochimie structurale Géométrie et topologie

·. -

BRIDOUX Michel Μ. BRUYELLE Pierre Μ. M. CAPURON Alfred CARREZ Christian Μ. Μ. CHAPOTON Alain COQUERY Jean-Marie Μ. Mme CORSIN Paule CORTOIS Jean Μ. м. COUTURIER Daniel CRAMPON Norbert Μ. CROSNIER Yves Μ. MILE DACHARRY Monique M. DAUCHET Max . DEBRABANT Pierre Μ. DEGAUQUE Pierre Μ. DELORME Pierre Μ. DE MASSON D'AUTUME Antoine Μ. DEMUNTER Paul Μ. Μ. DENEL JACQUES DE PARIS Jean-Claude Μ. DEPREZ Gilbert Μ. м. DERIEUX Jean-Claude MILE DESSAUX Odile М. DEVRAINNE Pierre DHAINAUT André м. Mme DHAINAUT Nicole DORMARD Serge М. м. DOUKHAN Jean-Claude М. DUBOIS Henri Μ. DUBRULLE Alain DUBUS Jean-Paul м. м. DUPONT Christophe Mme EVRARD Micheline FONTAINE Hubert м. FOUQUART Yves м. Μ. FOURNET Bernard FRONTIER Serge Μ. GAMBLIN André Μ. м. GLORIEUX Pierre М. GOBLOT Rémi Μ. GOSSELIN Gabriel GOUDMAND Pierre Μ. М. **GREMY Jean-Paul** GREVET Patrick Μ. Μ. GUILBAULT Pierre HENRY Jean-Pierre Μ. Μ. HERMAN Maurice м. HOUDART René JACOB Gérard Μ. JACOB Pierre М. Μ. JACQUILLAT Bertrand М. JEAN Raymond М. JOFFRE Patrick Μ. JOURNEL Gérard Μ. **KREMBEL Jean** Μ. LANGRAND Claude

Chimie physique Géographie Biologie animale Informatique Electronique Psychophysiologie Paléontologie Physique nucléaire et corpusculaire Chimie organique Hydrogéologie et environnement Electronique Géographie Informatique Géologie appliquée Electronique Physiologie animale Sciences économiques Sociologie Informatique Analyse Physique du solide et cristallographie Microbiologie Spectroscople de la réactivité chimique Chimie minérale Biologie animale Biologie animale Sciences économiques Physique du solide Spectroscople hertzlenne Spectroscople hertzienne Spectrométrie des solides Vie de la firme (I.P:A.) Chimie appliquée Dynamique des cristaux Optique atmosphérique Biochimie structurale Ecologie numérique Géographie urbaine, industrielle et démographie Physique moléculaire et rayonnements atmosphériques Algèbre Sociologie Chimie Physique Sociologie Sciences économiques Physiologie animale Génie mécanique Physique spatiale Physique atomique et moléculaire Informatique Probabilités et statistiques Gestion Biologie des populations végétales Vie de la firme (1.P.A.) Spectroscopie hertzienne Biochimie Probabilités et statistiques

. . . / . . .

Mme LECLERCQ Ginette M. LEFEVRE Christian MILE LEGRAND Denise Mile LEGRAND Solange Mme LEHMANN Josiane M. LEMAIRE Jean Μ. LE MAROIS Henri Μ. LEROY Jean Marie LEROY Yves м. Μ. LESENNE Jacques LHENAFF René Μ. м. LOCQUENEUX Robert Μ. LOSFELD Joseph LOUAGE Francis Μ. M. MACKE Bruno Μ. MAHIEU Jean-Marie Μ. MAIZIFRES Christian MESMACQUE Gérard Μ. Μ. MESSELYN Jean Μ. MESSERLIN Patrick М. MIGNOT Fulbert м. MONTEL Marc Μ. MONTUELLE Bernard Mme MOUNIER Yvonne Mme N'GUYEN VAN CHI Régine Μ. NICOLE Jacques NOTELET Francis Μ. м. PARSY Fernand PASZKOWSKI Stéphan Μ. MILE PAUPARDIN Colette Μ. PECQUE Marcel PERROT Pierre М. М. PERTUZON Emile PETIT Francis Μ. PONSOLLE Louis Μ. PORCHET Maurice Μ. POVY Lucien М. М. RACZY Ladislas М. RAOULT Jean-François Μ. RICHARD Alain RIETSCH François Μ. Μ. ROGALSKI Marc ROY Jean-Claude Μ. SCHAMPS Joël М. Mme SCHWARZBACH Yvette SIMON Michel Μ. SLIWA Henri Μ. SOMME Jean Μ. MIIe SPIK Geneviève Μ. STERBOUL François Μ. TAILLIEZ Roger THERY Pierre Μ. TOULOTTE Jean-Marc Μ. Μ. TURREL Georges VANDORPE Bernard Μ. VAST Pierre Μ. м: VERBERT André Μ. VERNET Philippe **VILETTE Michel** Μ.

Catalyse Pétrologie Algèbre Algèbre Analyse Spectroscople hertzlenne Vie de la firme (I.P.A.) Chimie appliquée Electronique, électrotechnique, automatique Electrotechnique Géographie Physique théorique Informatique Electronique Physique moléculaire et rayonnements atmosphé-Physique atomique et moléculaire riques Automatique Génie mécanique Physique atomique et moléculaire Sciences économiques Analyse numérique Physique du solide Biologie et biochimie appliquées Physiologie des structures contractiles Géographie Chimie analytique Electronique, électrotechnique, automatique Mécanique Analyse numérique Biologie physiologie végétales Chimie organique Chimie appliquée Physiologie animale Chimie organique, minérale et analytique Chimie physique Biologie animale Automatique Electronique Géologie structurale Biologie animale Physique des polymères Analyse Psychophysiologie Spectroscopie moléculaire Géométrie Sociologie Chimie organique Géographie Biochimle Informatique Génie alimentaire Electronique, électrotechnique, automatique Automatique Spectrochimie infrarouge et Raman Chimie minérale Chimie inorganique Biochimie Génétique Résistance des matériaux

.../...

- M. WALLART Francis
- M. WARTEL Michel
- M. WATERLOT Michel
- M. WERNER Georges
- M. WOSNIAK Michel
- Mme ZINN Justin Nicole
- Spectrochimie infrarouge et Raman Chimie inorganique Géologie générale Informatique fondamentale appliquée Hydrométallurgie Algèbre

SOMMAIRE

	Page
INTRODUCTION	1
CHAPITRE I : ETUDE BIBLIOGRAPHIQUE	
I. Aciers inoxydables	. 7
I.l. Définition	7
I.2. Classement	7
I.2.1. Les aciers ferritiques	8
I.2.2. Les aciers austénitiques	8
I.2.3. Les aciers martensitiques	8
I.3. Aciers martensitiques à dispersoïdes	9
I.3.1. Mode d'action des éléments de microalliages	9
I.3.2. Eléments d'addition dans les aciers	
à dispersoïdes	12
I.3.2.1 L'aluminium	12
I.3.2.2 Le niobium	13
I.3.2.3.Le vanadium	13
I.3.2.4 Le titane	13
I.3.2.4 Le zirconium et l'hafnium	14
I.4. Nature des précipités observés dans les	
aciers à dispersoïdes	14
I.4.1. Le nitrure d'aluminium	15
I.4.2. Le carbonitrure de titane	16
I.4.3. Le carbonitrure de niobium	17
I.4.4. Le carbonitrure de vanadium	17
I.5. Conclusion de l'étude bibliographique	18
Bibliographie	21
CHAPITRE II : PRESENTATION DU MATERIAU-CHOIX DES TRAITEMENT	<u>5</u>
THERMIQUES	
II.l Présentation de l'acier inoxydable à	27
dispersoldes	
II.2 Choix des traitements thermiques	27

II.2Choix des traitements thermiques27II.3Analyse des courbes de dureté à l'aide d'un
paramètre temps-température28II.4Conclusion29Bibliographie35

CHAPITRE III : COMPORTEMENT EN TRACTION ET EN COMPRESSION

III.I. Rappels théoriques de l'essai de compression	39
III.2. Procédure expérimentale	40
III.2.1.Eprouvettes utilisées	40
III.2.2.Marquage initial des éprouvettes	41
III.3. Paramètres mesurés	41
III.4. Résultats	41
III.5. Discussion	44
III.6. Résultats et discussion en traction	45
III.6.1.Analyse des faciès de rupture	46
III.7. Comparaison compression-traction	46
Bibliographie	59

CHAPITRE IV	: DETERMINATION	DES PARAMETRES	DE TENACITE
		and the second se	And and an other state of the s

RESILIENCE-FACTEUR D'INTENSITE DE CONTRAINTE KIC

IV.1. Résilience	63
IV.1.1. Rappels sur l'essai de résilience	63
IV.1.2. Instrumentation	65
IV.1.2.1 Description des éléments	65
IV.1.3. Allure générale des courbes effort-temps	67
IV.1.4. Dépouillements des enregistrements	68
IV.1.5. Déformation à la rupture dans l'essai charpy	69
IV.1.7. Eprouvettes utilisées	73
IV.1.8. Résultats expérimentaux	74
IV.2 Détermination de K _{1C}	74
IV.3. Discussion	78
Bibliographie	83

CHAPITRE V : FATIGUE

V.1.	Généralités	01
v.2.	Définition de la fatigue oligocyclique	88
v.3.	Etude de la résistance à la fatigue	88
V.5.	Etude de l'écrouissage cyclique	89
V.6.	Mise en oeuvre expérimentale	90
v.7.	Paramètres mesurés	90
.v.8.	Résultats expérimentaux	91
v.9.	Analyse et discussion des résultats	93
V.9.1.	Ecrouissage cyclique et monotone	93

V.9.2.	Evolution des contraintes au cours	93
	du cyclage	
v.9.3.	Courbes de MANSON-COFFIN	94
V.10.	Modélisation du phénomène de fissuration	101
	par fatigue	
V.11.	Méthode expérimentale	102
V.11.1.	Mesure de la longueur de fissure et	102
	variation de K	
V.11.2.	Résultats expérimentaux	103
V.12.	Discussion	104
	Bibliographie	107

CHAPITRE VI : CARACTERISATION MICROSTRUCTURALE RELATION AVEC LES PROPRIÈTES MECANIQUES

VI.1. Conditions expérimentales	111
VI.I.I. Microscopie optique	111
VI.1.2. Microscopie électronique en transmission	111
VI.2. • Observations	112
VI.2.1. Microscopie optique	112
VI.2.2. Microscopie électronique en transmission	112
VI.2.2.1 Microstructure	112
VI.2.2.1 Etat de précipitation	114
VI.3. Discussion	119
VI.3.1. Aspect microstructural	119
VI.3.2. Relation entre la microstructure et les	120
propriétés mécaniques	
VI.3.2.1.Comparaison des états brut et réchauffé	121
à 500°C	
VI.3.2.2.Cas de l'état réchauffé à 800°C	121
VI.3.2.3.Cas de l'état réchauffé à 1050°C	123
Bibliographie	125
Conclusions	127
Annexes	131

REMERCIEMENTS

L'ensemble des pages qui constituent ce mémoire, représentent l'expression d'une recherche effectuée dans le laboratoire de Métallurgie-Physique de l'Université de LILLE I.

Mes remerciements sincères, iront à Monsieur le Professeur FOCT de m'avoir accueilli dans son laboratoire, de l'intérêt qu'il a porté à notre étude et pour l'honneur qu'il me fait en présidant mon Jury de thèse.

Je tiens également à remercier Monsieur le Professeur MESMACQUE qui a dirigé ces travaux en ayant suivi son déroulement avec un très vif intérêt.

La partie "microscopie électronique" n'aurait pas pu être réalisée, sans la collaboration de Monsieur Roland TAILLARD ; je lui adresse toute ma reconnaissance.

Je suis reconnaissant envers Messieurs BACKER et CHARLIER de la SAFE de m'avoir permis de réaliser cette étude.

Que soient remerciés Messieurs les Professeurs GASC et MOREAU, d'avoir bien voulu lire ce travail et participer au Jury.

Je remercie enfin, l'ensemble des personnes du Laboratoire, qui grâce à une cordiale atmosphère de travail, m'ont aidé tout au long de la réalisation de cette étude. A tous je leur adresse un amical souvenir ; en particulier Monsieur ANDRIES pour l'usinage souvent délicat des éprouvettes.

Je remercie Mesdames MATONDO et SAINLEGER pour leur précieuse participation à la mise en forme de ce mémoire.

A mes parents

A ma fiancée

A ma famille

A tous ceux qui me sont chers

Témoignage de ma plus grande affection.

INTRODUCTION

Une des préocupations de l'industrie sidérurgique, est la rentabilisation de ses installations tout en assurant la compétitivité de ses produits sur le marché mondial.

- 3 -

Parmi les nombreuses solutions étudiées, et proposées, nous pouvons citer la réalisation des aciers "à dispersoïdes" qui allient une économie d'énergie à une économie de matière première sur les éléments d'alliages généralement coûteux.

La Société des Aciers fins de l'Est (SAFE), a récemment commercialisé une nouvelle famille d'aciers à dispersoïdes sur laquelle un programme de recherches est développé depuis 1978.

Les aciers à dispersoïdes sont obtenus par l'introduction dans le métal d'éléments d'alliage à faible dose. Ces éléments sont d'une très grande efficacité et permettent d'obtenir des caractéristiques mécaniques élevées avec des compositions chimiques élémentaires. Ils sont utilisables à l'état brut de laminage ou de forgeage.

L'objet de ce travail a été consacré à l'étude structurale et mécanique d'un acier inoxydable de type ZlOCl3 à structure martensitique qui présente à l'état brut de forgeage ou de laminage une résistance d'environ 1300-1400 MPa.

La détermination des lois de comportement a été étudiée pour les sollicitations méćaniques les plus courantes : traction, compression, résilience, fatigue, fissuration, ce pour 3 états structuraux caractéristiques :

- état brut de laminage ;

- état réchauffé 500°C-1h30 ;

- état réchauffé 800°C-1h30.

Le choix des traitements de réchauffage, correspond à des extrêmas des caractéristiques mécaniques et sera repris plus en détail au chapitre II.

L'étude structurale a porté sur l'évolution de la structure martensitique, (taille des lattes,...) et sur les phénomènes de précipitation des nitrures et carbonitrures.

Les liens existants entre la microstructure et les lois de comportement sont commentés dans la conclusion de ce travail. Nous avons scindé notre travail en six chapitres :

- le premier chapitre ayant trait à des rappels bibliographiques.

- le second chapitre est consacré à la présentation du matériau.

-les trois chapitres suivants se rapportent à l'étude des lois de comportement en traction, compression, résilience et fatigue.

- le dernier chapitre concerne l'étude structurale de notre matériau (acier inoxydable 210C13 à dispersoïdes), dans les trois états cités ci-dessus.

La conclusion s'efforce de relier l'analyse structurale aux lois de comportement.

C H A P I T R E I

ETUDE BIBLIOGRAPHIQUE

PLAN DU CHAPITRE I

- I.1 DEFINITION
- I.2 CLASSEMENT
 - I.2.1 Les aciers ferritiques
 - I.2.2 Les aciers austénitiques
 - I.2.3 Les aciers martensitiques
- I.3 ACIERS MARTENSITIQUES A DISPERSOIDES
 - I.3.1 Mode d'action des éléments de microalliages
 - I.3.2 Eléments d'addition dans les aciers à dispersoïdes
 - I.3.2.1 L'aluminium
 - I.3.2.2 Le niobium
 - I.3.2.3 Le vanadium
 - I.3.2.4 Le titane
 - I.3.2.5 Le zirconium et l'hafnium
- 1.4 NATURE DES PRECIPITES OBSERVES DANS LES ACIERS À DISPERSOIDES
 - I.4.1 Le nitrure d'Aluminium
 - I.4.2 Le carbonitrure de Titane
 - I.4.3 Le carbonitrure de Niobium
 - I.4.4 Le carbonitrure de Vanadium
- 1.5 CONCLUSION GENERALE DE L'ETUDE BIBLIOGRAPHIQUE.

I - ACIERS INOXYDABLES

Le terme "acier inoxydable" regroupe une catégorie d'aciers dont une des caractéristiques principales est la résistance aux milieux environnants | 1, 2, 3, 4 |.

I.l. Définition

Un acier inoxydable contient des éléments d'alliages, dont en général au moins 11,5 % de chrome et une teneur en carbone inférieure à 1,10 %.

I.2. Classement

On peut classer les aciers inoxydables, soit d'après leur composition chimique, soit d'après leur structure métallographique. D'après leur composition chimique, les aciers inoxydables se classent essentiellement en deux groupes :

- les aciers au chrome dont la teneur en chrome est comprise entre 11,5 % et 30 %.
- les aciers au chrome-nickel dont la teneur au chrome ne dépasse pas 25 % et qui contiennent plus de 6 % de nickel.

D'après la structure métallographique qu'ils prennent dans leur état standard, les aciers inoxydables se classent en trois grandes familles :

- les aciers au chrome ferritiques.

- les aciers au chrome-nickel austénitiques.
- les aciers au chrome martensitiques.

Cette classification correspond mieux que la précédente aux propriétés physiques et mécaniques de ces alliages. Les éléments d'addition se classent en deux catégories :

- éléments "alphagènes" qui favorisent la structure ferritique (chrome, vanadium, tungstène, molybdène, titane, niobium, silicium, etc...).

- éléments "gammagènes" qui favorisent la structure austénitique (cobalt, nickel, manganèse, etc...).

I.2.1 Les aciers ferritiques

Ces aciers ne prennent pas la trempe (16 % < Cr < 30 %), ont une teneur en carbone d'autant plus faible que la teneur en chrome est basse.

I.2.2 Les aciers austénitiques

Ils contiennent plus de 16 % de chrome, mais leur composition moyenne de base est : 18 % Cr et 9 % Ni ; leurs propriétés varient avec la teneur de ces deux éléments et aussi avec la teneur en carbone.

I.2.3 Les aciers martensitiques

Ces aciers peuvent être trempés et revenus et sont susceptibles de donner des caractéristiques variées suivant la teneur en carbone et le traitement thermique (recuit, trempe et revenu) ; les plus courants titrent 13 % de chrome avec des teneurs en carbone supérieures à 0,08 %. Ils peuvent être additionnés de 1 à 4 % de nickel. Ils sont rassemblés en 4 groupes (Tableau 1.1).

