50376 1991 21121 d'ordre : 764 N

67 366

50376 1991 212

HESE

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE

LILLE FLANDRES ARTOIS

pour obtenir le grade de

DOCTEUR

Spécialité : SPECTROCHIMIE

par

Béatrice SERIEN-VERDONCK

NOUVEAUX OXYDES DE BISMUTH, VANADIUM ET CUIVRE: SYNTHESES, STRUCTURES, PROPRIETES

Soutenue le 24 Septembre 1991 davo

J.C. BOIVIN	Président
M. ANNE	Rapporteu
G. MAIRESSE	Rapporteu
G. VACQUIER	Examinate
A. WATANABE	Examinate
- ABRAHAM	Examinate

eur eur teur teur teur à mes parents

à François

:

Ce travail a été effectué au Laboratoire de Cristallochimie et Physicochimie du Solide (UA CNRS 452) de l'Université des Sciences et Techniques de Lille Flandres Artois.

J'exprime mes vifs remerciements à Monsieur J.C. BOIVIN, Professeur à l'Ecole Nationale Supérieure de Chimie de Lille qui me fait l'honneur de présider ce jury et qui m'a accordé sa confiance en m'accueillant dans son laboratoire.

Monsieur Francis ABRAHAM, Professeur à l'Université des Sciences et Techniques de Lille Flandres Artois a assuré la direction de cette recherche. Je le remercie pour ses conseils et son soutien actif, et c'est grâce à sa compétence que ce travail a pu être réalisé. Qu'il soit assuré de ma profonde reconnaissance.

Je remercie très sincèrement Monsieur M. ANNE, chargé de recherches au CNRS, pour l'intérêt qu'il a porté à mon travail en acceptant de participer à ce jury.

Je tiens à remercier tout particulièrement Monsieur G.MAIRESSE, Professeur à l'Université de Valenciennes pour les conseils dont il m'a fait bénéficier.

J'exprime ma reconnaissance à Monsieur G. VACQUIER, Maître de Conférences à l'Université de Marseille, d'avoir bien voulu juger ce travail.

Je suis très sensible à l'honneur que me fait Monsieur A. WATANABE, Senior Researcher au National Institute for Research in Inorganic Materials à Tsukuba (Japon), en acceptant de faire partie de ce Jury.

Mes remerciements vont également à Madame N. VANDENBERGHE, Madame L. BURYLO et Madame F. KHOUALED qui ont contribué à la réalisation pratique de ce mémoire.

Que tous les membres du laboratoire soient assurés de ma sympathie et qu'ils sachent que j'ai été heureuse de travailler à leur côté.

SOMMAIRE

	Page
INTRODUCTION	1
CHAPITRE I: La série Bi2V1 vOuvO5 5 1 5v (BICUVOX):	
Nouveaux Conducteurs Anioniques à Basse Température	4
I.1. L'oxyde $Bi_4V_2O_{11}$	5
I.1.1. Synthèse	5
I.1.2. Transitions de phases	5
I.1.3. Structure	8
I.1.4. Conductivité	11
I.2. La série $Bi_2V_{1-x}Cu_xO_{5,5-1,5x}$ ou BICUVOX	12
I.2.1. Synthèses	12
I.2.2. Domaines de solution solide	13
I.2.3. Transitions de phases	15
I.2.4. Influence sur la conductivité	17
I.2.5. Structure de $Bi_2V_{0,9}Cu_{0,1}O_{5,35}$ (BICUVOX .10)	24
CHAPITRE II : Le diagramme Bi ₂ O ₃ -V ₂ O ₅ -CuO	28
II.1. Le diagramme binaire Bi ₂ O ₃ -CuO	29
II.2. Le diagramme binaire Bi ₂ O ₃ -V ₂ O ₅	31
II.3. Le diagramme binaire V ₂ O ₅ -CuO	38
II.4. Le diagramme ternaire Bi ₂ O ₃ -V ₂ O ₅ -CuO	40
II.4.1. Protocole expérimental	41
II.4.2. La ligne Bi ₄ V ₂ O ₁₁ -Bi ₂ CuO ₄	41
II.4.3. Les pseudo-binaires BV 6:1-Bi ₂ CuO ₄ , BV 6:1-CuO et	
BV 4:1-CuO	46
II.4.4. Le pseudo-binaire Bi ₂ CuO ₄ -BiVO ₄	46
II.4.5. Le pseudo-binaire Bi ₂ CuO ₄ -V ₂ O ₅	48
II.4.6. Le pseudo-binaire Bi ₄ V ₂ O ₁₁ -CuO	50
II.4.7. Domaine de solution solide du type $Bi_4V_2O_{11}$	51
II.4.8. Discussion et Conclusion	52

.

II.5. Etude cristallographique de la namibite		
II.5.1. Détermination de la structure dans la maille moyenne	55	
II.5.2. Mise en évidence de la maille réelle	60	
II.5.3. Discussion de la structure moyenne	63	
CHAPITRE III : Structure de Bi ₄ Cu ₃ V ₂ O ₁₄	66	
III.1. Préparation des monocristaux	67	
III.2. Détermination de la maille monoclinique	69	
III.3. Détermination de la structure dans la maille monoclinique	71	
III.3.1. Collecte des intensités	71	
III.3.2. Détermination de la position des atomes métalliques	72	
III.4. Détermination de la maille réelle	76	
III.5. Détermination de la structure dans la maille triclinique	78	
III.6. Description et discussion de la structure	83	
CONCLUSION	91	
BIBLIOGRAPHIE	95	

•

INTRODUCTION

Les oxydes mixtes de bismuth et de métaux de transition présentent des propriétés physiques très variées, citons à titre d'exemples :

- la conductivité métallique des phases de structure pyrochlore $Bi_2M_2O_7$ (M=Ru, Ir, O_S) (1,2) et dans les composés de structure type KSbO₃ tel que $Bi_3Ru_3O_{11}$ (3,4),

- la semi-conductivité de Bi₂PdO₄ (5), des oxydes à valence contrôlée $Bi_{2-x}Pb_xMO_4$ (M=Pd,Pt) (5) de structure isotype de Bi₂CuO₄ (6) ou encore de la phase pyrochlore Bi₂Pt₂O₇ (2),

- les interactions antiferromagnétiques dans le composé isolant Bi₂CuO₄ qui fait l'objet actuellement de nombreuses études (7,8,9,10,11),

- la ferroélasticité de BiVO₄ (12,13),

- la ferroélectricité dans les phases d'Aurivillius à couches $Bi_2O_2^{2+}$ de formule générale $(Bi_2O_2)^{2+}(A_{n-1}B_nO_{3n+1})^{2-}$ telles que $Bi_4Ti_3O_{12}$, $Bi_9Ti_6CrO_{27}$,...qui ont été et sont encore très largement étudiées (14, 15 par exemple),

- la photoconductivité des films $Bi_2O_3-M_2O_5$ (M=V,Nb,Ta) (16) et $Bi_2O_3-MO_3$ (M=Mo,W) (17) obtenus par hypertrempe,

- les propriétés catalytiques des molybdates de bismuth (18 par exemple),

la conductivité anionique des solutions solides Bi₂O₃-M₂O₅ (M=Nb,Ta) et
 Bi₂O₃-MO₃ (M=W,Mo) (19),

- les propriétés électrocatalytiques pour la réduction de l'oxygène des phases de structure pyrochlore $Bi_{2-2x}Pb_{2x}Ru_2O_{7-v}$ (20),

- les propriétés supraconductrices de phases du système Bi-Sr-Cu-O telle que $Sr_2Bi_2CuO_{7+\delta}$ (21) qui possède une température critique comprise entre 7 et 22 K ou du système Bi-Sr-Ca-Cu-O telle que $Bi_2Sr_{3-x}Ca_xCu_2O_{8+v}$ (22) pour lesquelles des

températures critiques atteignant 120 K ont été annoncées (23).

Récemment les propriétés de conductivité par ions oxygène à haute température d'un nouvel oxyde de bismuth et de vanadium $Bi_4V_2O_{11}$ ont été mises en évidence au laboratoire (24). Malheureusement ce composé subit des transitions de phases qui font chuter cette conductivité. Nous avons donc envisagé la stabilisation de la forme haute température par des substitutions cationiques. Notre choix s'est porté sur la substitution du vanadium par le cuivre. Le choix du cuivre a été guidé par différents critères : le degré d'oxydation faible permet d'introduire lors de la substitution un nombre relativement important de lacunes ; le cuivre adopte aisément une coordination 4 plan carré ; le composé Bi_2CuO_4 de même rapport Bi/métal que $Bi_4V_2O_{11}$ (ou $Bi_2VO_{5,5}$) a été étudié pour la première fois au laboratoire (25) qui possède la maîtrise de la cristallochimie des oxydes de cuivre ; l'intérêt pour tout oxyde contenant du cuivre depuis la découverte de la supraconductivité à haute température dans les céramiques à base de cuivre. Les résultats obtenus ainsi que l'influence des substitutions sur les conductivités seront exposés dans le premier chapitre.

Il nous a semblé intéressant de poursuivre ce travail par une étude plus complète du diagramme ternaire $Bi_2O_3-V_2O_5$ -CuO qui sera rapportée dans le second chapitre. Dans ce chapitre nous étudierons également la structure du minéral Bi_2VCuO_6 appelé namibite.

L'examen du système ayant permis de déceler l'existence de l'oxyde ternaire de composition Bi₄V₂Cu₃O₁₄, nos efforts se sont portés sur la synthèse de monocristaux de cette phase et l'étude de leur structure cristalline par diffraction des rayons X. Cette détermination structurale fera l'objet du dernier chapitre.

3

CHAPITRE I

LA SERIE $Bi_2V_{1-x}Cu_xO_{5,5-1,5x}$ (BICUVOX) : NOUVEAUX CONDUCTEURS ANIONIQUES A BASSE TEMPERATURE

I. 1. L'OXYDE Bi₄V₂O₁₁

I. 1. 1. Synthèse

Lors d'un essai de synthèse d'une phase isostructurale de l'oxyphosphate ferroélectrique $K_2Bi_3(PO_4)_3O$ (26) dans laquelle le phosphore est remplacé par le vanadium, M.F. DEBREUILLE-GRESSE a obtenu un mélange de deux types de cristaux (27) dont l'étude structurale a indiqué qu'il s'agissait d'un vanadate mixte de potassium et de bismuth $K_3Bi_2(VO_4)_3$ (28), d'une part, et d'une phase appartenant au système $Bi_2O_3-V_2O_5$, d'autre part. L'ébauche de la détermination structurale a montré que cet oxyde peut se formuler $Bi_4V_2O_{11}$.

Ce composé est obtenu pur par synthèse directe à l'état solide à 1120 K en creuset d'or à l'air, selon la réaction :

$$2 \operatorname{Bi}_2 O_3 + V_2 O_5 - \frac{1120 \text{ K}}{2} > \operatorname{Bi}_4 V_2 O_{11}$$

I. 1. 2. Transitions de phases

Des études par calorimétrie différentielle à balayage (D.S.C.), analyse thermique différentielle (A.T.D.) et diffraction X en fonction de la température (D.X.H.T.) ont montré que $Bi_4V_2O_{11}$ est le siège de différentes transitions de phases :

$$\alpha \frac{445 \circ C}{2} > \beta \frac{535 \circ C}{2} > \delta$$
 au chauffage

$$\delta \xrightarrow{535^{\circ}C} \beta \xrightarrow{365^{\circ}C} \alpha$$
 (figure 1)

Figure 1. D.S.C. de Bi₄V₂O₁₁ (vitesse de chauffage : 10°C/mn)

 $Bi_4V_2O_{11}$ fond de façon incongruente à 875°C.

Les paramètres de maille des phases α , β et δ ont été déterminés et affinés à partir des spectres de poudre :

 α : pseudo-maille orthorhombique F

$$a = 5,533(1)$$
Å; $b = 5,611(1)$ Å; $c = 15,288(4)$ Å

maille réelle (due à l'existence de quelques réflexions faibles):

orthorhombique A

$$a = 16,599(4)$$
Å; $b = 5,611(1)$ Å; $c = 15,288(4)$ Å

B: pseudo-maille quadratique F

a = b = 5,642(2)Å; c = 15,400(9)Å à 775 K

maille réelle quadratique P

a = b = 11,285(8)Å; c = 15,400(9)Å à 775 K

(Remarque : le spectre peut être indexé en ne doublant que l'un des paramètres a ou b et en considérant donc une maille orthorhombique).

X: maille quadratique I

a = 4,004(1)Å; c = 15,488(8)Å à 975 K

Les cristaux obtenus par refroidissement lent (5 K/h) du composé $Bi_4V_2O_{11}$ fondu étaient systématiquement maclés (28) et ne permettaient pas de confirmer ces résultats.

Récemment des monocristaux non maclés ont pu être préparés (29) ; leur étude par diffraction X en fonction de la température a permis de préciser les résultats précédents et de confirmer le caractère ferroélastique de la transition à 720 K :

 α : maille orthorhombique A

a = 16,599(1) Å; b = 5,611(1) Å; c = 15,288(4) Å

B: maille orthorhombique A

a = 11,285(8) Å; b = 5,642 Å; c = 15,400(9) Å

 δ : maille quadratique I

a = 4,004(1) Å; c = 15,488(8) Å à 975 K

(les valeurs des paramètres sont celles déterminées sur poudre).

Les mailles des formes basses températures α et B peuvent donc être décrites à partir de la maille haute température χ par les relations (figure 2) :

 $a_{\alpha} # 3\sqrt{2} a_{\delta}$ $b_{\alpha} # \sqrt{2} a_{\delta}$ $c_{\alpha} # c_{\delta}$ $a_{\beta} # 2\sqrt{2} a_{\delta}$ $b_{\beta} # \sqrt{2} a_{\delta}$ $c_{\beta} # c_{\delta}$

Figure 2. Relation entre les mailles des phases α , β et δ de Bi₄V₂O₁₁

I. 1. 3. Structure

:

Les études antérieures effectuées au laboratoire ont permis de réaliser une approche structurale sur un cristal maclé à température ambiante dans la pseudo-maille moyenne orthorhombique F de paramètres a # b # $\sqrt{2a}_{\delta}$.

Le groupe d'espace utilisé est Fmmm. Les coordonnées atomiques des atomes sont reportées au tableau I.

Tableau I. Coordonnées atomiques et coefficients d'agitation thermique isotrope pour Bi₄V₂O₁₁ dans la maille moyenne

Atomes	Sites	taux d'occup.	х	у	Z	В
Bi	32p	0,25	0,0085(26)	0,0238(8)	0,1691(2)	1,5(1)
v	160	0,25	0,5406(34)	0,0571(2)	0	0,9(4)
O(1)	8f	1	0,25	0,25	0,25	1,7(6)
O(2)	160	0,375	0,208(24)	0,164(18)	0	6,5(2,8)
O(3)	32p	0,25	0,387(17)	0,087(18)	0,097(6)	6,8(2,8)

Il faut remarquer que si les atomes de bismuth, de vanadium et d'oxygène O(1) ont été localisés sans trop de difficultés, il n'en a pas été de même des atomes O(2) et O(3).

La structure peut être décrite par un empilement de couches $Bi_2O_2^{2+}$ le long de l'axe c de la maille. Les polyèdres oxygénés du vanadium forment des feuillets qui s'intercalent entre les couches $Bi_2O_2^{2+}$.

La structure de Bi₄V₂O₁₁ se rapproche de celle des phases d'Aurivillius. Les phases d'Aurivillius constituent une famille importante de composés de formule générale $(Bi_2O_2)^{2+}(A_{n-1}B_nO_{3n+1})^{2-}$ où A est une combinaison d'ions mono-, bi- ou trivalent s'accommodant d'une coordination d'indice 12 et B un cation acceptant une coordination octaédrique (essentiellement Ti⁴⁺,Nb⁵⁺,Ta⁵⁺) et n = 1,2,...7. Entre les couches Bi₂O₂²⁺ viennent s'insérer les feuillets (A_{n-1}B_nO_{3n+1})²⁻ de type pérovskite d'épaisseur n octaèdres (figure 3).

Figure 3. Structure des phases d'Aurivillius Bi₄Ti₃O₁₁ (n=3),...Bi₂WO₆ (n=1)

Pour n=1, les composés Bi_2MoO_6 et Bi_2WO_6 ont fait l'objet de nombreuses études (30 à 39).

Bi₂VO_{5,5} s'apparente aux phases d'Aurivillius n=1, c'est à dire à Bi₂MoO₆ et Bi₂WO₆ ; la différence essentielle est constituée par le polyèdre de coordination du métal de transition : dans Bi₂MO₆ (M=Mo,W) celui-ci est un octaèdre quasi-parfait, les octaèdres MO₆ sont reliés par des sommets (atomes d'oxygène O(3)) pour constituer des feuillets MO₄²⁻ ; dans Bi₂VO_{5,5}, pour des raisons évidentes, les octaèdres VO₆ ne peuvent plus être complets, les atomes d'oxygène sont alors répartis statistiquement sur les sites O(2) et O(3), tout au moins à haute température.

D'un point de vue cristallochimique, le composé doit donc se formuler Bi₂O₂²⁺ (VO_{3,5} $\square_{0,5}$)²⁻.

A basse température (phases α et B), l'apparition de surstructure pourrait traduire une occupation ordonnée des sites O(2) et O(3) (toutefois l'intensité de certaines réflexions de surstructure implique la participation des atomes métalliques).

Au moins à haute température, ce désordre doit se traduire par une conductivité des ions O^{2-} appréciable.

I. 1. 4. Conductivité

Des mesures de conductivité confirment cette hypothèse (figure 4) : dans le domaine δ Bi₄V₂O₁₁ est un bon conducteur.

Figure 4. Courbe $\log \sigma = f(10^3/T)$ pour Bi₄V₂O₁₁ a) au chauffage ; b) au refroidissement

.

