Nº d'ordre : 563 50376 1900

69557

INTERUS

ECTIO

DF

CIENCES

THESE

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE FLANDRES ARTOIS

pour obtenir le grade de

Docteur en Automatique

par

Abdelali BOUAYAD

Mastère I.D.N Maître E.E.A

ETUDE COMPARATIVE DE METHODES D'ANALYSE DE SYSTEMES A ECHELLES DE TEMPS MULTIPLES

CONTRIBUTION A L'ELABORATION D'UN PROCESSEUR D'AIDE A LA SIMPLIFICATION DE MODELES

Soutenue le 09 Juillet 1990 devant le Jury d'examen :

М.	A. FOSSARD	Président
М.М.	P. BORNE	Rapporteur
	A. EL MOUDNI	Rapporteur
Mme.	G. DAUPHIN-TANGUY	Examinateur
М.М.	D. MEIZEL	Examinateur
	M. STAROSWIECKI	Examinateur

Directeur de Thèse : G. DAUPHIN-TANGUY, Professeur à l'I.D.N

.

<u>A mes Parents</u>

..... ----è

AVANT PROPOS

Le travail présenté dans ce mémoire a été effectué au Laboratoire d'Automatique et d'Informatique Industrielle de l'I.D.N., sous la direction de Madame le Professeur G. DAUPHIN-TANGUY.

Nous exprimons notre profonde reconnaissance à Madame DAUPHIN-TANGUY pour la confiance dont elle a fait preuve à notre égard ainsi que pour ses encouragements amicaux tout au long de cette étude. Ses nombreux conseils et remarques ont largement contribué à la réalisation de ce travail. Nous tenons à l'en remercier très chaleureusement.

Nous remercions très vivement Monsieur A. FOSSARD, Professeur à l'E.N.S.A.E. de Toulouse, pour l'honneur qu'il nous fait en acceptant d'être le Président de notre Jury de Thèse.

Nous sommes particulièrement honoré de l'attention que Monsieur P..BORNE, Professeur et Directeur Scientifique de l'I.D.N., Directeur du Laboratoire d'Automatique et d'Informatique Industrielle de ce même établissement, a bien voulu porté à nos travaux, en acceptant de juger notre travail et d'être Rapporteur sur ce mémoire. Qu'il reçoive ici nos très sincères et très vifs remerciements.

11

Nous adressons à Monsieur A. EL MOUDNI, Professeur à l'Université de Casablanca, l'expression de notre gratitude pour l'intérêt qu'il porte à nos travaux en participant à ce Jury. Nous sommes très honoré de sa présence et nous l'en remercions.

Nous exprimons à Monsieur D. MEIZEL, Professeur à l'U.T.C. de Compiègne, nos plus grands remerciements pour l'honneur qu'il nous fait en acceptant de juger ce travail et de participer au Jury de Thèse.

Mes remerciements vont aussi à Monsieur M. STAROSWIECKI, Professeur à l'E.U.D.I.L., pour sa participation au Jury.

Enfin, nous remercions Monsieur M. BOUAYAD, pour l'aide précieuse qu'il nous a apportée lors de la réalisation de ce mémoire.

TABLE DES MATIERES

Introduction Générale	
Chapitre I	
Chapitre II	
Chapitre III	105
Chapitre IV	133
Conclusion Générale	161
Références Bibliographiques	165
Annexes :	177
Annexe I	
Annexe II	181
Annexe III	185

..... ----• ··· · Table des matières

.

CHAPITRE I

MODELISATION ET SIMPLIFICATION DE MODELES

I - L	ntroduction	3
Π-	Structure des systèmes dynamiques	3
	II.1 - Généralités	3
	II.2 - Représentation des systèmes dynamiques linéaires	1
	II.2.1 - Par une équation différentielle	ł
	II.2.2 - Par une matrice de transfert	5
	II.2.3 - Par une équation d'état	3
	a - Définition du vecteur d'état	3
	b - Equation d'état 36	3
	II.3 - Notion de commandabilité et d'observabilité	3
	II.3.1 - Dualité	3
	II.3.2 - Commandabilité	3
	II.3.3 - Observabilité	9
ш	- Méthodes de simplification de modèles	9
	III.1 - Classification des principales méthodes de réduction 39	9
	III.2 Approximation de matrices de transfert	2
	III.2.1 - Approximation de Padé 42	2
	III.2.2 - Approximation par les moments	3
	III.2.3 - Paramètres de Markov 44	Ł
	III.2.4 - Méthode modale 45	5
	III.2.5 - Fractions continues	5

III.2.6 - Approximation de Routh4	ł 9
III.2.7 - Conclusion	50
III.3 - Approximation du vecteur d'état	50
III.3.1 - Méthode des composantes principales	51
III.3.2 - Méthode de symétrisation interne	51
a - Généralités	51
b - Simplification	53
d - Conclusion	54
III.3.3 - Méthodes modales	54
III.3.4 - Méthode d'agrégation	57
III.3.5 - Méthode des perturbations singulières	59
III 4. Complexition	61
III.4 - Conclusion	-
III.4 - Conclusion	52
III.4 - Conclusion	52 52
III.4 - Conclusion	52 52 52
 III.4 - Conclusion	52 52 52 62 52
 III.4 - Conclusion IV - Critères de choix d'une méthode de réduction IV.1 - Existence d'une mesure de qualité du modèle réduit IV.2 - Conservation des propriétés de stabilité IV.3 - Performances IV.3.1 - De type statique 	52 52 52 62 52 62
 III.4 - Conclusion IV - Critères de choix d'une méthode de réduction IV.1 - Existence d'une mesure de qualité du modèle réduit IV.2 - Conservation des propriétés de stabilité IV.3 - Performances IV.3.1 - De type statique IV.3.1 - De type dynamique 	62 62 62 62 62 62
 III.4 - Conclusion IV - Critères de choix d'une méthode de réduction	62 62 62 62 62 62 62 33
 III.4 - Conclusion IV - Critères de choix d'une méthode de réduction IV.1 - Existence d'une mesure de qualité du modèle réduit IV.2 - Conservation des propriétés de stabilité IV.3 - Performances IV.3 - Performances IV.3.1 - De type statique IV.3.1 - De type dynamique IV.3.1 - De régulation IV.4 - Variation des performances en fonction de l'entrée 	52 52 52 62 52 62 62 53 53
 III.4 - Conclusion IV - Critères de choix d'une méthode de réduction IV.1 - Existence d'une mesure de qualité du modèle réduit	 52 52 52 62 52 62 53 63
 III.4 - Conclusion IV - Critères de choix d'une méthode de réduction IV.1 - Existence d'une mesure de qualité du modèle réduit IV.2 - Conservation des propriétés de stabilité	 52 52 52 62 52 62 62 63 63 63 63
 III.4 - Conclusion IV - Critères de choix d'une méthode de réduction IV.1 - Existence d'une mesure de qualité du modèle réduit IV.2 - Conservation des propriétés de stabilité IV.3 - Performances IV.3 - Performances IV.3.1 - De type statique IV.3.1 - De type dynamique IV.3.1 - De type dynamique IV.3.1 - De régulation IV.4 - Variation des performances en fonction de l'entrée IV.5 - Volume de calcul IV.6 - Conservation des modes dominants IV.7 - Signification physique du modèle réduit 	 52 52 52 62 52 62 62 62 63 63 63 63 63 53

V - Méthodes analytiques de mise en évidence des dynamiques	64
V.1 - Définitions d'un système à double échelle de temps	64
V.2 - Bloc-diagonalisation	65
V.3 - Méthodes de détermination des matrices L et M	68
V.3.1 - Calcul des suites L_k et M_k	68
V.3.2 - Calcul des valeurs propres et des vecteurs propres .	69
V.3.3 - Algorithmes de calcul de L	69
VI - Conclusion	70

...... ____ -----٠

METHODES GEOMETRIQUES DE MISE EN EVIDENCE DES DYNAMIQUES D'UN SYSTEME MULTI-ECHELLES DE TEMPS

I - Introduction
II - Rappels sur les normes des matrices carrées
II.1 - Normes de vecteurs
II.2 - Normes matricielles
III - Critères de régularité des matrices carrées
III.1 - Théorème de Hadamard
III.2 - Théorèmes d'Ostrowski
III.2.1 - 1 ^{er} théorème
III.2.2 - 2 ^{ème} théorème
III.2.3 - 3 ^{ème} théorème
III.2.4 - Autre théorème d'Ostrowski 80
III.3 - G-matrice ou condition G81
III.4 - H-matrice
IV - Localisation des valeurs propres d'une matrice carrée dans \mathbb{C} 84
IV.1 - Méthode générale; les cercles de Gershgorin
IV.2 - Polynômes de matrice
IV.3 - Théorème de Brauer
IV.4 - Une variante de la méthode générale
IV.5 - 1 ^{ère} méthode d'Ostrowski
IV.6 - 2 ^{ème} méthode d'Ostrowski

1

IV.7 - Méthode de Fan & Hoffman 88
IV.8 - 3 ^{ème} méthode d'Ostrowski
IV.9 - Régions de Gudkov 90
IV.10 - Ovales de Cassini
V - Application à l'identification des dynamiques
V.1 - Matrice d'état bien conditionnée91
V.1.1 - Théorème
V.1.2 - Exemple
V.2 - Matrice d'état mal conditionnée
V.2.1 - Minimisation de la norme infinie d'une matrice 94
a - Matrice irréductible
b - Algorithme
V.2.2 - Minimisation des rayons des cercles de Gershgorin 99
a - Optimisation de la matrice de calibrage
b - 1 ^{ère} méthode de minimisation des rayons
c - 2 ^{ème} méthode de minimisation des rayons 101
VI - Conclusion

BLOC-DIAGONALISATION PAR LA SIGNATURE D'UNE MATRICE CARREE D'UN SYSTEME A ECHELLES DE TEMPS MULTIPLES

I - Introduction
II - Guelques définitions
II.1 - Définition 1
II.2 - Définition 2
II.3 - Définition 3 109
III - Signature d'une matrice carrée
III.1 - Signature d'une matrice carrée 110
III.1.1 - Fonction signe d'une variable complexe
III.1.2 - Cas d'une variable matricielle 110
a - Fonction de matrice 110
b - Définition et propriétés 112
III.1.3 - Calcul de la signature d'une matrice carrée 115
III.2 - Signature généralisée d'une matrice carrée
III.3 - Projecteurs propres 116
III.3.1 - Propriétés 117
III.3.2 - Calcul des projecteurs propres 117
III.4 - Localisation du spectre de A dans un intervalle \mathcal{I} =] α_1, α_2 [. 119
III.4.1 - Signature dans l'intervalle $\mathcal J$

Table des matières

CHAPITRE III

-

III.4.2 - Nombre de valeurs propres de A dans $\mathcal I$ 120
III.5 - Localisation du spectre de A à l'intérieur d'une couronne 120
III.5.1 - Signature de A par rapport à un cercle $C(0,\rho)$ 120
a - définition 120
b - Signature de A par rapport au cercle $\mathcal{C}(0,\rho)$ 121
III.5.2 - Signature de A dans la couronne C(0,r,R) 121
III.5.3 - Nombre de valeurs propres de A dans $C(0,r,R)$ 122
IV - Bloc-diagonalisation
IV.1 - Détermination de la matrice de changement de base 123
IV.2 - Algorithmes 124
IV.2.1 - Algorithme 1 124
IV.2.2 - Algorithme 2 127
IV.3 - Critères de séparabilité
IV.3.1 - Méthode utilisant r _a 130
IV.3.2 - Méthode utilisant r_g ou ρ
V-Conclusion

24

Table des matières

CHAPITRE IV

EXEMPLES D'APPLICATION

I - Exemple 1 [Chow , 1976]
I.1 - Algorithme 1
I.2 - Algorithme 2 137
II - Exemple 2 [Hickin, 1980]
II.1 - Algorithme 1
II.2 - Algorithme 2 140
III - Exemple 3 [Kando, 1988]
III.1 - Algorithme 1
III.2 - Algorithme 2
IV - Exemple 4 [Magni, 1981]
IV.1 - Algorithme 1
IV.2 - Algorithme 2 147
V - Exemple 5 [Mishra, 1980]
V.1 - Algorithme 1 151
V.2 - Algorithme 2 153
VI - Comparaison
VI.1 - Algorithme 1
VI.2 - Algorithme 2 157
VI.2.1 - Définition 2
VI.2.2 - Définition 3
VII - Conclusion

INTRODUCTION GENERALE

. Depuis longtemps déjà l'ingénieur automaticien utilise des calculateurs pour l'analyse et la synthèse des lois de commande. Les outils logiciels d'aide à la conception des boucles de commande, véritable CAO pour l'automatique, ne peuvent donc que continuer à se développer et à s'affiner [Barraud, 1989], [Gentil, 1986], [Bennani, 1990].

Ces outils doivent permettre de résoudre plusieurs types de problèmes tels que la simulation, la simplification de modèles, le calcul de commandes ou encore l'optimisation. Toutefois, l'utilisation des outils de CAO n'est pas toujours simple sur le plan informatique.

Dans le cadre d'un projet de réalisation d'un système à base de connaissances, d'aide à la simplification de modèles, utilisant des techniques d'Intelligence Artificielle (IA) associées à un langage de représentation centrée objet [Bouayad, 1988], les travaux présentés dans ce mémoire constituent une contribution à la définition de l'expertise au point de vue de la simplification de modèles et du développement des outils de synthèse nécessaires à l'élaboration de la base de connaissances.

Le premier chapitre est une synthèse bibliographique des différentes techniques de réduction des systèmes continus linéaires stationnaires modélisés par une matrice de transfert ou une équation d'état. Des critères de choix d'une méthode de simplification sont définis pour mieux guider l'utilisateur dans sa démarche.

Le deuxième chapitre, par une analyse numérique et graphique, traite plus particulièrement de l'identification des dynamiques, nécessaire à tout découplage ou réduction. Sans calcul des valeurs propres ni des vecteurs propres, cette identification est réalisée par des méthodes géométriques permettant ainsi un étiquetage des dynamiques du système étudié. L'introduction d'une nouvelle méthode, associée aux cercles de Gershgorin, permet par un changement de base diagonal optimal, de mieux localiser les valeurs propres de la matrice d'état du système. Là aussi, des critères de choix portant sur le bon ou le mauvais conditionnement

29

d'une matrice sont établis. Lorsqu'ils sont vérifiés, ces critères nous renseignent sur l'utilisation directe des méthodes géométriques de mise en évidence des dynamiques.

Dans le troisième chapitre, nous proposons trois méthodes qui, par une transformation linéaire, permettent la bloc-diagonalisation de la matrice d'état du système, quel que soit son conditionnement, tout en regroupant dans chaque bloc les dynamiques considérées. Cette technique est basée sur le calcul de la signature de matrice et ne nécessite pas non plus la connaissance du spectre de celle-ci. Des critères de mesure de la séparabilité des sous systèmes lent et rapide fournissent des renseignements sur la meilleure méthode à adopter.

Dans la dernière partie de ce mémoire, des exemples d'application permettent une mise en œuvre pratique de ces travaux et conduisent à l'élaboration d'heuristiques pour le choix d'une méthode de simplification, tenant compte des caractéristiques physiques du système étudié. Chapitre I

<u>MODELISATION ET</u> <u>SIMPLIFICATION DE MODELES</u>

I - Introduction

Compte tenu des moyens de calcul théoriques et matériels (support informatique en particulier) actuellement disponibles ainsi que de la modélisation systématique des processus industriels, la tendance est de modéliser de manière aussi fine que possible les phénomènes observés ce qui conduit généralement à des représentations de grande dimension peu faciles à analyser et trop complexes pour la synthèse d'une loi de commande. D'où le désir de simplifier les représentations obtenues pour des raisons d'ordre pratique et/ou économique.

Dans ce sens, un important travail a été fait sur les méthodes de réduction, [Bertrand, 1976, 1985], [Benrejeb, 1986], [Bosley, 1972], [Decoster, 1976-a,b,c], [Jamshidi, 1981], [Kokotovic, 1976, 1980, 1982], [Warwick, 1984]. Les applications vont de la simulation permettant de donner les tendances d'évolution du système complexe à l'élaboration des commandes simplifiées.

Le but est de remplacer un modèle d'ordre n représentant le système donné (Σ) par un modèle réduit ($\Sigma_{\mathcal{R}}$) d'ordre m < n conservant les propriétés dominantes du système initial. Pour mesurer la qualité de l'approximation on considère soit les caractéristiques du vecteur erreur de sortie $\varepsilon = y - y_{\mathcal{R}}$, soit celles du vecteur erreur d'état, entre les deux modèles pour une même entrée standard (impulsion, échelon, ...)

De très nombreuses méthodes de réduction ont été proposées, nous étudierons le cas des modèles d'état linéaires stationnaires multivariables en présentant tout d'abord de manière unifiée celles qui nous paraissent les plus significatives.

II - Structure des systèmes dynamiques

II.1 - Généralités

On appelle système dynamique un ensemble physique susceptible d'évoluer en fonction du temps. Il est généralement caractérisé par la nature des signaux qui interviennent dans sa description :

- si le temps est une variable continue, il est dit continu
- si le temps est une variable discrète, il est dit discret.

Le modèle mathématique d'un système réel, doit représenter l'évolution des sorties pour des entrées u et un horizon donnés.

Ces relations mathématiques entre sorties y et entrées u qui traduisent le principe de causalité et les lois physiques sont généralement représentées par des équations de fonctionnement de type différentiel (systèmes d'équations différentielles, équation d'état) ou fréquentiel (matrice de transfert) dans le cas linéaire stationnaire.

Par la suite nous utiliserons indifféremment l'appellation système pour désigner le système réel ou son modèle mathématique.

II.2 - Représentation des systèmes dynamiques linéaires

II.2.1 - Par une équation différentielle

La mise en équation d'un système physique conduit souvent à des relations du type :

(I.1)
$$f_i(y_1^{(r_1)}, ..., y_1, ..., y_q^{(r_q)}, ..., y_q, u_1^{(k_1)}, ..., u_1, ..., u_p^{(k_p)}, ..., u_p, t) = 0$$

où $y_i^{(r_i)}$ est la dérivée d'ordre r_i de la sortie y_i , i = 1, ..., q

 $u_j^{(k_j)}$ est la dérivée d'ordre k_j de l'entrée u_j , j = 1, ..., pr_i, k_j étant des entiers positifs.

Dans le cas monovariable (I.1) est réduite à la forme :

(I.2)
$$f(y^{(r)}, y^{(r-1)}, ..., y, u^{(k)}, u^{(k-1)}, ..., u, t) = 0$$

Chapitre I

relation qui, dans le cas linéaire, peut être écrite sous la forme :

(I.3)
$$\sum_{h=0}^{h=r} a_h y^{(r-h)} = \sum_{l=0}^{l=k} b_l u^{(k-l)}$$
 avec $a_0 \neq 0$

II.2.2 - Par une matrice de transfert

La relation (I.1) se traduit par un certain nombre de transmittances entre les entrées u_j pour j = 1, ..., p et les sorties y_i pour i = 1, ..., q du processus. L'ensemble de ces transmittances constitue la matrice de transfert H(p) de dimension qxp et (I.1) devient alors sous la forme :

$$Y(p) = H(p) U(p)$$

avec

(I.4)
$$H(p) = \begin{bmatrix} H_{11}(p) & \dots & H_{1p}(p) \\ & & \ddots \\ & & \ddots \\ & & & H_{q1}(p) & \dots & H_{qp}(p) \end{bmatrix}$$

où \forall i, j, H_{ij}(p) est une fraction rationnelle dépendant de la variable de Laplace p telle que le degré du numérateur soit inférieur ou égal à celui du dénominateur.

Exemple :

$$H(p) = \frac{Y(p)}{U(p)} = \frac{1}{(p-1)(p-2)(p-3)} \begin{bmatrix} p^2 + 11 & -10p & p^2 + 1 \\ 0 & p^2 - 6p & -p \end{bmatrix}$$

Dans le cas monovariable (I.4) sera le rapport de deux polynômes en p :

(I.5)
$$F(p) = \frac{N(p)}{D(p)} = \frac{\sum_{j=0}^{j=k} b_j p^{k-j}}{\sum_{i=0}^{j=q} a_i p^{q-i}}$$
 avec $a_0 \neq 0$ et $k \le q$

II.2.3 - Par une équation d'état

a - Définition du vecteur d'état

La résolution des relations mathématiques entre sorties et entrées permettant de déterminer d'une manière unique la valeur des sorties pour tout $t \ge t_0$, nécessite en plus de la connaissance de la valeur des entrées pour $t \ge t_0$, celle d'un minimum de variables à l'instant t_0 . Ces variables sont appelées variables d'état. Elles peuvent être considérées comme les composantes d'un vecteur, appelé vecteur d'état, appartenant à un espace vectoriel \mathbb{R}^n (ou \mathbb{C}^n) appelé espace d'état.

Nous pouvons dire que, à chaque instant, le vecteur d'état représente la mémoire minimale du passé nécessaire pour pouvoir prédire le comportement futur d'un système.

Notons que les variables d'état peuvent avoir un sens physique ou non et que le vecteur d'état correspondant à un système n'est pas unique et dépend de la base dans laquelle il est représenté.

b - Equation d'état

Une classe très importante de processus physiques peut être représentée par un modèle mathématique du type :

(I.6)
$$\begin{cases} \dot{\mathbf{x}}(t) = \mathcal{F}(\mathbf{x}(t), \mathbf{u}(t), t) \\ \mathbf{y}(t) = \mathcal{G}(\mathbf{x}(t), t) \end{cases}$$

36

Cette classe comprend des systèmes linéaires et non linéaires; De plus, la distinction entre systèmes monovariables et multivariables n'est pas formellement nécessaire.

Cette représentation est appelée équation d'état *sous forme* différentielle. Elle a l'avantage d'avoir apporté une unité dans l'étude de ces systèmes, tout comme la notion de fonction de transfert l'avait apportée dans l'étude des systèmes dont le comportement était décrit par des équations différentielles linéaires.

Il est évident qu'un système peut être représenté par différentes équations ayant la même structure que (I.6) mais où les vecteurs d'état sont différents. Généralement, le choix du vecteur d'état sera guidé par la simplicité des équations, par la signification physique des composantes du vecteur d'état, et par le but poursuivi.

Tout au long de cette étude, nous considérerons les systèmes linéaires stationnaires continus déterministes modélisés par une équation d'état du type :

(I.7) (
$$\Sigma$$
) $\begin{cases} x = A x + B u \\ y = C x , x_0 = x(t_0) \end{cases}$

dont l'évolution est donnée par :

(I.8)
$$x(t) = \Phi(t,t_0) x_0 + \int_{t_0}^{t} \Phi(t,\tau) B u(\tau) d\tau$$

où

x est le vecteur état, $x \in \mathbb{R}^n$ x_0 est le vecteur état initial A est la matrice d'évolution du système, $A \in \mathbb{R}^{n \times n}$ B " " de commande, $B \in \mathbb{R}^{n \times p}$ C " " d'observation, $C \in \mathbb{R}^{q \times n}$ Chapitre I

et Φ est la fonction de transition, définie ici par :

$$\Phi(t, t_0) = e^{A(t-t_0)}$$

Cette représentation est couramment utilisée car elle permet de reprendre les résultats usuels de l'algèbre des matrices.

II.3 - Notion de commandabilité et d'observabilité

Ayant choisi pour la représentation d'un système un vecteur d'état et son équation d'évolution, on peut se poser a priori deux importantes questions à propos des propriétés de ce modèle.

- Peut-on déterminer une commande admissible le transférant d'un état arbitraire $x_0 = x(t_0)$ à un autre état arbitraire $x_1 = x(t_1)$?

- Peut-on déterminer l'état initial $x_0 = x(t_0)$ à partir d'une observation des sorties sur un intervalle de temps $[t_0, t_1]$?

II.3.1 - Dualité

On appelera systèmes duaux les systèmes définis respectivement par les équations :

(I.9) (S)
$$\begin{cases} \dot{x}(t) = A x(t) + B u(t) \\ y = C x(t) \end{cases}$$
 (S)
$$\begin{cases} \dot{x}(t) = A^{T} \hat{x}(t) + C^{T} v(t) \\ \hat{y} = B^{T} \hat{x}(t) \end{cases}$$

II.3.2 - Commandabilité

Un système (Σ) est dit commandable si, étant donné un instant quelconque t₀ et deux états quelconques x₀ et x₁, il est possible de trouver un instant t₁ (t₁ \geq t₀) et une commande admissible u(t) sur l'intervalle de temps [t₀, t₁], transférant le système (Σ) de l'état x₀ à l'instant t₀ à l'état x₁ à l'instant t₁. Chapitre I

Une condition nécessaire et suffisante pour que (Σ) soit commandable est que :

(I.10)
$$\forall t_0 \exists t_1 > t_0 \text{ tel que } W(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_0, \tau) B B^T \Phi^T(t_0, \tau) d\tau$$

soit non singulière.

Pour un système linéaire stationnaire, cette relation se traduit par :

$$\exists r < n, rang \left[B, A B, A^{2} B, ..., A^{r-1} B \right] = n$$

II.3.3 - Observabilité

Un système (Σ) est dit observable si, étant donné un instant quelconque t₀, il existe un instant t₁ (t₁ \ge t₀) tel que l'observation de y(t) et la connaissance de u(t) sur l'intervalle de temps [t₀, t₁] permettent de déterminer l'état initial x(t₀).

Une condition nécessaire et suffisante pour qu'un système soit observable est que son dual soit commandable.

Pour un système linéaire stationnaire :

$$\exists r < n, rang \begin{bmatrix} C^{\mathsf{T}}, A^{\mathsf{T}}C^{\mathsf{T}}, A^{2}^{\mathsf{T}}C^{\mathsf{T}}, \dots, A^{r-1}^{\mathsf{T}}C^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}} = n$$

III - <u>Méthodes de simplification de modèles</u>

III.1 - Classification des principales méthodes de réduction

La simplification d'un système peut être classée en trois catégories :

- simplification de structure

- décomposition spatiale
- réduction de dimensionnalité

La simplification de structure consiste à remplacer un modèle par un autre représenté par des équations plus simples ou plus faciles à traiter. Ainsi, il est habituel d'étudier un système non linéaire au voisinage d'un point de fonctionnement, donc de linéariser le modèle correspondant. Suivant le problème posé, il peut être intéressant de remplacer un système d'équations aux dérivées partielles par des équations différentielles ordinaires, ou des équations différentielles par des équations de récurrence.

