50 376 1 986 199-21

THESE

N° d'ordre 402

présentée

A L'UNIVERSITE DES SCIENCES ET TECHNIQUES

DE LILLE

FLANDRES ARTOIS

pour l'obtention du grade de

DOCTEUR INGENIEUR

en Mécanique des Fluides

par

Gilles HEID

STABILITE ET COUPLAGE DE VENTILATEURS TRANSVERSES

Volume 2 : Figures

Soutenue le 1^{er} Décembre 1986 devant la Commission D'examen

MM J. FRIBERG J.P. BARRAND P. MICHEAU M. SEDILLE R. LEGENDRE J. FABRI Président Rapporteur Examinateur Examinateur Examinateur Examinateur

LISTE DES FIGURES

Première partie : INTRODUCTION

Figure 1	: Schéma de principe d'un Navire à Effet de Surface
Figure 2a	: Projet NES 200 L - Vue d'artiste
Figure 2b	: Projet NES 200 L - Vue d'artiste
Figure 3a	: Ventilateur transverse original de MORTIER
Figure 3b	: Ventilateur transverse - Guides internes d'écoulement
Figure 3c	: Théorie simplifiée du ventilateur transverse Construction des triangles de vitesses
Figure 4a	: Nomenclature des formes statoriques du ventilateur transverse
Figure 4b	: Caractéristiques aérauliques du ventilateur transverse

<u>Deuxième partie :</u>

STABILITE DE FONCTIONNEMENT DU VENTILATEUR TRANSVERSE

- Figure 4c : Théorie de Bidart Circuit de base
- Figure 4d : Théorie de Bidart Caractéristiques de base

- Figure 5 : Théorie de Bidart Stabilité de fonctionnement
- Figure 6 : Théorie de Bidart Calcul de la transition entre deux points stables de la caractéristique
- Figure 7 : Théorie de Bidart Calcul de la transition entre un point stable et un point instable de la caractéristique
- Figure 8 : Théorie de Bidart Evolution des limites de pompage avec la section et la perte de charge du circuit
- Figure 9 : Evolution de la fréquence de pompage calculée par la théorie de Bidart en fonction de la longueur , paramètrée par le diamètre du tuyau
- Figure 10 : Evolution de la fréquence de pompage calculée par la théorie de Bidart en fonction de la longueur , paramètrée par le volume du tuyau
- Figure 11 : Pompage d'un ventilateur transverse Schéma synoptique du montage expérimental et de l'instrumentation
- Figure 12a : Vue de l'ensemble motoventilateur transverse
- Figure 12b : Vue du tiroir modulaire de perte de charge
- Figure 13a : Système de variation automatique du débit
- Figure 13b : Pompage expérimental Vue du point de mesure
- Figure 14 : Evolution des coefficients d'intégration sur la longueur du tuyau en débit positif et négatif
- Figure 15 : Calcul du déphasage entre deux signaux dynamiques
- Figure 16a : Evolution du déphasage entrela modulation de pression statique à la paroi et la modulation de pression statique sur l'axe en une section donnée, le long de la conduite

- Figure 16b : Evolution du déphasage à la paroi entre la modulation de pression statique initiale et la modulation de pression statique en une section donnée, le long de la conduite
- Figure 16c : Evolution sur l'axe du déphasage entre la modulation de pression statique initiale et la modulation de pression statique en une section donnée , le long de la conduite
- Figure 16d : Evolution du rapport de l'amplitude de la modulation de pression statique initiale à celle mesurée en une section donnée , le long de la conduite
- Figure 17a : Evolution sur l'axe du déphasage entre la modulation de pression dynamique initiale et la modulation de pression dynamique en une section donnée, le long de la conduite
- Figure 17b : Evolution du rapport de l'amplitude de la modulation de pression dynamique initiale à celle mesurée en une section donnée, le long de la conduite
- Figure 17c : Evolution de la fréquence de pompage avec la longueur de la canalisation (Diamètre .191 m Volume 1.08 m^3)
- Figure 17d : Evolution de la limite supérieure de pompage avec la longueur de la canalisation (Diamètre .191 m Volume 1.08 m³)
- Figure 18 : Stabilité du ventilateur transverse Effet de la longueur sur la caractéristique pression-débit (Diamètre 191 m - Volume 1.08 m³)
- Figure 19 : Stabilité du ventilateur transverse Effet de la perte de charge sur la limite supérieure de pompage (Diamètre .191 m -Volume 1.08 m³ - Longueur 9.2 m)
- Figure 20a : Stabilité du ventilateur transverse Evolution de la fréquence de pompage pour une hauteur de caisson constante

Figure 20b :	Stabilité du ventilateur transverse – Evolution de la fréquence de pompage pour un volume de caisson constant
Figure 21a :	Stabilité du ventilateur transverse – Evolution de la limite de pompage pour une hauteur de caisson constante
Figure 21b :	Stabilité du ventilateur transverse – Evolution de la limite de pompage pour un volume de caisson constant
Figure 22 :	Pompage d'un ventilateur transverse - Cycle de pompage (Diamètre .152 m - Longueur 2 m - Volume 3 m ³)
Figure 23 :	Transition dynamique d'un ventilateur transverse Passage d'un point stable à un point de pompage (Diamètre .152 m - Longueur 1.92 m - Volume 3 m ³)
Figure 24 :	Transition dynamique d'un ventilateur transverse Passage d'un point de pompage à un point stable (Diamètre .152 m - Longueur 1.92 m - Volume 3 m ³)
Figure 25 :	Transition dynamique d'un ventilateur transverse Passage d'un point stable à un point stable (Diamètre .152 m - Longueur 1.92 m - Volume 3 m ³)
Figure 26 :	Pompage d'un ventilateur transverse – Cycle de pompage (Diamètre .082 m – Longueur 2 m – Volume 2.4 m ³)
Figure 27 :	Pompage d'un ventilateur transverse - Cycle de pompage (Diamètre 102 m - Longueur 5.92 m - Volume 1.2 m ³)
Figure 28 :	Pompage d'un ventilateur transverse – Cycle de pompage (Diamètre .102 m – Longueur 2 m – Volume 3 m ³)
Figure 29 :	Pompage d'un ventilateur transverse – Cycle de pompage (Diamètre .191 m – Longueur 2 m – Volume 3.6 m ³)

••

- Figure 30 : Pompage d'un ventilateur transverse Cycle de pompage (Diamètre .191 m - Longueur 3 m - Volume 3.6 m³)
- Figure 31 : Mesures des pertes de charge d'un circuit Schéma synoptique du montage expérimental et de l'instrumentation
- Figure 32 : Modélisation des pertes de charge Récapitulatif Page 1
- Figure 33 : Modélisation des pertes de charge Récapitulatif Page 2
- Figure 34 : Modélisation des pertes de charge Récapitulatif Page 3
- Figure 35 : Modélisation des pertes de charge Récapitulatif Page 4
- Figure 36 : Modélisation du pompage par régression multidimensionnelle Evolution expérimentale et théorique du coefficient de perte de charge linéique
- Figure 37 : Evolution expérimentale du coefficient de perte de charge du tiroir modulaire
- Figure 38 : Evolution expérimentale du coefficient de perte de charge singulière à l'entrée du caisson
- Figure 39 : Modélisation statistique du phénomène de pompage Récapitulatif des mesures - Page 1
- Figure 40 : Modélisation statistique du phénomène de pompage Récapitulatif des mesures - Page 2
- Figure 41 : Modélisation statistique du phénomène de pompage Récapitulatif des mesures - Page 3
- Figure 42 : Modélisation statistique du phénomène de pompage Récapitulatif des mesures - Page 4

Figure 43	:	Modélisation statistique du phénomène de pompage Récapitulatif des mesures - Page 5
Figure 44	•	Modélisation statistique du phénomène de pompage Récapitulatif des mesures - Page 6
Figure 45	:	Modélisation statistique du phénomène de pompage Récapitulatif des mesures - Page 7
Figure 46	:	Comparaison des pertes de charge mesurée et calculée en injectant dans le modèle de perte de charge les dimensions et le débit maximum autorisé de chaque configuration réelle
Figure 47	:	Ajustements obtenus par le modèle de régression
Figure 48	:	Evolutions modélisée et expérimentale des paramètres Volume 1.2 m ³ - Débit .05 m ³ /s - 0 module de perte de charge
Figure 49	:	Evolutions modélisée et expérimentale des paramètres Volume 2.4 m ³ - Débit .05 m ³ /s - 0 module de perte de charge
Figure 50	:	Evolutions modélisée et expérimentale des paramètres Volume 1.2 m3 - Débit .05 m3/s - 1 module de perte de charge
Figure 51	•	Evolutions modélisée et expérimentale des paramètres Volume 2.4 m3 - Débit .05 m3/s - 1 module de perte de charge
Figure 52a	:	Théorie de Bidart avec inertie - Circuit de base
Figure 52b	:	Théorie de Bidart avec inertie et capacité - Circuit de base
Figure 53	•	Théorie de Bidart avec inertie - Transition dynamique entre un point stable et un point instable
Figure 54	•	Théorie de Bidart avec inertie - Transition dynamique entre un point stable et un point instable

- Figure 55 : Théorie de Bidart avec inertie et capacité Transition dynamique entre un point stable et un point instable
- Figure 56 : Théorie de Greitzer avec constante de transfert Transition dynamique entre un point stable et un point instable

<u>Troisième partie :</u>

STABILITE DE FONCTIONNEMENT SUR UN CIRCUIT MULTIBRANCHES

- Figure 57 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Montage expérimental
- Figure 58a : Circuit multibranches Vue du diffuseur et du répartiteur de débit
- Figure 58b : Circuit multibranches Vue de l'instrumentation à la sortie des diffuseurs
- Figure 59a : Circuit multibranches Montage expérimental vu de l'amont
- Figure 59b : Circuit multibranches Vue de la sortie du bag
- Figure 60a : Circuit multibranches Montage expérimental vu de l'aval
- Figure 60b : Circuit multibranches Vue de l'instrumentation
- Figure 61a : Pompage sur un circuit multibranches Circuit de base
- Figure 61b : Couplage bag/coussin Schématisation associée

Figure 62	:	Instabilité théorique de pompage d'un ventilateur transverse monté sur un circuit multibranches- Répartition 0.75
Figure 63	:	Instabilité théorique de pompage d'un ventilateur transverse monté sur un circuit multibranches- Répartition 0.25
Figure 64	•	Etude théorique du couplage bag/coussin - Répartition nulle Instabilité de pompage superposée à l'instabilité de couplage
Figure 65	:	Etude expérimentale du couplage bag/coussin - Répartition nulle - Instabilité de pompage superposée à une instabilité de couplage
Figure 66	:	Etude expérimentale du couplage bag/coussin - Répartition nulle - Mode de résonance du couplage bag/coussin
Figure 67	:	Etude expérimentale du couplage bag/coussin - Répartition nulle - Instabilité pure de pompage
Figure 68	:	Pompage sur un circuit multibranches - Répartition nulle Transition dynamique d'un point de pompage au point de débit maximum
Figure 69	:	Pompage sur un circuit multibranches – Répartition nulle Transition dynamique d'un point de débit maximum à un point de pompage
Figure 70	:	Pompage d'un ventilateur transverse monté sur un circuit multibranches - Mesures en fonctionnement permanent - Evolution des débits , pressions , et taux de répartition
Figure 71	:	Etude expérimentale du couplage bag/coussin - Répartition 0.5 Instabilité de pompage superposée à l'instabilité de couplage
Figure 72	:	Pompage sur un circuit multibranches - Répartition 0.5 Transition dynamique d'un point de pompage à un point de débit maximum

