50 376 1 9 93 1 7 9

THESE

- A

N° d'ordre 1106 L'UNI RETOURN TECHNOLOGIES DE LILLE

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE

Spécialité "Science des Matériaux"

pa**r**

Abdallah FKYERAT

ETUDE DE LA DENSITE ELECTRONIQUE DANS UN CRISTAL A PROPRIETES OPTIQUES NON LINEAIRES LE N-(4-NITROPHENYL)-(L)PROLINOL

Soutenue le 14 MAI 1993

이 가장 이 좋지 않아.

J. LEFEBVRE G. HEGER J. ZYSS P. NIAY F. BAERT Professeur Professeur Professeur Professeur Directeur de recherche

U.S.T. Lille I Lab. L. Brillouin - Saclay C.N.E.T. - Bagneux U.S.T. Lille I C.N.R.S. Lille I Président Rapporteur Rapporteur Examinateur Directeur de thèse

A la mémoire de mon père, A ma très chère mère, A mes frères et soeurs, A Christine.

Remerciements

Ce travail a été réalisé à l'Université des Sciences et Technologies de Lille dans l'Equipe de Dynamique et Structure des Matériaux Moléculaires, associé au C.N.R.S. (U.A. 801) que dirige Monsieur le Professeur J. Lefebore.

J'adresse mes plus vifs remerciements à Monsieur le Professeur J. Lefebvre pour l'honneur qu'il me fait en acceptant de présider le jury qui examinera mon travail.

Monsieur F. Baert, Directeur de recherche au C.N.R.S. m'a fait profiter de son expérience de grande qualité. Il m'a toujours conseillé efficacement dans la conduite de ce travail. Sa compétence, ses critiques et ses suggestions m'ont toujours été très précieuses. Je lui suis extrêmement redevable et tiens à lui exprimer toute ma gratitude.

Monsieur J. Zyss, Professeur au Centre National d'Etudes des Télécommunications à Bagneux a collaboré à ce travail en me fournissant des cristaux de NPP. Je lui exprime ici toute ma reconnaissance et le remercie d'avoir accepté de juger ce travail.

Monsieur G. Heger, Professeur au laboratoire Léon Brillouin au C.E.A. de Saclay, a accepté d'être rapporteur de cette thèse. J'en suis très honoré et je le prie de trouver ici l'expression de toute ma gratitude.

Que Monsieur P. Niay, Professeur à l'Université des Sciences et Technologies de Lille trouve ici l'expression de ma plus profonde reconnaissance pour avoir participé à ce jury.

Les mesures de diffraction neutronique ont été effectuées au laboratoire Léon Brillouin au C.E.N. Saclay. Je suis heureux de pouvoir exprimer ma reconnaissance envers W. Paulus, responsable du diffractomètre.

Je remercie chaleureusement G. Odou qui m'a apporté une collaboration active et efficace dans la recherche des meilleures conditions de mesures de diffraction des rayons X. Je suis également très reconnaissant à Catherine pour sa disponibilité et son extraordinaire efficacité pour son travail de dactylographie.

Un grand merci à C. Ghestem qui a réalisé avec maîtrise les photographies et les diapositives, à M. Raffaud pour la mise au propre des courbes de ce mémoire et à S. Fauquembergue pour la reproduction de cette thèse.

Je tiens aussi à remercier tous mes collègues du laboratoire qui ont participé d'une manière ou d'une autre à l'élaboration de ce travail.

SOMMAIRE

....

	page
	3
CHAPITRE I TRAITEMENT ET REDUCTION DES DONNEES	11
I-1 - MESURE DES INTENSITES DIFFRACTEES	11
[·] I-1.1 - Matériels utilisés	11
I-1.1.1 - Système diffractométrique	11
I-1.1.2 - Système de refroidissement	13
I-2.2 - Intensité mesurée	16
I-2 - DETERMINATION DES CARACTERISTIQUES DE LA MAILLE	
	17
I-2.1 - Matrice d'orientation	17
I-2.2 - Qualité des cristaux	17
I-3 - TRAITEMENT DES DONNEES	18
I-3.1 - Analyse des profils	18
I-3.2 - Limites du pic	20
I-3.3 - Centre du pic	21
I-3.4 - Largeur de raie	23
I-3.5 - Corrections appliquées à l'intensité intégrée	25
I-3.5.1 - Correction de Lorentz polarisation	25
I-3.5.2 - Remise à l'échelle des intensités diffractées	25
I-3.5.3 - Moyenne des réflexions équivalentes	27
I-3.5.4 - Analyse de la variance	29
I-3.5.5 - Correction d'absorption	31
I-4 - CORRECTION D'EXTINCTION	34
I-4.1 - Pouvoir réflecteur	34
I-4.2 - Extinction	36
I-5 - CONDITIONS DE MESURE ET RESULTATS EXPERIMENTAUX.	40
I-5.1 - Diffraction des rayons X	40
I-5.2 - Diffraction neutronique	41

CHAPITRE II	
ANALYSE DE LA DENSITE ELECTRONIQUE	45
II-1 - INTRODUCTION	45
II-2 - DIFFRACTION DES RAYONS X	48
II-3 - DIFFRACTION NEUTRONIQUE	49
II-4 - FACTEURS DE DIFFUSION ET DE TEMPERATURE	53
II-4.1 - Facteur de diffusion	53
II-4.2 - Facteur de température	54
II-5 - DENSITE DE DEFORMATION EXPERIMENTALE	55
II-5.1 - Méthode de la série différence X-X _{HO}	55
II-5.2 - Problème de la phase	56
II-6 - FORMALISME KAPPA	58
II-7 - MODELE MULTIPOLAIRE	59
II-8 - MODELES DE DENSITE DE DEFORMATION	61
II-8.1 - Densité de déformation dynamique	61
II-8.2 - Densité de déformation statique	61
II-8.3 - Densité résiduelle	62

III-1 - ANALYSE DE L'AGITATION THERMIQUE	65
III-1.1 - Modèle du corps rigide	65
III-1.2 - Description des paramètres d'agitation thermique dans une molécule rigide	65
III-1.3 - Relation entre les tenseurs d'agitation thermique et les tenseurs de vibration moléculaire (T,L,S)	67
III-1.4 - Modèle des segments rigides	68
III-2 - AFFINEMENT DE LA STRUCTURE	69
III-2.1 - Affinement de la structure à partir des mesures par diffraction des rayons X	70
III-2.1.1 - Détermination des paramètres d'agitation thermique des hydrogènes	70
III-2.1.2 - Affinement de la structure	71
III-2.2 - Affinement de la structure à partir des mesures de diffraction neutronique	76
III-3 - APPLICATION DE L'ANALYSE THERMIQUE	82

III-4 - ANALYSE STRUCTURALE	89
III-4.1 - Configuration moléculaire	89
III-4.2 - Empilement möléculaire cristallin	94
III-5 - DENSITE ELECTRONIQUE EXPERIMENTALE	94
III-5.1 - Densité de déformation expérimentale dans le cycle benzénique	96
III-5.2 - Densité de déformation expérimentale dans le groupeme dioxyde d'azote	∍nt 96
III-5.3 - Densité de déformation expérimentale dans le cycle L-prolinol	96

IV-1 - AFFINEMENT KAPPA	103
IV-2 - AFFINEMENT MULTIPOLAIRE	103
IV-2.1 - Réduction du nombre de coefficients de population	103
IV-2.2 - Stratégie de l'affinement	106
IV-2.3 - Discussion	109
IV-3 - DENSITE DE DEFORMATION DYNAMIQUE	116
IV-3.1 - Effets des phases dérivées par l'affinement multipolaire	116
IV-3.2 - Cartes de densité de déformation dynamique	117
IV-3.2.1 - Densité de déformation dans le cycle benzénique	117
IV-3.2.2 - Densité de déformation dans le groupement dioxyde d'azote	120
IV-3.2.3 - Densité de déformation dans le cycle L-prolinol	125
IV-3.2.4 - Densité de déformation dans le plan de la liaison hydrogène	125
IV-4 - CARTES DE DENSITE DE DEFORMATION STATIQUE	129
IV-4.1 - Densité de déformation statique dans le plan du cycle benzénique	129
IV-4.2 - Densité de déformation statique dans le plan du groupement dioxyde d'azote	131
IV-4.3 - Cartes de densité dans le plan formé par les atomes C ₄ , N ₂ , C ₃	131
IV-5 - MOMENT DIPOLAIRE MOLECULAIRE	137
IV-5.1 - Moment dipolaire dans un système d'axes moléculaires	138
IV-5.2 - Orientation du moment dipolaire	139
IV-5.3 - Résultats	139

CHAPITRE V PROPRIETES ELECTROSTATIQUES	
PSEUDOMOLECULAIRES	143
V-1 - INTRODUCTION	143
V-2 - MOMENTS EXTERNES	145
V-3 - POTENTIEL ELECTROSTATIQUE	148
V-4 - RESULTATS	148
V-4.1 - "Fuzzy Boundary Partitioning"	150
V-4.2 - "Discrete Boundary Partitioning"	150
V-4.3 - Discussion	150
CONCLUSION	161
ANNEXE 1	
Fonctions gaussiennes contractées	167
-	
ANNEXE 2	
Charges atomiques nettes et moments moléculaires obtenus par la "Fuzzy	
Boundary Partitioning" en utilisant les fonctions d'onde de Clémenti	173
BIBLIOGRAPHIE	177

INTRODUCTION

Le développement très rapide des systèmes de communication à fibres optiques a stimulé la recherche de nouveaux matériaux fortement non linéaires permettant le traitement rapide et efficace des signaux optiques. Les cristaux organiques dits "non linéaires" se sont révélés être très intéressants pour un grand nombre d'applications comme : génération d'harmonique du second ordre, fréquence mixte, modulation électrooptique etc... [1-13]. Cet essor a été facilité par les immenses possibilités qu'offre la synthèse organique pour modifier le squelette de la molécule par rapport à la chimie minérale.

Une molécule organique répondant au critère de non linéarité doit présenter un nuage d'électrons π délocalisés sur un système conjugué et soumis d'un côté à un effet donneur et de l'autre côté à un effet attracteur de façon à assurer une déformation du nuage électronique (Fig. 1) [2,3,5,6,7].

Figure 1

De plus, il faut que sa structure cristalline soit non centrosymétrique si nous recherchons l'effet quadratique. A noter que le transfert de charge entre les groupements accepteur et donneur est dépendant des propriétés électroniques de ces derniers. Outre ces critères qui assurent une forte non linéarité du matériau, ce dernier pour être vraiment efficace devra présenter aussi :

- une transparence optique (faible absorption résiduelle)
- une biréfringence suffisante compatible avec l'accord de phase
- une cristallogénèse aisée
- être facilement taillé etc...

Lors de l'excitation du matériau par un champ électromagnétique E, il apparaît une polarisation P qui est la somme de la polarisation intrinsèque et des ordres supérieurs [4]

$$P = P_0 + \chi^{(1)}.E + \chi^{(2)}.E.E + \chi^{(3)}.E.E.E + \dots$$

P₀ : polarisation intrinsèque

 $\chi^{(1)}$: susceptibilité linéaire

 $\chi^{(2)}, \chi^{(3)}$: susceptibilités non linéaires d'ordre deux et trois respectivement.

De tels changements dans la polarisation macroscopique du matériau par application d'un champ électromagnétique résultent de la somme de toutes les contributions microscopiques des molécules au niveau de leur dipôle µ :

 $\mu = \mu_0 + \alpha.E_1 + \beta.E_1.E_1 + \gamma.E_1.E_1.E_1 + ...$

μ : moment dipolaire macroscopique

μ₀ : moment dipolaire intrinsèque

 α : polarisabilité

 β,γ : hyperpolarisabilités d'ordre 2 et 3.

Avec des faibles intensités lumineuses, seul le terme en α est significatif, son effet est une diminution de la vitesse de propagation dans le milieu transparent dont rend compte l'indice de réfraction n : c'est le domaine de l'optique linéaire. Mais, avec les faisceaux lumineux lasers, les termes β et γ ne sont plus négligeables : c'est le domaine de l'optique non linéaire.

Les susceptibilités linéaire et non linéaires sont des quantités qui caractérisent les propriétés optiques non linéaires, elles sont le reflet de la mobilité des électrons de valence principalement, et plus particulièrement les électrons π , lesquels sont sensibles à un champ extérieur. Elles seraient donc dépendantes de l'amplitude de la charge et de la position du centroide de celle-ci dans les liaisons.

La relation entre la polarisation P et le champ E n'étant plus linéaire, cela signifie que nous pouvons voir apparaître dans la polarisation des termes oscillant aux fréquences doubles des fréquences incidentes, à leurs sommes, à leurs différences, etc... Le milieu est donc capable d'émettre ces nouvelles fréquences, lesquelles résultent de la perturbation du paysage électronique de ces derniers, par le champ électromagnétique.

Ces considérations montrent qu'il est important d'étudier la densité électronique précise des molécules composant le matériau organique non linéaire même s'il ne s'agit que de la distribution des charges de la molécule dans son état fondamental.

L'ingénierie moléculaire qui prélude à la conception de ces nouveaux matériaux repose sur des résultats obtenus soit à l'état gazeux, soit par des mesures physiques à l'état liquide (charges atomiques nettes, moments dipolaires moléculaires des radicaux). A la lueur de ces explications, il est important d'obtenir ces résultats directement par des mesures sur le matériau. Ainsi, à partir d'un spectre de diffraction des rayons X correctement enregistré et corrigé, des erreurs systématiques, il est possible d'accéder à ces données en utilisant plusieurs méthodes reposant sur différents formalismes.