Les valeurs de conductivité obtenues sont comparables à celles des autres conducteurs par ions O²⁻ dans ce domaine de température ; les transitions $\& \longrightarrow B$ et surtout B $\longrightarrow \alpha$ se traduisent malheureusement par une chute importante de la conductivité.

Des mesures de nombre de transport de l'oxygène dans l'intervalle de température 720-1120 K confirment que les porteurs sont bien les ions O²⁻.

Si l'on admet que les chutes de conductivité sont, tout au moins en partie, dues à une mise en ordre des atomes d'oxygène O(2) et O(3), la substitution partielle du vanadium par un ion de degré d'oxydation différent devrait contrarier cette mise en ordre et favoriser le maintien d'une conductivité élevée à des températures plus basses.

Une première étude a révélé que la substitution du vanadium par le molybdène permettait l'obtention d'une solution solide $Bi_2V_{1-x}Mo_xO_{5,5+x/2}$ ($0 \le x \le 0,175$) (40).

Pour $0 \le x \le 0,075$, le comportement du matériau est analogue à celui de Bi₄V₂O₁₁. Par contre pour $0,075 < x \le 0,175$; la transition $\beta \longrightarrow \alpha$ n'apparaît plus ; il semble que la forme α ne puisse plus exister et que la conductivité aux plus basses températures soit une extrapolation de la conductivité de la phase β ; la valeur relativement élevée de l'énergie d'activation dans le domaine β ($\Delta E \approx 1 eV$) ne permet pas d'obtenir une augmentation de la conductivité aux basses températures par rapport au matériau non substitué.

Pour tenter de stabiliser la phase λ , nous avons entrepris des essais de substitution du vanadium par le cuivre.

I. 2. LA SERIE Bi₂V_{1-x}Cu_xO_{5,5-1,5x} OU BICUVOX

I. 2. 1. Synthèses

Les matériaux sont obtenus par synthèse directe à l'état solide à partir des oxydes de départ :

- sesquioxyde de bismuth Bi2O3 Johnson Matthey préalablement décarbonaté

12

par chauffage à 600°C,

- oxyde de cuivre CuO Merck,

- oxyde de vanadium V2O5 Johnson Matthey

Les oxydes sont mélangés suivant les proportions respectant les stoechiométries :

$$Bi_2O_3 + (1-x/2)V_2O_5 + x CuO \longrightarrow Bi_2V_{1-x}Cu_xO_{5,5-1,5x}$$

Après broyage intime au mortier d'agate, les mélanges sont portés, dans une nacelle d'or, à 600°C pendant 12 heures afin de permettre à V₂O₅ de commencer à réagir avant sa fusion. Ils sont ensuite rebroyés et portés à 800°C pendant 12 heures. Après chaque réaction un cliché de diffraction X est réalisé afin d'identifier la phase présente.

I. 2. 2. Domaines de solution solide

Une phase pure est obtenue pour $0 \le x \le 0,125$. Pour les taux de substitution plus élevés, la solution solide limite est accompagnée d'une autre phase sur laquelle nous reviendrons aux chapitres II et III.

L'examen des clichés de diffraction X révèle l'existence de deux domaines différents :

 $-0 \le x \le 0,065$: le spectre de diffraction X est analogue à celui de α -Bi₄V₂O₁₁; la plupart des réflexions peuvent être indexées dans une sous-maille orthorhombique F, quelques unes, très faibles, remettent en cause le réseau de Bravais et conduisent à tripler le paramètre a. Les paramètres a et b de la sous-maille varient très peu (5,526 \le a \le 5,531 Å; 5,583 \le b \le 5,602 Å).

- $0,075 \le x \le 0,125$: le spectre de diffraction X se simplifie et peut être indexé dans une maille quadratique analogue à celle de δ -Bi₄V₂O₁₁, de paramètre a pratiquement constant (3,919 \le a \le 3,924 Å).

Le passage de la forme orthorhombique à la forme quadratique a donc lieu pour

une composition proche de $x\approx 0,07$.

Le paramètre c croît linéairement dans tout le domaine de solution solide (figure 5). Sa variation permet de préciser la limite de la solution solide : x=0,12. Le passage de la forme orthorhombique à la forme quadratique ne se traduit par aucun changement perceptible dans l'évolution du paramètre c.

Figure 5. Variation du paramètre c en fonction du taux de substitution pour la solution solide $Bi_2V_{1-x}Cu_xO_{5,5-1,5x}$

Au vu de la diffraction X, la substitution du vanadium par le cuivre permet la stabilisation à température ambiante de la forme δ de Bi₄V₂O₁₁. Il faut remarquer que la phase intermédiaire β ne peut être stabilisée.

Au-delà de x=0,125, la limite de solution solide du type $\&Bi_4V_2O_{11}$ coexiste avec une nouvelle phase qui sera décrite dans le chapitre III.

I. 2. 3. Transitions de phases

La figure 6 représente les courbes D.S.C. obtenues lors du chauffage (10°C/mn) et lors du refroidissement (10°C/mn) des phases x=0; x=0,025; x=0,05; x=0,075(BIVOX, BICUVOX. 025, BICUVOX.05 et BICUVOX.075).

D.S.C. CHAUFFAGE

Pour x=0,025 et x=0,05, lors de la montée en température, un seul pic est observé à 465°C (pour x=0,025, le pic paraît double, la deuxième composante correspondrait alors à la transition $\beta \longrightarrow \delta$ de Bi₄V₂O₁₁ non substitué). Dans le domaine de solution solide du type α -Bi₄V₂O₁₁, la température de la transition $\beta \longrightarrow \delta$ se rapproche donc rapidement de celle de la transition $\alpha \longrightarrow \beta$; ces deux transitions se produisent simultanément pour x=0,05 et le matériau passe alors directement de la forme α à la forme δ .

Au refroidissement, deux transformations sont mises en évidence ; la température de ces deux transitions diminue entre x=0,025 et x=0,05 (tableau II). Il faut souligner l'importance de la diminution de la température de la seconde transition qui passe de 315 à 225°C.

Tableau II. Transitions de phases dans Bi₂V_{1-x}Cu_xO_{5,5-1,5x} observées par D.S.C.

$$x = 0$$

$$\alpha \frac{445^{\circ} C}{535^{\circ} C} > \beta \frac{535^{\circ} C}{535^{\circ} C} > \delta$$

$$\delta \frac{535^{\circ} C}{535^{\circ} C} > \beta \frac{365^{\circ} C}{55^{\circ} C} > \alpha$$

$$x = 0,025$$

$$\alpha \frac{465^{\circ} C}{55^{\circ} C} > \beta \frac{465^{\circ} C}{55^{\circ} C} > \delta$$

$$\delta \frac{485^{\circ} C}{55^{\circ} C} > 2 \frac{315^{\circ} C}{55^{\circ} C} > \alpha$$

$$x = 0,050$$

$$\alpha \frac{465^{\circ} C}{55^{\circ} C} > 2 \frac{225^{\circ} C}{55^{\circ} C} > \alpha$$

$$x = 0,075$$

$$x = 0,075$$

$$x = 0,075$$

x = 0,1

rien

A cette étape de nos investigations, il est logique d'envisager que la phase présente entre les deux étapes est la phase du type $B-Bi_4V_2O_{11}$.

Lorsque la substitution se poursuit, la température de la transition $\beta \longrightarrow \alpha$ continuerait de décroître et la forme β serait stabilisée à température ambiante.

Or il n'en est rien : pour x=0,075, une transition réversible est observée à une température proche de 430°C et la phase obtenue à température ambiante est quadratique du type & -Bi₄V₂O₁₁. Ce résultat est confirmé par D.X.H.T. : aucune modification du spectre de diffraction X n'est observée en fonction de la température . Pour x=0,10, cette transition n'est plus décelable sur la courbe D.S.C.. Quelle est alors l'origine de cette transition ?

Nous apporterons des éléments de réponse à cette question lors de l'étude structurale d'un monocristal de composition x=0,10 (BICUVOX.10).

I. 2. 4. Influence sur la conductivité

÷

Les conductivités ont été mesurées en fonction de la température par la méthode des impédances complexes sur des échantillons de forme cylindrique obtenus par compression à froid et frittage à l'air à 750°C. Les électrodes sont réalisées à l'aide d'une laque d'or.

a) Cas des phases orthorhombiques $(0 \le x \le 0.07)$

La figure 7 donne la courbe $\log \sigma = f(1000/T)$ pour la composition x=0,05obtenue lors d'une seconde montée en température. Pour x=0,025, la courbe est très voisine. Elle se compose de deux parties linéaires où la conductivité suit la loi d'Arrhénius : $\sigma = \sigma_0 \exp(-\Delta E/kT)$

Pour Bi₄V₂O₁₁, la conductivité subissait deux sauts correspondant aux transitions $\alpha \longrightarrow \beta$ et $\beta \longrightarrow \chi$. Dans le cas de la solution solide, la conductivité ne subit plus qu'un seul saut pour une température voisine de 470°C.

17

0 :refroidissement

Figure 7. Courbe $\log \sigma = f(1000/T)$ pour la composition x=0,05 (BICUVOX. 05)

La comparaison des énergies d'activation pour les deux parties linéaires (tableau III) semble indiquer que ce saut correspond à la transition $\alpha \longrightarrow \lambda$. En effet, l'énergie d'activation dans le domaine B est beaucoup plus élevée ($\Delta E \approx 1 \text{eV}$).

Ce résultat corrobore le fait que, lorsque x croît, un seul pic est observé en D.S.C.. On passe donc effectivement, directement, d'une phase orthorhombique du type α -Bi₄V₂O₁₁ à une phase quadratique du type λ -Bi₄V₂O₁₁. Lors de la descente en température la chute de conductivité a lieu à une température plus faible en accord avec l'hystérèse relevée sur la courbe D.S.C.. Un palier de température à 200°C est nécessaire à la reproductibilité de courbe log σ = f(10³/T) en montée de température. Ce palier doit permettre à la transition relevée à 225°C sur la courbe D.S.C. de se produire.

Dans le domaine $0 \le x \le 0,07$, la substitution du vanadium par le cuivre ne permet pas d'améliorer la conductivité. En effet, les valeurs obtenues sont sensiblement les mêmes, que ce soit à haute ou à basse température.

X	E _{HT}	E _{BT}
0	0,25	0,37
0,025	0,32	0,53
0,05	0,23	0,47
0,075	0,32	0,57
0,1	0,35	0,55
0,125	0,29	0,56

Tableau III. Energies d'activation en fonction de x

b) Cas des phases quadratiques $(0.07 < x \le 0.120)$

Pour x=0,075, la conductivité à haute température est comparable à celle de δ -Bi₄V₂O₁₁ et à celles obtenues pour x≤0,07.

Par contre, une faible chute de conductivité est observée à une température proche de 430°C qui correspond à la transition décelée par D.S.C.. Cette chute est très faible et permet de maintenir, à basse température, une conductivité importante. A 300°C, la conductivité est multipliée par environ 100.

Les énergies d'activation des formes haute température et basse température sont comparables aux valeurs obtenues précédemment (tableau III).

Figure 8. Conductivité en fonction de la température de la composition x=0,075 (BICUVOX.075)

Pour x=0,10, bien qu'aucune transition n'ait été observée en D.S.C., une faible modification dans le comportement électrique a lieu vers 400°C ; cette "transition" ne se manifeste pratiquement plus que par un changement de pente dans la courbe $\log \sigma = f(1000/T)$.

Les courbes obtenues lors des montées et des descentes en température sont rigoureusement superposables.

Figure 9. Courbe de conductivité pour la composition x = 0,10 (BICUVOX.10)

Nous avons vérifié, sur cette composition, par mesure de la f.e.m.. d'une pile de concentration du type :

P₁(O₂), Au/Bi₂V_{0,9}Cu_{0,1}O_{5,35}/Au,P₂(O₂)

que le nombre de transport des ions O^{2-} était bien égal à 1. Les espèces mobiles sont donc bien les ions oxygène.

c) Cas du domaine biphasé (x > 0, 12)

Pour des taux de substitution supérieurs à 0,12, la solution solide limite est accompagnée d'une phase inconnue. L'addition d'une seconde phase à un conducteur peut parfois améliorer les performances de celui-ci. Nous avons donc étudié la conductivité des compositions x=0,15; x=0,20 et x=0,25: dans chaque cas elle suit, dans le domaine de température étudié, une loi d'Arrhénius ; malheureusement la conductivité diminue progressivement en fonction de x. La figure 10 donne à titre d'exemple, la courbe obtenue pour x=0,25.

Figure 10. Conductivité de la composition x = 0,25

La substitution du vanadium par le cuivre permet donc d'obtenir des matériaux qui sont, à ce jour, les meilleurs conducteurs par ions oxygène à température relativement basse (300°C). La figure 11 compare les courbes de variation de log σ en fonction de 10³/T pour les matériaux conducteurs par ions O²⁻ les plus performants actuellement connus.

Figure 11. Courbes d'Arrhénius comparatives pour :

(•) YSZ : (ZrO₂)_{0,9}(Y₂O₃)_{0,1} (41)
(o) (Bi₂O₃)_{0,8}(Er₂O₃)_{0,2} (42)
(*) Bi₄V₂O₁₁
(∀) BICUVOX.050
(Δ) BICUVOX.075
(♥) BICUVOX.10

Quel est le facteur (ou les facteurs) permettant cette augmentation de conductivité à basse température par rapport à $Bi_4V_2O_{11}$?

La substitution du vanadium par le cuivre s'accompagne d'une augmentation du nombre de lacunes dans les feuillets $(V,Cu)O_{3,5-1,5x} \square 0,5+1,5x$.

Cette augmentation du nombre de lacunes ne semble pas jouer un rôle prépondérant sur la conductivité. En effet, d'une part, quelque soit x, la conductivité à haute température (domaine δ) reste pratiquement constante ; d'autre part, à basse température, il ne se produit aucune augmentation de conductivité tant que l'on reste dans le domaine orthorhombique ($0 \le x \le 0.07$).

Par contre, la conductivité aux basses températures augmente fortement aussitôt que l'on atteint le domaine quadratique $(0,07 < x \le 0,12)$.

La maille est alors analogue à celle de la phase \forall de Bi₄V₂O₁₁.

Le facteur prépondérant serait donc un facteur cristallographique. Pour vérifier cette hypothèse, nous avons tenté de résoudre la structure de $Bi_2V_{0,9}Cu_{0,1}O_{5,35}$ (BICUVOX.10) à température ambiante.

I. 2. 5. Structure de Bi₂V_{0.9}Cu_{0.1}O_{5.35} (BICUVOX.10)

Des monocristaux de Bi₂V_{0,9}Cu_{0,1}O_{5,35} sont obtenus par refroidissement lent $(3^{\circ}C/h)$ du mélange porté à fusion. Ils n'ont pas de forme géométrique simple, aussi avons-nous "taillé" des monocristaux en forme de sphère afin de pouvoir réaliser des corrections d'absorption aussi rigoureuses que possible.

Le monocristal utilisé est une sphère de rayon R=0,133mm. Les intensités diffractées ont été enregistrées à l'aide du diffractomètre automatique CAD4-NONIUS du Centre Commun de Mesures de l'Université de Lille Flandres Artois.

L'exploration de l'ensemble de l'espace réciproque limité par une sphère $\Theta < 45^{\circ}$ (-7 \leq h \leq 7, -7 \leq k \leq 7, -30 \leq l \leq 30) a permis de mesurer 7731 réflexions. Parmi celles-ci, 3201 ont une intensité telle que I>3 σ (I) et sont considérées comme significatives. Aucune réflexion ne remet en cause le réseau de Bravais I. Il n'existe aucune extinction

24

systématique supplémentaire ; de plus, les intensités des réflexions hkl et khl sont égales ; le groupe spatial retenu est donc le groupe I4/mmm. Après avoir réalisé la moyenne des intensités des réflexions équivalentes, il subsiste 304 plans indépendants qui seront utilisés pour la suite de la détermination structurale.

Les intensités sont corrigées de l'absorption en utilisant les valeurs des facteurs de transmission répertoriées dans les tables internationales de Radiocristallographie pour une valeur de $\mu R = 9,7$.

Les facteurs de diffusion atomique sont ceux des atomes neutres (43), ils sont corrigés de la dispersion anomale (43).

La structure est résolue par la méthode de l'atome lourd et l'affinement réalisé par moindres carrés en utilisant la matrice complète.

	Site	x	у	Z
Bi	4e	0	0	0,17
(V,Cu)	2b	0	0	1/2
O(1)	4d	0	1/2	1/4
O(2)	4e	0	0	0,4
O(3)	4c	0	1/2	0

Les coordonnées des atomes sont très proches des valeurs idéalisées suivantes :

En réalité, les atomes de bismuth, d'une part, et de (vanadium, cuivre), d'autre part, occupent statistiquement plusieurs positions autour de ces sites idéalisés. L'oxygène O(1) des couches $Bi_2O_2^{2+}$ est très bien localisé. Les sites O(2) et/ou O(3) sont partiellement occupés et les atomes d'oxygène correspondants sont délocalisés sur plusieurs sites proches de ces positions moyennes.

Les résultats de l'affinement conduisant à R = 0.037 sont :

	Site	Taux d'occup.	. X	у	Z	В
Bi(1)	16m	1/8	0,0430(9)	0,0430	0,1659(3)	3,4(1)
Bi(2)	4e	1/2	0	0	0,1705(1)	1,23(2)
(V,Cu)	8h	1/4	0,0524(8)	0,0524	1/2	1,14(8)
O(1)	4d	1	0	1/2	1/4	2,5(2)
O(2)	16m	1/4	0,084(7)	0,084	0,400(2)	6,1(1)
O(3)	8g	0,3375	0	1/2	0,037(2)	5,8(9)

La structure est très proche de celle de Bi_2MoO_6 :

- couches $Bi_2O_2^{2+}$ se succédant dans la direction c,

- feuillets constitués d'octaèdres MO_6 reliés par des sommets entre ces couches $Bi_2O_2^{2+}$.

Dans $Bi_2V_{0,9}Cu_{0,1}O_{5,35}$, ces feuillets sont incomplets en oxygène (figure 12).