Aciers au chromegroupe I $< 0,15$ $11,5 \ge 13,5$ Aciers au chrome-nickelgroupe II $0,2 \ge 0,4$ $12,0 \ge 14,5$ Aciers au chrome-nickel $0,6 \ge 1,4$ $16,0 \ge 18,0$ Aciers au chrome-nickel $15,0 \ge 18,0$ $15,0 \ge 18,0$ Ni > 2 % $12,0 \ge 14,5$ $11,5 \ge 14,5$	CLASSE	EMENT	TENEUR EN CARBONE (%)	TENEUR EN CHROME (%)	
Aciers au : : : : : : : : : : : : : : : : : :	Aciers au chrome	groupe I groupe II groupe III	< 0,15 0,2 à 0,4 0,6 à 1,4	11,5 à 13,5 12,0 à 14,5 16,0 à 18,0	
	Aciers au chrome-nickel Ni > 2 %	groupe IV	: : : < 0,1 :	: 15,0 à 18,0 : avec : Ni = 2 à 4 % :	1000

Tableau 1.1 : Différents types d'aciers inoxydables martensitiques

Les aciers inoxydables du type Z 10C13, martensitiques sont d'un usage courant. Leur limite d'élasticité et leur charge de rupture sont de l'ordre respectivement de 400 et 600 MPa | 1 | .

On peut augmenter ces valeurs par addition d'éléments de microalliages. Ils sont alors appelés "micro-alliés" ou à "dispersoïdes".

Ils sont principalement utilisés dans la fabrication des produits plats à haute limite d'élasticité (tôles pour tubes, raccords d'oléoducs). D'autres applications se font dans l'industrie automobile pour la réalisation des pièces. On peut citer : bielles, vilebrequins, roues coniques, ressorts, barres de suspension, etc...

I.3 Aciers martensitiques à dispersoïdes

I.3.1 Mode d'action des éléments de microalliages

Outre les éléments classiques d'addition dans les aciers martensitiques (chrome, nickel, cuivre, cobalt, , etc...), on utilise des éléments de microalliages, généralement ceux appartenant aux groupes IVa, Va et VIa de la classification périodique (Tableau 1.4).

L'addition de ces éléments auxquels il faut ajouter l'aluminium en faibles quantités, ayant une très grande affinité pour le carbone et l'azote, provoquent de fines précipitations de carbures et carbonitrures "dispersoïdes". Les tableaux 1.2 et 1.3 donnent respectivement la nature des précipités rencontrés et la structure cristallographique des principaux carbures et nitrures. Ces précipités confèrent à l'acier des caractéristiques mécaniques particulières : [5, 6, 7, 8, 9]

- haute limite d'élasticité.

- basse température de transition.

- augmentation importante des niveaux de charge de rupture.

Résultant d'un durcissement par :

- affinage du grain.

- changement de structure.

- précipitation etc...

	•	•
IVa	Va	VIa
Ti	v	Cr
zr	Nb	• • Mo
Hf	Ta	: W :

Tableau 1.4 : Métaux de transition.

La figure 1.1 montre l'évolution de la limite d'élasticité et de la température de transition en fonction de la grosseur de grain [19]

ELEMENTS	CARBURES	: NITRURES :	CARBONITRURES	
Niobium (Nb)	. NbC, Nb ₂ C, Nb ₄ C ₃	NDN, ND ₂ N, ND ₄ N ₃	: : Nb(C,N)	
Vanadium (V)	$V_{c}, V_{2}C, V_{4}C_{3}$	v_N , v_2N , v_3N	: V(C,N)	
Titane (Ti)	: : TiC	: : TiN, Ti ₂ N, Ti ₃ N	: : Ti(C,N)	
Cr	: $Cr_{23} C_6$: Cr_7C_3 : Cr_3C_2	Cr2N CrN		
Al	: : :	: Aln : .		

Tableau 1.2 : Principaux précipités | 18 |

۰.						r	
		VN	CrN 🗖	_{Mn4N} 🗖	_{Fe4} N D		
	TIN	ν ₃ ν Δ	Δ	Min ₂ N 🛆	Fe3N 🛆		
		ν <u>_</u> ν	Cr ₂ N	Min ₃ N₂●	Fe_2N Δ		
	D ZrN	NbN A	_{Mo2} N D	$\frac{MO_2N}{MON} \square$ $MON \square$ $MON \square$ $Mitrures hexagonaux$			
		Nb ₂ N Δ	MON D				
	H£N	: : Δ : TaN	<u>س</u> ک	• Nitrures tétatragonaux			
		: : :	: : W ₂ N D :				

Tableau 1.3 : Structures cristallographiques des nitrures et carbures |18|.

Fig. 1.1 : Variation de la limite d'élasticité et de la température de transition en fonction de la grosseur du grain ferritique.

1.3.2 Eléments d'addition dans les aciers à dispersoïdes

Les éléments dispersoïdes ont la possibilité d'améliorer les performances de l'acier. Lorsque plusieurs éléments sont présents, chacun contribue de façon spécifique aux propriétés de l'acier | 5, 10, 12, 13 |.

1.3.2.1 L'Aluminium

L'aluminium fixe en grande partie l'azote de l'acier. Les quantités d'aluminium et d'azote sont optimisées pour obtenir une forme de précipitation plus favorable à l'action du vanadium. Il se combine à l'azote pour former le nitrure d'aluminium. Sa mise en solution s'effectue dans un domaine de température de 900°C - 1250°C. Suivant la température, ils peuvent être partiellement ou pas du tout dissous dans l'austénite | 5, 11 |.

1.3.2.2 Le Niobium

Le niobium est un élément alphagène. Il est utilisé pour fixer le carbone dans les aciers inoxydables. C'est l'élément qui assure l'obtention des grains fins, même pour les températures de chauffage élevées (fig. 1.2). Dans un état de dispersion adéquat, le carbure de niobium, Nb_4C_3 , entraine un durcissement structural |11, 16|.

1.3.2.3 Le Vanadium

Le vanadium possède une grande affinité pour le carbone et l'azote dans l'acier en donnant de nombreuses inclusions très dispersées de carbures et nitrures qui affinent le grain et améliorent les caractéristiques mécaniques | 6, 8 |.

1.3.2.4 Le Titane

Pour des teneurs de l'ordre de 0,1 à 0,2 %, le titane affine le grain. Il forme des carbures et nitrures insolubles même à haute température. Il est utilisé dans les aciers inoxydables car il facilite le durcissement structural | 11 |.

1.3.2.5 Le Zirconium et l'Hafnium 8

L'Hafnium est une impureté du minerai zirconium. Leurs propriétés sont voisines :

- forte affinité pour le carbone et surtout l'azote avec lesquels ils forment des nitrures qui précipitent dans l'acier liquide lorsque l'élaboration est suffisament contrôlée.

- retarde la recristallisation de l'austénite même sur les aciers à haute teneur en carbone C = 0,55 %.

I.4. Nature des précipités observés dans les aciers à dispersoïdes 8, 14, 18

Les courbes de solubilité des différents éléments "dispersoïdes" sont donnés par la relation suivante :

$$\log_{10} (\% M) (\% I) = -\frac{A}{T} + B$$

Dans le premier membre sont exprimés en pourcentages pondéraux la teneur du ou des éléments d'addition (% M) et (% I), la teneur en carbone ou/et en azote. Le second membre ne dépend que de la température, A et B étant des constantes pour des éléments donnés.

La figure 1.3 donne l'évolution des produits de solubilité de différents précipités en fonction de la température. Les plus importants sont :

- le nitrure d'aluminium.
- Le carbonitrure de titane.
- Le carbonitrure de niobium.
- Le carbonitrure de vanadium.

Fig. 1.3 : Relations de solubilité pour quelques carbures et nitrures dans l'austénite | 20 |.

1.4.1 <u>Ie Nitrure d'Aluminium</u>

Il ne précipite que si le refroidissement est suffisament lent. Son inconvénient est d'accélérer la recristallisation lorsqu'il est sous forme de gros précipités.

Le précipité qu'il forme améliore indirectement la limite d'élasticité des aciers par l'affinement du grain. Les produits de solubilité les plus connus sont :

 $\log_{10} (\$ \text{ Al}) (\$ \text{ N}) = -\frac{7400}{\text{T}} + 1,95 \qquad | 21 |$ $\log_{10} (\$ \text{ Al}) (\$ \text{ N}) = -\frac{6770}{\text{T}} + 1,03 \qquad | 22 |$

1.4.2 Le Carbonitrure de Titane

Le carbure de titane apparait dans l'acier liquide, se redissout dans l'austénite jusqu'à des températures de l'ordre de 1300°C. En l'absence du soufre la mise en solution de TiC obéit à la relation \log_{10} (% Ti) (%C) = $-\frac{10500}{T} + 5$ | 23 |

Pour des teneurs en soufre de l'ordre de 0,025 %, cette solution est régie par la relation d'Irvine | 15 |

$$\log_{10}$$
 (% Ti) (% C) = $-\frac{7000}{T}$ + 2,75

Le nitrure de titane se forme dans l'acier liquide vers 1500°C, sa solubilité est faible dans l'austénite, même aux températures élevées.

$$\log_{10}$$
 (% Ti) (% N) = $-\frac{20790}{T} + 11,2$ | 22 |

1.4.3 Le Carbonitrure de Niobium Nb(C,N)

La mise en solution du carbonitrure de niobium dans l'austénite se fait à haute température. Sa dissolution est plus élevée lorsque la teneur en carbone, en azote et en niobium dans l'acier est plus grande | 6, 9 |. Le produit de solubilité d'équilibre de Nb(C,N) calculé par IRVINE a pour équation | 15 |

 \log_{10} (% Nb) (% C + % $\frac{12}{14}$ N) = $-\frac{6770}{T}$ + 2,26

La limite d'élasticité est d'autant plus grande que la teneur en niobium est élevée et que les précipités sont de petites tailles (fig. 1.5), | 10 |.

Fig. 1.5 : Influence de la teneur en nichium et de la taille des particules de NBC sur les aciers faiblement alliés à durcissement structural.

1.4.4 Le Carbonitrure de Vanadium

Il est riche en azote et présente une grande solubilité dans l'austénite, surtout aux très basses teneurs en C et N. Son effet durcissant résulte surtout du durcissement par précipitation. Le produit de solubilité de VN a été établi par IRVINE | 15 |.

$$\log_{10}$$
 (% V) (% N) = $-\frac{8330}{T} + 3,46$

Pour le carbure de vanadium VC, le produit de solubilité est donné par la relation :

 \log_{10} (% V) (% C) = $-\frac{9500}{T}$ + 6,72

1.5. Conclusion générale de l'étude bibliographique

La présence de fins précipités de carbures, nitrures ou carbonitrures permet d'obtenir des caractéristiques mécaniques élevées. Ceci peut être mis à profit pour alléger la gamme de fabrication des pièces à caractéristiques mécaniques élevées. Comme le montre la figure 1.6, certaines opérations de traitements thermiques peuvent être supprimées, diminuant de ce fait les coûts d'élaboration.

FILIERE CLASSIQUE	FILIERE NOUVELLE
Elaboration de l'acier	Elaboration de l'acier
Laminage	Laminage
Recuit de structure	
Usinage	Usinage
Trempe	
Revenu	
Redressage	
Rectification	
Pièce finie	Pièce finie
	FILIERE CLASSIQUE Elaboration de l'acier Laminage Recuit de structure Usinage Trempe Revenu Redressage Rectification Pièce finie

Fig. 1.6 : Comparaison entre deux gammes de fabrication d'une même pièce, l'une avec un acier "classique" l'autre avec un acier à dispersoïdes, | 5 | Le domaine d'application de "l'effet dispersoïde" est assez vaste, on trouve en particulier :

- les aciers à résistance < 1100 MPa qui regroupent trois sous fa-

- les aciers ayant une bonne ductilité à froid avec des teneurs en soufre limitées à 0,015 - 0,020 %.
- . les aciers resulfurés à 0,020 0,040 % du soufre.
- . les aciers à usinabilité améliorée à 0,070 0,25 %.

- les aciers dont la résistance est comprise entre 1100 et 2000 MPa.

Cette série d'aciers contient des additions de cuivre et de nickel.

- les aciers soudables à haute résistance.

milles.

Nous avons retenu pour notre travail l'acier inoxydable martensitique de type Z 10 C 13 traité "dispersoïdes".

Ce travail contribue à l'étude structurale et à l'étude des lois de comportement de l'acier inoxydable Z 10 C 13 à dispersoïdes, pour 3 états structuraux spécifiques correspondant respectivement à l'état brut du laminage, à un réchauffage à 500° C - lh30 et à un réchauffage à 800° C - lh30.

- 1 | "Manuel technique des aciers inoxydables".
- 2 | "La pièce mécanique en acier inoxydable". UGINOX - UGINE ; Aciers ; Année 1973.
- 3 HOCHMANN Joseph Les aciers inoxydables M 320 ; Techniques de l'Ingénieur.
- M. COLOMBIE
 Traitements thermiques des aciers inoxydables M 1155 ; Techniques de l'Ingénieur.
- 5 Document SAFE ; Juillet 1982. Document SAFE ; Juillet 1982.
- REMONDERU, R. PALENGAT, J. DOLLET, B. THOMAS Etude de la précipitation et de la mise en solution du vanadium dans les aciers calmés. Mémoires scientifiques ; Revue de métallurgie , Novembre 1977, p. 965-708.
- 7 | L. BACKER, R. POUCHELLE Contribution à la mise au point d'aciers à usinabilité améliorée. Revue de métallurgie ; C.I.T. Juillet 1981 ; p. 607-624.
- P. CORVETILIER, M. BANCEL Note technique N°82542 ; Creusót-Loire (1982).

8

9

9 J.P. MICHEL

Etude de la précipitation dynamique de Nb(C,N), VN et ALN dans l'austéte à bas carbone. Revue de Métallurgie, C.I.T, 10, 1981 p.823-833

10 F.B. PICKERING

Physical metallurgy and the design of stells Materials Science series - Applied Publishers L.T.D. LONDON (1978).

11 | R. BENSIMON

| 12 |

Les aciers : Influence des divers éléments d'addition sur les propriétés des aciers (Tome 2) ; Pyc Edition (1971).

M. GUTIMAN, B. VIEILLARD, BARON Etude des propriétés mécaniques des aciers de construction à faible teneur en carbone, trempés et revenus. Influence des dispersoïdes. C.R D.G.R.S.T. Novembre 1976.

- 13 P. FONTAINE et P.R. KRAHE Influence du manganèse et déléments dispersoïdes sur les proprietés d'aciers à bas carbone normalisé. Mémoires scientifiques. Revue de Métallurgie N° 5 (1974) p. 319-328.
- 14 | <u>T. GLADMAN</u>, <u>I.D. Mc IVOR</u>, and <u>F.B. PICKERING</u> Effect of Carbide and nitride particles on the recrystallization. J.I.S.I. - May 1971, p. 380-390.
- K. IRVINE, F. PICKERING, T. GLADMANGrain refine C-Mn Steels. J.I.S.I, 205 (1967), p. 161-182.
- 16 N.E. HANNERZ, U. LINDBORG, B. LENTINEN Britteness in a cast steel caused by Nbc precipitation J.I.S.I., 206 (1968) p. 68-73.
- 17 D.W. SMITH, R.F. HEHEMANN Influence of structural parameters on the field strength of tempered martensite and lower bainite. J.I.S.I. (Juin 1971), p. 476-481

| 18 | H.J. GOLDSMIDT

Intertial alloys. Butterworths, LONDON (1967).

| 19 | <u>K.J. IRVINE</u> Strong structural steels. Symposium low alloy high strength steels. Nuremberg, B.R.D., May, p. 21-23 (1970).

20 A. CONSTANT, G. HENRY

Les principes de base du traitement thermique des aciers. Traitement thermique 1981 n° 154, p. 85-90.

- | 21 | <u>L.S. DARKEN AND AL</u>. J. Met, 1951, 3,1174
- 22 H.J. WIESTER AND H. ULMER STAHL EISEN, 1960, 80, 539.

23 DESALOS

Mise en solution dans les aciers au C.Mn. Trempabilité et durcissement par précipitation. Rapport interne-février 1977. I.R.S.I.D.

CHAPITRE II

PRESENTATION DU MATERIAU

CHOIX DES TRAITEMENTS THERMIQUES

PLAN DU CHAPITRE II

II.1 PRESENTATION DE L'ACIER INOXYDABLE A DISPERSOIDES

II.2 CHOIX DES TRAITEMENTS THERMIQUES

II.3 ANALYSE DES COURBES DE DURETE A L'AIDE D'UN PARAMETRE

TEMPS-TEMPERATURE

11.4 CONCLUSION
Le présent travail concerne un acier à dispersoïdes de type Z10C13 à structure martensitique (voir chapitre VI).

Le tableau 2.1 donne la composition chimique pondérale de

l'alliage.

C	Si	Min :	S	Р	Cr	Nb	
0,095	0,42	0,77	0,014	0,024	12,93	0,05	0,10

Tableau 2.1 : Composition chimique.

II.2. Choix des traitements thermiques

Afin de cerner les caractéristiques du matériau et l'effet d'un traitement thermique, les essais de dureté sont réalisés après traitement thermique de réchauffage. Deux paramètres sont retenus :

- la température ;

- le temps de maintien.

La température est choisie en fonction des essais préalables effectués à des temps de maintien de 1h30, mettant en évidence des extrêmas dans les caractéristiques mécaniques obtenues. Les températures retenues sont 500°C et 800°C. La figure 2.1 montre bien ces deux extrêmas et les raisons de notre choix.

Pour évaluer l'influence du temps de maintien jusqu'à une semaine, les figures 2.2 et 2.3 présentent les mesures de dureté (micro et macro) pour les deux températures retenues.

Deux vitesses de refroidissement sont étudiées : un refroidissement à l'air et une trempe à l'huile.

Les résultats sont peu différents sauf dans l'intervalle 1h30-24h pour un réchauffage à 500°C.