Certaines classes de molécules répondant aux critères énoncés précédemment, par exemple : les molécules aromatiques disubstituées : metadinitrobenzène (m-DNB) [7], les dérivés de paranitroaniline (meta-nitroaniline (m-NA) [8,9] ;2-methyl-4-nitroanilne (MNA) [10,11]; methyl-(2,4-dinitrophenyl-minopropanoate (MAP) [12] ; N-4-nitrophenyl-(L)-prolinol (NPP) [13] et la famille des pyridines : (methyl-3-nitropyridine oxide (POM) [14-16]) ont fait l'objet de nombreuses études dans le but de mieux appréhender les différents problèmes.

- Comment améliorer le rendement non linéaire de la molécule en gardant son asymétrie ?

- Comment garder cette efficacité dans le cristal ?

- Faut-il annihiler l'effet dipolaire, ou le surclasser par des liaisons hydrogène ?

Notre intérêt s'est porté tout particulièrement sur la molécule de NPP, de formule brute $C_{11}N_2O_3H_{14}$ et qui cristallise dans le groupe d'espace non centrosymétrique P2₁.

La synthèse de la molécule de NPP se fait selon la réaction chimique [13] :

A : 1-Fluoro-4-nitrobenzène B : (L)-prolinol C : N-(4-Nitrophenyl)-(L)-Prolinol

Dans un tricol contenant un barreau magnétique sont placés du L-prolinol solubilisé dans du diémethylsulfoxyde (DMSO) fraîchement distillé et du bicarbonate de potassium (K₂CO₃). Une solution de 1-fluoro-4-benzène dans

DMSO est ajoutée doucement sous agitation. Le mélange résultant est chauffé pendant vingt heures à 50°C toujours sous agitation magnétique. L'évolution de la réaction se traduit par un dégagement du gaz carbonique (CO₂).

Le milieu réactionnel est alors refroidit et versé dans de l'eau froide sous vive agitation. Le précipité est un solide jaune, il est récupéré par filtration et séché sous vide. Le NPP est ainsi recristallisé avec du chloroforme-cyclohexane ou toluène après traitement par du charbon activé. Ainsi, un solide de couleur jaune pâle est récupéré et séché sous vide.

Comme tous les dérivés de la paranitroaniline N,N-disubstitués le NPP présente une intense bande d'absorption de transfert de charges dans l'ultraviolet proche [13] : $\lambda_{max} = 390$ nm dans l'éthanol (Fig. 2). Ces dérivés sont inutilisables dans l'ultraviolet et une partie du visible jusqu'à 0,5 µm dans l'infrarouge. Ils sont transparents entre 0.51 µm et 1.65 µm. Cette fenêtre de transmission est utile pour le doublement de fréquence des lasers utilisés en télécommunications (YAG-Nd³⁺ à 1.06 µm ou GAS AS à 0.87 µm).

Nous rapportons dans ce mémoire une étude de la distribution de la densité électronique de la molécule de NPP engagée dans un cristal.

Deux expériences de diffraction de rayons X et de neutrons ont été supposées faites à la température de 120 K (température de KDP). Les modules des facteurs de structure ont été obtenus à partir des intensités diffractées, traitées et corrigées selon le formalisme de Blessing (chapitre I) [17], mais elles ne permettent pas d'obtenir les phases des facteurs de structure. Pour calculer la densité électronique, il est nécessaire de connaître non seulement ces facteurs mais aussi leurs phases. Dans le cas d'une structure centrosymétrique, les phases des facteurs de structure sont supposées égales aux phases calculées à partir de la superposition d'atomes sphériques, c'est-à-dire qu'elles peuvent être égales à 0 ou π . Par contre, dans le cas d'une structure non centrosymétrique, la phase peut avoir toute valeur comprise entre 0 et 2π et son estimation n'est qu'approchée. Pour résoudre ce problème, il faut appliquer un modèle plus élaboré tenant compte de l'asphéricité de la densité électronique de valence. Deux modèles sont actuellement utilisés : les modèles de Hirshfeld (1977) [18-19] et de Hansen et Coppens (1978) [20]. Ils donnent la meilleure estimation possible de la vraie phase. Nous nous sommes intéressés tout particulièrement au modèle multipolaire de Hansen et Coppens décrit dans le chapitre II.

Au lieu de déterminer la densité électronique $\rho(r)$, il est plus intéressant de lui soustraire la densité électronique des atomes isolés mettant ainsi en évidence la variation $\Delta\rho(r)$ introduite par la liaison chimique des atomes dans la molécule.

Deux méthodes existent pour obtenir $\Delta \rho(\mathbf{r})$ à partir de la diffraction des rayons X : la méthode de la série différence et la méthode des modèles de déformation.

La première méthode nécessite de connaître avec précision les paramètres structuraux (paramètres de position et d'agitation thermique) des atomes constituant la molécule. En cristallographie conventionnelle, les affinements par moindres carrés sont effectués avec des facteurs de structure correspondant à des angles de Bragg relativement petits et ne donnent pas des paramètres structuraux corrects. En effet, ces paramètres sont biaisés par la densité électronique de déformation $\Delta \rho(r)$. Deux méthodes nous permettent d'obtenir les paramètres structuraux de la molécule avec une meilleure exactitude : les mesures de diffraction des rayons X à angles de Bragg très élevés car dans ce cas, seuls participent à la diffraction les électrons du coeur qui ont une densité électronique de déformation quasi-nulle ou la diffraction neutronique car dans ce cas l'intéraction des neutrons se fait seulement avec le noyau des atomes.

L'utilisation des paramètres structuraux obtenus par diffraction neutronique correspond à la méthode dite X-N. Par contre, l'utilisation des paramètres obtenus par diffraction des rayons X à grands angles correspond à la méthode X-X.

Avec les modèles de déformation, $\Delta \rho(r)$ est exprimé par un développement multipolaire dont les divers coefficients sont affinés en même temps que les paramètres structuraux. Les résultats sont présentés dans le chapitre IV.

Dans le dernier chapitre, nous rapportons deux techniques d'intégration directe de la densité de charge à partir des données des rayons X afin de déterminer les propriétés électrostatiques de la molécule de NPP (charges atomiques, moments dipolaires, etc...). Ces deux méthodes partitionnent la densité de charge totale du cristal en entités moléculaires distinctes. Les propriétés ainsi obtenues sont des propriétés pseudomoléculaires et non des propriétés cristallines.

CHAPITRE I TRAITEMENT ET

REDUCTION DES DONNEES

æ . •

. . .

I-1 - MESURE DES INTENSITES DIFFRACTEES

I-1.1 - MATERIELS UTILISES

I-1.1.1 - Système diffractométrique

Le diffractomètre automatique "CAD4 NONIUS" (fig. I-1-1) a la particularité de posséder la géométrie KAPPA, c'est-à-dire que les axes OMEGA et KAPPA font entre eux un angle α de 50° [21]. Par contre, le diffractomètre "PW 1100 PHILIPS" utilise la géométrie Eulériènne, α étant égal à 90° [22].

La géométrie KAPPA diminue les zones aveugles que nous rencontrons dans la géométrie Eulérienne, en outre, elle rend plus aisée l'utilisation d'appareils commes les chambres basse et haute températures, la cellule à haute pression, etc...

Lors de cette étude, nous avons utilisé les deux types de diffractomètres. Nous nous limiterons ici à la description du CAD4.

Ce système diffractométrique comprend quatre parties principales :

Production des rayons X

Le tube à rayons X à anticathode de cuivre ou de molybdène est alimenté par un générateur dont la puissance est généralement de 1500 W (50 kv, 30 mA). Le faisceau incident est monochromaté par la réflexion (2 0 0) d'une lame de graphite et collimaté. Le diamètre du collimateur est choisi de telle sorte que le cristal soit toujours baigné entièrement dans le faisceau incident.

<u>Détecteur</u>

Les faisceaux diffractés sont détectés par un compteur à scintillations tournant autour d'un axe vertical (l'axe θ).

<u>Goniomètre</u>

Le cristal est placé sur une tête goniométrique et ajusté au centre optique de l'appareil à l'aide d'une lunette pourvue d'un micromètre (une graduation = $35 \,\mu\text{m}$ du cristal). Le cristal peut tourner autour de trois axes ω , κ , φ et le détecteur autour de l'axe 20. Ce dispositif mécanique permet d'amener n'importe quel plan réticulaire du cristal dans une position déterminée.

Un système d'axes orthogonaux (le repère du laboratoire) est défini tel que x soit parallèle au faisceau incident, z parallèle à l'axe φ , et y tel que le trièdre soit direct quand tous les axes sont à leurs positions initiales. Une famille de plans

Figure I-1-1 : Diffractomètre automatique "CAD4 NONIUS"

·• ·

réticulaires représentée par la normale à ces plans a évidemment une orientation quelconque par rapport à xyz (fig. I-1-2).

Comment mettre cette famille de plans réticulaires en position de réflexion de Bragg ?

Soit \overrightarrow{CP}_0 cette normale, le cristal tourne autour de φ jusqu'au moment où les plans réticulaires perpendiculaires à \overrightarrow{CP}_0 soient parallèles à \overrightarrow{IB} (la direction du faisceau incident)

$$P_0 \rightarrow P_1$$

Par une rotation autour de l'axe κ , P₁ est amené en P₂, c'est-à-dire que les plans réticulaires sont toujours parallèles à IB mais verticaux (perpendiculaires au plan du diffractomètre).

D'après la loi de Bragg nous avons :

 $\lambda = 2d \sin \theta$

Ces plans réticulaires doivent faire un angle θ avec le faisceau incident pour être en position de réflexion de Bragg. Si $\omega = \theta$, le cristal sera en position de réflexion de Bragg pour le plan considéré. Quand le détecteur est tourné de 2 θ , le faisceau diffracté sera enregistré au milieu de celui-ci.

Ordinateur

C'est un ordinateur de type Microvax II, de grande capacité, qui met en oeuvre un certain nombre de logiciels pour piloter les rotations, accumuler les données sur un disque dur ou une bande magnétique.

I-1.1.2 - Système de refroidissement (Fig. I-1-3)

De l'azote régulé en température et en débit s'écoule dans une canne jusqu'au cristal sans gêner la rotation de ce dernier. Un second flux d'azote sec plus chaud sort du diffuseur coaxialement au gaz précédent (6) pour éviter les risques du givre sur la tête goniométrique. Le niveau d'azote liquide est maintenu constant dans l'évaporateur par un dispositif de détection à trois résistances en platine. La température est mesurée à l'aide d'un thermocouple à proximité du cristal. La précision de l'appareil est de l'ordre du demi degré. Un bon vide d'isolement dans la canne de transfert (10⁻⁶ mm Hg) permet d'économiser la consommation d'azote liquide (environ 65 litres par jour).

Figure I-1-2 : Différentes rotations pour amener un vecteur en position de réflexion de Bragg

••••

- 1 Evaporateur
- 2 Canne de transfert
- 3 Réservoir
- 4 Cristal
- 5 Diffuseur
- 6 Flux de dégivrage
- 7 Thermocouple
- 8 Résistance d'évaporation
- 9 Réchauffeur
- 10 Manomètre
- 11 Détecteur de niveau
- 12 Electrovanne

<u>Figure I-1-3</u> : Chambre basse température

I-1.2 - INTENSITE MESUREE

Lors de la mesure d'intensité diffractée, le compteur enregistre non seulement le pic de Bragg, mais également le bruit du fond continu et le TDS (diffusion d'origine thermique) etc...

Imesurée peut se mettre sous la forme :

$$I_{mes}(\vec{H}) = I_{Bragg}(\vec{H}) A_{\vec{H}} (1+\alpha) + \sum_{m} p_m A_m I_{Bragg}(\vec{H}) + BKG$$

où $\overrightarrow{A_H}$, α , p_m , H_m et I_{Bragg} sont respectivement le coefficient de transmission, la correction de diffusion thermique, la contribution de réflexion \overrightarrow{H}_m à la diffusion multiple et l'intensité intégrée élastique de la réflexion \overrightarrow{H} donnée par :

$$I_{Bragg}(\vec{H}) = P_0 V Q(\vec{H}) Y$$

où P_o est la puissance par unité de surface de rayon incident, V le volume du cristal, Y l'extinction et $Q(\vec{H})$ la réflexivité par unité de volume de cristal qui peut s'exprimer soit en électrons par maille ($Q_{R-X}(\vec{H})$), soit en cm⁻¹ ($Q_{neutrons}(\vec{H})$):

$$Q_{\text{R-X}}(\vec{H}) = \left(\frac{e^2.P}{mc^2}\right)^2 \frac{\lambda^3}{V^2} \frac{1}{\sin 2\theta} |F(\vec{H})|^2 \quad \text{(Théorie cinématique)}$$

$$Q_{\text{neutrons}}(\vec{H}) = \left|\frac{1}{V}\right|^2 \frac{\lambda^3}{\sin 2\theta} \cdot \left|F(\vec{H})\right|^2$$

 λ , P, θ , $\frac{1}{\sin 2\theta}$ et V étant respectivement la longueur d'onde, l'angle de Bragg, le facteur de polarisation de Lorentz et le volume de la maille.

