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Chapitre 1 

Introduction 

"Sans la raison, la mémoire est incomplète et inefficace.'' 
G. Bachelard, la dialectique de la durée. 

1.1 Logique et Objets 

Le nombre de propositions qui proclament The number of proposals claiming they 
avoir résolu l'intégration des approches have solved the integration of logical and 
logiques et orientées objet crott de  jour en object-oriented approaches has steadily in- 
jour depuis une dizaine d'années [GE0891 creased during the last ten years [Glo89] 
[Alb85]. [Alb85]. 

Notre point de vue est un peu plus scep- Our attitude is more skeptical to the prob- 
tique quant à la problématique et quant lem and the objectives. Indeed, we con- 
aux objectifs. Nous considérons en e$et sider that there does not exist a unique so- 
qu'il n'existe pas une solution unique car, lution, as, on both sides, object-oriented 
de part et d'autre, les paradigmes objets and logical paradigms are heterogeneous 
et logiques sont des ensembles de concepts sets of concepts. 
hétérogènes. 

Bien sûr, l'approche logique de 17infor- Of course, the logical approach benefits by 
matique bénéficie d'un solide fondement a solid mathematical foundation. How- 
mathématique. Cependant, elle ne con- ever, it does not constitute a unique ap- 
stitue pas une démarche unique, ni en ce proach, neither as far as the objectives are 
qui concerne les objectifs, ni en ce qui con- concerned, nor as far as the method is con- 
cerne la méthode. cerned. 

Par exemple, en partant de son repré- 
sentant le plus fameux, le langage Pro- 
log [GKP85], en allant vers les lan- 
gages de la famille Datalog [CGT89], 
on voit apparaitre une grande variété de 
travaux sur le spectre qui s'étend de la 
programmation procédurale en logique à 
la représentation déclarative des connais- 
sances. Par conséquent, toute tentative 
d'intégration doit préciser au préalable si 
elle se place dans un contexte de program- 
mation ou de représentation des connais- 
sances. 

For instance, one can see a great variety of 
works on the spectrum lying between pro- 
cedural programming languages like Pro- 
log [CM811 and declarative knowledge rep- 
resentation languages like t hose of the Dat- 
alog farnily [CGT89]. Therefore, any at- 
tempt at integration must clarify before- 
hand whether it takes place in a program- 
ming or a knowledge representation con- 
text. 



Quoi qu'il en soit, il convient de souligner 
que l'approche logique a aujourd'hui fait la 
démonstration de sa viabilité : des lan- 
gages, des systèmes et des machines exis- 
tent et sont comparables en eficacité (au 
sens le plus général du terme) aux lan- 
gages, systèmes et machines plus tradition- 
nels. Tout le monde se souvient de la 
spectacu2aire adoption, par Z'ICOT japo- 
nais, du langage Prolog pour son projet 
d'ordinateurs de la cinquième génération. 
Dans le même temps, aux Etats Unis, 
dans les laboratoires de recherche en in- 
telligence artificielle, la programmation 
logique remplaçait la programmation fonc- 
tionnelle pour le prototypage. En Europe, 
la recherche en programmation logique et 
sur les bases de données déductives a 
régulièrement évolué. 

Globalement, on peut aujourd'hui évaluer 
l'impact de cette recherche et de cette tech- 
nologie par le nombre et l'importance des 
conférences internationales qui abordent ce 
thème : the International Logic Program- 
ing Symposium, the International Con- 
ference on Logic Programming, the con- 
ference on Principles of DataBase Sys- 
tems, etc. Pourtant, pour que le trans- 
fert technologique vers l'industrie soit pos- 
sible, un eflort ergonomique reste a faire. 
L'élégance et la puissance des approches 
logiques, leur formalisme, peuvent séduire 
ou rebuter l'utilisateur. Les notions ma- 
nipulées semblent naturelles rnais ne sont 
malheureusement pas toujours intuitives 
(le retour arrière en Prolog, la négation, 
les quantificateurs). 

Anyway we must underline that the logi- 
cal approach has now proven its feasibii- 
ity : languages, systems and machines are 
as efficient (in the general sense of the 
term) as more traditional languages, sys- 
tems and machines. Everyone remembers 
the adoption of the Prolog language by the 
ICOT for the fifth generation cornputers 
project. Meanwhile, in the United States, 
in the artificial intelligence research lab- 
oratories, logic programming was replac- 
ing functional programming for prototyp- 
ing. In Europe, the logic programming 
and deductive databases research steadily 
evolved. 

Globally, one can evaluate the impact of 
this research and technology by the num- 
ber of international conferences on the 
topic: the International Logic Programing 
Symposium, the International Conference 
on Logic Programming, the conference on 
Principles of DataBase Systems, etc. How- 
ever, the technological transfer to indus- 
try is only possible if effort towards er- 
gonomies is made. The élégance and power 
of logical approaches, their formalism, may 
attract or put off the user. The underlying 
notions seem to be natural, but they may 
not be intuitive (backtracking in Prolog, 
negation, quantifiers). 



La situation du paradigme objet est quelque 
peu difiérente. Tout d'abord, les langages 
porte-drapeau de la programmation ori- 
entée objet, comme Smalltalk, ont rapide- 
ment proposé des environements de pro- 
grammation complets et interactifs. Cela, 
non seulement démontrait les propriétés de 
ces outils (extensibilité, adaptabilité) mais 
encore permettait une difision immédiate 
de cette technologie. L'eflet a été tel 
qu'être orienté objet était une condition 
nécessaire au succés tant pour les travaux 
de recherche que pour les systèmes com- 

In ' the case of the object- 
oriented paradigm, things are a little dif- 
ferent. First of all, the standard object- 
oriented languages, like Smalltalk, quickly 
offered complete and interactive program- 
ming environments. This has not only em- 
phasized the properties of such tools (ex- 
tensibility, adaptability) but it has also al- 
lowed a quick marketing of the technol- 
ogy. The effect was such that being object- 
oriented was a necessity for research works 
and commercial products: 

merciaux: 

"If 1 were to sel1 [my cat], 1 would not stress that he is gentle to humans and 
is self-sufficient, living mostly on field mice. Rather, 1 would argue that he 
is object-oriented." Roger King, [KL89]. 

De cette situation il resulte une langue de From this situation remain buzz words and 
bois et un amas de notions: classes, objets, a mass of notions: classes, objects, mes- 
messages, héritage, méthodes, etc. sages, inheritance, methods, etc. 

Sans entrer dans les querelles de pu- 
ternité, il est aussi clair que la plu- 
part des concepts mis en lumière par 
l'approche objet lui ont préexisté. Par 
exemple, en représentation des connais- 
sances, dès les années 70, les travaux 
sur les réseaux sémantiques étudiaient 
les problèmes d'identité, d'agrégation, de 
généralisation, de classification et les 
inférences basées sur 1 'héritage. 

Without entering the paternity quarrels, it 
is clear that most of the concepts high- 
lighted by the object-oriented approach 
were already discovered before. For in- 
stance, in the early 70's, the work on se- 
mantic networks for knowledge represen- 
tation studied the problems of identity, 
aggregation, generalization, classification 
and the inferences based on inheritance. 

Nous retiendrons, pour notre part, de l'ap- We will retain from the object-oriented ap- 
proche orientée objet la volonté d'étudier proach the aim to address these problems, 
ces problèmes et leur intérêt en modélisa- and their interest for knowledge modeling 
tion et représentation des connaissances. and representation. 

1.2 Systèmes de gestion des connaissances 

La problèmatique que nous étudions dans The problem we address in this thesis is the 
cette thèse est l'intégration des concepts integration of concepts borrowed from de- 
empruntés aux bases de données déductives ductive databases together with concepts 
et de concepts qualifiés d'orientés objets labeled as object-oriented in a knowledge 
dans le cadre de la modélisation des con- modeling framework. 
naissances. 



Nous avons, marginalement, réfiéchi à We have marginally investigated other as- 
d'autres aspects de cette intégration (Zan- pects of this integration (manipulation and 
gage de  manipulation et de mise à jour des update language, knowledge management 
connaissances, architecture des systèmes system architecture, etc) while developing 
de gestion des connaissances, etc) dans le prototypes for our model. We want to un- 
cadre du développement de prototypes pour derline here the a priori difference between 
notre modèle. Nous voulons d'ores et déjà those problems. 
souligner la diflérence de nature qui existe, 
a priori, entre ces problèmes. 

Afin d'illustrer et de présenter notre 
problématique nous avons choisi de  faire 
un catalogue raisonné des diferents outils 
pour les bases de connaissances développés 
par le groupe Knowledge Bases de  E'ECRC, 
au sein duquel nous avons réalisé la par- 
tie concrète du travail exposé ici. Cette 
présentation nous permettra de  montrer 
que le modèle que nous proposons se situe 
dans la continuité d'une recherche (cf. jig- 
ure 1.1). 

As an illustration and a presentation of our 
problem, we have chosen to make a cata- 
logue raisonné of the tools for knowledge 
bases developed by the ECRC knowledge 
bases group. The concrete part of the work 
presented here has been developed within 
this group. We want to show through this 
presentation that the model we propose is 
a natural continuation of previous research 
(cf. figure 1.1). 

1.2.1 Prolog et les bases de données 

Constatant le S U C C ~ S  de la logique comme 
langage de programmation et devant la 
nécessité d'accroître la puissance des 
systèmes de gestion de bases de données 
relationnels, sur la base d'un fondement 
théorique commun, plusieurs systèmes ont 
été développés qui intégraient un SGBD re- 
lationnel dans un environement Prolog. A 
I'ECRC, trois systèmes furent successive- 
ment étudiés et implantés. 

As a consequence of the success of logic 
as a programming language, faced with 
the necessity of increasing the power of re- 
lational database systems and taking ad- 
vantage of the common theoretical back- 
ground, several systems coupling Prolog 
with a database management system were 
developed. At ECRC, three systems were 
successively studied and implemented. 

Le premier, EDUCE [BP88], realisait le The EDUCE system [BP88] couples the 
couplage du système MU-Prolog avec le MU-Prolog system with the INGRES 
SGBD INGRES. Les accés à la base DBMS. Data access are performed through 
de données étaient réalisés par l'inter- the UNIX pipes on which queries in QUEL 
médiaire des canaux UNIX sur lesquels (the INGRES query language) and an- 
transitaient les requêtes en QUEL (le Zan- swers are transferred. 
gage de requêtes de INGRES) et les ré- 
ponses. 
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Figure 1.1: Knowledge Base Management Systems at ECRC 



D'une part, la capacité du SGBD est aug- The DBMS capacity is augmented by the 
mentée par la puissance des mécanismes power of Prolog inference mechanisms. 
d'inférence de Prolog qui joue alors le rôle Prolog plays the role of a manipulation lan- 
de langage de manipulation (et non de Zan- guage (and not of a query language). Pro- 
gage de requête). D'autre part, Prolog log benefits by a secondary storage and re- 
bénéficie d'un système de stockage et de trieval system. It is a first approximation 
récupération de données en mémoire se- to a Prolog database on disk. 
condaire. Il s'agit d'une première approxi- 
mation d'une base de faits sur disque. 

Cependant, en toute généralité, les be- 
soins de stockage de Prolog ne sont pas 
limité à une structure relationnelle en 
première forme normale. Il faudrait, 
aussi, pouvoir stocker des termes com- 
plexes et des clauses, comme c'est le cas 
dans la database interne de la plupart 
des systèmes Prolog. C'est dans ce sens 
que vont les systèmes EDUCE* et Mega- 
log [HBD89]. Tous les deux sont basés sur 
le système de gestion de fichiers BANG 
[Fre8r] qui permet une gestion eficace 
de données éventuellement complezes (à 
noter qu'en présence de variables et de 
termes, l'algèbre relationnelle n'est plus 
disponible). 

Megalog, qui est l'aboutissemnet de ces 
travaux, constitue donc une plateforme de 
développement de systèmes de gestion de 
connaissances. E n  effet, il fournit: 

u n  environement de programmation 
Prolog étendu avec des primitives 
de manipulations (accés et mises à 
jour) des données sur disque ; 

u n  système de gestion de base de 
données relationnel intégré ; 

u n  système de gestion de données 
complexes intégré. 

However, the storage needs of Prolog are 
not limited to a relational structure in first 
normal form. It should be possible to store 
complex terms and clauses, as it is the case 
in the interna1 Prolog database in most 
Prolog systems. The EDUCE* and Mega- 
log systems [HBD89] take this direction. 
They are both based on the BANG file 
management system [Fre87] allowing the 
storage and efficient retrieval of complex 
data (in the presence of terms and vari- 
ables the relational algebra is no longer 
available) . 

Megalog, the most recent system, offers a 
platform for the development of knowledge 
management systems. Indeed, it provides: 

A Prolog programming environment 
extended with primitives for manip- 
ulation of data on disk (access and 
updates) ; 

an integrated relational database 
management system; 

an integrated complex data manage- 
ment system. 



1.2.2 Les bases de données déductives 

Sur les supports de développement de 
systèmes de gestion de bases de con- 
naissances précédement présentés, des 
systèmes de gestions de bases de données 
déductifs ont été prototypés. Comme 
nous le verrons ultérieurement, un système 
déductif est principalement composé d'un 
langage de description de vues complexes 
et d'un évaluateur complet pour ce lan- 
gage. Ce type de langage est, en 
général, appelé Datalog (logique pour les 
données) et accompagné de quelques ex- 
posants précisant les extensions au lan- 
gage de base (Datalo$gg pour les fonctions 
d'agrégation, Datalog' pour la négation, 
etc). A la base Datalog est un langage 
de clauses de Horn sans symbôles de fonc- 
tions. 

Ce type de langage est déclaratif, c'est 
à dire que sa syntaxe ne contient aucun 
élément de contrôle. Il ne sert pas à 
spécifier une évaluation mais à dénoter un 
ensemble de données. Par conséquents, 
un évaluateur du langage doit garantir 
la complétude du calcul : il doit pro- 
duire toutes les données dénotées, pas plus, 
pas moins. La résolution SLD Prolog 
standard n'est pas complète même dans 
le cas de Datalog à cause des éventuels 
prédicats récursifs. Par conséquent, il con- 
venait de developper d'autres mécanismes 
d'évaluation. Les méthodes d'évaluation 
de la famille QSQ [Vie86, Vie871 sont 
complètes pour Datalog (il n'existe pas 
d'évaluateur complet pour la logique du 
premier ordre), 

Deductive database management systems 
prototypes have been developed on top of 
the platforms described above. As we will 
see later, a deductive system is mainly 
composed of a complex view description 
language and of an evaluator which is 
sound and complete for this language. 
This kind of language is called Datalog 
(Logic for Data) and may be accompanied 
by several exponents indicating the exten- 
sions to the basic definition (Datalogagg for 
aggregation functions, Datalog' for nega- 
tion, etc). Basically, Datalog is a language 
of Horn clauses without function symbols. 

This kind of language is declarative. Its 
syntax does not contain any control ex- 
pression. It is not used to specify an eval- 
uation but to denote a set of data. As 
a consequence, an evaluator for that lan- 
guage must guarantee the completeness of 
the result: it must answer al1 the denoted 
data, no more, no less. The standard Pro- 
log SLD resolution is not complete even in 
the case of Datalog. This is due to the 
possible recursive predicates. It was there- 
fore necessary to develop new evaluation 
mechanisms. The evaluation methods of 
the QSQ family [Vie86, Vie871 are com- 
plete for Datalog (there does not exist a 
complete evaluation method for full first 
order logic) 



Ces méthodes d'évaluation constituent 
le coeur des systèmes Dedgin, Dedgin* 
[LV90] et EKS- VI [VBIP Slb] qui sont 
les trois prototypes successifs de systèmes 
de gestion de base de données déductifs 
de l%CRC. Le système le plus moderne, 
EKS-VI, intègre, en plus de l'évaluateur 
de requêtes, un gestionnaire de contraintes 
d'intégrité, un système de gestion de vues 
materialisées et un langage de manipula- 
tion et de mise à jour permettant des mises 
à jour conditionnelles et du raisonnement 
hypothétique. 

Une partie des expérimentations que nous 
avons réalisées pour le modèle que nous 
présentons dans cette thèse ont été im- 
plantées au dessus de  EKS-VI. 

Such evaluation methods are the kernel 
of the Dedgin, Dedgin* [LV90] and EKS- 
V1 [VBK+Slb] systems. These are the 
three successive prototypes of the ECRC 
deductive database management sys tems. 
The EKS-V1 system integrates, in addi- 
tion to the query evaluator, an integrity 
constraints checker, a materialized view 
management system and a manipulation 
and update language allowing condi t ional 
updates and hypothetical reasoning 

We have implemented prototypes for the 
mode1 we present in this thesis on top of 
the EKS-VI system. 

1.2.3 La modélisation des connaissances 

Malgré leur puissance et leur expres- 
sivit é, ces systèmes déductifs manquent 
d'outils permettant la modélisation de 
données et de connaissances. Toutes 
les formes de connaissance nécessaires 
à une application sont représentées dans 
le formalisme logique. Les notions na- 
turelles d'agrégation, de généralisation 
et de spécialisation pour l'organisation 
générale des connaissances doivent être 
traduites, à la main, en terme de faits,: 
de règles et de contraintes par le program- 
meur. La disparition de cette organisa- 
tion explicite des connaissances, de cette 
méta connaissance, interdit son exploita- 
tion ultérieure (optimisation sémantique, 
réponses intentionnelles, etc). 

Despite their power and expressivity, such 
deductive systems are lacking tools for 
data and knowledge modeling. Al1 kinds 
of knowledge needed for an application are 
represented in the logical formalism. Nat- 
ural notions, such as aggregation, gener- 
alization or specialization for the general 
organization of knowledge, must be trans- 
lated by hand to facts, rules and con- 
straints. The disappearance of an ex- 
plicit form of this knowledge , this meta- 
knowledge, forbid its later exploitation (se- 
mantic optimization, intentional query an- 
swering, etc). 



On voit donc apparaitre plusieurs direc- 
tions de réflexion : 

la définition d'un modèle de données 
et de connaissances intégrant les 
aspects d 'organisation des connais- 
sances et les aspects déductifs ; 

l'implantation d'un système de ges- 
tion de connaissances fondé sur ce 
modèle ; 

1 'exploitation des informations sé- 
mantiques pour optimiser et enrichir 
le système de gestion. 

Un premier système intégrant des out- 
ils de modélisation évolués dans un cadre 
déductif a été prototypé à 17ECRC sous 
le nom de KB2 [Wa186]. Il était di- 
rectement implanté sur la plateforme de 
développement EDUCE. Le modèle de I(B2 
est une extension du modèle entité as- 
sociation à la classification. Il contient 
deux niveaux distincts d'information : les 
données et le schéma. 

Le principal problème mis en évidence par 
le développement d'un prototype pour KB2 
est celui de la mise en correspondance en- 
tre les éléments du modèle et les structures 
de stockage (eficacité versus intégrité, cf. 
[Wa185]). ll nous semble que la définition 
et les résultats des évaluation de KB2 ont 
été infiuencés par la plateforme sur laquel- 
le le prototype a été implanté. 

Several research directions appear: 

the definition of a data and knowl- 
edge model integrating knowledge 
organization and deductive aspects; 

the implementation of a knowledge 
management system based on this 
knowledge; 

the exploitation of the semantic in- 
formation to optimize and enrich the 
management system. 

A first system integrating advanced mod- 
eling tools in a deductive framework has 
been prototyped in ECRC under the name 
KB2 [Wa186]. It was directly imple- 
mented on the platform EDUCE. The KB2 
data model is an extension of the Entity- 
Relationship model to classification. It 
contains two separate levels of distinct in- 
formation: the data and the schema. 

The main problem emphasized by the 
development of a prototype for KB2 is 
the mapping of the model to a relational 
structure (efficiency versus integrity, cf. 
[Wa185]). It seems to  us that the definition 
and the result of the evaluation of KB2 
were influenced by the platform on which 
it has been implemented. 



Par la suite, un groupe de travail a œu- 
vré à la définition d'un langage de mo- 
délisation des connaissances. Le résultat 
de cette recherche est la proposition KBL 
[MK W89]. Les eflorts ont porté sur les as- 
pects linguistiques et ont permis de clar- 
ifier un grand nombre de concepts (en 
particulier la distinction entre les aspects 
et les constructions dénotationels et opé- 
rationnels). La nécessité de représenter 
des formes "méta" de la connaissance à 
aussi été soulignée, mais le modèle de KBL 
est basé sur un nombre fixe et fini de 
niveaux distincts. Seul un analyseur syn- 
taxique du langage a été prototypé. 

Il semble aujourd7hui nécessaire de repren- 
dre ces réfiexions dans le cadre global du 
développement d'un système de gestion des 
connaissances, à la lumière des possibilités 
ouvertes par l'évolution de la technologie 
déductive. Cela constitue une partie des 
objectifs immédiat du groupe Knowledge 
Bases de I'ECRC (projet KB-X), Notre 
travail s'inscrit en préliminaire de cette 
recherche. 

1.3 Mobius 

Later, a working group tried and defined 
a modeling language. The result of this 
research is the KBL proposa1 [MKW89]. 
This work has concentrated on the linguis- 
tic aspects and it has clarified a number 
of concepts (in particular the distinction 
between denotational and operational as- 
pects and constructs). The necessity of ex- 
plicitly representing meta-knowledge was 
also emphasized. However, the KBL model 
is based on a fixed number of distinct lev- 
els. Only a parser of the language has been 
implemented. 

It seems to be necessary to come back to 
these reflections in the global framework 
of the development of a knowledge man- 
agement system, taking advantage of the 
new possibilities offered by the deductive 
technology. This is the current objective 
of the ECRC knowledge Bases group (KB- 
X project). Our work is a preliminary for 
this research. 

1 

Mobius est tout d'abord un modèle First of all, Mobius is a semantic data 
sémantique de données. Il s'agit d'offrir, model. It offers, in a database context, the 
dans un contexte de base données, la pos- capability to organize knowledge in terms 
sibilité d'organiser la connaissance en ter- of classification and deduction: a marriage 
mes de classification et de déduction : un between deductive and object-oriented ap- 
mariage des approches déductives et oré- proaches for modeling. 
entées objet pour la modélisation. 

'Nous avons choisi le nom Môbius en référence aux rubans de Mobius qui sont des espaces 
topologiques n'ayant ni intérieur ni extérieur. Cette propriété est une allusion h l'architecture 
métacirculaire du modèle. 
We choose the name Mobius in reference to the Mobius strips. They are topological spaces without 
inside and outside. This property is an allusion to the metacircular architecture of the model. 



Nos choix de base furent de nous inspirer 
des modèles de la famille entité-association 
et des modèles de réseaux sémantiques 
en les enrichissant de la dimension de 
classification. Nous avons donc con- 
sidéré un modèle dans lequel les objets 
sont de simples noeuds dans un réseaux 
d'associations, de liens, qui leur donnent 
leur signification. Nous avons retenu trois 
notions de base : l'entité, l'attribut (lien 
entre deux entités) et la classe. 

Par ailleurs, nous souhaitions un modèle 
extensible et qui représente uniformément 
toutes les informations que le concepteur 
et l'utilisateur peuvent exprimer. C'est 
pour cette raison que nous sommes partis 
d'une définition métacirculaire du modèle. 
Tout est entité, y compris les attributs, 
et, par conséquent, la sémantique et les 
mécanismes applicables aux données sont 
aussi applicables aux éléments du schéma 
et de tous les méta niveaux nécessaires. 

Le noyau métacirculaire est décrit par 
un ensemble de données interconnectées 
et définies en extension (faits), en inten- 
tion (règles) et régies par un ensemble de 
contraintes (contraintes d'intégrité). Le 
noyau est principalement constitué de deux 
entités : e n t i t y  et c la s s ,  respectivement 
la classe de toutes les entités du système et 
la classe de toutes les classes. L'extension 
du noyau est controlée par des contraintes 
qui garantissent sa sémantique. 

Our basic choices consisted in taking in- 
spiration from the models of the Entity- 
Relationship family or from the semantic 
networks models, trying to add to them 
a classification dimension. We considered 
a model in which objects are simple nodes 
in a network of associations that give them 
t heir meaning. We retained three notions: 
the entity, the attribute (link between two 
entities) and the class. 