- Figure 73 : Etude expérimentale du couplage bag/coussin Répartition 0.5 Instabilité de pompage superposée à l'instabilité de couplage
- Figure 74 : Pompage sur un circuit multibranches Répartition 0.5 Transition dynamique d'un point de débit maximum à un point de pompage
- Figure 75 : Caractéristique d'un ventilateur transverse Définitions des points singuliers et notations
- Figure 76 : Mise en parallèle de deux ventilateurs transverses -Récapitulatif des quatre cas de caractéristiques de départ
- Figure 77 : Mise en parallèle de deux ventilateurs transverses Cas n°2
- Figure 78 : Mise en parallèle de deux ventilateurs transverses Cas n°2 Vannage linéaire - Evolution de la pression et des débits
- Figure 79 : Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante Cas numéro 2 - Page 1
- Figure 80 : Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante Cas numéro 2 - Page 2
- Figure 81 : Mise en parallèle de deux ventilateurs transverses Cas n°1
- Figure 82 : Mise en parallèle de deux ventilateurs transverses Cas n° 1 Vannage linéaire - Evolution de la pression et des débits
- Figure 83 : Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante Cas numéro 1 - Page 1
- Figure 84 : Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante Cas numéro 1 - Page 2
- Figure 85 : Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante Cas numéro 1 - Page 3

- Figure 86 : Mise en parallèle de deux ventilateurs transverses Cas n°O
- Figure 87 : Mise en parallèle de deux ventilateurs transverses Cas n°0 Vannage linéaire - Evolution de la pression et des débits
- Figure 88a : Mise en parallèle de deux ventilateurs transverses Schématisation du circuit associé
- Figure 88b : Mise en parallèle Intégration du système d'équations
- Figure 88c : Mise en parallèle Régime varié
- Figure 88d : Mise en parallèle Zone d'hystérésis
- Figure 89 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Transition théorique du point de débit global nul à un point stable
- Figure 90 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Transition théorique entre deux points de débit global stables
- Figure 91 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Transition théorique entre deux points de débit global stables
- Figure 92 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Transition théorique entre le point de débit nul et un point instable
- Figure 93 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Exemple de convergence lente sur une branche sujette à instabilité
- Figure 94 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Etude de la zone d'hystérésis - Point stable inférieur

- Figure 95 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 – Etude de la zone d'hystérésis – Point stable supérieur
- Figure 96 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Etude de la zone d'hystérésis - Point stable inférieur
- Figure 97 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Etude de la zone d'hystérésis - Point stable supérieur
- Figure 98 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Etude de la zone d'hystérésis - Point stable supérieur
- Figure 99 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 – Etude de la zone d'hystérésis – Point instable
- Figure 100 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Etude de la zone d'hystérésis - Effet du volume sur le cycle d'instabilité
- Figure 101 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 2 - Etude de la zone d'hystérésis - Effet du volume sur le cycle d'instabilité
- Figure 102 : Mile en parallèle Etude théorique du point de fonctionnement Cas numéro 1 - Transition théorique entre le point de débit nul et un point instable
- Figure 103 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 1 – Transition théorique entre le point de débit nul et un point stable
- Figure 104 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 1 - Transition théorique entre deux points de débit global stables

- Figure 105 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 1 - Transition théorique entre le point de débit nul et un point stable
- Figure 106 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 1 - Transition théorique entre un point stable et un point instable
- Figure 107 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 1 - Transition théorique entre le point de débit nul et un point stable
- Figure 108 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 1 - Transition théorique entre deux points stables d'une même branche
- Figure 109 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 0 - Transition théorique entre le point de débit nul et un point instable
- Figure 110 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 0 - Transition théorique entre un point stable et un point instable
- Figure 111 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro O - Transition théorique entre le point de débit nul et un point stable
- Figure 112 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro O - Transition théorique entre le point de débit nul et un point stable
- Figure 113 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 0 - Transition théorique entre le point de débit nul et un point instable
- Figure 114 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro O - Transition théorique entre deux points de débit global stables

- Figure 115 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 0 - Transition théorique entre le point de débit nul et un point stable
- Figure 116 : Mise en parallèle Etude théorique du point de fonctionnement Cas numéro 0 – Transition théorique entre un point stable et un point instable
- Figure 117 : Mise en parallèle Schéma du montage expérimental
- Figure 118a: Mise en parallèle de deux ventilateurs transverses Vue partielle du montage expérimental
- Figure 118b: Mise en parallèle de deux ventilateurs transverses Vue partielle du montage expérimental
- Figure 119 : Mise en parallèle de deux ventilateurs transverses Vue de l'instrumentation
- Figure 120 : Mise en parallèle de deux ventilateurs transverses -Cas dissymétrique - Caractéristiques initiales
- Figure 121 : Mise en parallèle de deux ventilateurs transverses -Cas symétrique - Caractéristiques initiales
- Figure 122 : Mise en parallèle de deux ventilateurs transverses -Comparaison de la caractéristique globale statique expérimentale et de la caractéristique globale théorique Cas dissymétrique - Mise en parallèle directe
- Figure 123 : Mise en parallèle de deux ventilateurs transverses -Comparaison de la caractéristique globale statique expérimentale et de la caractéristique globale théorique Cas dissymétrique - Mise en parallèle avec jonction
- Figure 124 : Mise en parallèle de deux ventilateurs transverses -Comparaison de la caractéristique globale statique expérimentale et de la caractéristique globale théorique Cas dissymétrique - Mise en parallèle avec jonction et caisson

- Figure 125 : Mise en parallèle de deux ventilateurs transverses -Comparaison de la caractéristique globale statique expérimentale et de la caractéristique globale théorique Cas symétrique - Mise en parallèle directe
- Figure 126 : Mise en parallèle de deux ventilateurs transverses -Comparaison de la caractéristique globale statique expérimentale et de la caractéristique globale théorique Cas symétrique - Mise en parallèle avec jonction
- Figure 127 : Mise en parallèle de deux ventilateurs transverses -Comparaison de la caractéristique globale statique expérimentale et de la caractéristique globale théorique Cas symétrique - Mise en parallèle avec jonction et caisson
- Figure 128 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas dissymétrique - Diamètre 0.152 m - Longueur 2m Instabilité au point de débit global nul
- Figure 129 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas dissymétrique - Diamètre 0.152 m - Longueur 2m Transition du débit global nul au débit global maximum
- Figure 130 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas dissymétrique - Diamètre 0.152 m - Longueur 2m Transition du débit global maximum au débit global nul
- Figure 131 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas dissymétrique - Diamètre 0.152 m - Longueur 2m Transition entre deux points stables de débit global
- Figure 132 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas symétrique - Diamètre 0.152 m - Longueur 2m Instabilité au point de débit global nul

- Figure 133 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas symétrique - Diamètre 0.152 m - Longueur 2m Transition du débit global nul au débit global maximum
- Figure 134 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas symétrique - Diamètre 0.152 m - Longueur 2m Transition du débit global maximum au débit global nul
- Figure 135 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas symétrique - Diamètre 0.152 m - Longueur 2m Transition entre deux points stables de débit global
- Figure 136 : Mise en parallèle de deux ventilateurs transverses -Etude expérimentale du point de fonctionnement Cas symétrique - Diamètre 0.152 m - Longueur 2m Instabilité de couplage

Cinquième partie :

COUPLAGE SUR UN CIRCUIT MULTIBRANCHES

- Figure 137 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Mesures statiques - Evolution des débits , pressions et taux de répartition - Répartition 0.5 Cas dissymétrique - Diamètre 0.152 m
- Figure 138 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Mesures statiques - Evolution des débits , pressions et taux de répartition - Répartition 0.5 Cas dissymétrique - Diamètre 0.102 m

- Figure 139 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Mesures statiques - Evolution des débits, pressions et taux de répartition - Répartition croisée Cas dissymétrique - Diamètre 0.152 m
- Figure 140 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Construction graphique des caractéristiques résultantes au bag et au coussin -Cas dissymétrique - Lambda1 = 0.25 - Lambda2= 0.65
- Figure 141 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Comparaison théorie/expérience Cas dissymétrique - Lambda1 = 0.25 - Lambda2= 0.65
- Figure 142 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Instabilité de couplage Cas dissymétrique - Répartition 0.5 - Diamètre 0.152 m
- Figure 143 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Instabilité sur le ventilateur 1 Cas dissymétrique - Répartition 0.5 - Diamètre 0.102 m
- Figure 144 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Transition dynamique entre le point de débit gobal nul et le point de débit global maximum Cas dissymétrique - Répartition 0.5 - Diamètre 0.152 m
- Figure 145 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Mesures statiques - Evolution des débits, pressions et taux de répartition - Répartition 0.5 Cas symétrique - Diamètre 0.152 m
- Figure 146 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Mesures statiques - Evolution des débits, pressions et taux de répartition - Répartition 0.5 Cas symétrique - Diamètre 0.102 m
- Figure 147 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Mesures statiques - Evolution des débits, pressions et taux de répartition - Répartition croisée Cas symétrique - Diamètre 0.152 m

- Figure 148 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Construction graphique des caractéristiques résultantes au bag et au coussin -Cas symétrique - Lambda1 = 0.25 - Lambda2= 0.8
- Figure 149 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Comparaison théorie/expérience Cas symétrique - Lambda1 = 0.25 - Lambda2= 0.65
- Figure 150 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Instabilité de couplage Cas symétrique - Répartition 0.5 - Diamètre 0.152 m
- Figure 151 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Transition dynamique entre le point de débit gobal nul et le point de débit global maximum Cas symétrique - Répartition 0.5 - Diamètre 0.152 m
- Figure 152 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Schématisation théorique du circuit associé
- Figure 153 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Construction graphique des caractéristiques résultantes au bag et au coussin Cas théorique dissymétrique
- Figure 154 : M'se en parallèle de deux ventilateurs transverses sur un circuit multibranches - Etude du point de fonctionnement Cas dissymétrique - Diamètre .152 m Transition théorique entre le point de débit global nul et le point de débit global maximum
- Figure 155 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Etude du point de fonctionnement Cas dissymétrique - Diamètre .152 m Instabilité théorique sur la première branche de la caractéristique globale

- Figure 156 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Etude du point de fonctionnement Cas dissymétrique - Diamètre 152 m Effet du volume sur la stabilité du point de fonctionnement
- Figure 157 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Etude du point de fonctionnement Cas dissymétrique - Diamètre .102 m Effet de la section sur la stabilité du point de fonctionnement
- Figure 158 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Construction graphique des caractéristiques résultantes au bag et au coussin Cas théorique symétrique
- Figure 159 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Etude du point de fonctionnement Cas symétrique - Diamètre .152 m Transition théorique entre le point de débit global nul et le point de débit global maximum
- Figure 160 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Etude du point de fonctionnement Cas symétrique - Diamètre .152 m Transition théorique entre un point de débit global stable et un point de débit global instable
- Figure 161 : Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Etude du point de fonctionnement Cas symétrique - Diamètre .102 m Transition théorique entre un point de débit global stable et un point de débit global instable

Stabilité et couplage de ventilateurs transverses - Figure 1 Navigation sur coussin d'air

"SUSTENTATION" VENTILATEURS ET CIRCUIT D'AIR

La sustentation est assurée par deux ventilateurs centrifuges débitant chacun 95 m - s à 6950 Pa (715 mm CE) pour une puissance installée de 2 x 1000 CV. Les ventilateurs, a axe vertical, alimentent d'air le coussin par des gaines de diffusion qui récupérent une partie de la pression dynamique. Des aubages contrôlables depuis le poste de pilotage assurent la répartition du débit d'air entre la fermeture "arriere" et le coussin proprement dit.