La détermination exacte des modules des facteurs de structure nécessite d'une part, la mesure de l'intensité (I_{mes}) avec une excellente précision d'où un soin tout particulier au niveau expérimental (réglage du faisceau incident et du cristal, stabilité du système de mesure y compris celle de l'échantillon, homogénéité du flux de rayons X...). D'autre part, il faut soustraire le bruit de fond (BKG) de l'intensité et y apporter les corrections liées aux paramètres A, α , L, P et Y.

I-2 - DETERMINATION DES CARACTERISTIQUES DE LA MAILLE CRISTALLINE

I-2.1 - MATRICE D'ORIENTATION

Après avoir monté le cristal sur la tête goniométrique et l'avoir centré dans le faisceau, vingt cinq réfléxions sont généralement collectées. Un programme nous permet d'analyser ces résultats afin de déterminer les trois plus courts vecteurs dans le réseau réciproque non situés dans le même plan.

Si le cristal est monté suivant une orientation quelconque, les coordonnées d'un point du réseau réciproque sont :

 $X = h a_x^* + k b_x^* + \ell c_x^*$ $\dot{Y} = h a_y^* + k b_y^* + \ell c_y^*$ $Z = h a_z^* + k b_z^* + \ell c_z^*$

d'où

 $R = \begin{array}{ccc} a^{*}_{x} & b^{*}_{x} & c^{*}_{x} \\ a^{*}_{y} & b^{*}_{y} & c^{*}_{y} \\ a^{*}_{z} & b^{*}_{z} & c^{*}_{z} \end{array}$

appelée matrice d'orientation

Il est fondamental de disposer d'une matrice R aussi précise que possible, car l'enregistrement du pic de diffraction se fait par balayage autour de la position donnée par cette matrice.

I-2.2 - QUALITE DES CRISTAUX

- L'examen des cristaux à l'oeil nu, à la lunette binoculaire et au microscope polarisant permet d'éliminer les échantillons de mauvaise qualité (polycristallin, mâcles, etc...).

- La diffraction des rayons X permet une analyse plus fine. La recherche et l'examen des pics permet de rejeter un cristal polycristallin, en effet dans ce cas de nombreuses raies souvent faibles et très proches, appartenant aux différents individus sont enregistrées.

- Dans notre expérience de diffraction des rayons X, la qualité des cristaux a été testée en examinant le profil de plusieurs raies et en comparant les intensités à des raies équivalentes. Si le cristal est de bonne qualité et s'il ne présente pas de mâcles, l'indexation des raies aboutit à des indices de Miller entiers (à quelques centièmes près). Lors de la première expérience, le cristal utilisé était légèrement dédoublé, cependant les largeurs de raie ont permis l'enregistrement des données.

I-3 - TRAITEMENT DES DONNEES

I-3.1 - ANALYSE DES PROFILS

La largeur de la raie de Bragg résulte de la convolution des fonctions de distribution spectrale et instrumentale avec les fonctions de distributions de taille et de mosaïcité du cristal.

Si W₁ et W₂ sont les demi-largeurs de base des pics respectivement avant $\theta(\alpha_1)$ et après $\theta(\alpha_2)$ (Fig. I-3-1), elles peuvent être représentées par une somme de deux composantes [17] :

$$\begin{split} W_i &= (Z^T \, \bar{\bar{\mathbb{Q}}}_i \, Z)^{1/2} + T_i \, \text{tg}\theta \qquad (i = 1, 2) \text{ pour un profil lorentzien} \qquad (1) \\ W_i &= (Z^T \, \bar{\bar{\mathbb{Q}}}_i \, Z + T_i \, \text{tg}\theta)^{1/2} \qquad \text{pour un profil gaussien} \qquad (2) \end{split}$$

où : \vec{Z} est un vecteur unitaire perpendiculaire au plan de diffraction

 $\vec{Z} = \frac{\vec{S}_0 \wedge \vec{S}}{|\vec{S}_0 \wedge \vec{S}|}$, \vec{S}_0 , \vec{S} étant les vecteurs unitaires portés

respectivement par les ondes incidente et diffractée.

 $\overline{\bar{Q}}$ est un tenseur symétrique de rang 2 qui exprime l'anisotropie de taille et la mosaïcité du cristal.

Les composantes q_{ij} du tenseur Q peuvent être déterminées par moindres carrés en résolvant le système de six équations suivant :

$$\sum_{N_{ob}} Z_{\ell} - Z_m \sum_{j=1}^{3} \sum_{k=1}^{3} Z_i Z_k q_{ijk} = \sum_{N_{ob}} Z_{\ell} - Z_m (W_i - T_i tg(\theta))^2$$

où Nob est le nombre de réflexions utilisées.

Les composantes du vecteur unitaire \vec{Z} sont données par les relations suivantes :

 $Z_1 = \sin \Phi \sin \chi$ $Z_2 = \cos \Phi \sin \chi$ $Z_3 = \cos \chi$

 Φ et χ étant les angles définis par rapport au système d'axes du diffractomètre.

Figure I-3-1 Profil d'une réflexion caractérisant les demi-largeurs de base des pics

 T_i est un coefficient scalaire proportionnel à la largeur des spectres caractéristiques k α_1 et k α_2 et calculé suivant l'équation :

$$T_{i} = \left(\frac{180}{\pi}\right) \left(\frac{c}{2}\right) \frac{\Delta\lambda}{\lambda(\alpha_{i})}$$

où c est égal à 5 pour un pic lorentzien et 2.168 pour un pic gaussien. A noter que les 2 demi-pics sont traités séparément car ces derniers de façon générale ne sont pas symétriques d'une part, et les raies spectrales $K\alpha_1$ et $K\alpha_2$ n'ont pas la même largeur, d'autre part.

L'estimation du bruit de fond est déterminée avec une grande précision si les limites du pic de Bragg L_1 et L_2 sont connues. L'intensité intégrée dépend également de ces limites

$$I = I_{mesurée} - I_{bruit} = \sum_{i=1}^{96} (I_i - B_i)$$

96 est le nombre total de pas de mesure dans le cas du diffractomètre "CAD4 NONIUS", l'intensité I peut alors être exprimée sous la forme :

$$I = \sum_{i=1}^{96} C_i I_i \text{ où } C_i = \begin{bmatrix} 1 & \text{pour } L_1 < i < L_2 \\ -\frac{mp}{96-mp} & \text{ailleurs} \end{bmatrix}$$

mp est le nombre de pas entre L₁ et L₂ (relatif au pic de Bragg). 96-mp est le nombre de pas hors des limites L₁ et L₂ ; $\frac{mp}{96-mp}$ permet de déterminer une moyenne du bruit de fond sur l'ensemble du profil.

L'erreur statistique sur l'intensité est estimée par

$$\sigma^2(l) = \sum_{i=1}^{96} c_i^2 l_i^2$$

I-3.2 - LIMITES DU PIC

Les limites du pic de Bragg sont déterminées par la méthode de Lehman et Larsen (1974) [23], adaptées pour les études aux rayons X par Blessing, Coppens et Becker (1974) [24]. Cette méthode est basée sur le minimum de $\frac{\sigma(I)}{I}$, ce critère peut être illustré qualitativement sur la figure (I-3-2).

La figure I-3-2a montre que si nous prenons des limites étroites, alors l'intensité intégrée I est faible et par conséquent $\frac{\sigma(I)}{I}$ est très grand. Par contre si nous choisissons des limites très larges (fig. I-3-2b), $\sigma(I)$ est grand et donc $\frac{\sigma(I)}{I}$ est grand. D'après Lehman et Larsen, il doit exister des limites telles que $\frac{\sigma(I)}{I}$ est minimum (fig. I-3-2c).

La condition de $\frac{\sigma(I)}{I}$ minimum se traduit par :

$$\frac{d}{dX}\left(\frac{\sigma(l)}{l}\right) = -\frac{\sigma(l)}{l^2} \frac{dl}{dX} + \frac{d\sigma(l)}{l dX} = 0$$

d'où

$$\frac{dI}{dX} = \frac{1}{\sigma} \frac{d\sigma}{dX} > 0$$

Donc cette condition n'est pas le maximum de l qui doit correspondre à $\frac{dl}{dX} = 0$, puisque $\frac{dl}{dX}$ est strictement positif.

Cependant, cette méthode donne des résultats très satisfaisants pour des réflexions ayant un bon rapport signal sur bruit et bien centrées.

I-3.3 - CENTRE DU PIC

Les positions des centres des pics sont estimées par une procédure de troncation similaire à celle décrite par Ladell, Parish et Taylor (1959) [25] soient :

$$X'_{1} = X_{1} - C (X_{0} - X_{1})$$
$$X'_{2} = X_{2} + C (X_{2} - X_{0})$$
$$C = \frac{2.0}{2 + \frac{1}{B}}$$

Le centre du pic de Bragg est calculé selon :

$$X_{0} = \frac{\begin{array}{c} X_{1} \\ \int X p(X) dX \\ X_{2} \\ \int p(X) dX \end{array}}{\begin{array}{c} X_{1} \\ \int p(X) dX \end{array}} = \begin{array}{c} \begin{array}{c} X_{1} \\ \sum X p(X) \Delta X \\ X_{2} \\ \end{array}}{\begin{array}{c} X_{1} \\ \sum Y \\ X_{2} \end{array}}$$

.

où p(X) est l'intensité relative au pic de Bragg exprimée par : p(X) = y(X) - b(X)avec y(X) est le taux de comptage obtenu par une rotation du cristal, b(X) le bruit de fond continu qui est exprimé par : $b(X) = b_0 + b_1 X$.

Les coefficients b₀ et b₁ sont estimés en ajustant y(X) par une ligne droite au sens des moindres carrés dans le premier dixième et le dernier dixième du profil total, X₁ et X₂ sont choisis tels que X₁ < X < X₂ et p(X) $\ge 2\sigma$ (p(X)).

I-3.4 - LARGEUR DE RAIE

A partir des limites du pic, obtenues par la méthode de Lehman et Larsen et de son centre, la largeur de raie W_i est calculée par :

 L_i et X_{0i} sont respectivement les limites et les centres des pics relatifs à K α_1 (i=1) et K α_2 (i=2).

Les valeurs de W_i sont utilisées par la suite comme des informations observées (W_{obs}) pour définir le modèle de raies par affinement par moindres carrés en minimisant la quantité

$$\Delta_{i} = \left[\frac{\sum_{N_{ob}} (W_{obs} - W_{cal})^{2}}{(N_{obs} - N_{par})} \right]^{1/2}$$

où W_{cal} sont définis précédemment (équations 1 et 2), N_{obs} est le nombre de réflexions utilisées dans le calcul (réflexions ayant un bon rapport signal/bruit) et N_{par} , le nombre de paramètres affinés.

A noter que Δ_i est calculé pour chaque demi-largeur de base.

Le tableau I-3-1 rassemble l'ensemble des valeurs des coefficients des matrices d'orientation et tenseurs calculés. Nous remarquons que le modèle de raie utilisé est lorentzien à bas et à grands angles. Les éléments du tenseur Q les plus importants sont les éléments diagonaux, ils sont de même ordre de grandeur $(Q_{11} > Q_{22} > Q_{33})$. Certains éléments hors diagonale sont non négligeables, d'où un effet anisotrope des orientations des blocs.

Ensuite, à partir de la matrice d'orientation recalculée, nous déterminons le centre des pics des réflexions faibles et les largeurs de raie W_i sont estimées à partir du modèle choisi. Une fois ces paramètres établis, le bruit de fond est

Tableau I-3-1

Matrices d'orientation R et tenseurs Q

RMS = 0.089	9° R = 0.2	226 $N_{obs} =$	6943 N _{par} =	: 7
du pic	0.0381	0.0184	0.0921	
de la 2ème partie =	0.0466	0.1183	0.0184	
Eléments du tenseur Q	0.181	0.0466	0.0381	
RMSD = 0.0	064° R = 0.	176		
du pic (bas angles)	-0.0071	-0.0025	0.0790	
de la première partie =	0.0688	0.1292	-0.0025	
Eléments du tenseur Q	0.1940	0.0688	-0.0071	
	-0.000054	-0.138177	0.046889	
R _{diffra} =	-0.067613	0.000031	-0.000199	
	-0.000547	0.009199	0.201847	
	-0.0002685	-0.138353	0.0467519	
R _{cal} =	-0.0676166	0.0001075	-0.0002696	
	-0.0007092	0.0091079	0.201614	

RMSD = $(\Sigma (W_{ob} - W_{cal})^2 / N_{ob} - N_{par})^{1/2}$ R = $(\Sigma (W_{ob} - W_{cal})^2 / \Sigma W_{ob}^2)^{1/2}$

N_{obs} : nombre de réflexions utilisées pour le calcul de W N_{par} : nombre de paramètres utilisés dans l'affinement soustrait du pic mesuré et l'intensité est corrigée pas à pas du temps mort du compteur.

I-3.5 - CORRECTIONS APPLIQUEES A L'INTENSITE INTEGREE

I-3.5.1 - Correction de Lorentz polarisation

Les intensités des raies diffractées ont été systématiquement corrigées du phénomène de Lorentz-polarisation. Le facteur de Lorentz "L" tient compte du fait que lorsque le cristal tourne d'un angle $d\theta = \omega dt$, les noeuds du réseau rencontrent la sphère d'Ewald avec des vitesses différentes, il s'exprime sous la forme :

$$L_i = \frac{1}{\sin 2\theta_i}$$

Le terme de polarisation "P" signifie que lors d'une réflexion, le facteur de réflexion de la composante de l'onde perpendiculaire au plan d'incidence est différent de celui de la composante parallèle. Il peut s'exprimer sous la forme :

$$P_{i} = \frac{\cos^{2}2\theta_{m} + \cos^{2}2\theta_{i}}{1 + \cos^{2}2\theta_{m}}$$

où θ_i et θ_m sont respectivement les angles de Bragg de la réflexion considérée et du monochromateur.