Figure 12. Structure de $Bi_2V_{0,9}Cu_{0,1}O_{5,35}$

Dans Bi₄V₂O₁₁, les feuillets sont également incomplets. Les transitions $\forall \dots > \beta$ puis $\beta \dots > \alpha$ traduisent vraisemblablement l'établissement d'ordres, non seulement au niveau des atomes métalliques, mais aussi au niveau des atomes d'oxygène. Cette mise en ordre s'accompagne d'une diminution de la conductivité.

Dans $Bi_2V_{0,9}Cu_{0,1}O_{5,35}$, la présence d'atomes de cuivre bloque certains sites oxygénés et l'ordre ne peut plus être réalisé. Il semble donc bien que ce soit la phase & de $Bi_4V_2O_{11}$ qui soit stabilisée à température ambiante, ce qui permet le maintien d'une conductivité élevée.

Cependant, ces résultats de l'étude structurale ne permettent pas d'expliquer les transitions de phases observées dans la série BICUVOX. Ces transitions peuvent être en partie expliquées par un fait expérimental que nous avons volontairement ignoré jusqu'alors : l'existence de réflexions satellites caractérisant une phase incommensurable.

Lors d'une étude préliminaire d'un monocristal de BICUVOX.10 par les méthodes du cristal tournant et de Weissenberg, nous avons relevé, en plus des réflexions correspondant à la maille du type &-Bi₄V₂O₁₁, des réflexions très faibles correspondant à des indices non entiers h ± α , k ± β , l avec $\alpha \approx \beta \approx 0,3$. Ces réflexions indiquent l'existence probable d'une phase incommensurable notée & inc. Pour Bi₄V₂O₁₁ non substitué $\alpha = \beta = 1/3$ (cristal maclé) et la phase devient commensurable, il s'agit alors d'une surstructure que nous avons notée α -Bi₄V₂O₁₁.

Dans la solution solide BICUVOX, dans le domaine orthorhombique, par exemple pour BICUVOX.05, lors du refroidissement le matériau passe donc de & à & inc. à 430°C et de &inc. à α à 225°C. Lors du chauffage α se transforme directement en &.

Dans le domaine quadratique, la température de la transformation \forall inc. ______> α devient trop faible, des facteurs cinétiques empêchent cette transition et la phase \forall inc. est préservée à température ambiante.

Des études complémentaires, notamment par diffraction des neutrons, devraient permettre de confirmer ces hypothèses.

·· . . ·

CHAPITRE II

LE DIAGRAMME Bi₂O₃-V₂O₅-CuO

Avant d'entreprendre la description du diagramme ternaire $Bi_2O_3-V_2O_5$ -CuO, il nous semble utile de rappeler les caractéristiques essentielles des phases des binaires Bi_2O_3 -CuO, Bi_2O_3 -V_2O_5 et CuO-V_2O_5

II.1. LE DIAGRAMME BINAIRE Bi₂O₃-CuO

Le diagramme binaire Bi₂O₃-CuO a été étudié au laboratoire par J.C. BOIVIN (25, 44) par diffraction des rayons X et analyse thermique ; il comporte un seul composé défini de formule Bi₂CuO₄ (figure 13).

Sa structure a été résolue au laboratoire (6). La maille est quadratique (a = 8,510(1) Å, c = 5,814(1) Å), elle contient quatre groupements formulaires Bi₂CuO₄ ; le groupe spatial est P4/ncc. La projection de la structure est donnée sur la figure 14.

Figure 14. Projection de la structure de Bi₂CuO₄ le long de l'axe c

Figure 15. L'enchaînement monodimensionnel (CuO₄)∞ dans Bi₂CuO₄

Le cuivre est en coordination plan carré. La structure peut être décrite par un empilement parallèle à l'axe c de la maille de plans carrés CuO₄ tournés les uns par rapport aux autres de \pm 35° autour de cet axe (figure 15).

Cette rotation permet de minimiser l'encombrement dû aux atomes d'oxygène. Les chaînes (CuO₄)_∞ sont reliées entre elles par les atomes de bismuth.

Simultanément, la structure a été résolue en utilisant le groupe spatial I4 par Arpe et Muller-Buschbaum (45).

Plusieurs études récentes par diffraction des rayons X et diffraction des neutrons à différentes températures confirment toutes le groupe P4/ncc (8, 9, 10, 11, 46).

II. 2. LE DIAGRAMME BINAIRE Bi₂O₃-V₂O₅

Le diagramme binaire $Bi_2O_3-V_2O_5$ a fait l'objet de plusieurs études plus ou moins contradictoires.

La première étude est due à Smolyaninov et Belyaev en 1963 (47). Ces auteurs signalent l'existence de quatre composés définis :

Bi₁₄V₂O₂₆ (7 : 1) BiVO₄ (1 : 1) Bi₄(V₂O₇)₃ (2 : 3) Bi(VO₃)₃ (1 : 3)

et de solutions solides entre $Bi_{14}V_2O_{26}$ et Bi_2O_3 , d'une part, et entre $Bi_{14}V_2O_{26}$ et BiVO₄ d'autre part.

L'existence du composé BiVO₄ a été largement confirmée et ne fait l'objet d'aucun doute. BiVO₄ est le siège d'une transition ferroélastique-paraélastique à 528K. Les groupes spatiaux des formes ferro et paraélastiques sont respectivement I2/b et I4₁/a. La forme haute température est de structure scheelite ; la forme ferroélastique est obtenue par déformation du polyèdre oxygéné du bismuth consécutive à l'effet de la paire non liante 6s² du bismuth (12) (figure 16).

Figure 16. Structure de BiVO₄ à 25°C

Par contre, les études récentes prouvent l'inexistence du pyrovanadate $Bi_4(V_2O_7)_3$ et du métavanadate $Bi(VO_3)_3$ (48, 49).

Nous avons vu au chapitre I qu'un nouveau composé $Bi_4V_2O_{11}$, intéressant pour ses propriétés de conductivité anionique, avait été isolé et étudié au laboratoire. Lors d'une étude du système $Bi_2O_3-V_2O_5$ dans le domaine 14 - 100% mole V_2O_5 , Blinovskov et Fotiev (48) confirment l'existence de ce composé. Ils annoncent la synthèse de deux autres oxydes mixtes :

 $Bi_8V_2O_{17}$ (4 : 1) à fusion incongruente à 920°C et $Bi_{12}V_2O_{23}$ (6 : 1) à fusion congruente à 940°C qui remplacerait le composé $Bi_{14}V_2O_{26}$ (7 : 1) signalé précédemment (47).

Ces résultats les conduisent à proposer le diagramme de la figure 17.

1) $Bi_{12}V_{2}O_{23}$, 2) $Bi_{8}V_{2}O_{17}$, 3) $Bi_{4}V_{2}O_{11}$, 4) $BiVO_{4}$. I) $Bi_{12}V_{2}O_{23} + Bi_{8}V_{2}O_{17}$; II) $Bi_{12}V_{2}O_{23} + L$; III) $Bi_{8}V_{2}O_{17} + \alpha - Bi_{4}V_{2}O_{11}$; IV) $Bi_{8}V_{2}O_{17} + \beta - Bi_{4}V_{2}O_{11}$; V) $Bi_{8}V_{2}O_{17} + \delta - Bi_{4}V_{2}O_{11}$; VI) $Bi_{8}V_{2}O_{17} + L$; VII) $\alpha - Bi_{4}V_{2}O_{11} + \alpha - BiVO_{4}$; VIII) $\alpha - Bi_{4}V_{2}O_{11} + \beta - BiVO_{4}$; IX) $\beta - Bi_{4}V_{2}O_{11} + \beta - BiVO_{4}$; X) $\delta - Bi_{4}V_{2}O_{11} + \beta - BiVO_{4}$; XI) $\delta - Bi_{4}V_{2}O_{11} + L$; XII) $\beta - BiVO_{4} + L$; XIII) $\alpha - BiVO_{4} + V_{2}O_{5}$; XIV) $\alpha - BiVO_{4}$ $+ V_{2}O_{5}$; XV) $\beta - BiVO_{4} + L$; XVI) $V_{2}O_{5} + L$.

Figure 17. Le diagramme Bi₂O₃-V₂O₅ d'après (48)

Ces résultats ont été partiellement remis en cause par Touboul et Vachon (49) qui proposent le diagramme reporté figure 18.

Figure 18. Le diagramme Bi₂O₃-V₂O₅ d'après (49)

Ces auteurs nient totalement l'existence du composé Bi $_4V_2O_{11}$ au profit d'une phase Bi $_7V_3O_{18}$ (7:3) qu'ils formulent Bi $[Bi_{0,17}V_{0,5}D_{0,33}]O_3$ par analogie avec la phase de structure perovskite Gd[Fe]O₃ !

Outre les études réalisées au laboratoire sur $Bi_4V_2O_{11}$ et ses phases substituées, ce composé a été récemment étudié par de nombreux auteurs par des techniques diverses (50, 51, 52, 53) et sa formule ne fait l'objet d'aucune controverse.

Les mailles des composés $Bi_6V_4O_{19\alpha}$, $Bi_7V_3O_{18}$ et $Bi_{14}V_4O_{31}$ (mis en évidence également par Panchenko et coll. (54)) sont données par Touboul et Vachon (49):

Bi₆V₄O₁₉ α : orthorhombique, Amm2, a = 34,3(2) ; b = 5,77(5) ; c = 15,79(9)Å

Bi7V₃O₁₈ : monoclinique, C2, Cm, C2/m, a = 5,529(5) ; b = 5,612 ; c = 8,12(1)Å; B = 109,87(9)°

 $Bi_{14}V_4O_{31}$, monoclinique, C2, Cm, C2/m, a = 19,72 ; b = 11,459 ; c = 80,16Å ; B = 90,5° d'après (54).

Touboul et Vachon indexent le spectre de poudre avec c = 10,02Å.

Enfin, ces derniers auteurs donnent les paramètres de maille d'un composé Bi₃VO₇ (monoclinique, a = 6,82; b = 3,9; c = 6,9Å; $B = 108^{\circ}$) en signalant que le spectre de poudre ne peut être indexé et que ce composé n'appartient pas au diagramme d'équilibre !

Avant d'aborder le domaine riche en Bi₂O₃, il nous semble utile de rappeler brièvement les différentes variétés polymorphiques de Bi₂O₃. A température inférieure à 730°C, Bi₂O₃ est monoclinique (α -Bi₂O₃); au dessus de 730°C, Bi₂O₃ est cubique faces centrées du type fluorine déficitaire en anions Bi₂O₃ $\square(\delta$ -Bi₂O₃). Cette phase déficitaire est conductrice par ions O²⁻(55), malheureusement elle se transforme en variété stable α lors du refroidissement. La phase δ peut être stabilisée à basse température par addition à Bi₂O₃, d'oxydes de cations tri, penta ou hexavalants (Y, Ga, Nb, Ta, W) (56, 57, 19, par exemple). Par addition d'oxydes alcalino-terreux, par exemple, une phase de structure rhomboédrique (a = 3,97Å, c = 28,4Å), conductrice par ions O²⁻, est isolée (58, 62).

Par trempe de la variété δ , une forme métastable de Bi₂O₃ notée B peut être obtenue à partir de Bi₂O₃ pur ou de Bi₂O₃ contenant de faibles quantités d'impuretés (16). Cette phase est quadratique, il s'agit en fait d'une surstructure bidimensionnelle de la forme δ cfc (63).

Enfin par refroidissement lent de la variété δ , une quatrième variété $\check{\delta}$ serait parfois préparée. Cette variété est isotype des phases de type sillenite Bi₂₄M₂O₄₀ où M = Si, Al ou Fe (64) ; la maille est cubique centrée de paramètre proche de a = 10,2Å ; le cation M est localisé dans un site tétraédrique.

Il est possible d'obtenir dans des conditions de composition bien précises une famille de composés isotypes en remplaçant le cation M^{4+} par des couples d'ions M^{n+} $(n \le 3)$ et M^{m+} $(m \ge 5)$ selon la formule générale :

Bi₂₄[$M_{\alpha}^{n+}M_{\beta}^{m+}$]₂O₄₀ $\alpha + \beta = 1$ $n\alpha + m\beta = 4$

Lorsque le seul cation M^{n+} est présent, une partie de bismuth trivalent de départ s'oxyde à l'état pentavalent (65,66), Bi⁵⁺ ainsi formé occupe tous les sites

tétraédriques comme dans les phases $Bi_{24}[Zn_{2/3}+^2Bi_{4/3}+^5]O_{40}$ et $Bi_{24}[Fe^{+3}Bi^{+5}]O_{40}$ (67).

Lorsque le seul cation M^{m+} est présent, la neutralité électrique implique que l'occupation des sites tétraédriques ne soit que partielle, il en résulte des lacunes cationiques dans les phases Bi₂₄[$M_{1,6}^{5+}\Box_{0,4}$]O₄₀ avec M=P,As,V (68).

Le cas de & Bi₂O₃ est assez complexe, cette phase a souvent été présentée comme une variété allotropique de Bi₂O₃ de structure sillenite. Il a été suggéré que dans cette variété, des lacunes anioniques sont distribuées sur l'ensemble des positions oxygénées, cette phase se formulerait Bi₂₄Bi₂³⁺O₃₉□₁(69) ; la synthèse hydrothermale d'une phase & de composition Bi₂₄Bi₂³⁺O₃₈F₂ (70) serait en faveur de cette hypothèse. En fait, Bi₂O₃ & serait plutôt un oxyde mixte comportant les deux degrés (III) et (V) du bismuth formulé Bi₂O_{3,125} (71). Toutefois, l'existence de cette variété n'est possible qu'en présence de très faibles quantités de cations étrangers qui induisent l'oxydation du bismuth trivalent en bismuth pentavalent. Craig et Stephenson (67) par analogie avec les phases Bi₂₄[Zn_{2/3}+²Bi_{4/3}+⁵]O₄₀ et Bi₂₄[Fe+³Bi+⁵]O₄₀ proposent une formule du type Bi₂₄Bi³⁺Bi⁵⁺O₄₀.

Revenons au système Bi₂O₃-V₂O₅. Sekiya et Coll. obtiennent par trempe rapide des films de formule $(Bi_2O_3)_{1-x}(V_2O_5)_x$ (16) ; pour x<0,05, le matériau est quadratique du type β -Bi₂O₃ ; pour 0,05 \le x \le 0,1, il est cubique du type δ -Bi₂O₃. Une phase sillenite est préparée par Kargin et coll. (72) pour x=0,1, elle correspond à la formule Bi₂5VO₄₀ qu'il conviendrait d'écrire Bi₂₄[Bi³⁺V⁵⁺]O₄₀.

Zhou a réalisé une étude complète du système Bi_2O_3 - V_2O_5 pour des rapports Bi_2O_3 : $V_2O_5 \ge 2$ (73,74) par diffraction X sur poudre, microdiffraction électronique et microscopie électronique haute résolution. Les conclusions suivantes peuvent être formulées suivant les rapports Bi_2O_3 : V_2O_5 :

- de 60:1 à 12:1, solution solide de type & -Bi₂O₃ sillenite plutôt qu'un composé Bi₂₅VO₄₀. Si l'on reprend la formule des phases sillenites Bi₂₄[$M_{\alpha}^{n+}M_{B}^{m+}$]O₄₀ il est possible d'introduire au maximum un V⁵⁺ par maille dans les sites tétraédriques pour aboutir à la formule limite Bi₂₅VO₄₀, soit Bi₂O₃:V₂O₅=25:1 ; pour les rapports inférieurs, xBi sont oxydés au degré +5 et occupent les sites tétraédriques, d'où la formule $Bi_{25+x}V_{1-x}O_{40} = Bi_{24}[Bi^{3+}Bi_x^{5+}V_{1-x}^{5+}]O_{40}$ ou alors le bismuth n'est pas oxydé et il existe des lacunes anioniques.

Pour les rapports supérieurs à 25:1, il existe plus d'un V^{5+} par maille, Zhou imagine dans ce cas une formule $Bi_{25-x}V_{1+x}O_{40}$ où xV^{5+} sont réduits à l'état de xV^{3+} , la composition limite serait donc $Bi_{24}V_2O_{40}$ qui correspond au rapport $Bi_{2}O_3: V_2O_5 = 12:1$.

Par diffraction neutronique d'une phase $Bi_2O_3 : V_2O_5 = 255:1$ de type sillenite, Soubeyroux et Coll concluent à la formulation $Bi_{12}[Bi^{5+}0.75V^{5+}0.05 \square 0.20]O_{20}$ (75).

- de 12:1 à 9:1, mélange des deux phases 12:1 et 9:1

- pour 9:1, phase du type δ -Bi₂O₃ fluorine. La maille est en réalité une surstructure 3x3x3 de la maille fluorine.

La structure reste cubique faces centrées et est appelée type I par Zhou.

- de 9:1 à 6:1, la phase type I évolue progressivement vers le type II par une succession de composés.

- de 6:1 à 3,5:1, une suite de composés différents est obtenue. Pour une même composition, plusieurs structures sont même parfois observées par microscopie haute résolution. Les mailles sont tricliniques, ce sont toujours des surstructures de la maille fluorine, elles sont appelées type II.

- au delà, apparaît le composé 2:1 $Bi_4V_2O_{11}$.

De la composition 9:1 à la composition 7:2, la diffraction et la microscopie électronique indiquent donc la succession de composés définis tous bâtis sur le même type structural : la structure fluorine. Par diffraction X sur poudre, Zhou observe une "solution solide" de 9:1 jusque 2:1 : cubique type fluorine pour 9:1, elle évolue progressivement vers une structure triclinique atteinte en 6:1 ; après 6:1 la structure triclinique persiste.

Nous rejoindrons la conclusion de Zhou : dans le cas du système $Bi_2O_3-V_2O_5$, une distinction nette entre une solution solide définie de façon traditionnelle et une suite de composés définis ne peut être faite.