La vitesse de refroidissement est pour les autres cas, sans grande influence (fig. 2.2, fig. 2.3). Le temps de maintien de 1h30 correspond au maximum de dureté observé pour un réchauffage à 500°C et au début d'un "palier" pour un réchauffage à 800°C. Ce temps de maintien est donc retenu pour la suite de notre étude. Il correspond en outre, à des temps de maintien industriels.

On remarque également, un durcissement pour un réchauffage à 500°C avec les temps de maintien allant jusqu'à 24h. Pour cette température, la dureté reste élevée quel que soit le temps de maintien (fig. 2.2).

Le réchauffage à 800°C occasionne une diminution de la dureté, même avec des temps de maintien faibles. Une stabilisation est constatée dans l'intervalle 12h-48h. La dureté est nettement plus faible que celle obtenue après réchauffage à 500°C (fig. 2.3).

Ces essais sont effectués à l'aide d'un appareil de type Leitz équipé d'un pénétrateur Vickers sous une charge de 500g (microduremètre) ou une machine FRITZ HECKERT HPC 250 utilisant un pénétrateur Vickers et une charge de 30 Kgf.

II.3 <u>Analyse des courbes de dureté à l'aide d'un paramètre temps-</u> température

Les modifications de dureté après réchauffage, comme d'autres caractéristiques mécaniques, dépendent de deux paramètres : Temps et température, t, T.

Différents auteurs | 1, 2, 3 | ont étudié ce phénomène qu'ils attribuent aux lois de la diffusion. Ces auteurs proposent un paramètre de traitement thermique, P, qui tient compte de ces deux paramètres T, t obtenu à partir des hypothèses de FICK donné par la relation | 4 |

$$P = T_{o} = \left[\frac{1}{T} - \frac{nR}{\Delta H}\log\frac{t}{t_{o}}\right]^{-1}$$

dans laquelle T est la température en degrés KELVIN, t est le temps, t est l'unité de temps (seconde, minute, heure) suivant la commodité, ΔH et n sont respectivement l'énergie d'activation et le logarithme népérien de 10. R est la constante des gaz parfaits.

La figure 2.4 montre l'évolution de la microdureté en fonction du paramètre P.

L'énergie d'activation AH peut être déterminée par optimisation de la régression linéaire effectuée sur les valeurs de HV dans l'intervalle de température et du temps où celle-ci diminue, intervalle 500°C-800°C.

_ 29 _

La valeur obtenue, de 57,6 Kcal mole, est de l'ordre de celle déterminée par d'autres auteurs | 2 | Cette valeur peut alors être utilisée pour toutes les mesures et conduit à 2 droites délimitant 2 domaines : un domaine où la température de réchauffage est inférieure à environ 500°C et où se superpose un durcissement et un domaine pour l'intervalle 500°C-800°C.

Un comportement analogue au réchauffage a été observé par certains auteurs | 2 | sur des aciers martensitiques.

II.4. Conclusion

Deux températures de réchauffage caractéristiques apparaissent:

- la température à 500°c correspond à un maximum sur les courbes de dureté (fig. 2.1, fig. 2.4) ;

- la température à 800°c entraine une inversion du comportement, durcissement pour les températures de réchauffage supérieures

à 800°c, minimum pour les courbes de dureté (fig. 2.1).

Le temps de maintien de 1h30' a été retenu car il correspond à un optimum sur les caractéristiques mécaniques.

L'étude des lois de comportement de notre matériau a été entreprise pour les trois états structuraux suivants:

- Brut de laminage ;
- Réchauffage 500°c-1h30 ;
- Réchauffage 800°c-1h30.

Nous avons effectué une étude en microscopie électronique en transmission pour les échantillons correspondants, ainsi que pour un échantillon traité à 1050°c.

- 30 -

1

- 32 -

- 33 -

- BIBLIOGRAPHIE : CHAPITRE II -

- PH. MAYNIER, M. TOITOT "Application des lois de la diffusion aux traitements thermiques de l'acier". Mémoires Scientifiques, Revue de métallurgie N° 12, 19, p. 501-
- PH. MAYNIER, P.F. MARTIN "Etablissement d'une équivalence entre le temps et la température d'austénisation". Mémoires Scientifiques, Revue de métallurgie N° 12, (1966), p. 997-
- 3 | J. BUISSON, R. BLONDEAU "Contribution à la connaissance de la dureté des différentes structures des aciers au carbone et moyennement alliés". Mémoires Scientifiques, Revue de métallurgie, février 1975, p. 115-131.

Þ

2

τ

·9TOT

Mémoires Scientifiques, Revue Mét. 63, N° 12 (1966), p. 1013. Mémoires Scientifiques, Revue Mét. 63, N° 12 (1966), p. 1013.

. CHAPITRE III

COMPORTEMENT EN TRACTION ET COMPRESSION

PLAN DU CHAPITRE III

- III.1 RAPPELS THEORIQUES DE L'ESSAI DE COMPRESSION
- III.2 PROCEDURE EXPERIMENTALE

III.2.1 Eprouvettes utilisées

III.2.2 Marquage initial des éprouvettes

- III.3 PARAMETRES MESURES
- III.4 RESULTATS
- III.5 DISCUSSION
- III.6 RESULTATS ET DISCUSSION EN TRACTION

III.6.1 Analyse des faciès de rupture

III.7 COMPARAISON COMPRESSION TRACTION

Dans ce chapitre, nous présentons successivement les tests de compression et de traction pour les trois états structuraux choisis. Ces essais ont pour objectif de déterminer l'aptitude à la déformation à froid de notre matériau.

III.1. Rappels théoriques de l'essai de compression

La compression est une opération de mise en forme des métaux qui peut être réalisée à chaud ou à froid.

Dans cet essai, on comprime entre deux plateaux de presse le matériau à tester (fig. 3.1), avec une vitesse du plateau mobile constante égale à 0,01 mm/s, ce qui correspond à une vitesse de déformation équivalente moyenne de 7.10^{-4} s⁻¹.

T

		B
 на страна 1949 — — Полански страна — Полански с		

Fig. 3.1 : Eprouvette de compression.

On constate expérimentalement qu'à partir d'une certaine déformation l'apparition d'un "bombé", le matériau prend la forme d'un tonneau.

Ce phénomène résulte principalement des conditions de frottement à l'interface métal-outil. L'état de contraintes à la surface de l'échantillon (état de contraintes planes) passe, au fur et à mesure du bombement, d'un état uniaxial à un état biaxial (fig. 3.2), |1, 2|.

Fig. 3.2 : Etat de chargement.

Pour tenir compte du "bombé", certains auteurs | 2 | ont recours aux déformations dans la zone équatoriale, celle-ci est soumise à un état plan de contraintes. (fig. 3.3).

Fig. 3.3 : Zone équatoriale de l'éprouvette.

III.2. Procédure expérimentale

III.2.1 Eprouvettes utilisées

Les essais de compression sont réalisés sur des éprouvettes cylindriques de diamètre 14mm et de hauteur 21mm (fig. 3.1).

III.2.2 Marquage initial des éprouvettes

Pour mesurer les déformations locales $\varepsilon_{\theta\theta}$ et ε_{zz} dans la zone équatoriale, nous réalisons quatre empreintes de micro-dureté distantes de 1 mm et disposées selon le schéma de la figure 3.4.

Fig. 3.4 : Marquage des éprouvettes.

III.3. Paramètres mesurés

En cours d'essai, on relève l'effort, l'écrasement AH, les diamètres maximum et minimum et les déformations équatoriales. Le critère de ruine utilisé est l'apparition de la première fissure visible à la lunette au grossissement 10, dans la zone équatoriale de la surface libre. Les déformations équatoriales se calculent par les relations :

$$\varepsilon_{\partial \theta} = \log \frac{d}{d_o}$$

 $\varepsilon_{ZZ} = \log \frac{h}{h_o}$

La contrainte d'écoulement vraie σ_0 , s'obtient par la méthode de la borne supérieure avec le modèle parabolique à deux paramètres (Annexe 3-2).

III.4. Résultats

Pour étudier les lois de comportement de cet acier, différentes courbes sont tracées (fig. 3.5, 3.6).

effort de compression
$$F = f(\Delta H)$$
.
loi de comportement $\sigma_0 = f(\epsilon)$ avec $\epsilon = \log \frac{H_0}{H}$.

Les résultats expérimentaux nous permettent de déterminer à la rupture (apparition de la première fissure), la charge F_r , le taux de compression $(\frac{\Delta H}{H_0})_r$, la déformation équivalente ε_r , les déformations locales dans la zone équatoriale $(\varepsilon_{zz})_r$ et $(\varepsilon_{\theta\theta})_r$ et la limite d'élasticité proportionnelle σ_e .

L'utilisation d'un modèle de compression | Annexe 3-2 | permet de déterminer la caractéristique du trajet de déformation équatoriale, b, et les déformations locales théoriques à la rupture $(\varepsilon_{zz})_r$ et $(\varepsilon_{\theta\theta})_r$, la limite d'écoulement pour un modèle rigide parfaitement plastique σ_{rpp} ainsi que les coefficients de la loi de NORTON-HOFF $\sigma_0 = A \varepsilon^n$.

Les résultats sont regroupés dans les tableaux 3.1 et 3.2.

ETAT	F _r KN	° _e M₽a	σ _r MPa	(<u>AH</u>) Ho'r	(ε _{zz}) r	(ε _{θθ}) _r	ε _r
BRUT	660	1 600	2 160	0,52	-0,46	0,39	0,74
R500°C 1h30	1 070	1 500	2 080	0,67	-0,64	0,61	1,13
R800°C 1h30	1 130	900	1 360	0,79	-0,99	0,81	1,55

Tableau 3.1 : Résultats expérimentaux

e de la composition de						6	
ETAT	(e _{zz}) r	(e ₀₀) r	σ _{orpp} (MPa)	A MPa	: : n :	а с с с с с с с с с с с с с с с с с с с	
BRUT	-0,559	0,407	2030	2320	: 0,09	: : 0,403	
R500°C 1h30	-0,738	0,600	1870	2670	0,34	: 0,417 :	
R800°C 1h30	-0,803	0,777	1220 :	1610	: 0,40 :	: 0,582 :	

Tableau 3.2 : Résultats théoriques obtenus à partir

du modèle parabolique à 2 paramètres | 2 |.

III.5. Discussion

Comme le montre la figure 3.5, la limite d'élasticité et la contrainte de rupture varient peu pour des températures de réchauffage allant de l'ambiante à 500°C, pour des maintiens de lh30.

- 44 -

On note ensuite pour des températures de réchauffage comprises entre 500°C et 800°C, pour des temps de maintien identiques, une diminution importante de ces valeurs (de l'ordre de 50 % pour un réchauffage effectué à 800°C).

Les contraintes de rupture sont déterminées à partir d'une modélisation de l'essai de compression utilisant un champ de vitesse de déformation parabolique à 2 paramètres décrit en annexe 3.2.

L'effort instantané de compression dépend directement de la section instantanée de l'échantillon et de la contrainte d'écoulement (F $\simeq \sigma_0 s$). L'effort de compression à l'apparition de la fissure dépend fortement de la ductilité du matériau que l'on peut caractériser par le taux d'écrasement $\Delta H/H_0$ où $\varepsilon_r = \ln \frac{H_0}{H}$.

Ainsi pour des températures de réchauffage comprises entre l'ambiante et 500°C (maintien 1h30), la contrainte à l'apparition de la première fissure varie peu, l'effort de compression relié à la ductilité exprimée par $\Delta H/H_{o}$ varie notablement (660 KN à 1070 KN). (Tableau 3.1).

Les températures de réchauffage comprises entre 500°C et 800°C (durée 1h30) occasionnent un adoucissement du matériau, la contrainte d'écoulement passe de 2080 MPa à 1360 MPa.

Le taux d'écrasement augmente légèrement de 0,67 à 0,79. Les deux paramètres σ_0 et S (reliés à $\frac{\Delta H}{H_0}$) évouluant en sens inverse, l'effort de compression à la rupture varie peu (1070 KN à 1130 KN).

La ductilité peut également s'exprimer à partir des paramètres locaux $(\varepsilon_{zz})_r$ et $(\varepsilon_{\theta\theta})_r$, elle évolue de la même manière que la déformation totale ε_r (tableau 3.1), (fig. 3.7) ; la ductilité augmente avec la température de réchauffage pour des temps de maintien identiques (1h30).

L'énergie nécessaire à l'apparition de la première fissure $W = \int FdH$ suit la même évolution, elle augmente avec la température de réchauffage. On passe ainsi de 120 joules à l'état brut de laminage, à 300 joules pour un réchauffage à 500°C et 320 joules pour un réchauffage à 800°C.

Validité du modèle

La modélisation de l'essai de compression proposée en annexe 3.2, donne les résultats rassemblés dans le tableau 3.2. Le calcul des déformations équatoriales à partir de ce modèle montre une incertitude de l'ordre de 15 % sur l'estimation de ε_{zz} , la validité de l'estimation de $\varepsilon_{\theta\theta}$ étant plus grande. L'utilisation de ce modèle en vue de la détermination ultérieure de ductilité est à prendre avec précaution (fig. 3.8).

Le coefficient d'écrouissage est d'autant plus élevé que la température de réchauffage est élevée dans les deux domaines de températures brut de laminage -500°C (lh30) et 500°C (lh30) - 800°C (lh30).

Le coefficient b, caractéristique des trajets de déformation dépend essentiellement des conditions de frottement à l'interface outillage-éprouvette. Il augmente avec la température de réchauffage.

III.6. Résultats et discussion en traction

Les essais sont effectués sur des éprouvettes cylindriques (fig. 5.1) sur une machine hydraulique MTS avec une vitesse de déformation de $4 \times 10^{-3} \text{s}^{-1}$.

Les résultats sont regroupés dans les tableaux 3.3 et 3.4.

La figure 3.9, représente l'évolution des caractéristiques de traction en fonction de la température de réchauffage à temps de maintien constant(1h30). La résistance à la traction Rm et la limite d'élasticité passent par deux extremas, un maximun pour une température de réchauffage de 500°C et un minimum pour une température de 800°C(maintien 1h30).

L'allongement et la striction, faible à l'état brut de laminage augmentent fortement avec la température dans l'intervalle ambiante-500°C.

Au-delà, on observe une stabilisation de ces caractéristiques. On note cependant une diminution sensible de l'allongement à la rupture pour les températures de réchauffage élevées (1050°C-1h30). Ces résultats sont regroupés dans le tableau 3.3 et représentés sur la figure 3.9.

L'importance du temps de maintien a été étudié aux températures de réchauffage caractéristiques: 500°C et 800°C (fig. 3.10 et 3.11).

L'évolution des différentes caractéristiques, peut être représentée à l'aide du paramètre de HOLLOMON et JAFFE |5, 7| P = T (c + logt).

III.6.1 Analyse des faciès de rupture

La microfractographie a été réalisée sur des surfaces de rupture des éprouvettes rompues en traction.

Les éprouvettes rompues après un réchauffage à 500°C présentent un aspect caractéristique "en fraise",planche III.2 ; quel que soit le temps de maintien.

Ce phénomène n'a pas été observé sur les éprouvettes rompues après un réchauffage à 800°c et un réchauffage à 1050°C(1h30), (planche III.3).

A l'échelle microscopique, on observe, quel que soit le temps de maintien à la température de réchauffage, une rupture ductile à cupules (planche III.1, planche III.3). On constate toutefois pour un maintien prolongé à la température de 500°C, si l'on excepte les macrocavités autour des inclusions, que le comportement est "pseudo-fragile".Ceci est à rapprocher de la diminution constatée sur l'allongement pour les temps de maintien élevés. Ce phénomène n'est pas observé pour les maintiens isothermes effectués à 800°C. Malgré la dimunition constatée sur l'allongement pour les temps de maintien élevés, le comportement reste ductile. La contrainte de rupture est nettement plus faible que celle observée pour les maintiens isothermes effectuées à 500°C-1h30; l'écart est de l'ordre de 30%.

III.7. Comparaison compression-traction

La ductilité en compression exprimée en terme de déformation(globale ou locale) augmente pour les températures de réchauffage comprises entre 500°C et 800°C (maintien 1h30), tableau 3.1). Cette évolution n'est pas constatée dans l'essai de traction, l'allongement varie peu et la stiriction ne varie pas dans le domaine de température de réchauffage 500°C-800°C.Les contraintes évoluent par contre de la même manière pour les 2 essais, diminution de Re et Rm quand la température augmente.

ETAT	Rm 2 (N/mm)	Re 2 (N/mm)	Charge de rupture (N/mm ²)	Z (%)	A (%)
Brut de laminage	1 400	1 120	910	5,4	7,0
R500°C 1h30	1 460	1 190	930	54	15,6
R800°C 1h30	1 060	950	700	49	15,6
R1050°C 1h30	1 390	1 150	950	51	9,0

Tableau 3.3 : Résultats de traction en fonction

de la température de réchauffage.

				· · · · · · · · · · · · · · · · · · ·	1	077
ETAT	Rm 2 (N/mm)	Re 2 (N/mm)	: Charge de : rupture : (N/mm ²)	Z (%)	A (%)	ILE
R500°C 24h	1 340	1 240	840	58	14,7	• • • • •
R500°C l semaine	1 240	1 120	760	59	14,3	
R800°C ` 24h	1 030	920	700	57 57	15,2	
R800°C l semaine	950	905	59	61	14,1	

Tableau 3.4 : Résultats de traction

en fonction du temps de maintien

PLANCHE III.I

BU

PLANCHE III.3

- 51 -

fig. 3.6 : EFFORT DE COMPRESSION

- 52 -

Fig. 3.7 : EVOLUTION DES PRINCIPALES CARACTERISTIQUES.

- 55 -

LES PROPRIETES MECANIQUES : R 500°C

- 56 -

LES PROPRIETES MECANIQUES : R 800°C

- 58 -

- BIBLIOGRAPHIE : CHAPITRE III ·

1 | <u>P. BAQUE, E. FELDER, J.HYAFIL</u> - mise en forme des métaux, Calculs par plasticité - Tomes 1 ét 2 - Dunod 1973.

2 GELIN

Contribution à la détermination des lois d'écoulement et limites de ductilité des métaux par essai de compression ; thèse C.N.A.M 1980.

3 J.C. GELIN, J. OUDIN.

Influence de quelques paramètres métallurgiques sur la rupture ductile des aciers à bas et moyen carbone. Mémoires et études Scientifiques - Revue de Métallurgie - Avril 1984, p. 169-179.