Moreover, we wished an extensible model 
representing uniformly al1 kinds of infor- 
mation the designer or the user may have 
expressed. For that reason, we started 
from a metacircular definition for the 
model. Everything is an entity, includ- 
ing attributes, and, therefore, the seman- 
tics and mechanisms for data are applica- 
ble for the schema and al1 the necessary 
meta-level components. 

The metacircular kernel is described by a 
set of interconnected data defined in ex- 
tension (facts), in intention (rules) and 
ruled by a set of constraints (integrity con- 
straints). The kernel is mainly composed 
of two entities: en t  i t y  and c l a s s ,  respec- 
tively the class of al1 entities in the sys- 
tem and the class of al1 classes. The kernel 
extension is controlled by the constraints 
guaranteeing its semantics. 



En résumé, les principaux traits du modèle 
sont : 

les entités ; 

les classes ; 

la hiérarchie de classe et d'instances 

' 

les attributs et les associations ; 

les définitions en extension 
d'attributs ou de classes ; 

les définitions en intention 
d'attributs ou de classes ; 

l'héritage ; 

les contraintes. 

En fait, Mobius va offrir une du- 
alité méthodologique puisqu'une applica- 
tion pourra être décrite soit du point de vue 
de la hiérarchie de classes (en associant les 
définitions d'attributs aux classes), soit du 
point de vue des définitions d'attributs (en 
associant des domaines, des classes, aux 
définitions d'attributs). 

Le modèle est accompagné d'un langage 
déclaratif. Ce langage est utilisé pour 
définir des requètes, des vues ou bien 
des contraintes. La syntaxe est celle de 
Datalog. Elle comprend cependant des 
éléments supplémentaires qui permettent 
de controler l'héritage statiquement ou dy- 
namiquement (nom complet ou vues et 
points de vue). 

La sémantique du modèle est donnée par 
une traduction en logique du premier ordre. 
Les formules obtenues peuvent servir (nous 
le montrons dans nos expériences de pro- 
totypage) à l'implantation sur un système 
de gestion de base de données déductif 
lorsqu'elles sont transformées en règles et 
contraintes d'intégrité. 

To summarize, the main featuies of the 
model are: 

entities; 

classes; 

the class and instances hierarchy; 

attributes and associations; 

attribute or classes extensional defi- 
nitions; 

attribute or classes intentional defi- 
nitions; 

inheritance; 

a constraints. 

In fact, Mobius offers a methodological du- 
ality. An application may be designed ei- 
ther from the point of view of the class 
hierarchy (in associating attribute defini- 
tions to classes) or from the point of view 
of attribute definitions (in associating do- 
mains (classes) wit h attribute definitions) 

The declarative query language is used to 
define queries, views or constraints. Its 
syntax is basically the same as Datalog. It 
comprises supplementary elements which 
allow a static and dynamic control of in- 
heritance (full name, or views and view- 
points) 

The model semantics is given by a trans- 
lation into first order logic. The formulae, 
transformed into rules and constraints, can 
be used (as we show in the prototyping ex- 
periments) for a direct implementation on 
a deductive database management system. 



Présentation 

Dans cette thèse nous nous sommes at- 
tachés à poser la problématique qui nous 
a amenés à réaliser ce travail, à présenter 
notre proposition pour un modèle con- 
ceptuel sémantique de connaissance, et à 
discuter nos expériences de réalisation de 
prototypes de systèmes de  gestion de con- 
naissances basés sur notre modèle. 

Dans le chapitre 2, nous passons en 
revue et présentons les différentes ap- 
proches de la représentation des connais- 
sances qui ont influencé notre travail. Il 
s'agit des approches dites déductives des 
bases de données, de la modélisation et 
représentation des connaissances et des 
approches orientées objet des bases de 
données. 

Dans les chapitres 3, 4 et 5, nous 
présentons notre proposition pour un 
modèle de connaissances. Nous présentons 
successivement le noyau métacirculaire du 
modèle, les élements de base, attributs et 
classes d'attributs, les problèmes et solu- 
tions liés à l'héritage et ceux liés aux no- 
tions d'instance et d'identité d'objet. 

Dans les chapitres 6 et 7, nous décrivons 
les expériences d'implantation et 
présentons nos réflexions sur la définition 
d'un système de gestion de connaissances 
fondé sur notre modèle. Nous discu- 
tons le problème de la mise en corre- 
spondance (mapping) du modèle avec les 
structures relationnelles de stockage. Nous 
étudions la définition et le prototypage d'un 
évaluateur pour notre langage déclaratif. 
Nous analysons les besoins pour un langage 
de manipulation et de mise à jour. 

Dans la conclusion, nous établissons un bi- 
lan du travail présenté et réalisé et nous 
envisageons les diflérentes perspectives ou- 
vertes. 

In this thesis we analyse Our problem, we 
present Our proposition for a semantic con- 
ceptual knowlededge model and we dis- 
cuss our experiments in the implementa- 
tion of knowledge management systems 
prototypes based on our model. 

In chapter 2, we review and present the 
several approaches of knowledge represen- 
tation that influenced our work. It is about 
deductive approaches to databases, knowl- 
edge representation and modeling and 
object-oriented approaches to databases. 

In chapters 3 , 4  and 5, we present our pro- 
posa1 for a knowledge model. We intro- 
duce successively the metacircular kernel 
of the model, the basic components, at- 
tributes and attribute classes, the prob- 
lems and solutions related to inheritance 
and those related to the notions of instance 
and identity. 

In chapters 6 and 7, we describe the im- 
plementation experiments and present our 
ideas about the definition of a knowledge 
management system. We discuss the prob- 
lem of mapping the model to relational 
storage structures. We study the defini- 
tion and the prototyping of an evaluator 
for our declarative language. We analyse 
the prerequisites for a manipulation and 
update language. 

In the conclusion, we sum up the presented 
and realized work and we look at the dif- 
ferent future prospects. 





l Chapitre 2 
l 

Knowledge-base Models and Systems 

Modèles et systèmes pour les bases de connaissances 

Dans ce chapitre, nous présentons les trois domaines à l'intersection desquels 
ce situe notre travail. 

Il s'agit d'une part de présenter la technologie developpée pour les bases de  
données déductives. Nous en analysons les deux principales composantes, à 
savoir, la définition et l'évaluation de vues complexes éventuellement récur- 
sives et la définition et la gestion de contraintes d'intégrité. 

D'autre part, nous passons en revue les principales contributions (dans le 
domaine de l'intelligence artifcielle et des bases de données) à la modélisation 
de données. Nous essayons de dégager les aspects essentiels d'un modèle 
sémantique de données. Notre analyse retient cinq notions: 

la représentation et la gestion de l'intégrité référentielle ; 

l'organisation des données selon les trois axes: 

- agrégation ; 

- classification ; 

- généralisation ; 

la nécessité de représenter des données implicites. 

Enfin, nous étudions l'apport des approches dites "orientées objet" des bases 
de données à la définition d'un système de gestion des connaissances, ainsi 
que leur intégration dans un contexte déductif. 

Ce chapitre réunit des travaux qui ont, d'une manièîe OU d'une autre, infiu- 
encé ou motivé la définition du modèle et du système Miibius. 
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2.1 . Deductive Databases 

The first deductive database systems, relying on the common relational background 
shared by both relational databases and logic programming languages, aimed at combin- 
ing the two paradigms [GMN84], [CGTSO]. This had the advantage of adding persistent 
storage means to logic programming languages like Prolog and of providing an inference 
mechanism (deduction) for a database manipulation language. But today, because of 
the procedural nature of Prolog, such approaches should be classified in the specific 
paradigm of persistent programming languages. Such integrated or coupled systems are 
certainly offering adapted platforms for deductive databases systems development but 
are not themselves deductive databases (cf. e.g. [BP88], [CW86], [HBD89], etc). 

Indeed, one should understand deductive databases as systems exploiting the declarative 
aspects of logic rather than its procedural aspects. In particular, such a definition 
comprises not only the capabilities of expressing complex views by means of rules and 
of computing complex queries expressed in first order logic, but also the capability to 
express any kind of knowledge in logic, for instance integrity constraints. 

Today, deductive databases technology is effective. The prototypes are no more lab- 
oratory prototypes but first beta-versions of commercial systems [MNS+87], [PDRSl], 
[TZ86]. The question is to investigate the field of specific applications and to use the 
feedback to improve and give a direction to the future developments [Tsugl]. 

An example of such a deductive database system prototype is the EKS-V1 system devel- 
oped at  ECRC [VBK+Slb]. It is one of the only deductive database systems incorporat- 
ing both a query evaluator for Datalogl"gg and an efficient integrity constraints checker 
[VBK+Slc]. The query evaluator implements a compilation based version of the QSQ 
algorithm [Vie87]. The constraints checker is based on an update propagation mecha- 
nism [VBKSla]. We used EKS-V1 as a basis for several experimental implementations 
of Mobius. 

2.1.1 Complex Views 

Deductive databases systems are a class of systems whose purpose is to extend the ca- 
pacity of relational databases systems. Mainly, t hey allow the expression of complex 
views, possibly recursive, by means of logical rules. Traditional relational databases 
allow to store and retrieve data (tuples) thanks to a query language based on the rela- 
tional calculus - for instance SQL-. The purpose of views is to express virtual relations, 
intentionally defined relations. Because of the strong relationship between relational 
calculus and first order logic, the query and the view language for a relational database 
can be a firsf, order logic language. Let us consider, as an illustration, a database of 
parts used by a bicycle constructor (example 2.1.1). 

Example 2.1.1 The bikes and their subparts are stored in a relation part (part, subpart , 
quantity) and the basic parts are stored in a relation basicpart(part,  cos t ) .  The data 
are illustrated by the tables below: 



part 
bikel 
bikel 
bike2 
bike2 
backwheel-239 

subpart 
frontwheel-230 

Several relational queries can be asked, for instance in a SQL-like language. They are 
expressed using the relational operators: join, selection and projection. The following 
expression: 

quantity 
1 

backwheel-239 
backwheel-323 
pedal- 12 
tyre-24 

SELECT part FROM part WHERE part.subpart=pedal-12. 

1 
1 
2 
1 

denotes the set of parts, bikes, having as a subpart the pedal number 12. 

Al1 such relational queries can be expressed by means of logical formulae and views can 
be expressed by means of rules. The above query would then have the form: 

query(X) <- part (X,pedal-12,,). 

The relations(or predicates) defined by such rules are called views. An important aspect 
of deductive databases is the easiness to define recursive views. In our example, we may 
want to compute the set of needed basic parts for building bikel. This would be denoted 
thanks to the recursive view* subpart (part, subpart): 

subpart(X,Y)<- part(X,Y,,). 
subpart (X , Y) <- part (X , Z , ,) and subpart (Z ,Y) . 

and the query: 

query(X) <- subpart (bikel, X) and basicpart (X, ,) . 

Deductive databases also extend the view and query language of the database system 
to non monotonic features such as negation or aggregate functions. In the example, 
aggregate functions could be used to define views and queries to compute the total cost 
of a given bike (e.g. the canonical bill of materials example [LefSlb]). 

As the logic programming languages, like Prolog, have demonstrated that logic could be 
used for both specification and computation, the idea came naturdly to use logic as a 
language for data description. Such a first order logic based language for data is called 
Datalog. As opposed to Prolog, it has not a procedural semantics, it is not a procedural 

'Recursive views where not expressible in the early version of SQL and reiational database query 
languages. Now, most of them allow their expression and can handle their evaluation. 



language. Datalog is a declarative language wi th a denot ational semantics. A Datalog 
expression denotes a set of ground tuples with the only assumption that an eventual 
evaluation will be sound and complete (it will compute the exact set of answers, no 
more, no less). There is no evaluation algorithm for full first order logic that is sound 
and complete because first order logic is undecidable. However there exist useful subsets 
of first order logic that have this good property. Datalog, basically, is restricted to first 
order logic without function symbols. When limited to Horn clauses,-a Datalog program 
has a unique minimal model which is computable (the set of Herbrand atoms is finite). 

The challenge was also to extend Datalog to bigger classes of problems: for instances 
Dat alogl, Datal~g'"~'"~, Datalogf , Datalogug9 respectively extend Datalog to negation, 
stratified negation, function symbols and aggregate functions. Two semantic approaches 
can be taken for Datalog and its extensions: the model theoretic semantics and the proof 
theoretic semantics. In some cases the model theoretic approach is weaker as  there does 
not exist a minimal model. The proof theoretic approach has also the advantage to give 
hints for the definition of evaluation algorithms. Such algorithms are usually based on 
a fixpoint computation. 

Several methods have been developed to evaluate Datalog expressions, some of them 
have been extended to Datalog*. The main method are the Magic Sets methods (see 
also the Alexander method), the OLDT method and the QSQ method. 

The Magic Sets method ([BMSU86]) is said to be bottom-up. Each rule or query is 
rewritten into a rule producing the answers by a forward chaining from the data in the 
base. The Magic rules are such that they allow to push the selections with the original 
rules, therefore avoiding redundant computation, as opposed to the simplest method, 
called the naîve method, which produces the answers by a forward chaining on the initial 
rules. 

The OLDT method (Ordered Linear resolution for Definite clauses with Tabulation, 
[TS86]) is a top-down method. It uses the horn clauses in a backward chaining à la 
Prolog. The idea, to avoid infinite loops due to recursion in the proof tree construction, 
was to store the subqueries and answers in a table. The OLDT resolution can avoid to 
expand already stored subqueries while using the produced answers. 

The QSQ method, Query/SubQuery ([Vie86], [Vie87]), is similar but does not assume 
any order among the literals in a rule body or a query. QSQ allows a local selection 
function. 

The three methods need a fixpoint computation. In fact, although the top-down and 
bottom-up approaches look very different [U1189], it has been shown that they are equiv- 
dent  [BrySO] even for the each computation step [Sek89]. For instance, the bottom-up 
rules of the magic set method simulate the backward chaining on the original rules. 
In general terms, the two goals of a query evaluation technique are to guarantee ter- 
mination (in the case of recursion) and to avoid redundant computation. This can be 
achieved either by rewriting or by memoization techniques. 

Thus a deductive system is, at least, a query evaluator for a view and query language 
on top of a relational database. Deductive database architectures differ whether they 



are based on a loose or a tight-coupling with the relational database system. A loose- 
coupled deductive system will generate queries for the relational database in the query 
language and send them to the relational database. A tight coupling architecture, on 
the contrary, achieves a stronger integration of the two systems. The deductive engine 
can retrieve information from the disk. Tt has the advantage that no time is wasted 
in communication and that no redundant optimization is done by the query evaluator 
of the relational system. Loose coupled architectures are easier to implement. They 
only require the development of an interface between two, a priori, existing systems. A 
tight coupled architecture requires the redevelopment of, at least, a part of the database 
system, the code of commercial database being generally not in the public domain. 

2.1.2 Integrity Constraints 

Integrity constraints on a knowledge base are affirmations, according to certain semantic 
conditions arising from the domain of the application, that define the valid states and 
evolutions of the knowledge base (cf. ZBDM881). Constraints on states are called static 
constraints. Constraints on the evolution, refering to several states and to the temporal 
order among them, are called dynamic constraints. For instance, statements like: 

"The salary of every employee should not be lower than the legal minimum salary" 

l "The salary of every employee should not decrease" 

1 are, respectively, static and dynamic constraints for the knowledge base of a Company. 

Dynamic constraints have been less studied than static ones, in particular in the context 
of deductive databases. Their complexity is higher since they deal with several states 
of the knowledge base and the temporal order among them. The Mobius system makes 
use of only static constraints and, therefore, in the following, we will develop only this 
notion. 

The first End of constraints studied by the relational database community was related to 
the problem of referential integrity posed by the value-oriented nature of the relational 
representations. Narnely, maintaining the identity of data defined by means of values 
grouped into relations leads to the definition of functional dependencies. For instance in 
a database of persons, functional dependencies allow to state that a person is uniquely 
identified by its name and surname. If a relation R has the attributes Name, Surname 
and Person, this functional dependency is represented as follow: 

Name, Surname --t Person 

In general, for a relation schema R(Al, A2, ..., A,) and X, Y subsets of the set of at- 
tributes {Al, A2, ..., A,), there is a functional dependency: 



if and only if, for x a value on X and y and y' values on Y: 

R(z, y) and R(x, y') + y = y' 

In other words, there corresponds a t  most a unique value of Y to a value of X. 

Other dependencies have been defined: multi-valued dependencies, inclusion dependen- 
cies. Al1 those dependencies, together with the notion of key, were used to define the 
several normal forms of a relational schema. 

However , first order logic (or Datalog and its extensions ) is a more general language for 
expressing constraints. Al1 the above cited constraints can be translated into Dat alog 
formulae. For instance a functional dependency can be as well expressed by the formula: 

VXYY1((R(X, Y) A R(X, Y')) =+ Y = Y') 

Thus integrity constraints are encoded as Datalog formulae. A supplementary and rea- 
sonable condition is that these formulae are range-restricted. Le., the variables occurring 
in the formulae, free or quantified, must range over a domain defined by an expression. 
Intuitively, a range defines the possible ground substitutions for the variables. This 
ensures that each formula always denotes a set of ground tuples without intervention 
of the Herbrand universe. Let us give exampies of integrity constraints expressed by 
range-restricted Datalog and Datalog* formulae: 

"each department must have a leadern 

VXgY(dep(X) + leader(X, Y)) 

"an employee of a research centre is either a researcher or an administratorn 

"group and team leaders cannot be the sarne personn 

employee cannot work for more than 3 projectsn 

VXYI(employee(X) J (count([YJ, work f or(X, Y), I )  ii I < 4))2 

Thus the query language of deductive databases constitutes a substantively rich language 
for expressing integrity constraints. What for? 

First of all, when designing the schema of an application, the designer can express the 
integrity constraints among the different components. Such constraints can be used 

2count([Y],  work for (X ,  Y ) ,  1) stands for the aggregation function 



automatically or manually to design the relational schema: they can be transformed 
into structural constraints. E.g., if a group is always lead by exactly one group leader 
and a leader leads exactly one group, the two data can be stored in the same relation. 
This point of view is the point of view of normalization. More generally, it indicates 
that there is a strong relationship between the several components of the knowledge 
base: facts, deduction rules and constraints. Choosing the schema of the base relations 
and defining the rules can guaranty the validity of some integrity constraints. 

This is particularly clear between rules and constraints. They are both means to express 
knowledge. It is not always clear whether a formula should be considered as a rule or 
an integrity constraint. Let us compare the following rule and constraint in the EKS-VI 
syntax: 

na me(^, N) <- single(X) and father(X, Y) and name(Y, N) 

constraint: 

fora11 [X Y NI : 
single(X) and f ather(Xa Y)  and name(Y ,N) -> name(X, N) 

They are both the same formula expressing that singles have the same name as their 
father. The difference stands only if one thinks of a rule as a means to answer a query 
and of a constraint as a statement to be verified. However both rules and constraints 
are part of the knowledge. Recent researchs studied the possible interactions among 
these two kinds of knowledge. Indeed, constraints can be used to optimize the query 
answering or even to give generic answers to queries. If a constraint states that nobody 
is both a group and a team leader you can immediately answer negatively the query: 
groupleader(X) and teamleader(X). If one knows that singles have the same name 
as their fathers, one can, at least, answer single(]() to the query: name(X, N) and 
f ather(X, Y) and name(Y, NI, instead of giving the exhaustive list of singles which 
is probably less expressive. The two above cited possibilities are respectively called 
semantic optimization[CGM87] [CGM9O] and intentional query answering [PR89]. In 
general the situation is that constraints are pieces of knowledge that should be used for 
query answering. 

An interesting point to underline is the eventuality of an inconsistent state of the knowl- 
edge base because of the constraints and rules arnong them. In particular two constraints 
together may be unsatisfiable. This is a problem that suilers from a theoretical limita- 
tion since satisfiability of first order formula, has been showed to be undecidable. 

Last but not least, the main use of integrity constraints is to guaranty the validity of 
a knowledge base state. Any transaction, or single update, modifies the mode1 of the 
database. The question is: is the new knowledge base consistent with regards to the 
integrity constraints? Here constraints can be treated as "yes/non queries in the query 
language. If the query is answered by "no" (or its negation by "yes"), the constraint 
is violated. The knowledge base is inconsistent. When a new constraint is stated the 
entire database much be searcl-ied to verify the integrity. Over a database of 10000 



employees, if one states that every employee must have a reasonable salary, this has 
to be checked for the 10000 in any way. However, when assumed that the state before 
a transaction is valid, one could think of propagating a minimum set of information 
susceptible to influence the constraints. For instance, when adding a new employee, 
the constraint about the salary could be checked for this single new employee. The 
general case is not always as simple, but the principle is there. A means of efficiently 
evaluating integrity constraints is to compile them into propagation rules fired by the 
updates. The technique of propagation rules and so called generated predicates consists 
in rnaintaining the extension of some intentionally defined predicates for which one 
expects or knows that the time of their wmputati~n is worth being exchanged against the 
space they consume. Then one creates propagation rules minimizing the computation 
of their extension after a transaction. For each integrity constraint, one can consider 
the negation of the constraint as being an intensionally defined predicate: 

violate-ic <- not ic 

As it can be very expensive to recompute such predicates after each update and as 
maintaining their extension is very cheap since one expects it to be empty (no tuple 
should violate the constraint), they are treated as generated (materialized) predicates. 
This is the actual way integrity constraint checking is implemented in EI<S-V1 (cf. 
[VBI<9l a]). 

2.2 Ob ject-orientation 

2.2.1 Data Models and Knowledge Representation Systems 

Initially developed in parallel, artificial intelligence and database research met in the 
mid-1970's to fil1 the gap of modeling techniques. The weakness of early data models, 
hierarchical, network and even relational model, cdled an insight on modeling tools. 
Artificial intelligence is concerned with the knowledge representation, manipulation and 
reasoning. The artificial intelligence models are based on the cognitive and physio- 
logical psychological studies. The conceptual models, addressing the problem of the 
representation of knowledge, strongly iduenced the database community. 

The role of a knowledge base management system (also called information system) 
is to reflect, partially, the r d i t y  of a given application domain. The manipulation 
language links the system to the world, mainly allowing interactions modifying the 
system's knowledge. The data model is the frame of the representation of any kind of 
knowledge about the world. The representation will probably corrupt the reality: 

O the model is never as general as wished and may not be able to represent al1 kinds 
and forms of knowledge; 

the representation may voluntarily omit irrelevant information; 



the representation may change the nature of knowledge. 

For instance, in the simple data model of a deductive database, one can choose to 
represent knowledge through rules and facts that do not directly correspond to laws 
and observations of the reality. The choice of the distorsion of the reality is under the 
designer responsibility. Therefore, the data model, and in general the knowledge system, 
must provide a variety of representations as rich and close to the vision of the world in 
the designer mind as possible. A data model should allow the designer to express the 
constraints over the real world and to represent the structure of information and the 
way he views it. A data model should provide tools to express structures, views and 
constraints. It would then be called a semantic data model. 

Relying on psychological studies, the conceptual approach to knowledge representation 
is based on the assumption that the world should be modeled in terms of objects, struc- 
tured, interrelated and classified, since it seems to fit with our mental representations 
([Sow84]). Connexionists would argue that knowledge, structures and reasoning, are in 
fact encoded at a lower level: the level of the network of neurons where knowledge is 
distributed and results of the network configuration. Whatever the mechanisms of our 
brains are, the conceptual and symbolic approaches to knowledge representation have 
proved their utility and validity. The richness of the data model with respects to such 
psychological criteria is however important. Indeed the data model will serve as a user 
interface: its role will be to make the user aware of the organization of the knowledge he 
deals wi th. For t hat reason, sophisticated graphical and interactive interfaces are often 
associated with data models. The model can often give, at least , as much information as 
the application data themselves. For instance, when looking for a reference in a library 
database, the organization of books and publications browsed during the search may 
tell more about the topic than the contents of the paper itself. 

What are the features of a semantic conceptual data model? 

First of d l ,  the model must respect as much as possible the one to one correspondence 1 between entities in the world and objects in the model. An entity should not be modeled 
l 
1 by more than one object as it is done, for instance, in relational models when an entity, 

represented by the value of its attributes, is split into several tuples. A violation of 
such a principle rnay not only lead to a deplorable discordance between the model and 

' 

the reality but also bring technical anomalies such as update anomalies in relational 
databases. Symmetrically, an object in the model should not represent more than one 
entity. For instance, classes in object-oriented models are either abstractions or sets 
of their instances. They should not be used as a representation of each instance3. It 
is often tempting to build the ob ject identity (the one to one correspondence) from a 
subset of the associations describing the entity structure: a person is known from its 
name and surname. There may exist homonyms breaking the referential integrity. We . 
will come back on this point in chapter 5. 