37

Un résultat analogue avait été obtenu pour les systèmes Bi_2O_3 -Nb₂O₅ et Bi_2O_3 -Ta₂O₅ (76,77).

Enfin signalons qu'une étude, parue durant la rédaction de ce mémoire, réalisée par spectroscopie Raman et 51 V-RMN indique que, dans les phases BiVO₄, Bi₄V₂O₁₁, type II triclinique, type I cubique et &-Bi₂O₃ dopé par V⁵⁺, le vanadium est toujours présent en coordination 4 (78).

II.3. LE DIAGRAMME BINAIRE V2O5-CuO

Le diagramme V₂O₅-CuO a été établi par P. Fleury (79) il comporte quatre composés définis (figure 19).

Figure 19. Le diagramme V₂O₅-CuO d'après (79)

- CuV₂O₆ : présente deux variétés cristallines α et β , la transition réversible $\alpha \longrightarrow \beta$ a lieu à 628 ± 5°C (80).

La variété basse température α est triclinique (C1, a = 9,168(5); b = 3,543(3); c = 6,478(7) Å; α = 92,25(8); β = 110,34(7); δ = 91,88°(6) (78), alors que la forme haute température β est monoclinique. (C2, a = 9,18(1); b = 3,58(3); c = 6,48(1) Å; β = 110,4°) (79), les deux structures sont très proches, elles peuvent être décrites à partir de l'enchaînement de pyramides à bases carrées VO5 associées par des arêtes pour constituer des chaînes (V₂O₆)²ⁿ⁻; ces chaînes sont ensuite reliées entre elles par les atomes de cuivre qui se trouvent au centre d'un octaèdre applati (82).

- Cu₂V₂O₇ : Ce pyrovanadate présente deux variétés allotropiques l'une α de basse température, l'autre B de haute température, la transition $\alpha \longrightarrow \beta$ a lieu à 710°C.

La variété α est orthorhombique (Fdd2, a = 20,68(1); b = 8,411(5); c = 6,448(5) Å; Z = 8) (83); la variété B est monoclinique (C2/c, a = 7,685(5); b = 8,007(3); c = 10,09(2) Å; $B = 110,27(5)^{\circ}$; Z = 4 (84). Les deux structures sont du type thortveitite; les ions pyrovanadates [V₂O₇]⁴⁻ sont reliés par les ions Cu²⁺ qui sont un environnement bipyramide à base triangulaire.

- Cu₃V₂O₈ : cet orthovanadate Cu₃(VO₄)₂ est de symétrie triclinique(P1, a = 5,196(4) ; b = 5,355(1) ; c = 6,505(4) Å ; α = 69,22(3) ; B = 88,69(4) ; δ = 68,08(3)°; Z = 1), la structure est constituée de tétraèdres VO₄, de plans carrés Cu(1)O₄ et de bipyramides à base triangulaire Cu(2)O₅ reliés les uns aux autres (85).

Une seconde variété allotropique est obtenue par synthèse sous pression (30kbar) à 900°C. La maille est monoclinique (P2₁/c, a = 6,2493(9); b = 7,9936(9); c = 6,3776(10) Å; $B = 111,49(1)^\circ$); dans cette variété, les octaèdres CuO₆ sont reliés par des arêtes pour former des chaînes se développant le long de l'axe a, les chaînes sont reliées entre elles par des tétraèdres VO₄(87).

- Cu₅V₂O₁₀ : ce composé cristallise dans une maille monoclinique (P2₁/c, a = 8,393(2); b = 6,0652(8); c = 16,156(3)Å; β = 108,09(2)°; Z = 4). La structure est constituée d'un enchaînement tridimensionnel d'octaèdres CuO₆, de bipyramides à base triangulaire CuO5 et de tétraèdres VO4 (87).

II. 4. LE DIAGRAMME TERNAIRE Bi2O3-V2O5-CuO

L'étude partielle de ce diagramme a été entreprise en considérant, en ce qui concerne le binaire Bi₂O₃-V₂O₅, les résultats de Blinovskov et Fotiev publiés en 1987. Nous supposerons donc l'existence des composés Bi₁₂V₂O₂₃ noté par la suite BV 6:1, Bi₈V₂O₁₇ noté BV 4:1; Bi₄V₂O₁₁ et BiVO₄.

Nos résultats s'interprètent très bien dans cette hypothèse.

Avant d'aborder la description du diagramme ternaire, il faut signaler l'existence d'un oxyde de bismuth, de cuivre et de vanadium formulé Bi_2VCuO_6 . Il s'agit d'un minéral rare issu d'une veine de quartz découverte en 1969 dans le désert de Namibie. La composition de cette phase, appelée namibite, a été déterminée par analyse par microsonde électronique. Des études par diffraction X par la méthode de précession ont permis de conclure à une maille monoclinique.

a =
$$11.864(8)$$
Å
b = $3.696(4)$ Å
c = $7.491(5)$ Å
B = $109^{\circ}42(6)$
V = 309 Å³

Les groupes spatiaux possibles sont C2, Cm ou C2/m(88).

Il faut remarquer que les auteurs n'ont pu indexer l'ensemble du spectre de poudre à l'aide de cette maille. La masse volumique mesurée ($\ell = 6.86(3)$ gcm⁻³) conduit à la présence de 2 unités formulaires Bi₂VCuO₆ par maille. Le nombre d'atomes d'oxygène par unité formulaire a été calculé en supposant les degrés d'oxydation +3, +5 et +1 pour le bismuth, le vanadium et le cuivre respectivement.

Nous reviendrons à la fin de ce chapitre sur les caractéristiques cristallographiques de la namibite.

L'étude du ternaire Bi₂O₃-CuO-V₂O₅ a été réalisé par l'exploration des lignes :

Bi₄V₂O₁₁-Bi₂CuO₄ (ou Bi₂VO_{5.5}-Bi₂CuO₄) Bi₂CuO₄-BiVO₄ Bi₂CuO₄-V₂O₅ Bi₂CuO₄-BV 6:1 BV 6:1-CuO BV 4:1-CuO Bi₄V₂O₁₁-CuO

II. 4. 1. Protocole expérimental

Les échantillons sont préparés par réaction à l'état solide entre les produits commerciaux Bi₂O₃ (Johnson Matthey), V₂O₅ (Johnson Matthey), CuO (Merck), Bi₂O₃ est préalablement porté à 600°C pendant quelques heures dans le but de le décarbonater. Les réactifs en proportions convenables sont broyés ensemble en mortier d'agate puis portés à 600°C pendant douze heures. Le mélange ainsi obtenu est ensuite rebroyé, afin d'obtenir une meilleure homogénéisation, et porté à 790°C pendant 12h. Il semble préférable d'utiliser la température de 790°C car à 800°C beaucoup d'échantillons sont fondus ou près de la fusion. Les échantillons sont tous trempés à l'air. Après chaque réaction un cliché de diffraction X est réalisé à l'aide d'une chambre à focalisation du type Guinier. Le rayonnement utilisé est issu d'une anticathode de cuivre, il est rendu monochromatique par diffraction şur un cristal de quartz ($r l CuK\overline{\alpha} =$ 1,5418 Å). Toutes les réactions sont effectuées à l'air en nacelles d'or.

II.4.2. La ligne Bi₄V₂O₁₁ - Bi₂CuO₄

Pour l'étude de cette ligne, les compositions réalisées correspondent à des mélanges xBi_2CuO_4 -(1-x) $Bi_2VO_{5.5}$; la formulation utilisée permet de mettre en évidence le rapport constant Bi : (V+Cu) = 2 ; les synthèses sont effectuées selon la stoechiométrie :

 $Bi_2O_3 + (1-x/2)V_2O_5 + x CuO \longrightarrow Bi_2V_{1-x}Cu_xO_{5,5-1,5x}$

Une trentaine de compositions différentes ont été étudiées dans ce pseudobinaire; les résultats obtenus sont rapportés dans le tableau IV.

.

N° de l'échantillon	х	Phases observées		
1	0,0625	solution solide orthorhombique		
		type α -Bi ₄ V ₂ O ₁₁		
2	0,125	solution solide quadratique		
		type δ -Bi ₄ V ₂ O ₁₁		
3	0,1875	solution solide quadratique +		
		Phase inconnue X		
4	0,2	idem		
5	0,25	idem		
6	0,26	idem		
7	0,27	solution solide quadratique +		
		phase inconnue X + BV 4:1		
8	0,28	idem		
9	0,29	idem		
10	0,30	idem		
11	0,3125	idem		
12	0,375	BV 4:1 + phase inconnue X		
13	0,4	BV 4:1 + ϵ phase inconnue X		
14	0,4375	BV 4:1 + ϵ phase X + ϵ CuO		
15	0,45	BV 4:1 + CuO		
16	0,46	BV 4:1 + CuO		
17	1,48	BV 4:1 + CuO		
18	0,50	BV 4:1 + CuO + ϵ BV 6:1		
19	0,52	$BV 4:1 + CuO + \epsilon BV 6:1$		
20	0,54	idem		
21	0,55	BV 4:1 + BV 6:1 + CuO		
22	0,5625	idem		
23	0,6	BV 6:1 + CuO		
24	0,625	BV 6:1 + CuO		
25	0,6875	BV 6:1 + CuO + ? très faible		
26	0,75	$BV 6:1 + Bi_2CuO_4 + CuO$		
27	0,8125	ϵ BV 6:1 + Bi ₂ CuO ₄ + ϵ CuO		
28	0,875	$Bi_2CuO_4 + \epsilon \epsilon BV 6:1 + \epsilon \epsilon CuO$		
29	0,9375	idem		

Tableau IV. Etude du pseudo binaire xBi₂CuO₄-(1-x)Bi₂VO_{5.5}

٠

۰.

Différentes remarques peuvent être formulées (figure 20) :

1. les résultats des deux premiers mélanges (x = 0,0625 et x = 0,125) sont en conformité avec l'existence de la solution solide du type $Bi_4V_2O_{11}$ étudiée au chapitre I.

2. les résultats sont en faveur de la présence de différents domaines triphasés
I : BV 4:1 - solution solide Bi₄V₂O₁₁ - Phase X
II : BV 4:1 - phase X - CuO
III : BV 4:1 - CuO - BV 6:1
IV : BV 6:1 - CuO - Bi₂CuO₄

3. les mélanges $0,1875 \le x \le 0,26$ doivent également être triphasés, la quantité de BV 4:1 étant trop faible pour que sa présence soit décelée sur le spectre de diffraction X ; dans le cas contraire, il faudrait admettre que la phase X appartient à la ligne en cours d'investigation, ce qui ne semble pas être le cas puisqu'elle n'est jamais obtenue pure ;

4. par contre, il semble que cette phase inconnue soit proche de la ligne BV 4:1 - $Bi_2Cu_{0,375}V_{0,625}O_{4,9375}$

Figure 20. Etude du pseudo-binaire Bi_2CuO_4 - $Bi_4V_2O_{11}$

Nous avons dans un premier temps vérifié la présence des domaines ternaires A et E en étudiant les lignes BV 6:1-Bi₂CuO₄, BV 6:1-CuO et BV 4:1-CuO.

II. 4. 3. Les pseudo-binaires BV 6:1-Bi2CuO4, BV 6:1-CuO et BV 4:1-CuO

Sur chacune de ces lignes, neuf mélanges des oxydes de départ correspondant aux stoechiométries suivantes ont été étudiés.

$$(6-5x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{Bi}_{2}\operatorname{CuO}_{4} + (1-x) \operatorname{Bi}_{12}\operatorname{V}_{2}\operatorname{O}_{23} \\ \operatorname{Bi}_{12-10x}\operatorname{V}_{2-2x}\operatorname{Cu}_{x}\operatorname{O}_{23-19x} \\ (6-6x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} + (1-x) \operatorname{Bi}_{12}\operatorname{V}_{2}\operatorname{O}_{23} \\ \operatorname{Bi}_{12-12x}\operatorname{V}_{2-2x}\operatorname{Cu}_{x}\operatorname{O}_{23-22x} \\ (4-4x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} + (1-x) \operatorname{Bi}_{8}\operatorname{V}_{2}\operatorname{O}_{17} \\ (4-4x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} + (1-x) \operatorname{Bi}_{8}\operatorname{V}_{2}\operatorname{O}_{17} \\ (4-4x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} + (1-x) \operatorname{Bi}_{8}\operatorname{V}_{2}\operatorname{O}_{17} \\ (4-4x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} + (1-x) \operatorname{Bi}_{8}\operatorname{V}_{2}\operatorname{O}_{17} \\ (4-4x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} + (1-x) \operatorname{Bi}_{8}\operatorname{V}_{2}\operatorname{O}_{17} \\ (4-4x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} + (1-x) \operatorname{Bi}_{8}\operatorname{V}_{2}\operatorname{O}_{17} \\ (4-4x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} + (1-x) \operatorname{Bi}_{8}\operatorname{V}_{2}\operatorname{O}_{17} \\ (4-4x) \operatorname{Bi}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} \times x \operatorname{CuO} + (1-x) \operatorname{Si}_{8}\operatorname{V}_{2}\operatorname{O}_{17} \\ (4-4x) \operatorname{Si}_{2}\operatorname{O}_{3} + (1-x) \operatorname{V}_{2}\operatorname{O}_{5} + x \operatorname{CuO} \longrightarrow x \operatorname{CuO} \times x \operatorname{Cu$$

Dans chaque cas les produits obtenus sont biphasés. Ce sont des mélanges des composés des extrémités de la ligne ; l'existence des triangles A et E est donc confirmée sans ambiguïté.

Bi_{8-8x}V_{2-2x}Cu_xO_{17-16x}

II. 4. 4. Le pseudo-binaire Bi₂CuO₄-BiVO₄

Les mélanges sont réalisés selon la stoechiométrie :

 $Bi_{2}O_{3} + (1-y)CuO + yV_{2}O_{5} \longrightarrow (1-y)Bi_{2}CuO_{4} + 2yBiVO_{4}$ $\longrightarrow Bi_{2}Cu_{1-y}V_{2y}O_{4}(1+y)$

Les résultats sont rassemblés dans le tableau V

Mélange figure (21)	Composition	Phases Présentes
1'	y = 0,125	$Bi_2CuO_4 + BV 6:1 + CuO$
2'	y = 0,25	BV 4:1 + CuO
3'	y = 0,375	BV 4:1 + phase inconnue X
4'	y = 0,5	Phase inconnue X + solution solide
		quadratique δ - Bi ₄ V ₂ O ₁₁
5'	y = 0,625	phase inconnue X + solution solide
		quadratique $\&Bi_4V_2O_{11} + BiVO_4$
6'	y = 0,667	idem
7'	y = 0,75	idem
8'	y = 0,875	BiVO ₄ + ϵ phase X + ϵ solution solide
		8 Bi ₄ V ₂ O ₁₁

Tableau V. Composition des mélanges $Bi_2Cu_{1-y}V_{2y}O_{4(1+y)}$

La phase inconnue X appartiendrait donc à la ligne BV 4:1 - mélange 3'.

Figure.21. Etude des pseudo-binaires Bi₂CuO₄-BiVO₄ et Bi₂CuO₄-V₂O₅

II. 4. 5. Le pseudo-binaire Bi₂CuO₄-V₂O₅

Différents mélanges correspondant aux stoechiométries :

(1-z) Bi₂O₃ + (1-z) CuO + z V₂O₅, soit

(1-z) Bi₂CuO₄ + z V₂O₅ ont été réalisés - Les résultats sont rassemblés dans le tableau VI.

٠.

Mélange	Z	Phases présentes
1"	0,1	$Bi_2CuO_4 + BV 6:1 + \epsilon CuO$
2"	0,2	BV 4:1 + CuO
3"	0,3	BV 4:1 + phase inconnue X
4"	0,4	BiVO ₄ + phase inconnue X
5"	0,5	BiVO ₄ + ?
6"	0,6	$BiVO_4 + ?$
7"	0,7	BiVO ₄ + ?
8"	0,8	$BiVO_4 + V_2O_5$
9"	0,9	$BiVO_4 + V_2O_5$

Tableau VI. Les phases du pseudo-binaire Bi₂CuO₄-V₂O₅

A partir de z = 0,5, les mélanges portés à 790°C sont fondus, les résultats rapportés résultent dans ce cas d'un chauffage à 600°C.

Les points représentatifs de BV 4:1, du mélange 12 de la ligne Bi₂CuO₄-Bi₄V₂O₁₁, du mélange 3' de la ligne Bi₂CuO₄-BiVO₄ et du mélange 3'' de la ligne Bi₂CuO₄-V₂O₅ sont pratiquement alignés. Les trois mélanges 12, 3' et 3'' sont biphasés; ils sont constitués de BV 4:1 et de la phase X. Cette dernière appartient donc à la ligne BV 4:1, mélange 12, mélange 3', mélange 3''.

D'autre part, l'étude du pseudo-binaire Bi_2CuO_4 - V_2O_5 montre qu'elle est proche de la ligne BiVO₄ mélange 4".

Le point figuratif de la phase inconnue X est donc proche de l'intersection de ces deux lignes.

Cette intersection se trouve sur la ligne $Bi_4V_2O_{11}$ -CuO. La composition de la phase X déduite du ternaire Bi_2O_3 - V_2O_5 -CuO est proche de 33,33 Bi_2O_3 -50CuO-16,67 V_2O_5

soit Bi₂O₃-1,5CuO-0,5 V₂O₅ ou encore Bi₄Cu₃V₂O₁₄.

Nous avons vérifié ce résultat par l'étude du pseudo-binaire Bi₄V₂O₁₁-CuO

II. 4. 6. Le pseudo-binaire Bi₄V₂O₁₁-CuO

Différents mélanges de composition (1-x) $Bi_2VO_{5,5}$ - 2xCuO ont été étudiés ; les résultats obtenus (Tableau VII) permettent de confirmer l'appartenance de la phase inconnue X à cette ligne de diagramme ternaire ; cependant la présence d'oxyde de cuivre en faible quantité n'est pas facilement décelable sur les clichés de diffraction X et la composition exacte de cette phase ne peut être confirmée par cette étude.