4 A. CONSTANT, G. HENRY

Transformations au revenu et évolution des propriétés mécaniques au cours du revenu. Traitement thermique - Novembre 1983, p. 69-74.

5 G. PONT, Ph. MAYNIER, P.F. MARTIN

Application d'une équivalence entre le temps et de la température à l'étude du revenu des aciers.-Revue de métallurgie- Décembre 1967, p. 1115-1125.

6 A. CONSTANT, G. HENRY

Transformation au revenu et évolution des propriétés mécaniques au cours du revenu - Traitement thermique - Avril 1983, p. 47-54.

- 59 -

 | 7 |
 J.H. HOLLOMON, L.D. JAFFE

 Trans. A.I.M.E, Vol. 162 (1945) P 223-249.

A. CONSTANT, G. HENRY

A. CONSTANT, G. HENRY Evolution des propriétés mécaniques au cours du revenu. - Traitement thermique N° 176 - N° 176, Août-Septembre 1983.

Transformation au revenu et évolution des propriétés mécaniques au cours du revenu. - Traitement thermique - N° 169, Année 1982.

9

8

- 60 -

C H A P I T R E IV

DETERMINATION DES PARAMETRES DE TENACITE

RESILIENCE

FACIEUR D'INTENSITE DE CONTRAINIE CRITIQUE K
PLAN DU CHAPITRE IV

RESILIENCE

IV.1

- IV.1.1 Rappels sur l'essai de résilience
- IV.1.2 Instrumentation
 - IV.1.2.1 Description de la chaine de mesure
 - IV.1.2.2 Description des éléments
- IV.1.3 Allure générale des courbes effort-temps
- IV.1.4 Dépouillement des enregistrements
- IV.1.5 Déformation à la rupture dans l'essai CHARPY
- IV.1.6 Détermination de l'angle critique de rupture dans . l'essai CHARPY
- IV.1.7 Eprouvettes utilisées
- IV.1.8 Résultats expérimentaux
- IV.2 DETERMINATION DE KIC
- IV.3 DISCUSSION

·

IV.1. Résilience

La résistance aux chocs se mesure par un essai de résilience. L'essai normalisé le plus répandu est l'essai charpy V ou charpy U selon la forme de l'entaille. Cet essai permet de déterminer l'énergie de rupture à une température donnée | 1, 2, 4 |

Il fournit un résultat global, amorçage, propagation, déchirure ductile. Une exploitation plus fine de cet essai a été obtenue par un dispositif d'extensométrie qui permet un enregistrement de l'effort en fonction du temps (essai instrumenté).

IV.1.1 Rappels sur l'essai de résilience

Dans cet essai, un mouton pendule (fig. 1.1) lâché d'un angle α par rapport à la verticale, vient frapper une éprouvette à tester à entaille en V ou U, avec une vitesse initiale déterminée (= 5,52 ms⁻¹).

Fig. 4.1.1 : Mouton pendule.

La différence $(\alpha - \beta)$ caractérise l'énergie absorbée par la rupture de l'éprouvette.

L'énergie de résilience K_v et les angles α et β sont reliés par la relation suivante : $K_v = mgl (\cos \alpha - \cos \beta)$ où m et l sont la masse et la longueur du pendule. Un écran gradué donne directement l'énergie de rupture.

Les faciès de rupture des éprouvettes sont caractéristiques du mode de rupture (fig. 4.1.4).

- déchirement ductile, se faisant avec une forte déformation plastique, haute énergie, caractérisé par une surface à "nerf" ayant un aspect mat à "cupules".

E

Fig. 4.1.2 : Courbe contrainte-déformation.

- rupture fragile sans déformation plastique, faible énergie, caractérisée par une surface à grains d'aspect brillant due aux clivages.

Fig. 4.1.3 : Courbe contrainte-déformation.

Dans le cas d'une rupture mixte, on observe les deux types de surfaces. Le pourcentage de cristallinité se définit par le rapport :

> cristallinité = <u>surface à grains</u> surface totale

Cristallinité : 100 %

Cristallinité : 25 %

Cristallinité : 0 %

Fig. 4.1.4 : Exemples de faciès de rupture d'éprouvettes de résilience.

IV.1.2 Instrumentation

Il s'agit d'un dispositif d'enregistrement à grande vitesse.

IV.1.2.1 Description de la chaîne de mesure

La mesure des efforts est réalisée avec un matériel de mesure dont l'équipement est le suivant (fig. 4.1.5)

- un mouton pendule de charpy "Wolpert Testor" de capacité 30 daj.

- un oscilloscope à mémoire.
- un calculateur Commodore 64. Ces fonctions sont de :
- commander les divers périphériques mis en place pour la réalisation de l'essai et de son traitement.
- commander l'interface IEEE, qui permet la programmation de l'oscilloscope à mémoire numérique, de recevoir, de traiter et de stocker les données en provenance de la mémoire de celui-ci.

- une unité de disques pour le stockage des résultats.

Fig. 4.1.5 : SCHEMA DE L'APPAREILLAGE UTILISE

- une imprimante graphique.
- une table traçante.

IV.1.2.2 Description des éléments

- Le mouton pendule -

L'essai s'effectue sur un mouton pendule équipé d'un pont de jauges de contraintes collées sur le couteau. Ce pont est constitué de quatre jauges, sur chaque face du couteau sont fixées deux jauges, dont une active et une inactive. Les jauges sont alimentées en courant continu, on mesure la tension de déséquilibre du pont, dues aux variations des résistances de jauges.

- L'oscilloscope -

L'oscilloscope utilisé est un Gould OS 4020 qui mesure et enregistre 4096 points. Celui-ci a pour fonction de mémoriser à grande vitesse, le signal provenant du pont de jauges et le stocke dans sa mémoire de 4 K. La courbe effort-temps est visualisée à l'écran pendant le même temps. L'essai dure de quelques µs à quelques ms. Il convient d'ajuster la vitesse de mémorisation au type d'essai ; ce qui nécessite quelquefois des essais préalables.

- Le calculateur Commodore 64 -

Sa mémoire est de 64 K. Elle est suffisante pour traiter les 4096 points qui nous donnent l'oscilloscope. Ceux-ci sont stockés sur disquette, un programme de calcul permet de convertir le diagramme Force-temps en diagramme Force-déplacement (Annexe 4.1).

IV.1.3 Allure générale des courbes effort-temps

Conme pour l'essai non instrumenté, un écran gradué nous donne l'énergie globale de rupture de l'éprouvette. De plus, nous obtenons la courbe force-temps décrivant la rupture de l'éprouvette |13, 5 |. Les courbes obtenues sont aussi de trois types (fig. 4.1.6)

Fig. 4.1.6 : Différents types d'enregistrements

IV.1.4 Dépouillement des enregistrements

Le dépouillement des courbes se fait par calculateur (Annexe 4.1). Il nous permet de déterminer les différents paramètres (fig. 4.1.7) :

- charge maximum.
- charge au début de la rupture fragile.
- temps jusqu'à la rupture fragile.
- temps de propagation de la déchirure ductile.
- temps total de rupture.

La courbe force-déplacement similaire à la courbe force-temps donne par intrégration l'énergie. Elle se décompose en deux facteurs :

- Em : énergie correspondant au maximum de la charge considérée comme énergie d'amorçage de la fissure.
- $E_t E_m$: énergie de propagation de la rupture cb E_t est l'énergie totale | 3 |.

Fig. 4.1.7 : Dépouillement des enregistrements.

IV.1.5 Déformation à la rupture dans l'essai Charpy

Dans ce paragraphe, nous avons repris les travaux de J. MALKIN et A. STETELMAN. | 14 |

Quand un barreau entaillé est soumis à un essai de flexion, il se déforme élastiquement puis plastiquement jusqu'à rupture de l'éprouvette.

Fig. 4.1.8 : Représentation schématique de la distribution des contraintes dans un barreau entaillé soumis à une flexion en mode de déformation plane. La rupture se faisant par coalescence des microcavités qui s'initie au point de plus forte triaxialité R_g on a :

$$\varepsilon(R_{\beta}) = \frac{a \theta}{2\rho} \frac{x^{2}}{(\exp((\frac{\pi}{2} - \frac{\omega}{2}) - 1))}$$

soit

$$\theta = \frac{2\rho^2}{ax^*} \left\{ \left(\frac{\Pi}{2} - \frac{\omega}{2} \right) - 1 \right\} \epsilon(R_\beta) \left[4.5 \right]$$

Pour une géométrie d'éprouvette donnée, ρ ; a, Π , ω sont constants. Il en est de même de x^* 6 |.

$$\theta_{f} = K_{(\rho, a, \omega, x^{*})} \epsilon_{(R_{\beta})} \quad K = \text{constante.}$$

A l'amorçage de la rupture on aura : $\theta_{f} = K(\rho, a, \omega, x^{*}) \epsilon(R_{\beta})$

Pour la géométrie Charpy V on trouve $f_{f} \approx 18 \epsilon_{(R_{g})}$ [4.6]

IV.1.6 Détermination de l'angle critique de rupture dans l'essai Charpy

Soient V la vitesse initiale du couteau E_{o} énergie initiale du couteau et E_{a} l'énergie absorbée

La région déformée plastiquement à fond d'entaille peut être considérée comme une éprouvette de traction de longueur 2ρ , ρ étant le rayon à fond d'entaille.

$$\varepsilon_{0} = \frac{\Delta(2\rho)}{2\rho} \qquad [4.2]$$

où Δ (2p) est le déplacement en fond de fissure. D'autres auteurs | 11, 12 | ont montré que le déplacement en fond de fissure était proportionnel à l'angle de pliage θ de l'éprouvette soit :

$$\Delta(2\rho) = a\theta$$

a étant le rayon de rotation de deux branches de l'éprouvette, pris à partir du fond d'entaille.

$$\epsilon_{o} = \frac{a}{2} \frac{\theta}{\rho} [4.3]$$

En substituant la valeur de ε_0 dans l'équation [4.1], on déduit :

$$\varepsilon_{(\mathbf{x})} = \frac{\mathbf{a}}{2} \frac{\mathbf{\theta}}{\mathbf{\rho}} \frac{\mathbf{x}^{\mathbf{x}}}{\mathbf{x}}$$

 σ_{g} max augmente jusqu'à ce que x atteigne la valeur $R_{\beta}^{}$. yy Pour un angle d'inclinaison ω des parois de l'entaille, la relation suivante est vérifiée :

$$(\sigma_{yy} \text{ max}) \text{ max} = \sigma_{y} (1 + \frac{\pi}{2} - \frac{\omega}{2})$$

et
 $R_{(\beta)} = \rho \left[\exp \left(\frac{\pi}{2} - \frac{\omega}{2} \right) - 1 \right]$

TETELMAN et WISHAW | 7 | supposent que la déformation plastique est constante sur une distance X^* à partir de l'extrémité de l'entaille.

Fig. 4.1.9 : Déformation plastique en fond d'entaille 8 .

La déformation plastique en fond d'entaille est représentée par la figure 4.1.9 où ε_0 est la déformation à fond d'entaille. On a alors :

pour x < x^{*}
$$\varepsilon_{(x)} = \varepsilon_{0}$$

x > x^{*} $\varepsilon_{(x)} = \varepsilon_{0} \frac{x^{*}}{x}$

[4.1]

A l'amorçage de la rupture, la flèche prise par l'éprouvette est f, l'angle de pliage est :

$$t_g \frac{\vartheta f}{2} = \frac{f}{1/2}$$

 $f = V_m trf$ où $V_m est$ la vitesse moyenne du couteau,trf, le temps à la rupture fragile.

$$f = \frac{V_0}{2} \operatorname{trf}(1 + \sqrt{1 - \frac{Ea}{E_0}})$$

 $\frac{\theta}{2} f \text{ étant faible, tg } \frac{\theta}{2} f \stackrel{\approx}{=} \frac{\theta}{2} f$ $\theta f = \frac{2V_0}{1} \operatorname{trf} (1 + \sqrt{1 - \frac{Ea}{E_0}}) \text{ avec } \theta_f \text{ exprimé en radians.}$

La déformation au point de plus forte triaxialité est :

$$\epsilon(R_{\beta})_{f} = \frac{20 V_{0} trf}{IIL} (1 + \sqrt{1 - \frac{Ea}{Eo}})$$

Pour notre pendule :

$$\epsilon(R_{\beta}) = 0.875 \text{ trf } (1 + \sqrt{\frac{30 - Ea}{Eo}}) \quad [4.7]$$

où trf est le temps à la rupture fragile exprimée en ms et Ea l'énergie absorbée en décajoules.

IV.1.7 Eprouvettes utilisées

Les éprouvettes les plus utilisées sont des éprouvettes ISO à entaille en V (norme AFNOR AO3 - 161) et ISO à entaille en U (norme AFNOR AO3 - 106).

Nous avons utilisé les entailles en V.

Fig. 4.1. 1 : Eprouvette utilisée.

IV.1.8 Résultats expérimentaux

Tous les essais sont effectués à l'ambiante avec une vitesse de balayage de 0,2 ms/cm et une sensibilité de 0,1 V/cm de l'oscilloscope. Tous les résultats sont rassemblés dans le tableau 4.1. Les faciès de rupture sont examinés par microscopie électronique en balayage (fig. 4.1.12).

IV.2 Détermination de K_{lC}

Pour étudier la résistance à la propagation des fissures. Des mesures du facteur d'intensité de contrainte critique (K_{1C}) sont effectués en flexion trois points (fig. 4.2.1) sur des éprouvettes de la mécanique de la rupture. Les éprouvettes utilisées pour le calcul de K_{1C} sont préfissurées par fatique sur une machine Instron à résonnance magnétique en suivant la recommandation A.S.T.M.

Fig. 4.2.1 : Eprouvette de flexion 3 points.

Nous enregistrons pendant l'essai la variation de la charge en fonction de l'écartement des lèvres de la fissure (fig. 4.2.2). Cet écartement se mesure grâce à un extensomètre à lames sur lesquelles sont collées les jauges de contrainte de 350 Ω .

 K_{ρ} est défini par la relation $K_{\rho} = \frac{F_{\rho}Y}{BW/Y^2}$ (Norme A.S.T.M.) où F_{ρ} est la charge obtenue à l'intersection de la courbe $F = f(\delta)$ avec la sécante s'écartant de la pente initiale de 5 %. Y est le facteur de forme, il est donné par son polynôme de calibration :

$$Y = 11,58 \left(\frac{a}{w}\right)^{1/2} - 18,42 \left(\frac{a}{w}\right)^{3/2} + 87,18 \left(\frac{a}{w}\right)^{5/2} - 150,66 \left(\frac{a}{w}\right)^{7/2} + 154,80 \left(\frac{a}{w}\right)^{9/2}$$

B et W sont respectivement l'épaisseur et la largeur de l'éprouvette.

 K_{o} est pris comme valeur de K_{1C} si les deux conditions sont vérifiées :

$$\left(\frac{a}{B}\right) \ge 2,5 \left(\frac{K_{\varphi}}{\sigma y}\right)^{2}$$

où $\sigma_{\underline{y}}$ est la limite d'élasticité du matériau et a la longueur de la fissure.

Nous avons d'autre part, déterminé le rayon de la zone plastique en fond de fissure par le modèle d'IRWIN | 10 | donné par la relation :

$$r_{y} = \frac{1}{6\pi} \left(\frac{K_{1C}}{\sigma_{y}}\right)^{2}$$

L'ouverture à fond de fissure critique δ_{c} est calculé par la relation de HAN et ROSENFIELD | 9 |

$$\delta_{c} \approx \frac{1}{2} \frac{K_{1C}}{Re E}$$
 E, étant le module d'YOUNG du matériau.

Les résultats sont regroupés dans le tableau 4.2 pour les trois états structuraux étudiés.

ETAT	: Ea : J/cm2 :	: TRF : MS :	f mm	: Fmax : KN :	: : Ffragi : KN :	ε(R _β)	: : CR : % :
BRUT	: : : 70	: 0.360	1.94	: : : 47	•• • • 45	: : : 0.59	: 50
R 500 1h30	: : 29	0.225	1.28	: : 38	: : 37	0.38	80
R 800	: 46	0.310	1.71	: 37	: : 35	: 0.52	: 70
11150	•	•	•	•	:	•	

TABLEAU 4.1 : PARAMETRES DE TENACITE EN DYNAMIQUE (RESILIENCE).

ETAT	^б с	RP mm	: K1C : /MPal/m :	: Re : MPa :
BRUT R 500 1h30	10,72 7,91	0.20 0.14	 70 : 62	: 1120 : 1190
R 800 1h30	9.28	0.21	: 60 : :	: 950 : :

TABLEAU 4.2 : CARACTERISTIQUES DE TENACITE EN FLEXION STATIQUE.

IV.3 Discussion

- Résilience

L'énergie de rupture dépend essentiellement de 2 paramètres :

- le niveau de charge

- la déformation

L'effet d'un réchauffage diminue de façon sensible le niveau de charge, la température de réchauffage intervenant peu. (Tableau 4.1). Par contre, la déformation est sensible au réchauffage et à la température de réchauffage. Un maintien isotherme effectué à 500°C-1h30 occasionne une forte diminution de la déformation à la rupture, un réchauffage à 800°C-1h30 confère un taux de déformation voisin de celui observé à l'état brut de laminage (Tableau 4.1).

Compte tenu de ces deux paramètres, on trouve par niveau d'énergie de résilience décroissant : l'état brut, l'état de maintien isotherme 800°C-1h30 et l'état de maintien isotherme 500°C-1h30. La déformation au point de plus forte triaxialité, où s'amorce la rupture, évolue dans le même sens (Tableau 4.1). Il est à noter que la charge à l'apparition de la rupture est voisine de la charge maximale. Ce qui traduit une cristallinité relativement élevée.

- Facteur d'intensité de contrainte

Le facteur d'insentité de contrainte est maximum à l'état brut, il varie peu avec la température de réchauffage.

Les caractéristiques de ténacité déterminées à partir de l'essai K_{1C} (δ_{c} : ouverture en fond de fissure et R_{p} : taille de la zone plastique) évoluent de la même manière que les paramètres de résilience (flèche, temps à la rupture fragile, énergie de rupture).