Considering objects representing entities, the data model must support the organization 
of these ob jects along three dimensions: 

3 ~ f .  tlie class variables in some object-oriented languages. 



aggregation, association; 

classification; 

generalization. 

Entities are not identified by their interrelationship but they are understood through 
them. In the first dimension, named links relate objects, concrete or abstract, to other 
objects they are composed of (aggregation) or in relation with (association). The dif- 
ference between aggregation and association is not always clear. It depends on the 
way the designer or the user views the world. We will not argue on this difference, If 
needed, it can be complementary to the basic solution of having only association. In- 
deed, attributes can be seen as constrained binary associations. A syntactic difference 
is provided in Mobius. 

Several objects sharing the sarne general structure could be abstracted,classified, as well 
as their description, in a new object. Such a general mould for objects is usually referred 
to as a class. This mechanism seems to correspond to a natural way for organizing 
knowledge. An object in the system is associated to a class and can be structured 
or linked to the other objects according to the available description of its structure 
by the class. This second dimension is thus associated with the inheritance inference 
mechanism: an ob ject inherit its structure from the class it is an instance of. 

Classes being general descriptions and a support for conception of the knowledge schema, 
their organization in a generdization-specialization hierarchy constitutes the third di- 
mension for knowledge structuring. Brachrnan in fBra831, discussed several interpre- 
tations of this claçs-subclass classification. The main problem is the semantics of the 
inheritance mechanism exploiting the class hierarchy. Namely one must define how de- 
scriptions given in the more general classes are available for the instances of the less 
general classes. As long as the difficult problems of exceptions, redefinitions, overriding 
and multiple inheritance are not considered, inheri tance of descriptions by instances 
is equivalent to inheritance in the class hierarchy. The principle is: if a class Ci is a 
subclass of a class C2, then al1 the instances of C i  benefit by the descriptions given in 
both classes. 

The early data models emphasized in different manners the several aspects discussed 
above. The Entity-Relationship (ER) model of P. Chen [Che761 suggests a description 
of a database schema in t e m s  of structured entities (entities with attributes), values 
(integers, strings, etc), groupeci into sets and associations arnong them. Chen did not 
consider the organization of entity sets in a hierarchy. The ER model has been extended 
in several ways. The Extended Entity-Relationship (EER) model, for instance, adds 
complex attributes (built from values sets using Cartesian product or set constructors) 
and a hierarchical organization of entity sets. At the same time, al1 the work initiated 
by Quillian's semantic networks [Fin791 led to the proposa1 of Roussopoulos (in [MB88]) 
to use semantic networks as the support of data modeling and can be related to models 
of the semantic binary network [Abr74] family. Of course, Minsky's work on frames 
[Min871 had also an important impact on data modeling since it addresses the problems 
of aggregation and classification. The Semantic Hierarchical Mode1 of Smith and Smith 



(in [MB88]) already summed up the requirements we have listed above and proposed 
them as an extension of the relational model. 

Until this point, the only kind of inference we have talked about is inheritance. The gen- 
eral representation of derived data has not been only studied by the deductive database 
community. The data definition and manipulation language Daplex (in [MB88]) is a 
very important and influencing contribution in that domain. Relying on the functional 
interpretation of attributes (object structure), the Daplex model offers, in a class hier- 
archy, the possibility to describe the structure of entities by means of extensionally or 
intentionally defined attributes (functions). I.e., an at tribute is given either as a func- 
tion storing the list of its values or as one whose evaluation computes the values from 
other attributes. Mobius is in the list of modern data models that have revisited the 
Daplex proposa1 replacing the functional point of view by the deductive one. 

Finally, we want to quote a number of contributions, strongly influenced by the artificial 
intelligence approach, which insist on a reflective definition of the data model. When 
manipulating classes or meta-classes, one may want to take advantage of the same mod- 
eling and manipulation capabilities as those provided for the application data. A first 
solution consists in having a finite number of separate conceptual levels (data, schema, 
meta-schema, ...) and in reproducing the modeling environment to achieve uniformity. 
This leads to a rigid system since the number of level is fixed and the communication 
among the different levels is limited. The alternative is a reflective definition of the 
model. In that case any object, class, meta-class or application object, is defined in 
the same, unique model. The model kernel itself is self-defined. Reflexivity was mainly 
studied in the artificial intelligence community [MN88]. Artificial intelligence knowl- 
edge systems (e.g. [Fer84], [CassG]) tried this approach. It is also strongly related to 
the meta-programming techniques developed in the field of logic programing [Ven84]. A 
few data models have a reflective definition: for instance the Taxis model [NCL+87] or 
the Telos model [MBJK90]. We discuss this approach in the chapter 3. 

As a summary, the table below lists the main models and systems that had an influence 
on the definition of Mobius: 

reference 
[Abr74] 
in [MB88] 
[C he76] 
in [MB88] 
in [MB88] 
[Nix87] 
[Fer831 
[Cas861 
[MB JK901 

year 
1974 
1976 
1976 
1977 
1981 
1984 
1981 
1981 
1989 

name 
Semantic Binary Model 
Semantic Network Model 
Entity-Relationship model 
Semantic Hierarchical Model 
Daplex 
Taxis 
Mering (AI) 
Lore (AI) 
Telos 



2 - 2 2  Object-oriented Databases 

From the lack of structuring and orthogonality of the relational mode1 on the one hand, 
and from the influence of the object-oriented programming languages on the other, a 
new kind of databases has emerged during the last years: object-oriented databases (e-g. 
[Ba88]). From both the programming and the modeling points of view, object orientation 
emphasizes features that are interesting for the database systems and models. The initial 
lack of theory for objects makes more difficult the definition of what an object-oriented 
database system is. Nevertheless, following the common point of view of both Object 
Oriented Database [Aa90] and Third-Generation Database system [fADFgO] Manifestos, 
a definition can retain some required features. An object-oriented database system must 
implement : 

complex objects and an algebra for their manipulation; 

object identity; 

classes (or types) organized in a hierarchy together with an inheritance mechanism. 

Indeed, research on object-oriented databases was motivated by the lack of structuring 
offered by the relational models and systems at both modeling and programming levels. 
Complex objects are a means to overcome the rigid structure of tuples and algebraic 
terms. Complex objects are built from elementary types: integers, strings, etc, using 
constructors such as the set constructor or Cartesian products. Complex objects con- 
structors, as opposed to relational ones, are orthogonal: they can be applied recursively 
on any mmplex ob jects. 

Where mmplex objects are the first step to keep the structure of the real world entities 
in the database, object identity is the means to reified the real world entities. In the 
relational models, entities existence depends on the entity values: they are said to be 
value-oriented. Object identity allows entities to be independent from their state and 
values. Entities of the application exist in time and space regardas to their relationships 
to other entities. Object identity solves many of the problems posed by referentid 
integrity constraints, in particular, the update anomalies studied by the normalization 
techniques in relational databases. 

In [AbigO], Abiteboul proposes a definition of an object as a triple: (identifier, type, 
value). As the value is no more characteristic of what an entity is, its attachment to a 
class or its type defines its general structure. Al1 person have names, surnames and a 
date of birth, they may have an address. It seems that the conception of an application 
schema is eased by the support of classes. Organization of schema information in a 
generalization, specialization hierarchy seems to be natural. The classes or types are . . 

organized in such a hierarchy exploited by an inheritance mechanism: students are 
persons, they have teachers and inherits from the characteristics of the persons. 

Another point emphasized by the object-oriented approach is the management of objects 
behaviours, namely, the possibility to associate manipulations to objects collections. 
Writing methods as functions associated to classes is the classical concretization of this 



concept. Together with encapsulation and inheritance, such a technique has a lot of 
advantages from the methodological point of view. It ensures code re-usability and 
forces independence of the different pieces of code. 

2.2.3 Deductive Databases and Object-orientation: the En- 
gagement 

Both approaches aim at extending the capabilities of relational databases: adding view 
mechanisms and exploiting the power of logic for update languages, integrity constraints 
checking etc, adding entity structuring and a support for conceptual rnodeling. 1s the 
integration possible? The main problem remains the opposition between a value based 
approach and an identity based approach. The recent proposition for combining objects 
and logic for databases have focussed on this problem of identity. There exists a number 
of articles dealing with this question [Zan89], [I<C86], [AI<89]. However, the absence of 
a general tlieory for logic and objects made the task even more difficult. Today, there is 
a family of proposa1 for such a theory for complex objects. Al1 these proposals refer to 
the previous work, presented in [AKN86], aiming at combining object-oriented features, 
inheritance and structuring in Prolog by extending the terms structure. Qterms are a 
generalization of functional terms to labelled record structures. Qterms are built from 
a lattice of basic types and a set of labels. Thus each Qterm is itself a type and the set 
of al1 Qterms has an induced lattice structure. 

An example of Qterm is: 

person(name =>"jeanU:str ing,  
date-of-birth => date-of,birth(day => 10:integer,  

month => december:month, 
year => 1967 : integer)  ) 

The central idea of Qterms was to replace the unification on algebraic terms by the 
computation of a lower upper bound in the @terms lattice. Indeed, such an extended 
unification simulates some kind of inherit ance on structured terms. However, Q terms 
are abstractions, types, and could not be straightforwardly related to  the database 
problems where the main concerns are not only types but also instances. So, on the 
one hand qterms have been extended to handle more complex classification problems 
à la KL-ONE [BS85]: feature-terms and structured types, and on the other hand they 
inspired the database community to develop languages for complex objects in a logical 
framework. The first proposa1 in this direction was the one by Maier, revisited by Kifer, 
called O-Logic [Mai86], [KW89]. There has been several extension and variation on 
that theme: F-Logic [KLWSO] and C-Logic [CW89] in particular. We illustrate this 
family in discussing shortly C-Logic. C-Logic is a logical language based on structured 
terms à la Login. C-Logic constructors include types organized in a finite partially 

'1nspired by the article title: "Object orientation and logic programming for databases: a season 
flirt or long term marriage?' [CCTSO] 



ordered hierarchy; labels (at tributes) variables, constants and functional Zerms. C-Logic 
terrns and formulae have a denotational semantin given by a direct mapping to first 
order logic. This has the advantage to reduce the semantics of C-Logic to a known one 
and to allow the computation of C-Logic programs (when they are limited to definite 
clauses) to the computation of their translation in first order logic (which is then also 
limited to definite clauses). The authors argue that the translation may introduce 
unnecessary redundancies in loosing some indications that could be useful for a query 
evaluator (but not compromising the completeness of the result). They suggest that 
query evaluation technique should be adapted to work directly on C-Logic programs 
and benefit by the possible optimizations. A key point of C-Logic is the translation of 
the type hierarchy into a set of definite clauses among unary predicates representing the 
types: for instance if two types Tl and T2 are such that Tl < T2 then the semantics 
is given by the existence of two unary predicates PT1 and PT2 and a rule PT2(X) : - 
PT1 (X) . C-Logic has the advantage to emphasize the possibility to manipulate complex 
objects and a form of inheritance in a simple context. The problematic notions of 
sets and 'oids' find an interesting representation and semantics in C-Logic. Sets are 
implemented by multi valued functions (labels) that can have alternatively, a multi 
valued or a set interpretation. Problems linked to the invention of 'oids' are solved by 
the use of terms interpreted as Skolem functions. 

In general the O-, C- and F-logic approaches have the advantage of a strong theoretical 
basis. Their first order semantics link them to the existing query evaluation techniques. 
However the data modeling capabilities are still a bit raw. Problems like overriding 
are not handled and there is no rich and uniform context for the schema manipulation 
(except for F-logic which has higher order constructs). The sarne judgment applies to 
other attempts to describe a logical language for complex objects [TZ86],[AV88], [AbiSO], 
[AB91]. 



The Mobius Mode1 

Le modèle Mobius 

Mobius est un modèle d e  connaissances fondé sur un noyau métacirculaire. 
Afin de réaliser les trois principes empruntés au modèle OBJVLISP (cf. 
[Co i871) : 

O tout est entité ; 

O Toute entité est instance d'une classe ; 

toute classe peut être sous classe d'une autre classe ; 

le noyau de Mobius contient deux entités de base: ent i ty  et classe, re- 
spectivement, la classe de  toutes les entités du modèle et la classe de toutes 
les classes. Les liens sémantiques SC, lien de spécialisation, et isa, lien 
d'instance, sont établis entre ces deux éléments. Leur sémantique est donnée 
par des règles logiques et garantie par des contraintes d'integrité. 

L'intérêt de l'approche métacirculaire est multiple. Pour nous, ce choix fut 
d'abord un guide méthodologique pour la définition du modèle. Le bénéfice 
pour l'utilisateur est que tous les niveaux d'informations sont accessibles : 
entités de l'application, classes et méta-classes. Nous montrons comment, 
à l'aide de contraintes d'intégrité, le modèle peut être, a posteriori et si 
nécessaire, organisé en niveaux. 

Mobius peut être vu, présenté et utilisé de manières duales. D'une part, c'est 
un modèle de classes, hiérarchie de classes et d'instances qui doit servir de 
support de conception. D'autre part, c'est un modèle d'entité reliées entre 
elles par des liens élémentaires (attributs), et de définitions génériques de ces 
liens (classes d'attributs). De ce dernier point de vue, MO6Eus se rapproche 
des modèles du type Entité-Association de Chen [Che761 et des modèles de 
réseaux sémantiques, in [MB88]. 

5a sémantique du modèle et, en particulier de l'héritage, est donnée par 
traduction des diflérents composants en fornules de la logique du premier 
ordre. 



Met acircular Definition 

3.1 1 Reflectivity and Uniformity 

The uniformity principle, emphasized by most of the object-oriented systems and lan- 
guages (e-g. [Go185], [CoiS'l]) has several advantages. Adopting this principle for the 
definition of a knowledge representation model is, at least, a methodological guide. For 
each new concept to be introduced in the model (when defining it) one must take care 
to realize uniformity. If the new concept does not fit in the model definition, it is an 
indication sign that either the concept is wrongly formulated or that the initial notions 
are not sufficient. 

A natural way to realize uniformity is to try and find a reflective definition for the model 
[CoiS7], [Fer84],[h/Tae87b]. A reflective model is a model that, at least partly, represents 
- understands - its own structure. The model definition is reflectively given in terms of 
the model itself. In terms of a computational system, the set of self representing data 
can be queried in the same way as the application data: the system knows about itself. 
The set of reflective data can be modified or extended: the system can evolve. It is said 
to be causally connected to itself [MaeS'la]. 

A reflective definition consists of a minimal set of concepts that need each other to 
be understood and that found the whole model. From a theoretical point of view, 
it has the aidvantage of simplicity. From a practical point of view, reflectivity allows 
extensibility. A reflective system is an open system in the sense that it can be enriched 
and adapted by my user. This dynamic aspect makes it a particularly interesting tool 
for experimentation. 

This approach has also several drawbacks. First of all the definition of a reflective kernel 
is a difficult task. It is hard to have a simple overview of the whole model without 
adopting a simplified point of view. This is surnmed up by Goldberg's quotation about 
the Smalltalk documentation : 

"So it is almost the reader must know everything before knowing anythingn. 

Just like writing recursive functions or procedures in programming languages, defining 
a reflective model leads to short descriptions that may be inexplicit and hardly under- 
standable. This is the price to pay to get the properties of reflective models. However, 
even though the definition process is more difficult, it forces a deeper insight into the 
fundamental notions. 

Another point, often criticized, is the extreme consequence of uniformity: conceptual 
differences are no longer supported by explicit differences in the model. As a canonical 
exarnple, in object-oriented systems, a simple operation like adding two numbers must be 
supported by the general frarnework of message passing. Adding one to two to compute 
three becomes sending a message to the object one to tell that it must cooperate with 
the ob ject tuo to compute a third object three. However, the extensibility of these 
systems offers the capability to recreate such conceptual differences by customizing the 



interface. The message passing form for numbers and operations on numbers can be 
used with the natural syntax: 1 + 2. In our particular case, as we will see below, we 
will have to find a characterization of the different levels in a knowledge base (instances, 
schema and meta-information) as the metacircular definition has, apparently, flatten 
them. 

A more crucial problem is the difficulty to ally uniformity and reflectivity with efficiency. 
On the one hand, treating every concept in the same manner is, a priori, in contradiction 
with special purpose optimizations. Of course, one can argue that, precisely thanks 
to reflectivity, the system, knowing about itself, can parameterize its treatments and 
intelligently behave. However, a reflective system is fragile: any modification can break 
the kernel integrity. Even extensions - possibly overriding the kernel definitions - can 
break its consistency. Optimizations can only be made through a kind of compilation 
stage where the user ensures that the compiled information is definitely safe. Unless this 
insurance is given, the system must permanently spend time verifying its own integrity. 
Clearly, several refiective systerns make compromises with respects to tbat point. As an 
example, most of the reflective class and object systems assume that once objects are 
created their instantiation class will not be modified (by static inheritance of instance 
variables). 

Traditionally, conceptual data models for knowledge bases have a fixed finite number of 
separate levels. This is the case, for instance, in the KB2 [WI<T88] and I<BL [MI<W89] 
models. At most they have an instance level, a schema level, and possibly a meta-level. 
In terms of classes and ob jects, the instance level is the level of the application ob jects, 
the schema level contains the classes describing the general form and behaviour of the 
instances and the meta-level is a limited set of meta-classes used to generate the schema. 
Experiences with object-oriented languages and knowledge representation systems have 
shown the importance of being able to have supplementary levels. In particular, the 
modularity of some applications is more naturally expressed when one can create meta- 
classes and meta-meta-classes etc. The metacircular schema we choose, inspired from 
the OBJVLISP model [Coi87], does not make any restriction with respect to that point 
and allows an infinite creation of levels. 

1 3.1.2 The Metacircular Kernel 

The model is based on three principles: 

r everything is an entity; 

r every entity is representative of, at least, one class; 

a class may be a subclass of another class. 

In order to fulfill these principles we start from a schema containing two entities: entity 
and class .  They will, respectively, represent the class of al1 entities in the model and 
the class of al1 classes. The vertical relations [EJ90], the direct instance link isa-d, 
linking an entity with the class it directly represents, and the direct superclass link SC-d, 



1 entity I 

Figure 3.1: Metacircular Icernel 

linking a class and its direct superclass, are established among these two components. 
From these direct links we infer the semantic vertical relations SC and i sa .  They are 
semantically defined by the following logical rules : 

isa(E,C) <- isa-d(E, C), 

isa(E,C) <- isa(E, C l )  and s c ( ~ 1 ,  C), 

s c ( C 1  ,C2) <- SC-d(C1, C2), 

sc(Ci,C2) <- SC-d(C1, C3) and sc(C3, C2). 

isa(e,c) is interpreted as e is a representative of c. sc(c i ,c2)  is interpreted as c i  is 
a subclass of c2. According to this interpretation we can verify that the schema given 
in figure 3.1 respects the three principles. This schema contains the three basic links: 

e n t i t y  is a class, isa-d(entity,  class), 

class is a class, isa-d(c1ass , class) ,  

class is subclass of en t i ty ,  sc,d(class, en t i ty ) .  

It is clear that the consequence of the above rules and facts is that: 

class and e n t i t y  are entities: 

- i s a ( e n t i t y  , ent i ty) ,  

- isa(c1ass , en t i ty )  , 
e n t i t y  and c l a s s  are instance of a class: 

- i s a ( e n t i t y ,  class), 

' - isa(class, class), 

Here, we must question the validity of the isa-d and SC-d links we use and of the i s a  
and SC links we infer. We have assumed implicitly that SC-d and SC link two classes, 
and that isa and isa-d link an entity to a class. In order to guaranty it, we have two 
possibilities: 



We can use tests within the rules, like, for instance,: 

sc(X,Y) <- isa(X, class)  
and isa(Y, class) 
and SC-d(X,Y) . 

We can use integrity constraints, like, for instance,: 

fora l l  LX, Y] : sc(x,Y) -> isa(X, class)  
and isa(Y, class)  . 

Tests have the advantage that they do not force the stored data to  be al1 correct, but 
restrict the interpretation to the correct data. They allow any extension to the model. 
In particular the definition by the user of a new link, semantically different, named SC. 

Integrity constraints reflect a stronger point of view. The data must be correct and any 
extension must respect the constraints. 

For the SC-d, SC, isa-d and isa,  we adopt an intermediate solution. Indeed, direct 
links and semantic links are of a different nature: 

the isa-d and the SC-d link are implementation links; they represent how the 
class and instance hierarchy is actually stored; 

the i s a  and the SC link are semantic links; they represent how the class and 
instance hierarchy actually is. 

One of the targets of the Mobius model is to be flexible as far as its connection with 
a relational schema is concerned. If the database is created by Mobius, we want to be 
able to choose among several form of mapping. If the database exists and contains data, 
the model acts as a filter on the database and interprets only the relevant data. 

For that reason, the SC-d and isa-d links, the system structuring links, will filter and 
manipulate only the valid data. 

On the other hand, i s a  and SC, as vertical relation, define the elementary semantics of 
the whole model. It is therefore natural to limit their extensibility within the scope of 
this semantics. Any, even user defined, i s a  and SC link must represent the subclass and 
the instance relation. Thus we state the following constraints: 

f o r a l l  C l  C2: sc(C1, C2) -> isa(C1, class)  and isa(C2, c lass) ,  . f o r a l l  E C: isa(E, C) -> i s a ( ~ ,  class)  and SC(C, entity),  

The Mobius model kernel is defined by a semantic network whose semantic is given by 
a direct translation into Datalog facts, rules and constraints. 

Now we shall examine the meaningful extensions to this schema. Each new item intro- 
duced in the model must verify the three basic principles. Each new component must 



be an entity, it means that it must be created simultaneously with a isa-d link. The 
integrity constraints guarantee that it can only be linked to a class which is a subclass 
of ent i ty .  Without the integrity constraints, the user must verify, at creation time that 
he has fulfilled the principles. As this should also be done for any modification of the 
schema, it is clear that integrity constraints are the best way to ensure the safety of the 
model with regards to the three principles. The strong consequence of integrity con- 
straints is that isa and SC cannot be defined for domains different than those specified 
by the constraints. This characterizes the particular role played by these vertical links. 
For instance, the name isa cannot be used for another purpose than representing the 
instance relation. 

To summarize, we can Say that with a very simple encoding of the three principles 
we chose for the metacircular definition by means of logical rules, facts and integrity 
constraints, we have the basis of an extensible (we did not Say yet how to extend it) 
model without any limitation in the number of conceptual levels. The question is now: 
is it still possible to characterize the intuitive levels of an application? 

3.1.3 Level Characterizat ion 

Intuitively, when designing a knowledge base, one can think of a finite number of con- 
ceptual levels . 

The basic level is the terminal instance level. It contains the data of the application. 
Generally, it corresponds to al1 the stored facts and implicitly the data possibly available 
through intentional definitions. The schema level is the set of definitions - rules, classes, 
class hierarchy - describing the general mould in which the terminal instances are poured. 

At the schema level, classes, attribute definitions (cf. section 3.2) and rules can be 
viewed as data. Thus it is again natural to think that there exists a schema (meta- 
schema) abstracting these data. It can be interesting to  have access to the design of 
this meta-level. Everything being an entity, the separated levels do not corne from the 
model definition. However, al1 the information and the tools to characterize and control 
the levels and their interactions are given in the model. The levels can be defined from 
the isa and SC links by means of rules. Their interactions can be controlled by means 
of constraints. 

We define a predicate l eve l /2  associating an entity to its level. We use numbers to 
name the levels. The termind instance level, level O, is the level containing only entities 
that axe not classes (rule 1). The i sa  relation identifies the frontier between two levels 
relating the instances to their classes. Two entities linked by an isa link belong to 
two consecutive levels (rules 2 and 3). Inside a given level (higher than O), classes are 
organized in the inheritance hierarchy thanks to  the SC link. Two entities linked by a 
SC link belong to the same level (rules 4 and 5). 

r u l e  1: level(E, O) <- not i s a ( ~ ,  c lass ) ,  

r u l e  2: l e v e l ( E ,  1) <- i s a ( E 1 ,  E) and level(E1, J) and 1 is  J + 1 ,  



r u l e  3: l e v e l ( E ,  1) <- i s a ( E ,  E l )  and l e v e l ( E 1 ,  J )  and 1 is  J - 1, 

r u l e  4: l e v e l  (E, 1) <- s c ( E ,  E l )  and l e v e l  ( E l ,  11, 

r u l e  5: l e v e l ( E ,  1) <- s c ( E 1 ,  E) and l e v e l ( E 1 ,  1). 