L'obtention de monocristaux et leur étude permettra dans le chapitre suivant d'atteindre sans ambiguïté la composition de cet oxyde ternaire.

Mélange	x	Phases décelées		
1	0,1	solution solide quadratique + phase X		
2	0,2	Idem		
3	0,3	Idem		
4	0,4	phase X + $\epsilon \epsilon$ solution solide quadratique		
5	0,5	phase X		
6	0,6	phase X + $\epsilon \epsilon$ CuO		
7	0,7	phase X + CuO		
8	0,8	Idem		
9	0,9	Idem		

Tableau VII. Les phases de la ligne Bi₄V₂O₁₁-CuO

۰.

II. 4. 7. Domaine de solution solide du type $Bi_4V_2O_{11}$

Une étude antérieure réalisée au laboratoire a montré que, dans le binaire Bi_2O_3 -V₂O₅, une solution solide dérivée de $Bi_4V_2O_{11}$ mais déficitaire en vanadium existe pour une composition :

$$Bi_4V_{2x}O_{6+5x}$$
 avec $0,86 \le x \le 1$ (26)

Nous avons vu dans le chapitre I que dans $Bi_4V_2O_{11}$ le vanadium peut être partiellement substitué par le cuivre. Il paraît évident qu'une telle substitution doit pouvoir être réalisée dans la solution solide $Bi_4V_{2x}O_{6+5x}$; nous avons donc cherché à délimiter le domaine de la solution solide du type $Bi_4V_2O_{11}$ dans le ternaire Bi_2O_3 - V_2O_5 -CuO.

Différents mélanges proches de la composition $Bi_4V_2O_{11}$ ont donc été réalisés et chauffés à 790°C dans les conditions habituelles.

Les mélanges représentés par une croix sur le diagramme de la figure 22. conduisent à une phase pure du type $Bi_4V_2O_{11}$. Ces résultats permettent de proposer les limites du domaine de solution solide.

II. 4. 8. Discussion et conclusion

Cette étude permet de proposer l'isotherme 790°C du système Bi₂O₃-V₂O₅-CuO présentée sur la figure 23.

Dans la partie du diagramme ternaire étudiée, un seul composé défini a pu être mis en évidence ; sa composition est proche de $Bi_4Cu_3V_2O_{14}$.

Les phases observées dans chacun des domaines sont récapitulées dans le tableau VIII.

Domaines	Phases présentes
А	BV 6:1 + BV 4:1 + CuO
В	BV 4:1 + Bi ₄ V ₂ Cu ₃ O ₁₄ + solution solide du type Bi ₄ V ₂ O ₁₁
С	$BV 4:1 + Bi_4V_2Cu_3O_{14} + CuO$
D	solution solide du type Bi ₄ V ₂ O ₁₁ + Bi ₄ V ₂ Cu ₃ O ₁₄ + BiVO ₄
Е	$BV 6:1 + Bi_2CuO_4 + CuO$
F	Bi ₂ CuO ₄ + solution solide du type sillenite + BV 6:1

Tableau VIII. Phases du système Bi2O3-V2O5-CuO

D'autre part, il existe autour de $Bi_4V_2O_{11}$ un domaine de solution solide que nous avons délimité.

Figure 23. le diagramme Bi₂O₃-V₂O₅-CuO

Lorsque l'on se rapproche de la ligne V_2O_5 -CuO, les températures de fusion deviennent très faibles, de plus des phénomènes d'oxydo-réduction interviennent.

L'étude plus approfondie de cette partie du diagramme n'a pas été envisagée dans le cadre de ce travail.

Il faut remarquer que les raies de diffraction de la phase namibite formulée Bi₂VCuO₆ n'ont jamais été décelées sur les spectres de toutes les compositions étudiées.

Le point figuratif de cette phase est pourtant à l'intersection des lignes Bi2CuO4-V2O5 et Bi4V2O11-CuO que nous avons particulièrement explorées. La composition de cette phase a été déterminée par analyse par microsonde électronique de monocristaux en ce qui concerne les métaux ; par contre le taux d'oxygène a été fixé arbitrairement en admettant que le cuivre est présent au degré d'oxydation + 1. Si c'est le cas, il est tout à fait normal de ne pas rencontrer cette phase dans notre étude. Nous avons donc réalisé mélange Bi₂O₃-0.5V₂O₅-0.5Cu₂O que nous avons chauffé à différentes un températures en tube d'or scellé sous vide ; il ne nous a pas été permis, dans ces conditions, d'obtenir la phase namibite. Les conditions de synthèse des monocristaux de namibite sont évidemment très particulières et il est impossible de reproduire ces conditions en Laboratoire. Il nous semble que, vu la faible quantité de matériaux recueilli dans le désert de Namibie, seule une étude structurale par diffraction X sur monocristal devrait permettre de confirmer la composition de cet oxyde en bismuth, vanadium et cuivre et de préciser la stoechiométrie en oxygène, ce qui conduirait aux degrés d'oxydation du cuivre et du vanadium.

Un fragment issu de la veine de quartz découverte près de Khorixas (Welwitschie) dans la partie nord-ouest du désert de Namibie nous a été fourni par O.V. Knorring. Il s'agit essentiellement de Carbonate de Bismuth (beyerite) jaune, de calcite et de malachite dans lesquels sont insérés de petits cristaux noirs de namibite. Nous avons pu fractionner cette masse et isoler un petit nombre de cristaux de formes très complexes.

II. 5. ETUDE CRISTALLOGRAPHIQUE DE LA NAMIBITE.

Plusieurs monocristaux ont été testés au diffractomètre automatique Philips PW 1100. La recherche de 25 réflexions conduit à une maille monoclinique qui correspond à celle annoncée par Knorring et Sahama.

a = 11,864 (8) Å
b = 3,696 (4) Å
c = 7,491 (5) Å
$$\beta$$
 = 109°42' (6)

Le réseau de Bravais est effectivement C.

II. 5. 1. Détermination de la structure dans la maille moyenne

Nous avons enregistré les intensités diffractées à l'aide du diffractomètre automatique NONIUS CAD4. L'exploration d'une demi-sphère limitée par $2 < \Theta < 35^{\circ}$ (-19 $\leq h \leq 19$, -5 $\leq k \leq 5$, 0 $\leq l \leq 12$) permet de collecter 1411 intensités dont 1376 ont une intensité supérieure à trois fois l'écart type et sont considérées comme significatives. Ces intensités sont corrigées du facteur de Lorentz-polarisation.

La moyenne des réflexions équivalentes (hkl et hkl) conduit à 746 réflexions indépendantes. Il faut remarquer que le facteur de reliabilité interne $(\Sigma(\text{Iobs-I moyenne})/\Sigma \text{Iobs})$ est mauvais puisqu'il vaut 18,73 %.

Le bismuth et le cuivre étant des éléments fortement absorbants, ce mauvais résultat peut être attribué aux effets de l'absorption. Le coefficient d'absorption du matériau est calculé à l'aide de la formule

 $\mu = P\Sigma (\mu/P)APA$

où e est la masse volumique du matériau

 $(\mu/\rho)_A$ le coefficient d'absorption massique de l'élément A

C_A le taux massique de l'élément A

Les données relatives au calcul dans le cas de Bi₂VCuO₆ sont rassemblées dans le

tableau IX.

	μ/ρg ⁻¹ cm ²	Ра
Bi	120	0,6651
v	27,5	0,0811
Cu	50,9	0,1011
0	1,31	0,1527

Tableau IX. Données relatives au calcul du coefficient d'absorption de la namibite

La masse volumique calculée pour Z = 2 vaut 6,76gcm⁻³.

Le coefficient d'absorption linéaire est alors égal à 591cm⁻¹.

Malgré de nombreuses tentatives, il ne nous a pas été possible d'effectuer de corrections d'absorption rigoureuses permettant une amélioration sensible du facteur Rint. Cet échec peut avoir deux causes différentes :

- les plans délimitants le monocristal ne sont pas définis correctement,

- la symétrie réelle n'est pas 2/m

Dans une première étape, nous avons abordé la détermination structurale sans tenir compte des effets de l'absorption.

La fonction de Patterson révèle, outre les maxima dus aux translations du réseau, des maxima de coordonnées 0,51 0 0,42 et 0,76 0 0,21 d'intensités respectives 10/7. Le premier est attribué à un vecteur interatomique Bi-Bi, le bismuth occupant une position 4i du groupe spatial C2/m (tableau X) avec $x \approx 0,76$; $z \approx 0,21$; nous verrons par la suite que le second représente un vecteur interatomique Cu-Bi.

Monoclinic	2/m		C 1 2/m 1	No. 12	C2/m C_{2h}^3
	-© O- +0 O+	- <u></u> + <u></u> - <u></u> + <u></u>			-
	-⊙ <u>O-</u> +⊙ O+	- <u>··</u> + <u>·</u>			-
Number of positic Wyckoff notatio and point symme	ons, n, etry	Origin at cen Co-ordinates ((0,0,	tre $(2/m)$; unique axis b of equivalent positions ,0; $\frac{1}{2}, \frac{1}{2}, 0$)+	Condi possib General:	2ND SETTING tions limiting le reflections
8 j	1 <i>x,y,z</i> ;	$x, \overline{y}, z; \overline{x}, y, \overline{z}; \overline{x}, \overline{y}, z$	ž.	hkl: h+k h0l: (h= 0k0: (k=	=2n 2n) 2n)
	•			Special: a	s above, plus
4 i 4 h 4 g	$\begin{array}{ccc} m & x, 0, z; \\ 2 & 0, y, \frac{1}{2}; \\ 2 & 0, y, 0; \end{array}$	x, 0, z. $0, \bar{y}, \frac{1}{2}$. $0, \bar{y}, 0$.		ho extra c	onditions
4 f	Τ <u><u>1</u>,<u>1</u>,<u>1</u>,<u>1</u>;</u>	1,3,1.)	
4 e	ī <u>1</u> ,1,0;	1 , 3 ,0.		$\int hkl: h=2$	n; (k=2n)
2 d	$2/m 0,\frac{1}{2},\frac{1}{2}.$				
2 c	$2/m$ 0,0, $\frac{1}{2}$.			no extra c	onditions
2 b	$2/m$ 0, $\frac{1}{2}$,0.				
2 a	2/ <i>m</i> 0,0,0.			J	
		Symmet	try of special projections		
(001) cmm	; $a' = a, b' = b$	(100)	pmm; b'=b/2, c'=c	(010) p2;	c' = c, a' = a/2

Tableau X. Groupe spatial C2/m

•

...

· ·

L'affinement des coordonnées atomiques du bismuth affecté d'une agitation thermique isotrope converge rapidement (R=0,274; Rw = 0,299). Une synthèse de Fourier différence permet alors de localiser les atomes de cuivre dans le site 2a (0,0,0), leur introduction dans le processus d'affinement permet d'atteindre les valeurs R=0,19et Rw = 0,212. Une nouvelle synthèse de Fourier révèle un maximum de coordonnées .54, .0,.42 ; ce maximum est attribué aux atomes de vanadium qui occuperaient donc statistiquement un site de multiplicité 4. L'introduction de ces atomes de vanadium en site 4i avec un taux d'occupation de 0,5 conduit à $R_1 = 0,157$ et $R_2 = 0,184$.

Une nouvelle synthèse de Fourier différence révèle des maxima correspondant aux atomes d'oxygène occupant deux sites 4i avec x $\approx 0,17$; z $\approx 0,02$ et x $\approx 0,39$; z $\approx 0,32$ respectivement. Leur introduction permet au processus d'affinement de converger (R=0,142; Rw=0,169) mais une remarque s'impose : les facteurs d'agitation thermique isotropes sont inacceptables (B_{Bi}=0,1 ; B_{Cu}=-0,25 ; B_V=-0,25 ; B_{O1} =-0,6 ; B_{O2} =0,4 Å²).

Ce fait peut être dû à l'absence de corrections d'absorption. Nous avons alors réalisé des "corrections" d'absorption en assimilant le cristal à une sphère de rayon 0,0085cm (μ R=5), ces corrections ont le mérite de tenir compte de la variation du facteur de transmission en fonction de sin Θ/A . Les coefficients d'agitation thermique deviennent tout à fait acceptables. Les pics les plus importants sur une nouvelle synthèse de Fourier sont proches des atomes de bismuth et peuvent traduire une vibration thermique anisotrope, l'hypothèse d'une telle agitation améliore l'affinement (R = 0,118; Rw = 0,137) mais permet surtout de localiser sur une synthèse de Fourier des atomes d'oxygène en site 4i (x $\approx 0,52$; z $\approx 0,10$) et 8j (x $\approx 0,11$; y $\approx 0,14$; z $\approx 0,36$). Un calcul de distances interatomiques révèlent des distances oxygène-oxygène entre atomes d'oxygène d'un même site 4i ou d'un même site 8j inacceptables (1,41 et 1,04Å); ces sites sont donc affectés d'un taux d'occupation de 0,5.

L'introduction de ces atomes d'oxygène dans le processus d'affinement conduit aux valeurs finales assemblées dans le tableau XI.

Les facteurs de reliabilité valent R=0,102 et Rw=0,117 (chaque intensité est

affectée d'un poids égal à 1).

Tableau XI. Coo	rdonnées aton	niques et fac	teurs d'agitatio	on thermique	isotrope
(Cu, V, O) ou isc	strope équival	ent			

Atome	Site	Taux d'occup.	X	у	Z	B ou Béq(Å ²)
Bi	4i	1	0,7546(1)	0	0,2108(2)	1,19(3)*
Cu	2a	1	0	0	0	0,74(7)
v	4i	0,5	0,5482(9)	0	0,4236(14)	0,70(13)
O(1)	4i	1	0,169(2)	0	0,014(3)	0,6(3)
O(2)	4i	1	0,394(2)	0	0,319(4)	1,5(4)
O(3)	4i	0,5	0,518(5)	0	0,095(8)	1,6(8)
O(4)	8j	0,5	0,103(4)	0,128(12)	0,355(6)	2,0(6)

Les coefficients d'agitation thermique anisotrope du bismuth valent

 $B_{11} = 0,0035(1)$ $B_{22} = 0,0214(8)$ $B_{33} = 0,0030(2)$

 $B_{12} = 0$ $B_{13} = 0,0011(1)$ $B_{23} = 0$

 $(\beta_{12} = \beta_{23} = 0 \text{ pour les raisons de symétrie})$

Cette étude indique que les atomes de vanadium et les atomes d'oxygène O(3) et O(4) sont répartis statistiquement sur des sites de multiplicité 4, 4 et 8 respectivement avec des taux d'occupation fixés à 0,5 ; tout au moins en utilisant la maille déterminée par Knorring et Sahama. Cette occupation statistique pourrait être remise en cause par l'établissement d'un ordre qui devrait alors se traduire par une modification de la maille voire de la symétrie monoclinique, ce qui aurait l'avantage, il faut bien l'avouer, d'expliquer nos problèmes de corrections d'absorption.

Afin de confirmer une telle éventualité, nous avons entrepris une étude par les méthodes de cristal tournant et de Weissenberg du cristal utilisé pour l'enregistrement des intensités au diffractomètre automatique.

II. 5. 2. Mise en évidence de la maille réelle

Rappellons d'abord que Knorring et Sahama ont déterminé la maille en utilisant un monocristal et la méthode de précession d'une part, et une poudre et un goniomètre Philips d'autre part. L'indexation des réflexions conduit à la maille monoclinique C :

a = 11,864(8) Å b = 3,696(4) Å c = 7,491(5) Å β = 109,70(10)°

Ils signalent que certaines réflexions faibles n'ont pu être indexées à l'aide de cette maille.

Nous avons réalisé un cliché de cristal tournant autour de l'axe c de la maille précédente : la valeur de c est confirmée et aucune strate intermédiaire n'apparaît.

Les reconstructions des sections hk0 et hk1 du réseau réciproque sont représentées sur les figures 24 et 25.

÷

Figure 24. Reconstruction de la section hko du réseau réciproque (10 cm = 1u.r.)

•

•

Deux types de réflexions sont observées

1) les réflexions notées \otimes qui possèdent systématiquement une réflexion symétrique hk0 ou hk1 et qui s'indexent parfaitement à l'aide de la maille trouvée par Knorring et Sahama représentée sur les reconstructions par $\vec{a_k}^*$ et $\vec{b_k}^*$; les indices correspondants sont donnés sans parenthèse.

2) les réflexions notées x dont les réflexions symétriques hko ou hk1 ne sont pas systématiquement présentes et qui ne peuvent s'indexer dans la maille monoclinique précédente.

Ces résultats nous obligent donc à choisir une maille triclinique dont la maille réciproque est représentée par les vecteurs $\vec{a'}^*$, $\vec{b'}^*$ et $\vec{c'}^*$ sur les figures 24 et 25. Les indexations des réflexions dans cette maille sont données entre parenthèses.

La maille réciproque triclinique se déduit de la maille monoclinique définie par Knorring et Sahama par la relation :

$$\begin{vmatrix} \vec{a}^{**} \\ \vec{b}^{**} \\ \vec{c}^{**} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{vmatrix} \qquad \begin{vmatrix} \vec{a}_{k} \\ \frac{a_{k}}{k} \\ \frac{b_{k}}{c_{k}} \\ \frac{c_{k}}{c_{k}} \end{vmatrix}$$

la maille directe par la relation :

$$\begin{vmatrix} \overrightarrow{a'} \\ \overrightarrow{b'} \\ \overrightarrow{c'} \end{vmatrix} = \begin{vmatrix} 1 & \overrightarrow{1} & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} \overrightarrow{a_k} \\ \overrightarrow{b_k} \\ \overrightarrow{c_k} \end{vmatrix}$$

Les paramètres de la maille triclinique valent alors :

$$a' = \sqrt{a_k^2 + b_k^2}$$
$$b' = 2b_k$$
$$c' = c_k$$

$$\alpha' = 90^{\circ}$$

 $\cos \beta' = a_k \cos \beta_k / a'$
 $\cos \delta' = -b_k / a'$
 $\sin i : a' = 12,426 \text{ Å}$
 $b' = 7,392 \text{ Å}$
 $c' = 7,491 \text{ Å}$
 $\alpha' = 90^{\circ}$
 $\beta' = 108,77^{\circ}$
 $\lambda' = 107 30^{\circ}$

Le volume de la maille est multiplié par 2 (Z = 4 unités Bi₂VCuO₆ par maille) Il conviendra évidemment de reprendre l'étude de la structure de la namibite dans la maille réelle triclinique, ce qui n'a pas été possible dans le cadre de cette thèse. Nous allons donc décrire l'environnement des cations à l'aide des résultats obtenus dans la maille monoclinique.