Les facteurs d'insentité de contrainte étant sensiblement les mêmes pour des réchauffages à 500°C et 800°C (1h30). Les variations sur δ_{C} dépendent directement de la limite d'élasticité Re (Tableau 4.2).

۲.

- Conclusion

D'une façon générale, l'état brut est le plus favorable, le faciès de rupture après essai CHARPY est de type ductile à cupules, alors que celui observé sur les éprouvettes ayant subi un réchauffage est de type "pseudo-fragile" ; le réchauffage à 500°C est le plus défavorable (fig. 4.1.12).

On constate également de ce matériau qu'il est sensible à la vitesse de déformation. Les variations des caractéristiques mécaniques sont beaucoup plus importantes dans l'essai de ruptute dynamique (résilience) que dans l'essai de rupture statique (K_{1C}) .

a)

25 µm

 $50\,\mu m$

c)

Fig. 4.1.12 : Micrographies électroniques à balayage a)Brut, b)R 500°c-1h30', c)R 800°c-1h30'

BIBLIOGRAPHIE : CHAPITRE IV

1Essais de résilience - Essais SCHNADT - Essais de traction par CHOC.Publications de l'I.R.S.I.D Série A N° 468. Octobre 1968 (P1997-2003).

2 B. MARANDET.

Evaluation simple de la ténacité pour le suivi de la qualité des matériaux. Eccle d'été Franco-Quebecoise. Montréal, 14-23 Juillet 1980 ; I.R.S.I.D.

3 H. MATHY

Relations entre les caractéristiques microstructurales et la résilience des aciers de construction mécanique. Revue de métallurgie Mars 1977 N° 3 (P169-186).

4 G. SANZ

La rupture fragile ;
 La mécanique de la rupture.
 I.R.S.I.D, Saint-Germain-en-Laye, FRANCE.

5 Impact testing of metals ASTM-STP466,1970; (P95-151).

6 G. MESMACQUE

Thèse de docteur d'état U.S.T.L (1978).

7 TETELMAN and WISHAW

Second International Conference Fracture, BRIGHTON, ENGLAND 1969 April.

8 TETELMAN, MC EVILY

Fracture of structural materials - John WILEY publication 1967.

9 G.T. HAN and A.R. ROSENFIELD

Sources of fracture toughness : The relation between K_{1C} and the ordinary tensile proporties of metals. A.S.T.M SYMPOSIUM "Applications related Phenomena in Titanium and its alloys"; LOS ANGELES 18-19 April 1967.

10 G.R. IRWIN

Plastic zone near a crack and fracture toughness. Seven ordnance Materials. Research Conference, August 1960.

11 WELLS

Proc. Crac Prop. Symposium Cranfield, 1961-1962.

| 12 | WILSHAW -PRATT

J. Mech. Phys. Solids, 1963, vol. 14, p. 7-19.

13 J. MENIGAULT, J.Y. DAUPHIN, J. FOCT

Influence de l'état inclusionnaire sur la valeur de l'intégrale J étudiée par essai CHARPY à instrumentation numérique. Mémoires et études scientifiques - Revue de métallurgie janvier 1983, p. 17-25.

14 D. FRANCOIS et L. JOLY

La rupture des métaux - Ecole d'été de la Colle-sur-Loup. Septembre 1970 - Edi. MASSON et Cie. p. 209-216.

C H A P I T R E V

FATIGUE

PLAN DU CHAPITRE V

V.1	GENERALITES

- V.2 DEFINITION DE LA FATIGUE PLASTIQUE OLIGOCYCLIQUE
- V.3 RAPPELS SUR LA FATIGUE PLASTIQUE OLIGOCYCLIQUE
- V.4 ETUDE DE LA RESISTANCE A LA FATIGUE
- V.5 ETUDE DE L'ECROUISSAGE CYCLIQUE
- V.6 MISE EN OEUVRE EXPERIMENTALE
- V.7 PARAMETRES MESURES
- V.9 ANALYSE ET DISCUSSION DES RESULTATS
 - V.9.1 Ecrouissage monotone et cyclique
 - v.9.2 Evolution de la contrainte au cours du cyclage
 - v.9.3 Courbes de MANSON-COFFIN
- W.10 MODELISATION DU PHENOMENE DE FISSURATION PAR FATIGUE
- V.11 METHODE EXPERIMENTALE
 - V.11.1 Mesure de la longueur de fissure et variation de K

V.11.2 Résultats expérimentaux

V.12 DISCUSSION

V.1 Généralités

L'essai de fatigue consiste à imposer à une pièce une force ou un déplacement variable dans le temps |1, 2, 3|.

Les essais les plus courants se font à force ou à déplacement répétitifs selon l'objectif visé.

On distingue principalement :

– la fatigue endurance : grand nombre de cycles à rupture ($N_{\rm R}$ > 10 6), contraintes faibles, déformation plastique essentiellement élastique.

– la fatigue oligocyclique : faible nombre de cycles à ruptu-re ($N_{\rm R}$ <10 5), contraintes élevées, déformation plastique non négligeable.

- la fissuration : croissance d'une fissure de fatigue.

les paragraphes 5.1 à 5.9 sont consacrés à la fatigue oligocyclique et le reste à l'étude de la vitesse de fissuration et les lois de PARIS.

V.2. Définition de la fatigue plastique oligocyclique

La fatigue plastique oligocyclique présente deux caractéristiques fondamentales | 9 |

- Elle est plastique : c'est-àdire qu'une déformation plastique significative se produit à chaque cycle.

- Elle est oligocyclique : c'est-à-dire que les matériaux ont 5^{5} une endurance finie à ce type de sollicitation.(N_R < 10⁵).

V.3. Rappels sur la fatigue plastique oligocyclique

Lorsqu'on soumet un métal à une déformation cyclique d'amplitude constante, les contraintes maximales et minimales ne restent pas constantes pendant l'essai.

Dans le domaine plastique, sous sollicitation cyclique, le métal peut durcir, s'adoucir ou rester stable. C'est-à-dire que l'amplitude de contrainte augmente, demeure ou reste constante, respectivement au cours du cyclage. La déformation totale ($\Delta \varepsilon_t$) se décompose en une partie plastique ($\Delta \varepsilon$) et en une partie élastique ($\Delta \varepsilon_e$).

V.4. Etude de la résistance à la fatigue

Expérimentalement on observe que la déformation plastique $(\Delta \epsilon_{\vec{p}})$ et la déformation élastique $(\Delta \epsilon_{\vec{e}})$ sont liées au nombre de cycles à la rupture N_{p} suivant les relations :

 $\Delta \varepsilon_{p} = AN_{R}^{-a} : \text{ relation de MANSON et COFFIN} | 4, 5 |$ $\Delta \varepsilon_{e} = BN_{R}^{-b} : \text{ relation de BASQUIN}. | 6 |$

V.5. Etude de l'écrouissage cyclique

Plusieurs méthodes | 2 | sont proposées pour déterminer la courbe de consolidation cyclique obtenue après stabilisation.

- méthode par incrément.

- méthode utilisant une éprouvette par niveau.

- méthode par paliers successifs.

- traction après cyclage.
- demi boucle d'hystérisis.

Nous avons utilisé la méthode utilisant une éprouvette par niveau. Cette courbe se représente en général par une loi puissance :

$$\sigma_a = K' \left(\frac{\Delta \varepsilon_p}{2}\right)^{n'}$$

que l'on peut comparer à la courbe de traction monotone :

$$\sigma = K (\epsilon)^n$$

K' et K sont respectivement les coefficients de consolidation cyclique où "n'" et "n" sont respectivement les coefficients d'écrouissage cyclique et monotone et $\Delta \varepsilon_{p}$ = variation de la déformation plastique.

V.6. Mise en œuvre expérimentale

Les essais sont réalisés à température ambiante sur une machine hydraulique MTS de capacité lOt. sur des éprouvettes cylindriques (fig. 5.1). Pour chaque état sont effectués :

a) un essai de traction monotone à la vitesse de déformation constante = 4.10^{-3} s⁻¹.

b) des essais de fatigue oligocyclique en déformation totale imposée en signal triangulaire à la vitesse constante de 4.10^{-3} s⁻¹.

V.7. Paramètres mesurés

En traction monotone, les courbes force-déformation longitudinale sont enregistrées. Les déformations longitudinales sont mesurées sur une longueur de base de 25 mm à l'aide d'un extensomètre MTS collé sur la partie utile de l'éprouvette.

En fatigue oligocyclique sont enregistrés :

- les cycles d'hystérisis σ-ε

- la durée de vie de l'éprouvette.

Le cycle d'hystérisis de référence choisi à 20 % de la durée de vie correspondant à une stabilistation des caractéristiques mécaniques du matériau.

Sur ce cycle de référence, les paramètres mesurés, conformément aux notations de la figure 5.2 sont :

- la variation de charge & F.

- la variation de déformation totale $\Delta \varepsilon_{+}$.

- les contributions respectives de déformation élastique ($\Delta \epsilon_e$) et plastique ($\Delta \epsilon_p$).

V.8. Résultats expérimentaux

Les résultats de traction sont rassemblés dans le chapitre 3 où une analyse a été faite. Les résultats de fatigue oligocyclique sont regroupés dans le tableau 5.1.

Pour chaque état, il a été déterminé :

- les courbes de consolidation cyclique $\sigma_a = f(\frac{\Delta \varepsilon_t}{2})$, (fig. 5.3 a, b, c).

Ces courbes sont obtenues par la méthode utilisant une éprouvette par niveau. Les résultats sont rassemblés dans le tableau 5.2.

ETAT	$\sigma_{a} = K' \left(\frac{\Delta \varepsilon_{p}}{2}\right)^{n'}$	
Brut R 500°C-1h30 R 800 C-1h30	$\sigma_{a} = 4500 \varepsilon_{p}^{0,86}$ $\sigma_{a} = 1780 \varepsilon_{p}^{0,19}$ $\sigma_{a} = 860 \varepsilon_{p}^{0,24}$	avec o _a en MP et e _p en %

Tableau 5.2 : Coefficients des lois d'écrouissage cyclique.

- les courbes de comportement cyclique $\sigma_a = f(N)$ représentent la valeur de l'amplitude de contrainté σ_a à chaque cycle pour une déformation totale donnée (fig. 5.6 a, b, c).

- les courbes de résistance à la fatigue $\Delta \varepsilon_t = f(N_R)$ dites courbes de MANSON-COFFIN sont représentées sur les figures 5.5 a, b, c. Ces courbes sont analysées à l'aide des relations :

$$\Delta \varepsilon_{\rm p} = A N_{\rm R}^{-b} \qquad | 4, 5$$
$$\Delta \varepsilon_{\rm e} = B N_{\rm R}^{-b} \qquad | 6 |$$

Les coefficients de ces relations sont regroupés dans le tableau 5.3. - les courbes $\sigma_a = f(N_R)$ où N_R est le nombre de cycles à rupture (fig. 5.4).

	ETAT	: :Essai n°:	$\Delta \epsilon_{t}/2$	Δε _e /2	Δε _p /2	σ _a (MPa)	N _R
		: : : : : : : : : : : : : : : : : : :	0,286	0,276	0,009	579	12 206
		2	0,334	0,323	0,011	668	3 489
	Brut de laminage	: 3 :	0,345	0,333	0,012	738	2 263
		4	0,380	0,369	0,012	745	1 124
		: 5 :	0,422	0,409	0,014	840	508
		6	0,478	0,462	0,016	936	194
	المراجع	:;	;;	:	;;		· · · · · · · · · · · · · · · · · · ·
		: 1 :	0,390	0,380	0,010	757	35 750
	-	: 2	0,484	0,483	0,032	897	16 569
.A	P 500°0 1230	: 3	0,56	0,500	0,044	1 006	7 980
	K 500 C-11130	4	0,658	0,562	0,096	1 101	3 742
		5	0,748	0,640	0,148	1 150	1 964
		: 6 :	0,964	. 0,724	0,240	1 422	1 157
		. 7	1,056	0,784	0,272	1 476	264
		:	•	:	::	;	:
		: 1	: 0,972	: 0,404	: 0,568	: 796	: 362
		: 2	: 0,880	: 0,400	: 0,480	: 741	: 616
	R 800°C-1h30	: 3	0,782	0,362	: 0,420	. 701	836
		: 4	0,486	0,324	0,162	582	. 7 112
		: 5	• • 0,384	. 0,282	. 0,102	512	13 400
		: 6	: 0,34	: 0,086	0,254	486	26 534

(avec : $\Delta \varepsilon_t / 2 - \Delta \varepsilon_e / 2 - \Delta \varepsilon_p / 2$ en %)

Tableau 5.1 : Résultats des essais

de fatigue oligocyclique à température ambiante.

ETAT	$\Delta \epsilon_{\rm p} = A N_{\rm R}^{-a}$	$\Delta \epsilon_{e} = BN_{R}^{-b}$	LOIS D'ENDURANCE
Brut	0,03 N _R -0,133	0,88 N _R ^{-0,125}	$\sigma_a = 1706 N_R^{-0,114}$
R500°C-1h30	20,97 N _R ^{-0,684}	1,90 N _R ^{-0,148}	$\sigma_a = 3423 N_R^{-0,139}$
 R800°C-1h30	9,57 N _R ^{-0,469}	0,69 N _R ^{-0,092}	$\sigma_{a} = 1527 N_{R}^{-0,112}$

(avec: $\Delta \varepsilon_p$ et $\Delta \varepsilon_e$ en %, σ_a en MPa).

Tableau 5.3 : Equations de MANSON-COFFIN et

Lois d'endurance.

v.9. Analyse et discussion des résultats

V.9.1 Ecrouissage monotone et cyclique

Les courbes de consolidation mettent en évidence un durcissement cyclique par rapport à la traction monotone pour les états brut de laminage et 500°C-1h30. Par contre, un adoucissement est observé pour l'état 800°C-1h30. L'aptitude à la consolidation (exposant de consolidation cyclique) est maximale à l'état brut de laminage et minimale pour le réchauffage à 500°C.

V.9.2 Evolution des contraintes au cours du cyclage

Les courbes d'évolution de l'amplitude de contrainte en fonction du pourcentage de la durée de vie sont représentées sur les figures 5.6 a, b, c. Les courbes ont une allure classique : lorsqu'il existe un durcissement, il est suivi d'une stabilisation de la contrainte avant d'atteindre la rupture 2, 7, 8.

Nous constatons que :

Pour le brut de laminage, il y a stabilité jusqu'à 80 % de N_R sous faibles déformations $(\frac{\Delta \varepsilon_{t}}{2} < 0.8 \%)$. Pour $\frac{\Delta \varepsilon_{t}}{2} = 0.8 \%$ le comportement du matériau est caractérisé par un durcisse-

ment jusqu'à 20 % de la durée de vie suivi d'une période de quasi stabilisation

et d'un adoucissement très rapide au-delà de 80 % de la durée de vie. Aux fortes déformations $\frac{\Delta_{\epsilon}}{2}$ > 0,8 %, nous observons une période de

stabilisation couvrant 80 % de la durée de vie.

Pour un réchauffage à 500°C-1h30, l'amplitude de contrainte reste stable durant la quasi totalité de la durée de vie du matériau. La chute de contrainte est signalée aux environs de 50 % de N_R pour un maintien isotherme à 800°C (1h30).

V.9.3 Courbes de MANSON-COFFIN

Les courbes obtenues (fig. 5.5 a, b, c) montrent que : A l'état brut de laminage, la déformation plastique est faible. Pour un traitement thermique de lh30 à 500°C, la déformation plastique décroît à chaque cycle, le matériau est plus dur qu'à l'état brut de laminage, la limite d'élasticité étant supérieure, la déformation plastique reste faible.

Lorsqu'on augmente la température à 800°C pour un même temps de maintien, la déformation plastique est plus importante, la pente est moins accentuée que pour l'état 500°C-1h30.

Une comparaison de ces courbes à un même niveau de déformation totale, nous permet de conclure que le réchauffage à 500°C-1h30 est l'état qui donne la meilleure tenue en fatigue oligocyclique, (fig. 5.5 a).

Fig. 5.1 : EPROUVETTE DE TRACTION MONOTONE ET FATIGUE OLIGOCYCLIQUE.

ε ₊	<u></u>	vitesse de déformation totale.
Δε	=	variation de déformation élastique.
Δε	=	variation de déformation plastique.
ΔF	=	variation de charge.
Δσ	= .	$\frac{\Delta F}{S_o}$ variation de contrainte.
σa	=	$\frac{\Delta\sigma}{2}$ amplitude de contrainte.
ε _a	=	$\frac{\Delta \varepsilon}{2}$ amplitude de déformation.
N _R	=	nombre de cycles à rupture.

Valeurs du cycle Stabilisé conventionnel

Fig. 5.2 : NOTATIONS : ESSAI DE FATIGUE OLIGOCYCLIQUE.

- 97 -

Fig. 5.5 : Courbes de MANSON-COFFIN

a)

a) Brut de laminage

c)

b) Etat réchauffé à 500°c

c) Etat réchauffé à 800°c

Sous chargement cyclique, plusieurs auteurs | 10, 11, 12 ont relié à l'aide des relations empiriques la vitesse de fissuration. La plus utilisée est celle proposée par PARIS | 13 | qui relie la vitesse de fissuration à la variation du facteur d'intensité de contrainte AK.

- 101 -

$$\frac{\mathrm{d}a}{\mathrm{d}N} = \mathrm{C}(\Delta \mathrm{K})^{\mathrm{m}}$$

où da est la variation de la longueur de fissure.

dN = variation du nombre de cycles.

C et m sont les constantes du matériau.

La figure 5.7 donne un exemple de la courbe obtenue :

dN

V.11. Méthode expérimentale

Les essais sont réalisés sur une machine à résonnance électromagnétique Inströn 1603. Les éprouvettes utilisées sont des éprouvettes de flexion 3 points à section carrée $10 \times 10 \times 55$. La fréquence de résonnance pour ces éprouvettes est de l'ordre de 114 Hz avant fissuration.

La fissure est suivie optiquement sur les faces polies et graduées de l'éprouvette. Un contrôle est fait selon une méthode utilisant les variations de la fréquence de résonnance | 14 |

Les courbes obtenues sont :

a = f(t) ou a = f(N)

où a et N sont respectivement la longueur de fissure et N le nombre de cycles. Cette valeur est donnée directement par la machine. Un contrôle rapide et simple s'obtient en multipliant le temps t par la fréquence moyenne f.