Nous appliquons évidemment, l'inverse du facteur de Lorentz-polarisation à l'intensité mesurée pour obtenir l'intensité vraie à une constante multiplicative près.

$$I_i (LP) \cong \frac{I_i}{L_i P_i}$$

L'erreur commise est donnée par :

$$\sigma (I(LP)) = \left(\frac{\Delta \theta}{n}\right)^2 \Sigma \sigma^2 (I(LP)_i) + I^2(LP)\frac{2\sigma^2(\theta)}{(\Delta \theta)^2}$$

où n est le nombre de pas de rotation du cristal lors de la mesure d'intensité d'une réflexion.

I-3.5.2 - Remise à l'échelle des intensités diffractées

Comme les expériences de diffraction durent généralement plusieurs semaines, il est nécessaire de vérifier la stabilité des mesures. Les réflexions de référence ont été donc mesurées toutes les 60 minutes, leur distribution permet de calculer un facteur de remise à l'échelle, dont l'inverse f_i est ajusté par un polynôme d'ordre n (n = 1,2,3,4)

$$f_i = \sum_{n=1}^4 a_{in} t^n$$

où i, a_{in} et t sont respectivement, l'inverse relatif à la réflexion de contrôle i, les coefficients du polynôme de la réflexion i et le temps d'exposition aux rayons X. La variance de f_i est :

$$\sigma^{2}(f) = \sum_{n=0}^{N} \sum_{m=0}^{N} t^{(m+n)} \operatorname{cov} (a_{m}, a_{n})$$

où N est l'ordre du polynôme.

L'inverse du facteur d'échelle moyen est donné par la moyenne pondérée :

$$\bar{f} = \frac{\sum_{i=1}^{i=1} W_i f_i}{\sum W_i} \text{ où } \quad W_i = \frac{1}{\sigma^2(f_i)}$$

La variance de f est :

$$\sigma^{2}(\bar{f}) = \frac{\sum_{i=1}^{n} W_{i}^{2} \sigma^{2}(f_{i})}{\left(\sum_{i=1}^{n} W_{i}\right)^{2}}$$

où $\sigma^2(f_i) = \frac{1}{n-1} \sum_i W_i (f_i - \overline{f})^2 / \Sigma W_i$

avec n est le nombre de réflexions de contrôle.

L'intensité remise à l'échelle est :

$$I_{\text{corrigée}} = \frac{1}{f}$$

et l'erreur sur l est donc :

$$\sigma^{2}(\mathsf{I}) = \frac{\left[\sigma^{2}(\mathsf{I}(\mathsf{LP})) + \mathsf{p}^{2} \mathsf{I}(\mathsf{I}(\mathsf{LP}))\right]}{\tilde{\mathsf{f}}^{2}} + \left(\frac{\mathsf{I}(\mathsf{LP})}{\tilde{\mathsf{f}}}\right)^{2} \sigma^{2}(\tilde{\mathsf{f}})$$

où LP est relatif à la correction de Lorentz-polarisation et p, le facteur d'instabilité expérimentale défini par :

$$p = \frac{\sum (I_0 - I_c) - \sum \sigma^2 (I_0)}{\sum I_0}$$

où I_0 représente l'intensité observée et I_c , l'intensité calculée par le polynôme dont les coefficients $a_{i,j}$ définis précédemment sont donnés dans le tableau I-3-2. Les facteurs d'instabilité expérimentale "p" pour chaque réflexion de contrôle sont présentés également dans le tableau I-3-2.

I-3.5.3 - Moyenne des réflexions équivalentes

L'intensité moyenne I de N réflexions équivalentes d'intensité li est donnée par :

$$I = \frac{\sum_{i=1}^{N} W_{i} I_{i}}{\sum_{i=1}^{N} W_{i}} \quad \text{et} \quad W_{i} = \frac{1}{\sigma^{2}(I_{i})}$$

Une réflexion d'intensité li peut être rejetée du calcul de la moyenne si :

 $|I-I_i| > A$ où $A = \max(C_1I, C_2.\sigma_{ext}, C_3.\sigma(I_j), C_4.\sigma_{int})$

 C_1 , C_2 , C_3 et C_4 sont des constantes choisies égales à 0,05 ; 3,29 ; 2,58 ; 1,00 respectivement.

La variance basée sur l'estimation de l'erreur expérimentale externe $\sigma^2(I_i)$ est donnée par :

$$\sigma_{\text{ext}}^{2} = \frac{\sum_{i=1}^{N} W_{i} \sigma^{2} (I_{i})}{\sum_{i} W_{i}} = \frac{N}{\sum_{i} W_{i}}$$

La variance basée sur la consistance interne entre les li est exprimée par

$$\sigma_{int}^{2} = \frac{N \sum_{i=1}^{N} W_{i} (I_{i}-I)^{2}}{(N-1) \sum_{i} W_{i}}$$

Les facteurs résiduels R(I) et R_w(I) sont définis par :

$$\mathsf{R}(\mathsf{I}) = \frac{\sum_{i=1}^{N} |\mathsf{I}_{i}-\mathsf{I}|}{\sum_{i=1}^{N} |\mathsf{I}_{i}|}, \quad \mathsf{R}_{\mathsf{w}}(\mathsf{I}) = \Big[\frac{\sum_{i=1}^{N} [(\mathsf{I}_{i}-\mathsf{I})]^{2}}{\sum_{i=1}^{N} \mathsf{W}_{i}|\mathsf{I}_{i}^{2}}\Big]^{1/2}, \quad \mathsf{R}_{2}(\mathsf{I}) = \Big[\frac{\sum_{i=1}^{N} (|\mathsf{I}_{i}-\mathsf{I}|)^{2}}{\sum_{i=1}^{N} \mathsf{W}_{i}|\mathsf{I}_{i}^{2}}\Big]^{1/2}$$

Tableau I-3-2

Facteurs d'instabilité des réflexions de contrôle

h	k	e	Р	Intensité mesurée
2	6	-2	0.00242	8157.61
2	4	-2	0.00000	41315.66
2	-3	-2	0.00000	41328.60
2	-1	-4	0.00000	9727.56
1	4	-2	0.00049	6354.54

Coefficients du polynôme de l'inverse du facteur d'échelle

h	k	l	A ₀	A ₁ 10-4	A ₂ 10 ⁻⁶	A ₃ 10 ⁻⁸
2	6	-2	1.00	0.626	-0.666	0.109
2	4	-2	1.01	-0.316	-0.045	0.000
2	-3	-2	1.01	0.399	-0.513	0.079
2	-1	-4	1.01	0.716	-76.600	0.131
1	4	-2	1.01	-0.558	0.000	0.000

Le tableau I-3-3 rapporte les paramètres obtenus après moyenne des réflexions équivalentes, ainsi que les valeurs des indices résiduels R, R₂ et R_w en fonction de S = $\frac{\sin\theta}{\lambda}$.

Les indices résiduels sont excellents pour les réflexions équivalentes mesurées à bas angles ($\frac{\sin\theta}{\lambda}$ < 0.8 A⁻¹), ce sont les réflexions les plus sensibles à la densité électronique de déformation. D'une manière générale, l'évolution des indices résiduels est tout à fait normale, conduisant à un ensemble de données très homogène du point de vue statistique.

I-3.5.4 - Analyse de la variance

Après avoir déterminé la moyenne des réflexions équivalentes, nous disposons de deux estimations indépendantes de l'écart-type pour chaque réflexion. Il est donc nécessaire de comparer ces deux valeurs en calculant le rapport $r(I,S) = \frac{\sigma_{int}}{\sigma_{ext}}$, afin de suivre son évolution en fonction de $\frac{\sin\theta}{\lambda}$ (S) et de l'intensité I.

Cette analyse nous permet de corriger l'estimation de la variance sur l'intensité mesurée, quantité fondamentale utilisée comme facteur de pondération dans tous les affinements que nous avons effectués ($\omega_i = \frac{1}{\sigma^2(F)}$). La méthode utilisée consiste à exprimer r(I,S) sous forme quadratique par rapport aux variables normalisées Γ et S' exprimées par :

$$\Gamma = \frac{I - I_0}{\sigma (I_0)}$$
 et $S' = \frac{S - S_0}{\sigma (S_0)}$

où I_o est la valeur moyenne de I et σ ($\mathsf{I}_o)$ sa variance. Nous avons donc :

$$r(\Gamma,S') = a_{11} \Gamma^2 + a_{22} S'^2 + 2a_{12} \Gamma S' + 2a_{13} \Gamma + 2a_{23} S' + a_{33}$$

où les paramètres aij sont ajustés par la méthode de moindres carrés.

Ainsi l'expression de la variance de chaque intensité l sera multipliée par r(I,S).

Les coefficients aij de l'expression de r(I,S) ont pris les valeurs suivantes :

 $a_{11} = -0.48 \times 10^{-12}$ $a_{22} = 0.157$ $a_{33} = 0.687$ $a_{12} = -2 \times 10^{-5}$ $a_{13} = 2.97 \times 10^{-6}$ $a_{23} = 0.270$
Tableau I-3-3

Facteurs d'accord des réflexions équivalentes

	R	R ₂	Rw	Nbre de réflexions	Nbre de réflexions uniques
Ensemble des réflexions					
non pondérées	0.01	0.0063	0.0145	7666	3142
Ensemble des réflexions					
pondérées	0.01	0.0063	0.0133	7666	3142
S < 0.5	0.0049	0.005	0.006	2182	522
0.50 < S < 0.65	0.0183	0.0183	0.0155	1360	640
0.65 < S < 0.80	0.0348	0.0259	0.0404	2115	1014
0.80 < S < 0.90	0.0710	0.0535	0.0721	1919	923
0.90 < S < 1.0	0.1223	0.0928	0.1026	88	42
1.0 < S < 1.05	0.0147	0.0147	0.0147	2	1
1.05 < S <1.1	0.00				

د

A la fin du traitement et de réduction des données, nous disposons des modules au carré des facteurs de structure mais non corrigés du phénomène d'extinction.

I-3.5.5 - Correction d'absorption

Un faisceau de rayon X ou de neutrons est absorbé par la matière et, dans l'approximation d'interactions faibles, la variation relative d'intensité $\frac{dI}{I}$ du faisceau sur une longeur dl est :

$$\frac{dI}{I} = -\mu dI$$

où μ est le coefficient linéaire d'absorption.

Après un parcours I dans la matière, l'intensité incidente I_0 est réduite à I telle que :

 $I = I_0 e^{-\mu I}$

Le coefficient d'absorption linéaire μ est calculé à partir des coefficients massiques d'absorption ($\frac{\mu}{\rho}$)_i, tabulés et relatifs à chaque atome de type i et il est exprimé sous la forme :

$$\mu = \rho \sum_{i=1}^{n} f_i \left(\frac{\mu}{\rho}\right)_i$$

оù

 $f_i = n_i \frac{m_i}{M}$, la fraction de masse du i^{eme} élément dans la maille.

avec n_i = nombre d'atomes de type i dans la molécule m_i = masse atomique de l'atome de type i M = masse molaire de la molécule.

Pour un cristal de volume V, à chaque élément de volume dV, est associé un trajet t₁ pour le faisceau incident entre le point d'entrée dans le cristal et la position du volume dV et un trajet t_D suivant le faisceau diffracté entre la position du volume dV et le point de sortie du cristal [Fig. I-3-3]. Le facteur de transmission correspondant est e^{-µ(t₁+t_D)}. Pour l'ensemble du cristal le facteur de transmission est :

$$A(\mu) = \int_{V} e^{-\mu(t_{I}+t_{D})} \frac{dV}{V}$$

où $\frac{dV}{V}$ représente la fraction du cristal associée à la valeur e^{- μ (tI+tD).}

En tenant compte de l'absorption, le pouvoir réflecteur du cristal par unité de volume devient :

$$Q(\mu) = A(\mu) Q$$

Soit le vecteur \overrightarrow{P} d'origine O_A et d'extrémité l'élément de volume dV, le faisceau diffracté est spécifié par le vecteur \overrightarrow{S}_D , d_j est la distance perpendiculaire de l'origine O_A à la j^{eme} face du cristal (Fig. I-3-4). Les parcours t_{lj} et t_{Dj} sont calculés par :

$$t_{D_j} = \frac{d_j - \vec{P} \cdot \vec{U}^*_j}{\vec{S}_{D_j} \cdot \vec{U}^*_j}$$

où \vec{U}_{i}^{*} est le vecteur unitaire dans la direction perpendiculaire à la j^{eme} face.

Deux méthodes sont actuellement employées pour des échantillons de forme quelconque :

- La méthode analytique (De Meulenaer et Tompa (1965)) [26] basée sur la décomposition de l'échantillon polyédrique convexe en polyèdres élémentaires convexes, eux-mêmes décomposés en tétraèdres. Une expression analytique de $A^{T}(\mu)$ peut alors être associée à chaque tétraèdre et le facteur $A(\mu)$ est obtenu par sommation.