II. 5. 3. Discussion de la structure moyenne

L'étude précédente a montré que le paramètre b de la maille monoclinique devrait être multiplié par 2, ce qui pourrait traduire l'occupation d'un site vanadium sur 2 de façon ordonnée ; ce résultat est confirmé par un calcul des distances interatomiques ; en effet, deux sites de vanadium consécutifs ne peuvent être occupés simultanément, la distance correspondante étant égale à 1,87Å.

Le cuivre est en environnement plan carré ; un atome de cuivre est entouré de deux atomes d'oxygène O(1) à 1,97(2)Å et de deux atomes O(3) à 1,97(2)Å (tableau XII).

Le vanadium est en coordination tétraédrique, les distances V-O sont comprises entre 1,67(5) et 1,82(3)Å ; la moyenne vaut 1,76 Å. Ces valeurs sont en bon accord avec celles généralement calculées dans les ions vanadates. Deux tétraèdres, "l'un occupé et l'autre vide", ont en commun les atomes d'oxygène O(2), le site correspondant est donc

63

totalement occupé ; par contre les atomes d'oxygène O(4) appartiennent à des tétraèdres différents ce qui explique le taux d'occupation du site correspondant de 0,5.

L'environnement des atomes de bismuth va être différent selon que les sites O(3) et O(4) sont vacants ou occupés.

Tableau XII. Principales distances interatomiques en Å dans la namibite

Environnement de Cu Cu-O(1) Cu-O(1)ⁱⁱ Cu-O(1)ⁱⁱ Cu-O(3)^V₁₁₀ Cu-O(3)^V₁₀₀

Environnement de Bi

 $\begin{array}{cccc} \text{Bi-O(1)}_{100}^{\text{ii}} & 2,16(3) \\ \text{Bi-O(1)}_{010}^{\text{V}} & \\ \text{Bi-O(1)}^{\text{v}} & \\ \text{Bi-O(1)}^{\text{v}} & \\ \text{Bi-O(2)}^{\text{v}} & \\ \text{Bi-O(2)}_{010}^{\text{v}} & \\ \text{Bi-O(2)}_{010}^{\text{v}} & \\ \text{Bi-O(3)} & 2,64(6) \\ \text{Bi-O(4)}_{010}^{\text{v}} & \\ \text{Bi-O(4)}^{\text{viii}} & \\ \end{array}$

<u>code de symétrie</u> : ii : $\bar{x}, \bar{y}, \bar{z}$; iii : \bar{x}, y, \bar{z} ; iv : x, \bar{y}, z ; v : 1/2 + x, 1/2 + y, z ; vi : $1/2 - x, 1/2 - y, \bar{z}$; vii : $1/2 - x, 1/2 - y, \bar{z}$; vii : $1/2 - x, 1/2 - y, \bar{z}$;

Dans tous les cas, les distances Bi-O sont acceptables et conformes aux valeurs généralement calculées : des distances courtes (2,16 Å) traduisent l'influence du doublet $6s^2$ du bismuth.

Enfin, il faut remarquer que cette étude conduit à une formule Bi₂CuVO₇, ce qui est impossible si l'on admet que le bismuth est présent au degré d'oxydation +3; cependant, les taux d'occupation des sites O(3) et O(4) ont été fixés arbitrairement ; il suffirait d'occuper le site O(4) avec un taux de 0,375 au lieu de 0,5 pour obtenir une formule Bi₂CuVO_{6,5} qui correspondrait à des degrés d'oxydation +3, +2 et +5 pour le bismuth, le cuivre et le vanadium respectivement.

Il est évident que l'introduction d'un tel taux d'occupation dans le processus d'affinement ne modifie en rien les résultats, seul le facteur de température de l'atome O(4) diminue à 1,0(6) Å².

L'examen du système $Bi_2O_3-V_2O_5$ -CuO a donc montré que la phase namibite $Bi_2CuVO_{6-6,5}$ n'était donc pas une phase d'équilibre dans nos conditions expérimentales mais que, par contre, un autre oxyde ternaire était obtenu, sa formule est proche de $Bi_4Cu_3V_2O_{14}$. Nous allons consacrer le dernier chapitre à la description de la méthode employée pour l'obtention de monocristaux et à la détermination de la structure de ce composé.

CHAPITRE III STRUCTURE DE Bi₄Cu₃V₂O₁₄

L'étude du diagramme Bi_2O_3 -CuO- V_2O_5 a montré l'existence d'un oxyde ternaire de formule proche de $Bi_4Cu_3V_2O_{14}$. Après de nombreux essais, il nous a été possible d'isoler des monocristaux de forme et de dimensions convenables pour une étude par diffraction X. La détermination de la structure cristalline de cette phase, qui s'est révélée délicate en raison de la présence de macles, fait l'objet de ce chapitre.

III. 1. PREPARATION DES MONOCRISTAUX

Différents essais de cristallisation ont été réalisés à partir du mélange Bi_2O_3 -V_2O_5-CuO correspondant à la composition $Bi_4Cu_3V_2O_{14}$ et à partir d'autres mélanges proches de ce dernier dans le ternaire Bi_2O_3 -V_2O_5-CuO :

1. Le mélange 1 (figure 26) correspondant à la composition Bi_2VCuO_6 est maintenu quelques heures à 680°C puis porté à fusion (880°C) en nacelle d'or à l'air. Après refroidissement jusque température ambiante à 3°C/h, on obtient un mélange de monocristaux noirs et rouges ; le spectre de poudre permet de les identifier ; il s'agit respectivement de Bi₄V₂Cu₃O₁₄ et de la solution solide δ Bi₄V₂O₁₁.

2. Les mélanges 2 et 5 traités dans les mêmes conditions que précédemment conduisent à un mélange de cristaux noirs de $Bi_4V_2Cu_3O_{14}$ et de cristaux jaunes de Bi_4V_2Cu_3O_{14} et de cristaux jaunes de Bi_4V_2Cu_3O

3. Le mélange 3 dans les mêmes conditions conduit aux mêmes résultats que le mélange 1.

4. Bi₄V₂Cu₃O₁₄ précédemment synthétisé par réaction à 800°C est porté à fusion à 900°C ; après refroidissement lent (3°C/h), des cristaux noirs sont obtenus, ils sont accompagnés d'une faible quantité de solution solide du type Bi₄V₂O₁₁.

5. Un mélange 2Bi₂O₃ : V₂O₅ : 3CuO non réagi est additionné de l'eutectique (KCl, KF) utilisé comme fondant (100 mg de mélange pour 500 mg de fondant). L'ensemble est introduit dans un tube d'or lui-même placé dans un tube de silice scellé sous vide. L'ensemble est porté à 880°C puis refroidi à 3°C/h jusqu'à température ambiante. Après élimination du fondant par lavage à l'eau chaude, de magnifiques
aiguilles noires atteignant plusieurs mm de long sont obtenues ; ces aiguilles sont facilement identifiées : il s'agit (malheureusement) de Bi₂CuO₄.

Dans les autres manipulations, des aiguilles noires ne sont pas toujours de bonne qualité : les clichés de diffraction X (tournant et Weissenberg) révèlent bien souvent des tâches de diffraction multiples. Les meilleurs résultats sont obtenus à partir des manipulations n°1 et n°4.

Dans une première étape, le monocristal étudié est issu de la manipulation n°1.

III.2. DETERMINATION DE LA MAILLE MONOCLINIQUE

Un cliché de cristal oscillant est réalisé autour de l'axe de l'aiguille comme axe de rotation. Les tâches sont symétriques par rapport à la strate équatoriale ; les distances entre la strate équatoriale et les deux premières strates observées permettent de calculer le paramètre de maille correspondant à la direction de rotation, soit b ce paramètre $b \approx 5,3$ Å.

L'examen des clichés de Weissenberg des strates 0,1 et 2 et les reconstructions des sections h0l, h1l, h2l du réseau réciproque (figure 27) permettent d'envisager une maille monoclinique ; les réflexions hkl ne sont présentes que si h + k est pair, le réseau de Bravais est donc C ; aucune extinction n'est observée sur les réflexions h0l ; les groupes spatiaux possibles sont donc C2, Cm, et C2/m.

Figure 27. Reconstruction des sections h0l, h1l et h2l du réseau réciproque.

•

Les paramètres réciproques valent

a^{*} = 0,108 u.r.
c^{*} = 0,198 u.r.
B^{*} = 74°
d'où les paramètres directs :
$$a = \frac{1}{a^*} \sin \beta^* \approx 14,85 \text{ Å}$$

 $c = \frac{1}{c^*} \sin \beta^* \approx 8,10 \text{ Å}$
B = $180^\circ - \beta^* \approx 106^\circ$

III. 3. DETERMINATION DE LA STRUCTURE DANS LA MAILLE MONOCLINIQUE

III. 3. 1. Collecte des intensités

Le monocristal précédent est étudié à l'aide du diffractomètre automatique PHILIPS PW 1100. La radiation utilisée est issue d'une anticathode de molybdène et rendue monochromatique par diffraction sur un cristal de graphite ($\sqrt{MoK_{\overline{\alpha}}} = 0,7107\text{Å}$).

L'exploration rapide de l'espace réciproque permet de déterminer les angles χ , Θ , ψ de 25 réflexions. Il faut remarquer que la plupart des 25 réflexions ont été détectées deux fois pour des valeurs des angles χ et ψ légèrement différentes, ce qui peut être dû à une mauvaise qualité de cristal. L'indexation des 25 réflexions conduit à une maille triclinique primitive qui est transformée, par réduction de Dirichlet, en maille monoclinique C qui correspond à la maille trouvée lors de l'étude photographique

 $a = 14,887 \text{ Å}, b = 5,302 \text{ Å}, c = 8,068 \text{ Å}, B = 106,27^{\circ}.$

Il faut toutefois remarquer que si $\cos \delta$ est nul, $\cos \alpha$ est légèrement différent de 0 ($\cos \alpha = -0,0109$), nous reviendrons par la suite sur ce problème.

De nombreux autres monocristaux ont été testés ; les résultats ont conduit aux mêmes observations : réflexions doubles, $\cos \alpha \# 0$. En l'absence de "monocristal de meilleure qualité", nous avons procédé à l'enregistrement des intensités diffractées pour

le premier monocristal étudié.

L'exploration d'un demi-espace réciproque limité par $2 \le \Theta \le 30^{\circ}$ (-20 \le h ≤ 20 , -7 \le k \le 7, 0 \le l \le 11) permet la collecte de 3809 intensités (en considérant la maille primitive). Parmi celles-ci 1613 satisfont le critère I $\ge 3 \sigma(I)$ et sont considérées significatives. Aucune réflexion remettant en cause le réseau de Bravais C ne subsiste alors. Les intensités ont été corrigées du facteur de Lorentz-polarisation.

III. 3. 2. Détermination de la position des atomes métalliques

La masse volumique mesurée sur une poudre par la méthode de Barker (89) vaut 7,2 g/cm³. Cette valeur indique un nombre d'unités formulaires Bi₄V₂Cu₃O₁₄ par maille égal à 2 ($P_{\text{th}} = 7,35 \text{ g.cm}^{-3}$).

Le calcul de la fonction de PATTERSON donne les vecteurs interatomiques de coordonnées et d'intensités relatives :

Х	Y	Z	Ι
.68	.0	.06	6
.53	.0	.34	5
.20	.0	.40	4
.86	.0	.28	4

Ces vecteurs correspondent à des distances Bi-Bi entre atomes de bismuth localisés dans deux sites 4i du groupe spatial C2/m (xoz) avec $x \approx 0,10$; $z \approx 0,20$ et $x \approx 0,42$; $z \approx 0,14$.

Avant de réaliser des corrections d'absorption, nous avons préféré vérifier la composition en atomes métalliques par le biais d'une première détermination structurale.

La moyenne des intensités des réflexions équivalentes est réalisée ; il subsiste alors 906 réflexions indépendantes. Le facteur de reliabilité interne (Rint) vaut 15,31 %. Après affinement des coordonnées des atomes de bismuth, il est possible de localiser les

atomes de cuivre dans un site 4i (x,o,z) avec x \approx 0,62 ; z \approx 0,47 et dans un site 2c (0,0,1/2) ; puis en renouvelant le processus affinement-synthèse de Fourier différence de localiser les atomes de vanadium dans un site 4i (x \approx 0,78 ; z \approx 0,24).

L'affinement de l'ensemble des coordonnées des atomes métalliques converge (R = 21,7 %; Rw = 23,8 %); comme on pouvait s'y attendre, en l'absence de corrections d'absorption, les facteurs de reliabilité restent élevés et les coefficients d'agitation thermique sont aberrants (les facteurs de température pour les atomes de bismuth sont négatifs).

Cette première approche a cependant le mérite de confirmer la composition de la phase, tout au moins en ce qui concerne les atomes métalliques. Si l'on admet les degrés d'oxydation 3,5 et 2 pour le bismuth, le vanadium et le cuivre, respectivement on obtient donc bien la formule $Bi_4V_2Cu_3O_{14}$ avec Z = 2 unités formulaires par maille.

Cette hypothèse permet de calculer le coefficient d'absorption linéaire $\mu = 615 \text{ cm}^{-1}$.

Les indices des faces et les dimensions du cristal ont pu être déterminés sans ambiguïté :

indices des faces	distances au centre (cm)
010	0,015
010	0,015
$\bar{2}$ 0 1	0,0025
201	0,0025
601	0,0025
-60-1	0,0025

Après application des corrections d'absorption selon la méthode analytique de De Meulenaer et Tompa (90), le facteur de reliabilité interne Rint ne s'est pas amélioré, bien au contraire (Rint = 16,82 %).

Malgré plusieurs essais, il n'a pas été possible d'améliorer sensiblement ce facteur Rint. Cependant, après les corrections d'absorption précédentes, le processus d'affinement converge beaucoup mieux (R = 16 %, Rw = 18,1 %) et les facteurs de température isotropes sont acceptables. Sur la synthèse de Fourier différence apparaissent alors des pics positifs de part et d'autre des atomes de bismuth et de vanadium en \pm y. Il est possible de tenir compte de ces maxima de deux façons :

1) affecter les atomes correspondants d'agitation thermique anisotrope.

2) dédoubler les atomes sur deux sites symétriques par rapport au miroir m en y =
0 en les affectant d'un taux d'occupation de 0,5.

Les facteurs de reliabilité sont très proches dans les deux hypothèses. Dans la première, les coefficients B33 deviennent légèrement négatifs alors que les coefficients B22 sont relativement élevés ; nous avons donc retenu la seconde hypothèse.

Une nouvelle synthèse de Fourier différence révèle des maxima en

0	1/4	0
.86	0	.11
.67	0	.18
.03	.25	.34

qui correspondent à des atomes d'oxygène en sites 4g (0,y,0), 4i(x,0,z) 2 fois et 8 j (x,y,z). Après leur introduction dans l'affinement, deux nouvelles positions d'atomes d'oxygène sont mises en évidence ; il s'agit de deux sites de multiplicité 8(x,y,z) qui ne peuvent être occupés simultanément et sont donc affectés d'un taux d'occupation de 0,5.

Les résultats de l'affinement de l'ensemble des coordonnées atomiques et des coefficients d'agitation thermique isotrope conduisent à R = 0,121 et Rw = 0,141. Les résultats sont rassemblés dans le tableau XIII.

Atome	Site	taux d'occup.	X	у	Z	В(Å ²)
Bi(1)	8j	1/2	0,1023(1)	0,019(1)	0,1996(3)	0,21(5)
Bi(2)	8j	1/2	0,4229(1)	0,018(1)	0,1394(3)	0,25(5)
Cu(1)	4i	1	0,6118(6)	0	0,4738(10)	0,87(12)
Cu(2)	2c	1	0	0	0,5	0,29(14)
v	8j	1/2	0,7860(8)	0,038(3)	0,2543(15)	0,47(21)
O(1)	4g	1	0	0,250(7)	0	0,0(5)
O(2)	4i	1	0,843(4)	0	0,103(7)	1,3(8)
O(3)	4i	1	0,661(3)	0	0,180(6)	0,7(6)
O(4)	8j	1	0,027(3)	0,249(7)	0,339(4)	1,1(5)
O(5)	8j	1/2	0,302(4)	0,174(12)	0,343(8)	0,6(9)
O(6)	8j	1/2	0,831(4)	0,174(11)	0,420(7)	0,3(8)

Tableau XIII. Coordonnées atomiques de Bi $_4$ Cu $_3$ V $_2$ O $_{14}$ dans la maille monoclinique C2/m

Ces résultats amènent un certain nombre de remarques :

1 - les facteurs de reliabilité en fin d'affinement ne sont pas très bons,

2 - les réflexions équivalentes par une symétrie 2/m ne sont pas réellement de même intensité,

3 - dans ce groupe C2/m, il est nécessaire de dédoubler un certain nombre de positions atomiques de part et d'autre du miroir m,

4 - deux sites d'atomes d'oxygène ne peuvent être occupés qu'à moitié,

5 - les écarts-types, notamment sur les coordonnées y des atomes dédoublés et sur les facteurs de température des atomes d'oxygène, ne sont pas très satisfaisants.