The problem with the second rule is that it only characterizes the level of a class if 
the class has instances with a computble level. However, it is obvious that a subclass 
of e n t i t y  which is not a subclass of class is of level 1 (this level corresponds to the 
'schema' in terms of the classical data modeling terminology). We must define the level 
of an entity by the following rules: 

r u l e  1: l e v e l ( E ,  O )  <- n o t  i s a ( E ,  class), 

r u l e  i b i s :  l e v e l ( E ,  1) <- s c ( E ,  e n t i f y )  and n o t  s c ( E ,  c lass) ,  

r u l e  2: l e v e l ( E ,  1) <- i s a ( E 1 , E )  a n d  l e v e l ( E 1 , J )  and I is  3 + 1, 

r u l e  3: l e v e l ( E ,  1) <- i s a ( E , E i )  and l e v e l ( E 1 , J )  and I is 3 - 1, 

r u l e  4: l e v e l  (E, 1) <- s c ( E ,  ~ l )  and l e v e l  ( E l ,  1) , 

ru le  5: l e v e l ( E ,  1) <- s c ( E 1 ,  E) and l e v e l ( E 1 ,  1). 

The two components of the kernel e n t i t y  and class have a very particular status. 
They belong to every possible level (an infinite number). This is not an interesting new 
information: it is the foundation of the model. For this reason we must exclude them 
from the above definition: l e v e l  (E $1) is defined for E different from ent it y and class. 

Figure 3.2 gives an example of the level characterization in the case of terminal instances 
(entities El, ..., E4), a schema (classes C l ,  ..., ~ 4 )  and a meta-schema (meta-classes MC1 
and  MC^) . 
There remain situations where a level is not calculable. However, these situations corre- 
spond to a partially defined model where it is impossible, even intuitively, to associate 
a level to the entity. 

Example 3.1.1 We assume we introduce the new class >cl with the following declarations 
(cf. figure 3.3): 

SC(C, class),  
isa(c, class) , 

It is clear tliat c is not of level O nor 1 ; it is a meta-class. But unless we provide more 
information (about its instances) we do not know yet to which level it belongs. O 
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Figure 3.4: Vertical Levels 

However the structunng of the general schema in levels does not exactly represent the 
intuition. Indeed, apart from this horizont al stratification there exist a vertical one. For 
instance, in the M6bius kernel, as we will see below, attnbutes are entities which belong 
to the level O according to the above definition. It is not reasonable to consider that 
entities of an application like a person or a number belong to the same conceptual level 
as the fact that a person's age is a given number. Again, by adding new constraints, 
one can identify vertical organisations of data. For instance, multiple representation 
c m  be limited to a given subtree of the global hierarchy. In the case of attributes (cf. 
figure 3.4) the subtree of root attribute-class corresponds to this s~b~hierarchy. In 
that sense a vertical level is defined from the root of the selected subtree. The link 
vertical-levei associate an entity to a vertical level it belongs to. 
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The instances exclusion is declared thanks to the Integrity ~oistraint :  

fora11 X : isa(X, man) -> not isa(X, woman) 

Figure 3.5: Classes in Exclusion 

3.2 Attributes and Associations 

3.2.1 Attributes as Entities 

This section presents one of the main concepts of the Mobius model : the attribute. 
This notion is the basic constructor of the schemas. If we had to classify our model 
in one of the several knowledge representation paradigms, we would Say it is of the 
family of the semantic network approaches [Da77], [Bra77], [Hen78], [Fin79], [SowS4]. 
What we cal1 an entity is an empty object (cf. chapter 5 for a discussion about object 
identity). An entity is reduced to its identifier. In some limited cases (numbers, strings 
or other "printable identifiern) it contains its meaning. Otherwise, the semantics of the 
entity is given by its position in the network of attributes. At least the isa link gives 
the minimal information that the entity exists. An attribute is an oriented labeled link 
between two entities, respectively the source and the target. Examples of attributes are 
isa(c1ass ,entity) and age(j ean,23). 

This point of view extends the concepts introduced by the frarne approaches, [MinS7], 
where facets are associated to attributes (slots) in order to specify their properties and 
behaviours (for example to declare default values, daemons etc). Usually, facets are 
"terminal concepts" and are not allowed to be manipulated as entities. In the Mobius 
model, attributes are themselves entities which benefit by the same uniform way of 
representation and manipulation than the other kinds of entities: they are associated 
with attributes and are instances of tlie related attribute classes. Froni tliis point of 
view, our model shares (and is inspired by) a lot of features of tlie franle based systems, 



[Rec88], and the so called hybrid systems [Fer83], [BS85], [Bob86], [DucSS], [DugSS], 
[BCP86]. They both consider attributes as normal entities (frames, objects ...). In 
frame languages, frames are used as prototypes, i.e. as instances used to create similar 
entities by a copy mechanism. In hybrid languages, frames are integrated in a class- 
superclass-instance schema similar to ours. 

In [Fer84], Ferber points out the risk of an infinite regression when attributes can have 
attributes. This problem is solved when attributes are considered as entities which can 
be defined (computed) only when needed. 

The example 3.2.1 below shows that the M6bius evaluation can handle the infinite 
regression for the two attributes of attributes v i  and v2, giving respectively the first 
and the second argument. 

Exainple 3.2.1 Let us assume that  a n  attribute age links a person t o  its age (an in teger ) .  

?- e v a l (  Cage ( j  ean, X)] ) . 
X = 25 

Yes 
?- eval(Cvi(age(jean,X) ,Y)]). 
Y = jean 
X = 25 

3.2.2 Attribute Definitions as Classes 

Attributes are representatives of more general entities: attribute classes. Attribute 
classes specify the attributes definitions: 

the narne of the attribute; 

'The host language is basically Prolog extented with several primitive.. eval / l  evaluates a list of 
literals and produces the answers tupkat-atime. The procedure is invoked from the Prolog top-level. 
In the following the syntax of examples is not formally presented. It corresponds to the syntax (liost 
and query language) used in the experiments. 



the source domain: the class of which the first element of the attributes must be 
a representative; 

the target domain: the class of which the second element of the attributes must 
be a representative; 

the extension: how the attributes can be retrieved by the storage system used for 
the mode1 implementation; 

the intention: a logical expression of the query language from which the attribute 
can be derived. 

The above data are associated to attribute classes in the same way as entities are 
associated together. It is then natural to consider these associations themselves as 
attributes of the attribute classes. 

Exanlple 3.2.2 Let us consider the attribute class of name i sa  (cf. figure 3.6). As a class 
of entities ("everything is an entity7'), its instances will inherit of a i sa  attribute. 018 is the 
entity identifier of an attribute class whose name is i sa .  

?- evai( Cisa(isa( jeansperson) sX)l 1. 
X = 018 

more? -- ; 
X = attribute 

more? -- ; 
X = ent i ty  

Yes 
?- eval(Cname(ol8,X)l). 
X = i s a  

Yes 
?- eval( Csd(o18,X)I 1. 
X = entity 

Yes 
?- eval( [int (018 ,XI] ) . 
X = int(-g12, -gl3, Cisa,d(-gl2, -g14) and SC(-g14, -g13)] ) 



name : isa 
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& class 
& int(X,Y, [isa-d(X,Y)]) 

int(X,Y. [i=-d(XJ), sc(Z,Y)I 1 
Figure 3.6: The 018 (ISA) Attribute Class 

Tlie 018 attribute class defines attributes of name isa. They are representatives of tlie cla.sses 
018, a t t r i b u t e  and e n t i t y .  They link entities to classes. Tliey are not stored 011 disk but 
defined by the two rules: 

isa(X,Y) <- isa-d(X,Y). 
isa(X,Y) <- i s a - d ( X , Z )  and sc(Z,Y) 

However, we would like the user to be able to deal with a schema interpretation in 
accordance with an object-oriented conceptual point of view, i.e. we want the designer 
to be able to extend it, relying on the classical notions of class, class hierarchy, attributes 
associated to classes. Our mode1 is dual. One can see the class hierarchy on the one 
band and the attribute classes on the other. But attribute classes are associated to 
classes thanks to their source and target domain. Attributes named att-d and a t t  link 
a class to the attribute classes respectively directly associated with it or inherited. This 
double point of view is illustrated by the example 3.2.3 (cf. figure 3.7) below. 

Example 3.2.3 Attribute classes are associated to classes through their source domain. 
Classes are associated to attribute classes through the att-d and a t t  attributes. 

?- eval([att,d(class ,X) ,name(X.N)] 1. 
a 017 
X = SC 

more? -- ; 
N = 02 
X = SC-d 

more? -- ; 
N = 029 
X = a t t  

more? -- 



Figure 3.7: att-d and att 
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Y es 
?- eval([att(class,X),name(X,N)1). 
N = 01 
X = isa-d 

more? -- ; 
N = 018 
X = isa 

more? -- ; 
N = 017 
X = SC 

more? -- 

Yes 
?- eval( [sd(ol,X) ,name(ol,N)]). 
N = isa-d 
X = entity 

017 
pame : SC 

s9; class 
a class 

int(X,Y, [scd(X,Y)]) 
int(X,Y, [SC-d(X,Z), 

01 is associated to entity and is inherited by class, its subclass. O 

sc(Z,Y)I) 

3.2.3 Extension to the Metacircular Kernel 

G=u)l) 

03 
name ; att-d 
Sé; class 
a altribute-class 

int(X,Y, [sd(Y,X)]) 

In order to  be consistent with the metacircular definition presented in the previous 
section 3.1, the vertical relations isa-d, linking an entity with the class it directly rep- 
resents, and the SC-d attribute, linking a class and its direct superclass, are associated 
to the meta-classes e n t i t y  and c l a s s  as the main elements of the meta-circular ker- 
nel. The isa-d attribute definition is associated to the meta-class entity, the S C - c i  

attribute definition is associated to the meta-class class. So are their respective transi- 

029 
Darne: att 
sè; class 
a attribute-class 
& int(X,Y, [a-d(X,Y)]) 

int(X,Y, [att-d(Z,Y), 



Figure 3.8: Attributes Classes Associated to the I<ernel 

tive closures, i.e. i sa  and SC. The metacircular kernel can be represented by the figure 
3.S. 

Nevertlieless, to be complete witli Our definition, we have to position as well tlie attribute 
classes in the scliema. Classes have a general definition specified by the class class. 
Attribute classes have some additional features since they play a constructive role in 
the definition of the model itself: they define semantic links between the model entities. 
Then, we introduce a particular class specifying the definition of the attsibute classes. 
This class is called at t r ibute-class  and allows the creation and the representation of 
attribute classes. The properties mentioned above are modeled as attribute definitions 
associated to at t r ibute-class  : 

Name (name): name of the attribute class, used as a constructor for the expressions. 
Several attribute classes can have the same name (cf. section 3.3). 

Source domain (sd): class of the source entities; 

Target domain (td): class of target entities; 

Intentional definition (int); 

Extensional definition (ext): mapping. 

Some other additional attributes are also defined to deal in particular with some inher- 
itance problerns (cf. chapter 4). A general attribute class called attribute is defined 
as a direct representative of the class attribute-class. This class, is associated, in 
particular, with the vi and v2 attributes linking an attribute to its arguments. The 
model kernel is illustrated by the figure 3.9. 

3.2.4 Associations 

In Mobius, no strong distinction is made between the notion of attribute and the notion 
of association. For us, an association is just the generalization of an attribute to any ar- 
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Figure 3.9: Complete Icernel 

ity. The difference between attribute and association existing in the Entity-Relationship 
(ER) models no longer holds. In the ER models, entities have attributes which are 
records for values. Some extensions of the ER mode1 accept complex and structured 
values like sets, Cartesian product , etc. Associations relate entity sets (equivalent to 
our classes) and are entities themselves possibly with attributes. The difference between 
value sets and classes does not exist in our model. Values are special entities inherited 
from the host language (Prolog) like strings or integer. But the main point is that value 
sets are classes. 

The system kernd can be built using the notion of attribute. That is why we sepa- 
rate this notion from the more general notion of association. Association definitions 
are classes defined in the Mobius kernel. They have a name, an arity, they provide an 
attribute vn for each component ( O  < n < arity + 1) for their instances. They denote 
sets of elementary associations. They can also define other at  tributes for their instances. 
Mainly, in the rest of this document, we will consider that associations are a straight- 
forward generalization of attributes and we will not give special explanations for their 
case. 



Mode1 Sernanties 

3.3.1 Semantics 

The Môbius ob jects are accessible to the user t hrough a query language (Datalog). The 
basic components of this language are attributes and associations. Although we have 
experimented (cf. chapter 5) other syntax like functional ones, we adopt here a predicate 
notation where attributes and associations are n-ary literals of the form: 

attribute-name (argl , arg2) 

association-name(argi, ..., argn), 

where arg; are either variables or an entity identifiers. In some special cases, identifiers 
can be structured terms. 

An expression is composed of the above literals, logical connectives and quantifiers. 
Therefore, the query language is, aparé from the special constructs used for controlling 
inheritance (views, full-name, viewpoints) (cf. chapter 4), of the family of Datalog 
languages. The definition of M6bius includes stratified negation which is necessary for 
the definition of overriding (cf. section 4.2). In the experimental versions of the M6bius 
system, we have included aggregate functions and procedural literals, relying on the 
functionalities of the implementation environment EICS-V1 . For practical applications, 
such features appeared to be necessary. 

The query language is used in three circumstances: 

One can state integrity constraints over the model. Notice here that the constraints 
are not associated to classes but are global to the application. Such a choice can 
be criticized as it seems to be in contradiction with the philosophy of the Môbius 
model. It does not allow to structure the constraints using the class hierarchy. 
We actually want to delay a better integration of constraints in the class hierarchy 
until we have a better understanding of the practical possibilities of Mübius and 
feedback from the applications. 

- In Mobius, attribute definitions can be given in terms of other attributes. The so 
called attribute intension is an expression of the query language. This expression 
denotes a set of pairs which are instances of the attribute class. 

Of course queries can evaluated from the host language through the eval/l proce- 
dure. This primitive, as included in a Prolog environment, has a 'success/failure' 
mode and produces the tuples one at a time with backtracking. 



The other objects of Mobius cannot appear in queries as literals. In particular the 
relational expressions giving the attribute classes extensions cannot be used directly in 
the queries, intentions or constraints. 

Similarly to other approaches aiming at the integration of object-oriented aspects in a 
logical context ([Da189], [CW89]), the semantics of Mobius is given by a translation into 
a first order logic program. This solution is not only simple and clean but also allow a 
quite direct implementation of the Mobius system on top of existing deductive database 
systems. 

As the whole mode1 is founded by the notion of attribute and attribute class, the se- 
mantics is given by the translation of attribute classes into first order logic programs. 
For each attribute class, for each intension (INT) and extension (EXT), the program is a 
set of rules of the form: 

attribute-name(X,Y) <- isa(X, sd) and isa(Y,td) 
and INT. 

attribute-name(X,Y) <- isa(X, sd) and isa(Y,td)  
and EXT. 

INT and EXT are the expressions stored in the i n t  and ext attributes of the attribute 
class; attribute-name, sd, t d  are, respectively the name, source domain and target 
domain. We assume here that the extension is a relational expression syntactically 
compatible with Datalog. 

A single attribute definition may have more than one narne, source domain or target 
domain, as well as several extensions and intentions. Therefore, the number of generated 
rules depends on al1 the possible combinations. 

An expression in the query language denotes the same thing as its translation in first 
order logic. The evaluation of an expression corresponds to the evaluation of the same 
expression against the translated program. We will see in the following that the actual 
translation needs to be a little more complicated. In particular, the specification of 
overriding introduces new components in the generated rules and uses negation. 

Now, we can analyse the problem of inheritance and see how the above translation gives 
a first solution to it. In chapter 6 we discuss the direct use of the generated rules as an 
implementation for the Mobius language on top of a deductive database. 

3.3.2 Inheritance 

The inheritance relation is a relation defined on a graph and that determines, for cer- 
tain nodes, the availability of certain information contained in other nodes. The most 
common forms of inheritance are instance variables and methods inheritance in a class 
and instance hierarchy, delegation in prototypes languages or inheritance of properties 
in an aggregation graph. 



Figure 3.10: Multiple Inheritance 

Inherited information can be of several natures: it can be structural information (in- 
stance variables, attribute definitions), properties in some semantic networks [Hen7S], 
behaviours or methods or attributes values (class variables in Smalltalk). In this sec- 
tion we deal with the problem of inheritance for attribute (and association) definitions. 
As opposed to a shared point of view in the object and logic-oriented community, we 
consider that rules can be used to define both attributes and methods and that the 
separation should be kept only in the sense that methods are logic programming rules 
with control and side effects. In particular, methods may update the knowledge base 
while attribute rules only denote intentional information (cf. chapter 7). 

We consider a class hierarchy, organized by a SC superclass link, which is an oriented 
and acyclic graph whose single root is the class ent i ty.  Terminai instances are entities 
attached to classes in this graph by the isa instance relation. 

When not restricting ourselves to a tree structure we allow the typical situation of 
multiple inheritance (cf. figure 3.10): an instance E of a class CI may inherit attribute 
definitions with the same name from two unrelated parents of c. 

-? 

This kind of clash in inheritance can also occur in the case of a tree structure when 
attribute definitions of the same name occur dong a single branch. We cal1 this situation 
multiple definition (cf. figure 3.11). 

Moreover, allowing an entity to be a representative of several unrelated classes, we can 
face the situation where an attribute definition for the sarne name is inherited from 
several classes. This situation is called multiple representation (cf. figure 3.12). 

These three situations are potentially generating conflicts. In this section we show that 
our approach allows to ignore these potential conflicts. It is however clear that ignoring 
them is not always an acceptable solution. In the next chapter (chapter 4), we analyse 
the possible conflicts and present tools to solve them. 

Most of the object-oriented approaches, when considering attributes definitions (instance 
variables) or metliods inlieritance, take a deterministic point of view. They usually do 
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not support techniques able to take several definitions into account nor to produce one 
definition from several (this second feature is provided by some frame based systems 
and is called semantic unification [Dug89]). In the context of logic programming and 
deductive databases we choose, programs or definitions are sets of rules and facts and 
therefore can be easily stuck together. If the evaluation of such definitions (one or 
more) leads to several solutions, these solutions can be grouped into a set or produced 
individually by backtracking. We choose a tuple at a time evaluation with backtracking 
interface (cf. chapter 6 ) .  The rules and facts of our definitions can be used without 
taking care of the order in which they are computed, as we assume that they neither 
contain nor need control statements and that the evaluation algorithm is sound and , 

complete. 

3.3.3 Inheritance in Mobius 

For the reasons exposed above, inheritance in the classical tools is always associated 
with strategies for solving the conflicts or with constraints on the language. Indeed, the 
simplest constraint avoiding al1 the conflicts consists in forbidding two attribute defini- 
tions with the same name globally in the system, or on the subgraph where conflicts may 
appear if multiple representation is not allowed or limited. The algorithmic solutions 
consist in a more or less intelligent graph traversing strategy used to select the single 
definition to be used. However, there remain situations where this "look upn procedure 
cannot guess information which is not encoded in the system but trivial for the designer 
of the knowledge base. For this reason, we investigate, in the next chapter, solutions 
where the information about inheritance and conflicts is explicitly represented in the 
system. 

Thanks to the properties induced by the logical framework and its mode1 theoretic 
interpretation (as opposed to an operational semantics), as we announced, the basic 
mechanism for inheritance ignores conflicts. In the cases of multiple inheritance, mul- 
tiple definition and multiple representation al1 the inheri ted definitions are exploited. 
On the other hand, the algorithmic search of these definition by a graph traversa1 is 
replaced by an associative search and a compatibility control encoded in rules, normally 
evaluated by the evaluator. Namely, each intention or extension is augment4 by tests 
checking if the produced data are compatible with the respective domains on which the 
attribute is defined. We can underline here that, in that case, inheritance exists not only 
on the source domain (the class associated with the attribute) but also on the target 
domain. For that reason, associations with several domains are a simple generalization 
of attributes to  any arity. 

The inheritance mechanism is illustrated by the following example. 

Example 3.3.1 We assume that we have a class worker, subclass of the class person (cf. 
figure 3.13). f rancois is a worker, je& is a person (direct instantiation links). The attribute 
classes name, f orename, address and phone-number are defined at the level of the class person. 
The workers are also associated with the address and the phone-number attributes (those of 
the Company they are working for). New attribute classes with possible distinct mappings or 
intentional definitions are therefore created. We cal1 obtain the following answers : 



?- eval( Cisa(francois,X)l). 
X = uorker 

more? -- ; 
X = person 

more? -- 

Yes 
?- eval( Cisa(jean,X>l). 
X = person 

more? -- 
Yes 
?- eval( [name(francois ,X) , f orename(f rancois ,Y)]). 
Y = "Francois Xavier" 
X = "Bastide" 

The name and forename attributes have been inherited from the class person. 

?- eval( [address (jean,X), phone-number( jean,Y)]). 
Y = 612600 
X = "36 rue des alouettes 31400 Toul~use~~ 

?- eval( [address (francois ,XI]). 
X = "11 rue Marcel Pagnol 31100 Toulouse" 

more? -- ; 
X = "Z.I. des touristes 31250 Blagnac" 

Two answers are given : the private address of the person f rancois and the Company address 
of the worker : the two attribute classes address have been used for the evaluation. 

?- eval( [phone-number(francois ,X)] ) . 
X = 61264012 

more? -- ; 
X = 61050505 



phone-number 

Figure 3.13: Example 



Chapitre 4 

Tools for Inheritance 

Outils pour l'héritage 

La sémantique de l 'héritage dans Mobius permet, a priori, d'ignorer tous les 
conflits d'héritage classiques: 

définition multiple : plusieurs attributs de même nom sont définis le 
long d'une branche du graphe d'héritage ; 

héritage multiple : plusieurs attributs de même nom définis sur plusieurs 
branches du graphe d'héritage sont hérités par un même noeud ; 

représentation multiple : une même entité hérite de plusieurs attributs 
de même nom par des branches différentes. 

Cependant, il nous semble que des outils plus sophistiqués sont nécessaires 
pour contrôler l'héritage et faire face à des situations de modélisation com- 
plexes. 

Nous proposons un outil de masquage des définitions d'attributs pour les in- 
stances d'une classe donnée qui, normalement, hériteraient de cette définition. 
Cet outil statique de contrôle de l'héritage permet, en particulier, de gérer 
les redéfinitions d'attribut. Encore une fois, la sémantique du masquage est 
intégrée dans la traduction en formules logiques. 

Lorsque le schéma de l'application est fié, nous montrons comment un 
mécanisme dynamique de vues (inspiré des points de vues décrits dans [Car89]), 
que nous avons étendu à des expressions complexes, permet de contôler dy- 
namiquement l'héritage pendant les requêtes. 

Enfin, les définitions d'attributs étant identifiées par le triplet nom, domaine 
de départ (classe de départ), domaine d'arrivée (classe d'arrivée), nous pro- 
posons d'intégrer au modèle une forme de contrôle extrème par l'utilisation 
du nom complet des attributs dans les 'ezpressions. 



Figure 4.1: The Multiplicity Relation 

Conflicts 

As mentioned in the previous chapter, the three possible conflictual situations for in- 
heritance are multiple inheritance, multiple definition and multiple representation (cf. 
figures 3.10, 3.11, 3.12). A conflict arises when one inherits from several pieces of in- 
formation and wants only certain of them. Typically, one may not want to inherit of 
several attribute definitions with the sarne name. The general idea to solve such con- 
flicts is to sort information according to the class and instance hierarchy. This sorting 
aims at selecting the information to deal with, either using some additional information 
(which can be explicitly or implicitly specified in the model), or exploiting special tools 
and concepts defined for this purpose. 