- La méthode numérique (Busing et Levy (1957) [27], Coppens, Leizerowitz et Rabinovich (1965)) [28] basée sur la méthode d'intégration de Gauss

$$A(\mu) = \frac{\sum_{G} W_{G} e^{-\mu(t_{I}+t_{D})}}{\sum_{G} W_{G}}$$

La sommation porte sur une grille de points G non équidistants et dont l'espacement est plus faible au voisinage des faces et des coins du cristal, ce qui est favorable car les trajets varient beaucoup dans ces zones.

A chaque point G est associé un poids W_G lié au volume élémentaire qu'il représente.

La méthode analytique est plus rigoureuse que la méthode numérique mais nécessite un temps de calcul plus important. Coppens (1970) [29] a effectué une comparaison entre les deux méthodes sur différents cristaux et a montré que la méthode numérique donnait des résultats satisfaisants pour des dimensions de grilles de Gauss acceptables.

L'intensité corrigée de l'absorption devient alors :

 I_{obs} (corrigée) = $T(\mu) I_{obs}$

où l_{obs} est l'intensité mesurée, corrigée du facteur de Lorentz-polarisation et du TDS.

Dans le cas de la diffraction R-X, en raison des faibles dimensions du cristal, nous avons négligé le facteur d'absorption. Par contre, dans le cas de la diffraction neutronique, nous avons considéré l'absorption.

I-4 - CORRECTION D'EXTINCTION

I-4.1 - POUVOIR REFLECTEUR [30]

Précisons la géométrie expérimentale par la figure (I-4-1) où \vec{u}_{1} et \vec{u}_{D} sont des vecteurs unitaires suivant les faisceaux incident et diffracté.

Appelons \vec{u}_1^o et \vec{u}_D^o les vecteurs correspondants quand la condition de Bragg est exactement vérifiée. Les vecteurs unitaires $\vec{\tau}_1$ et $\vec{\tau}_2$ sont dans le plan de diffraction et sont perpendiculaires à \vec{u}_1^o et \vec{u}_D^o . Enfin $\vec{\tau}_3$ est un vecteur unitaire perpendiculaire au plan de diffraction.

Soient \vec{S} et \vec{H} , respectivement, le vecteur de diffraction et le vecteur réciproque associé à une réflexion donnée.

La condition de Bragg $\vec{S} = \vec{H}$ suppose que le noeud du réseau réciproque soit sur la sphère d'Ewald ; si nous remplaçons cette condition par une condition moins stricte $\vec{S} = \vec{H} + \frac{\varepsilon}{\lambda}$, c'est-à-dire que le point du réseau réciproque est situé au voisinage de la sphère d'Ewald (Azaroff et al. 1974) [31], alors l'expression du facteur d'interférence dans le cas d'un cristal parfait fini devient :

$$G(\vec{S}) = \sum_{\vec{L}} e^{2i\pi(\vec{H}} + \frac{\vec{\varepsilon}}{\lambda}) \vec{L}} = \sum_{\vec{L}} e^{2i\pi(\vec{H}} + \frac{\vec{\varepsilon}}{\lambda}) \vec{L}} = G(\vec{\varepsilon})$$

Le vecteur $\vec{\epsilon}$ décrit la surface du détecteur et la rotation du cristal

$$\vec{\varepsilon} = \varepsilon_1 \vec{\tau}_1 + \varepsilon_2 \vec{\tau}_2 + \varepsilon_3 \vec{\tau}_3$$

 $\vec{\tau}_2$ et $\vec{\tau}_3$ décrivent la surface du détecteur,

 $\vec{\tau}_1$ décrit la rotation du cristal sur lui-même autour de $\vec{\tau}_3$.

Figure I-4-1 : Géométrie de diffraction (Becker 1980) .

L'intensité diffractée est alors égale à :

$$I(\vec{S}) = I_0 \left| \frac{a}{R_0} \right|^2 LP \left| F(\vec{H}) \right|^2 \cdot \left| G(\vec{\epsilon}) \right|^2 = I(\vec{\epsilon})$$

où R₀ est la distance entre le cristal et le compteur.

L'intégration de l $(\vec{\epsilon})$ suivant la surface du détecteur donne :

 $I(\varepsilon_{1}) = \int I(\vec{\varepsilon}) d\varepsilon_{2} d\varepsilon_{3} = I_{0} \vee \sigma(\varepsilon_{1})$

où σ (ϵ_1) est le pouvoir réflecteur par unité d'intensité et de volume du cristal.

Enfin l'intégration suivant ε_1 , en effectuant une rotation du cristal sur luimême autour de $\vec{\tau}_3$, donne l'intensité totale :

$$I = \int I(\varepsilon_1) d\varepsilon_1 = I_0 \vee \int \sigma(\varepsilon_1) d\varepsilon_1 = I_0 \vee Q$$

Q est le pouvoir réflecteur total du cristal par unité d'intensité et de volume du cristal.

I-4.2 - EXTINCTION

Si I_r est l'intensité réelle d'une réflexion dont l'intensité mesurée est I_{obs}, en négligeant l'absorption et le TDS, mais en ne tenant compte que de la correction d'extinction.

$$I_{obs} = Y I_r$$

où Y est le coefficient d'extinction.

La détermination de Y est très importante pour obtenir des facteurs de structure exacts (programme Linex).

Dans un cristal réel, l'extinction peut se rencontrer sous deux formes : l'extinction primaire et l'extinction secondaire.

- Extinction primaire

Le phénomène d'extinction primaire est associé au calcul du pouvoir réflecteur d'un cristal parfait, c'est-à-dire un cristal pour lequel les distorsions angulaires des plans réticulaires n'excèdent pas quelques secondes d'arc. Pour un tel cristal, la théorie cinématique est remplacée par la théorie dynamique introduite par C.G. Darwin [32] et P.R. Ewald [33].

Dans la théorie cinématique, seules interfèrent les ondes diffusées par les différents points du cristal. Alors que, dans la théorie dynamique, un état

interférentiel s'installe entre les ondes incidentes et les ondes diffusées qui constituent un système couplé.

La théorie dynamique tend vers la théorie cinématique pour des volumes du cristal v tendant vers zéro. Nous pouvons définir une longueur d'extinction Λ par :

 $\Lambda = \frac{V}{K F a \lambda} \qquad \text{avec}$

- V : volume de maille
- K : facteur de polarisation
- F : facteur de structure
- a : rayon classique de l'électron
- λ : longueur d'onde.

Soit t l'épaisseur du cristal parfait, si t >> Λ , la théorie dynamique s'applique, donc seule une épaisseur Λ du cristal parfait participe à la diffraction. Ce facteur Λ dépend du module de facteur de structure.

Le coefficient d'extinction primaire est donné par $Y_p = \frac{P_d}{P_c}$ où P_d est l'intensité intégrée fournie par la théorie dynamique et P_c celle fournie par la théorie cinématique. Ce coefficient Y_p est en général très voisin de 1 et affecte principalement les facteurs de structure de module élevé et à bas sin θ/λ .

- Extinction secondaire

Ce phénomène est lié à l'existence des défauts (dislocation...) dans un cristal, entraînant la rupture de la cohérence optique, d'où un phénomène d'interférence entre l'onde incidente et diffractée.

Si t $<< \Lambda$, la théorie cinématique s'applique. Dans la théorie cinématique, le couplage entre les rayonnements incident et diffracté s'effectue au niveau des intensités alors que dans la théorie dynamique, il s'effectue au niveau des amplitudes.

Le phénomène d'extinction secondaire ne peut être décrit qu'en considérant le cristal comme mosaïque, c'est-à-dire formé de blocs parfaits les uns par rapport aux autres. Cette désorientation peut-être décrite par une distribution $\omega(\varepsilon_1)$ des écarts à l'angle d'incidence ε_1 . Le pouvoir réflecteur $\sigma(\varepsilon_1)$ doit alors être remplacé par une moyenne $\overline{\sigma}(\varepsilon_1)$, produit de convolution de $\sigma(\varepsilon_1)$ et $\omega(\varepsilon_1)$.

$$\bar{\sigma}(\varepsilon_1) = \int \sigma(\varepsilon_1 + \eta) \omega(\eta) d\eta = \sigma(\varepsilon_1) \star \omega(\eta)$$

La courbe de réflexion $\bar{\sigma}(\epsilon_1)$ est plus large que pour $\sigma(\epsilon_1)$ à cause de la distribution mosaïque $\omega(\eta)$. Cette dernière peut être soit une fonction gaussienne, de la forme :

$$W_{G}(\eta) = g\sqrt{2} \exp(-2\pi g^2 \eta^2)$$

dont la largeur à mi-hauteur est :

$$\Delta \eta = \frac{1}{g} \sqrt{\frac{\log 2}{2\pi}}$$

soit une fonction lorentzienne de la forme :

$$W_{L}(\eta) = \frac{2g}{1+4\pi^{2} \eta^{2} g^{2}}$$

Ceci conduit à deux expressions possibles de $\bar{\sigma}(\epsilon_1)$:

a) Une forme gaussienne

$$\bar{\alpha}_{G}(\epsilon_{1}) = Q \alpha_{G} \exp(-\pi^{2} \alpha_{G}^{2} \epsilon_{1}^{2})$$
dans laquelle $\alpha_{G} = \frac{\langle \alpha \rangle}{\sqrt{1 + \frac{\langle \alpha \rangle}{2g^{2}}}} \circ \dot{u} \quad \alpha = \langle \ell \rangle \frac{\sin 2\theta}{\lambda}$

< ℓ > étant la valeur moyenne de l'épaisseur ℓ du cristal traversée par le faisceau réfléchi.

b) Une forme lorentzienne

$$\bar{\alpha}_{G}(\varepsilon_{1}) = \frac{\frac{4}{3}Q \alpha_{L}}{1 + (\frac{4}{3}\pi \alpha_{L}\varepsilon_{1})^{2}}$$
$$\alpha_{L} = \frac{\langle \alpha \rangle}{1 + \frac{2 \langle \alpha \rangle}{3\alpha}}.$$

dans laquelle $\alpha_{L} = \frac{\langle \alpha \rangle}{1 + \frac{2 \langle \alpha \rangle}{3q}}$

Nous pouvons distinguer deux types de cristaux correspondant aux deux causes d'extinction secondaire qui contribuent à l'élargissement de la raie : soit d'une façon exagérée la distribution $\sigma(\epsilon_1)$ l'emporte sur $\omega(\epsilon_1)$ et par conséquent $\bar{\sigma}(\epsilon_1)$ se réduit à $\sigma(\epsilon_1)$.

$$\sigma(\varepsilon_1) = \sigma(\varepsilon_1)$$
, $g \gg \alpha \implies \alpha_G = \alpha_L = \alpha$ (Type II)

soit la distribution $\omega(\varepsilon_1)$ l'emporte, nous avons alors :

$$\tilde{\sigma}(\varepsilon_1) = Q \omega(\varepsilon_1), g \ll \alpha \implies \alpha_G = \sqrt{2} g \text{ et } \alpha_L = \frac{3}{2} g.$$
 (type I)

La plupart des cristaux étudiés récemment sont de type I (Dunstetter) [34], c'est-à-dire que la largeur de raie due à la distorsion des cristallites l'emporte dans l'expression de $\bar{\sigma}$ (ϵ).

$$\bar{\sigma}(\varepsilon_1) = Q \omega(\varepsilon_1)$$

En raison de la complexité du phénomène de l'extinction, Zachariasen [35,36] a introduit des approximations dans le calcul de l'extinction secondaire. Il a supposé en particulier que la distribution $W(\eta)$ est isotrope. Ainsi, il a obtenu l'expression du facteur d'extinction secondaire y_s

$$y_{s} = \frac{1}{(1 + 2X_{G,L})^{1/2}}$$

avec

$$\begin{split} X_{G,L} &= \frac{2}{3} \, Q \, . \, \alpha_{G,L} \, . \, \bar{T} \\ <\!\! l \!\! > &= \frac{3}{2} \, r \end{split}$$

où T est la longueur moyenne du chemin optique traversé par le faisceau diffracté dans le cristal.

Dans le cas où le phénomène d'absorption est pris en compte, \overline{T} est exprimée sous la forme $\overline{T} = \frac{1}{A(\mu)} \frac{dA(\mu)}{d\mu}$.

L'utilisation de ces approximations a prouvé qu'elles étaient satisfaisantes dans l'analyse d'un certain nombre de structures cristallines. Coppens et Hamilton [37] ont remarqué en appliquant le formalisme de Zachariasen que beaucoup de cristaux montrent des effets d'extinction anisotrope. Deux types de modèles anisotropes ont été ainsi définis :

- Dans le type I, les domaines sont sphériques et désorientés selon une distribution tridimentionnelle caractérisée par un tenseur Z. Pour introduire l'anisotropie de distribution mosaïque dans le calcul de l'extinction, Coppens et Hamilton ont remplacé le coefficient g de la distribution $W(\eta)$ par :

$$g(\vec{D}) = (D^t Z D)^{1/2}$$

où \vec{D} est un vecteur perpendiculaire au plan de diffraction.

Les composantes du tenseur Z peuvent alors être déterminées par affinement de moindres carrés.

- Dans le type II, les domaines sont supposés ellipsoïdaux et n'ont aucune désorientation. Becker et Coppens [38] ont ramené le problème au cas sphérique à l'aide d'un changement de variable. La valeur < ℓ > intervenant dans l'expression de $\alpha_{G,L}$ a alors pour expression :

$$\langle \ell \rangle = \frac{3}{2} \langle \vec{u}^{\dagger} \in \vec{u} \rangle^{-1/2}$$

où \vec{U} est le vecteur diffracté.