La notion de décomposition spatiale consiste à partitionner le système initial en deux ou plusieurs sous-systèmes, à traiter et résoudre les problèmes sur ces derniers tels que la réalisation des unités de commandes locales, et ensuite à coordonner l'ensemble pour avoir une commande globale.

Cependant, c'est la notion de réduction de dimensionnalité qui a suscité un regain d'intérêt ces dernières années.

Les méthodes de simplification peuvent être regroupées en deux classes :

- les méthodes qui conservent les modes dominants ou les composantes d'état les plus significatives du système initial.

- la réduction optimale : le modèle réduit est, *d'une certaine manière*, une approximation optimale du modèle initial sans tenir compte a priori des modes dominants ni des principales composantes d'état du système initial.

Ces méthodes opèrent toutes sur deux types de modèles :

Figure III.1

4

Chapitre I

III.2 - Approximation de matrices de transfert

Du fait que toutes les méthodes ne sont pas applicables aux systèmes multivariables, nous traiterons le cas monovariable et nous le signalerons lorsqu'on peut généraliser aux systèmes multivariables.

Toutes les méthodes reposent sur le même principe de base : la fonction de transfert réduite possède 2m paramètres parmi les 2n du système global.

Les modèles réduits obtenus par ces méthodes possèdent de bonnes qualités statiques mais peuvent poser des problèmes de stabilité.

III.2.1 - Approximation de Padé [Binder, 1978]

L'approximation de Padé d'une fonction de transfert F(p) est une fraction rationnelle :

$$\frac{N_{k}(p)}{D_{m}(p)} = \frac{a_{0} + a_{1}p + \dots + a_{k}p^{k}}{b_{0} + b_{1}p + \dots + b_{m}p^{m}}$$

dont le développement en série de Taylor autour de p = 0 est le même que celui de F(p) jusqu'à l'ordre m + k.

$$F(p) = c_0 + c_1 p + c_2 \frac{p^2}{2!} + \dots$$

Les coefficients a_i et b_i sont obtenus par résolution du système d'équation :

$$a_{0} = b_{0}c_{0}$$

$$a_{1} = b_{0}c_{1} + b_{1}c_{0}$$

$$\vdots$$

$$0 = b_{0}c_{k+m} + \dots + b_{m}c_{k}$$

En général, on fixe a_0 ou $b_0 = 1$.

La méthode se généralise simplement au cas multivariable. Les algorithmes de calcul des coefficients sont donnés dans [Shamash, 1974, 1975-a,b].

Propriétés :

- Si les modèles, initial et réduit, sont stables, l'erreur statique entre eux est nulle pour toute entrée de la forme :

$$u(t) = \sum_{i=0}^{m+k} \alpha_i t^i$$

- Le modèle réduit peut être instable pour un modèle initial stable. De même, un modèle instable peut conduire à un approximant stable.

III.2.2 - Approximation par les moments

Le moment de réponse impulsionnelle d'ordre r d'un système de réponse impulsionnelle f(t) se définit comme suit :

$$M_r = \int_0^{\infty} t^r f(t) dt , \quad r \ge 0$$

Les moments sont liés aux coefficients du développement en série de la fonction de transfert F(p). On peut écrire :

$$F(p) = \int_{0}^{\infty} e^{-p\tau} f(\tau) d\tau = \sum_{r=0}^{\infty} (-1)^{r} M_{r} \frac{p^{r}}{r!}$$

on a :

$$M_{r} = \left[\left(-1\right)^{r} \frac{d^{r} F(p)}{dp^{r}} \right]_{p=0}$$

La fonction de transfert qui permet d'obtenir les m+k premiers moments de F(p) est donc son approximant de Padé.

Les systèmes multivariables ont été considérés par Zakian [Zakian, 1973].

 $E \times emple$: Soit le système d'ordre 4 défini par la fonction de transfert :

$$F(p) = \frac{p^{3} + 7p^{2} + 24p + 24}{p^{4} + 10p^{3} + 35p^{2} + 50p + 24}$$

le modèle réduit d'ordre 2, noté $F_2(p)$, obtenu en calculant les moments est :

$$F_2(p) = \frac{84p + 288}{115p^2 + 396p + 288}$$

III.2.3 - Paramètres de Markov

Si
$$F(p) = b_0 - b_1 p^{-1} + b_2 p^{-2} - ...$$

est le développement de F(p) pour $p = \infty$, les coefficients b_i sont appelés paramètres de Markov.

Propriétés :

L'identification par le modèle réduit de quelques paramètres de Markov du système initial permet :

- d'obtenir une meilleure qualité du transitoire

- de mieux reproduire les qualités de stabilité du modèle initial qu'un approximant de Padé, mais sans qu'on puisse garantir la stabilité (resp. l'instabilité) pour un modèle initial stable (resp. instable).

III.2.4 - Méthode modale

Elle consiste en la décomposition en éléments simples de la fonction de transfert du système. Le modèle réduit est obtenu en conservant dans cette décomposition m modes choisis a priori, avec les résidus associés.

L'inconvénient est qu'elle nécessite le calcul des modes et des résidus. De plus l'ordre du système réduit ne peut pas toujours être fixé par l'utilisateur, puisque les modes sont conservés avec leur multiplicité.

Cette méthode est intéressante quand le système se présente déjà sous forme factorisée :

où : $F_1(p)$ est la fonction de transfert des actionneurs $F_2(p)$ est la fonction de transfert du processus $F_3(p)$ " " des capteurs.

III.2.5 - Fractions continues

<u>1ère forme de Cauer</u>

$$F(p) = \frac{1}{h'_{1}p + \frac{1}{h'_{2} + \frac{1}{h'_{3}p + \frac{1}{h'_{4} + \frac{1}{\vdots}}}}}$$

Les coefficients h'i sont les premiers termes de la division de polynômes suivant les puissances décroissantes. Le modèle

réduit s'obtient simplement par troncature de la décomposition.

2^{ème} forme de Cauer

Les coefficients h_i sont les premiers termes de la division de polynômes suivant les puissances croissantes. Le modèle réduit s'obtient simplement par troncature de la décomposition.

<u>3^{ème} forme de Cauer [Goldman, 1977]</u>

Le calcul des paramètres est donné dans [Shieh, 1974].

L'extension de la méthode au cas multivariable est possible lorsque le nombre d'entrées est égal au nombre de sorties. La matrice de transfert est alors décomposée sous la forme suivante [Chen, 1974] :

$$F(p) = \left[H_1 + p\left[H_2 + p\left[\dots\right]^{-1}\right]^{-1}\right]^{-1}$$

L'algorithme de réduction est très simple mais nécessite une légère modification pour être applicable lorsque certains H_i

sont nuls.

Chuang, [Chuang, 1970] a proposé la décomposition suivante :

$$F(p) = \frac{1}{h_1 + \frac{p}{h'_1 + \frac{1}{h_2 + \frac{p}{h'_1 + \frac{p}{h_2 + \frac{p}{h'_1 + \frac{p}{h_2 + \frac{p}{h'_1 + \frac{p}{h'_1 + \frac{p}{h_2 + \frac{p}{h'_1 + \frac{$$

les h_i et h'_i étant obtenus en divisant alternativement suivant les puissances croissantes et décroissantes.

Le modèle réduit obtenu en tronquant à l'ordre m cette décomposition possède m moments et m paramètres de Markov identiques à ceux de F(p).

Avantage :

La connaissance des modes dominants n'est pas indispensable dans la définition du modèle réduit.

Propriété :

La stabilité du modèle réduit n'est pas garantie même si le système initial est stable. Ceci est dû au fait que les coefficients du dénominateur du modèle réduit dépendent des coefficients du numérateur et dénominateur du système initial.

Exemple : en reprenant l'exemple d'ordre 4 précédent, on obtient le modèle réduit d'ordre 2, noté $F_2(p)$, en utilisant :

la 1^{ère} forme de Cauer :

$$F(p) = \frac{1}{p + \frac{1}{\frac{1}{3} + \frac{1}{\frac{9}{10}p + \frac{1}{\frac{25}{21} + \frac{1}{5}}}}}$$

soit

$$F_2(p) = \frac{5p + 12}{5p^2 + 27p - 14}$$

la 2^{ème} forme :

$$F(p) = \frac{1}{1 + \frac{1}{\frac{12}{13p} + \frac{169}{\frac{169}{12} + \frac{1}{\frac{288}{1495p} + \frac{1}{\frac{1}{12}}}}}$$

$$F_2(p) = \frac{84p + 288}{115p^2 + 396p + 288}$$

la 3^{ème} forme :

$$F(p) = \frac{1}{1 + p + \frac{1}{\frac{12}{p} + \frac{1}{2} + \frac{1}{\frac{1}{2}}}}$$

$$F_2(p) = \frac{p + 24}{p^2 + 27p + 24}$$

On peut remarquer que le modèle réduit obtenu par la 1^{ère} méthode est instable.

III.2.6 - Approximation de Routh

Cette méthode utilise la décomposition suivante :

$$F(p) = \sum_{i=1}^{n} \beta_i \left(\prod_{j=1}^{i} F_j(p) \right)$$
 avec β_i constants

Оù

$$F_{1}(p) = \frac{1}{1 + \alpha_{1}p + \frac{1}{\alpha_{2}p + \frac{1}{1}}} et$$

$$F_{j}(p) = \frac{1}{\alpha_{j} p + \frac{1}{\alpha_{j+1} p + \frac{1}{\dots + \frac{1}{\alpha_{n} p}}} pour j = 2, ..., n$$

Le modèle réduit à l'ordre m s'obtient en imposant $\alpha_j = 0$ pour j > m et $\beta_i = 0$ pour i > m. Le calcul des coefficients α_j et β_i est donné dans [Hutton, 1975].

Le modèle réduit obtenu est une approximation de F(p)autour de $p = \infty$. Pour se ramener autour de p = 0, on utilise la transformation réciproque :

$$F(p) \longrightarrow F_r(p) = \frac{1}{p} F\left(\frac{1}{p}\right)$$

Propriétés :

- Si le modèle initial est stable, tout modèle réduit sera stable par construction, la réciproque n'est pas en général vérifiée.

- Le système réduit tend vers le système initial au sens des énergies de réponse impulsionnelle quand son ordre croît.

- Les pôles et les zéros du système réduit tendent vers les pôles et les zéros du système initial quand son ordre croît.

- Le modèle réduit d'ordre m identifie les m premiers moments de F(p).

- La méthode est applicable aux systèmes multivariables. On détermine d'abord le dénominateur commun de toutes les fonctions de transfert composant la matrice de transfert puis on applique la méthode de Routh à chaque composante de la matrice de transfert.

Exemple : le modèle réduit de l'exemple précédent obtenu par la méthode de Routh est :

$$F_2(p) = \frac{120p + 120}{151p^2 + 250p + 120}$$

III.2.7 - Conclusion

Ces méthodes sont très bien adaptées au calcul numérique, ce qui explique leur attrait. Cependant, elles ont l'inconvénient d'être mal adaptées aux problèmes de commande, et de poser dans certains cas des problèmes de stabilité des modèles réduits.

III.3 - Approximation du vecteur d'état

Considérons le système dynamique linéaire (Σ) d'ordre n représenté par l'équation (I.7). Le problème de simplification consiste à déterminer un modèle réduit :

(I.11)
$$(\Sigma_{\mathcal{R}})$$

$$\begin{cases} \dot{x}_{\mathcal{R}} = A_{\mathcal{R}} x_{\mathcal{R}} + B_{\mathcal{R}} u \\ y_{\mathcal{R}} = C_{\mathcal{R}} x_{\mathcal{R}} \end{cases}$$

d'ordre m < n dont le vecteur d'état soit une *bonne approximation* de m composantes jugées suffisamment représentatives, selon un critère qui reste à définir [Lastman, 1984], [Rao, 1981, 1983], [Skelton, 1980, 1982], [Syrcos, 1983], [Therapos, 1984], [Zhao, 1981], du vecteur d'état initial lorsque la même excitation u est appliquée. Le choix de ces m composantes est relativement aisé lorsque les variables d'état ont un sens physique.

Ainsi posé, le problème de réduction montre bien l'importance des choix de l'entrée, de la structure du modèle réduit et du critère utilisé pour mesurer la qualité de l'approximation sur le résultat final.

Les principales méthodes reposent sur un même principe consistant à projeter le vecteur d'état sur un sous-espace particulier choisi a priori. La représentation initiale est modifiée par un changement de base, différent suivant les méthodes, de façon à obtenir une nouvelle représentation, et le nouveau vecteur état est tronqué.

III.3.1 - <u>Méthode des composantes principales</u> [Skelton, 1980-1982]

Elle consiste à rechercher les composantes d'état qui interviennent de manière significative dans une fonction coût donnée a priori, et à ne retenir que celles-ci dans le modèle réduit.

<u>Avantage</u> : simple à mettre en œuvre.

<u>Inconvénients</u> : ne conserve pas nécessairement la stabilité ne conserve pas le gain statique.

III.3.2 - <u>Méthode de symétrisation interne</u> [Moore, 1981], [Pernebo, 1982]

a - <u>Généralités</u>

Considérons le système (Σ) continu linéaire supposé stable commandable et observable. Les grammians de commandabilité W_{r}

51

et d'observabilité W_o sont définis par :

(I.12)
$$W_c = \int_0^{\infty} e^{At} B B^T e^{A^T t} dt$$

et

(I.13)
$$W_o = \int_o^{-} e^{A^T t} C^T C e^{A t} dt$$

 W_c et W_o sont des matrices symétriques semi-définies positives et vérifient les propriétés suivantes :

- W_c et W_o ne sont pas invariants par un changement de base P, en effet :

(I.14) si (A,B,C)
$$\longrightarrow \stackrel{P}{\longrightarrow} \left| \widetilde{A} = P^{-1} A P ; \widetilde{B} = P^{-1} B ; \widetilde{C} = C P \right|$$

alors $\widetilde{W}_{c} = P^{-1} W_{c} \left[P^{-1} \right]^{T}$ et $\widetilde{W}_{o} = P^{T} W_{o} P$

- W_c (resp. W_o) est solution de l'équation de Lyapunov :

(I.15) (a)
$$A W_c + W_c A^T = -B B^T$$

(resp. (b) $A^T W_o + W_o A = -C^T C$)

Les grammians sont liés aux propriétés de commandabilité et d'observabilité du modèle (Σ) :

- Le système décrit par (Σ) est complètement commandable (resp. observable) si et seulement si la matrice W_c (resp. W_o) est non singulière.

- Les valeurs propres de W_c (resp. $W_o)$ sont interprétées comme des mesures de degré de commandabilité (resp. observabilité) et par conséquent caractérisent l'importance de chaque composante de l'état du (Σ) relativement au comportement des entrées-sorties du

52

système.

b - Simplification

Elle consiste à rechercher les composantes d'état les plus fortement commandables et observables. Pour cela on détermine le changement de base T : $x \rightarrow x^*$ qui égalise, tout en les diagonalisant, les matrices W_c et W_o de la manière suivante :

$$T^{-1} W_{c} \left[T^{-1} \right]^{T} = T^{T} W_{o} T = W$$

avec

On organise les composantes du vecteur état pour avoir :

 $W = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \vdots \end{bmatrix}$

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n \ge 0$$

On remarque que la matrice T diagonalise le produit W_cW_o . L'expression de T s'obtient aisément à partir de la décomposition en valeurs singulières de W_cW_o .

Lorsque $\sigma_m \gg \sigma_{m+1}$ ou $\sum_{i=1}^m \sigma_i \gg \sum_{i=m+1}^n \sigma_i$ le modèle réduit qui

reflète la partie la plus observable et commandable du système est simplement défini par :

$$\mathsf{A}_{\mathcal{R}} = \mathsf{P} \, \widetilde{\mathsf{A}} \, \mathsf{P}^{\mathsf{T}} \quad \mathsf{B}_{\mathcal{R}} = \mathsf{P} \, \widetilde{\mathsf{B}} \qquad \mathsf{C}_{\mathcal{R}} = \, \widetilde{\mathsf{C}} \, \mathsf{P}^{\mathsf{T}}$$

avec
$$P = [I_m \ 0]$$

La matrice de sortie peut cependant être déterminée d'une autre manière, le choix précédent ne correspondant à aucune procédure d'optimisation.

d - Conclusion

Cette méthode présente un certain nombre d'avantages en particulier sur le plan numérique : des algorithmes très performants existent pour résoudre les équations de Lyapunov (I.15) associées à W_c et W_o et pour diagonaliser des matrices symétriques. De plus le modèle réduit obtenu est toujours stable.

III.3.3 - Méthodes modales

Davison [Davison, 1966, 1968], a développé une méthode $(1^{tre} méthode de Davison)$ basée sur l'analyse modale en vue de trouver un modèle d'ordre réduit. Cependant, sa méthode n'assure pas la conservation du gain statique dans le modèle réduit.

Des communications entre Davison et Chidambara [Chidambara, 1967-a,b,c] ont permis d'établir des modifications de la méthode initiale de Davison et ont donné lieu à :

- la 1^{ère} méthode de Chidambara
- la 2^{ème} méthode de Chidambara
- la 1^{ère} méthode de Davison modifiée.

Davison a proposé, par la suite, sa 2^{ème} méthode modifiée basée sur l'annulation de l'erreur statique en prenant une entrée à la fois. En même temps, Marshall, [Marshall, 1966], a développé une technique de réduction qui permet de conserver les propriétés en régime permanent du modèle initial. Fossard, [Fossard, 1970], a apporté une modification de la méthode initiale de Davison lui permettant de conserver le gain statique dans le modèle réduit, et a montré que l'avantage du modèle de Davison résidait dans l'excitation correcte des modes conservés dans le vecteur d'état réduit. Dans sa comparaison de ces différentes techniques, Wilson, [Wilson, 1974], a montré que la 1^{ère} méthode de Chidambara était équivalente à la 1^{ère} méthode modifiée de Davison et la 2^{ème} méthode de Chidambara équivalente à celle de Marshall.

Litz, [Litz, 1981], a établi une méthode modale basée sur l'optimisation de l'intégrale du carré de l'erreur entre les variables d'état dominantes des deux modèles initial et réduit.

Principe :

Considérons le système (Σ) modélisé par l'équation (I.7). Supposons que x₀ = 0 et que la matrice d'état A soit diagonalisable. Dans la base modale, nous avons :

(I.16)
$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} G_1 \\ G_2 \end{bmatrix} \mathbf{u}$$

avec

$$\begin{bmatrix} z_1(0) \\ z_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

et

(I.17)
$$x = Hz = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

 Λ_1 (resp. Λ_2) est supposée contenir les m (resp. n-m) valeurs propres dominantes (resp. non dominantes) de A.

La démarche consiste à négliger les n-m modes associés à Λ_2 . Cependant, la façon avec laquelle le système réduit est déterminé, varie d'une méthode à une autre. En effet les hypothèses sur le rôle des valeurs propres non dominantes sont différentes selon les méthodes :

- pour Davison : $z_2 = 0$

- pour Chidambara : $z_2 = -\Lambda_2^{-1}G_2u$

Autrement dit, Davison néglige totalement les pôles non dominants alors que Chidambara en conserve le gain statique.

Comparaison :

Le tableau suivant [Bonvin, 1982] contient un résumé des résultats de ces différentes techniques, sauf celle de Litz, et les propriétés qu'elles engendrent. Sachant que le modèle réduit s'écrit sous la forme (Annexe I) :

$$\mathbf{x}_{\mathcal{R}} = \mathbf{A}_{\mathcal{R}} \mathbf{x}_{\mathcal{R}} + \mathbf{B}_{\mathcal{R}} \mathbf{u} + \mathbf{B}_{\mathcal{D}} \mathbf{u}$$

avec une relation permettant de déduire x_{_{\!\!\mathcal N\!\!}} (composante rapide négligée) à partir de x_{_{\!\!\mathcal R\!\!}} et de u :

$$\mathbf{x}_{\mathcal{N}} = \mathbf{A}_{\mathcal{N}} \mathbf{x}_{\mathcal{R}} + \mathbf{B}_{\mathcal{N}} \mathbf{u}$$

nous avons :

	Davison	l ^{ère} modifiée de Davison	Fossard	Marshall
۸ _q	-1 H ₁₁ Δ ₁ H ₁₁	$H_{11} \Delta_1 H_{11}^{-1}$	-1 H ₁₁ Δ ₁ H ₁₁	-1 H ₁₁ A ₁ H ₁₁
B _a	H ₁₁ G ₁	$H_{11}G_1 + A_{R}H_{12}A_2^{-1}G_2$	-1 H ₁₁ G ₁ +Α _χ H ₁₂ Δ ₂ G ₂	-1 H ₁₁ G ₁ +A ₂ H ₁₂ A ₂ G ₂
B₂	0	$-H_{12} \Delta_2^{-1} G_2$	$-H_{12} \Lambda_2^{-1} G_2$	0
A _X	-1 H ₂₁ H ₁₁	-1 H ₂₁ H ₁₁	$H_{21} H_{11}^{-1}$	-1 H ₂₁ H ₁₁
B _۶	0	$R \Delta_2^{-1} G_2$	$R \Delta_2^{-1} G_2$	$R \Delta_2^{-1} G_2$
х _я (0)	o	-1 -H ₁₂ Å ₂ G ₂ u(o)	0	0
× _{۶(} 0)	ο	-1 -H ₂₂ Δ ₂ G ₂ u(0)	$R \Lambda_2^{-1} G_2 u(o)$	$R \Delta_2^{-1} G_2 u(0)$
Gain statique	Non	Oui	Oui	Oui

avec $R = H_{21} H_{11} H_{12} - H_{22}$

Remarques :

- Dans le cas d'une entrée constante, les méthodes de Fossard et de Marshall sont équivalentes dans le sens où les modèles réduits sont identiques.

- Elles s'adaptent généralement très bien quand les variables d'état retenues dans le modèle réduit sont bien choisies. Cependant, elles induisent des conditions initiales non nulles pour la composante rapide. Ceci peut être, dans certains cas, un inconvénient.

- Des difficultés numériques peuvent apparaître pour certaines de ces méthodes : cas où on a des valeurs propres nulles ou multiples, des singularités pour certaines matrices ou même dans le cas de système instable.

- Ces méthodes ne disposent pas de critère pour la mesure de qualité d'approximation. De plus, elles ne considèrent que l'état du système et non les sorties.

Il est difficile pour l'utilisateur de choisir parmi ces différentes techniques de réduction sachant qu'une technique particulière peut très bien être adaptée à un problème donné et ne pas l'être pour un autre.

III.3.4 - <u>Méthode d'agrégation</u> [Bertrand, 1985]

Cette approche repose tout simplement sur la mise sous forme modale ou de Jordan de la matrice d'état. Elle a l'avantage d'unifier un certain nombre de méthodes modales présentées comme distinctes dans la littérature : ainsi le classement des modes par ordre d'importance des valeurs propres permet de retrouver les méthodes dites de modes dominants. Cependant ce classement peut se faire selon d'autres critères :

- conservation de certaines propriétés du régime asymptotique [Michailesco, 1979]

57

- choix optimal des modes basé sur l'hypothèse de non observabilité des modes conservés dans le vecteur erreur de sortie [Commault, 1978, 1981]

- d'ordre énergétique, qui peuvent prendre en compte la nature des entrées.

Les méthodes de type agrégation semblent être celles qui présentent les meilleures garanties pour le calcul d'une commande simplifiée.

L'agrégation consiste à imposer l'existence d'une application linéaire entre l'état x et l'état $x_{\mathcal{R}}$, caractérisée par $x_{\mathcal{R}} = L x$, L étant de rang plein. L'existence de L implique alors les relations :

$$A_{\mathcal{R}} = L A L^{-1}$$
$$B_{\mathcal{R}} = L B$$

de sorte que $A_{\mathcal{R}}$ doit nécessairement conserver m valeurs propres de A.

Plusieurs degrés de liberté apparaissent pour définir un modèle agrégé :

choix de la dimension m choix des valeurs propres retenues dans $A_{\mathcal{R}}$ choix de la matrice de sortie $C_{\mathcal{R}}$.

Le choix des modes est l'étape la plus importante. Il peut être effectué à partir de la notion d'énergie associée à chaque mode durant le régime transitoire en réponse à une entrée test : sont retenus les modes dont l'énergie est la plus importante, sous réserve que ceux de dynamique et d'énergie voisines, mais d'influence opposée, aient été éliminés du classement des modes. Dans certains cas, un choix complémentaire est effectué en tenant compte du régime permanent en réponse à un échelon. Cette méthode de choix des modes permet de fixer à la fois les modes et la dimension d'un bon modèle agrégé. Pour cela on utilise un critère

d'arrêt défini par :

 $J_m = \sqrt{\frac{\text{Energie des modes éliminés}}{\text{Energie des modes conservés}}}$

Une fois les modes sélectionnés, la matrice de sortie $C_{\mathcal{R}}$ est déterminée par une minimisation du critère portant sur les erreurs entre les sorties du système et celles du modèle :

$$J = \sum_{i=1}^{l} \int_{0}^{T} ||y - y_{m}||^{2} dt$$

Propriétés :

- Le système agrégé conserve m modes du système initial.

- La paire $(A_{\mathcal{R}}, B_{\mathcal{R}})$ est commandable si (A, B) est commandable et L de rang maximum.

III.3.5 - Méthode des perturbations singulières

Supposons que le système initial puisse s'écrire sous la forme suivante, dite *singulièrement perturbée*, faisant apparaître un petit paramètre ϵ

(I.18)
$$\begin{cases} \begin{pmatrix} \cdot \\ x_1 \\ \vdots \\ zx_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u$$
$$y = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

où $x_1 \in \mathbb{R}^m$, $x_2 \in \mathbb{R}^{n-m}$ regroupent respectivement les composantes lentes et rapides et $u \in \mathbb{R}^p$.

Le paramètre ε , [Dauphin-Tanguy, 1983, 1986], permet de normaliser les termes de la matrice d'état et peut être défini par :

.....

Chapitre I

$$\varepsilon = \frac{t - t_0}{\tau}$$
, t_0 étant l'instant initial et $\varepsilon \in [0, 1]$

t et τ sont les échelles de temps associées respectivement aux variables lentes et rapides.