The simplest tool is overriding. Where the raw inheritance principle would have selected 
two or more attribute definitions, overriding means that one of these definitions m c e l s  
the others. The main problem consists in providing an "intelligent" implementation of 
this feature, i-e., in a knowledge representation context, an implementation which is able 
to fit as well as possible with the various cases encountered in the reality. The cornmon 
implementation of such a feature consists in choosing a unique definition according to 
a graph traversa1 algorithm implernenting the inheritance strategy. The kernel of this 
strategy is based on a linearisation of the graph: one reads the inheritance graph from 
the concerneci leaf to the root and takes the first 'available information. The inheritance 
graph is then flattened to a linear chain, without duplicata. One must define an order 
relation called multiplicity among the candidates for linearisation. E-g., one must order 
the direct super classes of a class or the several classes an entity is a direct instance (cf. 
figure 4.1 possible linearisations are: (C3 C4 C5 Cl C2) or (C3 C l  C4 C2 C5)). 

An often used solution consists in takiiig tlie order in wliich the classes were created. 



Now there is a vertical (super class and instance) order and an horizontal order (mul- 
tiplicity), a strategy is a depth-first or a breadth-first traversa1 of the resulting graph 

1 , from the leaves to the root. The most serious objection to this solution is that it uses 
an information (the order in which classes where created) that is not accessible to the 
user. At least it does not belong to the model. Whatever the chosen general algorithmic 
solution is, it never exploits the semantics of the application. For that reason we believe 
that solving conflicts must rely on semantic information. We dispose of an inheritance 
mechanism that, basically, can ignore the conflicts. 

The first solution we describe to enrich the static description of inheritance is an explicit 
overriding capability integrated in the model semantics. But, here, explicit does not 
mean that it has to be set by hand for each single item in the model. On the contrary 
it can be programmed by a designer and parameterized by the model itself. This is 
described in the section 4.2. 

Once the inheritance graph is augmented stat ically wit h overriding information, during 
a query or a session, a user may want to consider dynamically, for one or more entity, 
a coherent subgraph (cf example 4.1.1). Here, a coherent subgraph means a subgraph 
of the initial hierarchy that fulfills the three basic principles presented in 3.1.2. In 
particular it means that ent ity must be the root of this graph. 

Example 4.1.1 Let us assume that we know a person jean who is both a student and an 
employee. We may want to refer to jean in the limited context of the coherent sub-hierarchy 
including the super and the subclasses of the class employee. The figure 4.2 shows this 
situation. In that case, the use of the attribute named card-number will refer to the card 
owned by every employee. O 

The tool we provide to handle such a situation, called view, is comparable to views in 
relational databases. A view is a restriction applied on the whole class hierarchy. This 
is shortly described in the section 4.3. 

The static or dynamic control of inheritance raises the problem of how far a user should 
be aware of the hierarchy structure when he queries it. As the tools above do not solve 
al1 the possible conflictual situations, we provide the extreme control on inheritance: 
the user is allowed to point out the single attribute definition he wants to deal with. 
We have assumed that an attribute definition is uniquely identified by a triple (name, 
source domain, target domain) (see section 3.2.2). Al1 ambiguities are removed when 
the domain information is given in the query. We cal1 this possibility the full-name 
operation as it consists in ticking off the literals in the query by their source or target 
domain and therefore, using a name uniquely identifying the attribute definition to be 
used. This is described in the section 4.4. 



Figure 4.2: A Viewpoint on Jean 

4.2 Overriding 

4.2.1 Redefinition on the Source Domain 

Overriding is a classical form of control in object-oriented programming languages. In 
general, it consists in a redefinition of a method along the class hierarchy. For a given 
method name, the lowest definition in the class hierarchy overrides the other definitions. 
This is the situation of multiple definition. In the other cases, multiple inheritance or 
multiple representation, an arbitrary order is used to decide which method definition is 
to be kept. 

In a knowledge representation context, overriding is a different problern. Indeed, when 
considering a programming language together with inheritance, overriding is a form of 
control. It indicates how the different pieces of code will be exploited (cf. chapter 
7). For a dedarative language, in a knowledge representation model, overriding must be 
dedarative. It is a way of expressing the validity (the scope) of the definitions (attribute 
definitions) in the class hierarchy: For instance, one can define an attribute salary for 
a class of employees, although this definition does not hold for the class of managing 
directors which is a subclass of employee. 

In the M6bius model, no restriction is made aapriori on the inherited attribute definition 
to be exploited. Therefore, there is no conflictual situation that cannot be treated: if 
several definitions are candidates, they are al1 used. Such a semantics is obtained by 
the translation into rules with the introduction of the isa constraining literals, checking 
the source and target domains. 

At tlie model level, overriding will be explicitly represented as an attril~ute of attribute 



classes. The attribute osd (overridden on the source domain) represents the information 
that an attribute definition is not available for instances of a given class. For example, 
the link osd(o41, managing-director) indicates that the attribute class 041 defining 
the salary of employees is not valid for the instances of the class managing-director. 

If overriding consists in a redefinition, the attribute r s d  (redefine on source domain) 
is used. It links two attribute definitions indicating that the first one overrides the 
second. If we want to define a salary attribute (entity identifier: 042) for the managing 
directors, the link rsd(o42, 041) between the two attribute definitions tells the system 
that there is a redefinition. The attribute definition 042 redefines the attribute definition 
041. Therefore, 041 is overridden for the source domains of 042. This is translated into 
the following rule: 

osd(X, Y)  <- rsd(Z, X) and s d ( ~ ,  Y ) .  

where sd is the source dornain attribute. 

In the same way inheritance is represented by supplementary literals in the rules defining 
the attribute semantics, overriding is encoded as a test in the translation: 

attribute-name(X, Y) <- i s a ( ~ ,  sd) and isa(Y, t d )  
and INT 
and n o t ( i s a ( ~ ,  nsd) ) .  

attribute,name(X, Y) <- isa(X, sd) and isa(Y, t d )  
and EXT 
and not (isa(X, nsd)) . 

where r s d  is the domain (class) for which the attribute definition is redefined: osd(a t t - id ,  
nsd) . 

A practical use of redefinition declarations is illustrated by the following example, in 
the particular case of the multiple definition along a branch of the inheritance graph: 

Example 4.2.1 As the example in 3.3.3, we assume we have a class worker, subclass of the 
class person. francois is a worker (direct instantiation link, cf. figure 4.3). The attribute 
classes name, f orename, address and phone-number are defined at the level of the class person. 
The workers are also associated with the address and the phone-number attributes (those of 
the Company they are working for). But in that case, we want these attribute definitions to 
override the address and the phone-number defined at the person level. Hence, the queries 
on francois will refer only to the company's address and phone number. The redefinition is 
specified by setting the rsd of the corresponding attribute classes. 

?- eval( [isa(f rancois , X) 1 ) . 
X = worker 

more? -- ; 
X = person 



more? -- 
Yes 
?- eval( [address(francois, X)]) . 
X = "Z.I. des touristes 31250 Blagnac" 

more? -- ; 
Yes 
?- eval([phone-number(francois, X)]). 
X = 61050505 

more? -- ; 
Yes 

A single answer is given: the private address and phone number of the person francois have 
been overridden. O 

Classically, in the proposa1 for integrating object-oriented features to logic programming, 
overriding is translated into control: cuts or ordered rules in a Prolog program. This is 
possible because of the operational semantics of the target language. Here, the use of 
negation and of a relational representation of overriding has several advantages: 

the semantics is independent from the evaluation strategy of the target language; 

the translated rules can directly be used as an implementation; 

dynamic modification of the schema will not compel a complete modification of 
the implementation; the overriding information is locally encoded in the rules and 
does not depend on the order among them; 

for meta-manipulations, the relational information is available; it can be queried 
and used for other purposes; in particular it would be easy to implement a sys- 
tematic redefinition in the case of multiple definition. For instance, the following 
rule define a rsd link between each pair of attribute definitions in contiict with 
the multiple definition: 

rsd(X, Y) <- name(X, N) and name(Y, N) 
and sd(X, XSD) and sd(Y, YSD) 
and sc(XSD , YSD) . 

4.2.2 Redefinition on the Target Domain 

The conception of a knowledge base with the support of a class hierarchy puts the 
stress on the association of attribute definitions to classes through their source domain. 
Therefore; inheritance is seen in most applications on the source domain. As we have 
seen in the preceding chapter, in Môbius, inheritance operates on both source and target 
domains. Therefore, in the same way we have overriding and redefinition on the source 
domain, we have overriding and redefinition on the target domain. 

We define symmetrically the two attributes otd and rtd, indicating, respectively, the 
overriding of an attribute definition for the instances of a class for its target domain and 



- 

string --a -, 

rd' 

I 
\ I 

rsa rp ,>: 
\ 

integer 
phonenumber 

francois u 
Figure 4.3: Redefinition 

the redefinition of an attribute by another definition according to their target domain. 
The translated rules must be again augmented by a test that takes overriding on the 
target domain into account: 

at tr ibute-name(X, Y) <- isa(X, sd)  and isa(Y, t d )  
and INT 
and not( isa(X,  nsd)) 
and no t  (isa(Y, n td ) )  . 

attr ibute-name(X, Y) <- i s a ( ~ ,  sd) and i s a ( ~ ,  t d )  
and EXT 
and not( isa(X,  nsd)) 
and no t  (isa(Y, n td ) )  . 

where n t d  is the domain for which the attribute definition is overrïdden (on the target 
domain): o t d ( a t t - i d ,  n td) .  

The following example shows a practical situation where both the r s d  and the rtd 
attributes are used. 

Example 4.2.2 We assume that we want to deal with the connection between severd fights. 
It is given that 'normal' Aights impose to the passengers a waiting time of 15 minutes for board- 
ing. An international flight imposes 25 minutes. We consider that a maximum of 15 minutes 
of delay for normal flights is allowed to take any connection into account. An international 
flight is allowed 30 minutes of delay. 

Two classes are defined for the flights and four connection attribute definitions are attached 
to them. For each flight, the attribute says whether it exists a connecting flight taking into 
account their arriva1 and departure times (cf. figure 4.4). Distinct formulae must be used 



depending on the kind of flight specified in the queries and on their role in the attribute (first 
flight or second flight of the jour ne^). A rsd link is not sufficient: when one wants to know 
about the arriving flights which can be connected t o  a given flight f ,  the type of f must 
determine the formula to  use (because the boarding times are different). This distinction is 
declared thanks t o  the overriding links. 

The formulae defining the four attributes intentionally can be written as follow: 

Formula 1 checks whether two normal flights can be connected (15 + 15 minutes of tolerance) 

connection(X, Y) <- a r r i v a l ( ~ ,  Z), 
departure (Y, T) , 
D = T - Z ,  
D >= 30. 

Formula 2 checks whether a normal flight can be connected to an international one (15 + 25 
minutes of tolerance) 

connection(X, Y) <- arrival(~, Z) , 
departure (Y, T) , 
D = T - Z ,  
D >= 40. 

Formula 3 checks whether an international flight can be connected to  a normal one (30 + 15 
minutes of tolerance) 

connection(X, Y) <- arrival(X, Z), 
departure (Y, T l ,  
D = T - Z ,  
D >= 45. 

Formula 4 checks whether two international flights can be connected (30 + 25 minutes of 
tolermce) 

We assume that  the following facts are defined, giving the times of departure and of arriva1 
for our favourite airport. 



?- eval( Cconnection(f 1, Y)] ) . 
Y = f6 

more? -- ; 
Y = f2 

more? -- ; 
Y = f3 

more? -- ; 
Yes 

The formulae 2 and 1 are used (f 1 is a "normal" flight). 

?- eval([connection(f4, Y)]). 
Y = f6 

more? -- ; 
Y = f3 

more? -- ; 
Y es 

The formulae 4 and 3 are used. The formulae 2 and 1 are not taken into account because of 
the rsd links (f 4 is an international flight). 

?- eval( [connection(X, f 211 ) . 
X = fl 

more? -- ; 
Yes 

The formulae 3 and 1 are used (f2 is a "normal7' flight). 

?- eval( [connection(X, f 611 1. 
X = fi 

more? -- ; 
X = f4 

more? -- ; 
Yes 

The formulae 4 and 2 are used. The formulae 3 and 1 are not taken into account because of 
the r t d  links (f 6 is an international flight). O 

This last example points out that the redefinition is sometimes used as a way of es- 
caping a badly designed hierarchy for a given point of view: in our case, it would have 
been easier to  define two 7'sister"-classes (respectively national flights and international 
flights). Such a solution would have avoided the necessity of redefinition links between 
the attributes we dealt with. Nevertheless, the schema we have adopted for the example 
could also be justified for ot her applicative purposes. 
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Figure 4.4: Redefinition on the Target Domain 

4.2.3 More about Overriding 

flight 

In the object-oriented context, the need to override attribute definitions with the same 
name is often associated with the problem of the multiple definition: along a branch of 
the hierarchy, one looks for a deterministic method selecting a single attribute defini- 
tion. The relationship aims at specifying the redefinition of the attributes: the selected 
one redefines the others. The overriding feature is also applicable to the other con- 
flictual situations, in particular in order to solve some clashes occurring with multiple 
inheritance and multiple representation. The overriding relationships declared between 
the attribute definitions provide an order relation, i.e. an explicit linearisation of the 
inheritance graph in accordance to a given attribute definition name. In such a way, 
the overriding links can be exploited to define the multiplicity (see 4.1) among several 
attribute definitions. The role of the overriding is then to mask other definitions for the 
sub-hierarchy. This feature is illustrated by the following example. 

Example 4.2.3 We consider the bierarchy of the figure 4.5. The class student is a subclass 
of both person and insured (the insured items of the application). car is a subclass of 
insured. We define also two aga attributes, one reiated to the age of the persons (an integer 
from O to 100 for instance), the other reiated to the insured objects (intervais). We want the 
students to be considered as persons, at least concerning the age attribute definition. Hence, 
we must s p d y  an order relation between the two definitions as we want the age attached to 
persons, to mask the one attached to the insured objects. Tbis order is set by an overriding 
link. Every entity, instance of student, inherits the age definition of the persons: 

14  ' Y ,  / 7 I )C- 1 

< .  a . 

?- eval( lisa(caro1ine . YI1 I . 
Y = person 

more? -- ; 
Y = insured 

more? -- 
Y es 
?- eval( Cage(caro1ine. YI1 I . 

international , flight A 



person - - 

car student 

isa isa 

integer + E l  

Figure 4.5: More about Overridding 

Y = 19 
more? -- ; 

Y es 
?- eval(Cage(myrenault5, Y)]). 
Y = [5, 91 

more? -- ; 
Yes 

Generally, the multiplicity relationship is defined at the class level: the order is set 
between the classes and therefore, the associated attribute definitions are ranked (if 
several are available) thanks to the same principle. This generality can produce unrea- 
sonable behaviour. In this context , the order between same-named attribute definitions 
is strictly defined by the order between the classes. As every definition reflects an 
atomic information, we consider that the order must be defined between the attribute 
definitions themselves. This approach allows also the specification of exceptions in the 
inheritance hierarchy in the same way as exception links modify the inheritance resolu- 
tion mechanism in some knowledge representation systems (e.g. [DucBB]). 

. - 

Example 4.2.4 Let us assume we build a simple classification of animals (cf. figure 4.6). 
We define two sub-classes of the class animai : mammal and oviparous. We give the two 
attribute definitions : 

the reproduction mode (reproduction): gestation for the mammals and laying of eggs 
for the ovipara. We define it intentionally as a kind of default value for the class 
representatives. 

the way the animal feeds its young (feed): milk for the mammals, predigested food for 
the ovipara, also defined intentionally. 



Figure 4.6: The Duck- billed Platypus Example 

But, it happens that we want to introduce the ornithorhynchus (also c d e d  duck-billed platy- 
pus), the strangest animal of the world, which is both a mammal and an oviparous: it lays 
eggs and feeds its young with milk! The problem can be solved by setting redefinition links 
between the attribute definitions reproduction from the ovipara t o  the mammals, and on 
the other hand, between the attribute definitions f eed from the mammals to  the ovipara. We 
defined in this way two local multiplicity relations between the attribute definitions. These 
links are taken into account only for the ornîthorhynchus. Other "normal" animals benefit by 
the classical definitions. O 

As pointed out above, the overriding mechanism provides the designer with a powerful 
tool for a wide. variety of inheritance clashes thanks to static declarations included in 
the model. However, these techniques are often not sufficient from a semantid point of 
view: some behaviours cannot be declared merely or, for other cases, a static declaration 
is too restricted. For instance, in the previous example (exarnple 4.2.4), any other animal 
representative of the two classes, will be considered as laying eggs and feeding its young 
with milk: the static multiplicity set for a particular exception does not apply necessarily 
for al1 kind of exceptions. The limits of static declarations can be overcome by dynamical 
specifications of the context'to be considered for the evaluation. 

4.3 Views and Viewpoints 

In tlie following, we cal1 E the set of al1 entities manipulated in the system: 



E = { E / i s a ( E ,  en t i t y ) )  

The set of classes is called C: 

C = { C / i s a ( C ,  c lass) )  

4.3.1 Views on the Class Hierarchy 

In the situations of multiple inheritance and multiple representation, when conflicts are 
ignored, an entity may inherit from several classes attribute definitions with the same 
name. However, there obviously exits a subgraph of the class hierarchy in which the 
conflicts disappear (cf. figure 4.2). 

Views on the class hierarchy are a means to select, dynamically during evaluation, a 
coherent subgraph for a given entity. Al1 the attributes of this entity will only be 
considered if they are inherited in this subgraph. This does not avoid the conflicts 
automatically. It is, however, a safe means to control inheritance during evaluation. It 
is safe since the selected subgraph is always coherent: at  least it always contains the class 
ent  ity and, therefore, the entity is an entity (cf. chapter 3). Let us try and formalize 
this notion of views. First of all, we give some definitions to deal with the classes and 
the instances. We borrowed this notion from [Car89]. The author cal1 them viewpoints. 
Our understanding of views and viewpoints being sightly different, we adopt a different 
terminology. 

Definition 4.3.1 (representation set [Car89]) The representation set of an entity 
E is the set of al1 classes of which E is an instance: 

Rep(E) = {C E C / i s a ( E ,  C ) )  

Definition 4.3.2 (subclasses set of a class [Car89]) The subclasses set of a class 
C is the set of al1 classes of which C is a super class: 

VC E C, Sub(C) = ( C l  E Clsc(C1, C ) )  

Definition 4.3.3 (super classes set of a class [Car89]) The super classes set of a 
class C is the set of al1 classes of which C is a subclass: 

VC E C ,  Sup(C) = { C l  E C / s c ( C ,  C l ) )  



Definition 4.3.4 (dependence se t  of a class [Car89]) The dependence set of a class 
C is the set of al1 classes of which C is a subclass or a super class; C belongs to its de- 
pendence set: 

VC E C, Dep(C) = {Cl E C/sc(C, C l )  o r  sc(C 1, C)  ) U {C) = Sub(C) U Sup(C) U {C) 

A view for a given entity E, according to a class C, is the dynamical restriction of 
the class hierarchy, for the inheritance computation, to the dependence set of C. A 
query att-name(E @ view(C) , X) indicates that the computation must be restricted 
to Rep(C) for inheritance on E. Concretely: 

1 

1 isa(E@view(C), Cl) is true if and only if isa(E, C l )  and C l  E Dep(C). 1 
In other words, the representation set of the entity under a class is restricted to its 
intersection with the dependence set of the class. This set Rep(E Q view(C)) is never 
empty as it always contains ent ity. 

Definition 4.3.5 (representation set of a n  entity under a class view) The rep- 
resentation set of an entity E under a class C is: 

The viewpoints described in [Car891 are similar. However, a stronger restriction is made 
on the validity of views (called viewpoints in that wntext). Because of the "frozen and 
unique representation constraintnl, the direct instance link plays a stronger role. As a 
consequence, the instantiation class (unique in that case) must belong to the selected 
subgraph: the direct instance link is frozen and must be interpretable (not hidden by 
the view). In that case if there is a link isa,d(E, C), a view (viewpoint) C is valid if 
and only if C E Rep(C1). For us, the isa-d link is an implementation link, the semantic 
link being isa. 

In the case of extensionally defined attributes, the view only serves the purpose of 
selecting their definition in the class hierarchy. However, when a selected definition 
consists of an intentional part, the view is propagated in the body of the rule, wherever 
the concerned entity appears. It means that the subgraph is used not only for the 
selection of the attribute definition for the initial query, but also for every attribute 

'In French: CRUF, contrainte de représentation unique et figée. 



definition needed in the computation, when it involves the entity on which the view is 
stated. 

Views can be used in queries. They can also be used within the rules in the intension of 
the attribute classes. The ~roblem, then, is the composition of views. In the example 
4.3.1, we show what we naturally expect from this composition. 

Example 4.3.1 Considering the schema of the figure 4.7, John wants to fill the tax file. He 
has the choice to declare himself as a teenager or as a middle aged as he is 19 years old. 
He chooses teenager because he knows that he may get a discount in this case. However, 
both taxes are computed under the view adult when searching the income. Indeed, children 
incomes are pocket money. Consider the initial query: 

The selected subgraph contains the classes person, child, adult and teenager. However, 
when using the rule: 

tax(X, Y)  <- income(X Q view(adult), 11, . . . , f(. . . , 1, Y ) .  

one generates the subquery: 

The answer is computed in the view intersection of teenager and adult. The view under 
adult  contains the classes person, adult, teenager and middle aged. The resulting view 
contains the classes person, adult and teenager. 

When the two composed views are unrelated, they exclude each other and the intersection is 
like the one illustrated by figure 4.8. It represents the composition of the views view(C2) and 
view(C3). 0 

Views represent subgraphs of the class hierarchy, sets of classes. Composing views nat- 
urally corresponds to valid operations on graphs and sets: union and intersection. We 
must notice that the complementary operation is not valid since the resulting graph 
cannot contain entity. We define two operators on views: . and +, respectively repre- 
senting the intersection and the union. They are defined in terms of the representation 
set of an entity under the composed views. 

Definition 4.3.6 VE E E, VV1, V2 views : 



Figure 4.7: View Composition 

Figure 4.8: View Composition with Unrelated Classes 



We have seen that the expected feature of view composition through the rules is t he  
double selection of a subgraph by the two views. View composition is translated into 
an intersection: 

A composed view does not, in general, correspond to a view under an existing class. 
Neither does it correspond to a view under a virtual class: a non existing class whose 
position in the hierarchy can be computed systematically. In the section 4.3.3, we 
define views with more complex expressions than simple classes: viewpoints. Indeed, 
viewpoints are virtual classes. The question whether the user should be allowed to 
manipulate view composition explicitly is not yet clear for us. We have seen that, if 
views are allowed in the rules body, then, at least, intersection must be computable 
by the system. The problem is that we provide a mechanism for building complex 
views, the viewpoints, that is founded by the semantics of the class hierarchy and the 
class-subclass order. view composition and views under viewpoints often resemble one 
another, but they are very different: view compositions are operations on sets of classes, 
viewpoints are operations on classes. We have chosen to  describe the two mechanisms. 
We are aware that the possible resulting confusion is a drawback. 

4.3.2 Viewpoints 

The class hierarchy is designed to reflect the whole application. The view mechanism 
described above is a flexible means to take a particular point of view during a session 
or for a query. The views are attached to certain entities and project, for them, the 
class hierarchy. However, views are built from the class hierarchy. The mathematical 
structure of the class hierarchy with the class-subclass order does not contain al1 the 
classes needed to built al1 the possible views. For instance, one may not be able to built 
a view from two classes considering their union or intersection (in the intuitive sense of 
the union of intersection of descriptions and instances). Indeed, the class hierarchy is 
not a lattice, and union and intersection of classes may not be classes. We present in 
this section a general extension of the notion of class. The viewpoint set and its partial 
order is built from the class hierarchy and the class-subclass order. We explore in the 
next section the use of viewpoints for defining complex views on the viewpoint hierarchy. 
Although we do not investigate this aspect here, one can remark that viewpoints could 
generalize the notion of class everywhere this latter appears: source and target domains 
of attributes, instance relation, etc. 

We need to construct a hierarchy which is a natural extension of the class hierarchy and 
which is a lattice. Indeed, the lattice structure guarantees that al1 the compositions will 
be interna1 operations. The principle of the construction is the following: 

We start from the set C and the partial order Sc. This partial order is defined by: 



Cc is a partial order, antis&metric, reflexive and transitive, because of thpdiefi- 
nition of the aubclass relation on C, 

A set, CY, is syntactidy bujlt from C and the functom V, A and t2. The new set 
is ordered by an extension of the order: Scv. scv is a pre-order, i t  is re3exive 
and transitive but niot antisynunetnc. 

e The antisymmetry is due to the syntactical construction. T h e  exist elements 
af CV intuitively equident tlxat are different. Therefore, we buift 'a third ;set, V, 
quotient of CV by the e q n i v h c e  relation. For this set the new relation L; is an 

Finally we verify the properties of (V, Sv) and show that it is the needed extepsion of 
(C, SC)'. 