Photo 2 - a : Projet NES200 L - Vue d'artiste

Photo 2 - b : Projet NES200 L - Vue d'artiste

3 - c : Théorie simplifiée du ventilateur transverse Construction des triangles des vitesses

Théorie de BIDART : Calcul de la transition entre un point stable et un point instable de la caractéristique

Figure 12 - a : Vue de l'ensemble motoventilateur

Figure 13 - a : Système de variation automatique de débit

Figure 13 - b : Vue du point de mesure

sur la longueur du tuyau (Diamètre : .191 m - Longueur 4 m)

Fréquence 22.1 Hz Diamètre : .19 m Longueur : 5.2 m Débit moyen : .2 m3/s

Fig 16 a – Evolution du déphasage φ xx le long de la conduite

 φ_{XX} : Déphasage entre la modulation de pression statique à la paroi et la modulation de pression statique sur l'axe en une section x

Paramètres du circuit expérimental :

Diamètre : .191 m Longueur : 5.2 m Volume : 1.08 m3 Fréquence : 22.1 Hz

Paramètres du circuit expérimental :

Diamètre : .191 m Longueur : 5.2 m Volume : 1.08 m3 Fréquence : 22.1 Hz

 $\frac{5}{2}$ Øx axe : Déphasage entre la modulation de pression dynamique initiale et la modulation de pression dynamique en une section x , sur l'axe

Diamètre : .191 m Longueur : 5.2 m Volume : 1.08 m3 Fréquence : 22.1 Hz

Stabili c+ 0 ወ c+ coup lage d. e <en c+ ρί c+ 0 C 5 Ø c† ransvers æ \$ 1 Figure - ∞

Stabilité et couplage de ventilateurs transverses

Figure 19

Stabilité du ventilateur transverse : Evolution de la fréquence de pompage pour un volume de caisson constant

Stabilité du ventilateur transverse : Evolution de la fréquence de pompage pour un volume de caisson constant

Pompage d'un ventilateur transverse – Essai no : 184 Diamètre : .152 m Longueur : 2 m Volume 3 m3 Fréquence de pompage : 20.9 Hz

Transition dynamique d'un ventilateur transverse - Cycle no : 7 Passage d'un point stable à un point de pompage Diamètre .152 m Longueur : 1.92 m Volume : 3 m3

Transition dynamique d'un ventilateur transverse - Cycle no : 8 Passage d'un point de pompage à un point stable Diamètre .152 m Longueur : 1.92 m Volume : 3 m3

Transition dynamique d'un ventilateur transverse - Cycle no : 9 Passage d'un point stable à un point stable Diamètre .152 m Longueur : 1.92 m Volume : 3 m3

-.1

Pompage d'un ventilateur transverse - Essai no : 100 Diamètre : .102 m Longueur : 5.92 m Volume 1.2 m3 Fréquence de pompage : 16.8 Hz

Pompage d'un ventilateur transverse – Essai no : 153 Diamètre : .102 m Longueur : 2 m Volume 3 m3 Fréquence de pompage : 19.8 Hz

Diamètre : .191 m Longueur : 2 m Volume 3.6 m3 Fréquence de pompage : 22.9 Hz

Fréquence de pompage : 20.2 Hz

SYNOPTIQUE DU MONTAGE EXPERIMENTAL ET DE L'INSTRUMENTATION

Stabilité et couplage de ventilateurs transverses - Figure 32

odélisation des pertes de charges

Page : 1

ambda : Perte de charge linéique du tuyau de longueur L et de diamètre D \$1 : Coefficient de perte de charge d'un tiroir à N épaisseurs 52 : Coefficient de perte de charge singulière à l'entrée caisson

+	+ Fichier	t(m) (+ Diamètre (m) 	+ N. ép. 	Débit (m3/s)	+ Lambda 	ξı	521
1	I RES90	7.7450	.082	I 0 I	.130	.012	.20	.78
1 2	1 RES90	7,7450	.082	1 0	.165	.011	.20	.77
1 3	RES90	7,7450	.082	0	.192	.011	.20	.77 1
4	e RES90	7,7450	.082	I 0 I	.208	.011	.20	.76 1
1 5	RES90	i. 7 . 7450	.082	0	.225	.010	.20	.77 1
- 6	RES90	1 7.7450	.082	0	.240	.010	.20	.76
;								
1 7	I RES91	1 7.7450	.082	1	.121	.011	1.19	.78
. 8	I RES91	7.7450	.082	1 1	.154	.010	1.17	.78
! 9	RES91	7.7450	.082	1	.179	.010	1.14	.79
1 10	I RES91	7,7450	.082	1	,194	.009	1.13	.79
11	RES91	1 7.7450	.082	I 1	.211	.009	1.10	.79
12	RES91	7.7450	.082	1	.223	.008	1.09	.79
·								
1 13	1 KE572 1	1 /./450 1	.092	1 2 1	.104	.010	2.26	. 69 1
14	1 KE57Z	1 7.7450	.082		.143	.010	2.22	.5/ 1
1 15	1 RES92	/./450	.082	1 2 1	.164	.009	2.21	.68
1 15	KE592	7.7450	.082) 2	.182	.008	2.08	.69
1 1/	I KE592	1 /./450	.082	1 2	.198	.007	2.04	.70 1
18	I RES92	1 7.7450	1.082	12	.211	.007	2.00	.71
1 19	I BEGGT	7 7450	1 097	 7	102	i 000	3 04	70 1
1 20	1 0007	1 7.7450	1 102	1 7 1	147		0.04	701
1 20	1 REG70	1 7 7450	1 102	1 3 1	14.7	1 .000 1	- 1.07 I - 7.07 I	1 .70 1
1 22	1 DECOT	1 7 7450	1 .002	ा उ । र ।	175		1 2.00 I	701
1 22	i DECOT	1 7.7450	1 002	। उ । र	107	I 1007 I	2.00	.701
1 20	I DECOT	1 7.7430 1 7.7450 I	,082 1 007	1 7 1	1 172	1 . VV0	1 2.73 1 9.29 1	1 1/1 1 75 1
	-			 	.204			• • 7 2
1 25	I RES110	7.5900	.102	I 0	.106	.018	.22	.73 1
1 26	I RES110	7.5900	.102	1 0	.132	.018	.21	.72
1 27	I RES110	7.5900	.102	0	.180	.016	.22	.70
1 28	I RESI10	1 7.5900	.102	1 0	.216	.015	.22	I .70 I
1 29	I RE5110	7.5900	.102	0	.238	.015	.22	.69
1 30	I RES110	1 7.5900	.102	1 0	.257	.015	.23	69 1
1 31	I RESI10	7.5900	.102	0	.274	.014	.21	.70
	-							
32	I RES111	1 7.5900	.102	1	.106	.017	1.42	.77
33	I RESill	7.5900	1.102	1 1	.108	.016	1.34	.78
34	HES111	1 7.5900	.102	1	.108	.019	1.50	.74
35	RES111	7.5900	.102	1	.121	.017	1.42	1.741
1 36	I RESI11	1 7.5900	.102	1	. 150	.016	1.40	1.731
37	I RES111	1 7.5900	.102	1 1	.186	.015	1.37	1.721
1 38	I RESI11	1 7.5900	.102	1 1	.213	.014	1.38	1.721
39	RES111	1 7.5900	.102	! 1	.230	.014	1 1.35	1.72
1 40	I RES111	1 7.5900	.102	1	.245	.014	1.35	1.721
+	-+	+	+	+	+	+	4	4

Stabilité et couplage de ventilateurs transverses – Figure 33

>délisation des pertes de charges

Page : 2

ambda : Perte de charge linéique du tuyau de longueur L et de diamètre D §1 : Coefficient de perte de charge d'un tiroir à N épaisseurs §2 : Coefficient de perte de charge singulière à l'entrée caisson

1 N	Fichter (Longueur (m)	Diamétre (m)	N. ép.	Débit (m3/s)	Lambda i	§ 11	5 21
41	RES111	7.5900	.102		.259	.013	1.34	.73
: 42	; ; RES113 ;	7.5900 I	.102	31	.108	.012	3.06	1.13
43	RESI13	i 7.5900 i	.102	3 1	.122	.015	3.25	1.35
: 44	RES113	7,5900	.102	3 1	.157	.013	3.08 i	1.30
45	RES113	1 7 .5 900 I	.102	I 3 I	.187	.012	3.12	1.21
46	RES113	7.5900	.102	3 1	.211	.011	3.20 1	1.08 1
1 47	RES113	7.5900	.102	3	.228	.011	3.26)	.94 1
) 48	RES113	7.5900	.102	3 	.238	.011 	3.43 1	.78
49	RE5114	7.5900	.102	4 1	.122	.015 /	4.95 1	.80 i
1 50	RES114	7.5900	.102	4	.160	.012	4.56	.81
1 51	RES114	1 7 .59 00 I	.102	4	.185	.012	4.49 1	.81
1 52	RES114	1 7.5900	.102	4	.202	.012	4.49	.81
1 53	RES114	7.5900	.102	4	.219	.010	4.34	.81
1 54	RES114	7.5900	.102	4	.230	.010	4.25	.83 1
1 55	RES115	7.5900	.102	1 5 1	.101	.014	5.79	.81
1 56	RES115	7.5900	.102	I 5 I	.119	.015	6.02 1	.77
57	RES115	7.5900	.102	5	.170	.011	5.12	.80
1 58	I RES115	7.5900	.102	5	.188	.011	5.15	.79 1
1 59	I RES115	7.5900	.102	5	.201	.010	5.06	.79
60	RES115	7 .5 900	.102	151	.214	.010	5.01 1	.79
1 61	I RES115	1 7.5900	.102	5	.223	.010	5.00	.80
(62	I RES140	7.6600	.132	1 0	.102	.022	.24	.72
1 63	RES140	7.6600	.132	0	.103	.020	.13	.82 (
64	RES140	7.6600	.132	0	.130	.020	.22	.74
1 65	RES140	7.6600	.132	101	.164	.019	.26	.70
1 66	I RES140	7.6600	.132	1 0	.205	.018	.26	.70
1 67	RES140	7.6500	.132	0	.238	.018	.27	.70
1 68	RES140	7.6600	.132	0	.259	.017	.27	.70
69	I RES140	7.6600	.132	1 0	.280	.017	.26	.72
i 70	(RES140	1 7.6600	1 .132 	/ 0 	.295 	.017	.27	. 69
1 71	I RES141	1 7.6600	.132	I 1	I .130	.019	1 1.89	. 68
(72	I RES141	1 7.6600	.132	i 1	.189	.017	1.81	.68
; 73	1 RES141	1 7.6600	1.132	1 1	.222	.016	1 1.77	. 69
1 74	I RES141	7,6600	.132	1 1	.245	.016	1.76	. 68
1 75	I RES141	1 7.6600	.132	1	.268	.016	1.74	1.69
1 76	I RES141	1 7.6600	.132	1 	.287	l .015	1.71	.70
1 77	I RES142	, I 7.6600	. 132	1 2	.107	019	1 3.19	1.76
1 78	I RES142	7.6600	.132	12	1.125	1.017	3.11	1.76
1 79	I RES142	1 7.6600	.132	12	.147	1.018	1 3.10	1.72
) 8 0	I RES142	1 7.6600	.132	1 2	1.194	.017	1 2.97	1.72

odélisation des pertes de charges

ambda : Perte de charge linéique du tuyau de longueur L et de diamètre D §1 : Coefficient de perte de charge d'un tiroir à N épaisseurs §2 : Coefficient de perte de charge singulière à l'entrée caisson