A noter que dans le cas de l'extinction isotrope $\langle \ell \rangle = \frac{3}{2} r$.

Notons aussi que d'autres effets expérimentaux augmentent la largeur de la raie, tels que la dispersion angulaire du faisceau incident et la dispersion spectrale, d'où l'intérêt du synchroton permettant d'avoir un faisceau quasi parallèle et monochromatique.

I-5 - CONDITIONS DE MESURE ET RESULTATS EXPERIMENTAUX

Le cristal de NPP a une maille monoclinique de groupe d'espace P₂₁ qui est non centrosymétrique.

Diffraction des rayons X

En diffraction des rayons X, nous avons étudié deux cristaux de NPP. En effet, l'enregistrement des données du cristal préparé dans notre laboratoire a été effectué sur le diffractomètre PW 1100 Philips. Par contre, celui du second cristal préparé dans l'espace par le laboratoire de Bagneux dirigé par le Professeur J. Zyss (CNET) a été effectué sur le diffractomètre CAD₄ NONIUS.

Afin d'avoir une excellente résolution et de disposer d'un grand nombre de données significatives, nous avons choisi la radiation K α du molybdène ($\lambda(K\alpha_1) = K\alpha_2 = 0,71069$ Å, ($\frac{\sin\theta}{\lambda}$)_{max} = 1,41 Å⁻¹).

Les deux expériences ont eu lieu à basse température θ = 120 K, le système de refroidissement a été régulé de façon à obtenir une variation maximum de température de 0,5 K.

L'enregistrement des données a été effectué en utilisant la méthode de balayage pas à pas qui consiste, pour chaque réflexion mesurée ayant un angle de Bragg θ_0 , à faire tourner le cristal à une vitesse angulaire donnée, d'un angle 2 ϵ , défini suivant le cristal étudié et à enregistrer le profil de la réflexion entre θ_0 - ϵ et θ_0 + ϵ . La collecte des intensités diffractées a été réalisée en mesurant pour chacune des réflexions l'intensité de la réflexion et celles des réflexions équivalentes.

Les deux expériences ont été menées jusqu'au domaine de la sphère d'Ewald de rayon $\frac{2\sin\theta}{\lambda}$, où θ prend la valeur 55°. Pour le second cristal, nous avons collecté 8331 réflexions dont 3807 indépendantes. Notons que dans ce cas, nous n'avons enregistré que les réflexions à grand-angles ayant une intensité mesurable. Les paramètres de la maille déterminés à partir des coordonnées angulaires de vingt cinq réflexions sont reportés dans le tableau I-5-1.

Diffraction neutronique

L'expérience de diffraction neutronique a eu lieu au laboratoire Léon Brillouin (CEN-Saclay) en utilisant le diffractomètre à 4 cercles 5C2 sur un cristal préparé dans le laboratoire de Bagneux (CNET). Nous avons collecté 2081 réflexions. Les paramètres de la maille cristalline sont notés dans le tableau I-5-1.

<u>Tableau I-5-1</u>

Paramètres cristallins et conditions expérimentales

Paramètres	Températ	Neutrons	
	1er cristal	2ème cristal	
a (Å)	5,16 (4)	5,152 (4)	5.164
b (Å)	14,819 (3)	14,79 (3)	14.796
c (Å)	7,134 (2)	7,134 (2)	7.108
α (deg) .	90°	90°	
β (deg)	105,991(38)	106.135° (38)	105.857
γ (deg)	90°	90°	
V (Å ³)	524.476	522.1846	522.43 1
groupe d'espace	P21	P21	P2 ₁
technique de balayage	ω/2θ	ω/2θ	θ/2θ
λ (Å)	0.71069	0.71069	0.8308
Z	2	2	2
θ _{max}	55°	55°	40°

CHAPITRE II ANALYSE DE LA DENSITE ELECTRONIQUE

II-1 - INTRODUCTION

Depuis l'avènement des diffractomètres automatiques, la diffraction des rayons X est passée du stade de l'analyse structurale à celui de l'analyse de la densité de charge des molécules dans le cristal. La description précise de la densité électronique nécessite la connaissance avec la meilleure précision possible des paramètres de position et de vibration des atomes. L'utilisation des données de rayons X aux grands angles pour obtenir les paramètres atomiques non biaisés repose sur l'hypothèse suivante : les électrons de valence ne contribuent plus à la valeur du facteur de structure atomique au-delà d'une certaine valeur de $\frac{\sin\theta}{\lambda}$. Seule subsiste la contribution des électrons du coeur, ce qui permet, en les supposant non déformés, d'accéder à des valeurs acceptables des paramètres atomiques. La courbe représentative du facteur de diffusion de la couche de valence f_v(S) pour les éléments tels que C,N,O (Fig. II-1-1 et Fig. II-1-2) prend des valeurs négligeables au-delà de $\left(\frac{\sin\theta}{\lambda}\right)_{max} = 0.55 \text{ Å}^{-1}$. Cette valeur partage l'espace réciproque en deux zones : une zone bas indices LO (low order) et une zone hauts indices HO (high order). L'ensemble est habituellement appelé "Full angle". Pour les affinements HO, l'atome d'hydrogène pose un problème particulier à cause de l'absence d'électrons du coeur. D'autre part le nuage électronique d'un atome d'hydrogène engagé dans une molécule subit une contraction par rapport à l'atome isolé, correspondant à un facteur de diffusion plus étendu en fonction de $\frac{sin\theta}{\lambda}$. Néanmoins, la localisation des atomes d'hydrogène est possible comme l'a démontré Hope [39] mais à condition d'enregistrer les réflexions aux plus hautes valeurs de $\frac{\sin\theta}{\lambda}$. Pour certaines molécules notamment celles qui contiennent beaucoup d'atomes légers comme l'hydrogène, il est nécessaire d'avoir recours à la diffraction neutronique afin de déterminer avec certitude les paramètres de position et de vibration de ces atomes.

En radiocristallographie structurale, le modèle des atomes isolés sphériques peut apparaître suffisant. Cependant, une description plus précise est nécessaire pour interpréter la densité électronique des solides, puisque les atomes interagissent pour former les molécules ou les solides cristallins.

A cet effet, plusieurs formalismes concernant la description de la densité électronique ont été développés :

- Modèle multipolaire de Stewart [40]

- Modèle de Hirshfeld [18,19]
- Formalisme de Kappa [41]
- Modèle multipolaire de Hansen-Coppens [20]

Nous ne nous sommes intéressés qu'à ces deux derniers.

Facteurs de diffusion des atomes de carbone et d'azote

Facteurs de diffusion des atomes d'oxygène et d'hydrogène

II-2 - DIFFRACTION DES RAYONS X

L'intéraction entre un faisceau de rayons X et la matière est caractérisée principalement par la diffusion d'un rayonnement de même longueur d'onde provoquée par la vibration des électrons des atomes sous l'action du champ électrique du rayonnement incident (diffusion élastique). Les noeuds du réseau cristallin constituent ainsi des sources cohérentes et les ondes diffusées interfèrent pour donner des pics de diffraction suivant des directions privilégiées.

Si \vec{k} et \vec{k}_0 sont des vecteurs unitaires pris dans les directions des faisceaux diffusé et incident, respectivement, l'intensité diffusée suivant \vec{k} par un cristal de petites dimensions est donnée par l'expression suivante :

$$(\vec{K}) = E.\omega = I_0^2 \cdot a_e^2 \cdot LP |F(\vec{K})|^2 \int |G(\vec{K})|^2 dV$$

où l'intégrale est étendue au domaine de réflexion

E : énergie reçue par le détecteur

 ω : vitesse de rotation du cristal

I₀ : intensité de l'onde incidente

ae : longueur de diffusion

LP : facteur de Lorentz-Polarisation

 $F(\vec{K})$: facteur de structure

 \vec{K} : facteur de diffusion

G est une fonction d'interférence qui n'a de valeurs différentes de zéro qu'à l'intérieur d'un domaine centré sur un noeud du réseau réciproque tel que $\vec{K} = \vec{H}$. Nous pouvons montrer que :

$$\int |G(\vec{H})|^2 dV = \frac{V}{V_m} = N^2$$

où V est le volume du cristal et V_m celui de la maille du réseau cristallin, N représente le nombre total de mailles.

L'intensité diffusée s'écrit donc de façon générale

$$I_{\text{Bragg}} = I_0 \cdot a_e^2 \cdot LP \cdot N^2 |F(\vec{H})|^2$$

Ainsi, la densité électronique $\rho(\vec{r})$ en un point \vec{r} du cristal, moyennée par rapport à l'agitation thermique, est déterminée à partir des facteurs de structure. Elle est définie comme étant la transformée de Fourier inverse du facteur de structure.

$$\rho(\vec{r}) = \frac{1}{V} \sum_{\vec{H}} F(\vec{H}) e^{2\pi_{i} \vec{H} \cdot \vec{r}}$$

Cette fonction de répartition électronique $\rho(\vec{r})$ décrit la structure cristalline et ses maxima repèrent les positions atomiques.

II-3 - DIFFRACTION NEUTRONIQUE [42-44]

Les neutrons thermiques sont obtenus par un ralentissement de leurs vitesses à travers un modérateur constitué par l'eau lourde de l'hélium liquide ou du graphite. Les neutrons subissent des chocs sur les atomes du modérateur et se mettent en équilibre thermique avec lui. La vitesse la plus probable des neutrons thermiques est telle que leur énergie cinétique correspondante est égale à kBT où k_B = 1,37 10⁻¹⁰ erg/degré (constante de Boltzman). La longueur d'onde de Broglie associée au neutron en mouvement est :

$$\lambda = \frac{h}{m_{\rm n}V} = \frac{h}{(2m_{\rm n} k_{\rm B} T)^{1/2}}$$

= 1,67.10⁻²⁴ g

οù

mn

 $h = 6,62.10^{-27}$ erg sec (constante de Planck)

Les longueurs d'onde utilisées en diffraction neutronique sont de l'ordre de 0,5 à 10 Å. Elles sont donc du même ordre de grandeur que celles des rayons X utilisées en cristallographie. Ceci s'explique par le fait que nous obtenions avec les neutrons les mêmes phénomènes de diffraction que ceux obtenus par les rayons X, mais l'origine des phénomènes de diffraction est totalement différente.

Dans le cas des rayons X, l'interaction de l'onde électromagnétique a eu lieu essentiellement avec les électrons atomiques. Par contre, dans le cas des neutrons, les interactions capables d'entraîner la diffusion des neutrons par la matière sont les interactions neutron-noyau et les interactions magnétiques.

a) Les interactions neutron-noyau

Le neutron est une particule neutre, de spin 1/2 en unités $h = \frac{h}{2\Pi}$, possédant un moment magnétique, directement opposé au spin, de valeur -1,93 magnéton nucléaire. Si les électrons d'un atome ont un moment magnétique nul (cas des cristaux diamagnétiques), le neutron pénètre profondément dans l'atome. Donc, il interagira presque exclusivement avec le noyau de l'atome. Cette interaction aura lieu par l'intermédiaire du potentiel nucléaire. Comme ce potentiel est à très courte portée, il est représenté par :

$$V(r) = 2\pi \frac{h^2}{m_n} a_j \delta(\vec{r} - \vec{r}_j)$$

avec \vec{r}_i : vecteur de position du noyau j

ai : longueur de diffusion du noyau qui dépend de la nature du noyau et de son spin.

- le spin du noyau
- le spin des électrons
- le moment magnétique orbital des électrons.