Definition 4.3.7 (viewpoinb) A uiewpoid is an eqression but3 frbm Giasses and 
conneGtitles (V, A and 7 f . The set of w l l  f a w d  eitttrpoints C W is defiad &y:' 

, . , - 
VCEC,CECV;  

vvi, v2 E CV, ( 

vv E CV, (t V )  E CU. 
-"A 

We can now dehne the extensions or (SC) on CV: 

lefinition 4.3.8 (Scv) The Sv ünk on CU is defined by: 

w1, Y2 E CV, V1 scv v2 * 

or, V1 is V11 A V12 arnd VI1 S v  V2 or V12 Sv V2; 

or, V1 is VI1 v Y12 and VI1 V2 and V12 G v  V2; 

or, VI is f VI1 and VI1 S v  V2; 

or, V2 is V21A Va, and V1 S v  V21 and V1 Lcv V22; 

or, V2 is V21 V V22 and V1 S v  V21 or V1 I c v  V22. 

O 

21 is not needed fp the ww &rucQrze but b wery usefui for tlq . v h . ~ l e c t i o n  as orre will s e  lakec. 



Figure 4.9: The Hierarchy 

Considering classes and viewpoints as sets of instances, A, V and 1 could be seen re- 
spectively as the intersection, union and copy of their arguments. We do not give the 
straightforward definition of the extension of the isa link to the viewpoint hierarchy. 

The viewpoint hierarchy is an extension of the class hierarchy. The connectives A, 
V syntactically intend to build, respectively, the greatest lower and the lowest upper 
bounds of their arguments. A simple equivalence relation on viewpoints will make this 
point clear. 1 creates a virtual copy of its argument that has no subclasses. This feature 
will be useful when one wants to consider classes without their specializations in a view. 
The figure 4.9 illustrates the viewpoint hierarchy. 

In fact, CV with the <cv relation has not got a satisfying structure. For instance, 
for two classes Cl and C2 the two viewpoints Cl A C2 and C2 A Cl are such that 
C2 A Cl <cv Cl A C2 and Cl A C2 <cv C2 A Cl. They clearly represent the sarne 
thing. In order to solve this problem, we build a set V from VC and the equivalence 
relation rcv. 



Definition 4.3.9 (equivalence relation) VV;& E CV: 

(CI r c v  c2 H CI Lcv C2 and C2 hcv CI) O 

Property 4.3.10 (equivalence relation) The following properties stands on the view- 
points: 

commutativity: VV1, V2 E CV: 

associativity: VV1, V2, V3 f C V :  

déstributivity: VV1, V2, V3 E CV: 

absorption : VV1, V2 E CV: 

Definition 4.3.11 ( V )  We  can now define the set V ,  we will cal1 abusively the set of 
viewpoints: 

The set V contains an element per class of C and new elements representing the union 
and intersection of classes. The constructors V and A can be seen as operators in the 
lattice structure. Indeed, for the induced relation Sv ,  V has a lattice structure: 



Definition 4.3.12 ( I V )  VGV2 E V, (K Lv & Vvl E K and v2 E &,vl  Lcv v2) 

O 

Proper ty  4.3.13 (V, Sv) has a lattice structure. V 

Proof  4.3.13 The proof consists in showing that, for each element of the set V contain- 
ing V1 and V2 of CV, the elements containing V1 A V2 and V1 V V2 are respectively 
the in$mum and supremum (therefore unique) for Sv. A 

The case of the operator 1 remains unclear. However, as we intend to use it for the 
selection of views, we can abusively assume the following properties: 

Proper ty  4.3.14 (distributivity) The following properties can be used: 

distributivity: VVl, V2 E CV: 

- 1 (Vl v V2) Ecv (1  v1v  f va) 
- 'r (VI A V2) ~ c v  (1  VIA r Va) 

idempotence: VV E CV: f V f cv1  V 

Then, the syntactical construction and the lattice structure allows us to exploit a normal 
form for viewpoints. This is very interesting for the implementation of a view mechanism 
using viewpoints: 

Property 4.3.15 VV f CV, there exists a canonical transformation into a canonical 
form CV such that CV r c v  V .  V 

The definition of the equivalence relation and its properties are used as the basis for the 
implementation of views with viewpoints in the M6bius evaluator. 

4.3.3 Views on the vvewpoint Hierarchy 

Views are used to select a subgraph of the inheritance graph. In section 4.3.1, we 
defined a view on an entity by means of a class. Now, we dispose of a more precise 
notion: viewpoints. We have seen that viewpoints are a generalization of the class 
hierarchy to a lattice structure (plus some more information like f C). This section 
gives the necessary definition for defining views on entities according to the viewpoint 
hierarchy (V, S C ) .  S C  is the name we use now for the <cv order. 
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Definition 4.3.16 (super classes set of a viewpoint) The subclasses set of a view- ' 

point V is the set of al1 classes of which V is  a super class (with the SC relation): 

VV E Y, Sub(V) = {C E C/sc(C, V)) 

Definition 4.3.17 (super classes set of a viewpoint) The super classes set of a view- 
point is the set of al1 classes of which V is a subclass (with the SC relation): 

vv E Y, Sup(V) = {C E C/sc(V, C)) 

Definition 4.3.18 (dependence set of a viewpoint) The dependence se t  of a view- 
point V is the set of al1 classes of which C i s  a subclass or a super class (with the SC 
relation) ; V belongs to its dependence set if it is a class: 

VV E V, Dep(V) = 

{C E C/sc(V, C) or sc(C, V)) U {V E C) = 

Sub(C) U Sup(C) U {C E C) 

A view, for a given entity E, according to a viewpoint V, is the dynamical restriction of 
the class hierarchy, for the inheritance computation for E, to the dependence set of V. A 
query att,name(E @ view (V) , X) indicates that the computation must be restricted 
to Rep (V) for inheritance for E. Concretely: 

i sa(E@view(V) ,  C )  is true if and only if i s a ( E ,  C )  and C f Dep(V).  

In other words, the representation set of the entity under a class is restricted to its 
intersection with the dependence set of the class. This set Rep (E Q view (V) ) is never 
empty as it always contains entity.  

Definition 4.3.19 (representation set of an entity under a viewpoint view) The 
representation set of an  entity E under a viewpoint V is: 



i The rules interpreting a view are: 

isa(E Q view(V), C) <- isa(E, C) and sc(C, V). 

i s a ( E  Q view(V) , C) <- isa(E,  C) and sc(V, C) . 

i sa (E Q view(C) , C) . 

4.4 Full- narne 

The principle of the association of attribute definition to classes allows, in particular, 
to ignore, thanks to inheritance, where this information comes from. It allows a user 
to manipulate the knowledge without a global view of its structure. For instance, when 
querying an entity jean about his age: ?- eval(  Cage ( j  ean, X) 1 ) , the user does not 
need to know if the age is an attribute defined for al1 entities, for animals or just for 
persons. He is only concerned with the fact that j ean inherits this definition. 

When programming an application, the designer can use overriding to control inheri- 
tance. When querying the knowledge base, the user can use views and viewpoints to 
control inheritance. There remain cases where a strict and exact control of the origin of 
the attribute definitions is needed. 

We must recall here, that attributes definitions, in Mobius, are identified by the triple: 
(name, source domain, target domain). Therefore, in any expression, designating an 
attribute by its name may select several definitions, while designating an at tribute by 
its full-name (source, target domain and name) will select a single definition. The 
Mobius syntax for full-name is the following: 

sd(d1) ! td(d2) ! attribute-name (X, Y) . 

where d l  and d2 are respectively a source and target domain of the attribute. 

We also allow a partial full-name (!) using only source or target domains: 

sd(d1) !attribute-name(X, Y). 

td(d2) ! attribute-name (X,  Y) . 

Taking advantage of unification, one can also ask queries where source or target domains 
are variables that are bound when the expression is evaluated. 





Chapitre 5 

Instance and Identity 

Instance et identité 

Les principales difficultés pour la définition d'un modèle de représentation 
des connaissances dans un cadre relationnel et déductif sont, d'une part, 
ka gestion de la notion d'identité et, d'autre part, la gestion de la notion 
d'instance. Ces dificultés sont liées à l'opposition entre le modèle relationnel 
orienté valeurs et les modèles dits objets orientés références. 

Dans un premier temps, nous discutons quelle quantité d'information sémantique 
peut être associée à l'identificateur d'une entité. Les deux possibilités que 
nous envisageons sont les identificateurs structurés et les attributs identifi- 
ants. 

Ensuite, nous présentons les facilités oflertes par le modèle Mobius pour la 
définition du lien d'instance isa. En particulier, nous montrons comment 
ce lien peut être défini intentionnellement. 



The purpose of knowledge base models is to represent objects and concepts of.the real 
world. An object in the.real world exists in the mode1 via an entity it is represented 
by. An object in the real world exists in the model because meaning is attached to that 
entity; basically, the entity is recognized by the model. These considerations lead us to 
several issues: 

First of al1 we examine the opposition between the value-oriented nature of the 
relational context on top of which the Mobius system is built and the reference- 
oriented nature of conceptual and object-oriented approaches; 

We briefly discuss several points related to the notion of identity: 

- how much semantic information should an identifier contain, if any? 

- how to maintain and use semantic information for identification? 

finally, we discuss how the isa instance relation is defined and represented in the 
Mobius model. 

Reference vs Value 

The deductive database technology has been developed on top of the standard relational 
model. The relational model is value-oriented, therefore, a deductive database model 
is also value-oriented. Entities of the real world are represented as tuples or terms and 
assimilated to their value. E.g., a person with a name, a forename and an age would 
be represented by a tuple of the relation person: (porter, graham, 25).  Deciding, 
if the age changes, whether the person is the same or not is of the user interpretation 
responsibility. 

On the other hand, by merging the notion of concept used in artificial intelligence models 
-nodes of semantic networks, components of conceptual graphs, etc - and the identity 
notion present in most programming languages - variables in Pascal -, the ob ject-oriented 
models are reference-oriented. An object consists, at least, of an object identifier, a type 
and a value. The value is again composed of identifiers. In the following example we 
compare the reference and value-oriented representations. 

Exainple 5.1.1 Let us consider a database of suppliers and parts they supply to a given 
department. A supplier has a name and an address. A part has a type and a price. 



A possible object-oriented representation, in the syntax of the model proposed in [Abi9OI1, 
would be: 

c l a s s  address : s t r i n g  
c l a s s  name: s t r i n g  
c l a s s  type: s t r i n g  
c l a s s  suppl ier :  [name : name, address : addressl 
c l a s s  p a r t  : [type : type, cost  : real]  
c l a s s  order: [part:  p a r t ,  quantity: in teger ,  supplier :  supplier] 
c l a s s  department: [name: name, orders: -Corder31 

To this schema correspond, for instance, the objects: 

oid:  #22 
type : supp l i e r  
value : [name : "vang tsu"  , address : "singapour"] 

oid: #44 
type: p a r t  
value : [type : "bolt" , pr ice  : 0.301 

oid: #26 
type: order  
value: [part:  #44, quantity: 1000, supplier:#22] 

oid: #35 
type : department 
value : [name : "cupboard dep", 

orders:  {#26, #27, #28, #29, #30, a3131 

Oids are sirnilar to  keys added to relations. However they are integrated in the model and do 
not necessary reflect the implementation in tables. They are systematically manipulated by 
the model. O 

'We do not explain the syntax. It is natural enough. If any understanding problems remain one 
can refer to the cited document 



The word 'object identity' only appeared in the database vocabulary when studies were 
led to define object-oriented database models. However, the necessary link between 
the data in the database and entities of the real world forced data modeling research 
to concentrate on, even when not narned, referential integrity and identity. Relational 
modeling is based on normalization. The several normal forms intend to protect the 
data from the defaults mainly due to the lack of identity: update anomaly, insertion 
anomaly, deletion anomaly. In the example 5.1.2 we illustrate these possible defaults. 

Example 5.1.2 In the table given in example 5.1.1, there exist obvious dependencies arnong 
the data. The problem is to protect the integrity of the data under these dependencies when 
constrained by the structure of the relations chosen to store the data. In particular update 
operations may lead to inconsistent states. 

Update: if the address of a supplier changes, it is necessary, in the table of the example, to 
replace it everywhere it appears, because of the natural functional dependency between 
a supplier and its address. 

* Insertion: a new supplier can only be added if it supplies a part. 

Deletion: the deletion of all bolts delete the suppiier wang tsu.  

Of course a solution to the second and third anomalies would be to use nuil values. However 
their use and semantics complicate the semantics of the model. 

One can verify that none of tliese anomalies appears in the object-oriented representation. O 

Normalization is based on the definition, in the relational model, of dependencies, Le., 
integrity constraints. Codd, in the early seventies, when describing the basis of the 
relational data model, proposed the use of so called identifying keys. They represent 
the f is t  attempt to integrate identity in the relational database model. Of course the 
hierarchical and network models had, already, a strong notion of identity because of the 
lack of independence between the data and the storage structure. 

However the wished notion of identity should appear at the conceptual level. Indeed, the 
absence of a management of identity creates a mismatch between the application and 
its representation in the model. Providing solutions for this problem, at the conceptual 
level, was one of the purposes of models like the Entity-Relationship model (ER) or 
the extended Entity-Relationship model (EER) . They provide modeling capabilities to 
express some of the natural constraints. In particular defining structured enti ties (with 
attributes) associated together brings clearly the problem of identity at the modeling 
level. However, the problem remain to find a mapping into a relational model that 
respect the implied constraints. 

The same situation stands for ob ject-oriented database models. Although the notion of 
identity exists, the question remains how to represent it in the storage model. For that 
purpose so called non first normal form (NlFN) models have been investigated. What 
we are interested in is the integration of object identity at the level of the model. 

An entity is identified by an identifier. The identifier is an entry point to the value 
computation. The identifier, a s  a simple pointer, or as a block of information, must be 



permanent in time and space. In time, because, within its life time, it represents the 
same real world entity. In space, because there does not exist two real world entities with 
the same identifier. Narnes are the first natural means to create identifiers. It is however 
easy to see that meaningful names are not always sufficient . A well known technique to 
integrate identifiers in a relational model is the use of surrogates. It corresponds to an 
implicit version of keys in a relational model. In Mobius, we choose to use surrogates 
to identify enti ties. The identifier generation and management must be guaranteed by 
the system. In the Môbius prototypes, the user has the choice, when creating a new 
entity to give the identifier explicitly - with the risk that it already exists -, or to let the 
system generate a new one 2: 

?- employee :: new(employee1). 

Yes 
?- employee :: new(-). 

Yes 
?- employee :: new(X). 
X = 0240 

5.2 Ident ifiers 

5.2.1 Structured Identifiers 

A minimal assumption, in a model with object identifiers, is that there exists, at least, 
some objects that contain their own meaning. These objects are necessary for the model 
to communicate with the user or with other systems. A classical solution consists in 
building the objects from sets of basic values. Usually, these basic values sets or types 
are integers, strings, real numbers etc. More sophisticated systems provide the user with 
constructors for structured values: Cartesian products, set constructors, record or list 
constructors. 

Therefore, in the triple (Oid, Type, Value), the value can refer to other objects identi- 
fiers or to basic or complex values. In the example 5.1.1, we used the value sets integer 
and string. 

This point of view, separating values from identified objects, can be relaxed. Indeed, 
values, in that case, can be seen as self contained objects. The symbol i is both the 
identifier and the value for the integer one. In the real distinction is not between iden- 
tifier~ and values but between printable and non printable identifiers. This distinction 

2The syntax entity : : procedure has been used in the Mobius experiments. It indicates that the 
procedure is selected according to the class of the entity. Here new/î is a creation procedure. It is 
called from the Prolog top-level 



depend on the application and on the user. For instance, in a railway application, the 
identifier ic230 rnay be meaningful for users from the railway Company where only the 
information that it is a train between muenchen and koeln that travel on sunday means 
something for other users. There, syntactic sugar added to the query and answer lan- 
guage, on the basis of the distinction between printable and non printable identifier, 
could free the user £rom the burden of manipulating meaningleçs identifiers. We have 
,for instance, experimented a functional syntax where only the variables participating 
at the answer are needed (by expressing cross references with an equality symbol). 

Even when not directly printable, identifiers rnay be more than just an interna1 code 
for the model. As soon as a way to  structure identifiers and operators and operations 
are provided in the model, identifiers can be used to store permanent information. We 
could, for instance, choose to identify persons by a structure storing their name and 
surname. This structure could be any record structure, string or algebraic term in a logic 
programming context. The data language must then contains operators or operations 
on, respectively, record structures, strings or algebraic terms to retrieve information 
from them. In the case of terms, the operation could be matching or unification. 

The risk, now, is that the power of the data language is such that we reach undecidable 
situations. In particular, this is the case if the system can invent identifiers. A first 
order logic language, with terms as identifiers and unification, is semi-decidable, it rnay 
create inhi te  structures and queries evaluation rnay not terminate. Therefore the use 
of structured identifiers must be limited and controlled. We can notice, here, that inter- 
esting studies about object identity in a deductive context use terms to disarnbiguate 
quantification in rules for identifier invention (cf. [CWS9]). 

We use terms for the implementation of certain complex information. For instance, 
classes and attribute classes intentions (formulae) are stored as structured terms. But 
from the model point of view they are seen as atoms. 

However, there is a situation where identifier invention is integrated in the model. 
Namely this is the case when we claim that attributes are entities. Indeed, attributes 
are terms of the form at t -name (arg 1, arg2) that rnay appears in the body of queries 
with variables (eval ( [VI (age(X , 25) , Z)] ) . The risks of creation of infinite structures 
or of non termination are eliminated by the f a t  that such expression rnay only appear 
in the body of rules and that the terms must correspond to literals evaluable by the 
Môbius evaluator. 

5.2.2 Identifying Attributes 

We have seen that structured identifiers, in certain cases, can be used to record a part 
of the information describing the entity. This can only be the case if the persistency 
of the information stored is guaranteed. There exists another situation, where some 
features of the entity are known to be identifying, but rnay evolve in the application life 
time. We could know for instance that perçons are uniquely identified in the application 
by their name and surname, nevertheless being able to marry and change their family 
name. The name and surname are identifying attributes but not their values. Namely 



the information we have is that there is a one to one correspondence between a group 
of attribute of the person and its identifier. The identifier, in that case, must be inde- 
pendent from the actual values of the attributes. This clearly corresponds to a special 
kind of integrity constraint (a functional dependency). We propose in the following a 
special syntax for it and a special mechanism to recover stable state. 

The feature we propose consists in defining, at the class level, lists of identifying at- 
tributes. Such a list is stored in the class attribute features. This information corre- 
spond to the declaration of a functional dependency between a list of attributes and the 
entity identifier: 

?- employee : : set (f eatures ( [username(X ,Y)] ))  . 

Yes 
?- employee : : set (f eatures ( [name(X ,Y), f orename (X, Z)] )) . 

The system is now responsible to guaranty the uniqueness of the identifier for employees 
sharing the same features for every kind of update. The above statements are trans- 
formed into integrity constraints: 

forall [Xl,X2,ZI] : 
isa(X1,employee) and username(X1,Zl) and 
isa(X2 ,employee) and username(~2 , ~ 1 )  -> 
Xi = X2 

forall ~Xl,X2,Zi,Z21: 
isa(X1,employee) and name(X1,Zl) and forename(Xi,Z2) and 
isa(X2, employee) and name (X2,Zl) and f orename (X2,Z2) -> 
XI = X2 

These constraints will be violated if an update does not respect the functional depen- 
dencies. The update will fail. The problem is to  handle the recovery of a stable state 
where the constraints are no more violated. The simplest, but also the heaviest , solution 
consists in committing the update, despite the violation, finding the conflicting entities 
and merging them. The algorithm below is the first approximation of such a procedure: 

recover (Updat e )  
begin 
if only functional dependencies were violated 
then 

inhibit constraints 
perf orm (Update) 
reset constraints 

for each ordered pair (Xl,X2) violating the dependencies 



9s . 

do merge(Xl,X2) 
enddo 

endif 
end 

merge (XI, X2) 
begin 
for each tuple T(X2) containing X2 
do replace(T(X2),T(Xi)) 
enddo 
end 

The ordered pairs violating the dependencies constraints are obtained by rules created 
for each dependency constraint. For the example above, the rules are: 

ic(X1 ,X2) <- isa(X1 ,employee) and username(~1,~l) and 
isa(X2,employee) and username(~2,~l) and not 
X1 = X2 

ic(Xl,X2) <- 
isa(X1,employee) and name(X1,Zl) and forename(Xl,Z2) and 
isa(X2, employee) and name(X2 ,Zl) and f orename (X2,Z2) and not 
X1 = X2 

The pairs must be ordered since if 024 and 0342 me violating the constraints then 0342 
and 024 also violates them. A lexicographie order could do the job. A refinement would 
consider that system generated identifier are always greater (or lower) than user defined 
identifiers. 

The merge procedure replaces everywhere in the database the occurrences of the second 
identifier by the first. Notice here that the mapping information integrated explicitly in 
the schema should be used to reduce the number of tuple and relations to search. 

However it might happen that a simple update generates a cascade of merging. Thus 
the replace procedure can call, in its turn, the recover procedure. The example 5.2.1 
illustrates such a situation. 

Example 5.2.1 Let us consider a class woman, a class man and a class person.Men and 
Women are identified by their children. 

?- class :: new(person). 

Yes 
?- person : : add-att (child, [td(person)l) . 

Yes 
?- woman : : f eatures ( [childl 1. 



referma existing objects. Just as in queries,, object identifiesrs can be 
a fundional expression denoting an object. U .the objecf already exists it 

s not created. If it does not a new identifier is generate8. TBis is illustr&W by the 

ident&ing attributes for &nnpiojms. y y , i 

The problem of relating feature to inheritance remains. Attributes are recognized 
through th& names. However a singie entity çan be linkalieid by se9eral different at- 
tributes of the -e name The question is, when defining futures in a clas, ~ h ~ i & g  
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attribute definitions do we want to refer to: al1 the possible attribute definitions inher- 
ited by the object with the given name, only those inherited from the class and its super 
classes, etc. 

In fact, we have chosen in Mobius to rely on the instance hierarchy and the isa link, 
instead of the class-subclass hierarchy, for inheritance. This leads us to the explicit 
removal of ambiguities, We suggest that attribute definitions used in features correspond 
to those inherited by the entity. In the several conflictual situations above, the same 
mechanisms used for inheritance in queries must be used: overriding, views and full- 
name. For example regular feature declarations could be: 

man : : set (f eatures ( [child(X 0 view(^person) ,Y)] ) ) 

man : : set (f eatures ( [sd(person) ! child(X ,Y)] )) 

Entities and Classes: the ISA Link 

5.3.1 Being an Entity 

As stated in the principles defining our model, everything has to be an entity. This 
is achieved by insuring that objects in the model are instances, at least, of the class 
ent ity. An entity is instance of a class if there exists a link named isa between the 
entity and the class. 

The inheritance mechanisms, in Mobius, are founded on the isa link. This is given by 
the attribute definitions semantics by translation into rules. An interesting point to 
underline here is that inheritance, although exploiting the class hierarchy through the 
SC link, is not limited to the class hierarchy. Indeed, in some object-oriented models and 
systems, object are triple (0id,~,V) where Oid is the object identifier, T is a type and 
V is the value. The type of objects is defined at the level of classes by the computation 
of the greatest lower bound of al1 the super classes of a class. The difficulties of this 
approach arise when confiicts appear, as an order with good properties is needed to 
compute the greatest lower bound. In our point of view, the class hierarchy is flatten to 
form the instance hierarchy (where each instance is related to the classes it represents). 

One of the consequence. of that choice is that the implementation instance link, we cal1 
the direct instance link (isa-d), is not necessary. The reason for such a particularization 
of the direct instance link is often related to implementation problems. This is called 
the unique and h e d  representation constraint (cf. [Car89]) and may lead to difficulties 
when one wants to see objects evolving or being representative of several unrelated 
classes (multiple representation). 