+	+ Fichier	Longueur (m)	; Diamètre (m) ,	t Ι Ν. έρ.	+ Débit (m3/s)	t l Lambda	<u></u> §1	§ 2
1 31	RES142	7.6600	.132	1 2	.228	.015	1 2.85	.73
1 82	RES142	7.6609	.132	1 2	.247	.015	2.82	.73
1 83	RES142	7.6600	.132	1 2	.264	.015	2.83	.73
84	I RES142	7.6600	.132	1 2	.281	.014	2.79	.73
; ; 05 ;		7 6600		 i a	+^*			 70
1 04	I DECIAA	1 7.6000 1	1 102 1 170	4 4	104 i 177	1 .V10	I 0.1V I 6 0A	1 1/V 1 1 1/V 1
1 00	I NEGIAA I	1 7.0000 1 7.4466 1	102 1 170	} 1 : A	(.100 (101	1 .VIB	1 3.8V 1 5 75 1	/ 7
1 00	I DECIAA	1 7.0000 . 1 7.4400	1 1JZ 1 177	14. 14.	101. 1 - 101	i .V14 : (014	J.ZJ E 17	.80 1
1 00	I NEGINA I DECIAA I	7.0000 7.2200	1 .102	; 4 ; 1	· .213	1 .VI4 1 .VI4) 3.13 EAE	1 .80 1
1 07. 1 0A	I REDIAA	- 7.0000 ; - 7.7700	1 .132 1 170	1 4 	1 1200 1 DEA	1 .013 1		.80 1
1 70	I NCO199 I DECIAA I	7.00VU	1 .lJZ 1 175) 4) A	1 .234	I .VI.) I .VI.)	4.72	.82
71	REDI44 	/.0800	.132) 4 	.2/0	.V12 	4.84	ا 13. ا
1 92 1	I RES145	7.6600	.132	15	.112	.018	7.03	.98
93	RES145	7.6600	.132	15	.154	.015	6.57	.87
94	RES145	7.6600	.132	1 5	.197	.015	6.38	.83
95	RES145	7.6600	.132	15	.214	.014	6.22	.81
1 96 1	I RES145	7.6600	.132	i 5	.231	.014	6.19	.80
1 97	RES145	7.6600	.132	5	.249	.013	6.10	.80
1 98 1	RES145	7.6600	.132	5	.262	.013	6.11	.78
1 99 1	 RES164	8 0000	157	 Ι Δ	104	 Λ21	5 01	 07 1
1 100	I RES164	8,0000	152	1 4		070	5 97	74 1
1 101 1	I REGIAL I	8 0000	152	, , 1 4 1	100	1 .020 I 070	5 05 1	/+ i LD i
1 102	I RES164	8,0000	152	i A	717	1 1020 I	577	.00 1
1 107 1	I REGION	8 0000	152	ι <u>Α</u> Ι	217 1 240 1	ι <u>101</u> 7 Ι	5 5 6 1	L7 1
1 104	RES164	8.0000	. 152	1 4	744	1 017	5.47	.071
1 105	I RES164	8.0000	.152	1 4	.283	.017	5.44	.56 1
	!							
1 106 1	RES165	8.0000	.152	5	.107	.019	7.82	.78
107	RES165	8.0000	.152	5	.142	.017	7.41	.71
109	1 RES165	8.0000	.152	15	.182	.017	7.26	.66
109	1 RES165	9.0000	.152	5	.216	.017	7.03	.66 1
1 110	RES165	8.0000	.152	15	.238	.017	6.87	.68
111	RES165	8.0000	.152	15	.260	.016	6.82	. 56
112	RES165	8.0000	.152	5	.279	.016	6.71	. 68
113	I RES200 I	3.0000	.191	0	.111	,017	.43	.73
114	RES200	8.0000	. 191	1 0	.146	.020	.24	90 1
115	RES200	8.0000	. 191	0	.194	,021	.24	.79 1
116	RE5200	8.0000	.191	1 0	.232	,020	.21	.79
117	RES200	8.0000	. 191	1 0	.259	,020	, 15	.84 1
118	RES200	8.0000	. 191	1 0	.285	021	.19	.77
119	I RES200	8.0000	. 191	1 0	.309	.019	.15	.81
1 120	 RES201	8.0000	 .191	1 I 1	.108	.022	1.98	 1.19
7			+	+	+	+	*	

Stabilité et couplage de ventilateurs transverses – Figure 35

odélisation des pertes de charges

ambda : Perte de charge linéique du tuyau de longueur L et de diamètre D § 1 : Coefficient de perte de charge d'un tiroir à N épaisseurs § 2 : Coefficient de perte de charge singulière à l'entrée caisson

+	+ Fichier	+ Longueur (m)	+ Diamètre (m) 	+ N. ép. 	+ Débit (m3/s)	Lambda	\$ 1	5 2
: 121 -	RES201	8.0000	.191	1	.145	.020	2.03	
122	RES201	8.0000	. 191	1	.194	.021	1.78	i .88 i
123	RES201	8,0000	. 191	1	.233	.020	1.73	.98
1 124	RES201	8.0000	. 191	1	.257	,020	1.73	i .85 i
125	RE5201	8,0000	. 191	1	.285	.019	1.67	.86 1
125	! RES201	9.0000	.191	1 1	.305	.019	1.67	.86)
127	I RES202	8.0000	.171	1 2	.107	.021	3.63	1.12
128	RES202	8.0000	.191	1 2	.144	.020	3.60	.93
129	RE5202	8,0000	. 191	2	.195	.018	3.39	I .92 I
) 130 -	: RES202	8.0000	. 191	1 2	.231	.020	3,41	.83
1 131	RES202	8.0000	.191	2	.255	.020	3.36	.94)
1 132	I RES202	8.0000	. 191	1 2	.282	.019	3.31	.84 1
1 133	I RES202	8.0000	.191	1 2	.303	.019	3.27	.85
134	, RES203	I 8.0000	.191	1 3	.103	.026	5.06	1 1.59 1
1 135	RES203	B.0000	. 191	1 3	.136	.025	5.33	1.22
136	I RE5203	9.0000	. 191	1 3	.190	.021	4.93	1.06
1 137	I RES203	8.0000	. 191	1 3	.228	.022	4.89	1 1.01
138	I RES203	8.0000	. 191	1 3	.253	.020	4.92	I .91
139	I RES203	8.0000	. 191	1 3	.281	.020	4.80	.94
140	I RES203	8.0000	. 191	3	.303	.019	4.78	. 89 1
1 141	RES204	8.0000	.191	4	.104	.025	7.09	 1.29
142	I RES204	8.0000	. 191	4	.137	.025	6.95	1.23
143	RES204	8.0000	. 191	4	.188	.021	6.74	1.991
1 1 4 4	RES204	I B.0000	. 191	4	.226	.020	6.55	1.971
145	I RES204	8.0000	.191	4	.252	.020	6.39	1.95
1 146	I RES204	8.0000	. 191	4	.278	.019	6.31	.94
147) RES204	1 8.0000	.191	14	.299	.019	6.23	.96 1
1 148	RES205	B.0000	.191	5	.106	.029	1 9.09	 1.42
149	I RES205	8.0000	.191	15	.143	.021	8.64	1.28
150	I RES205	8.0000	. 191	15	.188	.022	8.56	1 1.08 1
151	RES205	8.0000	. 191	15	.228	.019	8.18	1.01
152	I RES205	8.0000	.191	15	.250	.019	8.08	1 1.02 1
1 153	I RES205	8.0000	.191	1 5	.275	.019	8.01	1 .99 1
154	RES205	3.0000	1,191	15	.295	.019	7.99	1.97 1
+	+	+	+	+	+	+	+	++