Le mouvement de x_1 est essentiellement lent alors que x_2 est la superposition de transitoires rapides et d'un mouvement quasi permanent lent. En posant $\varepsilon = 0$, si la partie rapide est stable et A_{22} non singulière, nous obtenons le système lent réduit défini par :

(I.19)
$$\begin{cases} \dot{x}_{1\ell} = A_{\ell} x_{1\ell} + B_{\ell} u_{\ell} \\ x_{2\ell} = -A_{22}^{-1} (A_{21} x_{1\ell} + B_{2} u_{\ell}) \\ y_{\ell} = C_{\ell} x_{1\ell} + D_{\ell} u_{\ell} \end{cases}$$

 $x_{1_{\ell}}(0) = x_1(0)$ alors qu'en général $x_{2_{\ell}}(0) \neq x_2(0)$

avec
$$\begin{cases} A_{\ell} = A_{11} - A_{12}A_{22}A_{21} \\ B_{\ell} = B_{1} - A_{12}A_{22}B_{2} \\ C_{\ell} = C_{1} - C_{2}A_{22}A_{21} \\ D_{\ell} = -C_{2}A_{22}B_{2} \end{cases}$$

Les transitoires rapides sont obtenus par :

$$x_{2_r}(t) = x_2(t) - x_{2_l}(t)$$

et sont caractérisés par l'équation dite de couche limite :

.

$$\begin{cases} \dot{\varepsilon} x_{2r} = A_{22} x_{2r} + B_2 u_r \\ y_r = C_2 x_{2r} \\ x_{2r}(0) = x_2(0) + A_{22}^{-1} A_{21} x_1(0) \end{cases}$$

Cette équation ne représente l'évolution des transitoires rapides que dans le domaine de couche limite défini en temps dilaté $\tau = (t - t_0)/\epsilon$.

La variable rapide x_{2r} doit vérifier une condition de convergence

$$\lim_{\tau \to \infty} x_{2r}(\tau) = 0$$

Le système global (I.18) peut donc être approché par le système suivant :

$$\begin{cases} x_{1}(t,\varepsilon) = x_{1\ell}(t) + o(\varepsilon) \\ x_{2}(t,\varepsilon) = x_{2r}\left(\frac{t-t_{0}}{\varepsilon}\right) + x_{2\ell}(t) + o(\varepsilon) \end{cases}$$

La difficulté principale de cette approche est de faire apparaître le petit paramètre ε dans le système (I.7) de façon à le mettre sous la forme (I.18).

III.4 - <u>Conclusion</u>

D'une manière générale, il faut souligner que chacune de ces méthodes cherche à choisir l'ordre du modèle réduit et à obtenir un modèle stable lorsque le modèle initial est lui-même stable.

Toutes ces méthodes retiennent dans une base donnée les m premières composantes du vecteur d'état modifié, il est clair que nous avons toujours $x_{\mathcal{R}} = P T^{-1} x$ où T est la matrice de changement de base et P est la matrice de troncature du vecteur d'état. Ceci ne pose aucun problème lorsque l'on souhaite utiliser le modèle réduit pour la conception d'une commande sous-optimale du modèle initial.

Il faut, bien sûr, toujours conserver dans le modèle réduit les variables instables.

IV - Critères de choix d'une méthode de réduction

IV.1 - Existence d'une mesure de qualité du modèle réduit

Les méthodes associées à la minimisation d'un critère sont intéressantes d'une part parce que le modèle obtenu est optimal, mais surtout parce que la valeur normalisée du critère permet de juger de la qualité du modèle réduit et de déterminer un ordre de réduction raisonnable.

Il est souhaitable, lorsqu'un tel critère existe, que le modèle réduit d'ordre m tende de façon monotone vers le modèle initial quand m tend vers n.

IV.2 - Conservation des propriétés de stabilité

Il est fondamental que la réduction d'un modèle stable conduise à un modèle stable. De même, un modèle instable doit produire un modèle instable, il est également très souhaitable que les modes instables soient les mêmes.

IV.3 - Performances

IV.3.1 - De type statique

La conservation du gain statique est une caractéristique intéressante d'un *bon* modèle réduit.

IV.3.2 - De type dynamique

Asservir une grandeur de sortie y à une entrée u, c'est

réaliser un système tel qu'on ait $y \equiv u$ de quelque soit la variation de l'entrée (problème de rapidité et de poursuite).

IV.3.3 - De régulation

Asservir une grandeur de sortie y à une entrée u, c'est réaliser un système tel qu'on ait $y \equiv u$ quelques soient les perturbations extérieures qui interviennent (problème de robustesse).

IV.4 - Variation des performances en fonction de l'entrée

En général, il importe assez peu à l'utilisateur d'un modèle réduit que celui-ci soit optimal pour une entrée particulière, dans la mesure où il ne peut préciser l'entrée qui lui sera appliquée; il espère de bonnes performances pour des entrées quelconques.

IV.5 - Volume de calcul

Il faut savoir que les méthodes de type agrégation nécessitent le calcul des valeurs propres et vecteurs propres d'une matrice d'ordre n. Il est bien des cas où un modèle réduit obtenu très simplement par une méthode de fractions continues sera suffisant.

IV.6 - Conservation des modes dominants

Il est nécessaire de conserver dans le modèle réduit les propriétés dominantes du modèle initial, en accord avec le domaine fréquentiel ou temporel concerné.

IV.7 - Signification physique du modèle réduit

Le problème de la signification physique du modèle réduit est lié au choix des composantes d'état les plus significatives du système initial. Ainsi, si l'on veut conserver cette propriété on ne peut effectuer que des changements de base diagonals pour l'identification de ces composantes.

IV.8 - Applicabilité en multivariable

Si, dans un système monovariable, il est parfois possible, par des considérations physiques, d'effectuer une simplification de modèle, pour les systèmes multivariables, non découplés, ceci peut être difficile notamment car la simplification entraîne une variation de structure algébrique.

V - Méthodes analytiques de mise en évidence des dynamiques

V.1 - <u>Définitions d'un système à double échelle de temps</u> [Dauphin-Tanguy, 1985]

<u>Définition 1</u> : Un système linéaire stationnaire caractérisé par l'équation (I.7) possède la propriété de double échelle des temps s'il peut être décomposé en deux sous-systèmes :

(I.20)
$$\begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \widetilde{A}_1 & 0 \\ 0 & \widetilde{A}_2 \end{bmatrix} \begin{bmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \end{bmatrix} + \begin{bmatrix} \widetilde{B}_1 \\ \widetilde{B}_2 \end{bmatrix} u \\ y = \begin{bmatrix} \widetilde{C}_1 & \widetilde{C}_2 \end{bmatrix} \begin{bmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \end{bmatrix}$$

avec $x_1 \in \mathbb{R}^{n_1}$, $x_2 \in \mathbb{R}^{n_2}$ et $n = n_1 + n_2$

et

(I.21)
$$\left|\lambda_{\max}(\widetilde{A}_{1})\right| \ll \left|\lambda_{\min}(\widetilde{A}_{2})\right|$$

Si on suppose, comme Chow [Chow, 1976], que le système initial est stable et que les valeurs propres sont telles que

$$|\mathcal{J}m \lambda(A)| \ll |\mathcal{R}e \lambda(A)|$$

alors, la relation (I.21) indique une décroissance vers zéro de e^{A₂t} plus rapide que celle de e^{$\widetilde{A}_{1}t$}.

Toute matrice carrée A munie d'une norme Euclidienne ||.|| vérifie [cf. chapitre II] la relation :

$$|\lambda_{\max}(A)| \leq ||A||$$

et si A⁻¹ existe,

$$|\lambda_{\min}(\mathbf{A})|^{-1} \leq ||\mathbf{A}^{-1}||$$

Cette propriété permet d'en déduire une nouvelle définition.

<u>Définition 2</u> : Le système (I.7), décomposé sous forme (I.20) possède la propriété de double échelle des temps si :

(I.22)
$$\left\|\widetilde{A}_{1}\right\| \left\|\widetilde{A}_{2}^{-1}\right\| \ll 1$$

V.2 - Bloc-diagonalisation

Dans le cas des systèmes linéaires l'existence de plusieurs échelles de temps et des sous-systèmes associés peut être mise en évidence par les méthodes classiques de transformation modale et de bloc-diagonalisation [Fossard, 1980, 1982], [Shieh, 1982].

Le système (I.7) décomposé en :

(I.23)
$$\begin{cases} \begin{bmatrix} x \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u$$
$$y = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

correspondant à une partition, pour l'instant arbitraire, du vecteur d'état initial peut être bloc-triangularisé par la transformation :

(I.24)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} I & 0 \\ L & I \end{bmatrix} \begin{bmatrix} x_1 \\ \widetilde{x}_2 \end{bmatrix}$$

le modèle obtenu après transformation est :

(I.25)
$$\begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \widetilde{A}_1 & A_{12} \\ R_1(L) & \widetilde{A}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ \dot{x}_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ \widetilde{B}_2 \end{bmatrix} u \\ y = \begin{bmatrix} \widetilde{C}_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ \ddot{x}_2 \end{bmatrix}$$

avec

(I.26)
$$R_1(L) = A_{21} - L A_{11} + A_{22}L - L A_{12}L$$

(I.27)
$$\begin{cases} A_1 = A_{11} + A_{12}L \\ \widetilde{A}_2 = A_{22} - L A_{12} \\ \widetilde{B}_2 = B_2 - L B_1 \\ \widetilde{C}_1 = C_1 + C_2 L \end{cases}$$

S'il existe une matrice L telle que $R_1(L) = 0$ alors le système (I.25) est bloc-triangularisé [O'Malley, 1982], [Kokotovic, 1975].

La transformation :

(I.28)
$$\begin{bmatrix} x_1 \\ \widetilde{x}_2 \end{bmatrix} = \begin{bmatrix} I & -M \\ 0 & I \end{bmatrix} \begin{bmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \end{bmatrix}$$

permet d'obtenir le système sous la forme :

(I.29)
$$\begin{bmatrix} \dot{\tilde{x}}_1 \\ \dot{\tilde{x}}_2 \end{bmatrix} = \begin{bmatrix} \widetilde{A}_1 & R_2(M) \\ 0 & \widetilde{A}_2 \end{bmatrix} \begin{bmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \end{bmatrix} + \begin{bmatrix} \widetilde{B}_1 \\ \widetilde{B}_2 \end{bmatrix} u$$

avec

(I.30)
$$R_2(M) = A_{12} - \widetilde{A}_1 M + M \widetilde{A}_2$$

(I.31)
$$\widetilde{B}_1 = B_1 + M \widetilde{B}_2$$
$$\widetilde{C}_2 = C_2 - \widetilde{C}_1 M$$

S'il existe une matrice M solution de l'équation $R_2(M) = 0$, le système (I.29) apparaît alors sous forme bloc-diagonale (I.20).

La transformation globale est définie par :

(I.32)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} I & -M \\ L & I-LM \end{bmatrix} \begin{bmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \end{bmatrix}$$

la transformation inverse sera donc :

$$\begin{bmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \end{bmatrix} = \begin{bmatrix} I-ML & M \\ -L & I \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

L'existence et le calcul de la solution des équations $R_1(L) = 0$ et $R_2(M) = 0$ ont été étudiés par de nombreux auteurs en particulier par [Kokotovic, 1975], [Chow, 1976], [Magni, 1981], [Avramovic, 1979], [Anderson, 1978], [Phillips, 1982].

Si les valeurs propres de la matrice globale A sont distinctes, il existe toujours une matrice L satisfaisant $R_1(L) = 0$ et $R_2(M) = 0$.

De fait, il est possible de calculer la matrice L de manière à ce que les valeurs propres retenues dans \widetilde{A}_1 et \widetilde{A}_2 soient deux ensembles disjoints et complémentaires C_1 , C_2 du spectre initial de la matrice A.

Plusieurs méthodes de détermination de L existent : leur validité et la précision des résultats dépendent de la séparation plus ou moins marquée des modes et de la connaissance a priori des variables lentes et des variables rapides.

V.3 - Méthodes de détermination des matrices L et M

V.3.1 - <u>Calcul des suites L_k et M_k</u>

Une première approche proposée par [Kokotovic, 1975], appliquée par [Chow, 1976], consiste à définir une suite :

(I.33)
$$\begin{cases} L_{k+1} = -A_{22}^{-1} (A_{21} - L_k A_{11} - L_k A_{12} L_k) \\ L_0 = -A_{22}^{-1} A_{21} \end{cases}$$

qui converge vers une racine réelle bornée de (I.26) si les conditions suivantes sont réalisées :

(I.34)
$$\begin{cases} * A_{22} \text{ inversible} \\ * \left\| A_{22}^{-1} \right\| \ll \left(\left\| A_0 \right\| + \left\| A_{12} \right\| \left\| L_0 \right\| \right)^{-1} \text{ avec } A_0 = A_{11} + A_{12} L_0 \end{cases}$$

La matrice L_0 est alors utilisée comme une approximation de L à l'ordre $o(\varepsilon)$, ce qui conduit au système suivant, déduit de (I.27) :

(I.35)
$$\begin{cases} \widetilde{A}_{1} = A_{11} - A_{12}A_{22}^{-1}A_{21} + o(\epsilon) \\ \widetilde{A}_{2} = A_{22} + o(\epsilon) \end{cases}$$

De même la solution M de l'équation $R_2(M) = 0$ peut être calculée par la récurrence :

(I.36)
$$\begin{cases} M_{k+1} = -A_{12}A_{22}^{-1} + \left[(A_{11} + A_{12}L_0) M_k + M_k L_0 A_{12} \right] A_{22}^{-1} \\ M_0 = -A_{12}A_{22}^{-1} \end{cases}$$

ce qui donne :

(I.37) $M = -A_{12}A_{22}^{-1} + o(\varepsilon)$

V.3.2 - Calcul des valeurs propres et des vecteurs propres

Supposons que les valeurs propres de A sont distinctes et soit V₁ la matrice des vecteurs propres associés aux n₁ modes lents. En partitionnant V₁ en $[V_{11} \ V_{21}]^T$ avec $V_{11} \in \mathbb{R}^{n1\times n1}$ et V₂₁ $\in \mathbb{R}^{n-n1\times n1}$, et en supposant V₁₁ inversible, alors une solution L est obtenue pour :

$$L = -V_{21}V_{11}^{-1}$$

Cette matrice est indépendante du calibrage des vecteurs propres, mais a l'inconvénient de demander le calcul des valeurs propres et des vecteurs propres.

V.3.3 - Algorithmes de calcul de L [Magni, 1981]

Une méthode algébrique fait appel à la décomposition d'un espace vectoriel par rapport à deux polynômes premiers entre eux.

Si ψ est un polynôme annulateur de A, ψ_1 , ψ_2 deux polynômes tels que $\psi = \psi_1 \psi_2$, ψ_1 étant le polynôme caractéristique associé aux modes que l'on veut séparer, soit :

$$\begin{bmatrix} S \\ T \end{bmatrix} = \begin{bmatrix} \text{Ker } \Psi_1(A) \end{bmatrix} \text{ et } \begin{bmatrix} U \\ V \end{bmatrix} = \begin{bmatrix} \text{Ker } \Psi_2(A) \end{bmatrix}.$$

On peut montrer qu'il existe une permutation des états telle que S soit inversible. On a alors $L = -T S^{-1}$.

L'inconvénient de cette approche est que la matrice $[S T]^T$ doit être en principe calculée à partir des vecteurs propres généralisés. Il est toutefois possible de s'affranchir de cette contrainte et d'éviter de plus toute inversion de matrice en procédant simplement à des combinaisons linéaires sur les colonnes d'une matrice élargie de dimensions 2nxn définie par :

$$\begin{bmatrix} \Psi_1(\mathsf{A}) \\ I_n \end{bmatrix}$$

comme l'a montré Magni, [Magni, 1981]. L'algorithme qui en résulte s'avère intéressant non seulement au plan de la rapidité de calcul mais par le fait qu'il donne une solution L de norme minimale.

VI - <u>Conclusion</u>

Nous avons établi une classification des principales méthodes de réduction actuellement en usage. Nous avons ensuite fait une étude des qualités qui peuvent être demandées à un modèle réduit ce qui nous a amené à définir des critères de choix d'une *bonne* méthode adaptée aux besoins spécifiques.

Les méthodes basées sur la minimisation de l'erreur entre variables de sorties ou d'état fournissent une bonne approximation d'un système de grande dimension. Seulement pour obtenir un modèle réduit optimal le temps de calcul est excessif.

Les méthodes modales nécessitent le calcul des valeurs et des vecteurs propres, ce qui est souvent très difficile. Si cela peut être réalisé, le modèle réduit est obtenu simplement à condition de savoir quelles valeurs propres retenir dans le modèle réduit.

Les méthodes de fractions continues, des moments et de Padé ne nécessitent pas le calcul des pôles de la fonction de transfert, mais elles peuvent produire un modèle réduit instable même si le système initial est stable. En plus on ne peut effectuer une mesure de la qualité de l'approximation qu'à posteriori,

70

contrairement aux méthodes mettant en œuvre des techniques d'optimisation. Il est à noter aussi que la méthode des fractions continues ne peut être appliquée qu'à des systèmes dont le nombre des sorties est égale à celui des entrées.

<u>METHODES GEOMETRIQUES DE</u> <u>MISE EN EVIDENCE DES</u> <u>DYNAMIQUES D'UN SYSTEME</u> <u>MULTI-ECHELLES DE TEMPS</u>

.

.

I - Introduction

Lorsqu'on veut absolument conserver dans le modèle réduit la signification physique des variables d'état lors de la réduction d'un système (Σ) caractérisé par l'équation (I.7), l'identification des variables lentes et des variables rapides ne doit pas se faire par le calcul des valeurs propres et/ou des vecteurs propres, parce que cela ne permet pas un étiquetage des composantes d'état. Les méthodes suivantes, fondées sur le tracé des cercles de Gershgorin associés à la matrice d'état A du système, localise les modes dynamiques dans le plan complexe et leur associe la variable d'état correspondante. Le but est de localiser le plus finement possible les valeurs propres de la matrice d'état A afin de faire apparaître, lorsque c'est possible, deux ou plusieurs domaines du plan complexe \mathbb{C} n'ayant pas de points communs.

La difficulté réside dans la recherche d'une matrice de conditionnement D diagonale qui permettrait une telle localisation. Ce problème est étudié dans ce chapitre et deux algorithmes très efficaces dont un donne la matrice de calibrage, sont proposés.

II - Rappels sur les normes de matrices carrées

Récapitulons les définitions et quelques propriétés des principales normes sur les espaces de vecteurs et de matrices carrées, [Gantmacher, 1966-a,b], [Bakhvalov, 1976].

II.1 - Normes de vecteurs

La norme de vecteurs sur \mathbb{R}^n est une fonction $||.||_v : \mathbb{R}^n \to \mathbb{R}$ qui satisfait les axiomes :

- * $| |x| |_{y} \ge 0$; $| |x| |_{y} = 0 \Leftrightarrow x = 0$
- * $| | \alpha \mathbf{x} | |_{\mathbf{v}} = | \alpha | . | | \mathbf{x} | |_{\mathbf{v}}$
- * $||x + y||_{y} \le ||x||_{y} + ||y||_{y}$ où x, y $\in \mathbb{R}^{n}$.

Les normes de vecteurs les plus usuelles sont :

- <u>Norme 1</u> :

$$\left|\left|\mathbf{x}\right|\right|_{1} = \sum_{i=1}^{n} \left|\mathbf{x}_{i}\right|$$

- Norme 2 : (norme Euclidienne)

$$||x||_2 = \sqrt{\sum_{i=1}^{n} x_i^2}$$

$$\|\mathbf{x}\|_{\infty} = \max \|\mathbf{x}_{i}\|_{1 \le i \le n}$$

Toutes ces normes ne sont que des cas particuliers de la famille des normes de Holder définies par :

$$||x||_{p} = \left[\sum_{i=1}^{n} |x_{i}|^{p}\right]^{1/p}$$
, $p = 1, 2, ...$

II.2 - Normes matricielles

Si l'espace vectoriel est muni de la norme $||x||_v$, la norme qui lui est associée dans l'espace des matrices A est :

$$\|\mathbf{A}\| = \sup_{\mathbf{x}\neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$$

Les normes qui sont associées aux normes vectorielles dans l'espace des matrices sont :
- Norme 1 : (II.2) $\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$: somme en ligne - Norme 2 : (II.3) $\|A\|_{2} = \max_{1 \le i \le n} |\lambda_{i}|$ - Norme ∞ : (II.4) $\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$: somme en colonne - Norme de Frobenius : $\|A\|_{\infty} = \sum_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$: somme en colonne

$$||A||_{F} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}}$$

Propriétés :

- Une norme est dite consistante si elle vérifie :

AB ≤ A B

- La norme 2 et celle de Frobenius sont invariantes par une transformation orthogonale.

- Pour toutes les normes précédentes nous avons : [Williams, 1985]

$$t_{qp}^{-1} ||A||_q \le ||A||_p \le t_{pq} ||A||_q$$

p, q	1	2	∞	F
1	1	√n	n	√n
2	√n	1	√n	1
∞	n	√n	1	√n
F	√n	√ n	√ n	1

où t_{pa} sont donnés dans la table suivante :

Table II.1

III - Critères de régularité des matrices carrées

Dans tout ce qui suit, nous considèrerons la matrice carrée A d'ordre n, $A = (a_{ii})$. Posons :

(II.1)
$$P_i = \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|$$
, $Q_i = \sum_{\substack{j=1 \ j \neq i}}^n |a_{ji}|$ (i = 1, ..., n)

Il y a une implication logique entre les propriétés de diagonale dominance et de régularité des matrices (utile pour la mise en œuvre des méthodes géométriques de mise en évidence des dynamiques d'un système) qui s'écrit :

Diagonale dominance \Rightarrow Régulière

qu'on peut écrire sous la forme négative :

Non régulière
$$\Rightarrow$$
 Non diagonale dominance

Les critères de régularité d'une matrice carrée sont plus souples à mettre en œuvre que ceux de la diagonale dominance et permettent une localisation plus fine des valeurs propres de la matrice. Nous allons donc les utiliser comme des critères de choix pour l'utilisation des méthodes géométriques.

III.1 - Théorème de Hadamard [Parodi, 1952]

La matrice A est à diagonale dominante si :

(II.5) $|a_{ii}| > P_i$ (i = 1, ..., n)

ou si :

(II.6) $|a_{ii}| > Q_i$ (i = 1, ..., n)

III.2 - Théorèmes d'Ostrowski [Parodi, 1952]

III.2.1 - <u>1^{er} théorème</u>

La matrice A est régulière si, étant donné le paramètre réel α satisfaisant la double inégalité $0 \le \alpha \le 1$, nous avons :

(II.7)
$$|a_{ii}| > P_i^{\alpha} Q_i^{1-\alpha}$$
 (i = 1, ..., n)

Pour $\alpha = 0$ et $\alpha = 1$ nous obtenons les inégalités (II.5) et (II.6) de Hadamard.

III.2.2 - 2ème_théorème

Etant donnée la matrice A, en posant :

(II.8)
$$s_i = \frac{P_i^{\alpha} Q_i^{1-\alpha}}{|a_{ii}|}$$
 (i = 1, ..., n)

si avec $0 \le \alpha \le 1$, nous avons pour tout couple d'indices distincts i et j :

(II.9)
$$s_i s_j < 1$$
 $(i \neq j; i, j = 1, ..., n)$

la matrice A est régulière.

III.2.3 - 3ème théorème

Des conditions suffisantes pour que la matrice A soit régulière, sont :

(II.10)
$$\begin{cases} |a_{ij}| > 1 \\ |a_{ij}| \le m \text{ pour } (i, j = 1, ..., n \text{ et } j < i) \\ |a_{ij}| \le M \text{ pour } (i, j = 1, ..., n \text{ et } j > i) \end{cases}$$

avec 0 < m < M et $\frac{m}{(1 + m)^n} < \frac{M}{(1 + M)^n}$

III.2.4 - Autre théorème d'Ostrowski

Etant donnée une matrice carrée, $B = (b_{ij})$, régulière d'ordre n, si l'on ajoute aux b_{ij} de petites quantités c_{ij} formant une matrice carrée de même ordre $C = (c_{ij})$, deux conditions suffisantes pour que la matrice A = B + C soit régulière sont :

(II.11)
$$\max |c_{ij}| < \frac{1}{\sum_{i,j=1}^{n} |\beta_{ij}|}$$

(II.12)
$$\sum_{i,j=1}^{n} |c_{ij}|^2 < \frac{1}{\sum_{i,j=1}^{n} |\beta_{ij}|^2}$$

les β_{ij} étant les éléments de la matrice inverse B⁻¹ de B.

III.3 - G-matrice ou condition G

Définition :

Toute matrice A telle que $|a_{ii}| > G_i$ pour i = 1, ..., n où :

(II.13)
$$\begin{cases} G_{1} = \sum_{j=2}^{n} |a_{1j}| \\ G_{i} = \sum_{j < i} |a_{ij}| \frac{G_{j}}{|a_{jj}|} + \sum_{j > i} |a_{ij}| & (i = 2, ..., n-1) \\ G_{n} = \sum_{j=1}^{n-1} |a_{nj}| \frac{G_{j}}{|a_{jj}|} \end{cases}$$

est appelée G-matrice ou matrice de Gudkov.

Propriété :

Toute matrice vérifiant ces n conditions est non singulière [Chambat, 1971].

III.4 - H-matrice

<u>Définition</u> :

La matrice A est dite H-matrice si la matrice de Jacobi :

associée à A existe et est telle que [Chambat, 1971] :

(II.15) $\rho(|J|) < 1$

avec la notation : $|M| = (|m_{ij}|)$ si $M = (m_{ij})$ $\rho(M) =$ rayon spectral de M.

Pour replacer ces travaux dans un cadre général : ||M|| < 1 est une condition suffisante pour que la matrice [I - M] soit régulière [Korganoff, 1961, 1967].

En effet, considérons la matrice A telle que l'on ait : $a_{ii} \neq 0$ pour i = 1, ..., n. Posons A = B + C avec

(II.16)
$$B = \begin{bmatrix} & & 0 \\ & a_{ii} \\ & 0 & & \end{bmatrix}$$
 et $C = \begin{bmatrix} & 0 & a_{12} & - & a_{1n} \\ & a_{21} & 0 & & & | \\ & & & & a_{(n-1)n} \\ & & & a_{n1} & - & a_{n(n-1)} & 0 \end{bmatrix}$

B étant non singulière, on a :

(II.17)
$$A = B(I + B^{-1}C) = (I + CB^{-1})B$$

Si | | M | | < 1 avec

(II.18) $M = -B^{-1}C$ ou $M = -CB^{-1}$

alors on a une condition suffisante de régularité pour A.