Therefore we only need a i s a  link. For simplification purposes, we have and may keep 
on using the isa-d link in the text. 

Now, we can see how the instance link is stored (classes intention) or computed (classes 
extension). 



i 5.3.2 Class Extension 

If we follow the principles we used for attribute definitions, then the isa class is associ- 
ated to a mapping expression: the extension. It could be for instance, a binary relation 
rel-isa relating entities and classes. It would be, however, natural to consider that 
different classes have different mapping. For instance, one may want to store the per- 
sons in a relation person/i. This could be possible, using the extension of attributes 
if we defined several isa classes, one for each class with a new mapping. However, 
these attribute classes are inherited when the information about mapping must be local 
to a class. We preferred an alternative solution. Classes are associated with a class 
extension, an attribute named ciass-ext which is the parameter for the unique isa 
attribute class intention. As an example, the class person would be associated with 
the class extension: class-ext (person, ext (S , Cperson(S) 1 1, where person (S) is a 
relational expression (a base relation). The isa definition becomes: 

isa(X,Y) <- class-ext (Y, ext (X, [Extl)) ,Ext. 

Thanks to meta-classes and intentional attributes, the class-ext can be set to a com- 
mon relation for several classes. A meta-class could declare an class-ext in intention: 

class-ext (X,Y) <- Y = ext (S, Cr,isa(S,X)I). 

Al1 the classes, instances of that meta-classes will have an attribute class-ext set to 
the relation r,isa/2. 

Thus, there is a unique isa link, but depending on the class, its second argument, it has 
a distinct extension. Just like normal attributes the isa will be compiled into rules. In 
fact, classes will be compiled and create the isa compiled rules. These rules are added 
to the recursive rule defining the isa link as its own transitive closure under the class 
hierarchy (SC link). 

5.3.3 Class Intention 

There are several situations where being an instance of a class is an information that 
can be derived from other knowledge in the model. This is the case at least for al1 the 
super classes of the class an entity is instance. But there are more applicative examples. 
For instance, saying that teenagers are persons whose age is between 13 and 19. 

Therefore, as we had, for attribute classes, extensions and intentions, we can define, after 
class extensions, class intentions. They are formulae defining conditions to  be instance 
of a class. They are stored in the attribute class-int associated to a given class. 

Exainple 5.3.1 From a class of persans person with an attribute age, we define a class of 
teenagers tlianks to tlie class-int attribute: 



class : : new(teenager, 
Cclass-int (int (s, 

[isa(S ,person) ,age(S ,X) , 12 < X < 201 ) 11 1. 

it corresponds to the rule: 

Other mode1 where such a feature is available, consider the problem of relating auto- 
matically the class defined in intension to other classes in the class hierarchy. We argue 
that it is not necessary. Indeed, we have shown that the purpose of the class hierarchy 
is to have a conceptual support for modeling that defines the isa link. Here, the isa 
link is already defined. The example 5.3.2 below shows the general difficulty to position 
the class in intention in the hierarchy. 

Exailiple 5.3.2 This example is illustrated by the class hierarchy of figure 5.1. A person is 
a member of the EEC if he is French, English, Dutch or citizen of any EEC country. European 
electors are the persons who have the right to vote in the country they are citizen of. They 
vote for the European elections in the country they are citizen of. The class in intension 
european-elector is defined by the following rules: 

isa(X, european-elector) <- isa(X. french) and elector,in(X ,f rance). 
. S .  

isa(X,european,elector) <- isa(X, portuguese) and elector,in(X,portugal). 

Intuitively, european,elector is a subclass of euopean-citizen. It has no existing subclass. 

Now we consider the class of person having the double nationality, French and German. This 
dass f rench-german is defined by the rule: 

isa(X,french,german) <- isa(X, french) and isa(~, german). 

It is, intuitively, a subclass of french and german. 

The dass european-citizen could have been defined intentiondy by the rules: 

isa(X,european,citizen) <- isa(X, french). 
. . . 
isa(X,european,citizen) <- isa(X, portuguese). 

It is, intuitively a superdass of all the nationdties classes. 

In general, a class in intention, is intuitively a sub or a super class of a class depending on the 
classes referred in the rules. Since it has no consequences on inheritance, we do not compute 
tliis SC link O 



English French German . . . Italian 

Figure 5.1: Classes in Intention 





Chapitre 6 

Implementation 

Implantation 

Les expériences d'implantation de prototypes pour le système Mobius nous 
ont amenés à envisager plusieurs catégories de problèmes. 

Parmi ces problèmes, nous discutons, dans ce chapitre, de l'implantation 
d'évaluateurs pour le langage de requêtes de Mobius. Nous décrivons suc- 
cintement une approche méta-interprétée qui est à la base d'un premier 
évaluateur implanté en Prolog (Megalog), et une approche compilée qui nous 
a permis d'utiliser le système cible EICS-VI pour l'évaluation de requêtes et 
la gestion des contraintes d'intégrité. 

L'implantation de systèmes de gestion de connaissances basés sur un modèle 
sémantique de données, et en particulier sur le modèle Mobius, au dessus 
d'un système de gestion de données relationnel, pose le problème de la mise 
en correspondance des deux modèles. Nous montrons comment, dans le 
modèle même de Mobius, sont intégrées les informations de mise en cor- 
respondance. Cette paramétrisation est un support pour l'étude ultèrieure 
des diflérentes formes de correspondances et de leurs propriétés : eficacité 
versus intégrité. 



This chapteraims at giving the reader an idea of the problems and solutions we founil 
when implementing prototypes for the Mobius system. In general, each aspect and fea- 
ture of the Mobius system presented in this thesis has been evaluated in an implemented 
prototype. It has not been done in the same unique implementation. 

We present here two versions of the query evaluator: 

The first one is implemented in Prolog (Megalog). It is based on a meta-interpreter 
and focuses on the reflective aspects of the model; 

The second is based on a translation (compilation) of the Mode1 into Datalog rules 
evaluable by an existing deductive database system. The rules are evaluated by 
the EKS-V1 query evaluator. The experiences exploiting the EKS-V1 capabilities 
allowed us to test other aspect of the Mobius system such as integrity constraints 
and updates. 

then, we discuss the interaction between the model and the query evaluator in term of 
possible semantic optimizations. 

Finally, we discuss the problem of the Mapping of the M6bius model to a relational 
model. 

This last issue is just a report of the problem we have faced while prototyping. There 
is no new solution offered by the Mobius environment. 

6.1 Query Evaluator 

In the Mobius model, there is no a priori distinction between data and programs, be- 
tween schema, meta-schema and data: everything is an entity. However, this distinction 
appears in the evaluation since some data will be used by the evaluator for the com- 
putation. Namely, intentions and extensions of the attribute classes and classes will be 
used by the evaluator to compute the sets they denote. 

The M6bius kernel is very easy to implement. It basically corresponds to a set of 
attnbutm stored in the database. The semantic network of kernel classes, attribute 
classes, intentions, extensions and other entities takes sense and can be extended on the 
basis of the query evaluator. The sets denoted by queries, intentions and extensions must 
be correctly computed. Therefore, the query evaluator must be sound and complete with 
respect to the relational semantic of Mobius. 

The first implementation of a query evaluator is a simple extension of the Il Prolog 
vanilla interpreter: 



eval (L and Exp) : - eval(L) , eval(Exp). 
eval(L) :- ((retrieve(L) ) ; 

(rule(L <- B), eval(B) ) ) .  

Such a meta-interpreter is not sound and complete. In particular, it may not always 
terminate in the case of recursive rules. This interpreter is extended to take the Mobius 
data into account (interpreter 12): 

12 : 
eval (L and Exp) : - eval (L) , eval (Exp) . 
eval(~) :- L =.. [N,Vl,V2], 

eval ( name (Att-1d , N a m e )  and 
sd(Att-Id, SD) and 
td(Att-Id, TD) ) ,  

eval(isa(V1,SD) and isa(V2,TD)). 

Each literal in a query is decomposed. From its name, the evaluator select several 
candidate at  tribute definitions ( ~ t t  , id). The argument of the attribute definition will 
parameterize the evaluation. 

The intentions and extensions (Int, Ext) will respectively generate subqueries or cal1 a 
retrieval in the database. 

The source and target domains (sD, TD) are used to control the compatibility of the 
arguments of the literal in the query. This is the way inheritance is implemented. 

The attribute classes, being themselves entities, and their intentions, extensions, source 
and target domains, being attributes, are queried with the same evaluator. 

As such, the evaluation procedure never ends. First of all, the isa attribute can not be 
evaluated with such a procedure: the evaluation of a query like isa(X , ent ity ) would 
generate subqueries of the same form wit hout alternative. 

The first decision consists in treating the isa link differently. In Mobius, isa is not a 
normal attribute. Its intention is parametrized by the classes: 

isa(X,Y) <- class,extension(X,Y). 
isa(X,Y) <- class,intention(X,Y). 
isa(X,Y) <- isa(X,Z) and sc(Z,Y). 

Here, class-extension(X ,Y) and class,intention(X, Y) stand for the class Y respec- 
tive extension and extension. We do not check the source and target domains as their 
correctness is ensured by integrity constraints 



Its evaluation uses a special rule: 

eval(fisa(~r~1,~r~2)~~]):-eval(Cext(~,ext(~r~1, ~lass-Ext)), 
int (Y, int (Argl , ~lass-~nt))]) , 

(retrieve (~lass-Ext ) ; eval ( [~lass-~nt]) ) , 
eval (L) . 

The strong consequence is that we have to forbid the user to define attribute named isa. 
This is acceptable since the semantic of the whole system relies on the definition of isa, 
It is not a restriction as we allow classes to have extensional or intentional definitions of 
their instances. This definitions: Class-Ext and Class-Int are used in the evaluation 
of isa. 

Still, the evaluation procedures is looping. Indeed, for the kernel attributes: ext, int. 
name, sd, td, the evaluator will infinitely try and find respectively their extension, 
intention, name etc. This infinite regression is stopped thanks to special purpose rules 
for each kernel attribute: 

eval( fint (OS ,Y) IL]) : - retrieve(stored-int (09 ,Y)) ,eval(L) . 
eval( fext (08 ,Y) IL]) : - retrieve(stored-ext (08 ,Y)), eval(L) . 
eval( fname(o13 ,Y) IL] ) : - retrieve(stored-name(o13,Y)) ,eval (L) . 
eval( Csd(o7 ,Y) IL]) : - retrieve(stored-sd(o7 ,Y)), eval(L) . 
eval( Ctd(o6 ,Y) IL]) : - retrieve(stored-td(o6 ,Y)) ,eval(L) . 

Respectively, 09,08,013, 07 and 06 are the attribute classes for ext, int, name, sd, td. 
The consequence, again, is that these kernel attributes cannot be redefined or extended 
by the user. 

We have also experimented a version of the Mobius evaluator based on a QSQ query 
evaluator described in [Lefgla] as a meta-interpreter. This version is sound and complete 
thanks to subqueries and answers memoization. 

The metai-interpreted approach was sufticient to validate the metacircular approach. 
However it leads to an inefficient implementation. The other aspects of the Môbius 
Mode1 (in particulas integrity constraints) needing other development, we now present 
at the second prototype using the existing deductive database system EKS-VI. 

6.1.2 Compilation in EKS-V1 

The main drawback of the interpreted approach is the redundant computation. This 
leads to unacceptable response time for the query evaluation. The first kind. of re- 
dundancy we have to eliminate exists when the definition of a class or an attribute is 
completed. In that case one needs to recompute the source, target domains, extension 
and intentions and redefinitions for each evaluation involving the attribute. 

The idea is to materialized this information. The attribute definitions are translated 
into rules (closed to the rules defining their semantics). It is then necessary to update 



these rules in case of a modification of the data they depend on. Since the rules can 
be defined by means of deductive rules themselves, the update propagation mechanism 
should be similar to the one used for materialized predicates ([VBKSla]). 

The generated rules can now be compiled and used by the EKS-V1 system. In the 
following we examine on examples the form of the produced rules. 

Let us consider a class of employees, employee, and two attribute classes, sup-direct, 
linking an employee to its direct leader, and sup the transitive closure of the leaders 
hierarchy. The attribute class sup has the class employee as a source and target domain. 
It can be stored extensionally in the base relation r-007 and is intentionally defined by 
the two rules of the transitive closure: 

sup(X, Y) <- sup,direct(X, Y). 
sup(X, Y) <- sup-direct (X, Z) and sup(Z, Y) . 

The rules produced by the compilation are: 

sup(employee, X, Y, employee) <- r-oo7(X, Y) and 
isa(X , employee) and 
isa(Y, employee)) . 

sup(employee, X, Y, employee) <- sup,direct(X, Y) and 
isa(X, employee) and 
isa(X, employee)) . 

sup(employee, X, Y, employee) <- sup,direct(~, Z) and 
sup(Z, Y) and 
isa(X, employee) and 
isa(Y, employee)). 

However, if we want to take into account other aspects of the use of-the attribute 
definition, we must create rules a little more complex. In particular if we want to 
benefit by features such as cal1 by full-name, or cal1 to super. 

super,sup(X, Y) <- full-super(,,X, Y). 

f ull-super-sup(employee, X, Y) <- sc(emp1oyee , C) and 
full-sup(C, X, Y, -1). 

full,sup(employee, X, Y, employee) <- r,ooï(X, Y) and 
isa(X , employee) and 
isa(Y, employee) . 



f ull-sup (employee , X , Y, employee) <- sup-direct (x, Y) and . 
isa(X, employee) and 
isa(X, employee)). 

f ull,sup(employee, X , Y, employee) <- sup-direct (X, Z) and 
sup(Z, Y) and 
isa(X, employee) and 
isa(Y, employee)) . 

the f ull,sup/4 rules corresponds to the call by full-name. The super-sup and f uli,super-sup 
correspond respectively to the classical super call of object-oriented languages in both 
normal and full-name case. 

It is easy to see how to extend this compilation stage to handle other situations. For 
instance, if a symmetric attribute name is associated to each attribute class then the 
rules can easily be compiled as well: 

The same process is applied to classes intentions and extensions. Classes intentions 
and extensions are compiled into rules for the isa attribute. Let us consider the class 
employee and a class leader. The instances of leader are extensionally stored in the 
relation r,leader(X) and are intentionally defined by the rule: 

isa(X, leader) <- isa(X, employee) and sup(-, X). 

Two rules are added to the rules of the isa attribute: 

isa(X, leader) <- r,leader(X). 
isa(X, leader) <- isa(X, employee) and sup(,, X).  

Notice that, as we said when presenting this aspect of the model, the leader class is 
not a subclass of employee although it wiil behave as such. 

This compiler generating incrementally the rules has been tested for a subset of Mobius. 
Mainly, we have excluded all the features compeling the use of complex terms. Therefore, 
the use of meta-classes is very limited since they maiily manipulate complex terms such 
as intentions or extensions. The target system is the EKS-V1 system. The attribute 
classes are compiled into rules in the EKS-V1 language. The EKS-V1 evaluator directly 
evaluates the Mobius queries. We also took advantage of the constraint checker, the 
EI<S-V1 manipulation language and the Megalog environment for developing the Mobius 
environment. 



. . 

6.1.3 Semantic Optimization 

Such an automatic translation of the M6bius model into Datalog rules could be suspected 
to be inefficient. In particular, it does not make any optimization. We consciously 
avoided the optimization approach since it is very dangerous. Indeed, optimizations can 
only be made with regards to the evaluation procedure. Therefore, we consider that a 
translation must maintain a neat logical form. The information allowing optimizations 
can be injected in the query evaluator. The different actual query evaluation procedure 
can be radically different in terms of efficiency. An optimization for one can be a 
catastrophe for the other. Let us for instance consider the case of a transitive closure. 
The predicate t c t  is the transitive closure of the base relation t: 

t c t ( X ,  Y) <- t ( X ,  Y ) .  
t c t ( X ,  Y)  <- t ( X ,  Z)  and t c t ( Z ,  Y ) .  

Since we know the extension of the t base relation we could envisage to maintain an 
unfolded version of the above program. For instance if t contains the tuples C(a,b) , 
(b , c) , (c , d)  1 , the unfolded program would be: 

tct(a,  b ) .  
t c t ( b ,  c ) .  
tct(c,  d ) .  
tct(a,  Y)  <- t c t ( b ,  Y ) .  
tct  (b, Y)  <- tct(c ,  Y)  . 
tct(c,  Y) <- t c t ( d ,  Y ) .  

In a tuple at a time evaluation, with possibly an indexing on the predicate arguments, 
this could be more efficient. However, with a set-oriented evaluation the modification, 
the number of logical inferences is increased and replaces accesses to the relational data. 
Since no indexing method is available, the efficiency depends on the respective cost 
of both procedure (inference vs retrieval). Moreover, the unfolding breaks the set at  
a time evaluation into a singleton at a time evaluation. We checked this example in 
EI(SV1, and verified that the number of rules was a critical overload for the evaluator. 
Therefore, optimizations can not be made without considering the query evaluator. 
The direct translation has the advantage to keep the cleanest semantic to the rules. 
The specification can be used as an implementation. Now we can shortly examine how 
the semantic information induced by the data model can influence the evaluation and 
optimize it. Let us consider for instance the case of the redundant evaluation of the isa 
link induced by the automatic generation of rules from the M6bius model. ~ d n s i d e r i n ~  
the three rules for two attributes classes from the class ci  to the class c2: 

a ( X , Y )  <- i s a ( X ,  c l)  and r ( X , Y )  and i s a ( Y ,  c2).  
b ( X , Y )  <- i s a ( X ,  c l )  and a ( X , Y )  and i s a ( Y ,  c2 ) .  
b ( X , Y )  <- i s a ( X ,  c l )  and a ( X , Z )  and b(Z, Y) and i s a ( Y ,  c2) .  

For b ,  if these are the only rules for the definition of a and b, it is clear that the isa 
literals will redundantly be evaluated since the appurtenance of X  and Y  to c 1 and c2 



is guaranteed by the first rule. Again for a if we can ensure that the base relation 
. r verifies the constraints on the two classes than we can drop the isa literals. In 

general, this can only be done if we have access to more information about the schema 
and the mapping. For that purpose, Mobius is an interesting tool. We do not have 
such optimization procedure included in an intelligent query optimizer but the needed 
information is accessible since it belongs to the Mobius model: attribute definitions, 
mapping information, are components of the model. 

We need also to underline the fact that the cost of the redundancy above is limited by 
the use of memoization in the evaluation procedure. Indeed recursive query evaluators 
rely on memoization to ensure termination. But memoization is also very useful to avoid 
redundant computation. 

6.2 Mapping 

6.2.1 The Problem 

The relational model is now the basis of several existing and commercial Database 
Management Systems. It has proven its reliability and a sufficient efficiency for a wide 
range of applications (such as financial applications). As stated al1 dong this document, 
it appears that the standard relational technology is not a totally satisfying framework 
for several kind of reasonable applications. In particular, the modeling tools may not 
be sufficient. 

Of course, by adding the power of logic and deduction to the relational model, deduc- 
tive models and systems offer an already interesting framework to modeled complex 
applications. But we consider that the modelization tools are too raw. In other words, 
the definition of more sophisticated conceptual models is not necessarily based on the 
necessity of a higher expressive power. At least, what happens during a session between 
a user and a knowledge management system does not only happen in the cornputer. 
The model is also the support for a natural interaction between him and the machine. 
Otherwise, we would all program our computers in binary code, or using the Turing or 
Gode1 languages. If providing supplementary constructs is not necessary the evidence 
that new knowledge is expressible, we still believe that i t  could be the case. At least, it 
shows how the users understands the application. 

As far as the storage and retrieval of knowledge is concerned, we think that the relational 
model, because it corresponds to an effective technology, is a good starting point. The 
mapping of conceptual models into the relational model, or an extension of it, is a 
problem that anyone trying and implementing a system (or a prototype) based on a 
conceptual model has fa&d. Nevertheless, the problem has been little formally studied. 

Here, several approaches are possible: 

One may wish to stick to the standard relational model in first normal form, 

or to try and extend it in some ways according to the new requirements due to 



the complexity of the model (e-g. NlNF, NF2 models). 

Again, in both the above cited options, one has the choice between a fixed canonical 
mapping (proving or not it is the best one with regards to efficiency and al1 the possible 
properties required) or a parameterized one (which again as to be proven correct). 

It was not possible for us to study every aspects of the development of a knowledge 
management system. However, while trying and implementing prototypes, we had to 
make choices and to take decisions. As far as the mapping is concerned, on the ba is  
that there exists a minimum valid solution (a one to one binary mapping), we have 
nevertheless decided to provide a parameterized form of mapping. We took the risk 
that an inconsistent mapping specification destroys the model integrity. The mapping 
parameterization is, at the moment, under the user control and responsibility. We gain 
the freedom to experiment several kind of mapping in the future. Indeed, Mobius is not 
a definitive proposa1 but a platform for experimentation and reflexion. 

Our point of view is that the tools for an automatic or semi-automatic mapping specifi- 
cation are present in Mobius: views, meta-knowledge and integrity constraints, but we 
are still missing the forma1 framework for the study. 

The problem can be stated as follow. On the one hand, we have a model based on 
the notion of entity with several variations on the notion of identity, and incorporat- 
ing notions like attributes in intention and extension, classification and a language for 
expressing constraints and views. On the other hand, we have a relational model and 
the possibility to express integrity constraints. We now want to draw a correspondence 
between the two models and use the latter as a basis for the implementation of a system 
whose model is the former. We have several reasons not to adopt a fixed mapping: 

In terms of efficiency, it is not clear whether there exist a general ideal mapping; 

in terms of integrity, the mapping depends on too many semantic information to 
be fixed; 

A parameterizable mapping may allow to set a correspondence between a new 
schema and an existing relational database 

Therefore, in Mobius, we do not propose an automated mapping but tools to study 
different kinds of mapping. Thanks to the meta-level information, the mapping does 
not necessarily need to be set for each attribute class or each class, it can be specified 
at the level of meta-classes. 

6.2.2 Mapping in Mobius 

The main concept of the model is the notion of attribute which associates two entities. 
Attributes are defined thanks to attributes classes where their own attributes are speci- 
fied. The meta-data available include the name, the source domain, the target domain. 



(see chapter 3). The intention (int) of an attribute class stores MDL expressions de- 
noting sets of attributes instances of that class: deduction rules. In the same manner, 
classes sets of instances may be intentionally defined by means of an expression stored in 
the intention of the class: ciass-int. The base information, the mapping information, 
is recorded in an attribute of classes or attribute classes narned respectively class-ext 
and ext. The contents of this attribute is a relational expression specifying where the 
instance or attribute iç stored in the relational system. 

Exarnple 6.2.1 We want to store some information about persons in a relation rel-person 
with the following schema : rel,person(person,identifier, adàress, date-of-birth) 
At the conceptual level, we define an attribute date-of ,birth associated to the class person. 
The implementation choice will be specified as follow: 

?- eval([name(X,date-of-birth)]). /* To get the attribute identifier */ 
X = 0036 

more? -- ; 
Yes 
?- 0036 :: set(ext(ext(Self,Value,Cext(rel~person(Self,~,Value))]))). 
Self = ,g234 
Value = ,g235 

The attribute is retrieved thanks to a simple evaluation on the relational database. 

will process a retr-tup(re1-person(yvonne ,, ,Y) ). O 

ThaJlks to the uniformity we adopted for the mapping specification, the attribute exten- 
sion is an attribute (ext). Then, a set of attribute classes sharing the same behaviour 
with respects to their extensional definition can be grouped together as instances of a 
common class. This class can define their ext attribute intentionally. For instance, a 
possible intention for the ext attribute could be a formula denoting a mapping specifi- 
cation which uses a binary relation. The name of the binary relation could be inferred 
from the attribute narne. All the attribute classes, instances of this class (let us cal1 it 
binary-at t ribute-class) would inherit of a mapping of binary relations. 