A la température de nos expériences, le comportement des spins d'une assemblée de noyaux est du type paramagnétique. En l'absence de champ magnétique extérieur les spins des noyaux seront donc distribués au hasard. Pour un noyau diffuseur unique k, de nature isotopique p déterminée, cette distribution au hasard engendre des sections efficaces totales (dans toutes les directions) cohérente σ_c et incohérente σ_i données par :

$$\sigma_{c} = 4\pi a_{pc}^{2} (k)$$

$$\sigma_{i} = 4\pi a_{pi}^{2} (k)$$

où la longueur de diffusion cohérente apc (k) est égale à :

$$a_{pc}\left(k\right) = < a_{p}^{sg}\left(k\right) >_{spins}$$

où a_p^{sg} (k) est la longueur de diffusion du noyau quand son spin est parallèle au spin du neutron < sg = + > ou quand les spins sont anti-parallèles < sg = - >. Si w₊ et w₋ sont les probabilités respectives de ces deux situations, nous avons :

$$a_{pc}(k) = w_{+} a_{p}^{+}(k) + w_{-} a_{p}^{-}(k)$$

Avec

$$w_{+} = \frac{l+1}{2l+1}$$
 et $W_{-} = \frac{l}{2l+1}$ $l = spin du noyau.$

La longueur de diffusion a_{pi} (k) ne pourra contribuer aux phénomènes d'interférence correspondant aux raies de Bragg. Elle est définie par :

$$\begin{aligned} a_{pi}^{2} (k) &= < (a_{p}^{sg}(k))^{2} > - < a_{p}^{sg}(k) >^{2} \\ &= w_{+} w_{-} [a_{p}^{+}(k) - \bar{a_{p}}(k)]^{2} \\ &= \frac{l(l+1)}{(2l+1)^{2}} [a_{p}^{+}(k) - \bar{a_{p}}(k)]^{2} \end{aligned}$$

Pour des molécules dont tous les électrons sont appariés il n'y a pas de moments magnétiques orbitaux ni de moments de spin et les interactions correspondantes ne sont pas à prendre à compte. Nous nous placerons dans cette hypothèse pour le cristal de NPP, avec une diffusion purement nucléaire. - 51 -

Lorsque le système diffractant se compose de nombreux noyaux, outre l'incohérence de spin dont nous avons déjà tenu compte, il faut tenir compte de l'incohérence isotopique due à la répartition au hasard dans le cristal des différents isotopes d'un élément chimique. Si $C_p^{(k)}$ est l'abondance isotopique pour un noyau k, la longueur de diffusion cohérente devient :

$$b_k = \langle a_{pc} (k) \rangle_p = \sum_p C_p (k) a_{pc} (k)$$

avec

$$a_{inc}^{2} (k) = \langle a_{pc}^{2} (k) \rangle_{p} - \langle a_{pc} (k) \rangle_{p}^{2}$$
$$= \sum_{p} C_{p} (k) a_{pc}^{2} (k) - b_{k}^{2}$$

 $\sum_{p} C_{p}(k) = 1.$

Nous pouvons définir une longueur de diffusion incohérente globale b_k^{inc} par :

$$(b_{k}^{inc})^{2} = a_{inc}^{2}(k) + \langle a_{pi}^{2}(k) \rangle_{p}$$

Rappelons au passage le cas de l'hydrogène dont les isotopes sont en proportions infimes à l'état naturel. La forte diffusion incohérente élastique de cet élément est donc essentiellement une incohérence de spin. Nous avons :

et

$$b_{H}^{inc} = 2,52 \text{ F}$$

 $\sigma_i = 4\pi (b_{H}^{inc})^2 = 79,8 \text{ barns}$

Ceci n'est valable que pour l'atome libre. Il faut apporter un terme correctif $(\frac{A}{A+1})^2$ quand l'atome est lié (A = masse atomique). Cette forte diffusion incohérente est un obstacle important dans les expériences telles que les mesures de phonons par diffusion inélastique cohérente où le signal est de l'ordre du bruit de fond à cause de la diffusion incohérente quand le nombre d'atomes d'hydrogène par molécule est relativement grand. Ce bruit de fond est également présent en diffractométrie mais dans ce cas il est beaucoup moins gênant car les intensités des raies sont plus élevées.

En utilisant les sections efficaces données par Bacon (1962) [42] corrigées du facteur (A/A + 1)² correspondant aux atomes liés, le calcul de coefficient d'absorption donne 1.08 cm⁻¹. Nous avons effectué une mesure directe de μ en mesurant les intensités d'un fin pinceau de neutrons pris sur le faisceau incident du diffractomètre 5C₂ (Laboratoire Léon Brillouin à Saclay) avec et sans échantillon de NPP. La longueur d'onde des neutrons étant de 0,8317Å, nous obtenons $\mu_{exp} = 1,4$ cm⁻¹.

Dans le cas de la diffraction élastique cohérente par un cristal, le nombre de neutrons (dn) reçus par unité de temps et par unité de surface est :

$$\frac{\mathrm{dn}}{\mathrm{dS}} = \frac{\mathrm{J}_0}{\mathrm{R}^2} \,\,\mathrm{N}^2 \,\,|\,\,\mathrm{F}\,(\vec{\mathrm{S}})\,|^2 \,\,\Delta\,(\vec{\mathrm{S}}\,\cdot\,\vec{\mathrm{H}})$$

avec :

 $J_0 =$ flux de neutrons incidents par cm²

R = distance échantillon-compteur

N = nombre de mailles du cristal

Pour
$$\vec{S} = \vec{H}$$
 nous avons :
 $\Delta (\vec{S} - \vec{H}) = 1$
et $F(\vec{H}) = \sum_{k} b_{k} T_{k} e^{i2\pi \vec{H} \vec{R}_{k}}$

A cause du caractère quasi-ponctuel de l'interaction neutron-noyau, la longueur de diffusion b_k peut être considérée comme constante par rapport à $|\vec{S'}| = \frac{2 \sin \theta}{\lambda}$. Elle peut être positive ou négative et varie sans loi systématique d'un élément du tableau de Mendeleev au suivant, un élément léger pouvant avoir une longueur de diffusion supérieure à celle d'un élément lourd. Notons qu'ici, F(H) a la dimension d'une longueur.

Contrairement à la diffraction cohérente, la diffusion élastique-incohérente est distribuée de manière continue dans toutes les directions de l'espace, quelle que soit l'orientation du cristal, et participe au bruit de fond. Son expression est :

$$\frac{d n_{inc}}{d S} = \frac{J_0}{R^2} \sum_{k} \left[b_k^{inc} \right]^2 T_k^2$$

A cause du facteur T_k^2 , cette diffusion décroît quand $\frac{\sin \theta}{\lambda}$ augmente ainsi que la température. Elle est donc moins élevée aux grands angles de diffraction.

Comme pour les rayons X, la diffusion inélastique (TDS) existe mais son calcul est plus compliqué car les interactions entre les neutrons et les phonons, qui ont des énergies comparables, conduisent à de fortes variations d'énergie, ce qui ne permet plus d'écrire $\frac{|\vec{k}|}{|\vec{k}_0|} = 1$ (\vec{k} et \vec{k}_0 sont les vecteurs d'onde des neutrons diffusés et incidents respectivement). Ceci peut être une cause de différence entre le TDS en diffraction X et le TDS en diffraction neutronique, indépendemment d'autres causes comme des différences dans la structure des faisceaux.

En pratique, la diffraction neutronique est employée pour étudier des matériaux impossible ou peu commode à analyser aux rayons X. Par exemple, il est difficile de localiser des atomes légers en présence d'atomes lourds en employant les rayons X. Par contre, puisque les longueurs de diffusion neutronique cohérente pour les atomes légers et les atomes lourds sont comparables, nous pourrons localiser les atomes légers.

II-4 - FACTEURS DE DIFFUSION ET DE TEMPERATURE

II-4.1 - Facteur de diffusion

L'approximation des pseudo-atomes rigides permet de traiter facilement les résultats expérimentaux, par exemple, les affinements de structures par moindres carrés. Ainsi, la densité électronique $p(\vec{r})$ est décomposée en une superposition de densités électroniques partielles relatives chacune à un noyau.

$$\rho(\vec{r},\vec{R}) = \sum_{k,\ell} \rho_k(\vec{r} - \vec{R}_{k,\ell})$$

où \vec{R} symbolise l'ensemble des coordonnées instantanées des noyaux et $\vec{R}_{k,\ell}$, le vecteur de position du noyau k dans la maille ℓ .

 $\rho(\vec{r},\vec{R})$ représente la densité électronique au point \vec{r} pour une position donnée des noyaux du système diffusant.

Le facteur de diffusion relatif au pseudo-atome k est défini par :

$$f_{k}(\vec{H}) = \int \rho_{k}(\vec{r}_{k}\ell) e^{2\pi i \vec{H} \cdot \vec{r}_{k}\ell} dV$$
$$= \int \rho_{k}(\vec{r}_{k}) e^{2\pi i \vec{H} \cdot \vec{r}_{k}} dV$$

où $\vec{r}_k = \vec{r}_{k\ell} = \vec{r} \cdot \vec{R}_{k\ell}$

avec \vec{R}_k : vecteur de position moyenne du noyau k

 $\vec{u}_{k\ell}$: déplacement instantané du noyau k dans la maille ℓ par rapport à sa position moyenne.

Le facteur de structure se met alors sous la forme :

$$\mathsf{F}(\vec{\mathsf{H}}) = \sum_{k} f_{k} < e^{2\pi i \, \vec{\mathsf{H}} . \vec{\mathsf{u}}_{k\ell}} > e^{2\pi i \, \vec{\mathsf{H}} . \vec{\mathsf{R}}_{k}}$$

En supposant que le terme < $e^{2\pi i \overrightarrow{H} \cdot \overrightarrow{u}_k \ell}$ > ne dépend pas de la maille ℓ , nous définissons le facteur de température T_k défini par :

$$T_{k} = \langle e^{2\pi i \overrightarrow{H} \cdot \overrightarrow{u}_{k\ell}} \rangle$$

Ainsi, le facteur de structure est exprimé sous la forme :

$$F(\vec{H}) = \sum_{k} f_{k}(\vec{H}) T_{k} < e^{2\pi i \vec{H} \cdot \vec{R}_{k}} >$$

II-4.2 - Facteur de température

Tout cristal présente à une température T un désordre dû à l'agitation thermique des atomes du cristal. Les vibrations de ces atomes autour de leurs positions d'équilibre au sein de la maille ont pour effet de diminuer le facteur de structure. Dans l'hypothèse harmonique du mouvement des noyaux (déplacements faibles), le facteur de température s'écrit sous la forme :

$$T_{k} = e^{-\frac{1}{2} < 2\pi} \stackrel{\rightarrow}{H.u_{k}}$$

Dans le repère direct, $\vec{u}_k = u_1 \vec{a}_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3$.

Dans le repère normé réciproque défini par :

$$\vec{i}^* = \frac{\vec{a}_1^*}{|\vec{a}_1^*|} ; \vec{j}^* = \frac{\vec{a}_2^*}{|\vec{a}_2^*|} ; \vec{k}^* = \frac{\vec{a}_3^*}{|\vec{a}_3^*|}$$

Le vecteur \overrightarrow{H} peut s'écrire sous la forme :

$$\vec{H} = H_1 \vec{i}^* + H_2 \vec{j}^* + H_3 \vec{k}^*$$

$$\langle (\vec{H} \cdot \vec{u}_{j\ell})^2 \rangle = \sum_{i} \sum_{j} H_i \cdot U_{ij} \cdot H_j$$

où

$$U_{ij} = \frac{\langle U_i | U_j \rangle}{\overrightarrow{a}_i^* \quad \overrightarrow{a}_i^*}$$

Le facteur de température devient alors :

$$T_{j} = \exp\left[-2\pi^{2}\left[h_{1}^{2}\overrightarrow{a_{1}}^{*}U_{11} + h_{2}^{2}a_{2}^{*2}U_{22} + h_{3}^{2}a_{3}^{*2}U_{33} + 2h_{1}h_{2}a_{1}^{*}a_{2}^{*}U_{12} + 2h_{2}h_{3}a_{2}^{*}a_{3}^{*}U_{23} + 2h_{1}h_{3}a_{1}^{*}a_{3}^{*}U_{13}\right]\right]$$

II-5 - DENSITE DE DEFORMATION EXPERIMENTALE

II-5.1 - METHODE DE LA SERIE DIFFERENCE X-XHO

Le facteur de structure vrai de la diffraction est :

$$F_{x} = F_{obs} e^{j\Phi_{x}}$$
(II-1)

où F_{obs} est le facteur de structure déterminé à partir des intensités diffractées mesurées avec une certaine erreur et Φ_x , la phase du facteur de structure. Celle-ci ne peut être obtenue lors de l'expérience de diffraction.

Pour visualiser l'interaction entre les électrons de valence de deux atomes engagés dans une liaison chimique, il faut définir un état de référence pour le calcul de la densité de déformation $\Delta \rho(\mathbf{r})$ définie par :

$$\Delta \rho(\vec{r}) = \rho_{obs}(\vec{r}) - \rho_{pro}(\vec{r})$$
(II-2)

où $\rho_{obs}(\vec{r})$ est la densité dans le cristal et $\rho_{pro}(\vec{r})$ la densité de référence pour le procristal. Ce dernier est défini par la superposition de la densité électronique des atomes supposés isolés, dans leur état fondamental, sphérique et neutre, positionnés par affinement à grands angles ou par diffraction neutronique.

 $\Delta \rho(\mathbf{r})$ représente le réarrangement électronique qu'entraîne la formation de la molécule et s'exprime en fonction des facteurs de structure par :

$$\Delta \rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{H}} \left[|\mathbf{F}_{obs}(\mathbf{H})| e^{i\Phi_{\mathbf{X}}} - |\mathbf{F}_{pro}| e^{i\phi_{pro}} \right] e^{-2i\pi \mathbf{H} \cdot \mathbf{r}}$$
(II-3)

où

$$F_{\text{pro}} = |F_{\text{pro}}| e^{i\phi_{\text{pro}}} = \sum_{k} f_{k} T_{k} e^{-2i\pi \vec{H} \cdot \vec{r}} k$$

avec f_k : facteur de diffusion de l'atome isolé k T_k : facteur de température du noyau k \overrightarrow{r}_k : vecteur de position moyenne du noyau k

II-5.2 - PROBLEME DE LA PHASE

En diffraction des rayonx X, l'observable est l'intensité (I) et non le facteur de structure (F). Or, I est proportionnelle au carré de F, quantité complexe, donc l'information sur la phase est perdue.

Pour les structures centrosymétriques sans dispersion anormale, les phases Φ_x et Φ_{pro} ont nécessairement les valeurs 0 ou π . Le facteur de structure s'écrit alors sous la forme :

$$F(H) = \sum_{j=1}^{N} f_{j}(H) e^{2i\pi \overrightarrow{H} \cdot \overrightarrow{r}_{j}}$$

$$= \sum_{j/2} f_{j}(H) \left[e^{2\pi i \overrightarrow{H} \cdot \overrightarrow{r}_{j}} + e^{-2\pi i \overrightarrow{H} \cdot \overrightarrow{r}_{j}} \right]$$

$$= \sum_{j/2} 2 f_{j}(\overrightarrow{H}) \cos(2\pi \overrightarrow{H} \cdot \overrightarrow{r}_{j})$$
 (II-5)

et devient une quantité réelle.