Théorème :

La classe des H-matrices contient celle des G-matrices qui contient celle des matrices à diagonale dominante [Chambat, 1971].

La condition G s'écrit :

(II.19)
$$\rho\left(\left(I - |J_i|\right)^{-1} |J_s|\right) < 1$$

où J_i et J_s sont les matrices triangulaires respectivement inférieure et supérieure de J, matrice de Jacobi associée à A [Odiard, 1971].

Théorème :

Les trois propositions suivantes sont équivalentes [Chambat, 1971] :

(a) A est une H-matrice.

(b) Il existe une matrice diagonale régulière D_1 telle que $D_1^{-1}AD_1$ soit à diagonale dominante.

(c) II existe une matrice diagonale régulière D_2 telle que $D_2^{-1}AD_2$ soit une G-matrice.

Figure II.2

IV - Localisation des valeurs propres d'une matrice carrée dans C

Tout théorème de régularité sur les matrices correspond à un théorème de localisation de valeurs propres. Le plus ancien est dû à Gershgorin.

Si λ est une valeur propre de A, la matrice [A - λ I] n'est pas régulière, donc elle n'est pas à diagonale dominante :

(II.20) $|\lambda - a_{ij}| \le P_i$ (i = 1, ..., n)

IV.1 - Méthode générale : les cercles de Gershgorin

<u>Théorème</u> :

Les valeurs propres de A se trouvent dans le domaine \mathcal{D}_1 du plan complexe formé par la réunion des régions intérieures aux n circonférences d'équations :

(II.21)
$$|z - a_{ii}| = P_i$$
 (i = 1, ..., n)

et aussi dans le domaine \mathcal{D}_2 du plan complexe formé par la réunion des régions intérieures aux n circonférences d'équations :

(II.22)
$$|z - a_{ii}| = Q_i$$
 (i = 1, ..., n)

où P_i et Q_i sont donnés par les relations (II.1).

 $\mathcal{D} = \mathcal{D}_1 \cap \mathcal{D}_2$ définit la région du plan où se situent les valeurs propres de A.

IV.2 - Polynômes de matrice

Les résultats que donne la méthode de Gershgorin peuvent être complétés comme suit :

Soit un polynôme f(z); on sait qu'étant donnée la matrice A de valeurs propres λ_i (i = 1, ..., n), la matrice f(A) a pour valeurs propres f(λ_i) (i = 1, ..., n).

Par un choix convenable de f(z), la méthode de Gershgorin, appliquée à la matrice f(A), peut conduire à une localisation meilleure que celle qui résulte de son application à la matrice A elle-même.

IV.3 - Théorème de Brauer

Etant donnée la matrice A, si pour i $(1 \le i \le n)$, on a :

(II.23) $|a_{ii} - a_{ji}| > P_i + P_i$ ($j \neq i; j = 1, ..., n$)

pour tout j \neq i, le cercle d'équation $|z - a_{ii}| = P_i$ contient une et une seule valeur propre de A.

Conséquence :

La condition (II.23) implique que le domaine défini par $|z - a_{ii}| \le P_i$ n'a aucun point commun avec les domaines définis par

 $|z - a_{jj}| \le P_j \text{ pour } j \ne i; j = 1, ..., n.$

IV.4 - Une variante de la méthode générale

Considérons une matrice D diagonale régulière d'ordre n d'éléments d_i (i = 1, ..., n), la matrice $A_D = D^{-1}AD$ possède les mêmes valeurs propres que A. Compte tenu des égalités (II.21) de Gershgorin, le domaine des valeurs propres de A est formé par la réunion des régions intérieures aux n circonférences d'équations :

(II.24)
$$|z - a_{ij}| = \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}| \left| \frac{d_j}{d_i} \right|$$
 (i = 1, ..., n)

En utilisant l'inégalité de Hölder, ce domaine peut aussi être défini par la réunion des n nouvelles circonférences :

(II.25)
$$|z - a_{ii}| = \left[\sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|^{p}\right]^{p} \left[\sum_{\substack{j=1 \ j \neq i}}^{n} \left|\frac{d_{j}}{d_{i}}\right|^{q}\right]^{\frac{1}{q}}$$
 (i = 1, ..., n)

p et q étant des paramètres positifs tels que

$$\frac{1}{p} + \frac{1}{q} = 1$$

En désignant par M_i le module maximum des éléments non diagonaux de la ligne i de A, nous avons :

$$|z - a_{ij}| \le \left[\sum_{\substack{j=1\\j\neq i}}^{n} |M_j|^p\right]^{\frac{1}{p}} \left[\sum_{\substack{j=1\\j\neq i}}^{n} |\frac{d_j}{d_i}|^q\right]^{\frac{1}{q}}$$

$$|z - a_{ii}| \le (n-1)^{1/p} \frac{|M_i|}{|d_i|} \left[\sum_{\substack{j=1 \ j \ne i}}^n |d_j|^q \right]^{\frac{1}{q}}$$

soit en faisant : $p = \infty$, q = 1; les relations (II.25) s'écrivent :

(II.26)
$$|z - a_{ii}| = \frac{M_i}{|d_i|} \sum_{\substack{j=1 \ j \neq i}}^n |d_j|$$
 (i = 1, ..., n)

IV.5 - 1ère méthode d'Ostrowski

Le 1^{er} théorème d'Ostrowski montre que les valeurs propres de A se situent dans le domaine formé par la réunion des régions circulaires définies par les inégalités :

(II.27)
$$|z - a_{ii}| = P_i^{\alpha} Q_i^{1-\alpha}$$
 (i = 1, ..., n)

IV.6 - 2ème méthode d'Ostrowski

Etant donnés n nombres positifs $k_1, k_2, ..., k_n$ satisfaisant à la relation :

$$\sum_{i=1}^{n} \frac{1}{k_i + 1} \le 1$$

et deux nombres positifs p et q tels que :

$$\frac{1}{p} + \frac{1}{q} = 1$$

les valeurs propres de la matrice A se situent dans le domaine \mathcal{D}_1 formé par la réunion des régions intérieures aux n circonférences d'équations :

(II.28)
$$|z - a_{ii}| = k_i^{\frac{1}{q}} \left[\sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|^p \right]^{\frac{1}{p}}$$
 (i = 1, ..., n)

Nous avons raisonné sur les lignes de la matrice A; en travaillant sur les colonnes, on obtient des relations analogues définissant un nouveau domaine \mathcal{D}_2 .

 $\mathcal{D} = \mathcal{D}_1 \cap \mathcal{D}_2$ définit la région du plan où se situent les valeurs propres de la matrice A. En jouant sur les valeurs de p et q et sur celles des quantités k_i (i = 1, ..., n), nous pourrons tenter de réduire les dimensions de cette région.

Notons qu'en faisant dans (II.28), $q = \infty$, p = 1, nous retrouvons les égalités (II.21) de Gershgorin.

Si M_i est, suivant que l'on considère \mathcal{D}_1 ou \mathcal{D}_2 , le module maximum des éléments non diagonaux de la ligne ou de la colonne de rang i de A et si l'on pose q = ∞ , p = 1, (II.28) devient [Parodi, 1959]:

(II.29) $|z - a_{ii}| = k_i M_i$ (i = 1, ..., n)

IV.7 - Méthode de Fan & Hoffman

Etant donnés la matrice A et deux nombres positifs p et q tels que :

$$\frac{1}{p} + \frac{1}{q} = 1$$

si l'on peut trouver un nombre positif α tel que :

(II.30)
$$\sum_{i=1}^{n} \frac{\left|a_{ij}\right|^{q}}{\left[\sum_{\substack{j=1\\j\neq i}}^{n} \left|a_{ij}\right|^{p}\right]^{p}} \leq \alpha^{q} \left(1 + \alpha^{q}\right)$$

alors les valeurs propres de A se situent dans le domaine formé par la réunion des régions intérieures aux n circonférences d'équations :

(II.31)
$$|z - a_{ii}| = \alpha \left[\sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|^{p}\right]^{p}$$
 (i = 1, ..., n)

En faisant tendre p vers l'infini, q tend vers 1 et l'on obtient la proposition suivante :

Etant donnée la matrice A, si l'on peut trouver un nombre positif α tel que :

(II.32)
$$\sum_{i=1}^{n} \frac{\left|a_{ij}\right|}{M_{i}} = \alpha \left(1 + \alpha\right)$$

M_i étant le module maximum des éléments non diagonaux de la ligne de rang i de A, alors les valeurs propres de A se situent dans le domaine formé par la réunion des régions intérieures aux n circonférences d'équations :

(II.33)
$$|z - a_{ii}| = \alpha M_i$$
 (i = 1, ..., n)

IV.8 - 3ème méthode d'Ostrowski

Elle repose sur le critère de régularité (II.10). Si A est une matrice dont les éléments satisfont aux inégalités :

(II.34)
$$\begin{aligned} |a_{ij}| \le m \quad (j < i) \\ (i, j = 1, ..., n) \\ |a_{ij}| \le M \quad (j > i) \end{aligned}$$

alors ses valeurs propres se situent dans le domaine formé par la réunion des n circonférences d'équations :

(II.35)
$$|z - a_{ii}| = \left| \frac{M m^{1/n} - m M^{1/n}}{M^{1/n} - m^{1/n}} \right|$$
 (i = 1, ..., n)

IV.9 - Régions de Gudkov

Si λ est une valeur propre de A, la matrice [A - λ I] n'est pas régulière, donc ce n'est pas une G-matrice et donc :

IV.10 - Ovales de Cassini

Les n valeurs propres de A se trouvent dans le domaine \mathcal{D}_1 du plan complexe formé par la réunion des régions intérieures aux n(n-1)/2 ovales de Cassini $O(a_{ii}, a_{jj}, P_i, P_j)$ définies par :

$$|z - a_{ii}||z - a_{jj}| = P_i P_j$$
 (i, j = 1, ..., n; i $\neq j$)

et aussi dans le domaine \mathcal{D}_2 du plan complexe formé par la réunion des régions intérieures aux n(n-1)/2 ovales de Cassini définies par :

$$|z - a_{ii}||z - a_{jj}| = Q_i Q_j$$
 (i, j = 1, ..., n; i $\neq j$)

où P_i et Q_i sont donnés par les relations (II.1).

 $\mathcal{D} = \mathcal{D}_1 \cap \mathcal{D}_2$ définit la région du plan où se situent les valeurs propres de A.

Remarques :

- Les ovales de Cassini donnent une meilleure localisation des valeurs propres que celle obtenue par les cercles de Gershgorin mais perdent leur principale caractéristique : la simplicité.

- L'ovale de Cassini ${\it O}(a_{ii},\,a_{jj},\,P_i,\,P_j)$ se trouve dans l'un des deux cercles d'équations :

$$|z - a_{ii}| = P_i$$
 ; $|z - a_{ji}| = P_j$

- Si $a_{ii} = a_{jj}$, l'ovale de Cassini $O(a_{ii}, a_{jj}, P_i, P_j)$ dégénère en la circonférence d'équation :

$$|z - a_{ii}| = \sqrt{P_i P_j}$$

V - Application à l'identification des dynamiques

Nous allons maintenant appliquer ces méthodes géométriques à l'identification des dynamiques d'un système. Deux cas peuvent se présenter :

- la matrice d'état est bien conditionnée
- la matrice d'état est mal conditionnée.

V.1 - Matrice d'état bien conditionnée

L'application des méthodes géométriques dans le cas d'une matrice bien conditionnée permet de conclure directement à la séparation des dynamiques.

V.1.1 - <u>Théorème</u> [Dauphin-Tanguy, 1983]

Si les cercles $C_i(a_{ii}, R_i)$ et $C_k(a_{kk}, R_k)$ sont tels que :

 $|a_{ii} - a_{kk}| >> (R_i + R_k), \forall i \in \mathcal{J} \text{ et } \forall k \in \mathcal{K}, \text{ avec } \mathcal{J} \cap \mathcal{K} = \emptyset \text{ alors la}$ matrice A possède deux ensembles séparés de valeurs propres de modules très différents.

Le taux de séparation dépend du rapport :

(II.37)
$$\varepsilon = \max \frac{R_i + R_k}{|a_{ii} - a_{kk}|}$$
 pour $i \in \mathcal{J}$ et $k \in \mathcal{K}$

qui doit être inférieur à 1.

Les cercles de Gershgorin associés à A apparaissent sur la figure suivante :

Figure II.3

<u>Remarque</u> : La valeur de ε dépend du conditionnement de A.

Cette méthode ne permet de conclure que si la matrice A est à diagonale dominante, ou du moins partiellement, ce qui est rarement le cas. Il faut donc effectuer un calibrage des termes hors diagonaux afin de minimiser les rayons des cercles par un changement de base diagonal.

V.1.2 - Exemple [Chow, 1976]

Soit la matrice d'état

		- 2.	0.	Ø.	Ø.	- 4.	٦
		4.75	- 5.	0.	0.	0.	
A	=	0.	0.167	- 0.167	0.	0.	
		0.	0.	2.	- 2.	0.	
		0 .	0.025	0.0233	0.035	- 0.112	5]

Cette matrice n'est pas à diagonale dominante. Les cercles de Gershgorin associés à A sont :

La figure (II.4) ne fait pas apparaître de secteurs disjoints du plan complexe. Il va donc falloir effectuer un calibrage de la matrice A. Mais la question qui se pose est : comment choisir la matrice de changement de base diagonale ? En réalité il n'y a aucune règle pour le choix de cette matrice. Nous proposons donc de chercher la matrice de calibrage qui permet de minimiser tous les rayons des cercles de Gershgorin associés à A.

Chapitre II

V.2 - Matrice d'état mal conditionnée

V.2.1 - Minimisation de la norme infinie d'une matrice

Williams [Williams, 1985] a proposé un algorithme qui permet de minimiser la norme infinie d'une matrice carrée d'ordre n. Le fait de minimiser la norme infinie d'une matrice ne permet en aucun cas de minimiser les rayons des cercles de Gershgorin. Nous verrons par la suite comment utiliser cet algorithme pour minimiser tous les rayons.

<u>Remarque</u>: $||A||_1 = ||A^T||_{\infty}$ ce qui montre que la minimisation de $||A||_{\infty}$ donnera le même résultat que la minimisation de $||A||_1$ pour le rayon spectral.

Si λ est une valeur propre de A alors elle satisfait l'inégalité :

(II.38) $|\lambda| < ||A||$

où ||.|| est l'une des normes citées précédemment. Un problème intéressant serait d'étudier comment varie le domaine défini par (II.38). On constate, d'après la table (II.1), que certaines normes fournissent un domaine plus étroit que d'autres. En particulier pour la norme ∞ (resp. norme 1) : $||A||_{\infty}$ (resp. $||A||_1$) est le rayon du plus petit cercle centré en zéro contenant tous les cercles de Gershgorin de A dont les rayons ont été calculés suivant les lignes (resp. colonnes).

a - Matrice irréductible

Définition:

Une matrice A est dite irréductible s'il n'existe pas de matrice de permutation P telle que :

(II.39)
$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ A_3 & A_4 \end{bmatrix}$$

Lemme 1:

Pour A irréductible, $A_D = D^{-1}AD$ a sa norme ∞ minimale si et seulement si toutes ses lignes ont la même somme en module.

Principe de la méthode :

Si la somme des modules des éléments de la ligne i est maximale, aucune opération n'est effectuée.

Sinon, on cherche

avec $0 < d_i < 1$ augmentant ainsi la somme des modules des éléments de la ligne i et réduisant les sommes des modules maximales de façon à avoir l'égalité.

Si m est l'indice de la ligne dont la somme des modules des éléments est maximale, d_i est solution de l'équation :

(II.40)
$$|a_{mi}| d_i^2 + \left[\sum_{\substack{j=1\\j\neq i}}^n |a_{mj}| - |a_{ij}|\right] d_i - \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}| = 0$$

Lemme 2 :

L'équation (II.40) a une solution d_i unique telle que $0 < d_i \le 1$. En plus d_i = 1 si et seulement si :

$$\sum_{j=1}^{n} |a_{ij}| = \sum_{j=1}^{n} |a_{mj}|$$

b - Algorithme : *étape 1* : faire $A_0 = A$ $D = I_n$ *étape 2* : pour k = 0, 1, 2, ...2.1) pour i = 1, 2, ..., n 2.1.1) trouver m, indice de la 1^{ère} ligne de A_k dont la somme des modules des éléments est maximale et pour laquelle |a_{mi}| est maximum. 2.1.2) calculer d_i , 0 < d_i < 1, solution de (II.40) 2.1.3) pour j = 1, 2, ..., n si j≠i alors a_{ii} = a_{ii} / d_i $a_{ii} = a_{ii} * d_i$ 2.2) $D = D * diag(d_i)$ $A_{k+1} = A_k$ 2.3) si pour i = 1, 2, ..., n on a $d_i > 1 - \epsilon$ pour $\epsilon << 1$ alors $A_W = A_{k+1}$, Fin. sinon étape 2.

Lemme 3:

 $\left| \left| A_{k+1} \right| \right|_{\infty} \le \left| \left| A_{k} \right| \right|_{\infty}, k = 0, 1, \dots$

Donc pour $\epsilon \rightarrow$ 0, A_W est calibrée dans le sens du Lemme 1.

$$(1 - 2\varepsilon) ||A_W||_{\infty} < R_i \le ||A_W||_{\infty}$$
 pour i = 1, 2, ..., n

R_i étant la somme en ligne des modules des éléments de A_w.

 $E \times emple$: Si on minimise la norme infinie de la matrice A donnée dans l'exemple précédent par l'algorithme de Williams, on obtient :

$$A_{W} = \begin{bmatrix} -2. & 0. & 0. & 0. & -3.0333 \\ 0.0338 & -5. & 0. & 0. & 0. \\ 0. & 4.8651 & -0.167 & 0. & 0. \\ 0. & 0. & 3.0338 & -2. & 0. \\ 0. & 4.6262 & 0.148 & 0.1466 & -0.1125 \end{bmatrix}$$

La matrice de calibrage correspondante est :

	Г	0.0055	0.	0.	0.	0.]
_		0.	0.7661	0.	0.	0.
D	=	0.	0.	0.0253	0.	0.
		Ø.	0.	0.	0.0173	0.
	L	0.	0.	0.	0.	0.0041 🚽

Les cercles de Gershgorin associés à ${\rm A}_{\rm W}$ sont :

On voit bien que la minimisation de la norme infinie de la matrice A ne permet en aucun cas le découplage des dynamiques. Cependant, comme nous allons le voir dans le paragraphe suivant, cet algorithme appliqué différemment nous permettra de mieux localiser les valeurs propres de la matrice.

V.2.2 - Minimisation des rayons des cercles de Gershgorin

a - Optimisation de la matrice de calibrage

Il s'agit de trouver une matrice diagonale régulière $D = (d_i)$, i = 1, ..., n, optimale qui minimise le critère :

(II.41)
$$J_m = \sum_{i=1}^n \left(\sum_{\substack{j=1\\j\neq i}}^n |a_{ij}| \left| \frac{d_j}{d_i} \right| \right)^{2\alpha}$$
 pour $\alpha = 1, 2, ...$

Le fait de minimiser ce critère permet de minimiser les rayons des cercles de Gershgorin associés à la matrice d'état A du système (Σ).

Cette méthode peut présenter un inconvénient, en effet la valeur de ce critère peut correspondre à un minimum local et donc les rayons des cercles de Gershgorin associés à $A_0 = D^{-1}AD$ peuvent ne pas être minima, et en plus le calcul peut s'avérer fastidieux.

b - <u>1^{ère} méthode de minimisation des rayons</u>

Considérons la matrice d'état A du système (Σ). A peut être réécrite sous la forme : A = B + C où B et C sont données par (II.16).

Le but est de trouver une matrice diagonale D régulière telle que les rayons des cercles de Gershgorin associés à D⁻¹AD soient égaux. Pour cela, nous allons appliquer l'algorithme de Williams à la matrice des termes hors diagonaux C.

Nous avons donc $C_W = D^{-1}CD$ avec $||C_W||_{\infty}$ minimale.

La matrice $A_H = B + C_W$ est telle que les rayons des cercles qui lui sont associées sont minima. En plus, nous avons :

$$A_{H} = D^{-1}AD$$

en effet
$$A_{H} = B + C_{W}$$

$$A_{H} = B + D^{-1}CD$$

B étant diagonale, on a $B = D^{-1}BD$ et donc

$$A_{H} = D^{-1}BD + D^{-1}CD$$

$$A_{H} = D^{-1}(B + C)D$$

$$A_{H} = D^{-1}AD$$

$$||A_{W}||_{W} \leq ||A_{H}||_{W} \leq ||A||_{W}$$

<u>Lemme 4</u> :

 $||A_W||_{\infty} \geq ||A_H||_{\infty} \geq ||A||_{\infty}$

Exemple : Reprenons l'exemple cité ci-dessus et appliquons l'algorithme de minimisation des termes hors diagonaux à la matrice A.

La matrice obtenue est :

	Γ-2.	0.	0.	0.	- 0.9319 7
	0.9323	- 5.	0.	0.	0.
A _H =	0.	0.9321	- 0.167	0.	0.
••	0.	0.	0.9323	- 2.	0.
	L 0.	0.5467	0.0913	0.2942	- 0.1125

La matrice de calibrage correspondante est :

	Г	0.2188	0.	0.	0.	0. J
-		0.	1.1146	0.	0.	0.
D	=	0.	0.	0.1998	0.	0.
		0.	0.	0.	0.4284	0.
	L	0.	0.	0.	0.	0.051]

Les cercles de Gershgorin associés à A_H sont :

Figure II.7

Nous avons ainsi minimisé les rayons des cercles de Gershgorin associés à la matrice A. Nous avons ainsi mis en évidence plusieurs dynamiques pour ce système.

c - <u>2^{ème} méthode de minimisation des rayons</u>

Cette méthode permet d'obtenir une localisation encore meilleure que celle obtenue par la 1^{ère} méthode, mais elle ne permet pas la détermination de la matrice de calibrage.

Nous avons vu que pour minimiser les rayons des cercles de Gershgorin associés à A, il suffisait de les rendre égaux [Algorithme de Williams + 1^{ère} méthode]. En nous basant sur le même principe que celui de l'algorithme de Williams, et sachant que les valeurs propres de la matrice A sont situées dans les domaines intérieurs aux circonférences d'équations :

$$|z - a_{ii}| = \left[\sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|^{\alpha}\right]^{1/\alpha} \alpha = 1, 2, ...$$

i et m étant les indices des rayons qu'on cherche à rendre égaux, nous chercherons donc à avoir :

(II.42)
$$\left[\sum_{\substack{j=1\\j\neq i}}^{n} \frac{|a_{ij}|^{\alpha}}{|d_{i}|^{\alpha}}\right]^{\frac{1}{\alpha}} = \left[\sum_{\substack{j=1\\j\neq m, i}}^{n} |a_{mj}|^{\alpha} + |a_{mi}|^{\alpha} |d_{i}|^{\alpha}\right]^{\frac{1}{\alpha}}$$

soit

(II.43)
$$\sum_{\substack{j=1\\j\neq i}}^{n} \frac{\left|a_{ij}\right|^{\alpha}}{\left|d_{i}\right|^{\alpha}} = \sum_{\substack{j=1\\j\neq m, i}}^{n} \left|a_{mj}\right|^{\alpha} + \left|a_{mi}\right|^{\alpha} \left|d_{i}\right|^{\alpha}$$

ce qui nous amène à résoudre l'équation :

(II.44)
$$|a_{mi}|^{\alpha} X^{2} + \left[\sum_{\substack{j=1\\ j \neq m, i}}^{n} |a_{mj}|^{\alpha}\right] X - \sum_{\substack{j=1\\ j \neq i}}^{n} |a_{ij}|^{\alpha} = 0$$

avec $X = |d_i|^{\alpha}$

L'équation (II.44) a une solution X unique telle que : $0 < X \le 1$.

Exemple : L'application de cette méthode à l'exemple précédent pour $\alpha = 15$ conduit à :

VI - <u>Conclusion</u>

Nous avons exposé un certains nombre de méthodes géométriques de localisation des valeurs propres d'une matrice carrée; des méthodes qui nous permettront d'effectuer la séparation des dynamiques du système tout en conservant le sens physique de ses composantes d'état. Auparavant, nous avons cité différents critères de régularité; des critères qui pourront, dans le cas d'une matrice bien conditionnée, être des critères de choix pour l'utilisation des méthodes géométriques pour la mise en évidence des dynamiques d'un système. En plus, lorsque la matrice n'est pas bien conditionnée, nous avons établi deux méthodes, basées sur la minimisation de la norme infinie d'une matrice, permettant d'effectuer une localisation très fine du spectre de la matrice.

Dans le chapitre suivant, nous exposons une technique de bloc-diagonalisation lorsque la matrice est mal conditionnée et que nous ne pouvons pas conclure par les méthodes géométriques.

...... .

Chapitre III

BLOC-DIAGONALISATION PAR LA SIGNATURE D'UNE MATRICE CARREE D'UN SYSTEME A ECHELLES DE TEMPS MULTIPLES

I - Introduction

Les méthodes géométriques de mise en évidence des dynamiques ne sont applicables que dans la mesure où elles font apparaître une séparation nette des domaines contenant les valeurs propres de la matrice d'état du système. Dans le cas contraire, il est nécessaire d'effectuer un changement de base non diagonal pour rendre la matrice d'état bloc-diagonale.

La bloc-diagonalisation de la matrice d'état A du système (Σ) représenté par l'équation (I.7), peut être réalisée à travers la fonction *signature de matrice* dont une des caractéristiques principale est la préservation des valeurs et vecteurs propres de la matrice initiale.

Dans ce chapitre, nous présentons une technique de séparation des valeurs propres de la matrice d'état A relativement à un secteur du plan complexe défini par :

- un intervalle $\mathcal{I} =]\alpha_1, \alpha_2[,$

- une couronne C(0,r,R) définie par deux cercles centrés en zéro de rayons respectifs r et R,

sans pour autant calculer les valeurs propres de la matrice A.