V.11.1 Mesure de la longueur de fissure et variation de K

La loi "longueur de fissure en fonction de la fréquence " est déterminée par étalonnage par certains auteurs | 14 | pour les éprouvettes de type CHARPY.

La variation du facteur d'intensité ΔK est calculée par la formule suivante :

 $\Delta K = \beta \Delta \sigma \sqrt{\Pi a_1} \text{ où } \beta \text{ est le facteur de forme donné par son po-lynôme de calibration :}$

 $\gamma \left(\frac{a}{W}\right) = 1,09 - 1,735 \times \left(\frac{a}{W}\right) + 8,2 \left(\frac{a}{W}\right)^2 - 14,18 \left(\frac{a}{W}\right)^3 + 14,57 \left(\frac{a}{W}\right)^4$

 $\Delta \sigma = \sigma_{max} - \sigma_{min} = variation de contrainte.$

a<u>i</u> est la profondeur moyenne obtenue par la méthode de la sécante 15 | résumée comme suit :

Soient deux couples (a_i, N_i) et (a_{i+1}, N_{i+1}) , on a :

$$\bar{a}_{i} = \frac{a_{i} + a_{i+1}}{2}$$

$$\frac{da}{dN} = \frac{a_{i+1} - a_i}{N_{i+1} - N_i} \quad \text{au point } \bar{a}_i.$$

V.11.2 <u>Résultats expérimentaux</u>

La présentation des résultats se fait par un diagramme bilogarithmique $\frac{da}{d} = f(\Delta K)$, (fig. 5.8). Les charges maximales et minimales utilisées sont diversectivement 490 Kg et 50 Kg et ceci en respectant le rapport de contrainte $R = \frac{\sigma_{min}}{\sigma_{max}} = 0,1.$

Les coefficients de la loi de PARIS sont consignés dans le tableau 5.4.

ETAT	m	: : C	Log C	
Brut :	3,2	: : 5,383 x 10 ⁻⁹	- 19,04	
R500°C-1h30	3,5	: : 1,79 x 10 ⁹	: - 20,14	, 1
R300°C-1h30	2,8	: : 11,9 x 10 ⁻¹⁹ :	- 18,24	

Tableau 5.4 : Coefficients de la loi de PARIS.

On remarque que le coefficient m de la loi de PARIS peut s'exprimer de façon linéaire à partir de LnC (fig. 5.9)

 $m = a \ln C + b /$

Cette relation a été vérifiée par de nombreux auteurs sur différents types de matériaux | 16 |

Pour notre matériau, nous trouvons :

a = - 0,42 si da/dN en mm/cycles
b = - 4,85 et
$$\Delta K$$
 en MPa/m

Ces résultats coïncident avec ceux obtenus par d'autres auteurs | 17, 18, 19 | sur d'autres nuances d'acier.

Les paramètres C et m interviennent directement sur la vitesse de fissuration. Comme ils varient en sens inverse, il existe un domaine où la vitesse de fissuration est contrôlée par le coefficient C (faible ΔK) et un domaine où elle est contrôlée par le coefficient m (ΔK élevé). Pour situer ces différents domaines, nous avons représenté l'évolution de $\frac{da}{dN}$ en fonction de ΔK pour les états structuraux de notre acier selon les relations :

Pour le Brut $\frac{da}{dN} = 5,383 \times 10^{-9} \Delta K^{3/2}$ Pour l'état réchauffé à 500°C $\frac{da}{dN} = 1,79 \times 10^{-9} \Delta K^{3/5}$ Pour l'état réchauffé à 800°C $\frac{da}{dN} = 11,9 \times 10^{-9} \Delta K^{2/8}$ [5.1]

V.12. Discussion

Lorsque l'on veut comparer les vitesses de fissuration de plusieurs nuances ou de plusieurs états structuraux, il est nécessaire de définir dans quel intervalle de AK ces valeurs sont calculées.

Pour les faibles valeurs de AK, donc à l'amorçage (a petit), la fissure se propagera plus rapidement pour un état réchauffé à 800°C. La vitesse la plus lente étant obtenue avec l'état réchauffé à 500°C.

Pour les valeurs élevées de ΔK (ou pour les vitesses de propagation élevées), c'est à l'état réchauffé à 500°C que la vitesse de fissuration est la plus grande et à l'état réchauffé à 800°C qu'elle est minimale.

L'évolution des vitesses de fissuration (v = $\frac{da}{dN}$ = f(ΔK)) en fonction de ΔK , pour les 3 états structuraux, est schématisée ci-dessous à partir d'un calcul établi à l'aide des relations [5.1] :

pour	0 <	∆K	<	15		
	V _{R800}	>	V Bri	ut	>	VR500
pour	15 <	ΔK	<	40		
	V _{Brut}	>	V _{R50}	00	>	V
pour	ΔK >	40				
	V	>	V _B	rut	>	V _{R800}

- 1.05 -

<

- BIBLIOGRAPHIE : CHAPITRE V -

1 | <u>A. PINEAU, P. PETREQUIN</u> Fatigue des matériaux et des Structures. Ecole d'été 1978.

1

1

- 2 | <u>H.P. LIEURADE</u> La pratique des essais de fatigue. Pyc. Edition, Année 1982.
 - 3 <u>R. CAZAUD, G. POMEY, P. RABBE, Ch. JANSSEN</u> La fatigue des métaux. Dunod, 1969.
 - 4 | <u>S.S. MANSON</u> Behaviour of materials under conditions of thermal stress heat transfer symposium. Univ. MICHIGAN, Juin 1952.
 - 5 | <u>COFFIN</u> The problem of thermal stress fatigue in austenitique steels at elevated temperatures. A.S.T.M, STP 165, (1954), 31-52.
- 6 Ch. BASQUIN The exponentiel low of endurance tests. A.S.T.M, 10 (1970), 625-630.
 - 7 | <u>R. STOLTZ</u>, <u>A. PINEAU</u> Mat. Sci., 34 (1978), 275-284.
- 8 | <u>C. CALABRESE</u>, <u>C. LAIRD</u> Mat. Sci. Eng., 13 (1974) 141-159.

- C. BATHIAS, J-P. BAILON
 La fatigue des matériaux et des structures (1980)
 MALOINE S.A. Editeur : Les presses de l'Université de MONTREAL.
- | 10 | <u>J. SCHIJVE</u> NLR Report MP 195 (160).
- | 11 | <u>H.P. LIEURADE</u>, <u>P. RABBE</u> Mémoires Scientifiques, Revue de métallurgie, 9, 69, 606 (1972).
- | 12 | <u>M. HAHIAOUI</u> et <u>P. PETREQUIN</u> Revue de phyqique appliquée, 9, 685 (1974).
- 13 P.C. PARIS and F. ERDOGAN TRANS. ASME (D), 85, (1963), p. 525.
- A paraître.
- | 15 | <u>H.P. LIEURADE</u> "La pratique des essais de fatigue". Pyc. Edition, année 1982.
- 16 | <u>T. YOKOBORI, T. ALZAWA</u> Int. Journ., I, 1973, p. 489-491.
- 17 J. MASOUNAVE, K.P. BAILON, C. BATHIAS Soumis pour publication.
- 18 | <u>E.H. NICCOLS</u> Scripta Met., 10, 295-298, (1976).
- 19 | <u>M. AUBERT</u> Communication personnelle.

· C H A P I T R E VI

CARACTERISATION MICROSTRUCTURALE

RELATION AVEC LES PROPRIETES MECANIQUES

PLAN DU CHAPITRE VI

VI.1 <u>CONDITIONS EXPERIMENTALES</u>
 VI.1.1 Microscopie optique
 VI.1.2 Microscopie électronique en transmission
 VI.2 <u>OBSERVATIONS</u>
 VI.2.1 Microscopie optique
 VI.2.2 Microscopie électonique en transmission
 VI.2.2.1 Microstructure

VI.2.2.2 Etat de précipitation

DISCUSSION

VI.3.1 Aspect microstructural

VI.3.2 Relation entre la microstricture et les propriétés mécaniques

VI.3.2.1 Comparaison des états brut et réchauffé à 500°c

VI.3.2.2 Cas de l'état réchauffé à 800°c

VI.3.2.3 Cas de l'état réchauffé à 1050°c

VI.3

VI.1. Conditions expérimentales

VI.1.1 Microscopie optique

Les échantillons sont prélevés suivant la direction de laminage. Ils sont ensuite polis mécaniquement puis attaqués. La microstructure des échantillons est révélée par attaque au réactif de MARBLE. Ce réactif se compose de 10 ml de HcL, de 10 ml de H₂O et de 4 grammes de CuSO₄. La mise en évidence des joints de grains austénitiques nécessite l'utilisation de la méthode d'oxydation ménagée de KOHN | 1 |. La taille des grains austénitiques est mesurée par la méthode des intersections linéaires. Les observations sont effectuées au moyen d'un microscope REICHERT MeF2.

VI.1.2 Microscopie électronique en transmission

Les lames minces sont préparées à partir d'une découpe d'éprouvette de 1 mm d'épaisseur. Le découpage de l'éprouvette est effectué dans le sens travers des éprouvettes de traction (c'est-à-dire perpendiculaire à la direction de laminage du matériau). Ce découpage est réalisé au moyen d'une scie diamantée tournant à vitesse lente (vitesse tangentielle 35 m x Mn⁻¹). Le prélèvement est aminci mécaniquement sous eau au papier 600 jusqu'à une épaisseur de 50 μ m puis estampé sous forme de disques de 3 mm de diamètre. Les disques sont finalement percés électrolytiquement par jets dans un bain composé en volume de 90 % d'acide acétique et 10 % d'acide perchlorique. Ce polissage est effectué à une température proche de 13°C sous une densité de courant de 0,7 x 10⁻³ Amm⁻².

Cette densité de courant correspond à l'application d'une tension de 46 V aux bornes d'une cellule STRUERS Tenupol. Les lames minces sont conservées dans l'éthanol absolu. Les observations sont réalisées à l'aide d'un apparail Philipps EM300 opérant sous une tension de 100 kV ou d'un microscope JEOL 200 CX opérant sous une tension de 200 kV. Les deux appareils sont équipés d'une platine goniométrique.

VI.2. Observations

VI.2.1 Microscopie optique

En accord avec les mesures de dureté | 2 |, la figure 6.1 montre la structure martensitique du matériau à l'état brut et à la suite des maintiens isothermes à 500°C, et 1050°C. Le maintien à 800°C modifie profondément la structure du matériau qui présente des grains équiaxes. On observe par ailleurs dans tous les états une seconde phase allongée dans le sens du laminage. La densité de cette phase semble diminuer avec la température de réchauffage.

VI.2.2 Microscopie électronique en transmission

VI.2.2.1 Microstructure

La figure 6.2a est représentative de la microstructure des états brut du laminage et réchauffés à 500°C et 1050°C. Ces états présentent une structure martensitique en lattes dont l'épaisseur moyenne est proche de 0,25 μ m. La figure 6.3a révèle que ces lattes sont en relation d'orientation de macles. Dans l'état réchauffé à 500°C, les lattes sont le plus souvent très enchevêtrées (voir figure 6.3a) et les éventuels paquets de lattes sont difficilement dicernables. Les états condidérés se caractérisent par ailleurs par une forte densité de dislocations uniformément réparties dans les lattes (voir figures 6.2 et 6.3).

La figure 6.4 présente la microstructure de l'état réchauffé à 600° C. La structure est alors constituée d'un mélange complexe d'environ 50 % de lattes d'épaisseur voisine de 0,3 µm et de 50 % de sous-grains équiaxes de dimension moyenne proche de 1,2 µm. Les dislocations situées à l'intérieur des lattes tendent à se rassembler sous forme de parois (voir figure 6.4b).

Dans tous les états, on observe en outre la présence de grains insulaires. Ces grains ont été identifiés à de la ferrite par diffraction électronique. Ils sont repérés par la lettre F sur les figures 6.3 et 6.4a, et, correspondent à la seconde phase allongée dans le sens du laminage (voir fugure 6.1).

Fig. 6.1 : Micrographies optiques. a)brut de laminage, b)état réchauffé 1h30 à 500°c, c)état réchauffé lh 30 à 800°c, d)état réchauffé 1h30 à 1050°c.

VI.2.2.2 Etat de précipitation

La précipitation est peu marquée dans les états brut et réchauffé à 500°C. Elle ne s'observe que dans les rares zones dépourvues de lattes (voir figure 6.5 et plage repérée par un P sur la figure 6.3d) où elle apparait sous forme de plaquettes intragranulaires de carbures $M_{2,3}C_6$ en rélation d'orientation préférentielle avec la matrice.

La précipitation est au contraire très apparente dans les états réchauffés à 800°C et 1050°C. Les figures 6.4c et 6.4d sont représentatives de l'état de précipitation intragranulaire dans l'état réchauffé à 800°C. Des précipités de dimension moyenne proche de 55nm sont répartis de manière hétérogène dans le matériau. Ces précipités semblent pouvoir ancrer les joints de lattes.

Dans l'état réchauffé à 800° C, on observe en outre, une précipitation intergranulaire développée et assez dense dans les anciens joints de grains de l'austénite ou dans les joints qui séparent les plages de ferrite de la martensite (voir figure 6.4a). Tous les précipités observés dans l'état réchauffé à 800° C sont identifiés par diffraction électronique à des carbures du type $M_{23}C_6$ (Structure cubique à faces centrées de paramètre cristallin proche de 1,06 mm).

La figure 6.2a montre qu'il existe une distribution peu dense et hétérogène de gros précipités sphéroïdaux dont la dimension moyenne avoisine 200 nm dans l'état réchauffé à 1050°C. Il existe ainsi une précipitation intragranulaire en densité comparable de petits précipités sphéroïdaux de dimension moyenne proche de 350 nm. Ces petits précipités peuvent ancrer les joints de lattes (voir figure 6.2c). Tous les précipités observés dans l'état réchauffé à 1050°C ont une structure cristalline cubique à faces centrées et un paramètre cristallin proche de 0,44 nm. Ceci les identifie à des carbonitrures de niobium de type NbX.

L'état réchauffé à 1050°C présente en outre, des plaquettes intragranulaires de $M_{23}C_6$ en relation d'orientation préférentielle dans les zones dépourvues de lattes (fig. 6.2a).

Fig. 6.2 : Microstructure de l'état réchauffé 1h30' à 1050°C Micrographies électroniques en champ clair.

a)

Fig. 6.4 : Aspect microstuctural de l'état réchauffé 1h30' à 800°c a)champ clair, b)champ clair, c)champ sombre d)diagramme de diffraction, e)diagramme interprété

a)

b)

BU

c)

• 330

Taches de la matrice
 Taches de M₂₃C₆
 Coupe [Ī14]_{matrice}
 Coupe [1Ī3]_{M23}C₆

Fig. 6.5 : Etat réchauffé lh30' à 500°c Aspect de la précipitation intragranulaire du M23C6 a) champ sombre, b) diagramme de diffraction, c) diagramme interprété

VI.3. Discussion

VI.3.1 Aspect microstructural

L'existence d'une martensite en lattes dans l'état brut de laminage est conforme avec la faible teneur en carbone du matériau $(0,1 \) | 3, 19 |$ Elle vérifie par ailleurs les observations | 4 | qui établissent que la matrice en lattes est une caractéristique des aciers qui présentent une température M_s nettement supérieure à la température ambiante. La relation validée dans les aciers à 13 de chrome | 5 |;

> $M_{s}(^{\circ}C) = 283 - 474 \% C - 33 \% Mn - 17 \% Ni - 11 \% Si$ avec % X, pourcentage massique de l'élément X.

estime en effet M_c à 205°C dans notre acier.

L'observation d'une martensite en lattes non restaurée dans l'état réchauffé à 1050°C est à priori surprenante puisque la structure tend à se recristalliser dans l'état réchauffé à 800°C. Le phénomène résulte d'une augmentation de la trempabilité de l'acier entre l'état réchauffé à 800°C et l'état réchauffé à 1050°C. La figure 6.6 montre que cette augmentation de trempabilité ne provient pas du grossissement du grain γ . Un maintien de 1h30 à 1050°C ne suffit pas à augmenter la taille du grain γ . L'augmentation de trempabilité constatée semble devoir être liée à l'augmentation des teneurs en chrome et en carbone de la solution solide. Cet accroissement de la teneur en chrome et en carbone provient de la dissolution des précipités de $Cr_{23}C_6$.

Par ailleurs il est bien connu que l'effet trempant du chrome est très important | 6, 5 |.

L'existence de précipités de carbonitrures de niobium du type NbX dans l'état réchauffé à 1050°C est compatible avec les données thermodynamiques afférentes à cette précipitation | 7 |.

La tendance à la précipitation du $M_{23}C_6$ au cours du réchauffage à 800°C s'accorde bien avec les résultats relatifs à cette précipitation dans les aciers inoxydables austénitiques |8|. Ces résultats montrent que le temps d'incubation pour la précipitation des carbures $M_{23}C_6$ passe par un minimum à 800°C qui est de l'ordre de quelques dizaines de secondes dans les aciers austénitiques écrouis de 20 %. La présence de ferrite allongée dans le sens du laminage tient vraisemblablement en un enrichissement du matériau en éléments alphagènes.

Fig. 6.6 : Micrographies optiques du brut de laminage austénisé à 1050°C pendant : a)10mn, b)1h30;puis trempe eau.Taille du grain γ

VI.3.2 Relation entre la microstructure et les propriétés mécaniques

Les principaux paramètres microstructuraux qui influent sur les propriétés mécaniques des aciers martensitiques sont :

- le durcissement de solution solide et plus particulièrement celui qui est dû au carbone et à l'azote en solution solide d'insertion | 9 |. Cet effet influerait surtout sur la contrainte d'écoulement | 10, 11 | et de façon moins importante sur la résilience et la ductilité qui sont abaissées lorsque la concentration du carbone en sursaturation augmente.

- la dimension des lattes influe sur la limite d'élasticité et l'énergie de résilience du matériau qui augmentent avec l'affinement des lattes.