Stabilité et couplage de ventilateurs transverses

Figure 38

-

Essai	+ Caisson (m3)	+ Diamètre (m)	+ Longueur (m)	+ Qmax (m3/s)	+ Perte de charge totale (Pa)	+ Delta_Q (m3/s)	+ ! Delta_P (Pa)	+ Fréquence (Hz)	+ Nombre I de pdc	++ Limite de pompage (m3/s)
157	i 3.6 . ⊤ a	.082	1 2.00	1.170	1 790	1.27	1 3230	1 17.1	10	.12
150	1 3.0	1,082	1 2.00	.166	1 /80	1.29	1 31/0	1 19.2		
161	2.4	.082	2.00	.165	1 /80	.21	1 3480	1 18.9	0	.12
162	1 2.4	1,082	1 2,00	1.109	1 700	.23	2490	19.2		.08 1
- 165	2.4	.082	1 2.00	.088	680	.10	1850	18.9	2	.04 1
: 164	1.8	.082	2.00	.165	1 780	.26	1 3250	19.1	i 0	.12 1
165	1.8.	.082	2.00	.108	1 700	1.10	1 2690	1 19.0		I .08 I
1 166	1.8	.082	1 2.00	.087	1 590	.12	1 2020	1 19.3	1 2	1.05 1
167	1.8	.082	1 2.00	.073	1 660	.15	1 1570	1 19.0	3	1.04 1
168	1.2	i .082	1 2.00	1.165	1 770	.28	1 3130	1 19.1	10	I .11 I
1 169	1.2	1,082	1 2.00	.109	1 700	1.18	1 2540	1 19.1	1	.08 I
170	1.2	1.082	2.00	1.097	670	1.18	1 1940	1 19.1	1 2	I .06 I
171	1.2	.082	1 3.00	.149	1 730	.25	2180	1 18.7	1 0	.12
100	1.2	.102	5.92	.222	1 910	.46	1 3360	1 16.9	10	.21 1
102	1 2.4	.102	1 5.92	.220	1 800	.27	3010	16.8	10	.19 1
103	1 2.4	.102	1 4.92	.229	1 800	1.52	1 3720	1 17.6	10	i .18 !
104	1.8	1.102	4.92	.230	800	1.39	1 3490	17.4	10	.18
105	1.2	.102	4.92	.229	1 800	1.57	1 4030	1 17.7	10	I.18 I
106	i 1.2	.102	3.92	.116	1 700	.18	1 2020	19.1	(3	l .09 i
107	1 1.2	.102	1 3.92	.136	1 710	.44	1 2640	1 19.6	2	I .10 I
108	1.2	1.102	1 3.92	1.169	1 750	. 45	1 3420	1 18.2	1	.14 I
) 109	1.2	1.102	1 3.92	1.243	1 800	1.56	1 3950	1 18.2	I 0	I .15 I
1 110	1.8	102	1 3.92	.115	1 690	1.42	1 2490	1 18.7	1 3	I .06 I
1111	1.8	1.102	1 3.92	.136	1 710	1.53	1 3310	1 18.7	12	i .10 l
112	1.8	1.102	1 3.92	.169	I 750	.50	1 3190	18.5	1	I .13 I
i 113	1.8	1.102	1 3.92	.244	I 800	.54	1 3690	1 18.4	0	I .16 I
114	2.4	.102	1 3.92	.253	1 860	1.51	1 3880	1 18.0	10	I .16 I
115	1 2.4	1.102	3.92	1.175	I 810	1.64	1 3930	1 17.9	1	I .13 I
115	2.4	1.102	1 3.92	1.139	750	1.50	1 2860	1 18.3	12	I .12 I
117	2.4	.102	3.92	1.119	1 740	1,35	l 2050	1 17.8	13	I.10 I
118	1 3.0	.102	1 3.92	.120	1 740	i .30	1 1980	1 17.7	1 3	I .06 I
1 119	1 3.0	.102	3.92	.173	780	1.59	3600	1 18.3	11	I .12 I
1 120	1 3.0	.102	1 3.92	.252	870	.54	1 3770	1 18.1	1 0	I.14 I
121	1 3.6	1.102	1 3.92	.250	1 850	.54	1 3850	1 18.0	1 0	I .16 I
1 122	1 3.6	1.102	3.92	.167	1 760	1.52	3710	18.1	1	I .15 I
1 123	3.6	.102	1 2.92	1.263) 840	1.55	1 4000	1 19.8	10	l .10 l
1 124	1 3.6	1.102	2.92	1,179	I 800	.48	1 3490	1 18.9	1	I .09 I
125	1 3.6	.102	1 2.92	.142	I 750	1.57	1 2900	1 19.1	1 2	I .08 I
126	3.6	.102	1 2.92	1.119	1 710	1.50	1 2160	1 19.1	13	I03 I
1 127	1 3.0	1.102	2,92	1.262	1 830	1.51	1 3950	18.7	10	.12
128	1 3.0	.102	1 2.92	1.177	1 760	.49	1 3570	1 18.8	1	.11
129	1 3.0	i .102	2.92	1.140	i, 730	1.36	2420	1 18.9	12	I .10 I
130	1 3.0	.102	1 2.92	1.118	1 710	.32	1 2070	1 18.8	13	I .08 I
1 131	2.4	1.102	2.92	.262	1 820	1.51	1 3390	19.9	1 0	.11
! 132	2.4	.102	1 2.92	.177	1 790	1.49	1 3710	1 18.8	1 1	.10
1 133	1 2.4	1.102	2.92	1.136	1 730	.28	1 2020	18.6	1 2	.09
1 134	1 2.4	1.102	1 2.92	.115	1 710	1.36	1 2200	1 19.0	3	.07
i 135	1.8	.102	1 2.92	1.266	1 830	1.49	I 4070	1 18.6	1 0	.12
136	1.8	.102	1 2.92	1.176	1 790	1.48	1 3660	1 18.7	1 1	.10
1 137	1.8	1.102	1 2.92	1.141	1 740	1.43	1 2680	1 19.1	12	1 .09
÷	+	+	+	+	+	+	+	+	+	+ (in

E35a1	+ Caisson (@3)	+ Diamétre (m)	+ Lonqueur :) (m)	0max (m3/s)	l Perte de charge l totale (Pa)	+ Delta_Q ! (<i>m</i> 3/s)	+ Delta_P (Pa)	t l Fréquence l (Hz)	+ Nombre de pdc	+ Limite de pompage (m3/	·+ (s)
1.138	1.8	107	 7.92	. 119	720		1 2530	 18.9			
139	1 1.7	1.102	2.92	. 262	840	55	4020	18.8	 I 0	.13	
140	1 1.2	1.102	1 2.97	.179	1 780	1.32	1 3290	1 19.0	1	12	1
141	1 1 7	1 107	1 7 07	147	730	1 41	2960	i 18.9	1 2	10	i
<u>1</u> 0		1 160	1 7 97	1 117	1 700	1 77	1 1950	1 18.7	1 7	1 07	:
- 145 - 145	1944	1 102		277	· ,,,,,	, 12. I 74	1 7000	19.8	ίΩ		1
- 144	1 1 2	· ••••	1 1 97	170	770	1 40	, 0000 , 7890	1 20 0	i t	ι Λ7	1
- 1 <u>1</u> 5	ι <u>τ</u> μ	1 102	1 1 97	277	. 770 800	ι <u>Δ</u> Ο	1 7580	199	· ·	i in	1
144	. 1 9	i 107	1 1 97	187	. 300 I 780	, ,,, , ,,,	i 7810	1 20 2	1	1 10	:
1 147	1.1.0	1 102	1 1 92	144	/ /0V I 776	i 17	1 2010	1 20.2	. 1	, ,10 I A8	ţ
1 1 1 1 1	· 10	i i02	1 1 97	170	1 700	: 107 ; 79	1 1990	1 20.2		1 03	i
- 1dQ	. 110 . 7 £	1 137	1 1 97	070	1 700 1 200	i 120 i 17	1 1070 1 7820	1 10 0	1 0	1 17	1
+ 177 . 15Δ	: 2.T	1 107	1 1 97	195	1 300	i 77	i 3910	1 20 0	1 1	1 10	1
1 151	1 5 A	i ing	1 1 07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ι 770 Ι 7ΛΔ	1 70	1 2710	1 20.0	, 1	i 07	1
7 101 7 150	1 7 <u>1</u>	i 100	1 1.72	1 110	1 710	· · 27 · · 76	1 1640	1 20.0	; <u> </u>	1 07	, 1
1 192	1 7 6	1 107	1 1.7 <u>7</u> 1 1.00	1 ,110 1 707	1 74V	: .20 I AS	1 1000	1 10 0		i .00	1
1 154	1 7 6	1 102	1 1.72	1 100		1 10 1 70	1 3470	1 20 0	1 1	1 09	1
1 104	1 7 6	1 102	1 1 00	1 1170		1 -07 1 -7A	1 2700	1 20.0	1 1	1 .VG	!
: 100 : 150	1 0.0	1 107 1 107	1 1.72	1 ,140 1 97/	1 70V	1.04	1 2200	1 20.2	1 Z 1 A	I .VO	•
+ 1JO	1 3.0	1 .102	1 1.72	1 .270) 02V	1 14Z	1 3010	1 20.0	1 V 1 1	i ,10	:
1 10/	1 3.0	1 .102	1 1.72	1.107		1 .31	1 2700	1 17.0	1 1	1 .V7	1
	1 3.0	1 .102	1 1.72	1 .144 1 705	1 /6V 1 /AA	1 .2/	1 100V 1 7170	1 17,7 1 71 A	1 2	1 .03	1
) <u>Z1</u> (00	1 3.5	1 .132	1 1.72	1.373	1 600	1.07	1 3070	1 21.0	1 U	1 .10	1
) 22	1 0.0	1 .10Z	1 1.92	1 1274	1 810	1 ./7	1 2770	1 21.1	1 1	1.08	1
) 24	1 3.0	1 .132	1 1.92	1.373	1 600	1.70	1 4070	1 20.8	1 V	1.09	1
20	1 3.0	1 .132	1 1.92	1.29/	1 /90	1.84	1 3230	1 21.0		1.05	1
1 27	1 2.4	1.102	1 1.92	1.377	1 610	1.74	1 3810	1 20.8	1 0	1 .07	1
1 25	1 2.4	1 .132	1 1.92	CVC. 1	810	1 .81	1 27/0	1 21.0	1 1	1 .07	1
1 27	1 1.8	1 .132	1 1.72	1 ,400 - 705	1 510	1.71	1 3470	1 20.9	1 V	.07	1
1 30	1.3	1 .152	1 1.92	1 .303	1 / 70	1 .04	1 3170	1 20.9		1.07	1
1 01 . +a	1 1.2	1 .152	1 1.92	1 .400	1 51V	1.87	1 3270	1 20.9	1 0		1
1 32	1 1.2	1 .132	1 1.92	CUC. 1	1 800	1.80	1 3290			1.07	1
1 33	1 1.2	1 .152	1 2.78	1.3/7		1 .72	1 3/10	1 17.3	1 0	1 .14	1
: 34 . 35	1 1.2	1.152	1 2.98	1.290) 810) 850	1.75	1 2830	1 17.4	1 1	۱.۱۰ ۱	1
: 30 . 7:	1 1.2	1 .102	1 2.78	1 .242	1 830	1 ./3	1 2430	1 17.3		.11	1
: 30 . 77	1.1.0	1,152	1 2,98	1.381	1 63V	1.70	1 3830	1 17.1	1 1	1 .14	1
1 37	1.8	1 .152	1 2.97	1 .207	1 /90	1.82	1 3130	1 17.4	1 1	· .1.)	1
1 38	1 1.8	1 .152	1 2.9/	1.238	1 80V	1.70	1 278V	1 17.0	1 Z	· · · · · ·	1
· 57	1.8	1 .13Z	1 2.98	1 .201	1 820	1./d	1 2000	1 17.J	1.3	I .1V	1
1 40	1 1.8	1 .132	1 2.78	1 .1/8	1 800 1 770	1.0/	1 2180	1 17.4	1 4	I .IV	ا ہ
i 41	1 2.4	1 .152	1 2.98	1.380	1 630	1 ./1	1 Z78V	1 10./	1 V	1 14	}
1 4Z	1 2.4	+ .15Z	1 2.98	1.270	1 /70	1 .77	1 3070	1 17.V	1 1	• .15	1
: 4ú	1 2.4	1 152	1 2.78	· .240	1 850	1 1/	1 208V	1 17.4	1 7	.13	1
: 4 4	1 2.4	+ .15Z	1 2.98	1 .20Z	i 81V	1 .75	1 2700	1 17.4	L Ú	· .11	1
1 4日	1 2.4	1 .152	1 2.97	1 1/5	1 /90	1 .72	1 2470	1 17.0	14	· • • • • • • • • • • • • • • • • • • •	1
1 46	1 3.0	1 .152	1 2.98	1.3/6	1 630	1.75	1 3/40	1 17.2	I V	1 .13	1
4/	1 3.0	1.132	1 2.4/	1.286) 820	1.86	1 3330	1 17.2	1 1	.12	
1 48	1 5.0	1.152	1 2.97	1.229	1 840	1.75	1 2/60	1 17.4	1 Z	.11	
47	1 5.0	1.152	1 2.97	1.145	1 800	1 ./1	1 2440	1 17.4	1 5	1 .07	
1 50	1 3.6	1 .132	+ 2.97	1.378	1 610	1.87	1 3900	1 18.9	10	1,12	6
+ 51 +	ن.ګ -+	1 .152 +	1 2.97 +	1 .282 +	1 800 +	۱ ،8/ +	। ১450 +	۱ 17.5 +	! 1 +	.11	B