Nous développons aussi une technique de bloc-diagonalisation de la matrice A en accord avec les caractéristiques de son spectre. Chaque bloc contiendra les valeurs propres de A situées dans un domaine spécifique de C.

II - Quelques définitions

Considérons le système (Σ) défini par l'équation d'état (I.7). Le comportement transitoire de ce système dépendait de la localisation des valeurs propres de la matrice d'état A.

Généralement, celles-ci sont classées en deux groupes :

- valeurs propres dominantes : lentes ou instables
- valeurs propres non dominantes : rapides et stables

En réalité la définition des valeurs propres stables dominantes (resp. non dominantes) est encore ambigüe. En effet deux définitions peuvent être retenues : les dynamiques dominantes λ_i de la matrice d'état A du système (Σ) sont celles :

- qui sont proches de l'axe imaginaire $\Rightarrow \Re(\lambda_i)$ proche de zéro

- qui ont un module relativement petit $\Rightarrow |\lambda_i|$ proche de zéro.

Les définitions suivantes présentent les différents cas possibles.

II.1 - Définition 1

Les dynamiques non dominantes d'un système continu (Σ) stable sont telles que $\Re e(\lambda_i) \leq r < 0$ tandis que les dynamiques dominantes sont telles que $\Re e(\lambda_i) > r$.

Si la distribution spectrale du système n'est pas connue, le réel r peut être choisi comme la moyenne arithmétique des valeurs propres de la matrice A [Shieh, 1984-a, 1986]:

(III.1)
$$r_a = \frac{\text{trace}(A)}{n}$$

II.2 - Définition 2

Nous introduisons une nouvelle définition : les dynamiques non dominantes d'un système continu stable (Σ) sont telles que $0 < \rho < |\lambda_i|$ tandis que les dynamiques dominantes sont telles que $|\lambda_i| \le \rho$.

Si la distribution spectrale du système n'est pas connue, le réel p peut être choisi comme la moyenne géométrique des valeurs propres de A :

(III.2)
$$r_g = \left| \sqrt[n]{\det(A)} \right|$$

II.3 - Définition 3 [Shieh, 1986]

Les dynamiques dominantes d'un système (Σ) sont les valeurs propres de A situées dans le secteur défini par le cercle centré en zéro de rayon ρ et le secteur angulaire d'angle θ :

avec

(III.3)
$$\rho = \sqrt{r_a^2 + (r_g)^2}$$
, $\theta = 2 \arctan\left(\frac{r_g}{r_a}\right)$

e t

(III.4)
$$r'_g = \sqrt[n]{\det(A - r_a I_n)}$$

où r_a est défini dans (III.1)

 r'_{g} est la moyenne géométrique des valeurs propres de [A - $r_{a}I_{n}$].

III - Signature d'une matrice carrée

Des applications de la fonction *signature de matrice* ont été proposées par Beavers et Denman [Beavers, 1973, 1974], [Denman, 1976], [Shieh, 1983, 1984-a,b,c]. La fonction *signature de matrice* est un outil très important pour la décomposition spectrale puisqu'elle fournit des renseignements sur le spectre de la matrice même quand on ne connait pas ses vecteurs et ses valeurs propres.

III.1 - Signature d'une matrice carrée

III.1.1 - Fonction signe d'une variable complexe

La fonction scalaire signe d'une variable complexe z telle que $\Re(z) \neq 0$ est définie par :

signe(z) =
$$\begin{cases} +1 \text{ quand } \mathcal{R}e(z) > 0\\ -1 \text{ quand } \mathcal{R}e(z) < 0 \end{cases}$$

Nous observons que le signe est une fonction non linéaire qui transforme le demi plan complexe \mathbb{C}^+ (resp. \mathbb{C}^-) en +1 (resp. en -1).

Cette définition est restrictive dans le sens où elle n'est pas définie lorsque $\Re e(z) = 0$. Nous allons donc l'étendre par signe(z) = 0 quand $\Re e(z) = 0$.

III.1.2 - Cas d'une variable matricielle

a - Fonction de matrice

Une matrice carrée A, d'ordre n, peut être écrite sous la forme :

$$A = M \Lambda M^{-1}$$

où M est la matrice des vecteurs propres de A et Λ est la matrice canonique de Jordan :

(III.5)
(III.5)
f (
$$\Lambda_i$$
) =
ayant les valeurs
la surdiagonale
ayant les valeurs
la surdiagonale
to matrice carrée A seria notée : Λ_{∞}
Définition : Si on note
O $f(\Lambda_k)$
 $f(\Lambda_k) = \{1, \dots, k\}$
 $f(\Lambda_k) = \{1,$

où pour chaque i = $\{1,...,k\}$

car

$$\frac{\partial \left[\text{signe} \left(\lambda_i \right) \right]}{\partial \lambda_i} = 0$$

alors la signature de A sera définie par :

(III.9)
$$A_{\infty} = M \Lambda_{\infty} M^{-1}$$

<u>Propriétés</u> : A étant une matrice non singulière et ne contenant pas de valeurs propres imaginaires pures,

* Λ_{∞} est une matrice diagonale dont les éléments sont des 1 et des -1. A_{∞} est en général, à cause de la base dans laquelle est calculée la matrice des vecteurs propres M, non diagonale composée de termes différents de 1 et -1. On a toujours $A_{\infty}^2 \rightarrow I_n$: identité de rang n.

* trace(A_{∞}) = p - q

où p, (resp. q) est le nombre de valeurs propres de A à partie réelle positive (resp. négative).

Chapitre III

Exemple : Considérons la matrice

 $R = \begin{bmatrix} 1.023 & 0. & 0. & 0.077 \\ 0. & 0.1 & 0.0625 & 0.9375 \\ 0. & 1.067 & 0.033 & 0. \\ 6.5 & -1.152 & -0.36 & -5.4 \end{bmatrix}$

la matrice contenant les valeurs propres de R est :

$$\Lambda = \begin{bmatrix} -5.2910447 & 0. & 0. & 0. \\ 0. & 1.085345 & 0. & 0. \\ 0. & 0. & 0.0750643 & 0. \\ 0. & 0. & 0. & -0.1143646 \end{bmatrix}$$

et les vecteurs propres associés à ces valeurs propres sont :

$$M = \begin{bmatrix} -1.0715456 & 0.2089808 & 0.0679294 & 1.0408903 \\ 8.1644273 & -0.1288501 & -0.0344417 & 0.0783095 \\ -3.145794 & 2.9352902 & 0.4289486 & 0.4582869 \\ -0.9163319 & 0.9792544 & -0.0236241 & 0.160339 \end{bmatrix}$$

l'application de la fonction signe à chaque valeur propre de R donne :

 $\dot{\Delta}_{\infty} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}$

d'où la signature de R (III.9) :

 $R_{\infty} = \begin{bmatrix} 0.9483 & 0.0329 & 0.001 & 0.0295 \\ 1.1524 & -0.5515 & 0.0624 & 0.0901 \\ -10.9222 & 11.7363 & 0.7119 & 1.8527 \\ 2.4871 & -0.8221 & -0.1233 & -1.1087 \end{bmatrix}$ $R_{\infty}^{2} = \begin{bmatrix} 1. & 0. & 0. & 0. \\ -0.555D-16 & 1. & 0. & 0. \\ -0.111D-15 & 0. & 1. & 0. \\ 0.111D-15 & -0.555D-16 & 0. & 1. \end{bmatrix}$

Nous avons bien $R_{\infty}^2 = I_4$ et trace $(R_{\infty}) = 0$

III.1.3 - Calcul de la signature d'une matrice carrée

Un des algorithmes itératifs donnés dans la littérature [Denman, 1976, 1981], [Howland, 1983], [Shieh, 1986] pour le calcul de la signature d'une matrice carrée A ne contenant pas de singularités à l'origine ni de valeurs propres imaginaires pures, consiste à calculer la suite :

(III.10) $S_{i+1} = \frac{S_i + S_i^{-1}}{2}$ avec $S_0 = A$

La signature de A est obtenue par :

(III.11)
$$A_{\infty} = \lim_{i \to \infty} \{S_i\}$$

<u>Critère d'arrêt</u> : $A_{\infty}^2 \rightarrow I_n$ [Howland, 1983].

Les singularités précédemment énoncées peuvent être évitées en effectuant une translation du spectre de A par rapport à zéro.

(III.12)
$$A + \varepsilon I_n = M \wedge M^{-1} + \varepsilon M M^{-1}$$

$$A + \varepsilon I_n = M (\Lambda + \varepsilon I_n) M^{-1}$$

Le sens de la translation est définie par le signe de ε .

Ceci nous amène à définir la signature généralisée de A.

III.2 - Signature généralisée d'une matrice carrée

Supposons que la matrice A soit singulière ou contenant des valeurs propres imaginaires pures.

Considérons $\varepsilon \in \mathbb{R}$ et $A_1 = [A + \varepsilon I_n]$ et $A_2 = [A - \varepsilon I_n]$ tels que A_1 et A_2 ne contiennent pas de singularités à l'origine ni de valeurs propres imaginaires pures.

La signature généralisée de A est donnée par :

(III.13)
$$A_{\infty} = \frac{A_{1 \omega} + A_{2 \omega}}{2}$$

Exemple : Considérons la matrice singulière G ayant pour valeurs propres $\{1, -1, i, -i, 0\}$, *i* étant le nombre complexe tel que $i^2 = -1$.

		29.2	- 24.2	69.5	49.8	7.]
-		- 9.2	5.2	- 18.	- 15.8	- 2.
G	=	- 10.	6.	- 20.	- 18.	- 2.
		- 9.6	9.6	- 25.5	- 15.4	- 2.
		L 9.8	- 4.8	18.	18.2	2.

La signature généralisée de G est :

III.3 - Projecteurs propres [Denman, 1981]

Le domaine spectral $\sigma(A)$ peut être décomposé en quatre sous-espaces : positif, négatif, nul et imaginaire. Les projecteurs propres sont donc définis de façon à couvrir le spectre entier de A. Ils sont notés : \mathcal{P}^+ , \mathcal{P}^- , \mathcal{P}^I , \mathcal{P}^0 avec :

$$\begin{split} & \mathcal{P}^+ : \text{le projecteur de } \sigma(A) \text{ sur } \mathbb{C}^+, \ \mathcal{R}e(\lambda_i) > 0 \\ & \mathcal{P}^- : \text{le projecteur de } \sigma(A) \text{ sur } \mathbb{C}^-, \ \mathcal{R}e(\lambda_i) < 0 \\ & \mathcal{P}^I : \text{ le projecteur de } \sigma(A) \text{ sur l'axe imaginaire, } \ \mathcal{R}e(\lambda_i) = 0 \ ; \ \mathcal{I}m(\lambda_i) \neq 0 \\ & \mathcal{P}^0 : \text{le projecteur de } \sigma(A) \text{ sur l'origine du plan complexe, } \lambda_i = 0 \end{split}$$

III.3.1 - <u>Propriétés</u>

* $\mathcal{P}^{+} + \mathcal{P}^{-} + \mathcal{P}^{I} + \mathcal{P}^{0} = I_{n}$ * $\mathcal{P}^{+} \mathcal{P}^{-} = 0$... (orthogonaux deux à deux) * $\mathcal{P}^{+} \mathcal{P}^{+} = \mathcal{P}^{+} = \mathcal{P}^{+} + \mathbb{A}^{-}$ (idempotence) * $A^{+} = A \mathcal{P}^{+} = \mathcal{P}^{+} A$: projection de $\sigma(A)$ sur \mathbb{C}^{+} * $A^{-} = A \mathcal{P}^{-} = \mathcal{P}^{-} A$: projection de $\sigma(A)$ sur \mathbb{C}^{-} * $A^{I} = A \mathcal{P}^{I} = \mathcal{P}^{I} A$: projection de $\sigma(A)$ sur l'axe imaginaire * $A^{0} = A \mathcal{P}^{0} = \mathcal{P}^{0} A = 0$: projection de $\sigma(A)$ en zéro * $A = A^{+} + A^{-} + A^{I} + A^{0}$ $\sigma(A^{+}) = \sigma(A)$ tel que $\mathcal{R}e(\lambda_{i}) > 0$

$$\begin{split} &\sigma(A^{-}) = \sigma(A) \text{ tel que } \mathcal{R}e(\lambda_i) < 0 \\ &\sigma(A^{I}) = \sigma(A) \text{ tel que } \mathcal{R}e(\lambda_i) = 0 \text{ et } \mathcal{I}m(\lambda_i) \neq 0 \\ &\sigma(A^{0}) = \sigma(A) \text{ tel que } \lambda_i = 0 \end{split}$$

<u>Remarque</u> : \mathcal{P}^{0} n'est pas forcement nulle.

III.3.2 - Calcul des projecteurs propres

(III.14)

$$\begin{pmatrix}
\mathcal{P}^{+} = \frac{1}{2\pi i} \oint_{\Gamma^{+}} (\lambda I_{n} - A)^{-1} d\lambda = \frac{A_{\infty}^{2} + A_{\infty}}{2} \\
\mathcal{P}^{-} = \frac{1}{2\pi i} \oint_{\Gamma^{-}} (\lambda I_{n} - A)^{-1} d\lambda = \frac{A_{\infty}^{2} - A_{\infty}}{2} \\
\mathcal{P}^{-} = A_{\infty} - \left[A + A^{2} \left(I_{n} - A_{\infty}^{2}\right)\right]_{\infty} \\
\mathcal{P}^{0} = I_{n} - \mathcal{P}^{+} - \mathcal{P}^{-} - \mathcal{P}^{-}$$

Chapitre III

 Γ^{+} : contour fermé dans \mathbb{C}^{+} contenant $\sigma(A) \cap \mathbb{C}^{+}$ Γ^{-} : contour fermé dans \mathbb{C}^{-} contenant $\sigma(A) \cap \mathbb{C}^{-}$

Les valeurs propres des projecteurs propres de A sont des 0 et des 1 avec les mêmes vecteurs propres que pour A.

Exemple : Les projecteurs propres de la matrice G sont :

5.2133 1.0427 - 2.3467 - 0.4693 - 2.4 - 0.48 - 0.9067 - 0.1813 0.2653 2.6533 0.5307 3.288 - 0.968 3.288 - 14.796 - 16.44 9.864 - 1.04 - 1.224 1.032 - 6.464 14.408 10.95 - 5.664] \mathcal{P}^{I} - 0.896

 0.2667
 2.1333
 - 0.1333
 0.2667
 1.3333

 0.0667
 0.5333
 - 0.0333
 0.0667
 0.3333

 0.
 0.
 0.
 0.
 0.

 0.1333
 - 1.0667
 0.0667
 - 0.0333
 0.0667

 \mathcal{P}^{0} 0.1333 0.0667 0.5333 - 0.03330.0667 0.3333

En plus, nous avons :

 $trace(\mathcal{P}^+) = 1$ et $rang(\mathcal{P}^+) = 1$ $trace(\mathcal{P}^-) = 1$ et $rang(\mathcal{P}^-) = 1$ $trace(\mathcal{P}^{I}) = 2$ et $rang(\mathcal{P}^{I}) = 2$ $trace(\mathcal{P}^{O}) = 1$

ce qui correspond bien au spectre de G.

III.4 - Localisation du spectre de A dans un intervalle $\mathcal{I} =]\alpha_1, \alpha_2[$

Nous allons localiser les valeurs propres de A situées dans le domaine \mathcal{D} délimité par l'intervalle \mathcal{I} et calculer leur nombre.

III.4.1 - Signature dans l'intervalle J

Nous introduisons une nouvelle définition de la signature d'une matrice A dans un intervalle $\mathcal{J} =]\alpha_1, \alpha_2[$ qui nous permettra de déterminer des domaines ne contenant pas de valeurs propres de la matrice et sera utilisée dans l'algorithme 1.

(III.15)
$$\begin{cases} \operatorname{si} \alpha_{1} < \alpha_{2} \leq 0 : \quad A_{\infty/j} = \frac{\left[A - \alpha_{2} \operatorname{I}_{n}\right]_{\infty} - \left[A - \alpha_{1} \operatorname{I}_{n}\right]_{\infty}}{2} \\ \operatorname{si} 0 \leq \alpha_{1} < \alpha_{2} : \quad A_{\infty/j} = \frac{\left[A - \alpha_{1} \operatorname{I}_{n}\right]_{\infty} - \left[A - \alpha_{2} \operatorname{I}_{n}\right]_{\infty}}{2} \\ \operatorname{si} \alpha_{1} \leq 0 \leq \alpha_{2} : \quad A_{\infty/j} = A_{\infty} - \frac{\left[A - \alpha_{1} \operatorname{I}_{n}\right]_{\infty} + \left[A - \alpha_{2} \operatorname{I}_{n}\right]_{\infty}}{2} \end{cases}$$

Propriété :
$$trace(A_{\omega/g}) = p - q$$

où p, (resp. q) est le nombre de valeurs propres de A dans l'intervalle $]\alpha_1, \alpha_2[$ à partie réelle positive (resp. négative).

III.4.2 - Nombre de valeurs propres de A dans $\mathcal I$

Le nombre de valeurs propres de A situées dans le domaine \mathcal{D} défini par l'intervalle $\mathcal{I} =]\alpha_1, \alpha_2[$ est :

(III.16)
$$n = \frac{\operatorname{trace}\left[\left(A - \alpha_1 I_n\right)_{\infty}\right] - \operatorname{trace}\left[\left(A - \alpha_2 I_n\right)_{\infty}\right]}{2}$$

III.5 - Localisation du spectre de A à l'intérieur d'une couronne

Nous allons localiser les valeurs propres de A situées dans le domaine \mathcal{D} délimité par les cercles $\mathcal{C}(0,r)$ et $\mathcal{C}(0,R)$, $0 \le r < R \le \infty$, puis calculer leur nombre.

III.5.1 - Signature de A par rapport à un cercle C(0,p)

a - <u>Définition</u>

Considérons la fonction de variable complexe :

(III.17)
$$h(z) = \frac{\alpha z + \beta}{\delta z + \sigma}$$

où z, α , β , δ et σ sont des nombres complexes tels que $\alpha\sigma$ - $\beta\delta \neq 0$.

La fonction de variable matricielle correspondante est :

(III.18)
$$h(A) = (\alpha A + \beta I_n)(\delta A + \sigma I_n)^{-1}$$
 avec $det(\delta A + \sigma I_n) \neq 0$

b - Signature de A par rapport au cercle $C(0,\rho)$

Sachant que $0 \le \rho \le \infty$ et que $C(0,\rho)$ est le cercle centré en zéro de rayon ρ . En prenant $\alpha = \delta = 1$, $\beta = -\rho$ et $\sigma = \rho$ et en supposant que $f_i(A)$ ne contient pas de singularités à l'origine ni de valeurs propres imaginaires pures alors la signature de A par rapport au cercle $C(0,\rho)$ est :

$$A_{\infty/C} = \left[(A - \rho I_n)(A + \rho I_n)^{-1} \right]_{\infty}$$

En effet la fonction bilinéaire de variable complexe :

$$h(z) = (z - \rho)(z + \rho)^{-1}$$

transforme le cercle $C(0,\rho)$ en l'axe imaginaire, l'intérieur (resp. l'extérieur) de $C(0,\rho)$ en demi-plan gauche (resp. droit) du plan complexe.

<u>Propriété</u> : $trace(A_{\infty/c}) = p - q$

où p, (resp. q) est le nombre de valeurs propres de A à l'extérieur (resp. l'intérieur) du cercle C(0,p).

III.5.2 - Signature de A dans la couronne C(0,r,R)

Nous introduisons une définition de la signature d'une matrice à l'intérieur d'une couronne qui va nous permettre de définir des domaines ne contenant pas de valeurs propres de la matrice et sera utilisée dans l'algorithme 2.

Supposons que $0 \le r < R \le \infty$ et que

$$det(A + r I_n) \neq 0 , det(A + R I_n) \neq 0$$

La signature de A dans C(0,r,R) :

Figure III.3

est:

(III.19)
$$A_{\infty/C(0,r,R)} = \left[(A - r I_n) (A + r I_n)^{-1} \right]_{\infty} - \left[(A - R I_n) (A + R I_n)^{-1} \right]_{\infty}$$

III.5.3 - Nombre de valeurs propres de A dans C(0,r,R)

Le nombre de valeurs propres de A situées dans la couronne $\mathcal{C}(0,r,R)$ est :

(III.20)
$$n = \operatorname{trace} \left[A_{\infty/C(0,r,R)} \right]$$

<u>Propriétés</u> :

$$\lim_{\substack{r \to 0 \\ R \to \infty}} A_{\infty/C(0,r,R)} = A_{\infty}$$

trace $(A_{\infty/C}(0,0,\varepsilon \to 0))$ = nombre de valeurs propres nulles de A.

IV - Bloc-diagonalisation

IV.1 - Détermination de la matrice de changement de base

Etant donné la matrice d'état A d'un système (Σ) , représenté par l'équation (I.7), il est possible, par une transformation linéaire, de l'écrire sous forme diagonale par blocs tout en s'imposant les sous-ensembles des valeurs propres que l'on veut retrouver dans chacun des blocs diagonaux.

Théorème : [Denman, 1976]

Si la matrice A possède n_1 (resp. $n_2 = n - n_1$) valeurs propres à partie réelle positive ou nulle (resp. négative), alors A peut être mise sous forme bloc-diagonale :

(III.21)
$$A_{\mathcal{B}} = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

par un changement de base de matrice :

(III.22)
$$F = A_{\infty} + \begin{bmatrix} I_1 & 0 \\ 0 & -I_2 \end{bmatrix}$$

avec :

A₁ contenant les n₁ valeurs propres de A à partie réelle positive ou nulle

A₂ contenant les n₂ valeurs propres de A à partie réelle négative.

<u>Remarque</u> : Si, par des permutations de lignes et de colonnes, nous écrivons A de façon à ce que les n_1 premiers éléments de la diagonales de A_{∞} soient tous positifs, alors la matrice F sera non singulière.

IV.2 - <u>Algorithmes</u>

Supposons que la matrice d'état A possède, p valeurs propres à partie réelle positive ou nulle et q valeurs propres à partie réelle strictement négative. Supposons en plus que ces q valeurs propres forment deux sous-ensembles disjoints de dimension n_1 et n_2 . Nous allons donc les identifier, effectuer des permutations pour regrouper les dynamiques correspondantes à ces sous-ensembles et enfin bloc-diagonaliser la matrice d'état A. Le système sera alors décomposé en deux sous-systèmes : lent et instable de dimension $p_{+}n_1$ et rapide de dimension n_2 .

Jusqu'à présent la seule contrainte imposée est que ces sous-ensembles soient disjoints et aucune hypothèse n'a été faite, tant sur les propriétés de l'ensemble global que sur les dimensions respectives de la partition effectuée.

IV.2.1 - <u>Algorithme 1</u> (utilisation de la définition (III.1))

Notations :

 $\begin{array}{l} \mathsf{A}_p: \text{ matrice carrée d'ordre p telle que } \mathcal{R}e(\lambda_i) \geq 0 \ (i=1,\,...,\,p) \\ \mathsf{A}_q: \text{ matrice carrée d'ordre q telle que } \mathcal{R}e(\lambda_i) < 0 \ (i=1,\,...,\,q) \\ \mathsf{r}_{aq}: \text{ moyenne arithmétique des valeurs propres de } \mathsf{A}_q \ (\text{III.1}) \\ \mathsf{A}_{qd} = \mathsf{A}_q - \mathsf{r}_{aq} \ \mathsf{I}_q \\ \mathcal{D}_1 = \text{diag}(\mathsf{A}_{\infty}) \\ \mathcal{D}_2 = \text{diag}[(\mathsf{A}_{qd})_{\infty}] \end{array}$

(III.23) P_1 est la matrice de permutation telle que : - les p premiers éléments de \mathcal{D}_1 soient positifs - les q derniers éléments de \mathcal{D}_1 soient négatifs.

(III.24) P_2 est la matrice de permutation telle que : - les n₁ premiers éléments de \mathcal{D}_2 soient positifs - les n₂ derniers éléments de \mathcal{D}_2 soient négatifs.

Si nous avons k sous-ensembles disjoints de dynamiques et si nous voulons décomposer le système initial en k sous-systèmes alors il faut recommencer l'étape 2 pour chaque bloc et pour chaque sous-bloc de A_a jusqu'à en avoir k.

IV.2.2 - <u>Algorithme 2</u> (utilisation de la définition (III.2) ou (III.3))

Notations :

 \boldsymbol{A}_p : matrice carrée d'ordre p telle que $\mathcal{R}e(\lambda_i)\geq 0$ (i = 1, ..., p)

 A_q : matrice carrée d'ordre q telle que $\Re e(\lambda_i) < 0$ (i = 1, ..., q)

 r_q : moyenne géométrique des valeurs propres de A_q si l'on considère la définition (III.2), ou alors la moyenne telle qu'elle a été définie dans (III.3) si l'on considère la définition 3.

 $A_{q\infty/C}$: signature de A_q par rapport au cercle $C(0,r_q)$ $D_2 = diag(A_{q\infty/C})$

(III.25) P₂ est la matrice de permutation telle que :

- les n_1 premiers éléments de \mathcal{D}_2 soient négatifs
- les n_2 derniers éléments de \mathcal{D}_2 soient positifs.

Si nous avons k sous-ensembles disjoints de dynamiques et si nous voulons décomposer le système initial en k sous-systèmes alors il faut recommencer l'étape 2 pour chaque bloc et pour chaque sous-bloc de A_a jusqu'à en avoir k.

IV.3 - Critères de séparabilité

Nous introduisons ici de nouveaux critères de séparabilité relatifs aux algorithmes précédents. Ils permettent la mesure de la qualité de la séparation effectuée lors de la bloc-diagonalisation.

IV.3.1 - Méthode utilisant ra

Etant donné la matrice d'état A d'un système caractérisé par l'équation (I.7). S'il existe $\alpha_1, \alpha_2, \beta_1$ et $\beta_2 \in \mathbb{R}$ tels que :

 $\sigma(A) \cap \{\alpha_1, \alpha_2\} = \emptyset$

et

(III.26)
$$\begin{cases} \frac{\alpha_2 - \alpha_1}{\beta_2 - \beta_1} \text{ voisin de 1 tel que :} \\ \text{trace} \left[\left(A - \alpha_1 I_n \right)_{\infty} \right] - \text{trace} \left[\left(A - \alpha_2 I_n \right)_{\infty} \right] = 0 \\ \text{trace} \left[\left(A - \beta_1 I_n \right)_{\infty} \right] - \text{trace} \left[\left(A - \beta_2 I_n \right)_{\infty} \right] = n \end{cases}$$

alors le système peut être décomposé en deux sous-systèmes de dynamiques très différentes.