- la densité des dislocations influe essentiellement sur la limite d'élasticité et la résilience du matériau. Les valeurs de la limite d'élasticité et de la température de transition augmentent avec la densité des dislocations stockées dans le matériau | 11, 12 |. - les phénomènes de précipitation. Ces transformations peuvent influer de manière significative à la fois sur la contrainte d'écoulement plastique, sur la ductilité et la ténacité du matériau | 4, 10, 5 |.

Les phénomènes de ségrégation atomique et les forces de frottement du réseau peuvent aussi intervenir.

VI.3.2.1 Comparaison des états brut et réchauffé à 500°C

Dans la limite de nos observations, la microstructure de l'état réchauffé à 500°C est identique à celle de l'état brut. Elle se caractérise en particulier par une densité élevée de dislocations uniformément réparties et par l'absence de précipités. Cette immobilité apparente des dislocations est incompatible avec la mobilité atomique élevée qui existe aux températures proches de 500°C dans les structures martensitiques | 11, 13, 14, 15, 16 |. Il semble donc que la mobilité des dislocations puisse être entravée par la ségrégation des atomes de carbone en sursaturation.

Le phénomène est susceptible de pouvoir rendre compte du durcissement observé à la suite du réchauffage à 500°C et du minimum de résilience à 500°C. On remarque qu'il ne s'accorde pas avec l'augmentation de ductilité constatée.

VI.3.2.2 Cas de l'état réchauffé à 800°C

La caractéristique mécanique essentielle de l'état réchauffé à 800°C consiste en un adoucissement très prononcé du matériau.

Cet adoucissement résulte de la modification de plusieurs paramètres microstructuraux qui concernent la densité des dislocations, la largeur des lattes et de façon prépondérante le durcissement par solution solide dû au carbone. La mobilité des dislocations dans l'état réchauffé à 800°C est plus importante que dans les autres états.

Le phénomène résulte de la diminution de la densité des dislocations uniformément réparties dans le matériau. Cette diminution est consécutive au début de recristallisation.

L'élargissement des lattes contribue également de manière significative à la baisse de la limite d'élasticité du matériau. Cette estimation est effectuée à partir de la relation de NAYLOR | 11, 16 |. - le paramètre σ_0 englobe les contributions durcissantes des forces de réseau, des interactions entre dislocations, de la solution solide et des précipitations éventuelles.

- l est l'épaisseur moyenne des lattes exprimée en mm L'application de la relation conduit par exemple à un abaissement de la limite d'élasticité proche de 90 MPa pour l'augmentation de lattes observées.

Il est vraisemblable que l'adoucissement de solution solide lié à la précipitation des carbures de type $M_{2,3}C_6$ soit prépondérant puisqu'il se manifeste par une baisse de la limite d'élasticité de 4500 MPa |11 | pour une diminution de 1 % de la concentration massique de carbone ou d'azote en solution solide.

Cet adoucissement doit être plus efficace que l'effet durcissant éventuel dû à la précipitation. Le résultat est déduit de l'application de la relation de OROWAN relative au contournement des précipités par les dislocations | 9 |.

$$\Delta \tau = \frac{2 T}{b(\lambda - 2\overline{r}_{e})} \qquad [6.1]$$

dans laquelle $\Delta \tau$ est l'augmentation de la contrainte de cisaillement dans le plan de glissement.

T et b sont respectivement la tension de ligne et le vecteur de BURGERS des dislocations.

 λ est l'espacement moyen des précipités dans le plan de glissement, et \overline{r}_s est le rayon moyen des précipités dans le plan de glissement. Le durcissement de OROWAN s'écrit :

$$\Delta \sigma = M \frac{\mu b}{\lambda - 2\bar{r}_{s}} \qquad [6.2]$$

Dans l'hypothèse d'une valeur moyenne et constante de la tension de ligne :

$$T = -\frac{\mu b^2}{2}$$

et en tenant compte de la nature plus cristalline du matériau par l'intermédiaire du facteur de TAYLOR M. L'application de la relation (6.2) du matériau considéré.

 $(M \approx 3 \mid 17 \mid, \mu = 7,5 \times 10^4 \text{ MPa}, b = 0,25 \text{ nm et } \lambda - 2 \overline{r_s} = 150 \text{ nm}),$ estime l'effet durcissant de la précipitation de $M_{23}C_6$ à environ 360 MPa dans les zones où la précipitation est dense. Il convient par ailleurs de remarquer que l'intervention de cet effet durcissant est peu vraisemblable du fait de la microstructure en lattes du matériau (voir figure 6.3c).

La perte de carbone en solution solide | 18 | et la mobilité plus importante des dislocations expliquent par ailleurs l'augmentation de ductilité observée en traction et en compression. Ces paramètres doivent également rendre compre de l'adoucissement cyclique observé à 800°C. Il est vraisemblable que cet adoucissement cyclique provienne de la formation aisée de sous-structures de fatigue | 16 |.

VI.3.2.3 Cas de l'état réchauffé à 1050°C

L'augmentation de dureté entre l'état réchauffé à 800°C et l'état réchauffé à 1050°C provient de la structure martensitique du dernier état. La densité des dislocations uniformément réparties qui entravent le déplacement des dislocations mobiles est redevenue importante après réchauffage à 1050°C.

L'influence prépondérante du carbone en sursaturation ne peut être considérée faute d'une estimation des fractions volumiques de $M_{2,3}C_6$ et de NbX. La diminution de ductilité qui provient de l'augmentation de la température de réchauffage de 800°C à 1050°C s'explique encore à partir de l'accroissement de densité des dislocations uniformément réparties.

,

- BIBLIOGRAPHIE : CHAPITRE VI -

1 KOHN Revue de métallurgie, (1954), n° 2, p. 129. 2 E. BAIN and H.W. PAXTON 1 "Alloying elements in steel". ASM, Metals Park, Ohio (1961), p. 237. 3 R.F. VYNHAL and S.V. RADCLIFFE Acta Meta, 15(1967), p. 1415. 4 J.W. CHRISTIAN Strenghtening methods in Crystals. Elsevier Publishing Company, (1971), p. 261. 5 K.J. IRVINE, D.J. CROWE and F.B. PICKERING I "The physical metallurgy of 12 % Chromium steels". J.I.S.I., (1960), p. 386-405. 6 Atlas des courbes de transformations des aciers de fabrication Française. I.R.S.I.D. (1974). 7 V.K. LAKSHMANAN and J.S. KIRKALDY "Solubility Product for niobium Carbide in Austenite". Metallurgical Transaction A, volume 15A, march 1984, p. 541-544. 8 B. WEISS and R. STICKLER "Phases Instabilities during high temperature Explosure of 316 austenitic stainless steel". Metallurgical transactions 3 (1972), p. 851. 9 A. KELLY and R.B. NICHOLSON "Precipitation hardening". Progress in materials Science, 10(1963), p. 336.

- | 10 | <u>K.J. IRVINE</u> and <u>F.B. PICKERING</u> BISRA paper MG / Conf / 12/ / 64.
- || 11 | J.P. NAYLOR "Relation entre les propriétés mécaniques et la sous-structure des aciers en lattes, martensitiques et bainitiques".

Thèse d'état INPL.

- 12 A.S. TETELMAN, A.J. Mc EVILY "Fracture of structural Materials". John WILEY et Sons, N.Y., 1967.
- | 13 | <u>D. GUTIMANN</u> Thèse, Université de NANCY, 1974.
- 14 | <u>R.N. CARON, G.W. LORIMER, N. RIDLEY</u> J.I.S.I., 195, 1960, 386.
- | 15 | <u>G.R. SPEICH</u> Trans. A.I.M.E., 245, 1969, 2553.
- 16 | <u>P.N. THIELEN, M.E. FINE</u> et <u>R.A. FOURNELLE</u> Acta Met., Vol. 24 (1976) p. 1-
- 17 | <u>U.F. KOCKS</u> "The relation between polycristal deformation and single crystal deformation". Metallurgical Transactions, 1 (1970).
- | 18 | <u>K.J. IRVINE</u>, <u>F.B. PICKERING</u>, <u>H. GARSTONE</u> J.I.S.I., 196, 1960, 66.

| 19 | <u>C.M. WAYMAN</u> "Phase transformation non diffusive" in "Physical Metallurgy". Edité par R.W. CAHN et P. HAASEN. North-Holland ; Physics Publishing, Amsterdam (1983), p. 1031.

C O N C L U S I O N S

A l'issue de cette étude, nous pouvons faire les remarques suivantes :

Evolution entre l'état brut de laminage et l'état réchauffé à 500°C

La structure en lattes de la Martensite est la même à l'état brut de laminage et après réchauffage à 500°C. La densité de dislocations uniformément réparties, est élevée dans les deux cas.

Il ne semble pas y avoir de précipitations. Le durcissement observé, peut résulter de la ségrégation des interstitiels au contact des dislocations qui entraîne une diminution de la mobilité de celles-ci après réchauffage à 500°C. Le matériau est sensible à la vitesse de déformation.

A vitesse lente, en traction, le durcissement observé est en accord avec l'augmentation de la contrainte d'écoulement. Par contre, l'augmentation de la ductilité ne s'explique pas avec les mécanismes usuels de durcissement (ségrégations, précipitations submicroscopiques, baisse de l'énergie de fautes d'empilement...).

Pour les vitesses de déformations élevées (résilience), on constate une forte diminution de l'énergie de rupture et de la ductilité dynamique. Ceci peut s'expliquer de la même manière par la diminution de la mobilité des dislocations. Il en est de même pour la diminution de δc (écartement critique en fond de fissure) qui résulte d'une diminution locale de la plasticité.

Il est inhabituel de constater un durcissement par écrouissage cyclique dans un matériau à structure martensitique. Par contre, ce phénomène n'est pas incompatible avec le mécanisme de durcissement décrit en traction monotone. Il est curieux que ce durcissement s'accompagne d'une forte augmentation de la durée de vie à niveau de déformation totale conné.

Pour ce qui est des vitesses de fissuration, il n'existe aucune explication microstructurale du comportement des matériaux. Le comportement pour les deux états structuraux est assez voisin.

Evolution entre l'état réchauffé à 500°C et l'état réchauffé à 800°C

L'évolution microstructurale du matériau après un réchauffage de 1h30 à 800°C, se caractérise par :

- une diminution de la densité de dislocations intragranulaires ;
 une augmentation de la taille des lattes ;
- une apparition de sous-grains plus gros que la taille des lattes ;
- une diminution du carbone en solution par précipitation des carbures $M_{23}C_6$. Le durcissement des carbures est peu vraisemblable dans le cas d'une structure en lattes et en tout état de cause, il serait très inférieur à l'adoucissement résultant de la diminution du carbone en sursaturation.

Cette évolution microstructurale explique bien l'évolution des caractéristiques mécaniques constatées après réchauffage à 800°C à savoir :

- une diminution de la dureté ;
- une diminution de la contrainte d'écoulement ;
- une augmentation de la résilience ;
- une augmentation de la ductilité dynamique ;
- une augmentation de l'écartement critique en fond de fissure.

L'adoucissement cyclique observé est compatible avec le comportement habituel des matériaux écrouis à structure martensitique.

* Evolution structurale suite à un réchauffage à 1050°C-1h30

On constate une remise en solution des carbures de chrome, susceptible d'augmenter la trempabilité du matériau. Ceci explique le fait que l'on retrouve une structure martensitique proche de la structure martensitique à l'état brut. On note cependant une diminution du carbone en solution solide avec apparition de carbures de Niobium.

ж

Le choix du traitement thermique dépend de l'utilisation retenue pour le matériau, mais, il apparaît que l'état brut de laminage présente un compromis intéressant entre les caractéristiques mécaniques à l'exception toutefois du comportement en fatigue oligocyclique.

Il serait intéressant de poursuivre cette étude par une interprétation microstructurale des propriétés inhabituelles du matériau en fatigue oligocyclique.

De même une connaissance plus approfondie des mécanismes microstructuraux de la fissuration nous paraît fondamentale.

A N N E X E S
ANNEXE 3.1 /

Principe du travail maximal 2

Il est fondé sur une propriété physique des cristaux métalliques.

- La résistance au glissement le long d'un plan de glissement dépend très peu de la contrainte exercée sur ce plan.

Soit un élément de matière en déformation plastique à la vitesse $\begin{bmatrix} \epsilon \\ \epsilon \end{bmatrix}$ sous la contrainte $|\sigma|$.

- quel que soit un autre état de contrainte $[\sigma^*]$ plastiquement admissible, c'est-à-dire tel que f $(\sigma^*) \leq 0$

[σ^{*}].[ε] < [σ].[εε]

Cela signifie que le tenseur de contrainte réel rend maximul la puissance de déformation :

$$\begin{bmatrix} \sigma \end{bmatrix} \begin{bmatrix} \dot{\varepsilon} \end{bmatrix} = \max \{ \begin{bmatrix} \sigma^{*} \end{bmatrix} \begin{bmatrix} \dot{\varepsilon} \end{bmatrix} ; f(\sigma^{*}) < 0 \}$$

La vitesse de déformation macroscopique [$\dot{\epsilon}$] d'un polycristal de volume dV correspond, dans les cristaux, à une famille de vitesse de glissement V_k le long d'un certain nombre de plans de glissement de cission τ_k .

 $[\sigma] [\varepsilon] dv = \sum_{k} \tau_{k} V_{k} ds_{k}$

Pour tout champ virtuel $\begin{bmatrix} \sigma^* \end{bmatrix}$ on a: $\begin{array}{c} \tau^* & \tau \\ k & k \end{array}$ soit:

 $\left[\sigma^{*}\right] \left[\dot{\varepsilon}\right] dv = \sum_{k} \tau_{k}^{*} V_{k} ds_{k} < \left[\sigma\right] \left[\dot{\varepsilon}\right]$

Méthode de la borne supérieure 2

Soit un champ de vitesse virtuel V^* vérifiant les conditions aux limites et d'incompressibilité, c'est-à-dire V^* dérive d'un potentiel. Le principe du travail maximal implique que :

$$\int_{S_{v}} \sigma_{ij} n_{j} V_{i} ds_{v} < \int_{Q} \sigma_{ij} \epsilon_{ij}^{*} dQ - \int_{S_{f}} \sigma_{ij} n_{j} V_{i}^{*} ds_{f}$$

 $S_f = S_c$: surface de contact avec les outillages

$$\int_{S_{f}} \sigma_{ij} n_{j} v_{i}^{*} ds_{f} = -\int_{S_{f}} m \frac{\sigma_{o}}{\sqrt{3}} \xi(r) (v_{i}^{*}, l_{i}) ds_{f}$$

 $l_i = \text{vecteur tangent à la direction d'écoulement au contact de l'outillage, m, coefficient de frottement et <math>\xi(r)$ la loi de répartition de la cission tangentielle de frottement.

 $\int_{S_V} \sigma_{ij} n_j V_i dS_v = S_V P_W où P_m \text{ est la pression moyenne} \\ de \text{ forgeage.}$

Il vient donc :

$$P_{m}V_{o}S_{V} < \int_{Q} \sigma_{ij} \varepsilon_{ij}^{*} dQ + \frac{m\sigma_{o}}{\sqrt{3}} \int_{S_{f}} \xi(r) (V_{i}^{*}, l_{i}) dS_{f}$$
(a) (b)

(a) représente la puissance dissipée au sein de la matière : dissipation intrinsèque.

(b) représente la puissance dissipée par frottement au contact des outillages.

$$P_{m}V_{o}S_{V} < \sigma_{o} \int_{\theta}^{z^{*}} d\theta + \frac{m\sigma_{o}}{\sqrt{3}} \int_{S_{f}} \xi(\mathbf{r}) (V_{i}^{*}, l_{i}) dS_{f}$$

$$\frac{\frac{P}{m}}{\sigma_{o}} < \frac{1}{V_{o}S_{V}} \int_{\mathfrak{S}}^{\mathfrak{s}} \mathfrak{d} \mathfrak{P} + \frac{\mathfrak{m}}{3} \int_{\xi} (\mathbf{r}) (V_{i}^{*}, l_{i}) dS_{f}$$

La contrainte est obtenue par la minimisation de la fonctionnelle

$$F = \frac{1}{V_{o}} S_{V} \left[\int_{\mathfrak{G}} \frac{\mathbf{e} \mathbf{x}}{\mathbf{e}} d\mathfrak{G} + \frac{\mathbf{m}}{\sqrt{3}} \int_{\mathbf{S}_{f}} \boldsymbol{\xi}(\mathbf{r}) (V_{i}^{*}, l_{i}) dS_{f} \right]$$

C'est donc une valeur approchant par défaut la contrainte vraie σ_0 .

$$(V_{i}^{*}, l_{i}) = \frac{V_{or}}{2H(1-BH^{2})} (1 - 3bH^{2} + cr^{2}H^{2})$$

$$p_{f}^{*} = \frac{4\pi V_{o}m}{2H_{3}(1-bH^{2}/4)} (1-3H^{2}) \frac{R^{3}}{4} + c \frac{r^{5}H^{2}}{20}$$

6- Détermination de la contrainte d'écoulement

L'expression du théorème de la borne supérieure implique :

$$\frac{P_{m}}{\sigma_{o}} < \frac{1}{V_{o} \Pi_{R_{o}}^{2}} (P_{i}^{*} + P_{f}^{*})$$
la fonctionnelle $F = \frac{1}{V_{o} \Pi_{R_{o}}^{2}} (P_{i}^{*} + P_{f}^{*}) = F(b,c,m, \frac{R_{o}}{H}).$

La minimisation de cette fonctionnelle, pour m et $\frac{R}{H}$ connus à un instant de la compression nous permet de calculer la contrainte d'écoulement vraie par défaut.