Ces différents problèmes sont vraisemblablement corrélés. L'explication la plus plausible est vraisemblablement un mauvais choix de groupe spatial ou même de symétrie cristalline. Des essais d'affinement dans les groupes C2 et Cm n'ont pas permis d'améliorer les résultats. Cependant, il faut admettre qu'en cas de mauvaise équivalence des réflexions supposées symétriques, le premier réflexe est de mettre en cause l'efficacité des corrections d'absorption bien que dans notre cas, la géométrie du cristal soit particulièrement simple. Pour tenter de lever cette ambiguïté, nous avons entrepris l'étude d'un autre monocristal.

Avant d'aborder cette étude, nous pouvons conclure quant à la formule du composé déduite de cette première détermination structurale ; il s'agit bien de $Bi_4Cu_3V_2O_{14}$.

III. 4. DETERMINATION DE LA MAILLE REELLE

Une étude photographique par les méthodes du cristal tournant et de Weissenberg est réalisée dans les mêmes conditions que précédemment sur un nouveau cristal. Le cliché de la strate 2 (h2l) révèle un léger dédoublement des réflexions selon la direction c*.

Il faut donc admettre un angle α^* très légèrement différent de 90°, donc une symétrie triclinique et la présence pour ce cristal, d'une macle conduisant aux réflexions hkl d'un individu et hkl de l'autre très proches l'une de l'autre. L'examen des strates h2l de plusieurs monocristaux confirme ce résultat ; les intensités relatives des deux réflexions provenant des deux individus varient d'un monocristal à l'autre.

Nous avons donc repris la détermination structurale à partir des intensités mesurées sur le premier cristal, celui-ci ne semblant pas maclé, ou tout au moins le volume de l'un des individus étant faible.

Nous pouvons donc utiliser une maille triclinique C de paramètres :

a = 14,887Å
b = 5,302Å
c = 8,068Å
$$\alpha$$
 = 90°
B = 106,27°
x # 90°

Cette maille n'étant pas conventionnelle, nous avons préféré utiliser la maille triclinique primitive (figure 28) définie par :

Figure 28.

$$a_{tr} = 1/2 \sqrt{a_m^2 + b_m^2} = 7,901 \text{\AA}$$

$$b_{tr} = b_m = 5,302 \text{\AA}$$

$$c_{tr} = c_m = 8,068 \text{\AA}$$

$$\alpha_{tr} = 90^{\circ}$$

$$\beta_{tr} = \cos^{-1}((a_m/\sqrt{a_m^2 + b_m^2}) \cos\beta_m) = 105,3^{\circ}$$

$$\chi_{tr} = 90^{\circ} + \cos^{-1} a_m/2a_{tr} = 109,6^{\circ}$$

III. 5. DETERMINATION DE LA STRUCTURE DANS LA MAILLE TRICLINIQUE

Les données précédentes sont donc reprises ; seules les intensités des réflexions hko et $h\bar{k}o$ sont donc moyennées (le facteur Rint est évidemment très bon dans ce cas Rint = 3,9%). Les indices de Miller des plans sont alors transformés dans la nouvelle maille par application de la matrice M soit :

h _{tr}		1/2	-1/2	0	hm
k _{tr}	=	0	1	0	k _m
l _{tr}		0	0	1	l _m

Les coordonnées des atomes peuvent être déduites de celles dans la maille monoclinique par application de la matrice $(M^{-1})^{T}$ soit :

				ł	1		
x _{tr}		2	0	0		x _m	
Уtr	=	1	1	0		Уm	
ztr		0	0	1		z _m	

Les atomes de bismuth occupent deux sites 2i du groupe P1 :

Bi(1):	$x \approx 0,20$	y ≈ 0,10	z ≈ 0,20
Bi(2) :	$x \approx 0,84$	y ≈ 0,42	z ≈ 0,14

La détermination structurale est reprise au début, c'est à dire que seuls les atomes de bismuth sont introduits dans les premiers cycles de l'affinement ; des synthèses de Fourier différence alternées avec des cycles d'affinement permettent de déterminer successivement les positions des atomes de cuivre, puis de vanadium et enfin d'oxygène. Fourier différence alternées avec des cycles d'affinement permettent de déterminer successivement les positions des atomes de cuivre, puis de vanadium et enfin d'oxygène.

Les atomes de bismuth occupent alors 2 sites 2i, les atomes de cuivre un site 2i et un site 1b de symétrie ponctuelle $\overline{1}$ (centre de symétrie), les atomes de vanadium un site 2i et les atomes d'oxygène 7 sites 2i, ce qui conduit, bien entendu, à la formule Bi₄Cu₃V₂O₁₄ (contenu de la maille).

Dans les derniers cycles d'affinement, les atomes métalliques sont affectés de coefficients d'agitation thermique anisotrope et les atomes d'oxygène de coefficients isotropes. Les facteurs de reliabilité obtenus valent R=0,066 et Rw=0,079 pour 1470 réflexions indépendantes.

Ces résultats peuvent paraître excellents, cependant il faut reconnaître que certaines difficultés demeurent ; notamment, les coefficients B_{33} , bien que positifs, restent très faibles ; en parallèle des pics négatifs apparaissent sur une dernière synthèse différence de part et d'autre des atomes de bismuth en $\pm z$.

Il est probable que le cristal ne soit pas totalement monocristallin et qu'une macle subsiste avec un second individu de faible volume ; rappelons à cet égard le problème des réflexions doubles trouvées lors de la procédure de recherche de pics au diffractomètre automatique Philips PW1100.

Les coordonnées atomiques en fin d'affinement sont rassemblées dans le tableau XIV. Dans ce tableau figurent également les coefficients d'agitation thermique isotrope (atomes d'oxygène) ou isotrope équivalents (atomes métalliques) les coefficients anisotropes pour les atomes métalliques sont rassemblés dans le tableaux XV.

Tableau XIV. Coordonnées fractionnaires et coefficients d'agitation thermique isotrope (atomes d'oxygène) ou isotrope équivalents (atomes métalliques) de $Bi_4Cu_3V_2O_{14}$ dans la maille triclinique

Atome	Site	x	у	Z	B(Å ²)
Bi(1)	2i	0,20461(9)	0,09712(15)	0,19955(9)	0,62(2)
Bi(2)	2i	0,84593(10)	0,42115(15)	0,13969(9)	0,66(2)
Cu(1)	2i	0,2234(4)	0,5881(5)	0,4747(3)	0,64(6)
Cu(2)	1b	0	0	0,5	0,53(8)
v	2i	0,5725(5)	0,8198(7)	0,2550(5)	0,80(8)
O(1)	2i	0,000(2)	0,752(3)	0,003(2)	0,7(2)
O(2)	2i	0,677(3)	0,858(4)	0,093(3)	2,0(3)
O(3)	2i	0,329(2)	0,667(3)	0,176(2)	1,0(2)
O(4)	2i	0,049(2)	0,268(3)	0,335(2)	0,9(2)
O(5)	2i	0,065(2)	0,781(3)	0,349(2)	1,2(2)
O(6)	2i	0,664(4)	0,660(5)	0,411(4)	3,3(4)
O(7)	2i	0,612(3)	0,144(4)	0,348(3)	2,0(3)

a = 7,901 Å; b = 5,302 Å; c = 8,068 Å; α = 90°; β = 105,3°; δ = 109,6°

Atome	в ₁₁	^B 22	в33	в ₁₂	B ₁₃	B23
Bi(1)	298(14)	818(33)	80(12)	17(15)	1(9)	23(13)
Bi(2)	353(15)	1016(34)	102(12)	139(16)	112(9)	136(14)
Cu(1)	416(40)	696(93)	51(33)	102(50)	-50(28)	47(42)
Cu(2)	412(57)	619(123)	42(46)	66(69)	106(41)	42(59)
v	270(55)	608(126)	357(57)	-96(68)	21(44)	73(66)

Tableau XV. Coefficients d'agitation thermique anisotrope $(x10^5)$ de Bi₄Cu₃V₂O₁₄ dans la maille triclinique.

A l'issue de cette détermination structurale, nous avons vérifié que les coordonnées atomiques déterminées dans la maille triclinique primitive correspondaient à celles déterminées précédemment dans la pseudo-maille monoclinique C2/m. La correspondance entre ces coordonnées est donnée dans le tableau XVI. Elle est obtenue en appliquant aux coordonnées tricliniques la matrice M^{T} .

ł	1	1		1	
x _m		1/2	0	0	^x tr
Уm	=	-1/2	1	0	y _{tr}
z _m		0	0	1	z _{tr}

Atomes maille triclinique	х	у	Z	 > X	у	Z	Atomes maille monoclinique
Bi(1)	0,20461	0,09712	0,19955	0,10230	-0,00518	0,19955	Bi(1)
Bi(2)	0,84593	0,42115	0,13969	0,42296	-0,00181	0,13969	Bi(2)
Cu(1)	0,2234	0,5881	0,4747	0,1117	0,4764	0,4747	Cu(1)
				0,6117	-0,0236	0,4747 5	
Cu(2)	0	0	0,5	0	0	0,5	Cu(2)
V	0,5725	0,8198	0,2550	0,2862	0,5335	0,255	V
				0,7862	0,0335	0,255 ∫	
O(1)	0,000	0,752	0,003	0	0,752	0,003	O(1)
				0	0,248	-0,003 ∫	
O(2)	0,677	0,858	0,093	0,338	0,519	0,093 }	O(2)
				0,838	0,019	0,093	
O(3)	0,329	0,667	0,176	0,164	0,502	0,176	O(3)
				0,664	0,002	0,176 ∫	
O(4)	0,049	0,268	0,335	0,024	0,243	0,335 ر	O(4)
O(5)	0,065	0,781	0,349	0,032	0,748	0,349 ∫	
O(6)	0,664	0,660	0,411	0,332	0,328	0,411	O(6)
				0,832	-0,172	0,411 }	
O(7)	0,612	0,144	0,348	0,306	-0,162	0,348	O(5)

Tableau XVI. Correspondance entre les coordonnées atomiques dans la maille triclinique et la pseudo-maille monoclinique

Pour retrouver les coordonnées du tableau XIII il a été nécessaire pour certains atomes d'effectuer une translation $C(1/2 \ 1/2 \ 0)$ dans la maille monoclinique.

Il faut remarquer que pour les atomes qui occupaient un site 8j dans la maille monoclinique avec un taux d'occupation de 0,5 (Bi(1), Bi(2), V, O(5), O(6)) seules quatre positions sont obtenues à partir de la maille triclinique ; elles correspondent systématiquement aux coordonnées x \overline{y} z du tableau XIII. Par contre, pour générer l'atome O(4) de la maille monoclinique (site 8j totalement occupé), deux positions (O(4) et O(5)) de la maille triclinique sont évidemment nécessaires.

La détermination de la structure dans la maille triclinique a donc permis de "traiter" un seul individu. Les positions des atomes dans la maille monoclinique (déduites des coordonnées tricliniques) ne sont pas rigoureusement dans le plan y = O. Que le cristal soit maclé ou non, le fait d'effectuer les moyennes des réflexions hkl et hkl (plus les réflexions de Friedel hkl et hkl) a généré pour le jeu d'intensités utilisé une symétrie artificielle 2/m.

III.6. DESCRIPTION ET DISCUSSION DE LA STRUCTURE

Pour décrire la structure de $Bi_4Cu_3V_2O_{14}$ nous allons utiliser les résultats de la détermination structurale dans la maille triclinique primitive. Les principales distances interatomiques et angles de liaison sont rassemblés dans le tableau XVII.

Tableau XVII. Principales distances interatomiques (Å) et angles de liaison (°) dans Bi4Cu3V2O14

Environnement de Bi(1)		Environnement de Bi(2	2)
Bi(1)-O(1) ₀₁₀	2,27(1)	Bi ₂ -O(1) ₁₀₀	2,25(2)
$O(1)_{010}$	2,32(2)	$O(1)_{110}^{2}$	2,27(2)
O(5)010	2,22(2)	O(4) ₁₀₀	2,29(2)
O(4)	2,23(2)	O(5) ₁₀₀	2,39(1)
$O(2)'_{110}$	2,74(3)	O(3) ' 110	2,51(1)
O(3)010	2,79(2)	O(2)010	2,81(2)
O(3)	2,87(2)	O(7)	2,87(2)
Environnement de Cu(1))	Environnement de Cu(2)
Cu(1)-O(4)	1,91(1)	Cu(2)-O(4)	1,96(2)
O(5)	1,96(2)	O(4) ₀₀₁	1,96(2)
O(6)111	1,93(3)	O(5)010	1,96(2)
O(7) ₁₁₁	1,88(2)	O(5) ₀₁₁	1,96(2)
O(3)	2,74(2)	O(6)110	2,57(3)
O(4)-Cu(1)-O(5)	88(1)°	O(6) ₁₁₁	2,57(3)
O(5)-Cu(1)-O(6),111	100(1)°		
$O(6)_{111}$ -Cu(1)-O(7)'_{111}	88(1)°	O(4)-Cu(2)-O(5)010	84(1)°
O(4)-Cu(1)-O(7) [*] ₁₁₁	83(1)°	$O(4)$ -Cu(2)-O(5) $_{011}^{\bullet}$	96(1)°
Environnement de V		Environnement de O(1)
V - O(2)	1,70(3)	O(1)-Bi(1) ₀₁₀	2,27(1)
O(3)	1,75(1)	Bi(1),010	2,32(2)
O(6)	1,66(3)	Bi(2) ₁₀₀	2,25(2)
O(7) ₀₁₀	1,77(2)	Bi(2) [*] ₁₁₀	2,27(2)
Moyenne	1,72		
O(2)-V-O(3)	111(1)°	Bi(1)010-O(1)-Bi(1)010	110,1(7)°
O(2)-V-O(6)	112(1)°	Bi(1)010-O(1)-Bi(2)100	109,4(7)°
O(2)-V-O(7) ₀₁₀	108(1)°	Bi(1)010-O(1)-Bi(2) ¹ 10	110,6(8)°
O(3)-V-O(6)	112(1)°	Bi(1) ⁶ ₀₁₀ -O(1)-Bi(2) ₁₀₀	111,5(8)°
O(3)-V-O(7) ₀₁₀	106(1)°	Bi(1)'010-O(1)-Bi(2)110	107,8(8)°
O(3)-V-O(7) ₀₁₀	107(1)°	Bi(2) ₁₀₀ -O(1)-Bi(2) ₁₁₀	107,4(8)°
Moyenne	109 ,3 °	Moyenne	109,5°

Les atomes de cuivre sont en environnement plan carré ; autour de Cu(1) les quatre distances Cu-O sont comprises entre 1,88 et 1,96Å (la moyenne vaut 1,92Å) ; les distances Cu(2)-O sont toutes égales mais un peu plus élevées (1,96Å). Les entités CuO₄ sont reliées entre elles par des sommets, un plan carré Cu(2)O₄ est relié à quatre entités Cu(1)O₄ (figure 29), l'ensemble constitue des rubans se développant dans la direction \vec{b} de la maille. La rigidité de ces rubans est renforcée par les tétraèdres VO₄ qui échangent deux sommets avec deux entités Cu(1)O₄. La formulation globale des rubans est donc : Cu(1)₂Cu(2)V₂O₁₂⁸⁻

Le tétraèdre VO₄ est pratiquement parfait ; les distances V-O sont comprises entre 1,66 et 1,77 Å et sont en bon accord avec les valeurs généralement observées.

Figure 29. Le ruban Cu-V-O

Il faut remarquer que les plans carrés Cu(1)O₄ et Cu(2)O₄ sont fortement tournés les uns par rapport aux autres pour donner des rubans -Cu-O-Cu-O-Cu- en zig-zag (figure 30).

Figure 30. Les rubans -Cu-O-Cu-O-Cu-

Les polyèdres de coordination autour des atomes de bismuth sont constitués de quatre atomes d'oxygène à des distances courtes comprises entre 2,22 et 2,39 Å, ces quatre atomes d'oxygène sont situés d'un même côté de l'atome de bismuth (figure 31). Le polyèdre de coordination est complété par trois atomes d'oxygène (situés de l'autre côté du bismuth par rapport aux quatre premiers oxygène) à des distances beaucoup plus longues (supérieures à 2,51 Å). Ce type d'environnement des atomes de bismuth est caractéristique de l'effet stérique du doublet 6s² du bismuth.

Figure 31.

Enfin, le rôle de l'atome d'oxygène O(1) est particulièrement intéressant : il ne participe qu'à la coordination des atomes de bismuth, il est en fait situé au centre d'un tétraèdre d'atomes de bismuth $Bi(1)_2Bi(2)_2$; ces tétraèdres Bi_4O sont reliés les uns aux autres par les arêtes Bi(1)Bi(1) et Bi(2)Bi(2) alternativement pour constituer des chaînes monodirectionnelles parallèles à l'axe \vec{b} de la maille (figure 32).

Figure 32. La chaîne (Bi₂O)

La structure de Bi₄Cu₃V₂O₁₄ peut donc être visualisée comme la succession dans la direction [001] de rubans constitués de plans carrés CuO₄ et de tétraèdres VO₄ (ces rubans possèdent un pseudo-axe d'ordre 2 en 0 0 .5) et de chaînes Bi₂O constituées de tétraèdres Bi₄O parallèles à l'axe \vec{b} . Cette succession constitue des feuillets qui sont reliés les uns aux autres par des liaisons Bi-O relativement faibles. La figure 33 révèle l'existence, au centre de la face (\vec{a}, \vec{c}) , d'un tunnel parallèle à l'axe b.