 $\alpha_1, \alpha_2, \beta_1$ et β_2 sont définis dans la figure III.4

n étant l'ordre de la matrice A.

 \mathcal{D}_1 est le domaine contenant les dynamiques rapides et stables

 $\mathcal{D}_{\rm 2}$ est le domaine contenant les dynamiques lentes ou instables

Etant donné la matrice d'état A d'un système caractérisé par l'équation (I.7). S'il existe ρ_1 et $\rho_2 \in \mathbb{R}^+$ tels que :

$$\sigma(A) \cap \mathcal{C}(0,\rho_1,\rho_2) = \emptyset$$

et

(III.27)
$$\begin{cases} \rho_1 \ll \rho_2 \\ \operatorname{trace} \left[A_{\infty/C} \left(0, \rho_1, \rho_2 \right) \right] = 0 \end{cases}$$

alors le système peut être décomposé en deux sous-systèmes de dynamiques très différentes.

Pour calculer ρ_1 et ρ_2 , on peut utiliser l'algorithme de Williams [Cf. chapitre II] pour les deux blocs de la matrice A_m :

$$\begin{cases} \rho_1 = \left\| A_{fW} \right\| \\ \rho_2 = \left\| \left(A_{rW} \right)^{-1} \right\|^{-1} \quad \text{ou} \quad \left\| \left(A_r^{-1} \right)_W \right\|^{-1} \end{cases}$$

V - Conclusion

Basée sur les propriétés de la signature généralisée de matrice, nous avons introduit une nouvelle définition de la signature d'une matrice par rapport à un intervalle, puis par rapport à une couronne, dont l'intérêt est tenir compte des modes complexes dont $\Re e(\lambda) \ll \Im m(\lambda)$, nous permettant ainsi de déterminer des domaines ne contenant pas de valeurs propres de la matrice d'état. Nous avons aussi établi deux algorithmes de bloc-diagonalisation basés sur deux définitions différentes des dynamiques dominantes d'un système caractérisé par son équation d'état. Comme nous allons le voir dans les exemples du chapitre suivant, les sous-systèmes obtenus par ces trois définitions peuvent être ou ne pas être identiques. Nous ne pouvons pas dire a priori quelle définition donnerait le meilleur découplage, d'où la nécessité d'introduire une mesure de la qualité de séparabilité de ces sous-systèmes (III.26) pour la définition (III.1) et (III.27) pour les définitions (III.2) et (III.3).

Nous avons proposé dans ce chapitre des méthodes nouvelles de bloc-diagonalisation de la matrice d'état d'un système multi-échelle de temps, par calcul de matrices de changement de base reposant sur la définition de la signature de matrice. Chapitre IV

EXEMPLES D'APPLICATION

.

Dans ce chapitre sont exposés cinq exemples d'application des méthodes données dans les chapitres précédents. Les méthodes du chapitre III, complétées de celles du chapitre II, sont comparées avec d'autres méthodes de localisation des dynamiques et de bloc-diagonalisation tirées de la littérature. Ces exemples présentent des caractéristiques différentes au point de vue taille et au niveau de l'ordre de grandeur des modes du système.

A titre d'information, et pour chaque exemple, nous donnons les valeurs propres de la matrice d'état. Le système réduit obtenu est souvent comparé avec celui obtenu par la méthode proposée par l'auteur de chaque exemple. Finalement, pour chaque méthode, un tableau récapitulatif résume les résultats obtenus pour tous les exemples. Nous calculons aussi la valeur du critère de séparabilité (III.26) ou (III.27) des dynamiques.

On constate que le système réduit dépend de la définition adoptée pour les dynamiques dominantes du système initial.

Notation :

٨

- A : la matrice d'état
- H : la matrice de changement de base

 A_{R} : la matrice d'état bloc-diagonalisée.

I - Exemple 1 : [Chow, 1976]

Considérons le générateur de vapeur de Chow cité dans le chapitre II et dont la matrice d'état est :

-						
-	2.	0.	0.	0.	- 4.	Į
	4.75	- 5.	0.	0.	0.	ļ
	0.	0.167	- 0.167	0.	0.	!
	0.	0.	2.	- 2.	0.	ļ
	0.	0.025	0.0233	0.035	- 0.1125	i
	-	= - 2. 4.75 0. 0. 0. 0.	= - 2. 0. 4.75 - 5. 0. 0.167 0. 0. 0. 0.	= - 2. 0. 0. 4.75 - 5. 0. 0. 0.167 - 0.167 0. 0. 2. 0. 0.025 0.0233	= - 2. 0. 0. 0. 4.75 - 5. 0. 0. 0. 0.167 - 0.167 0. 0. 0. 2 2. 0. 0.025 0.0233 0.035	= - 2. 0. 0. 0 4. 4.75 - 5. 0. 0. 0. 0. 0.167 - 0.167 0. 0. 0. 0. 2 2. 0. 0. 0.025 0.0233 0.035 - 0.1125

Les valeurs propres de A sont {-0.1542 \pm 0.1494i; -1.9697 \pm 0.143i; -5.0318}

Les conditions (I.34) de mise en évidence de la propriété de double échelle de temps n'étant pas satisfaites, Chow réordonne les lignes et les colonnes de A en effectuant des permutations de matrice :

P =

I	0.	Ø.	Ø.	1.	0.	ļ
!	0.	0.	0.	0.	1.	ļ
ļ	0.	1.	0.	0.	0.	İ
!	0.	0.	1.	0.	0.	ļ
!	1.	0.	0.	0.	0.	I

La matrice obtenue est :

 $A_1 = P^{-1}AP =$

ļ	-	0.1125	0.0233		0.035	0.		0.025	ļ
ļ		0.	- 0.167		0.	0.		0.167	ļ
ļ		0.	2.	-	2.	0.		0.	ļ
!	-	4.	0.		0.	 2.		0.	ļ
ļ		0.	0.		0.	4.75	-	5.	i

Les conditions (I.34) ne sont toujours pas satisfaites, il effectue un calibrage de matrice :

S =

ļ	4.	0.	Ø.	Ø.	0. !
i	0.	1.	0.	Ø.	0. !
!	0.	0.	1.	0.	0. !
ļ	0.	0.	0.	2.	0. !
!	0.	0.	0.	Ø.	1. !

Notons que le choix de la matrice de calibrage nécessite une bonne connaissance du système et surtout beaucoup d'expérience. La matrice obtenue est alors :

 $A_2 = SA_1S^{-1} =$ 0.14 0. 0. 0. - 2. 0. 0. - 2. 0. 2.3 ! - 0.1125 0.0932 0.1 - 0.167 ļ 0. 0. 0.167 ! ļ 0. 0. 2. I - 2. 0. İ 0. 0. ļ 0. 2.375 - 5. ! !

et vérifie (I.34)

Le système bloc diagonalisé sous forme (I.20) est alors :

 $A_{\mathcal{B}} =$ 0. - 0.16 0.2332 0. 0.! 0. 0. - 0.079325 - 0.167 0. 0.! I - 2. 0. 1 0. 0.! 0. 0. ļ Ø. 2. 0.! 0. 0. 0. 2.375 ļ - 5. !

La valeur du critère (I.22) relative à $A_{\mathcal{B}}$ est donnée plus loin dans le tableau récapitulatif.

I.1 - Algorithme 1

définition 1 : (III.1)

durée du calcul : 25 s

Η= 0.1621 Į 8.7253 - 0.475 0.0246 4.0357 ! 8.5 4.0201 - 0.573 0.1575 İ 0.0246 ! - 0.1418 - 0.1557 - 3.9207 ! - 1.0895 - 0.0352 - 0.3697 ! ! - 2.0089 - 4.1941 3.9466 - 0.4032 ! ! - 4.0816 0.0858 - 0.0763 - 0.0163 - 0.0292 !

La matrice d'état obtenue sous forme bloc-diagonale est :

 $A_{\mathcal{B}} =$

!	-	0.1488	0.0609	0.		0.	-	0.166D-15	!
ļ	-	0.3671	- 0.1595	0.		0.218D-15	-	0.159D-15	ļ
ļ	-	0.840D-15	0.	 2.0072	-	0.1845		0.	ļ
i		0.290D-15	0.414D-15	0.0738	-	4.964		4.75	ļ
ļ		0.115D-14	0.	0.0755		0.0416	-	2.	l

Les sous systèmes lent et rapide sont de dimension 2 et 3.

I.2 - Alaorithme 2

définition 2 : (III.2)

durée du calcul : 25 s

H =! - 8.7253 0.475 - 0.1621 - 0.0246 - 4.0357 ! - 8.5 0.573 - 0.1575 - 4.0201 - 0.0246 ! I. 1.0895 3.9207 0.0352 0.1418 0.3697 ! Т 0.1557 0.4032 ! 2.0089 4.1941 - 3.9466 ļ 4.0816 - 0.0858 0.0763 0.0163 0.0292 ! ļ $A_{\mathcal{B}} =$! - 0.14880.0609 0. - 0.156D-15 ! 0. - 0.1595 - 0.3671 0.186D-15 - 0.199D-15 ! L 0. 0. 0.432D-15 - 2.0072 - 0.1845 0. 1 - 0.567D-15 - 0.187D-14 0.0738 - 4.964 4.75 1 1 0.115D-14 0.139D-15 0.0755 0.0416 - 2. ļ I

On remarque que la matrice bloc-diagonale obtenue par l'algorithme 2 - définition 2 est identique à celle obtenue par l'algorithme 1.

définition 3 : (III.3)

durée du calcul : 27 s

H =ļ 0.0000015 0.0004 - 0.0336 3.9587 0.0264 ! - 0.0578 - 3.932 ļ - 0.0002 5.009 6.1602 ļ - 0.1719 - 0.2115 0.135 ł 4. 0.002 i 0.1395 - 0.0000049 - 0.089 3.9987 0.1134 į ļ ļ 0.0000011 0.0003 3.9746 -0.03130.02 ļ $A_{\mathcal{B}} =$ - 0.167 1 0. 0. 0.1631 0. i 2. ~ 0.1076 0. ł - 2. 0. ï 0.0233 0.035 0. 1 - 0.1125 0.0241 ļ 0. 0. - 4. - 0.359D-15 ! - 1.9682 İ 0. - 0.262D-15 0.275D-14 I. 0. - 5.0318 I

L'utilisation de la définition 3 permet le découplage du système initial en deux sous systèmes de dimension respective 4 et 1.

Tableau récapitulatif :

Exemple de Chow	ordre de A ₍	ordre de A_r	ε
Définition 1	2	3	0.3544
Définition 2	2	3	0.1651
Définition 3	. 4	1	0.4267
Chow	2	3	0.1966

<u>Tableau 1</u>

II - <u>Exemple 2</u> : [Hickin, 1980]

Les valeurs propres de A sont {-0.2042 ; -0.4652 \pm 9.3538*i* ; -13.541 \pm 376.33*i* ; -37.482 ; -46.342}

Utilisant des techniques d'agrégation, Hickin conserve les 3 premières valeurs propres dans son modèle réduit.

Nous traitons cet exemple parce que le module des parties imaginaires de certaines valeurs propres est très grand par rapport à celui de la partie réelle; ce qui pose le problème de choix entre les définitions et qui se traduit par la question : faut-t-il retenir ces valeurs propres dans le modèle réduit ?

A													
!-	6.2036		15.054	-	9.8726	-	376.58		251.32	-	162.24	66.8	327!
!	0.53	-	2.0176		1.4363		0.		0.		Ø.	0.	!
!	16.846		25.079	-	43.555		0.		0.		Ø.	0.	!
ļ	377.4		89.449	-	162.83		57.998	-	65.514		68.579	157.	57!
İ	0.		0.		0.		107.25		118.05		0.	0.	!
i	0.3699		0.1445	-	0.263	-	0.6472		0.4995		0.2113	0.	!
!	0.		0.		0.		0.		0.		376.99	0.	i

II.1 - Algorithme 1

définition 1

durée du calcul : 54 s

Η =

	-												
!-	0.0685	-	3.1813		0.3201	-	4.0186	-	1.3685		1.6836	-	0.0237!
ļ	0.0076		0.329	-	0.0333		0.0006		3.8505	-	0.1828	~	0.0025!
!-	0.1629	-	6.873		0.6983		0.0029	-	3.1861		3.8885		0.0934!
!-	4.0722		9.5127	-	0.8316		0.7486	-	0.1706	-	0.3697		2.7561!
!-	0.1076		14.248	-	1.2459		1.1198		0.2463	-	0.5639		4.1221!
!-	0.0003	-	4.0371		0.0035	-	0.0015	-	0.008		0.011	~	0.0053!
!	0.0031		0.338	-	4.0321		0.0124		0.0813	-	0.1087		0.0429!

 $A_{\mathcal{B}} =$

	colonr	nes	1 a 5				
! ! ! !	13.7046 0.5039 1.1809 374.9175 0.0483 0.170D-13	-	58.579 0.2113 376.99 162.24 0. 0.350D-13	157.57 0. 0. 65.827 0. 0.	377.3684 0.3257 0.444 - 13.4598 1.3208 0.	 89.4951 0.2104 0.661 4.2516 0.8403 0.	
!	0.2420-13 colonr	nes	6 a 7	Ø.291D-13	- 0.1350-13	U.	!

0.543D-13 - 0.763D-13 ! ł i 0. 0. ļ İ 0. 0. ļ - 0.547D-13 0.142D-12 ! ļ Į 0. 0. - 0.0517 - 46.3499 - 37.4736 ļ ļ 1.4039 ! ļ

II.2 - Algorithme 2

définition 2

durée du calcul : 43 s

H =

i	3.2211	- 1.9564	2.324	0.0491	- 0.006	- 4.0001	0.0288!
!-	0.3292	0.0348	3.8503	0.1824	- 0.0133	0.0003	0.0063!
ļ	6.8696	- 0.6682	3.1893	- 3.8826	- 0.0157	- 0.0076	0.0255!
!	9.5021	1.9274	0.0059	0.0727	- 3.9962	0.0085	- 0.0364!
!	14.2617	1.7311	- 0.023	0.0755	0.0086	0.015	- 4.0436!
ļ	4.0371	- 0.0055	0.0097	- 0.008	- 0.0037	- 0.0053	0.0078!
! -	0.3382	4.0351	- 0.0822	0.1069	- 0.0097	- 0.0082	- 0.0385!

 $\mathsf{A}_{\mathcal{B}} =$

colonnes 1 a 5

!	-	0.0605	- 0.2309	- 0.1346	0.	0.	ļ
!		377.1613	- 0.5467	0.8811	0.	0.	ļ
I	-	0.2381	- 0.5516	- 0.5275	0.	0.	ļ
İ.		0.475D-13	0.313D-13	- 0.141D-13	- 44.2718	1.1353	1
Į.	-	0.201D-11	0.737D-12	- 0.122D-12	- 163.4702	56.4853	!
İ	-	0.179D-11	- 0.219D-12	0.315D-12	- 10.5099	- 376.0589	ļ
!		0.662D-12	0.948D-13	- 0.900D-13	- 0.9365	104.9873	1

colonnes 6 a 7

ļ		0.		0.	ļ
ļ		0.		0.	ļ
ļ		0.		0.	İ
ļ		15.7624		0.8762	1
ļ		378.2551	-	64.3465	ļ
İ	-	6.8147		250.9178	ļ
ļ		1.287		116.3037	ļ

définition 3

durée du calcul : 47 s

H =												
10.0052		1.7328	-	1.6363		0.0398		0.9555	-	4.0187		0.0745!
10.0038	-	0.0004		0.0015	-	0.0001		3.9998		0.001	-	0.0057!
10.1189		4.0058		0.0301	-	0.0035		0.0032		0.0106	-	0.1785!
12.7196	-	0.2971		1.0958		0.0894	-	0.1638		0.7571	-	4.0685!
14.0785	-	0.4884		0.4852	-	0.0136		0.2693		1.1348		0.099 !
10.0025	I	0.003	-	0.002		4.		0.0016	-	0.0068	-	0.004 !
10.0045	-	0.0018		4.003	-	0.0002	-	0.001		0.0042	-	0.0066!

 $A_{\mathcal{B}} =$

_					
	colonne	s 1 a 5			
! - ! ! ! -	46.5473 0.132 0.2942 0.0916 0.0854 0.397D-13 0.118D-12	2.0531 - 36.3348 0.2606 - 0.0912 1.6628 0.988D-13 0.183D-12	13.8691 - 7.6091 - 0.2097 - 0.2733 - 0.2205 - 0.171D-12 - 0.225D-12	- 46.9314 - 1.2335 376.7569 0.0273 - 0.0916 0.823D-12 0.490D-11	6.7969 28.8229 0.1583 - 0.0884 - 1.8936 0. - 0.117D-12
	colonne	s 6 a 7			
	0. 0.112D-13 0. 0. 0. • 13.5947 377.284	- 0.367D-13 0.109D-13 0. 0. 0. - 375.3859 - 13.4867	! ! ! !		
•		a v 8 7 V V 1	•		

Tableau récapitulatif :

Hickin	ordre de A _c	ordre de A,	ε
Définition 1	5	2	0.5152
Définition 2	3	4	0.2751
Définition 3	5	2	0.1294

<u>Tableau 2</u>

III - Exemple 3 : [Kando, 1988]

Le modèle considéré par Kando est celui d'un réacteur et dont la matrice d'état est :

A = ! - 73.3 49.9 2.2 ! 9.64 - 12. 0.741 0. 14.6 ! 0. 0. ! 29.5 0. ! - 0.559 - 12.3 0. ļ 10.3 14.9 - 40. - 23.8 ! ļ 0. - 80. 17.3 0. - 2.4 0. ļ ļ

Les valeurs propres de A sont {-0.1985 ; -5.0317 ; -52.4626 ; -64.9933 ; -94.9318}

Ce modèle a été traité par plusieurs auteurs [Kando, 1988], cependant les conditions de séparabilité (I.22) et (I.34) ne sont pas satisfaites par des permutations ou des calibrages; ou même quand elles le sont, les valeurs propres du modèle réduit n'approchent pas celles du modèle initial.

III.1 - Algorithme 1

définition 1

durée du calcul : 29 s

H =

1	-	2.7322	- 0.057	0.0004		3.5967	-	0.0847	Ţ
!	-	3.5807	- 0.0139	0.045		0.5254	-	0.1242	i
i		0.1721	- 3.066	- 2.2964	-	0.1301		0.6671	İ
!	-	0.2281	- 1.2198	3.0911		0.0952		0.2549	!
!	-	0.6353	0.0861	0.0744	-	0.0887		3.9589	!

 $A_{\mathcal{B}} =$

İ	- 4.6876	0.7435	0.	0.	0.	i
ļ	1.969	- 0.5245	- 0.180D-13	0.242D-14	- 0.546D-14	4 !
ł	0.583D-14	0.	- 51.7251	9.5018	- 23.8	!
!	- 0.155D-13	0.	- 0.4466	- 80.6626	14.6	. !
!	0.108D-13	0.	0.8521	15.6029	- 80.	ļ

III.2 - Alaorithme 2

définition 2

durée du calcul : 25 s

H = Ī 2.7322 0.057 - 0.0004 - 3.5967 0.0847 ! 0.0139 - 0.046 3.066 2.2964 0.5254 0.1242 ! i 3.5807 - 0.6671 ! ! - 0.1721 0.1301 1.2198 - 3.0911 0.0952 - 0.2549 ! 1 0.2281 ļ - 0.0744 0.0887 - 3.9589 ! 0.5353 - 0.0861 $A_{\mathcal{B}} =$! - 4.6876 0.7435 0. - 0.357D-14 0. ! - 0.100D-13 ! - 0.181D-13 i 1.969 - 0.5246 0.396D-14 - 51.7251 9.5018 - 23.8 ï 0.841D-14 0. ļ 0.454D-14 - 0.4466 - 80.6626 14.6 I 0. ļ 0.8521 - 80. 0.179D-13 15.6029 ł 0. İ

définition 3

durée du calcul : 29 s

H =

ļ		2.7322	0.057	-	0.0004	-	3.5967		0.0847	ļ
i		3.5807	0.0139	-	0.046		0.5254		0.1242	i
ļ	-	0.1721	3.066		2.2964		0.1301	-	0.6671	ļ
!		0.2281	1.2198	-	3.0911		0.0952	-	0.2549	ļ
i		0.6353	- 0.0851	-	0.0744		0.0887	-	3.9589	ļ

 $A_{\mathcal{B}} =$

İ	•==	4.6876	0.7435		0.	-	0.123D-13		0.	ļ
ł		1.969	 0.5246	-	0.181D-13		0.486D-13		0.659D-13	ļ
i		0.843D-14	 0.822D-14	-	51.7251		9.5018	-	23.8	ļ
!	-	0.449D-14	0.595D-14	-	0.4466	-	80.6626		14.6	1
ļ		0.876D-14	 0.109D-13		0.8521		15.6029	-	80.	i

Tableau récapitulatif :

Kando	ordre de A _c	ordre de A _r	ε
Définition 1	2	3	0.0976
Définition 2	2	3	0.4986
Définition 3	2	3	0.0976

Tableau 3

IV - Exemple 4 : [Magni, 1981]

On considère une chaudière de matrice A :

A =

colonnes	1 a	6

	3.93 - 368 27.4 0.0647 - 3850. 22400. 0. 0. 2.2 -	0.0032 3.05 0.0787 - 0.000052 17.3 - 18. 0. 0. 0.0018	0. 3.03 0.0596 0. 12.8 0. 0.0023 0. 0.	0. 0. 255 - 12600. - 35.6 0. - 1.27 - 8.44	0. 0. 0. - 0.0000033 - 2.91 - 0.0001 0. 0.001 - 0.0001	0.0000403 - 0.0038 - 0.0003 0.360D-06 - 0.105 - 0.414 0.0002 0.0000786 0.0000138	
	colonr	nes 7 a 9					
ļ	0.	0.	0.	ļ			
ļ	0.	0.	0.	ļ			
i	0.	0.	0.	ļ			
ļ	0.0000633	0.0002	0.	!			
!	12.7	43.1	0.	ļ			
!	90.	56.9	0.	i			
! -	0.203	0.	0.	!			
ļ	0.	- 0.0717	0.	ļ			
!	0.0015	0.005	- 0.100D-	-09!			

et de valeurs propres : {0 ; -0.0105 ± 0.0012i ; -0.102 ; -0.2366 ; -0.3209 ; -2.9405 ; -3.6362 ± 0.9361i}

L'intérêt de cet exemple est de montrer la validité de nos méthodes sur des modèles de grande dimension et de pouvoir comparer nos résultats avec ceux obtenu par Magni.