Modélisation	statistique	du	phénomène	de	pompage	 Récapitulatif	Page	:

Essai	l Caisson	t 1 Diamètre	t	+ I Qmax	+ l Perte de charge	+ ! Delta_Q	+ Delta_P	+ I Fréquence	i Nombre	++ Limite de
	(شم) ا	1 (m)	1 (At) 1	1 (MJ/S)	i totale (Pa)	i (m3/s)	1 (Pa)	1 (Hz)	i de pác	I pompage (m3/s)
57	 ג ד ו	1 177	1 2 97	 אדכ ו	 970	1 74	1	107	 7	
57	1 7 6	1 177	1 2.77	1 1230	1 000 1 776	1 .70	1 2540	1 10 7	1 7	· •11 ·
50 54	, 3.0 7.6	1 172	1 7 95	11/2	/ //V	ι ο <u>λ</u>	1 7000	1 19 7	ιJ	· .00 ·
55	1 7 6	1 172	1 7 95	1 794	1 920	1 91	1 2050	10.2 19.2	i 1	1 10 1 1 17 1
55	1 0.0 1 7.4	1 .102	1 3.00 1 7.05 1	1 1200 1 777	1 020 1 050	1 40	1 2730	ι 10.0 Ι 10.0	1 7	ι .1 <u>ζ</u> ι Ι Δ7 ι
50		1 172	1 7 95	1 770	1 440	1 .00	1 7700	10.0	1 0	i iv/ i
50	, , , ,,	1 179	1 7 95	1 1070 1 784	1 910	1 175 1 R1	1 3700 I 3000	10.2	i v i t	i 11 i
50	1 3 0	1 132	1 7 85	1 1207 1 277	840	1 .UI 1 54	1 3070 1 1950	10.2	1 2	1 11 1 1 04 1
57 60	(J.V (7.4	1 172	1 0.00 1 7 05 1	1 770		1 107 1 7L	1 1000	10.0	ι <u>τ</u> ι Δ	i 100 i
60 41	174	1 170	1 J.05 : 1 7 85	1 1070	1 05A	1 70	1 2010	1 10.1	i V I 1	1 17 I
01 17	1 2.7 1 7 A	1 177	: 0.00 7.05	1 1207		1 .70		1 ,10.1 1 10 A	1 I 1 7	1 12 I 1 10 I
02 1 1 27	1 1 0	1 132 1 137	1 J.0J 1 1 7 05	1 775	1 040 1 70A	1 1/0	1 2400	1 10.4	1 2	
- 00 4.8	1 1.0	(.102) (77	1 3.0J 1 7.05 1	1 .070 1 .000	/ /0V I 000	1 10/ 1 07	1 3410	10.1	1 V 1 1	1 14 1 1 17 1
07 45	1.0	(104 (170) 0.00 i ; 7.05	1,200 777	1 07V 1 00A	: .0.) ; 77	1 3140 1 7870	10.4 1 10.2	1 I 1 D	· • • • • •
00 11 -	(1.0 1.7	1 .132 1 170	1 7 DE 1	1 .233 1 777	1 00V 1 22A	1 .73 1 <i>LI</i>	1 447V 1 9800	10.0	1 4	
00 47	1.1.2	1 132 1 170	1 3.80 1 1 7.05	1.3//	I 06V	1 10	1 2000	1/17	i V i i	14 i 1 10 i
0/ 10	1.2	i 134 i 179	1 J.00 1 J.00 -	1 .204	I //V	1,50 1,70	1 24/V	1 10.2		1 1 <u>1</u> 1
00 (0	1.2	1 .102	1 4.70 I	1.3/5	1 680	1.78	1 2/80	1 17.8		
07 70	1.2	1 .102	1 4.70 1 4.00 1	1.270	1 900	1 ./7	1 2720	1 17.5	11	1.14 I
7V 71	1.2	1.102	1 4.70 I	1 .238	1 830	1.58	2350	1 17.0	! Z	1 .13 1
/1	1 1.2	1 .132	1 4.90	.188	1 /90	1.04	2110	1 1/./	13	1,12 1
72	1.8	.132	1 4.90		1 580	1.79	1 3020	1/.3	1 0	.1/
7.5	1.8	1.152	1 4.90	.284	820	1./8	1 2680	1 1/.5	1	I .15 I
/4	1.8	.132	4.90	.231	820	1.67	2440	17.3	1 2	I .13 I
/3	1.5	1.132	1 4.90	.195	1 810	1.58	2020	17.1	13	.12
/6	2.4	.132	4.90	.376	/40	1.79	3070	17.1	10	.16
//	2.4	.132	1 4.90	.277	1 710	1.75	1 2520	1 17.7	1	.15 1
/8	2.4	.132	4.90	.227	820	.66	2230	17.7	2	.13
/9	2.4	1.132	1 4,90	.189	1 780	1.59	1 2030	1 17.3	3	.11
80	3.0	.132	4.90	.357	670	.72	2640	17.2	1 0	.17
81	1 3.0	1.132	1 4.90	.277	830	.71	2420	17.4	1	I .15 I
82	3.0	.132	4.90	.228	840	1.70	2430	17.7	2	1.13 1
83	1 3.0	.132	4.90	.195	810	1.65	2150	17.6	13	1.12 1
84	3.6	.132	4.90	.359	680	.75	2440	17.4	10	1.16 1
85	1 3.6	.132	4,90	.272	1 820	.68	2210	1 17.8	1 1	I .13 I
86	3.6	.132	4.90	.226	840	.60	1860	17.7	2	I .12 I
87	3.6	1.132	4.90	.195	810	.63	1 2070	1 17.6	13	.12
88	2.4	.132	5.92	.352	680	.81	3050	16.8	1 0	I.16 I
89	1 2.4	.132	1 5.92	.281	810	.84	1 3190	1 17.0	1	I .16 I
90	2.4	.132	5.92	.230	I 820	1.75	2680	1 17.0	1.2	I .15 I
91	2.4	1.132	1 5.92	.193	1 790	.65	1 2340	16.8	13	I .15 I
92	1.8	.132	5.92	.351	680	1.84	1 3350	16.7	10	I .12 I
93	1.8	.132	5.92	.272	1 810	.81	i 3010	1 16.9	1	i .11 l
94	1.8	.132	1 5.92	.228	810	1.74	1 2750	16.9	12	1.11 1
95	1.8	.132	1 5.92	.192	I 780	1.61	1 2220	1 16.6	13	i .11 i
96	1.2	.132	1 5.92	.349	1 670	.81	1 3070	1 16.7	0	i .12 i
97	1.2	.132	1 5.92	.276	1 780	.77	1 2950	1 16.9	11	i .12 l
98	1.2	.132	1 5.92	.226	1 790	1.79	1 2890	1 17.2	12	i .11 i
99	1.2	.132	1 5.92	.191	1 760	1.68	1 2340	1 17.4	13	1.10
1	3.6	1.152	4.93	.418	I 480	1.46	4650	1 17.4	1 0	I .17 🖊
2	1 3.6	.152	4.93	.346	1 660	1 1.35	4100	1 17.5	1 1	1 .14 P 1
	+	+	ŧ	+	+	+	+	+	+	+

Modélisation	statistique	du	phénomène	de	pompage	-	Récapitulatif	Page	

Essai	Caisson (m3)	Diamètre (m)	, Longueur (n)	, Qmax (n3/s)	Perte de charge I totale (Pa)	/ Delta_Q (m3/s)	Delta_P (Pa)	Fréquence (Hz)	Nombre I de pdc	, Limite de pompage (m3/s)
3	1 3.6	.152	1 4.93	.303	770	1 1.29	' I 3860	17.4	12	.12
4	3.6	.152	4.93	.265	800	1 1.30	3840	17.7	13	.12
5	1 3.6	.152	4.93	.238	810	1 1.29	1 3870	17.7	4	.11
6	3.6	.152	4.93	.217	800	1.18	3410	17.7	5	.11
7	1 3.6	.152	1 3,97	, 429	460	1.38	4410	19.3	1 0	.17 I
8	3.6	.152	3.97	.355	680	1.45	4600	18.4	1	.14 1
9	3.6	.152	3.97	.306	780	1.40	1 4290	18.4	1 2	.12
10	3.6	.152	3.97	.274	830	1.35	4200	18.5	3	.12
11	3.6	.152	3,97	,246	830	1.28	1 3850	18.5	4	I.09 I
12	1 3.6	.152	2.97	.438	440	1.41	4500	19.6	1 0	.15
13	3.6	.152	1 2.97	.366	650	1.31	1 3880	19.6	1 1	.13
14	3.6	.152	2.97	.311	750	1.30	1 3840	19.7	12	.12
15	1 3.6	.152	2.97	.274	820	1.26	I 3800	19.8	1 3	.09
16	3.6	.152	2.97	.247	830	1.15	1 3250	19.9	1 4	I .08 I
17	1 3.6	.152	1 1.97	.455	410	1.44	1 4670	21.3	I 0	.13
18	3.6	.152	1.97	.375	670	1.32	4080	21.4	I 1	I .10 I
19	1 3.6	.152	1.97	.317	780	1.15	1 3260	21.5	1 2	I .08 I
20	3.6	.152	1.97	.278	840	.97	1 2370	21.4	3	.05
172	1 1.2	.152	1 2.00	.451	400	1 1.21	1 3580	20.9	0	I .13 I
173	1.2	.152	2.00	.369	650	1 1.09	3210	20.8	1	.10
174	1 1.2	.152	1 2.00	.315	730	1 1.05	1 2920	21.1	12	.09
175	1.2	.152	1 2.00	.281	810	1 1.00	1 2770	21.2	1 3	.06 1
176	1.9	.152	2.00	.455	400	1 1.19	1 3710	1 20.7	0	I .13 I
177	1.8	.152	2.00	.370	630	1.11	1 3180	21.0	1	I .10 I
178	i 1.9	.152	2.00	.315	730	1 1.09	i 3040	21.0	! 2	1 .08 1
179	1 1.8	.152	1 2.00	. 281	800	.95	1 2530	21.0	13	I .05 I
180	2.4	.152	2.00	1.458	410	1 1.26	3760	1 20.7	1 0	I .12 I
181	2.4	.152	1 2.00	.376	650	1.16	1 3340	20.8	1	.11 1
182	1 2.4	.152	1 2.00	.323	1 750	1 1.07	1 2980	20.8	12	1.08
183	2.4	.152	1 2.00	.284	810	1.00	1 2710	21.1	3	I .06 I
184	3.0	.152	2.00	.453	400	1.25	3720	1 20.9	10	I .13 I
185	3.0	.152	1 2.00	1.370	650	1.21	1 3530	1 20.8	1 1	I .10 I
186	1 3.0	.152	1 2.00	.318	740	1 1.04	1 2930	1 21.0	12	1 .08 1
187	1 3.0	.152	1 2.00	.281	800	.97	2560	20.9	3	I .06 I
188	1 3.0	.152	1 3.00	.277	800	1.99	1 2530	1 19.6	3	I .08 I
189	1 3.0	.152	3.00	.316	760	1.06	2880	1 19.3	12	1.11
190	1 3.0	.152	1 3.00	.363	1 650	1.22	1 3680	1 19.1	1 1	I .12 I
191	3.0	.152	1 3.00	.442	430	1.25	1 3530	17.4	0	I .14 I
192	2.4	.152	1 3.00	.446	440	1 1.26	1 3750	1 19.3	i 0	I .13 I
193	1 2.4	.152	1 3.00	.361	640	1.24	1 3670	1 19.4	1	I .12 I
194	1 2.4	.152	1 3.00	.311	1 760	1.12	1 3130	1 19.5	12	I .10 I
195	1 2.4	1.152	1 3.00	.272	l 780	1 1.01	1 2810	1 19.3	1 3	I .08 I
196	1.9	1.152	1 3.00	.449	i 440	1.31	1 3980	1 19.1	10	I .14 I
197	1.8	.152	1 3.00	1.369	680	1.28	4020	1 19.1	1	I .12 I
198	1.8	.152	1 3.00	.319	1 770	1.17	3430	1 19.3	12	I .10 I
199	1.8	.152	1 3.00	.281	I 830	1 1.06	1 3160	1 19.1	13	I .09 I
200	1.2	1.152	1 3.00	.453	l 450	1 1.39	1 4420	1 19.2	1 0	1 .14 🦽
201	1.2	.152	1 3.00	1.370	670	1 1.31	1 4030	1 19.2	1	i .13 [B
202	1.2	.152	1 3.00	1.318	1 770	1.20	1 3660	1 19.2	12	1 .11 (44)
207	1 1 7	1 . 162	1 3.00	1,283	1 820	1 1.15	1 3230	1 19.5	1 3	1 .10