Figure 33. La projection de la structure dans le plan (\vec{a}, \vec{c})

Cette structure se révèle particulièrement originale et permet d'envisager pour ce composé différentes investigations, telles que :

- recherche d'une transition éventuelle vers une symétrie 2/m,

- interactions magnétiques entre les atomes de cuivre,

- oxydation partielle du cuivre par le biais d'une substitution du bismuth par le plomb ou du vanadium par le silicium, ce qui pourrait conduire à des conducteurs électroniques intéressants,

- occupation partielle des tunnels par des ions alcalins lors de substitutions du type:

 $Bi^{3+} \longrightarrow Pb^{2+} + A^+, \dots$

CONCLUSION

L'étude du diagramme ternaire Bi_2O_3 -CuO- V_2O_5 a permis de mettre en évidence essentiellement :

- une solution solide du type $Bi_4V_2O_{11}$ par substitution du vanadium par le cuivre, - un composé défini de formule $Bi_4Cu_3V_2O_{14}$

La solution solide du type $Bi_4V_2O_{11}$ s'est révélée particulièrement intéressante. En effet, la substitution du vanadium par le cuivre permet la stabilisation, à température ambiante, de la forme haute température de $Bi_4V_2O_{11}$ du type δ .

Les chutes de conductivité, lors du refroidissement, dues aux transitions $\& \longrightarrow \& B$ puis $\& \longrightarrow \& a$ observées dans Bi₄V₂O₁₁ sont alors évitées et la conductivité élevée de Bi₄V₂O₁₁ à haute température peut, dans ces conditions, être préservée à basse température. La série obtenue appelée BICUVOX constitue, à ce jour, les meilleurs conducteurs par ions oxygène : à 300°C, la conductivité est multipliée par un facteur 100 par rapport aux matériaux les plus performants.

Cette conductivité élevée a pu être reliée au caractère lacunaire et désordonné de la structure bidimensionnelle de ces phases.

Entre des couches $Bi_2O_2^{2+}$ parfaitement localisées, les polyèdres oxygénés du vanadium sont beaucoup moins bien définis ; en effet, si les atomes de vanadium occupent des positions fixes, il n'en est pas de même des atomes d'oxygène qui sont distribués statistiquement sur des sites de multiplicité élevée et peuvent donc aisément migrer d'un site occupé à un site vacant.

Cette étude a donné naissance à une collaboration entre le L.C.P.S., le laboratoire de Cristallographie du CNRS (Grenoble) et le laboratoire d'Ionique et d'Electrochimie du Solide de Grenoble dont les premiers résultats sont la synthèse de monocristaux de grande taille et de bonne qualité permettant la mise en évidence du caractère bidimensionnel de la conductivité dans la série BICUVOX mais aussi dans la série homologue BINIVOX (substitution partielle du vanadium par le nickel).

De nombreuses autres substitutions peuvent être envisagées et certaines font actuellement l'objet d'une thèse préparée au L.C.P.S.. D'autre part, des études

structurales, notamment par diffraction des neutrons, se poursuivent en collaboration avec le laboratoire de Cristallographie du CNRS.

La structure de $Bi_4Cu_3V_2O_{14}$ a pu être résolue en dépit de nombreuses difficultés liées à la présence d'une pseudosymétrie 2/m à l'origine d'un maclage systématique des cristaux.

Cette structure se révèle particulièrement originale, elle se caractérise notamment par la présence de rubans constitués de plans carrés CuO₄ reliés entre eux directement par des atomes d'oxygène mais aussi indirectement par les tétraèdres VO₄.

Autre originalité : l'existence de chaînes monodimensionnelles, parallèles à ces rubans, constituées de tétraèdres Bi₄O reliés par des arêtes.

Ces chaînes et ces rubans sont reliés entre eux par des liaisons Bi-O relativement fortes pour former des feuillets parallèles aux plans (011). La cohésion du cristal est assurée par des liaisons Bi-O faibles entre ces feuillets.

Cette étude devra se poursuivre par l'examen, d'une part, des propriétés physiques intrinsèques de ce matériau telles que les interactions magnétiques entre les atomes de cuivre qui peuvent être de deux types : interactions Cu(1)-Cu(2) par l'intermédiaire des atomes d'oxygène pontants mais aussi interactions Cu(1)-Cu(1) par le biais de l'ion vanadate et, d'autre part, par différentes substitutions qui pourraient conduire à d'autres propriétés.

Enfin, ce travail nous a permis d'aborder la structure du minéral appelé namibite. Cette première approche confirme les résultats analytiques en ce qui concerne les atomes métalliques mais ne permet pas d'affirmer la stoechiométrie en oxygène. Nous avons mis en évidence que la maille admise jusqu'alors pour la namibite n'était pas correcte et que la symétrie est triclinique plutôt que 2/m et la maille plus volumineuse. Malheureusement, des problèmes de correction d'absorption liés à la géométrie complexe des cristaux ne nous ont pas permis de résoudre la structure dans la maille réelle triclinique. Nos efforts vont se poursuivre dans ce sens. Ce matériau n'appartient pas au diagramme d'équilibre Bi₂O₃-CuO-V₂O₅ (à pression atmosphérique) et nous envisageons des essais de synthèse de cette phase dans d'autres conditions notamment sous pression et en conditions hydrothermales.

BIBLIOGRAPHIE

- (1) R.J. BOUCHARD and J.L. GILLSON, Mater. Res. Bull., <u>6</u>, 669 (1971).
- (2) A.W. SLEIGHT, Mater. Res. Bull, <u>9</u>, 1177 (1974).
- (3) F. ABRAHAM, thèse d'Etat, Lille (1981).
- F. ABRAHAM, D. THOMAS et G. NOWOGROCKI, Bull. Soc. Fr. Minéral. Cristallogr., <u>98</u>, 25 (1975).
- (5) N. BETTAHAR, P. CONFLANT, J.C. BOIVIN, F. ABRAHAM and D. THOMAS, The Journal of Phys. and Chem. of Solids, <u>46(3)</u>, 297 (1985).
- J.C. BOIVIN, J. THEHOUX et D. THOMAS, Bull. Soc. Fr. Minéral. Cristallogr., <u>99</u>, 193 (1976).
- K. SREEDHAR, P. GANGULY and S. RAMASESHA, J. Phys. C. Solid. State.
 Phys. <u>21</u>, 1129 (1988).
- (8) R. TROC, J. JANICKI, I. FILATOW, P. FISCHER and A. MURASIK, J. Phys. : Condens. Matter <u>2</u>, 6989 (1990).
- E.W. ONG, G.H. KWEI, R.A. ROBINSON, B.L. RAMAKRISHNA and R.B.
 VON DREELE, Phys. Review B, <u>42(7)</u>, 4255 (1990).
- (10) J.L. GARCIA-MUNOZ, J. RODRIGUEZ-CARVAJAL, F. SAPINA, M.J. SANCHIS, R. IBANEZ and D. BELTRAN-PORTER, J. Phys. Condens.Matter, <u>2</u>, 2205 (1990).
- (11) J. KONSTANTINOVIC, G. STANISIC, M. AIN and G. PARETTE, J. Phys. Condens-Matter, soumis à publication.
- A.W. SLEIGHT, H.Y. CHEN, A. FERRETTI and D.E. COX, Mater. Res.
 Bull., <u>14</u>, 1571 (1979).
- L.P. AVAKYANTS, D.F. KISELEV and A.V. CHERVYAKOV, Sov. Phys. Crystallogr., <u>30(5)</u>, 595 (1985).
- (14) B. AURIVILLIUS, Arkiv. Kemi, <u>2</u>, 519 (1950).
- (15) G.N. SUBBANNA, T.N. GURU ROW, and C.N.R. RAO, J. of Solid State Chem., <u>86</u>, 206 (1990).
- (16) T. SEKIYA, A. TSUZUKI and Y. TORII, Mater. Res. Bull., <u>20</u>, 1383 (1985).
- (17) T. SEKIYA, A. TSUZUKI and Y. TORII, Mater. Res. Bull., <u>21</u>, 601 (1986).

- (18) A.W. SLEIGHT, Advanced Materials in catalysis, Chap.6, Academic Press (1977).
- (19) T. TAKAHASI and H. IWAHARA, Mater. Res. Bull., <u>13</u>, 1447 (1978).
- R.G. EGDELL, J.B. GOODENOUGH, A. HAMNETT and C.C. NAISH, J. Chem. Soc., Faraday Trans., <u>1</u>, 893 (1983).
- (21) C. MICHEL, M. HERVIEU, M.M. BOREL, A. GRANDIN, F. DESLANDES,
 J. PROVOST and B. RAVEAU, J. Phys. B. Condens Matter, <u>68</u>, 421 (1987).
- (22) M.A. SUBRAMANIAN, C.C. TORARDI, J.C. CALABRESE, J. GOPALAKRISHNAN, K.J. MORRISSEY, T.R. ASKEN, R.B. FLIPPEN, U. CHOWDHRY and A.W. SLEIGHT, Science, <u>239</u>, 1015 (1998).
- (23) R. DAGANI, Chem. Eng. News, <u>66</u>, 5 (1988).
- (24) F. ABRAHAM, M.F. DEBREUILLE-GRESSE, G. MAIRESSE and G. NOWOGROCKI, Solid State Ionics, <u>28-30</u>, 529 (1988).
- (25) J.C. BOIVIN, Thèse d'Etat, Lille (1975).
- (26) M.F. DEBREUILLE-GRESSE, M. DRACHE and F. ABRAHAM, J. of Solid State Chem., <u>62(3)</u>, 351 (1986).
- (27) M.F. DEBREUILLE-GRESSE, Thèse de Docteur Ingénieur, Lille (1986).
- (28) M.F. DEBREUILLE-GRESSE and F. ABRAHAM, J. of Solid State Chem., <u>71(2)</u>, 466 (1987).
- (29) P. STROBEL, E. PERNOT, F. ABRAHAM, G. MAIRESSE, M. BACMANN and M. ANNE, ICNS'91, Oxford, 27-30 Août 1991.
- (30) R.W. WOLFE, R.E. NEWNHAM and M.I. KAY, Solid State Comm., <u>7</u>, 1797 (1969).
- (31) I.G. ISMAILZADE and F.A. MIRISHLI, Sov. Phys., Crystallography, <u>14</u>, 636 (1970).
- (32) D.A. PAYNE and S. THEOKRITOFF, Mat. Res. Bull., <u>10</u>, 437 (1975).
- (33) H.W. NEWKIRK, P. QUADFLIEG, J. LIEBERTZ and A. KOCKEL, Ferroelectrics, <u>4</u>, 51 (1972).
- (34) A.F. VAN DEN ELZEN and G.D. RIECK, Acta Cryst., <u>B29</u>, 2436 (1973).

- (35) A. WATANABE and H. KODAMA, J. Solid State Chem., <u>35</u>, 240 (1980).
- (36) H. KODAMA and F. IZUMI, J. Cryst. Growth, <u>50</u>, 515 (1980).
- (37) A. WATANABE, J. Solid State Chem., <u>41</u>, 160 (1982).
- (38) P. GAUCHER, V. ERNST and P. COURTINE, J. Solid State Chem., <u>47</u>, 47 (1983).
- (39) A. WATANABE, Mat. Res. Bull., <u>19</u>, 887 (1984).
- (40) B. MBONGO, DEA, Lille (1988).
- (41) R.M. DELL and A. HOPER, in Solid Electrolytes ed. P. Hagenmuller and W. Van Gool (Academic Press, New York), p.291, 312 (1978).
- (42) M.J. VERKERK, K. KEIZER and A.J. BURGGRAAF, J. Applied Electrochem. <u>10</u>, 81 (1981).
- (43) International Tables for X-ray Crystallography, the Kynoch press, Birmingham (1974).
- (44) J.C. BOIVIN, D. THOMAS et G. TRIDOT, C.R. Acad. Sc. Paris, <u>276</u>, 1105 (1973).
- (45) R. ARPE and H. MULLER-BUSCHBAUM, Z. Anorg. Chem., <u>426</u>, 1 (1976).
- (46) M.T. WELLER and D.R. LINES, J. of Solid State Chem., <u>82</u>, 21 (1989).
- (47) N.P. SMOLYANINOV and I.N. BELYAEV, Russ. J. Inorg. Chem. <u>8</u>, 632 (1963).
- (48) YA. N. BLINOVSKOV and A.A. FOTIEV, Russ. J. Inorg. Chem., <u>32(1)</u>, 145 (1987).
- (49) M. TOUBOUL and C. VACHON, Thermochimica Acta, <u>133</u>, 61 (1988).
- (50) A.A. BUSCH and Yu. N. VENEVSTEV, Zh. Neorg. Khim., <u>31</u>, 1346 (1986).
- (51) V.N. BORISOV, YA. M. POPLAVKO, P.B. AVAKYAN and V.G. OSIPYAN, Sov. Phys. Solid State, <u>30(5)</u>, 904 (1988).
- (52) K.B.R. VARMA, G.N. SUBBANNA, T.N. GURU ROW and C.N.R. RAO, J.
 Mater. Res., <u>5(11)</u>, 2718 (1990).
- (53) F.D. HARDCASTLE, I.E. WACHS, H. ECKERT and D.A. JEFFERSON, J. of Solid State Chem., 90, 194 (1991).

- (54) T.V. PANCHENKO, V.F. KATKOV, V. Kh. KOSTYUK, N.A. TRUSEEVA and A.V. SHMAC'KO, Ukr. Fiz. Zh., <u>28(7)</u>, 1091 (1983).
- (55) T. TAKAHASHI, H. IWAHARA and Y. NAGAI, J. Appl. Electrochem., <u>2</u>, 97 (1972).
- (56) T. TAKAHASHI, H. IWAHARA and T. ARAO, J. Appl. Electrochem. <u>5</u>, 197 (1975).
- (57) M.J. VERKERK, K. KEIZER and A.J. BURGGRAAF, J. Appl. Electrochem. <u>10</u>, 81 (1980).
- (58) R. GUILLERMO, P. CONFLANT, J.C. BOIVIN et D. THOMAS, Revue Chim Miner., <u>15</u>, 153 (1978).
- (59) P. CONFLANT, J.C. BOIVIN et D. THOMAS, J. of Solid State Chem., <u>18</u>, 133 (1976).
- (60) P. CONFLANT, J.C. BOIVIN et D. THOMAS, J. of Solid State Chem. <u>35</u>, 192 (1980).

- (61) J.C. BOIVIN AND D. THOMAS, Solid State Ionics, <u>3/4</u>, 457 (1981).
- (62) P. CONFLANT, J.C. BOIVIN, G. NOWOGROCKI et D. THOMAS, Solid State Ionics, <u>9/10</u>, 925 (1983).
- (63) G. GATTOW and D. SCHUTZE, Zeit. Anorg. Allg. Chem., <u>328</u>, 44 (1964).
- (64) L.G. SILLEN, Ankiv. Kemi. Min. Geol., <u>12A</u>, 1 (1937).
- M. DEVALETTE, N. MAZEAU, G. MEUNIER et P. HAGENMULLER,
 C.R. Acad. Sc. <u>29211</u>, 1375 (1981).
- (66) M. DEVALETTE, N. KHACHANI, G. MEUNIER et P. HAGENMULLER, Mater Lett. <u>2(48)</u>, 318 (1984).
- (67) D.C. CRAIG et N.C. STEPHENSON, J. Solid State Chem., <u>15</u>, 1 (1975)
- (68) M. DEVALETTE, G. MEUNIER, J.P. MANAUD et P. HAGENMULLER, C.R. Acad. Sci. <u>II</u>, 189 (1983).
- (69) H.A. HARWIG et J.W. WEENK, Z. Anorg. Allg. Chem., <u>444</u>, 167 (1978).
- (70) H. KODAMA, A. WATANABE et Y. YAJIMA, J. Solid State Chem. <u>67</u>, 170 (1987).

- (71) N. KHACHANI, M. DEVALETTE et P. HAGENMULLER, Z. Anorg. Allg Chem., <u>533</u>, 93 (1986).
- (72) Yu F. KARGIN, A.A. MAR'IN and V.M. SKORIKOV, Izv. Akad. Nauk. SSR Neorg. Mater. <u>18(10)</u>, 1605 (1982).
- (73) W. ZHOU, J. of Solid State Chem. <u>76</u>, 290 (1988).
- (74) W. ZHOU, J. of Solid State Chem. <u>87</u>, 44 (1990).
- (75) J.L. SOUBEYROUX, M. DEVALETTE, N. KHACHANI et P. HAGENMULLER, J. of Solid State Chem., <u>86</u>, 59 (1990).
- (76) W. ZHOU, D.A. JEFFERSON and J.M. THOMAS, Proc. R. Soc. London, Ser.
 <u>A406</u>, 173 (1986).
- (77) W. ZHOU, D.A. JEFFERSON and J.M. THOMAS, J. of Solid State Chem., <u>70</u>, 129 (1987).
- (78) F.D. HARDCASTLE, I.E. WACHS, H. ECKERT et D.A. JEFFERSON, J. of Solid State Chem. <u>90</u>, 194 (1991).
- (79) P. FLEURY, C.R. Acad. Sc. Paris, <u>263</u>, 1375 (1966).
- (80) D. MERCURIO, J. GALY et B. FRIT, C.R. Acad. Sc. Paris, <u>282</u>, 27 (1976).
- (81) C. CALVO et D. MANOLESCU, Acta Cryst., <u>B29</u>, 1743 (1973).
- (82) D. LAVAUD et J. GALY, Bull. Soc. Fr. Mineral. Cristallogr., <u>95</u>, 134 (1972).
- (83) D. MERCURIO et B. FRIT, Acta Cryst <u>B29</u>, 2737 (1973).
- (84) D. MERCURIO et B. FRIT, C.R. Acad. Sc. Paris, <u>277</u>, 1101 (1973).
- (85) J. COING-BOYAT, Acta Cryst., <u>B38</u>, 1546 (1982).
- (86) R.D. SHANNON et C. CALVO, Can. J. of Chemistry, <u>50</u>, 3944 (1972).
- (87) R.D. SHANNON et C. CALVO, Acta Cryst <u>B29</u>, 1338 (1973).
- (88) O.V. KNORRING et Th. G. SAHAMA, Schweiz Mineral. Petrogr. Mitt. <u>61</u>, 7 (1981).
- (89) W.W. BARKER, J. Appl. Cryst., <u>5</u>, 433 (1972).
- (90) J. DE MEULENAER and H. TOMPA, Acta Cryst., <u>19</u>, 10/4 (1965).