IV.1 - Algorithme 1

définition 1

durée du calcul : 1 mn 2 s

H =

colonnes 1 a 5

	0. 0. 0. 0. 0. - 0.904D-11	0.0008 0.1017 - 0.0089 - 0.0000089 - 19.8695 - 5.0611	0.0005 0.0592 - 0.0054 - 0.0000582 - 51.3524 - 3.432	0.0025 0.2536 - 0.0256 - 3.9764 18522.217 119.286	0.0027 - 3.5983 - 3.9621 0.0000330 0.2223 - 17.1593	
i	0.	- 3.9998	0.0002	- 0.0095	0.0021	i
İ	0.	0.0064	- 3.9789	- 6.4485	0.0046	ļ
!	- 4.	- 0.0003	- 0.0022	0.7819	0.0011	ļ
! !	- 0.0000405 0.0001	3.7832 - 30.2556	0.0000597 3.939	0.466D-06 0.0000196	!	
ļ	0,0003	- 31.9436	- 0.0674	- 0.0000043	1	
!	- 0.649D-06	0.0719	0.0000212	0.0000050	!	
I.	0.0934	186.094	- 0.2262	3.9544	1	
!	- 3.7594	- 22434.662	0.8823	0.0258	1	
ļ	- 0.0000124	1.1532	- 0.0013	- 0,0000020	!	
!	- 0.0000169	- 1.4921	- 0.0062	- 0.0014	!	
ļ	- 0.0000221	2.4422	0.0007	0.0002	ļ	

 $\mathsf{A}_{\mathcal{B}} =$ colonnes 1 a 5 - 0.100D-09 0.001 - 7.9092 1 0.0042 0.0000244 ! 0. - 0.0069 i - 0.203 0.0000237 0.0034 ł 0. i 0.0044 - 0.0567 - 5.6558 0.0004 1 - 0.239 ļ 0. 0.0000471 0.0001 0.600D-06 ļ 0. 0.221D-07 0.750D-07 - 0.0000219 - 0.0081 ļ 0. 89.9082 56.5885 55.4644 - 0.8598 0. 0. i 0. 0. 0. 1 0. 0.711D-12 ļ 0. 0. 0. ļ 0.114D-11 0. Ţ - 0.142D-11 - 0.223D-11 0. ļ colonnes 6 a 9 0. İ - 0.0000071 0. 0. i 0.0002 - 0.128D-12 i 0. 0. I i 0.0000518 0. 0. 0. ļ I. - 0.252D-06 0. 0. 0. i 0.706D-06 0.222D-12 0. 0. i - 0.1732 - 0.339D-11 0. 0. ļ - 4.1497 - 0.0033 0. 0.137D-06 ! i 341.8797 0. - 3.1225 0.0000160 ! ļ 0. 4086.3766 - 2.9412 17.4882 ļ

IV.2 - Algorithme 2

définition 2

durée du calcul : 1 mn

H =

•••			
	colonnes	1 a 5	
	0 0. 0. 0. 0 0.183D-11 0. 0 4.	0.0029 3.5947 3.9649 0.0000042 0.1722 7.8738 0.0492 0.015 0.0001	0.0152 0.0000132 0.00055 ! 0.1035 - 0.0003 - 0.1 ! 0.1138 - 0.0004 - 0.104 ! 0.0002 0.131D-06 0.000658 ! 2.4258 0.0021 1.0178 ! 1486.771 - 2.7413 619.3028 ! 1.5627 0.0013 - 3.3507 ! 2.0043 0.0017 0.8359 ! 0.0054 0.000222 - 0.0006 !
	colonnes	ба 9	
	3.9351 - 29.091 - 32.0846 0.0009 12.6076 8626.1165 9.391 11.4182 0.0949	0.0000254 3.9392 0.0671 0.305D-06 0.0007 2.3642 0.0032 0.0027 0.000206	0.0000057 - 0.3743 ! 0.0000449 - 5.2492 ! 0.0000494 - 5.7798 ! 0.582D-07 - 4.0039 ! - 3.9991 - 59.9339 ! 0.5556 - 36817.885 ! 0.0006 - 38.7285 ! 0.0007 - 49.6141 ! 0.0000136 - 133.0642 !
Α _æ :	=		
υ	colonnes	1 a 5	
	0.100D-09 - 0 0. 0.993D-12 0. 0. 0. 0. 0. 0.	0.0000287 0.0086 0.0007 0.939D-12 0. 0. 0. 0. 0.857D-12 0.	- 0.0000961 0. 0. 0. - 0.0067 0. 0. 0. - 0.0123 0. 0. 0. - 0.508D-10 - 0.4708 90. 0. 0.00001 - 0.203 0. 0. 0.0000395 0. 0.861D-12 - 0.348D-10 - 0.1051 12.7 0. 0.354D-06 0.0000633 0.0000633
	colonne <i>s</i>	6 a 9	
	0. 0.283D-11 0. 22263.823 0.4259 - 3.9111 - 343.1584 - 3851.0563 0.0647 -	0. 0. 17.6089 0.0012 0.0031 3.1214 17.303 0.0000521	0. 0. ! 0. 0. ! 0. 0. ! 0. 0. ! 0. 0. ! 0. 0. ! 0. 0. ! 0. 0.1124 ! 0.00008 0.9891 ! 0.184D-06 0.0002 ! -2.9112 -12598.46 ! 0.0000034 0.2549 !

définition 3

durée du calcul : 1 mn 2 s

•
H =

	colonnes	1 a 5			
	0 0 0. 0. 0. 0.357D-11 0. 0 4.	0.0008 0.1011 0.0089 0.0000090 19.8735 5.0411 3.9998 0.0064 0.0002	- 0.0005 - 0.0589 0.0054 0.0000683 61.4029 3.4203 - 0.0002 3.9789 0.002	- 0.0025 - 0.2524 0.0247 3.9764 - 18521.995 - 119.2922 0.0086 6.4484 - 0.7126	- 0.0027 ! 3.5947 ! 3.963 ! - 0.0000347 ! - 0.3059 ! 17.6677 ! - 0.0019 ! - 0.0045 ! - 0.0012 !
	colonnes	ба 9			
	0.0000405 - 0.0001 0.0003 0.648D-06 - 0.0934 - 3.7597 0.0000112 - 0.0000169 0.0000223 -	3.7839 30.1693 32.0091 0.0718 185.6443 22407.691 1.0453 1.4918 2.4222	- 0.0000636 - 3.9396 0.0669 - 0.0000202 0.2272 - 1.2173 0.0012 0.0062 - 0.0006	- 0.466D-06 - 0.0000195 0.0000042 - 0.0000050 - 3.9543 - 0.0258 0.0000018 0.0014 - 0.0002	! ! ! !
Α.=					
~ <i>B</i> -		1 a 5			
· -	0.100D-09 0 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.001 0.203 0.0044 0.0000471 0.552D-06 89.9083 0. 0.	0.0043 0.0000213 - 0.0567 0.0001 - 0.0000019 56.5886 0. 0. 0. 0.136D-11	- 7.9563 - 0.0062 - 5.6558 - 0.239 0.0005 55.4237 0. 0. 0. 0.532D-11	0.0000270 ! 0.0033 ! 0.0004 ! 0.0000015 ! - 0.0086 ! - 1.1344 ! 0. 0. !
	colonnes	5 a 9			
· · · · · · · · · · · · · · · · · · ·	0.0000074 0.0002 - 0.0000517 0.252D-06 0.0000176 - 0.1732 - 0. 0. 0.	0. 0.124D-12 0. 0.581D-12 0.721D-11 4.1494 342.0156 4086.7632	0. 0. 0. 0. 0. 0. - 0.0033 - 3.1223 17.4897 -	0. ! 0. ! 0. ! 0. ! 0. ! 0. 136D-06 ! 0.0000159 ! 2.9412 !	

H =

		colonn	es	1 a 5			
I		0.0000024		0.0018 -	3,9997	0.0006 0.0023 !	
i	-	0.0000158	_	0.0118	0.0017	- 3,9959 0.0153 !	
i	-	0,0000178		0.0107	0.0015	0.0038 - 3.9861 !	
i	-	0 0000508	-	0.0224	0.0032	0.0078 0.0291 !	
i	-	0 0000456	_	0.0079	0.0011	0.0028 0.0103 !	
i		0 0002		0 0030 -	0 0005	-0.0014 - 0.0053 !	
ĵ	_	0 0565		0 0038	0 0002	0 0004 0 0015	
:		0.0000 0.2334	-	0 025	0.0002	0 0015 0 0058	
:	_	0.2004		4	0.3710-06	0 9150-06 0 0000034	
:	_	4 0005			0.0072	-0.0177 - 0.0657	
:	_	0005 0 0005		0.0507 -	0.0012	-0.0177 - 0.0558	
:				0.0001	0.0012	0.0111 0.0000 .	
		colonn	es	6 a 11			
ļ		0.0054		0.0296	- 0.0004	- 0.0005 - 0.123 - 0.1058	i
į		0.043		0.1974	- 0.0028	- 0.0034 - 0.821 - 0.711	ł
ļ		0.0391		0.1798	- 0.0025	- 0.0031 - 0.7454 - 0.665	ļ
ſ	_	3.9183		0.3768	- 0.005	-0.0068 - 1.5504 - 1.4878	1
i		0.029	-	3.8642	- 0.0013	-0.0029 - 0.5313 - 0.7542	1
i		0.0158	-	0.1038	0.0017	0.0003 - 0.0222 3.9719	ļ
i		0.004		0.0148	- 3,231	-0.7821 - 0.0716 - 0.1113	ļ
i		0 0158		0 0923	- 3 1807	3.2302 - 0.3419 - 0.0878)
i		0 0000095		0 0000430	0 0001	-0.0001 - 0.0002 - 0.0002	I
i	-	0 1834	_	0 8151	0 0221	0.0045 3.7913 - 0.2524	ļ
1	-	0 1935	_	0 8157	0 0222	0 0045 3 7937 - 0 2503	į
ï	-	0.1000		0.0101	♥.♥ዹ∠ዹ		

 $A_{\mathcal{B}} =$

	colonn	nes 1 a 5				
i	0.002	- 0.0000553	0.0000078	0.0000193	0.000070	5!
ļ	0.0003	- 0.0003	0.637D-06	0.0000016	0.00005	7!
Ì	0.	- 0.0029	- 0.012	0.001	0.0036	į
1	0.	~ 0.019	0.0027	- 0,0239	0.0243	!
1	0.	- 0.0173	0.0025	0.006	- 0.0895	i
Í.	0.	- 0.036	0.0051	0.0125	0.0458	!
i	0.	~ 0.0124	0.0018	0.0043	0.0158	!
i	0.2663	0.002	0.0005	0.0012	0.0046	!
i	- 0.189D-15	0.	0.	0.	0.	1
i	0.	Ó.	Ó.	0.	0.	ļ
i.	0.	0.	0.	0.	0.	ļ

.

	colonne	es 6 a 10			
	0.0002 0.0000155 0.0098 0.0655 0.0595 0.1774 0.0426 0.0123 0. 0. 0. 0. colonne	0.0007 0.0000584 0.037 0.2472 0.2245 0.4671 - 0.9755 0.0465 0. - 0.490D-15 0. 11	- 0.0000241 0.0001 - 0.0012 - 0.0083 - 0.0075 - 0.0153 - 0.0048 - 0.0129 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.6266 0.0069 0.0004	- 0.316D-14 ! 0. ! 0. ! 0. 278D-15 ! 0. 290D-15 ! - 0.290D-15 ! - 0.4619 ! - 6.7538 ! 0.237 !
! ! !	0.118D-14 ! 0. ! 0. !				

			0	
1		0.266D-15	!	
1	-	0.293D-15	!	
		0.221D-15	!	
l		0.231D-15	!	
		0.	!	
		0.2175	!	
		3.0123	!	
	-	3.0132	!	

V.2 - Algorithme 2

définition 2

durée du calcul : 1 mn 16 s

H =

colonnes 1 a 6

	colonr	nes 7 a 11				
!	0.1316	0.0035	0.2071	0.1784	0.1873 !	
ļ	0.9831	0.0253	1.4328	1.2518	1.2983 !	
!	1.8412	0.0412	1.748	1.6182	1.5778 !	
! -	3.0885	- 0.0441	0.5102	0.8214	0.8049 !	
ļ	0.0633	- 0.0047	0.0422	- 3.9425	0.0564 !	
!	0.0085	- 0.0007	0.0061	0.0078	- 3.9924 !	
I	0.131	0.785	0.1527	0.1798	0.1893 !	
!	0.1218	- 3.227	0.4339	0.1705	0.1799 !	
i	0.0000891	0.0001	0.0003	0.0002	0.0002 !	
i	0.0965	- 0.0078	- 3.9265	0.0889	0.0876 !	
ļ	0.0941	- 0.0079	- 3.9304	0.0855	0.084 !	

 $A_{\mathcal{B}} =$

colonnes	1 a	5

! 0.002 ! 0.0003 ! 0. ! 0. ! 0.2663 ! 0.	- 0.0000977 - 0.0003 - 0.0052 - 0.0362 - 0.0008 - 0.0466	0.0000138 0.921D-06 - 0.0117 0.0051 0.0009 0.0066	0.0000341 0.0000023 0.0018 - 0.0179 0.0022 0.0163	- 0.0000416 ! 0.0001 ! - 0.0022 ! - 0.0154 ! - 0.0141 ! - 0.0197 !
9 0. 9 0.325D-13 9 0.169D-14 9 0.	-0.727D-15 -0.332D-14 0.208D-14 -0.249D-15	0. 0.376D-14 - 0.354D-15 0.	0.956D-14 - 0.808D-15 0.	0. 186D-15 ! 0. 186D-15 !
! 0. colonn	0. es 6 a 10	0.	Ø.	0.!
<pre>! 0.0001 ! 0.000083 ! 0.0066 ! 0.0461 ! 0.0082 ! - 0.0521 ! 0.329D-15 ! 0.509D-14 ! - 0.112D-14 ! 0. ! 0.</pre>	0.252D-15 0. 0.240D-15 0.250D-15 - 0.3301 0.0218 0.2994 - 0.0015 - 0.0002 e 11	0. 0. 0. 0. 0.384D-15 0. 0.0575 - 3.6267 0.0109 0.0055 0.0008	- 0.543D-14 0. - 0.646D-15 - 0.483D-14 0.658D-15 - 0.515D-14 2.4879 - 0.4653 - 6.4756 0.7249 0.2674	0.961D-15 ! 0. ! 0.866D-15 ! 0.939D-15 ! 0.0821 ! 1.1292 ! - 1.1418 ! - 0.0007 !

!		0.257D-14	!
ļ	ļ	0.	Į.
ļ	ļ	0.256D-15	ļ
ļ		0.147D-14	ļ
ļ	ļ	0.217D-15	1
!		0.154D-14	ļ
ļ	-	0.2889	!
ļ		0.2177	ļ
Į		2.9949	i
ļ	-	0.0155	i
ļ	-	3.0148	!

--

définition 3

durée du calcul : 1 mn 13 s

H =

•										
		colonn	es	1 a 5						
ļ		0.0000024		0.0018	3.9997	-	0.0005	- 0.0023	!	
I.		0.0000168		0.0118 -	0.0017		3.9959	- 0.0153	!	
!		0.0000178		0.0107 -	0.0015	-	0.0038	3.9861	!	
1		0.0000508		0.0224 -	0.0032		0.0078	- 0.0291	! .	
i		0.0000456		0.0079 -	0.0011	-	0.0028	- 0.0103	ļ	
Į.		0.0002	-	0.0039	0.0005		0.0014	0.0053	ļ	
!		0.0565	-	0.0038 -	0.0002		0.0004	- 0.0015	l	
!	-	0.2334		0.025 -	0.0005	-	0.0015	- 0.0058	!	
!		0.000087		4. –	0.3710-06	-	0.915D-06	- 0.0000	034 !	
!		4.0005	-	0.0506	0.0072		0.0177	0.0657	I	
!		0.0005		0.0507	0.0072		0.0177	0.0658	!	
		colonn	es	6 a 11						
I	_	0.0064	-	0,0296	0.0004		0.0005	0.123	0.1058	ļ
ļ	-	0.043		0.1974	0.0028		0.0034	0.821	0.711	İ
Ļ	-	0.0391	-	0.1798	0.0025		0.0031	0.7454	0.665	ł
i		3.9183	-	0.3768	0.005		0.0068	1.5504	1.4878	ļ
I		0.029		3.8642	0.0013		0.0029	0.5313	0.7542	i
Į		0.0158		0.1038	- 0.0017	-	0.0003	0.0222 -	3.9719	ļ
I		0.004		0.0148	3.231		0.7821	0.0716	0.1113	İ
!	-	0.0168	-	0.0923	3,1807		3.2302	0.3419	0.0878	ļ
!	-	0.0000095	-	0.0000430	- 0.0001		0.0001	0.0002	0.0002	i
Į		0.1834		0.8151	- 0.0221	-	0.0045 -	3.7913	0.2524	ļ
!		0.1835		0.8157	- 0.0222	-	0.0045 -	3.7937	0.2503	ļ

 $\mathsf{A}_{\mathcal{B}}$ =

colonnes 1 a 5 1 0.002 - 0.0000553 0.0000078 0.0000193 0.0000705 ! 1 0.0003 - 0.0003 0.637D-06 0.0000016 0.0000057 ! 0. İ - 0.0029 - 0.012 0.001 0.0036 0. Ţ - 0.019 0.0027 - 0.0239 0.0243 Ø. Ţ - 0.0173 0.0025 0.005 - 0.0895 i 0. - 0.035 0.0051 0.0125 0.0458 i 0. -0.01240.0018 0.0043 0.0158 Į 0.2663 0.002 0.0005 0.0012 0.0046 0. 0. ! 0. 0. 0. 0.385D-15 İ 0. 0. 0. 0. 0. i 0. 0. 0. 0.

1

l

1

ļ

i

İ

i

i

i

colonnes 6 a 10			
 0.0002 0.0007 0.0000155 0.0000584 0.0098 0.037 0.0555 0.2472 0.0595 0.2245 0.1774 0.4671 0.0426 - 0.0123 0.0465 0.0123 0.0465 0.000 0.000 0.0123 0.000 0.000 0.000 0.000 0.000 0.000 0.000	- 0.0000241 0.0001 - 0.0012 - 0.0083 - 0.0075 - 0.0153 - 0.0048 - 0.0129 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. - 0.229D-15 - 3.6266 0.0069 0.0004	- 0.388D-14 ! 0. ! 0.687D-15 ! 0.229D-15 ! 0.433D-15 ! - 0.472D-15 ! - 0.4619 ! - 6.7538 ! 0.237 !
colonne 11			
0.208D-14 ! 0. ! 0. ! 0. ! 0. ! 0.367D-15 ! 0.367D-15 ! 0.193D-15 ! 0.2176 ! 3.0123 ! 3.0132 !			

Tableau récapitulatif :

Mishra	ordre de A _l	ordre de A _r	ε
Définition 1	8	3	0.2615
Définition 2	6	5	0.3735
Définition 3	8	3	0.3555

<u>Tableau 6</u>

VI - <u>Comparaison</u>

VI.1 - <u>Algorithme 1</u>

Nous remarquons que l'utilisation de la définition 1 donne

des résultats satisfaisants surtout pour l'exemple de Magni alors que pour celui de Mishra, le découplage n'est pas très bon. En effet, d'après (III.26), plus ε est proche de 1, meilleur est le découplage.

Exemple de :	ordre de A _c	ordre de A _r]a ₁ ,a ₂ [$]\beta_1,\beta_2[$	$\varepsilon = \frac{\alpha_2 - \alpha_1}{\beta_2 - \beta_1}$
Chow	2	3]-1.9 ,-0.16[]-5.05 ,-0.14[0.3544
Hickin	5	2]-37.4 , -13.6[]-46.4 ,-0.2[0.5152
Kando	2	3]-52.3 , -5.02[]-95 ,-0.18[0.4986
Magni	6	3]-2.93 , -0.33[]-3.64 ,0.01[0.7123
Mishra	8	3]-2.82 , -1-005[]- 6.94 ,0[0.2615

<u>Tableau 7</u>

VI.2 - Algorithme 2

VI.2.1 - Définition 2

Les résultats obtenus par l'utilisation de la définition 2 montrent bien que celle-ci peut très bien être appliquée tant pour les systèmes de petite taille que pour ceux de grande taille.

Nous pouvons conclure directement à partir de $A_{\mathcal{B}}$ pour les exemples de Chow et Kando alors que pour les autres l'application de l'algorithme de Williams aux deux blocs de la matrice $A_{\mathcal{B}}$ permet d'affiner le calcul de ε .

Exemple de :	ordre de A _c	ordre de A,	$\varepsilon_1 = \left\ A_f \right\ _{\infty} \left\ A_F^{-1} \right\ _{\infty}$	$\varepsilon_{2} = \left\ A_{\mathbf{f}_{W}} \right\ _{\infty} \left\ \langle A_{\mathbf{r}_{W}} \rangle^{-1} \right\ _{\infty}$	$\varepsilon_{\mathfrak{Z}} = \left\ A_{f_{\mathfrak{W}}} \right\ _{\infty} \left\ (A_{r}^{-1})_{\mathfrak{W}} \right\ _{\infty}$
Chow	2	3	0.3772	0.2487	0.1651
Hickin	3	4	11.3943	0.5873	0.2751
Kando	2	3	0.1409	0.1411	0.0976
Magni	3	6	2.8214 10 ³	0.9294	0.1358
Mishra	6	5	3.1006	0.8288	0.3735

<u>Tableau 8</u>

VI.2.2 - Définition 3

Les résultats obtenus par la définition 3 sont aussi comparables à ceux du tableau 2. Remarquons que dans ce cas aussi les dimensions des sous systèmes lent et rapide sont pour certains exemples identiques à ceux obtenus par la définition 2, et identiques à ceux obtenus par la définition 1 pour les autres.

Exemple de :	ordre de A _c	ordre de A _r	$\varepsilon_1 = \left\ A_F \right\ _{\infty} \left\ A_F^{-1} \right\ _{\infty}$	$\varepsilon_{2} = \left\ A_{\mathbf{f}_{\mathbf{W}}} \right\ _{\infty} \left\ \left(A_{\mathbf{F}_{\mathbf{W}}} \right)^{-1} \right\ _{\infty}$	$\varepsilon_{3} = \left\ A_{f_{\mathbf{W}}} \right\ _{\infty} \left\ (A_{r}^{-1})_{\mathbf{W}} \right\ _{\infty}$
Chow	4	1	1.1861	0.4267	0.4267
Hickin	5	2	1.041	0.1295	0.1294
Kando	2	3	0.1409	0.1411	0.0976
Magni	6	3	9.2235 10 ⁴	0.1708	0.1125
Mishra	8	3	0.3764	0.5473	0.3555

<u>Tableau</u> 9

VII - <u>Conclusion</u>

Les méthodes exposées dans le chapitre III complétées par ceux du chapitre II constituent donc une bonne méthode de bloc-diagonalisation surtout qu'elles ne nécessitent pas le calcul des valeurs propres et des vecteurs propres de la matrice d'état du système étudié. En plus, le temps de calcul est tout à fait acceptable et ne dépend pas de la dimension de la matrice d'état.

La discussion reste ouverte sur le fait de privilégier les modes oscillants à partie imaginaire prépondérante auquel cas il faut utiliser la définition (III.1) ou alors tenir compte seulement des modules des modes et utiliser la définition (III.2) ou (III.3). , .

CONCLUSION GENERALE

.

Une étude comparative de différentes méthodes de réduction a été réalisée dont le but était d'établir des critères de choix parmi celles-ci. Ces critères permettent à l'utilisateur de mieux choisir la méthode appropriée au cas étudié.

Pour aider à la modélisation d'un système sous forme singulièrement perturbé, nous avons introduit plusieurs méthodes géométriques de localisation des valeurs propres qui permettent de sélectionner les dynamiques dominantes et non dominantes et de leur associer des variables d'état lentes et rapides. Ces méthodes sont complétées par un algorithme de détermination de la matrice de calibrage optimale permettant ainsi une meilleure localisation des valeurs propres. Par leur simplicité d'application et de mise en œuvre, une extension à une classe de systèmes non linéaire peut être envisagée.

Dans le but de généraliser certains résultats relatifs aux systèmes singulièrement perturbés linéaires et stationnaires, une méthode de bloc-diagonalisation de matrices, basée sur le calcul de la signature de matrice, a été proposée. Des algorithmes nouveaux permettant de mettre en œuvre ces méthodes ont été exposés.

Ces algorithmes possèdent l'avantage de s'affranchir du calcul des valeurs propres de la matrice à bloc-diagonaliser. Un autre intérêt de ces algorithmes est la conservation du spectre initial de la matrice. En plus, les dynamiques instables sont automatiquement conservées dans le sous système lent. •

REFERENCES BIBLIOGRAPHIQUES

- DECOMPOSITION OF TWO TIME SCALE LINEAR SYSTEMS Anderson L. Proc. JACC, 153-163, 1978
- [] SUBSPACE ITERATION APPROACH TO THE TIME SCALE SEPARATION **Auramovic B.**, Proc. of IEEE Conf. on Dec & Control, 684-687, 1979
- [] METHODES NUMERIQUES : ANALYSE, ALGEBRE, EQUATIONS DIFFERENTIELLES ORDINAIRES
 Bakhvalov N.
 Editions Mir, 2^{ème} édition, Moscou, 1976
- [] LA CAO DE L'AUTOMATIQUE Barraud A., Gentil S. Editions Hermes, 1989
- [] A NEW SOLUTION METHOD FOR QUADRATIC MATRIX EQUATIONS Beavers Jr. A.N., Denman E.D. Math. Biosci. 20, 135-143, 1974
- [] A COMPUTATIONAL METHOD FOR EIGENVALUES AND EIGENVECTORS OF A MATRIX WITH REAL EIGENVALUES Beavers Jr. A.N., Denman E.D. Numer. Math, 21, 389-396,1973

[] NOUVELLE METHODE DE MODELISATION DES SYSTEMES LINEAIRES SINGULIEREMENT PERTURBES, METHODE DU CERCLE Benrejeb M., Gasmi M., Abdelkrim M.N. Proceedings IMACS-IFAC Symposium, Villeneuve d'Ascq, 569-571, 1986

 A KNOWLEDGE-BASED MANAGEMENT SYSTEM FOR C.A.C.S.D.
 Bennani M., Meizel D.
 IMACS Annals of Computing and Applied Mathematics Proceedings MIM-S² '90, September 3-7, Brussels, 1990, à paraître.