Example 6.2.2 The intentional definition of the attribute ext (e-g. 026) can be set to a 
mapping into a binary relation. The name of the relation is the attribute name. We store the 
fact: 

int (026, int(Se1f , ext (Att,id,Value, Cext(Mapping)l) , 
Cname(Se1f , Att-name) , 
sys (Mapping = . . CAtt-name , Att-id , Value] ) 1 ) ) 



Then, tlie extension of the attribute date-of ,birth (0036) will be inherited and computed 
as: e x t  (0036, ext  (Se l f  ,Value, Cext (date-of -birth(Self ,Value) 11) 1. O 

In the prototypical experimentations, we choose temporarily the solution of a binary 
mapping. It is clear that such a direct translation of the model to a relational structure 
has several drawbacks. Mainly it augments the number of joins at evaluation time and 
decreases the efficiency of the evaluation. However, any other form of mapping may cause 
problems at update time. For instance a class mapping, defining a relation per class, 
with a column per attribute definition associated to the class, may lead to complicated 
update procedures. On the other hand, of course, grouping as much information as 
possible in the sarne table may optimize the evaluation reducing the number of joins. 

At the current stage of the project, we have a prototypical implementation which will 
allow us to do some practical experiments on the use of other forms of mapping and 
on the definition of semantically correct and efficient methods to process the updates 
performed at the conceptual level. Therefore, we still have to study how the updates 
procedures can be integrated in the system, how the constraints on the relational schema 
can have an influence on the conceptual model and, symmetrically, how we can ensure 
that the model semantics can not be modified or altered by the schema of the underlying 
storage structure. 





Chapitre 7 

Manipulation Language 

Le langage de manipulation 

Pendant la réalisation de prototypes pour le système Mobius, nous avons 
expérimenté diverses formes de langage de manipulation. Pour faciliter le 
développement des premiers prototypes nous avons d'abord décidé d'utiliser 
Prolog, étendu avec quelques primitives de mise à jour, comme langage de 
manipulation. Il semblait cependant regrétable de ne pas pouvoir exploiter 
l'organisation des connaissances dans la hiérarchie de classe comme support 
de conception et de programmation pour le langage procédural de manipula- 
tion. 

Dans ce chapitre, nous donnons notre point de vue sur cette alternative en 
la mettant en perspective des diflérentes propositions pour l'intégration au 
langage Prolog de concepts orientés objet. 

Dans le même ordre d'idée, nous analysons les diflérents paradigmes possi- 
bles pour un  langage de mise à jour et de manipulation. 



7.1 Prolog as a Manipulation Language 

We have seen, up to this point, how useful is a data model for understanding and 
querying the structure of a database. It is a semantics support for the structure of 
knowledge. In particular, associating inheritance to a class hierarchy is a natural way 
of representing knowledge and reasoning about it. Until now, we have concentrated our 
efforts on this point. However, a data model needs a manipulation language, at least 
to update the schema and data. An intelligent database system needs both declarative 
and procedural facilities. For instance, complex algorithms are easier to encode in a 
procedural language where the control is explicit. The procedural language or facilities 
are used to print out results, to compute complex algorithms or to update the model 
and data. The declarative language or facilities are used to denote sets, answers of a 
query. Vire choose a declarative language based on first order logic. 

Offering procedural and declarative aspects can be achieved in several ways. First 
order logic itself can be a framework for procedural computation. Deductive databases 
emphasize the difference between declarative and procedural logic [GMN84], [CGTsS]. 

However one can think of a single language where procedural and declarative aspects are 
differentiated by the syntax. For instance, the procedural counterpart of the connectives 
t rue,  f alse, and, and not could be called succeed, f ai l ,  sequence ( , ), a l t e rna t  ive 
(;) and i f  succeeds then f a i l  e l s e  succeed. This is possible in a context where 
the procedural part has a success/failure mode. The ambiguity is that procedure 
literals (programs) are not synt actically different £rom the declarative literals (data). In 
particular the formulae denoting the data are assimilated to the procedures that evalu- 
ate them. Of course, this confusion is part of the success of languages like Prolog: it is 
sometimes possible to have both a declarative and a procedural understanding of Prolog 
programs (when Prolog computes the exact set of solutions denoted by the straight- 
forward translation of the prograrn in first order logic). In that context, declarativity 
would be a kind of "don't care about control" statement. 

A less polemic and cleaner solution consists in separating the two languages, providing 
interfaces from the one to the other. The declarative language can c d  procedural 
computations, when algorithms are known to be better (or easier to describe) than the 
standard evaluation of their declarative equivalent or when they involve side effects. 
The procedural language calls the evaluation of declarative expressions and collects the 
answers. Here, we can consider the following alternative: choosing a language close in 
its syntax and semantics to the classical procedural languages (C, Pascal) or choosing a 
procedural logical language à la Prolog. In the first case, the interface will pose, at least, 
the problem of impedance mismatch. each information moving from one language to 
the other must be adapted, data structures must be translated. In the second case, this 
problem can be avoided by choosing a cornmon subset of data structures: logical terms. 
Choosing logic for the two languages does not imply such a choice. For instance the 
declarative and procedural languages could wmmunicate in exchanging sets, while sets 
are a data structure of the procedural language. A drawback of the logical solution is 
again the possible confusion between two languages, similar but fundamentally different 
in spirit, due the sornetimes answer less question of choosing between the two when one 



can get the same results through the two different computation. 

In fine, we choose to start from Prolog as the manipulation of Mobius, being aware of 
the alternative and understanding the advantages and drawbacks of this choice. It is an 
experimental choice after which we let a question mark. Prolog needs to be augmented 
with a few primitive: an evaluation procedure and update procedures. The minimal 
update procedures perform insertion and deletion to and from the storage system. This 
is not satisfactory since it does not reflect the model.Therefore we propose to start with 
two update procedures allowing insertion and deletion of links for which an intention is 
available: isa link for classes in extension and other attributes in extension. We choose 
to impose that the arguments of this procedure are ground when they are called. 

7.2 Augmenting Prolog with Methods? 

The purpose of Mobius is to integrate deductive capabilities and object-oriented features 
into the same data modeling context. We clearly separate the manipulation language, a 
procedural language, from the declarative language. However data are organized under a 
class-subclass hierarchy, and it is natural to think of an organization of the manipulation 
procedures under this classification. Namely, should we provide a means to structure the 
manipulation programs according to the class hierarchy in adding, to the manipulation 
language, methods and inheritance mechanisms for methods? 

Apart from object-oriented approaches, data modeling was little concerned with model- 
ing manipulations or behaviours. It is nevertheless interesting, when designing a knowl- 
edge base, to think in terms of structured and active entities, like abstract data types 
entities or objects having a structure and a set of operations that can be performed 
on them. Together with encapsulation, inheritance of manipulation procedures along a 
class hierarchy induces an interesting programming methodology and suggests interest- 
ing features. 

Relying on the relational semantics of Prolog as a manipulation language, we could 
think of applying directly to the procedural part of Mobius the ideas we used for the 
declarative part. However, the analysis we made and the solutions we proposed may not 
be valid in a procedural context. Inheritance and deduction, in a declarative language, 
are two ways of expressing knowledge and reasoning about it. Even if the one can be 
encoded in the other, the need of sophisticated and user adapted modeling tools justifies 
a model including both facilities. Two modeling paradigms integrated in one model are 
also a means to know more about the user intension and, therefore, opens the door to 
semantics optimization of the knowledge management. 

In the context of a procedural language (based on logic in our case, but the analysis 
can be adapted to other cases) inheritance is a supplementary control structure. Let 
us consider a method as a set of clauses somehow associated to a class. When one of 
the identified conflicts arise (multiple inheritance, definition and representation), several 
solutions are available: in the presence of two programs P l  and P2 for the same method 
predicate P,(l) one can choose one, or, (2) concatenate or melt the two . 
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Figure 7.1: Flag Hierarchy and Methods 

(1) Indeed, systematic overriding is the first solution to inheritance problems. According 
to the methodology associated to the object-oriented program conception, it is natural 
to consider, in the case of multiple definition, that the program associated to the lowest 
class in the hierarchy should overrides the code above (cf. example 7.2.1). 

Example 7.2.1 We classify national flags. A generic class f lag describing the structure 
and procedures available for every flag has a method draw. A flag can be drawn on the screen 
by calling the method procedure draw/l with the flag as its argument: draw(a,f hg). The 
method associated to the ciass f lag draw a rectangle (cf figure 7.1). One subclass of f lag is 
the class of Nepalese flags nepalese-f lag. Unfortunately, Nepalese flags are not rectangular. 
The method draw associated to the class nepalese-f lag overrides the method defined in its 
snperclass. O 

When considering multiple inheritance, as we have explained in chapter 4, the absence 
of a total order among the confiictual classes calls for another mechanism. Four solution 
are available: 

the choice of an implicit total order among the candidate clas& or methods; 

the definition of an explicit total order; 

the interdiction of conflicts by explicit redefinition of the conflictual methods; 

the necessity of explicit desambiguization at  run time (cal1 by full-name, views). 



If the mode1 supports unlimited multiple representation, the solutions above can be also 
adopted, except for the third case where such a choice consists in avoiding two methods 
with the sarne name associated to classes unrelated by the SC order. 

Of course, in order to be able to reuse the overridden code in the body of the new 
method, one must be able to benefit by tools like call by full-name or call to super. 

(2) Let us now consider, as allowed by the structure of logical programs, that we inherit 
of al1 the conflictual code. The new problem, as opposed to the declarative case, is that 
the code is not a set of rules and facts but an ordered sequence of clauses. We must 
decide of a strategy to rearrange the two programs, P l  = (CI 1, . . . , Cln) and P2 = 
(C21, . . . , C2m), into a new sequence of clauses, the program for the method P. We can 
choose the sequences: (Ci 1 ,  . . . , Cln ,C21, . . . , C2m) or (C21, . . . , C2m, C 1 i  , . . . Cln) or 
any sequence of C i j .  In general, in any programming style, this consists in producing 
a new program by organizing the two inherited code in a new structured one. If we 
consider more sophisticated merging techniques we can simulate overriding or other 
intermediary solutions. Indeed, when merging the sequences of code, one can add new 
control items like cuts. Overriding can be simulated by producing the following code 
from the programs P i  and P2 for the procedure P: 

Forgetting about the side effects and considering the success/failure semantics of Prolog 
one could think of a global program of the form: 

P :- P l , ! .  
P :- P2. 

The early proposa1 for the integration of object-oriented programming and logic pro- 
gramming paradigms [Ga1861 [Zan841 and more recent paper [Da1891 have studied such 
ideas. In general there exists, in the procedural case (with side effects) a huge number of 
different and realistic solutions. Several situations are illustrated in the example below 
7.2.2. 

Exarnple 7.2.2 We now add three classes to the hierarchy of example 7.2.1: the class 
3strip-f lag, 3vstripf lag and 3hstripf lag, classes of the flags with three, three verti- 
cal and three horizontal strips. The class hierarchy is illustrated by the figure 7.1. The draw 
methods associated to 3vstripf lag and 3hstripf lag draw the three strips. Since the drawn 
items are white, the drawing method must first draw the rectangle and then draw the strips. 
The drawing method associated to the 3vstripflag class computes and paints the color of 
the strips. It must be executed after the flag frame is drawn although it is defined before the 
strips drawing. O 

When considering methods inheritance for a procedural programming language, even 
though it is still a useful support for conception, we end up with a new and possi- 
bly redundant control mechanism, whatever control strategy we adopt . If the strategy 



is sophisticated and complex, it allows to handle al1 possible situations, but places a 
heavy burden on the programmer task. He must deal with two different of control: the 
programming language control, local to a met hod body, and the inheritance strategy. 
We have sympathy for the new programmer discovering, at the same time, cuts, back- 
tracking and the influence of the order of rules and literals together with a complex 
inheritance principle. If the strategy is simple, for instance systematic overriding, ex- 
plici t disambiguation of multiple inheritance and representat ion, we can wonder what 
the advantage of a supplementary control tool is. If, like in Mobius, the user can query 
the class and instance hierarchy from the manipulation language, he can program his 
own tests.Notice that in the case of a declarative language, inheritance is more a form 
of knowledge than means of control, therefore having other advantages. 

In the Môbius prototypes, we have experimented both a manipulation based on methods 
associated to classes and a simple extension of Prolog with update primitive. The first 
language has the advantage of offering a natural clustering of the manipulation code 
together with the data (for storing the code in the database, for instance) and provides 
an interesting framework for the conception of applications. The second language is 
easier to use with respects to the understanding of control. 

We know some advantages and drawbacks of the two solutions. We came to the con- 
clusion that inheritance in a procedural context is a far more difficult problem than its 
counterpart in a declarative language. Several other aspects, like persistence, organiza- 
tion of code in modules, availability of procedures etc, have to be taken into account. 
Finally, in a knowledge base manipulation language, an important part of the manip- 
ulations consists in updates. Prolog with insertion and deletion primitives is also not 
necessarily the best solution. 

7.3 Updates and Transactions 

In this section we analyse the different solutions to the problem of the definition of 
an update language for a knowledge base management system. We try and give a 
definition of the notion of transaction and overview several perspectives, limitations 
and constraints for an update language. The actual solution we choose for M6bius is a 
compromise. This chapter is opened on future development. 

Basic update operations are insertions and removal of elements in the storage struc- 
ture: tuples of a base relation. The manipulation language needs more sophisticated 
constructs, in particular the classical notion of transaction. Basically, a transaction is 
a group of operations modifying the state of the knowledge base. A transaction can be 
defined as a composition of element ary transactions, computing intermediary states, and 
a commitment of the final new computed state. An elementary transaction is composed 
of three parts: 

a pre-condition: a query on the current state of the base; 

an update: a modification to the current state; 



a post-condition: a query on the new state. 

In a Prolog syntax an elementary transaction procedure e- t rans  (Si ,Pi  , U  ,P2, S2), 
where S i  and S2 are the current and new states, P i  and P2 are the pre- and post- 
conditions and U is the update, can be defined as follow: 

e-trans(Si,P1,U,P2,~2):- e v a l u a t e - i n ( ~ i , ~ l ) ,  
update(S1 ,U,S2), 
evaluat e-in(P2, S2) . 

Notice that neither the update nor the elementary transactions themselves modify the 
knowledge base. Only the commitment the transaction can do so. 

In that context, integrity constraints can be seen as implicit post-conditions. As they 
have to be verified in any committed state of the knowledge base, one could think it is 
sufficient to check them before the commitment. After Our experiences with EKS-VI, 
we argue that a programmer may want to use them (or a part of them) in any condition 
part. Therefore a mechanism is necessary to  free the programmer from rewriting the 
integrity constraints he wants to check in extenso. Such a mechanism would allow the 
use of the update propagation and integrity checking techniques in the post-condition 
evaluation. An application of such a feature is the programming of recovery procedures 
when constraints are violated. 

A procedural language is not the only way to specify transactions. Indeed, there 
exists the solution of a production rule language. A production rule language (cf. 
e.g.[KdMSSO]) is a structured list of production rules of the form: 

Condition -> Actions 

A rule is selected whenever the condition part, Condition, is true. It can consist of 
a query on the current state of the base or the occurrence of an event. Several rules 
being candidates for being fired, an implicit or explicit control determines the rule(s) 
to  be executed. Then the action part, Actions is performed. It consists of updates 
and possibly evaluation of queries on the new state. If we consider a production rule 
language where the condition part is a query on the base, an elementary transaction 
takes the form: 

P 1 -> updat e (U) , evaluat e (P2) . 

where P l  and P2 are the pre- and post-conditions and U is the update. Production rules 
are attractive since the control is distributed among the rules and partly encbded in the 
inference engine. It gives a flavour of declarativity and reactivity to the system. But the 
absence of explicit procedural control, although tempting, may make the programming 
task more difficult. 

The update itself can be either procedural or declarative, i.e., it can be either a set or a 
program of basic updates or a specification of the new state to be reached. For instance 



the new .state can be specified by a query that has to be true. In such a case, the update 
on base relations must be automatically inferred. This situation is known as intensional 
updates or view update. 

The table below summarize the functionalities of some of the existing proposals for 
update languages and languages involving state transitions in a relational context. 

proposa1 

EKS-V1 
[VBKLSO] 
RDLl 
[KdMSgO] 
[War84] 
[Man891 
Logical objects 
[Con881 
Linear objects 
[And901 

bd 

Y@ 

Yes 

theory 
yes 
no 

no 

production 
rules 
for ic 

Yes 

no 
no 
no 

Yes 

procedure 

Prolog 

no 

Prolog 
Prolog 
Prolog 

no 

declarative- 
update 
no 

no 

no 
no 
yes 

yes 

backtracking 

yes 

no 

modal logic 
modal logic 
Yes 

no 

set 
tuple 
tuple 

set 

tuple 
set 
tuple 

tuple 



Chapitre 8 

Conclusion 

n Tout sera oublié et rien ne sera reparé ; le rôle de la réparation sera tenu 
par l'oubli.'' M. Kundera, la plaisanterie. 

Dans cette thèse, nous avons présenté et 
discuté un modèle de  représentation des 
connaissances : le modèle Mobius. Ce 
modèle se propose d'intégrer les aspects 
génériquement qualifiés d'orientés objet 
aux aspects déductifs, dans un contexte de 
base de données. 

Il s'agit de fournir un ensemble d'outils 
pennet- 
tant la description et la modélisation des 
connaissances. Pour atteindre cet objectif, 
le modèle comprend, d%ne part, un sup- 
port d'organisation des connaissances basé 
sur les notions de classe, d'instance et de 
hiérarchie et, d'autre part, un support de 
description de la connaissance en exten- 
sion ou en intension basésur les notions de 
définition d'attributs, de faits et de règles 
de déduction. 

Le langage de requêtes associé au modèle, 
son formalisme et surtout sa sémantique 
logique, permettent la description de vues 
complexes (en bénéficiant des diverses ex- 
tension de Datalog - agrégation, négation - 
) et la définition de contraintes d'intégrité. 

Nous avons particulièrement 
étudié les problèmes liés à la définitions, la 
sémantique déclarative et l'utilisation des 
mécanismes d'héritage. Dans cette per- 
spective, nous avons presenté quelques out- 
ils dynamiques et statiques qui permettent 
une utilisation plus souple du modèle en 
presence de conflits d'héritage potentiels. 

In this thesis we have presented and dis- 
cussed a knowledge representation model: 
the Mobius model. It aims to integrate 
aspects labeled as object-oriented together 
with deductive ones, in a database context. 

A set of tools for knowledge description 
and modeling is proposed. The model 
contains, on the one hand, a support for 
knowledge organization based on the no- 
tions of class, instance and hierarchy and, 
on the other, a support of knowledge inten- 
sional and extensional description based on 
the notions of attribute definition, facts 
and deduction rules. 

The query language associated with the 
model, its formalism and mainly its logi- 
cal semantics, allow the description of com- 
plex views (taking advantage of the several 
extensions to Dat alog (aggregation func- 
tions, negation) and the definition of in- 
tegrity constraints 

We studied in detail the problems related 
to the definition, the declarative semantics 
and the use of inheritance mechanisms. In 
this perspective, we have presented several 
tools, static and dynamic, allowing a more 
flexible use of the model when potential 
inheritance conflicts arise. 



Enfin, nous avons présenté et discuté nos 
expériences de prototypage d'un système 
de gestion de connaissance basé sur notre 
modèle : l'évaluation de requêtes, le lan- 
gage de manipulation et la mise en corre- 
spondance du modèle avec les structures de 
stockage. 

Plusieurs points restent à étudier, sur la 
base du modèle que nous avons décrit ici. 

La première direction de travail consiste à 
améliorer l'interface linguistique. Il s 'agit 
là d'offrir un contexte de modélisation 
plus riche. La démarche que nous avons 
suivie, en considérant que l'addition d'un 
support d'organisation des connaissances 
basé sur la classification - malgré la possi- 
bilité de coder une telle information dans 
un environement déductif pur - était un 
atout, doit s'appliquer à d'autres formes 
d'organisation et d'expression des connais- 
sances. Nous pensons, en particulier, que, 
malgré sa grande généralité, Datalog est 
un langage trop brut pour l'expression na- 
turelle des contraintes d 'intégrité (par ex- 
emple, les dépendances fonctionnelles ou 
les contraintes entre classes). 

Bénéjiciant de cette méta-infor- 
mation, comme nous bénéficions déjà de 
l'information sur le rôle particulier du lien 
i s a ,  il est possible d'envisager d'optimiser 
l'évaluation de requêtes (optimisation sé- 
mantique) ou d'enrichir le langage de ré- 
ponses (réponses intentionnelles). 

S'agissant d'un système de gestion des 
connaissances basé sur notre modèle, 
comme nous l'avons souligné à plusieurs 
reprises, plusieurs directions de reflexions 
restent à envisager. Il faudrait définir un 
paradigme et un  langage pour la manipu- 
lation et la mise à jour de la base de con- 
naissances (procédures, règles, méthodes, 
etc). Un aspect intéressant de ce problème 
est notament le contrôle et la gestion de 
l'évolution du schéma et des objets. 

Finally, we have presented and discussed 
our prototyping experiments of a knowl- 
edge management system based on our 
model: query evaluation, manipulation 
language and mapping of the model to re- 
lational storage structures. 

Several points remain to be studied on the 
basis of the model we have presented here. 

The first research direction lies in improv- 
ing the linguistic interface. It is about 
proposing a richer modeIing context. The 
approach we took, considering that it was 
an advantage to add a new support for 
knowledge organization based on classifi- 
cation (despite the capability to code such 
an information in a pure deductive envi- 
ronment), can be applied to other form 
of knowledge organization and expression. 
We think, in particular, that, despite its 
generality, Datalog is too raw a language 
for natural expression of integrity con- 
straints (for instance, functional depen- 
dencies or constraints arnong classes). 

Taking advantage of this meta-in- 
formation, as we took advantage of the in- 
formation about the particular role played 
by the i s a  link, it is possible to think of 
optimizing the query evduation (semantic 
optimization) or enriching the answer lan- 
guage (intentional answers). 

As far as a knowledge management sys- 
tem based on our model is concerned, as 
we underlined on several occasions, sev- 
eral research directions remain open. A 
paradigm and a language for knowledge 
manipulation and update has to be defined 
(procedures, rules, methods, etc). An in- 
teresting aspect of that problem is, in par- 
ticular, the control and management of the 
schema and objects evolution. 



Enfin, le problème de la mise en corre- 
spondance du modèle avec les structures de 
stockage reste à formaliser et à étudier. 

Nous pensons qu'un support d'étude idéal 
de tous ces problèmes serait un système 
avec une architecture modulaire. 

Finally, the mapping problem remains to 
be formalized and studied. 

We believe that an ideal support for this 
study would be a system with a modular 
architecture. 





Annexe A 

Graphical Conventions 

An cntity 

atmbutename An atuibutc definition is associatcd io a 
class. The aiuibute dcfinition is 

- - - 
- - - -1 identifÏÏ by its namc. Ur  w..e 

domain (hcrc CI). ~ I C  W c t  domain 
I 

(herc C l ) .  

An atcribuic class can alm be rcprcscnced by the lollowinç itcm : the source and thc 
Wgct domain arc cxplicitely mentionncd 

An  ;ittrihute class instantiarion 

Tu-O cnuties are linked dianlis w ihe auributc dcfinition labeled 
aiiribuie-MW. This association can be "unfoldod" by considering 
the aitribute enuty sttributename(El,E2) which is linkcd co El and 
E2 chanks w die v l  and v2 atuibute definitions . 

artribute-name 

Associations 

El 

Figure A.1: Graphical Conventions 
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Résumé 

Nous présentons une solution pragmatique, fédérant plusieurs approches, au problème de 
la représentation et de la modélisation des connaissances pour les systèmes de traitement 
automatique de l'information et d'aide à la décision. 

Nous avons d'abord étudié les travaux antérieurs menés dans les domaines de l'intelligence 
artificielle, de la modélisation de données et des bases données déductives. Nous avons 
dégagé les concepts fondamentaux qui ont servi de base à notre modèle. 

Ce modèle, que nous avons appelé Mobius, repose sur des aspects déductifs (vues et 
contraintes d'intégrité) et sur une organisation des connaissances selon les axes de clas- 
sification, d'agrégation et de généralisation. 

Nous étudions les problèmes spécifiques introduits par nos choix. Ces problèmes sont 
principalement liés à la nature réflexive de la définition et à l'exploitation de la taxonomie 
des connaissances (héritage). 

Nous proposons un ensemble de solutions permettant d'organiser et de gérer le modèle : 
définition de niveaux, gestion statique des conflits d'héritage par masquage ou redéfinition, 
gestion dynamique des conflits d'héritage par la définition de points de vue. 

Cette expérience a donné lieu à des implantations de prototypes. Nous présentons nos 
choix, nos idées et les perspectives de recherche liées à la définition de systèmes de 
gestion de connaissances. 