- 7- Champ de déplacement local
 - $du_{r} = a_{1}r (1-z^{2}) + a_{2}r^{3}$ $du_{z} = -2a_{1} (z-\frac{\alpha}{z}z^{3}) - 4 a_{2}r^{3}z$ $\alpha, a_{1} \text{ et } a_{2} \text{ sont les paramètres à déterminer.}$
- 8- Champ de tenseur des incréments de déformation

 $d_{\varepsilon_{rr}} = a_1(1-z^2) + 3a_2r^2$ $d^{\varepsilon}\theta\theta = a_1(1-z^2) + a_2r^2$ $d^{\varepsilon}zz = -2a_1(1-z^2) - 4a_2r^2$

Le taux de distorsion angulaire est défini par :

$$\dot{\epsilon}_{rz} = \frac{V_{o}}{2H(1 - \underline{bH}^{2})} (-3brz + \frac{3}{2} cr^{3}z + 2crz (\frac{H^{2}}{4} - z^{2}))$$

$$3 - \underline{Vitesse \ de \ déformation \ généralisée}{4} : \dot{\epsilon} = (\frac{2}{3} \epsilon_{ij} \epsilon_{ij})^{1/2}$$

$$\dot{\epsilon} = \frac{V_{o}}{H/3(1 - \underline{bH}^{2})} (2\Phi_{zz}^{2} + \Phi_{rr}^{2} + \Phi_{\theta\theta}^{2} + \Phi_{rz}^{2})$$

$$avec : \Phi_{zz} = 1 - 3bz^{2} - cr^{2} (\frac{H^{2}}{4} - 3z^{2})$$

$$\Phi_{e\theta} = 1 - 3bz^{2} - \frac{cr^{2}}{2} (\frac{H^{2}}{4} - 3z^{2})$$

$$\Phi_{rz} = -3brz + \frac{3}{2} cr^{3}z + 2crz (\frac{H^{2}}{4} - z^{2})$$

$$BUE$$

4 - Dissipation intrinsèque

$$p_{i}^{*} = \int_{\Theta} \sigma_{ij} \varepsilon_{ij}^{*} d\Theta = \int_{\Theta} \sigma_{o} \varepsilon_{o}^{*} d\Theta = \sigma_{o} \int_{\Theta} \varepsilon_{o}^{*} d\Theta = 2 \operatorname{Irdrdz}$$

$$p_{i}^{*} = \frac{4 \pi^{\sigma} \circ V \circ}{H 3 (1-bH /4)} \int_{\Theta} \int_{\Theta}^{R_{o}} \int_{\Theta}^{H/2} (2 \Phi_{zz}^{2} + \frac{\Phi^{2} r}{2} + \frac{\Phi^{2} \theta \theta}{2} + \Phi^{2} rz)^{1/2} r dr dz$$

5 - Puissance dissipée par frottement

$$p_{f}^{*} = \frac{\bar{m} \sigma_{o}}{\sqrt{3}} \int_{S_{c}} (V_{i}^{*}, l_{i}) dS_{c}$$

S_c = Surface de contact avec les outillages et l_i est le vecteur tangent à la surface libre.

ANNEXE 3.2 /

Pour tenir compte de la forme bombée de la surface libre, plusieurs auteurs ont proposé des modèles de compression | 1,2 |. Nous présentons ici la modélisation utilisé pour dépouiller nos résultats | 3 |.

Modèle parabolique à 2 paramètres

La fonction courant décrite de cette modélisation est de la forme : $\Phi(\mathbf{r},\mathbf{z}) = \frac{V_0}{2K} \frac{r^2}{H} (2z \frac{1-bz^2}{1-bz^2} - r^2 cz \frac{H^2/4 - z^2}{1-bH^2/4})$

1- Description du champ des vitesses

$$V_{II} \neq \frac{K}{2r} \quad \frac{\partial \Phi}{\partial z} = \frac{V_{0}r}{2H(1-bH^2/4)} (1 - 3bz^2 - \frac{cr^2}{2} (H^2/4 - 3z^2))$$
$$V\theta = 0$$

$$V_z = -\frac{K}{2r} \frac{\partial \Phi}{\partial r} = -\frac{V_0}{H} = \frac{z}{1-bH^2/4} (1 - bz^2 - cr^2) (\frac{H^2}{4} - z^2)$$

)

2- Champ de tenseur des taux de déformation

$$\varepsilon_{\text{err}} = \frac{V_0}{2H(1-\frac{BH^2}{4})} \quad (1 - 3 \ \text{b}z^2 - \frac{3}{2} \ \text{cr}^2 \ (\frac{H^2}{4} - 3 \ z^2)$$

$$\varepsilon_{\theta\theta} = \frac{V_0}{2H(1-\frac{BH^2}{4})} \quad (1 - 3 \ \text{b}z^2 - \frac{\text{cr}^2}{2} \ (\frac{H^2}{4} - 3z^2))$$

$$\varepsilon_{zz} = \frac{-V_0}{H(1-bH^2)}$$
 (1 - 3 bz² - cr² ($\frac{H^2}{4}$ - 3 z²))

9- Déformations locales $\xi_{\theta\theta}$ et ε_{zz}

$$\epsilon_{zz} \text{ équatorial} = \frac{-(3 + \alpha R b\rho)}{4b' (1 + 4 \frac{\rho}{R_b} - 2\lambda R_b \rho)}$$

où $\rho = \frac{H^2}{8 R_b (1 - \frac{Ra}{R_b})} \text{ avec } d\lambda = \frac{3}{2} \frac{d\epsilon}{\sigma_o}$

b étant un paramètre à déterminer par calcul numérique. Divers expérimentateurs ont trouvé entre $\mathbf{e}_{\theta,\theta}$ et $\mathbf{\epsilon}_{zz}$ une évolution du type parabolique donnée par la relation : $\mathbf{\epsilon}_{\vartheta\theta} = \mathbf{b} \mathbf{\epsilon}_{zz}^2 - \frac{1}{2} \mathbf{\epsilon}_{zz}$

- BIBLIOGRAPHIE : ANNEXE 3 -

| 1 | B. AVITZUR

Limit analys of disc and trip forging - Int. J. Machine Tool design and Research - Vo 9, 1969, p. 165.

2 C.H. LEE, T. ALTAN

Influence of flow stress and Friction Upon metal flow in Upset forging of rings cylinders. TRANS. ASME, J. of Eng. Ind., August 1972, p. 775-782.

3 GELIN

Contribution à la détermination des lois d'écoulement et limites de ductilité des métaux par essai de compression -Thèse C.N.A.M. (1980).

ANNEXE 4.1 /

- 141 -

Pour déterminer tous les paramètres caractéristiques de l'essai, le dépouillement se fait de la manière suivante :

Après stockage sur disquette, les valeurs sont reprises en mémoire et un programme graphique permet de visualiser la courbe forcetemps. A l'aide d'un "paddle", on va rechercher les points de la courbe nécessaires aux différents calculs à effectuer (fig. 4.1.3).

IV.1.1 Calcul du bruit de fond B et de l'énergie totale de rupture RU

Fig. 4.1.1 : Courbe force-temps.

IV.1.2 Calcul de la vitesse du couteau

D'après le théorème de l'énergie cinétique, nous pouvons écrire :

 $E_{a} = \frac{1}{2} mV_{o}^{2} - \frac{1}{2} mV_{f}^{2}$ $E_{a} = \text{énergie absorbée au cours de la rupture.}$ $V_{o} = \text{vitesse initiale du couteau.}$

où

BU

 $E(I) = \frac{V(I) \times R}{1024}$ E = E + E(I)

Fig. 4.1.2 : ORGANIGRAMME DE CALCUL.

LEGENDE	:

A(1,I)	=	valeur de la force en unité programme pour un temps I donné.
Ea	_	énergie absorbée par l'éprouvette.
R	=	vitesse de balayage de l'oscilloscope.
В	•• =	bruit de fond.
RU	· <u> </u>	surface totale.
S(I)		surface à chaque instant du choc.
V(I)	-	vitesse à chaque instant du choc.
E(I)	-	déplacement à chaque instant du choc.
Е	=	déplacement total

 V_f = vitesse finale du couteau. m = masse du couteau.

Par analogie, nous pouvons écrire l'énergie instantanée E : (fig. 4.1.5) par l'équation :

$$E = \frac{1}{2} mV_0^2 - \frac{1}{2} mV^2 \qquad [4.1.4]$$

V étant la vitesse instantanée du couteau.

Fig. 4.1.5.

Connaissant la vitesse initiale du couteau, donnée par le constructeur, qui est de l'ordre de 5,52 m/s, nous pouvons calculer la masse du couteau.

$$E_{o} = \frac{1}{2} m V_{o}^{2}$$
 [4.1.5]

De l'équation | 4.1.5 |, on tire $m = \frac{2E_0}{V_0^2} = \frac{2 \times 300}{(5,52)^2} = 19,69 \text{ kg qui est}$ une constante du pendule.

A partir de | 4.1.4 |, on en déduit la vitesse instantanée :

$$V = \sqrt{V_o^2 - \frac{2}{m}E} = V_o \sqrt{1 - \frac{E}{E_o}}$$
 [4.1.6]

Pour calculer l'énergie E à un moment quelconque du choc, nous faisons les proportionnalités entre les aires et les énergies.

$$\frac{E}{S} = \frac{Ea}{R_{u}} \longrightarrow E = \frac{S \times Ea}{R_{u}} \qquad [4.1.7]$$

$$avec S_{(t)} = \sum_{t_{1}}^{t} A(1,t) - B dt$$

$$S(I) = \sum_{X_{1}}^{I} A(1,t) - B$$

L'équation [4.1.7] devient en injectant la valeur E :

$$V(I) = \sqrt{V_{o}^{2} - \frac{2}{m}} \frac{Ea \times S(I)}{RU}$$

= $\sqrt{30,47 - 0,1015 \times Ea \times S(I)}$ [4.1.7]

IV.1.3 Calcul du déplacement du couteau

onnaissant la vitesse du couteau en un moment quelconque du choc, nous pouvons calculer le déplacement par intégration de la vitesse.

$$V = \frac{dx}{dt} \Longrightarrow x = \int_{t_1}^t v dt.$$

Pour un I donné, V(I) est constante d'où : $E(I) = \frac{V(I) \times R}{1024} [4.1.9]$

R étant la vitesse de balayage en ms et 1024 est le nombre total des points utilisés.

La durée d'un point est donnée par la relation suivante :

Le déplacement total est la somme des déplacements partiels :

$$E = E + E (I)$$

[4.1.10]

IV.1.4 Etalonnage de l'appareil

A partir de la courbe force-temps, on fait l'étalonnage de l'appareil

Les temps sont mesurés direcrement sur l'oscilloscope. L'étalonnage de la charge se fait de la manière suivante : Nous calculons l'aire de l'oscillogramme entre le début et la fin du choc (fig. 4.1.6).

Fig. 4.1.6.

L'énergie absorbée par l'éprouvette est donnée par la relation :

$$E_a = F_M \cdot D_m \qquad [4.1.10]$$

 D_m étant le déplacement maximal du couteau déterminé par calculateur. $F_m = Force moyenne.$

La valeur moyenne Y_m est calculée par le micro-ordinateur entre 0 et 255 : $Y_m = \frac{1}{X5-X1} \sum_{L}^{X5} A(1, I) - B \qquad [4.1.11]$

où X5-X1 est le nombre de points entre le début et la fin du choc. Nous avons l'égalité suivante : $Y_m = F_m$ où le Y_m est le nombre de points. La valeur d'un point est le rapport $\frac{F_m}{m}$. Le programme utilisé calcule à chaque fois la valeur du point qui a pour valeur moyenne 280 N. Sur l'oscillagramme : 1 cm correspond à 30 canaux soit : 1 cm = 30.280 N = 8400 N

IV.1.5 Paramètres calculés

Cristallinité : Chute de charge à la rupture fragile $= Y_3 - Y_4$ $Y_3 - B$ Charge à la rupture fragile Force maxi : (y₂- B) x valeur du point. Force à la rupture fragile : $(y_3 - B)$ x valeur du point. Temps rupture fragile : $(X_4 - X_1) \times \frac{R}{1024}$ Temps total $(X_5 - X_1) \propto \frac{R}{1024}$

10 OPEN1,7,1 20 PRINT" CONDUCTOR OF L'OSCILLOSCOPE" 40 PRINT" DBBBBBBBB 50 PRINT MANAGOUELLE VOIE VOULEZ-VOUS UTILISER ?" VOIE 1:CODE=Y1" 70 PRINT"M 80 PRINT"1 VOIE 2:CODE=Y2" LES DEUX VOIES:CODE=Y3";V\$ 90 INPUT W 100 IFV#="Y1"ORV#="Y2"ORV#="Y3"THEN120 110 GOTO20 120 PRINT"TAMAMADDDDDREGLAGE DE LA BASE DE TEMPS" 130 PRINT" MUMPH 140 PRINT"MMVITESSE DE BALAYAGE EN CM/SEC ?" 150 PRINT" XXX BBBBBBBBBBBBBBBCRMRT: NM.NE-M" 160 PRINT"MM AVEC N=0,1,2,5 ET M=0,1,2,3" 170 PRINT"N 0.2E-3 < VITESSE < 20.0E0" 180 PRINT MANNWERIFIER LA VITESSE, CAR LES ERREURS NE POURRONT ETRE DECELER 190 PRINT"MONITESSE" 195 INPUTT\$ 200 A\$="X0F3R1D2"+V\$+"T"+T\$ 210 PRINT#1,A\$ 220 PRINT": INNUMANA POUR UN DECLENCHEMENT INTERNE " 230 PRINT"MLE BOUTON 'TRIGGER LEVEL' DOIT" 240 PRINT"XETRE POUSSE" 250 PRINT"MMMPRET POUR ARMER L'OSCILLO: 0/N" 255 INPUTNV\$ 260 IFNV\$<>"0"THEN220 270 PRINT#1, "A" 280 PRINT"TAMAMAMAMAMANDUAND LA MESURE SERA TERMINEE 🦯 290 FRINT"MMFRAPPER SUR 'F' POUR STOCKER LES DATAS" 295 INPUTNV\$ 300 IFNV\$<>"F"THEN280 310 PRINT#1,"I" 320 CLOSE 1: 330 OPEN 2,7,0 350 PRINT"MUMBLE NOMBRE DE POINTS DE MESURE EST 4096" 360 PRINT"MMENTRER LE NOMBRE DE POINTS UTILES 0< <4896" 365 INPUTN1 370 IFN1>4096THEN340 375 PRINT"XMENTRER LE PAS D'ECHANTILLONNAGE" 376 INPUTPS 380 PRINT"ILES DATAS SONT STOCKES A L'ETAT BRUT" 400 PRINT WIND : BAS DE L'ECRAN DE L'OSCILLO" 410 PRINT N 255: HAUT DE L'ECRAN DE L'OSCILLO" 420 PRINT"XXXXXXXPOUR AVOIR LES POINTS TAPER" 430 PRINT MOUR UNE TOUCHE" 440 GETG\$: IFG\$=""THEN440

460 IF V\$C>"Y3"THEN 480 470 DIM K%(N):REM 2 VOIES 480 FORI=1TON1 490 INPUT#2,L\$: 495 IFIC>XTHEN560 500 H%(Y)=VAL(MID\$(L\$,3,3)) 510 IF V\$<>"Y3"THEN 550 520 K%(Y)=VAL(MID\$(L\$,7,3)) V1="HZ(Y)" ─ V2="KZ(Y) 530 PRINT"POINT"X"* 540 IF V\$="Y3"THEN 555 550 PRINT"POINT"X"* V≈"H%(Y) 555 IFI=XTHENX=X+PS:Y=Y+1 560 NEXTI 570 CLOSE 2: 580 PRINT" THE BESTOCKAGE DES DATAS SUR DISQUETTE" 590 PRINT MAMMANOUS AVEZ LE CHOIX ENTRE:" 600 PRINT MMM- CONSERVER LA DISKETTE DE PROGRAMME" 605 PRINT MAR METTRE UNE DISKETTE POUR LES DATAS" 610 PRINT"MUMMINOM DU FICHIER DE STOCKAGE" 615 INPUTF\$ 620 M=1 630 IF V\$="Y3" THEN M=2 640 G\$="0:"+F\$ 650 OPEN15,8,15,"IO" 660 OPEN2,8,14,6\$+",S,W" 670 PRINT#2,STR\$(N);CHR\$(13); 680 PRINT#2,STR\$(M);CHR\$(13); 690 FORI=1TON 700 PRINT#2,STR\$(H%(I));CHR\$(13); 710 NEXTI 720 IF V\$<>"Y3" THEN 760 730 FORI=1TON 740 PRINT#2,STR\$(K%(I));CHR\$(13); 750 NEXTI 760 CLOSE2: CLOSE15 770 PRINT"INDAMINATION DESIREZ-YOUS FAIRE UN NOUVEL ESSAI: 0/"N" 775 INPUTNV\$ 780 IFNV\$<>"0"ANDNV\$<>"N"THEN770 aC'EST FINIMAMEN":END 790 IFNV\$="N"THENPRINT" MMMMM 800 PRINT"THANNAL POUR FAIRE UN NOUVEL ESSAI" 810 PRINT"MOMMAN - ETEINDRE L'INTERFACE IEEE" - FRAPPER SUR 'RUN' MMMMM 820 PRINT"NUM

READY.

- 148 -

440 GETG\$: IFG\$=""THEN440

445 N=INT(N1/PS):X=1:Y=1 450 DIM H%(N):REM 1 VOIE

441 PRINT" MENDO"

Les aciers à dispersoïdes, d'utilisation récente, permettent d'obtenir des caractéristiques mécaniques élevées, avec une faible teneur en éléments d'alliage. Peu d'études ont été entreprises jusqu'à présent sur l'action des éléments de micro-alliage, en particulier pour les aciers inoxydables, sur les propriétés mécaniques.

Ce travail a consisté à établir les lois de comportement, d'un acier inoxydable à dispersoïdes de type Z10C13, pour les sollicitations mécaniques les plus courantes : Traction, Compression, Résilience, Ténacité, Fatigue Oligocyclique et Fissuration pour les trois états structuraux caractéristiques (brut de laminage, réchauffage 500° C et 800° C, 1 H 30). Les états structuraux correspondent à des extrêm^as sur les caractéristiques mécaniques étudiées. L'étude structurale correspondante a été menée simultanément. La diminution de la mobilité des dislocations observées après un réchauffage à 500° C 1 H 30 conduit à un durcissement et une diminution de la plasticité locale, les caractéristiques mécaniques évoluent en conséquence. Un réchauffage à 800° C 1 H 30 entraîne un adoucissement très important. Un réchauffage à 1 050° C provoque un durcissement très important, résultant d'une remise en solution des carbures de chrome et donc à une augmentation de la trempabilité. La conclusion s'efforce de relier : lois de comportement - microstructure.

MOTS CLEFS

Acier - Dispersoïdes - Fatigue - Fissuration - Ténacité.