DEVELOPPEMENTS RECENTS SUR LA REDUCTION DE MODELES Bertrand P., Duc G., Michailesco G. RAIRO, 19, 131-146, 1985

- SUR LA SYNTHESE DE MODELES REDUITS PAR AGREGATION Bertrand P., Michailesco G., Siret J.M. RAIRO, 10, 7, 105-112, 1976
- UNE REVUE DES METHODES DE SIMPLIFICATION DE MODELES DYNAMIQUES LINEAIRES INVARIANTS
 Binder Z., Commault C.
 RAIRO Automatique/Sys. Analysis & Control, 12, 3, 199-219, 1978
- A UNIFIED DERIVATION AND CRITICAL REVIEW OF MODAL APPROACHES TO MODEL REDUCTION
 Bonvin D., Mellichamp D.A.
 Int. J. Control, 35, 5, 829-848, 1982
- A SURVEY OF SIMPLE TRANSFER-FUNCTION DERIVATIONS FROM HIGH-ORDER STATE-VARIABLE MODELS
 Bosley M.J., Lees F.P. Automatica, 8, 765-775, 1972
- STUDY OF A PROCESSOR FOR AIDED SIMPLIFICATION IN MODELLING Bouayad A., Dauphin-Tanguy G. 12^{ème} Congrès Mondial IMACS, Paris, 1, 128-129, Juillet 1988

[] LOCALISATION DE VALEURS PROPRES, REGIONS DE GUDKOV Chambat M. R.I.R.O, R-3, 82-88, 1971

[] MODEL REDUCTION OF MULTIVARIABLE CONTROL SYSTEMS BY MEANS OF MATRIX CONTINUED FRACTIONS Chen C.F. Int. J. Control, 20, 2, 225-238, 1974

ON "A METHOD FOR SIMPLIFYING LINEAR DYNAMIC SYSTEMS" Chidambara M.R., Davison E.J. IEEE Trans. on A.C., 12, 119-121, 1967-a

[] FURTHER REMARKS ON SIMPLIFYING LINEAR DYNAMIC SYSTEMS Chidambara M.R., Davison E.J. IEEE Trans. on A.C., 12, 213-214, 1967-b

- [] FURTHER COMMENTS ON "A METHOD FOR SIMPLIFYING LINEAR DYNAMIC SYSTEMS" Chidambara M.R., Davison E.J. IEEE Trans. on A.C., 12, 799-800, 1967-c
- EIGENVALUE PLACEMENT IN TWO-TIME-SCALE SYSTEMS
 Chow J.H., Kokotovic P.V.
 LSS Theory & Applications
 Proceedings of the IFAC Symposium, Udine, 321-326, 1976
- [] APPLICATION OF CONTINUED-FRACTION METHOD FOR MODELLING TRANSFER FUNCTIONS TO GIVE MORE ACCRUATE INITIAL TRANSIENT RESPONSE Chuang S.C. Electronics Letters, 6, 26, 861-863, 1970
- OPTIMAL CHOICE OF MODES FOR AGGREGATION **Commault C.** Automatica,17, 2, 397-399, 1981
- PROPRIETES ET STRUCTURE DES SYSTEMES AGREGES. APPLICATION AU PROBLEME DE LA PROJECTION OPTIMALE Commault C., Guerin J.P. RAIRO Automatique/Sys. Analysis & Control, 12, 4, 377-390, 1978
- SUR LA REPRESENTATION MULTI-MODELE DES SYSTEMES SINGULIEREMENT PERTURBES Dauphin-Tanguy G. Thèse de Doctorat ès Sciences, Lille, 1983
- [] MULTI-TIME SCALE SYSTEMS : DYNAMIC LOCATION Dauphin-Tanguy G., Borne P. Systems & Control Encyclopedia, Ed M. Singh, Pergamon Press, 5, 3171-3180, 1987
- REPRESENTATION MULTIMODELE DES SYSTEMES COMPLEXES. APPLICATION AUX PROBLEMES DE COMMANDE
 Dauphin-Tanguy G., Borne P.
 APII Automatique/Sys. Analysis & Control, 20, 383-404, 1986
- [] ANALYSE ET SYNTHESE DES SYSTEMES A PLUSIEURS ECHELLES DE TEMPS Dauphin-Tanguy G., Borne P., Fossard A. RAIRO Automatique/Sys. Analysis & Control, 19, 169-196, 1985

- A METHOD FOR SIMPLIFYING LINEAR DYNAMIC SYSTEMS
 Davison E.J.
 IEEE Trans. on A.C., 11, 1, 93-101, 1966
- A NEW METHOD FOR SIMPLIFYING LARGE LINEAR DYNAMIC SYSTEMS Davison E.J.
 IEEE Trans. on A.C., 13, 214-215, 1968
- A COMPARATIVE STUDY OF DIFFERENT REDUCTION METHODS (PART 1)
 Decoster M., Uan Cauwenberghe A.R. Journal A, 17, 2, 68-74, 1976-a
- A COMPARATIVE STUDY OF DIFFERENT REDUCTION METHODS (PART 2)
 Decoster M., Uan Cauwenberghe A.R. Journal A, 17, 3, 125-134, 1976-b
- [] REDUCTION DES SYSTEMES LINEAIRES STATIONNAIRES ET CONTINUS Decoster M., Noldus E., Van Cauwenberghe A.R. RAIRO, 10, 47-66, 1976-c
- THE MATRIX SIGN FUNCTION AND COMPUTATION IN SYSTEMS
 Denman E.D., Beavers Jr. A.N.
 Applied Mathematics & Computation, 2, 63-94, 1976
- [] SPECTRAL DECOMPOSITION OF A MATRIX USING THE GENERALIZED SIGN MATRIX Denman E.D., Leyva-Ramos J. Applied Mathematics & Computation, 8, 237-250, 1981
- ON A METHOD FOR SIMPLIFYING LINEAR DYNAMIC SYSTEMS Fossard A.J. IEEE Trans. on A.C., 15, 261-262, 1970
- A FREQUENTIAL ANALYSIS OF SINGULARLY PERTURBED SYSTEMS WITH STATE OR OUTPUT CONTROL
 Fossard A.J., Magni J.F.
 Large Scale Systems, 1, 223-228, 1980

- [] MODELISATION, COMMANDE ET APPLICATIONS DES SYSTEMES A ECHELLES DE TEMPS MULTIPLES Fossard A.J., Magni J.F.
 - RAIRO Automatique/Sys. Analysis & Control, 16, 1, 5-23, 1982
- [] THEORIE DES MATRICES: THEORIE GENERALE Gantmacher F.R. Tome 1, Dunod, 1966-a
- [] THEORIE DES MATRICES: QUESTIONS SPECIALES ET APPLICATIONS Gantmacher F.R. Tome 2, Dunod, 1966-b
- [] SYSTEMES EXPERTS POUR LA CAO EN AUTOMATIQUE Gentil S. AFCET/INTERFACES, nº 73-74, Novembre/Décembre, 3-7, 1988
- [] TRUNCTION OF THE MIXED CAUER FORM. THE BEST APPROXIMATION IN A DEFINITE MATHEMATICAL SENSE Goldman M.J., Leondes C.T. Int. J. Control, 25, 6, 979-982, 1977
- [] MODEL REDUCTION FOR LINEAR MULTIVARIABLE SYSTEMS Hickin J., Sinha N.K. IEEE Trans. on A.C., 25, 6, 1121-1127, 1980
- [] THE SIGN MATRIX AND THE SEPARATION OF MATRIX EIGENVALUES **Howland J.L.** Linear Algebra & its Applications, 49, 221-232, 1983
- [] ROUTH APPROXIMATIONS FOR REDUCING ORDER OF LINEAR, TIME-INVARIANT SYSTEMS Hutton M.F., Friedland B. IEEE Trans. on A.C., 20, 3, 329-337, 1975

[] AN OVERVIEW ON THE AGGREGATION OF LARGE-SCALE SYSTEMS Jamshidi M. IFAC Control Science and Technology 8th Triennial Congress, Kyoto, Japon, 1309-1314, 24-28 Août 1981 SINGULAR PERTURBATION MODELLING OF LARGE-SCALE SYSTEMS WITH MULTI-TIME-SCALE PROPERTY Kando H., Iwazumi T., Ukai H.

Int. J. Control, 48, 6, 2361-2387, 1988

- [] A RICCATI EQUATION FOR BLOCK-DIAGONALIZATION OF ILL-CONDITIONED SYSTEMS Kokotouic P.V. IEEE Trans. on A.C., 20, 812-814, 1975
- [] SINGULAR PERTURBATION AND ITERATIVE SEPARATION OF TIME SCALES Kokotovic P.V., Allemong J.J., Winkelman J.R., Chow J.H. Automatica, 16, 23-33, 1980
- [] SINGULAR PERTURBATIONS AND ORDER REDUCTION IN CONTROL THEORY AN OVERVIEW Kokotovic P.V., O'Malley R.E., Sannuti P. Automatica, 12, 123-132, 1976
- SINGULAR PERTURBATIONS IN CONTROL THEORY : SURVEY 1976-1982
 Kokotovic P.V., Saksena V.R.
 IFAC Workshop on Singular Perturbations, Yougoslavie, 1-34, 1982

[] METHODES DE CALCUL NUMERIQUE : ALGEBRE NON LINEAIRE Korganoff A. Tome 1, Dunod, 1961

- [] METHODES DE CALCUL NUMERIQUE : ELEMENTS DE THEORIE DES MATRICES CARREES ET RECTANGLES EN ANALYSE NUMERIQUE Korganoff A., Pauel-Paruu M. Tome 2, Dunod, 1967
- ON THE SELECTION OF STATES TO BE RETAINED IN A REDUCED-ORDER MODEL Lastman G.J., Sinha N.K., Rozsa P. IEE Proceedings, 131, 1, 15-22, 1984
- [] STATE DECOMPOSITION FOR SINGULAR PERTURBATION ORDER REDUCTION A MODAL APPROACH Litz L., Roth H. Int. J. Control, 34, 5, 937-954, 1981

- [] ANALYSE ET COMMANDE DES SYSTEMES A PLUSIEURS ECHELLES DE TEMPS Magni J.F. Thèse D.I., ENSAE, 1981
- [] COMMANDE EN DEUX ETAPES DES SYSTEMES LINEAIRES A DEUX DYNAMIQUES Magni J.F., Fossard A.J. RAIRO Automatique/Sys. Analysis & Control, 16, 1, 25-38, 1982
- [] AN APPROXIMATE METHOD FOR REDUCING THE ORDER OF A LINEAR SYSTEM Marshall S.A. Control, 10, 102, 642-643, 1966
- MODELISATION DE GRANDS SYSTEMES PAR AGREGATION
 Michailesco G., Siret J.M., Bertrand P.
 RAIRO Automatique/Sys. Analysis & Control, 13, 2, 159-170, 1979
- [] A NEW ALGORITHM FOR OPTIMAL REDUCTION OF MULTIVARIABLE SYSTEMS Mishra R.N., Wilson D.A. Int. J. Control, 31, 3, 443-466, 1980
- PRINCIPAL COMPONENT ANALYSIS IN LINEAR SYSTEMS : CONTROLLABILITY, OBSERVABILITY, AND MODEL REDUCTION Moore B.C.
 IEEE Trans. on A.C., 26, 1, 17-32, 1981
- CONTRIBUTION A LA MODELISATION ET A LA SYNTHESE DES SYSTEMES A ECHELLES DE TEMPS MULTIPLES. APPLICATION AU CALCUL EN TEMPS REEL D'UNE COMMANDE QUASI-OPTIMALE POUR LES TRAJECTOIRES D'AVIONS DE COMBAT
 Moreigne O.
 Thèse DI., Lille, 1984
- [] UN COROLLAIRE DU THEOREME DE PERRON-FROBENIUS Odiard C. R.I.R.O, R-2, 124-129, 1971
- TIME-SCALE DECOUPLING AND ORDER REDUCTION FOR LINEAR TIME-VARYING SYSTEMS
 O'Malley R.E.JR., Anderson L.R.
 Optimal Control Applications & Methods, 3, 133-153, 1982

[] LA LOCALISATION DES VALEURS CARACTERISTIQUES DES MATRICES ET SES APPLICATIONS Parodi M.M. Gauthiers-Villars, 1959

[] MEMORIAL DES SCIENCES MATHEMATIQUES : SUR QUELQUES PROPRIETES DES VALEURS CARACTERISTIQUES DES MATRICES CARREES Parodi M.M. Gauthiers-Villars, 1952

[] MODEL REDUCTION VIA BALANCED STATE SPACE REPRESENTATIONS Pernebo L., Silverman L.M. IEEE Trans. on A.C., 27, 2, 382-387, 1982

 THE EQUIVALENCE OF TIME-SCALE DECOMPOSITION TECHNIQUES USED IN THE ANALYSIS AND DESIGN OF LINEAR SYSTEMS
 Phillips R.G.
 Int. J. Control, 37, 6, 1239-1257, 1983

CHOICE OF MODEL ORDER FOR MULTIVARIABLE SYSTEMS **Rao A.S., Lamba S.S., Bandyopadhyay** B. Int. J. Systems Sci., 14, 10, 1171-1183, 1983

[] COMMENTS ON "A FURTHER NOTE ON SELECTING A LOW ORDER SYSTEM USING THE DOMINENT EIGENVALUE CONCEPT"
 Rao A.S., Lamba S.S., Uittal Rao S.
 IEEE Trans. on A.C., 26, 2, 604-605, 1981

[] SINGULAR PERTURBATIONS AND TIME-SCALE METHODS IN CONTROL THEORY : SURVEY 1976-1983 Saksena V.R., O'Reilly J., Kokotovic P.V. Automatica, 20, 3, 273-293, 1984

[] LINEAR SYSTEM REDUCTION USING PADE APPROXIMATION TO ALLOW RETENTION OF DOMINANT MODES Shamash Y. Int. J. Control, 21, 2, 257-272, 1975-a

[] MODEL REDUCTION USING THE ROUTH STABILITY CRITERION AND THE PADE APPROXIMATION TECHNIQUE Shamash Y. Int. J. Control, 21, 3, 475-484, 1975-b

- Stable Reduced-Order MODELS USING PADE-TYPE APPROXIMATIONS Shamash Y. IEEE Trans. on A.C., 19, 615-616, 1974
- SEPARATION OF MATRIX EIGENVALUES AND STRUCTURAL DECOMPOSITION OF LARGE-SCALE SYSTEMS
 Shieh L.S., Dib H.M., Yates R.E.
 IEE Proceedings, 133, 2, 90-96, 1986
- [] MATRIX CONTINUED FRACTION EXPANSION AND INVERSION BY THE GENERALIZED MATRIX ROUTH ALGORITHM Shieh L.S., Gaudiano F.F Int. J. Control, 20, 5, 727-737, 1974
- ALGEBRA-GEOMETRIC APPROACH FOR THE MODEL REDUCTION OF LARGE-SCALE MULTIVARIABLE SYSTEMS
 Shieh L.S., Tsay Y.T.
 IEE Proceedings, 131, 1, 23-36, 1984-a
- BOLCK MODAL MATRICES AND THEIR APPLICATIONS TO MULTIVARIABLE CONTROL SYSTEMS Shieh L.S., Tsay Y.T. IEE Proceedings, 129, 2, 41-48, 1982
- BLOCK-DIAGONALIZATION AND BLOCK-TRIANGULARIZATION OF A MATRIX VIA THE MATRIX SIGN FUNCTION Shieh L.S., Tsay Y.T., Lin S.W., Coleman N.P. Int. J. Systems Sci., 15, 11, 1203-1220, 1984-b
- [] MATRIX SECTOR FUNCTIONS AND THEIR APPLICATIONS TO SYSTEMS THEORY Shieh L.S., Tsay Y.T., Wang C.T. IEE Proceedings, 131, 5, 171-181, 1984-c
- Some properties of MATRIX SIGN FUNCTIONS DERIVED FROM CONTINUED FRACTIONS Shieh L.S., Tsay Y.T., Yates R.E. IEE Proceedings, 130, 3, 111-118, 1983
- [] COST DECOMPOSITION OF LINEAR SYSTEMS WITH APPLICATION TO MODEL REDUCTION Skelton R.E. Int. J. Control, 32, 6, 1031-1055, 1980

- [] COMPONENT COST ANALYSIS OF LARGE SCALE SYSTEMS Skelton R.E., Yousuff A. Int. J. Control, 37, 2, 285-304, 1983
- [] SINGULAR PERTURBATION MODELLING OF CONTINUOUS AND DISCRETE SYSTEMS Syrcos G.P., Sannuti P. Int. J. Control, 37, 5, 1007-1022, 1983
- ON THE SELECTION OF THE REDUCED ORDER VIA BALANCED STATE REPRESENTATIONS Therapos C.P. IEEE Trans. on A.C., 29, 11, 1019-1021, 1984
- [] A NEW APPROACH TO REDUCED-ORDER MODELLING Warwick K. IEE Proceedings, 131, 2, 74-78, 1984
- OBTAINING MINIMAL GERSCHGORIN DISCS BY SCALING THE STATES Williams T.W.C. Int. J. Control, 42, 5, 1155-1173, 1985
- [] MODEL REDUCTION OF MULTIVARIABLE SYSTEMS Wilson D.A. Int. J. Control, 20, 1, 57-64, 1974
- SIMPLIFICATION OF LINEAR TIME-INVARIANT SYSTEMS BY MOMENT APPROXIMANTS Zakian V.
 Int. J. Control, 18, 3, 455-460, 1973

[] ON THE SELECTION OF THE EIGENVALUES TO BE RETAINED IN A REDUCED-ORDER MODEL Zhao G., Rozsa P., Sinha N.K. Proceedings. 19th Annual Allerton, Conf. on Control, Comm. and Computing (Monticello, III.), 163-173, 1981

ANNEXES

、 、 -

<u>ANNEXE I</u>

Soit le système modélisé par l'équation :

La transformation :

$$\begin{aligned} \mathbf{x} &= \mathbf{H} \, \mathbf{z} \\ \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{bmatrix} \end{aligned}$$

permet d'écrire le système dans la base modale sous la forme :

$$\begin{bmatrix} z \\ z_1 \\ \vdots \\ z_2 \end{bmatrix} = \begin{bmatrix} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} G_1 \\ G_2 \end{bmatrix} U$$

L'hypothèse simplificatrice faite par Chidambara :

$$z_2 = -\Lambda_2^{-1} G_2 u \implies x_{\mathcal{R}} = H_{11} z_1 - H_{12} \Lambda_2^{-1} G_2 u$$

ce qui conduit à :

$$\dot{x}_{\mathcal{R}} = H_{11}\dot{z}_{1} - H_{12}\Lambda_{2}^{-1}G_{2}\dot{u}$$
$$\dot{x}_{\mathcal{R}} = H_{11}(\Lambda_{1}z_{1} + G_{1}u) - H_{12}\Lambda_{2}^{-1}G_{2}\dot{u}$$
$$z_{1} = H_{11}^{-1}(x_{\mathcal{R}} + H_{12}\Lambda_{2}^{-1}G_{2}u)$$

or

et par conséquent :

$$\dot{x}_{\mathcal{R}} = H_{11}\Lambda_1 \left(H_{11}^{-1} x_{\mathcal{R}} + H_{11}^{-1} H_{12}\Lambda_2^{-1} G_2 u \right) + H_{11}G_1 u - H_{12}\Lambda_2^{-1} G_2 u$$
$$\dot{x}_{\mathcal{R}} = H_{11}\Lambda_1 H_{11}^{-1} x_{\mathcal{R}} + \left(H_{11}G_1 + H_{11}\Lambda_1 H_{11}^{-1} H_{12}\Lambda_2^{-1} G_2 \right) u - H_{12}\Lambda_2^{-1} G_2 u$$

<u>ANNEXE II</u>

Soit λ une valeur propre de A, le système :

$$\sum_{j=1}^{n} a_{ij} x_{j} = \lambda x_{i} \quad (i = 1, ..., n)$$

admet un ensemble de solutions non nulles $x_1, ..., x_n$.

Soient x_r et x_s , les solutions de plus grand module. Supposons $|x_r| > |x_s|$, les équations de rang r et s s'écrivent :

$$\begin{cases} \left(z - a_{r r}\right) x_{r} = \sum_{j \neq r} a_{r j} x_{j} \\ \left(z - a_{ss}\right) x_{s} = \sum_{j \neq s} a_{s j} x_{j} \end{cases}$$

Si $x_s = 0$, alors $x_j = 0$ pour tout $j \neq r$, il en résulte, compte tenu de la première équation, $\lambda = a_{rr} \operatorname{si} x_r \neq 0$. Ainsi λ se trouve dans l'ovale d'équation :

(A.II.1)
$$|z - a_{rr}||z - a_{ss}| = P_r P_s$$

la relation est donc établie pour $x_s = 0$.

Supposons maintenant $x_s \neq 0$. Par multiplication, les équations donnent :

$$(\lambda - \mathbf{a}_{r,r})(\lambda - \mathbf{a}_{ss}) \mathbf{x}_{r,r} \mathbf{x}_{s} = \left(\sum_{j \neq r} \mathbf{a}_{r,j} \mathbf{x}_{j}\right) \left(\sum_{j \neq s} \mathbf{a}_{s,j} \mathbf{x}_{j}\right)$$

d'où :

$$\begin{aligned} |\lambda - a_{rr}| |\lambda - a_{ss}| |x_{r} x_{s}| \leq |x_{r}| |x_{s}| P_{r} P_{s} \\ |\lambda - a_{rr}| |\lambda - a_{ss}| \leq P_{r} P_{s} \end{aligned}$$

Annexes

Il en résulte que la valeur propre λ se trouve dans le domaine défini par :

$$|\lambda - a_{rr}| |\lambda - a_{ss}| \leq P_r P_s$$

Nous remarguons que la courbe définie par :

$$|z - a_{ii}| |z - a_{jj}| = P_i P_j$$

est symétrique par rapport à la médiatrice du bipoint d'affixes (a_{ii}, a_{ii}).

De plus, suivant le signe de $\frac{(a_{ii} - a_{jj})^2}{4P_iP_i}$ - 1, l'ovale se déforme suivant les figures (A.II.1); (A.II.2); (A.II.3) [Moreigne, 1984]. L'expression $\frac{(a_{ii} - a_{jj})^2}{4P_iP_i}$ appraît dans le discriminant de l'équation qui

fournit les solutions en cordonnées polaires.

$$*4P_{i}P_{j} > (a_{ii} - a_{jj})^{2}$$

L'ovale englobe les deux foyers a_{ii} et a_{ii}. La distance séparant le foyer a_{ii} de l'extrémité du contour portée par l'axe horizontal la plus proche est :

$$r_{i,j} = \left| -\sqrt{\left(\frac{a_{ii} - a_{jj}}{2}\right)^2 + P_i P_j} - \frac{a_{ii} - a_{jj}}{2} \right|$$

La distance avec l'extrémité la plus éloignée est :

$$R_{i,j} = \left| -\sqrt{\left(\frac{a_{ii} - a_{jj}}{2}\right)^2 + P_i P_j} + \frac{a_{ii} - a_{jj}}{2} \right|$$

figure A.II.1

Les formules correspondant à l'autre foyer a_{jj} sont identiques, compte tenu de la symétrie des indices.

$$*4P_{i}P_{j} = (a_{ii} - a_{jj})^{2}$$

L'ovale se sépare en deux tracés qui n'ont plus qu'un point commun, le milieu de (a_{ii},a_{ji}) :

figure A.II.2

Annexes

Nous définissons comme précédemment deux distances :

$$r_{i,j} = \left| \left(\sqrt{2} - 1 \right) \left(\frac{a_{ii} - a_{jj}}{2} \right) \right|$$
$$R_{i,j} = \left| \left(\sqrt{2} + 1 \right) \left(\frac{a_{ii} - a_{jj}}{2} \right) \right|$$

$$* 4P_iP_j < (a_{ii} - a_{jj})^2$$

.

L'ovale se décompose en deux figures disjointes :

Deux distances, figurant sur le dessin sont importantes pour caractériser les deux "yeux" :

$$r_{i,j} = \left| -\sqrt{\left(\frac{a_{ii} - a_{jj}}{2}\right)^{2} + P_{i}P_{j}} - \left(\frac{a_{ii} - a_{jj}}{2}\right) \right|$$
$$R_{i,j} = \left| \left(\frac{a_{ii} - a_{jj}}{2}\right) - \sqrt{\left(\frac{a_{ii} - a_{jj}}{2}\right)^{2} - P_{i}P_{j}} \right|$$

<u>ANNEXE III</u>

Soit la matrice carrée A, d'ordre n, contenant n_1 valeurs propres à partie réelle positive et $n_2 = n - n_1$ valeurs propres à partie réelle négative, nous pouvons l'écrire sous la forme :

$$\mathbf{A} = \mathbf{M} \begin{bmatrix} \Lambda_1 & \mathbf{0} \\ \mathbf{0} & \Lambda_2 \end{bmatrix} \mathbf{M}^{-1}$$

 Λ_1 (resp. Λ_2) est le bloc de Jordan associé aux n₁ (resp. n₂) valeurs propres positives (resp. négatives) de A, M étant la matrice constituée par les vecteurs propres associés aux valeurs propres de A.

En calculant la signature de A, nous avons :

$$A_{\infty} = M \Lambda_{\infty} M^{-1}$$
$$A_{\infty} = M \begin{bmatrix} I_1 & 0\\ 0 & -I_2 \end{bmatrix} M^{-1}$$

où I_1 (resp. I_2) est la matrice Identité d'ordre n_1 (resp. n_2).

Posons

$$F = A_{\infty} + \begin{bmatrix} I_1 & 0 \\ 0 & -I_2 \end{bmatrix}$$
$$F = M \begin{bmatrix} I_1 & 0 \\ 0 & -I_2 \end{bmatrix} M^{-1} + M M^{-1} \begin{bmatrix} I_1 & 0 \\ 0 & -I_2 \end{bmatrix}$$
soiten posant $W = M^{-1} = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix}$

$$F = M \begin{pmatrix} I_{1} & 0 \\ 0 & -I_{2} \end{pmatrix} \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} + \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} \begin{bmatrix} I_{1} & 0 \\ 0 & -I_{2} \end{bmatrix} \end{pmatrix}$$
$$F = M \begin{bmatrix} 2W_{11} & 0 \\ 0 & -2W_{22} \end{bmatrix}$$

Supposons que W_{11} et W_{22} soient inversibles, nous avons :

$$A_{\mathcal{B}} = F^{-1} A F$$
$$A_{\mathcal{B}} = \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix}$$

avec

$$\begin{pmatrix} A_1 = W_{11}^{-1} \Lambda_1 W_{11} \\ A_2 = W_{22}^{-1} \Lambda_2 W_{22} \end{pmatrix}$$

et les valeurs propres de A_1 (resp. A_2) = n_1 (resp. n_2) valeurs propres de A telles que $\Re(\lambda_i) > 0$ (resp. < 0) pour i = 1, ..., n_1 (resp. n_2).

La matrice W étant non singulière par définition, il existe toujours une matrice de permutation P telle que W'₁₁ et W'₂₂ soient non singulières [Denman, 1976] avec

$$W' = P^{-1}WP = \begin{bmatrix} W'_{11} & W'_{12} \\ W'_{21} & W'_{22} \end{bmatrix}$$

PPN 036107182

RESUME

Dans le cadre d'un projet de réalisation d'un système à base de connaissances, d'aide à la simplification de modèles, utilisant des techniques d'Intelligence Artificielle (IA) associées à un langage de représentation centrée objet, les travaux présentés dans ce mémoire constituent une contribution à la définition de l'expertise au point de vue de la simplification de modèles et du développement des outils de synthèse nécessaires à l'élaboration de la base de connaissances.

Ce mémoire comporte, dans la première partie, une synthèse bibliographique des différentes sochniques de réduction des systèmes continus linéaires stationnaires modélisés par une matrice de transfert ou une équation d'état. Des critères de choix d'une méthode de simplification sont définis pour mieux guider l'utilisateur dans sa démarche.

La deuxième partie, par une analyse numérique et graphique, traite plus particulièrement de l'identification des dynamiques, nécessaire à tout découplage ou réduction. Sans calcul des valeurs propres ni des vecteurs propres, cette identification est réalisée par des méthodes géométriques permettant ainsi un étiquetage des dynamiques du système étudié. L'introduction d'une nouvelle méthode, associée aux cercles de Gershgorin, permet par un changement de base diagonal optimal, de mieux localiser les valeurs propres de la matrice d'état du système. Là aussi, des critères de choix portant sur le bon ou le mauvais conditionnement d'une matrice sont établis. Lorsqu'ils sont vérifiés, ces critères nous renseignent sur l'utilisation directe des méthodes géométriques de mise en évidence des dynamiques.

Dans la troisième partie, nous proposons trois méthodes qui, par une transformation linéaire, permettent la bloc-diagonalisation de la matrice d'état du système, quel que soit son conditionnement, tout en regroupant dans chaque bloc les dynamiques considérées. Cette technique est basée sur le calcul de la signature de matrice et ne nécessite pas non plus la connaissance du spectre de celle-ci. Des critères de mesure de la séparabilité des sous systèmes lent et rapide fournissent des renseignements sur la meilleure méthode à adopter. Des exemples d'application permettent une mise en œuvre pratique de ces travaux et conduisent à l'élaboration d'heuristiques pour le choix d'une méthode de simplification, tenant compte des caractéristiques physiques du système étudié.