Essai	Caisson (m3)	Diamètre (m)	Longueur (m)) Qmax) (m3/s) ,	l Perte de charge totale (Pa)	Delta_Q (m3/s)	Delta_P (Pa)	Fréquence (Hz)	Nombre de pdc	Limite de pompage (m3/s) '
204	1.2	.152	4.00	.441	470	1.40	4330	18.1	 0	.16
205	1.2	1.152	4.00	.365	590	1 1.36	4080	18.1	1 1	1.15
206	1.2	.152	4.00	.314	770	1.33	4170	18.1	12	.13
207	1 1.2	.152	4.00	.278	820	1 1.19	1 3370	18.4	1 3	.12
208	1.9	.152	4.00	.435	460	1.37	4110	18.1	0	.16
209	1.8	.152	4.00	.361	680	1.29	3860	18.1	1	1.15
210	1.8	.152	4.00	.317	770	1.24	3480	18.2	12	.13
211	1 1.8	.152	4,00	.282	830	1.24	3660	18.3	1 3	1.12
212	2.4	.152	4.00	.433	450	1.35	4170	1 17.9	0	.16
213	2.4	.152	4.00	, 362	660	1 1.27	3740	18.0	1	.14
214	2.4	.152	4.00	.311	760	1.30	3900	18.1	12	1.13
215	2.4	.152	4.00	.275	820	1 1.10	3300	18.2	13	.11
216	1 3.0	1.152	5.00	.427	480	1.23	3780	17.2	0	.15
217	1 3.0	1,152	5.00	.355	570	1.20	3520	17.4	1 1	1,14
218	1 3.0	1.152	1 5.00	.307	750	1 1.17	3420	17.3	12	1.12
219	1 3.0	1,157	1 5.00	275	1 820	.94	3060	1 17.3	1 3	,10
220	1 2 4	.152	1 5.00	429	480	1 1.22	3700	17.2	1 0	.15
221	1 2.4	1.152	1 5.00		1 560	1 1.19	1 3620	1 17.3	1 1	1 .14
222	5 7.4	1 .157	5.00	1.312	770	. 99	2740	1 17.6	1 2	.12
223	1 2.4	. 152	5.00		810	1 1.00	1 2800	1 17.5	1 3	.10
220	1 1.8	152	1 5.00	. 435	480	1 1.76	4090	17.3	L Û	1.16
225	1 1.8	1 .152	1 5.00	1.354	1 660 1 660	1 1.16	1 3650	1 17.3	1 1	. 15
226	1 1 8	1 152	1 5 00	1 709	1 770	1 1 11	1 3270	174	1 7	1 14
220	1 1 8	1 152	1 5 00	1 274	I 810	1 95	1 2570	1 17 6		1 .13
227 228	1 1.0	1 152	1 5 00	1 475	480	1 1 22	1 3730	1 17.3	, c	1 .16
220	1 1 2	i 152	1 5 00	1 759	1 400	1 1 20	1 3740	1 17 4	1 1	1 15
227	1 1 2	1 152	1 5 00	1 300	1 750	1 1 17	1 7470	1 17 4	1 7	i 14
230	1 1 7	1 157	1 5 00	1 277	i 930	1 1 15	1 3720	174	· •	1 17
231	1 7 0	1 152	1 4 00	1 435	1 4 40	1 1 30	1 3950	1 17 8	1 0	I 14
232	1 7 0	1 150		1 740	i 400	1 1 29	1 7890	1 17 9	1 1	1 13
200 774	1 3.0	1 152	1 A 00	1 .550	1 740	1 1 70	1 3010	191	1 7	1 .17
207	1 3.0	1 152	1 4.00	1 777	1 910	1 1 18	1 3/10	1 18 1	1 7	1 .10
200 774	1 1 9	1 150	1 6 00	476	, 500	1 1 77	4780	1 16.4	1 0	1 .18
200	1 1 9	1 157	1 6.00	1 759	1 690	1 1.30	4080	1 16.5	1 1	1 .16
207 970	1 1 9	1 157	1 4 00	1 T10	1 770	1 1 77	1 3970	1 16.4	1 7	1 .15
200 779	1 1 9	1 152	1 6.00	1 . 270	1 800	1 1.10	1 3430	1 16.3	1 3	1 .14
207 780	1 1 7	1 157	1 6.00	1 A7A	, 500 I 510	1 1.75	4250	1 16 4	1 0	1 . 20
270	1 1 7	1 157	1 6 00	1 357	1 700	1 1.79	1 4150	1 16 4	1 1	19
£71 7∆7	1 1 7	1 (57	1 6 00	1 .337	1 790	1 1.20	1 3750	1 16.4	1 2	1 .17
272 787	1 1 7	1 150	1 6 00	1 074	- 77V } 940	1 1 21	1 3900	1 16 5	1 3	1 .16
270 788	1 1 7	1 101	1 4 00	: .270 } AQQ	, 07V I 25A	1 1 94	1 4090	1 16.5	1 0	1 .18
277 785	1 1 7	1 101	1 1 10	ι . 1 00	1 <u>1</u> 70	1 1 74	1 3570	1 16 7	1 1	1 .17
270 782	1 1.2	1 101	1 4 00	1 404	, , , , , , , , , , , , , , , , , , ,	1 1 40	1 7710	1 16.7	1 2	1 16
240 787	1 1 7	r 171 101	1 4 00	1 170 775	1 540	1 1 50	1 2800	1 16.9	. <u> </u>	1 15
147 200	114	1 101	1 6.00	1 497	1 250	1 1 00	1 4790	1 16 5	1 0	1 19
240 780	1 1 0	1 101	1 4 00	i 4474	1 440	1 1.77	1 TLOV	1 14 5	1 1	1 17
447 950	1 10	i i 101	1 2.00	1 111/	i 77V i 550	1 1 77	1 7400	1 16.6	1 7	1 15
20V 751	1 10	1 101	1 4.00	1 772	i 230	1 1 LL	1 7940	1 16.0	· 2	1 17
231 757	1.0	1 171		1 .370 1 ADD	i 04V	1 7 61	1 3240	1 10.0		i 15
232 757	1 3.V 1 7 0	· · 171	1 3.00	1 .470 1 /50	1 470	1 2.VI	1 37JU 1 770A	1 17.3	1 1	1 17
200	1 3.0	1 .171	1 3.00	: .400	1 430	1 1.72	1 37 0 0	1 17.3	+ 1 ,	1.)

-						
	~		-	~		_
	u		1.	-		-
	_	_		~	•	

Modélisation	statistique	du	phénomène	de	pompage	—	Récapitulatif	Page	:
								-	•

; ! Essai !	+ Caisson (m3)	+ Diamètre (m)	+ Longueur (m)	+ Qmax (n3/s)	+ l Perte de charge l totale (Pa)	+ Delta_Q (m3/s)	+ Delta_P (Pa)	+ Fréquence (Hz)	H I Nombre I de pdc	ff Limite de pompage (m3/s)
1 254	1	1	1 5.00	. 411	550	1 1.96	3780	1 17.5	 2	.12
1 255	1 3.0	1 .191	1 5.00	. 382	1 460	1 1.79	1 3310	17.5		11 1
1 255	1 2.4	1 . 191	1 5.00	496	240	1 2.12	1 4250	17.4	1 0	.17 1
257	1 2.4	1 . 191	1 5.00	444	430	1 2.03	1 3880	17.6	1	15
258	1 2.4	1,191	1 5.00	412	1 540	1 1.89	1 3520	17.6	, ,	.14 1
: 259	1 7.4	1,191) 5.00) .380	650	1 1.66	1 3100	17.4	3	.12
260	1 1.8	.191	1 5.00	493	240	2.15	4220	17.6	(0	.17
1 261	1 1.8	1,191	1 5.00	448	470	1 2.02	4090	17.5	1	.15
1 262	1 1.8	1.191	1 5.00	.409	540	1 1.95	1 3700	17.7	- 3	.14
1 263	1 1.8	1,191	1 5.00	.376	630	1 1.79	1 3330	17.5	13	.12 1
1 264	1 1.2	1.191	1 5.00	499	. 230	1 2.09	4200	1 17.7	1 0	.17
265	1.2	1,191	1 5.00	.446	430	1 1.94	3730	17.7	1	.15 (
266	1.2	1.191	1 5.00	1.405	1 540	1 1.96	1 3730	1 17.8	1 2	.15
1 267	1 1.2	1,191	1 5.00	. 373	620	1 1.69	1 2980	17.9	3	.17
268	1 1.2	1,191	1 4.00	1,488	1 210	1 1.79	1 3100	1 19.2	 I 0	.13
769	1 1.2	1,191	4.00	. 446	410	1 1.78	1 3050	1 19.2	1	12 !
1 270	1 1.7	1,191	1 4.00	1.405	. 530	1 1.49	1 2420	1 19.0	1 2	1 .10 1
1 271	1 1.8	1 . 191	1 4.00		1 610	1 1.31	1 1930	19.4	13	.06 1
1 272	1 1.8	1 . 191	1 4.00	488	210	1 1.94	1 3430	19.0	i 0	.13
1 273	1 1.8	1 . 191	1 4.00	442	400	1 1.94	1 3550	1 19.0	1	11 1
1 274	1 1.9	1 . 191	1 4.00	408	1 530	1 1.77	1 2990	1 19.1	1 2	.09 1
275	1 1.8	1 . 191	1 4.00	1.373	1 610	1 1.50	1 2340	19.7	1 3	07 1
1 276	1 7.4	1 . 191	1 4.00	485	1 210	1 2.04	1 3640	1 18.8	1 0	1 .12 1
273	1 2.4	1 . 191	4.00	444	410	1 1.84	1 3290	18.6	1	10 1
1 278	1 7.4	1.191	1 4.00	1 .407	1 530	1 1.60	1 2600	18.8	1 2	.09 1
1 279	1 7 4	1 191	1 4 00	1 772	1 620	1 1 54	1 2460	191	1 3	05 1
1 280	1 3 0	1 191	1 4 00	1 497	1 220	1 1 97	1 3530	1 18.9	1 0	1 .12 1
1 281	1 3.0	1 . 191	4.00	443	410	1 1.81	3080	1 19.0	1	· · · · · · · · · · · · · · · · · · ·
1 282	1 3 0	1 . 191	1 4.00	1 407	1 530	1 1 73	1 2990	1 19.0	1 2	
1 283	1 3.0	1,191	1 4.90	1.371	1 620	1 1.54	1 2400	1 19.2	1 3	06 1
1 - 284	1 3.6	1 . 191	1 4.00	482	1 210	1 2.08	1 3860	1 18.8	1 0	12 1
1 285	1 3.6	1 . 191	1 4.00	.437	1 410	1 1.86	1 3240	1 18.9	1 1	
286	1 3.6	. 191	1 4.00	. 405	1 540	1 1.70	2820	1 19.0	. 2	08 1
287	1 3.6	1 . 191	1 4.00	1.370	1 620	1 1.38	2090	19.1	1 3	0.6 1
1 288	1 3.6	1.191	1 3.00	.311	100	1 2.09	3700	20.5	1 0	1.10
289	3.6	1,191	1 3.00	1.301	1 220	1 1,84	1 3210	1 20.6	1 1	1 .08 1
1 290	1 3.6	1.191	1 3.00	406	520	1 1.72	1 2900	20.6	1 2	1.05
291	1 3.6	1,191	1 3.00	.260	1 380	1 1.48	1 2270	20.5	1 3	1,03 1
1 292	1 3.0	1.191	1 3.00	1.488	200	1 2.14	3960	1 20.5	1 0	1 .10
293	1 3.0	1 . 191	1 3.00	442	1 400	1 1.84	1 3170	1 20.6	1 1	1.08 1
1 294	1 3.0	.191	1 3.00	1.408	1 530	1 1.62	1 2560	20.8	12	1,06
295	1 3.0	1,191	3.00	.375	1 620	1.52	2460	20.6	1 3	1 .03 1
1 296	1. 2.4	1,191	1 3.00	1,496	210	1 1.95	3450	1 20.7	1 0	1 ,11
297	2.4	1,191	1 3.00	445	400	1 1.85	3120	20.8	1 1	1 .85 1
1 298	1 2.4	.191	1 3.00	1.407	1 530	1 1.67	1 2620	20.8	12	1.07
1 299	1. 2.4	. 191	1 3.00	1.376	1 620	1 1.45	1 2050	20.7	1 3	1.05
1 300	1 1.9	1.191	1 3.00	497	1 200	1 2.08	1 3810	20.7	1 0	1 .11
301	1 1.8	1.191	1 3.00	1.450	40 0	1 1.92	1 3280	20.8	1 1	1.09
1 302	1 1.8	1.191	1 3.00	1.410	1 530	1 1.69	1 2750	20.9	1 2	.07
1 303	1 1.8	1.191	1 3.00	1.376	610	1.46	1 2450	1 20.6	1 3	.05
+	+		· •	+	+	+	+	+	+	·

(146).	le l	latasta Nati		ianetra la:	:	loneueur Hai		Qnex (m3/s)	: Pert : to	e de coarge tale (Pa)		Delta_Q (m3/s)		Delta_P (Pa)	F	Fréquence (Hz)		Nombre de odc	L Dom	Limita de pompage (m3/s)	
794 194	;	1.2		.191]	3.00	-,- ;	.493	;	200		2.07	- -	3790	; [20.5	; -		 -	. 11	, ,
T05				191	2	3.00	÷	, <u>44</u> 9	i	40¢	į	1,88		3400	l	20.7	ł	1	ļ	,09	ł
30a		, [−] , ∔. 4		.191	÷	3.00		.410	:	530		1.58	ł	2580	1	20.8	ţ	2	1	,07	ļ
				,:S)		7. (c)		275 1979	1	5 20	ŧ	1.34		2000	1	20.7	÷	3	į.	.03	ł
		e di Star		.191		1 - <u>5</u> 4 - 2 -		,490	1	190	ł	1.03	÷	1290	į	23.2		ê		.05	;
10		 с. ч. ш.		.:-1		2.00		,44 <u>2</u>	-	490	ŧ	.95	1	1160	1	23.2		1	ł	.05	÷
716		1.9		.:9:	÷	2.Óv	i	.497		180	÷	1.73	ł	2920		23.1	ł	0	1	.05	ţ
2.2	r -	1.2		.: ? }	ŗ	2.00	;	,415	:	540	i	1.97	ł	1380		23.0	i	1	I	.05	ł
		<u> </u>		.191	5	2.00		, 499	:	200	ŧ	1.79	÷	2960	÷	23.2		0 i	÷	.08	1
- 114		2,4		.191		2.00	÷	,454	;	400	ł	1.59	1	2400		23.3		1	:	.05	ł
- 315		λŷ		.171		2.00	÷	,495		190	ļ	1.87	ţ	3240	-	23.1	ł	()	1	.08	;
		1.0		.191	:	2.99	:	.454	į	410	į	1.36	į	1980	1	23.1	-	ţ	ļ	.05	ł
	i.	I.S		.191	ì	2.00	1	.502		200	ļ	1.83		3050	ļ	23.0	ţ	0	1	.08	į
518	ŧ	3.6	1	.191		2.00	ł	.453	1	400		1.51	ļ	2390	1	23.0	i	1	1	.05	1
213	÷	5.6		.191	Į	2.00		.413	ļ	5 40	ļ	1.19	ł	1620	ļ	23.1		2	i.	.05	ţ

ហ

Figure 51

Fig 52 — b : Théorie de BIDART avec inertie et capacité Schématisation du circuit de base

Théorie de BIDART avec inertie : Transition dynamique entre un point stable et un point instable

Théorie de BIDART avec inertie : Transition dynamique entre un point stable et un point instable

.

Théorie de GREITZER avec constante de transfert Transition dynamique entre un point stable et un point instable

Ventilateurs

Circuit "bas" associé aux branches débitant dans le coussin

Qb1 : Débit de la branche allant du ventilateur 1 au coussin Qb2 : Débit de la branche allant du ventilateur 2 au coussin Qg : Débit global du circuit multibranches Pg : Pression totale dans le coussin

Ventilateurs

Circuit "haut" associé aux branches débitant dans le bag

Qh1 : Débit de la branche allant du ventilateur 1 au bag Qb2 : Débit de la branche allant du ventilateur 2 au bag Qbc : Débit de la branche allant du bag au coussin Pb : Pression totale dans le bag

Circuit multibranches vu de côté

Mise en parallèle de deux ventilateurs transverses sur un circuit multibranches - Montage expérimental

Figure 58 - a : Diffuseur et répartiteur de débit

Figure 58 — b : Instrumentation à la sortie des diffuseurs

Figure 59 - a : Montage expérimental vu de l'amont

Figure 59 - b : Vue de la sortie du bag

60 - a : Montage expérimental vu de l'aval

60 - b : Vue de l'instrumentation

Répartition .75

Ventilateur transverse monté sur un circuit multibranches Instabilité théorique de pompage

Répartition .25

Ventilateur transverse monté sur un circuit multibranches Instabilité théorique de pompage

BL

LILL

Etude théorique du couplage bag/coussin Instabilité de pompage superposée à une instabilité de couplage

Résonance du couplage bag/coussin à 6.5 Hz

Instabilité pure de pompage à 22.2 Hz

Pompage d'un ventilateur transverse - Cycle no : MCYCLE8 Transition dynamique d'un point de pompage au point de débit maximum Circuit multibranches Diamètre : .152 m Longueur : 4.5 m Volume du bag : .72 m3 Volume du coussin : 3.6 m3

Mise en parallèle de deux ventilateurs transverses – Cas numéro 2 Vannage linéaire – Evolution de la pression et des débits

Stabilité et couplage de ventilateurs transverses - Figure 79

Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante (Page No 1)

Evolution comparée des caractéristiques de deux ventilateurs transverses en parailèle et de la caractéristique résultante (Page No 2)

95.C**2**

lise en parallèle de deux ventilateurs transverses — Cas numéro 1 'annage linéaire - Evolution de la pression et des débits

Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante (Page No 1)

Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante (Page No 2)

Evolution comparée des caractéristiques de deux ventilateurs transverses en parallèle et de la caractéristique résultante (Page No 3)

Transverses

88 — a : Mise en parallèle de deux ventilateurs transverses Schématisation du circuit associé

88 — b : Intégration du système d'équations

88 – c : Mise en parallèle Régime varié

88 - d : Zone d'hystérésis

G

BU

Figure 92

Figure 94

U

η

G c+

101

က္က (†

Figure 102

Figure 103

Figure 105

106

1

٠Ø

- 4---

Figure 107

Figure 108

89

(0)<+

Figure 110

Transition théorique entre le point de débit nul et un point stable

.... N

BL

Figure 115

Figure 116

Mise en parallèle : Schéma synoptique du montage expérimental

Figure 118 – a : Mise en parallèle de deux ventilateurs transverses – Vue partielle du montage expérimental

Figure 118 – b : Mise en parallèle de deux ventilateurs transverses – Vue partielle du montage expérimental

Figure 119 : Mise en parallèle de deux ventilateurs transverses - Vue de l'instrumentation

BU

globale statique expérimentale et de la caractéristique globale théorique

Figure 129

3 O \$---A ω

57 c+

coup lage d e ventilateurs transverses Π igure Ξ

Stab

__. .+

œ۰

с с†

 $\overline{\omega}$

(0)

(J) c^+

Stabilité et couplage de ventilateurs

ilateurs transverses

Figure 142

BU

B

BU

transverses

Ventilateurs Transverses

Fig 152 : Mise en parallèle de deux ventilateurs transverses Circuit du type multibranches Schématisation théorique du circuit associé

_

Stabilité et couplage de ventilateurs transverses

Stabilité et couplage de ventilateurs transverses

BL

Figure 1

Stabilité et couplage de ventilateurs

eurs transverses

157

BL

BL

----•