L'hypothèse courante d'affecter au facteur de structure observé la phase calculée "sphérique" est par conséquent très probable, principalement pour les facteurs de structure de modules élevés (fig. ci-dessous).

Le cas des facteurs de structure de module plus faible est plus délicat car il peut arriver que les signes de F_x et F_{pro} soient opposés ainsi l'hypothèse peut s'avérer inexacte (fig. ci-dessous)

Ces facteurs de structure faible de signes opposés, situés dans la zone à $\frac{\sin\theta}{\lambda}$ élevé, ne contiennent pas d'informations sur la densité de déformation $\Delta \rho(\vec{r})$.

Par contre, dans le cas des cristaux non centrosymétriques, la phase peut avoir toute valeur comprise entre 0 et 2π et son estimation est très délicate. Le schéma ci-dessous (Fig. II-2-1) illustre bien ce problème.

Le vecteur \overrightarrow{BM} est introduit dans l'expression $\Delta \rho(\vec{r})$ au lieu du vecteur \overrightarrow{BA} représentant le vrai ΔF , une erreur de $F_{pro} \Delta \Phi$ électrons et donc commise correspondant à l'arc de cercle AM, si F_c est pratiquement égale à F_{obs} .

Le calcul de la phase peut donc dépendre du modèle utilisé. Le modèle sphérique donne des valeurs correctes de la phase pour les structures centrosymétriques mais il est insuffisant dans le cas des structures non centrosymétriques, un modèle plus élaboré est nécessaire. Un tel modèle doit tenir compte de la déformation du nuage électronique lors de la formation de la liaison chimique. Les modèles les plus utilisés sont ceux de Hirshfeld [18,19] et de Hansen-Coppens [20].

II-6 - FORMALISME KAPPA [41]

Une première amélioration, apportée par le formalisme Kappa au modèle des atomes isolés, est la prise en compte du changement des charges nettes atomiques et de l'extension ou de la contraction radiale de la distribution électronique de valence.

Cette variation des charges nettes est due au transfert d'électrons entre la couche de valence des atomes liés (transfert d'électrons qui affecte aussi la dépendance radiale de la distribution électronique). La distribution électronique d'un atome est exprimée par :

$$\rho_{\text{atome}}(r) = \rho_{\text{coeur}}(r) + P_{v} K^{3} \rho_{\text{valence}} (Kr)$$
(II-7)

où $\rho_{coeur}(r)$ représente la densité des électrons du coeur qui est infiniment moins affectée par l'interaction entre atomes et qui peut être considérée comme non perturbée ; $\rho_{valence}$, la densité d'électrons de valence, est modifiée par K, paramètre de contraction-dilatation.

Si K est supérieur à 1, la couche de valence est contractée par contre s'il est inférieur à 1, elle est dilatée. Le facteur K³ résulte de la normalisation de $\rho_{valence}$ (Kr) et P_v représente la population de la couche de valence.

La charge nette est définie par :

$$q = n - P_{valence}$$
(II-8)

où n est le nombre d'électrons de valence de l'atome neutre et isolé et P_{valence}, la population électronique de la couche de valence.

Cette définition de la charge est un moyen d'accéder à la charge atomique nette.

Le facteur de structure correspondant dans l'unité asymétrique est :

$$F(\vec{H}) = \sum_{j=1}^{\text{tous les atomes}} \left(f_{j,\text{coeur}}(\vec{H}) + P_{j,\text{val}} f_{j,\text{val}}(\vec{H}) T_j(\vec{H}) \right) e^{2\pi i \vec{H} \cdot \vec{r}_j}$$
(II-9)

où f_{j,coeur} : facteur de diffusion des électrons du coeur
 P_{j,val} : facteur de population électronique de la couche de valence
 f_{j,val} : facteur de diffusion de la valence atomique normalisée à unélectron
 T_j : facteur de température.

Les facteurs de diffusion $f_{j,coeur}$ et $f_{j,val}$ peuvent être tirés soit des tables internationales de cristallographie [45], soit calculés à partir des coefficients donnés par les tables de fonctions d'onde de Clementi [46] dont le calcul est basé sur les orbitales atomiques de Hartree-Fock.

II-7 - MODELE MULTIPOLAIRE (formalisme de Hansen-Coppens)

La description précise de la densité électronique d'une molécule engagée dans un cristal exige un modèle tenant compte de l'asphéricité des électrons de valence puisque l'environnement des atomes dans le cristal est non sphérique, d'où l'idée d'utiliser un développement multipolaire (Stewart [40], Hansen Coppens [20]) pour représenter cette densité. Dans le formalisme de Hansen-Coppens, la densité électronique $\rho(r)$ s'écrit :

$$\rho_{\text{atome}}(\vec{r}) = \rho_{\text{coeur}}(\vec{r}) + P_{\text{val}} K^3 \rho_{\text{val}}(\vec{Kr}) + \sum_{\ell=0}^{\ell} \sum_{m=-\ell}^{\ell} K^3 R_{\ell}(\vec{Kr}) P_{\ell m} Y_{\ell m} \left(\vec{\frac{r}{|r|}}\right)$$
(II-10)

où K et K' sont les paramètres de contraction-dilatation.

Dans cette expression, le dernier terme exprime la déviation de la distribution de la densité par rapport à la symétrie sphérique.

La fonction radiale $R_{\ell}(r)$ peut être exprimée soit numériquement à partir de la densité radiale de l'atome libre, soit analytiquement par une fonction de type Slater.

$$R_{\ell}(r) = N r^{n\ell} \exp(-\xi r) \quad \text{avec} \quad \int_{0}^{\infty} R_{\ell}(r) r^{2} dr = 1$$
(II-11)
$$N = \frac{\xi^{(n\ell+3)}}{(n\ell+2)!}$$

d'où

Le maximum de la fonction est obtenu pour $r_{max} = \frac{n\ell}{K'\xi}$.

Les fonctions radiales sont modulées par un ensemble de fonctions orthogonales, qui sont les fonctions harmoniques sphériques réelles.

$$\int y_{\ell m} y_{\ell' m} d\Omega = 0 \quad \text{si} \quad \ell \neq \ell' \text{ et } m \neq m'$$

où d Ω est l'élément d'angle solide d Ω = sin θ d θ d Φ .

Ces fonctions peuvent être divisées en fonctions paires (+) et fonctions impaires (-)

$$y_{\ell m+} = N_{\ell}^{m} P_{\ell}^{m} (\cos\theta) \cos m\varphi$$

$$y_{\ell m-} = N_{\ell}^{m} P_{\ell}^{m} (\cos\theta) \sin m\varphi$$
(II-13)

où P_{ℓ}^{m} sont les polynômes de Legendre associés

$$P_{\ell}^{m}(z) = \frac{(1-z^{2})^{m/2}}{2^{\ell} \ell!} \frac{d^{m+\ell} (z^{2}-1)^{\ell}}{dz^{m+\ell}}$$
(II-14)

Pour la fonction à symétrie sphérique y_{00} , lorsque le paramètre de population est égal à 1, cela signifie que la fonction est peuplée par un électron. Pour les fonctions non sphériques avec $\ell > 0$, lorsque le paramètre de population est égal à 1, cela implique qu'un électron a été transféré des lobes négatifs aux lobes positifs de la fonction.

L'expression du facteur de structure s'écrit alors :

$$F(H) = \sum_{j} \left\{ \left[f_{j,coeur}(H) + P_{j,val}\left(\frac{H}{K}\right) + \sum_{m=-\ell}^{+\ell} \Phi_{j\ell}\left(\frac{H}{K'}\right) P_{j,\ell m} \quad y_{j,\ell m}\left(\frac{\overrightarrow{H}}{|\overrightarrow{H}|}\right) \right] T_{j}(H) e^{-2i\pi \overrightarrow{H} \cdot \overrightarrow{r}} \right\}$$
(II-15)

avec $\Phi_{k\ell}$ $(\overrightarrow{H}_{K'}) = 4\pi i^{\ell} \int_{0}^{\infty} R_{k\ell}(r) J_{\ell} (2\pi H \cdot r) r^{2} dr$

où J $_\ell$ désigne la fonction de Bessel sphérique d'ordre ℓ ,.

Les paramètres de population $P_{j,\ell m}$, P_{jv} , K et K' sont déterminés par affinement par moindres carrés.

Les harmoniques sphériques utilisés dans ce modèle sont fonction des coordonnées dans des systèmes d'axes locaux orthogonaux, d'où la nécessité de définir pour chaque atome de l'unité asymétrique un repère local orthonormé.

II-8 - MODELES DE DENSITE DE DEFORMATION

II-8.1 - Densité de déformation dynamique

Afin de déterminer les caractéristiques de $\rho(\vec{r})$ et de filtrer le bruit de fond, nous pouvons être amenés à calculer la densité de déformation dynamique définie par :

$$\Delta \rho_{dyn}(\vec{r}) = \rho_{mult}(\vec{r}) - \rho_{pro}(\vec{r})$$

 $\Delta \rho_{dyn}(\vec{r})$ est la différence entre la densité de charge totale calculée avec les paramètres obtenus par affinement multipolaire et la densité de charge des atomes libres du procristal calculée avec les mêmes paramètres de position et d'agitation thermique que l'affinement multipolaire. $\Delta \rho_{dyn}(\vec{r})$ s'exprime en fonction du facteur de structure par la relation :

$$\Delta \rho_{dyn}(\vec{r}) = \frac{1}{V} \sum_{\vec{H}} \left[F_m(\vec{H}) e^{i\Phi_m} - F_{pro}(\vec{H}) e^{i\Phi_{pro}} \right] e^{-2\pi \vec{H} \cdot \vec{r}}$$

Cette déformation permet de générer les facteurs non observés et par suite de limiter les effets de terminaison de séries.

II-8.2 - Densité de déformation statique

Celle-ci représente la différence entre la densité électronique calculée à partir des fonctions de déformation du modèle mathématique et des paramètres de population obtenus par les affinements multipolaires, et la densité électronique calculée par le modèle des atomes sphériques isolés.

 $\Delta \rho$ statique = ρ valence, modèle multipolaire - ρ valence, modèle sphérique

Cette méthode s'efforce de déconvoluer l'agitation thermique de la densité électronique et conduit à une distribution de la densité électronique sensible aux fonctions employées dans le modèle de déformation. Il faut s'attendre donc à ce que les pics de densité obtenus dans ce calcul aient les mêmes positions que ceux trouvés par la méthode expérimentale X-X_{HO} ou en déformation dynamique mais de forme différente et de hauteur plus élevée puisque l'agitation thermique n'intervient pas dans le calcul. La déconvolution de l'agitation thermique n'est, bien sûr, pas parfaite puisque les paramètres multipolaires sont corrélés aux coefficients thermiques et donc ces cartes de déformation ne sont pas rigoureusement les mêmes que celles obtenues par un calcul théorique de type Ab-initio.

II-8.3 - Densité résiduelle

Pour mettre en évidence la densité non décrite par le modèle et estimer la qualité du modèle, la densité résiduelle multipolaire est définie comme la différence entre la densité de charge totale observée et la densité calculée par le modèle multipolaire. Elle est définie par :

$$\rho_{res}(\vec{r}) = \rho_{obs}(\vec{r}) - \rho_{mul}(\vec{r})$$

La densité résiduelle en fonction du facteur de structure s'exprime par :

$$\rho_{\text{res}}(\vec{r}) = \frac{1}{V} \sum_{\vec{H}} \left[\left| \mathsf{K}^{-1} \right| \mathsf{F}_{ob}(\vec{H}) \right| - \left| \mathsf{F}_{mul}(\vec{H}) \right| \right] e^{i\Phi_{mult}} e^{-2\pi i \vec{H} \cdot \vec{r}}$$

L'examen des cartes résiduelles permet de conclure quant à la validité totale du modèle ; les facteurs de confiance statistiques ne décrivant que l'amélioration de l'affinement.

CHAPITRE III AFFINEMENTS ANALYSE THERMIQUE ET STRUCTURALE

DENSITE ELECTRONIQUE EXPERIMENTALE

•

•

•

III-1 - ANALYSE DE L'AGITATION THERMIQUE

III-1.1 - MODELE DU CORPS RIGIDE

Dans un cristal contenant un ensemble de molécules pour lesquelles les forces interatomiques à l'intérieur d'un groupe sont supérieures aux forces externes (intramoléculaires, liaisons hydrogènes, liaisons de Van der Waals), les modes de vibration peuvent être séparés en modes internes et externes. Les modes externes décrivent l'oscillation des molécules considérées comme unité rigide, par contre les modes internes impliquent une variation au cours du temps des distances entre les noyaux des atomes (bending et stretching).

Le modèle des groupes rigides suppose l'absence des modes de vibration internes et essaie de donner une interprétation des facteurs d'agitation thermique. Ce modèle permet de décrire la position de la molécule dans la maille ainsi que son agitation thermique par un nombre minimum de paramètres.

III-1.2 - DESCRIPTION DES PARAMETRES D'AGITATION THERMIQUE DANS UNE MOLECULE RIGIDE

Le déplacement quadratique moyen d'un atome k est décrit par :

 $Batome (k) = \langle u_i u_j \rangle$

où ui est le déplacement instantané de l'atome k dans la direction i.

En utilisant les concepts de dynamique des réseaux, la matrice U^{atome} peut être exprimée sous la forme :

Batome (k) = $\sum_{jq}^{3nN} U(k/jq) U^*(k/jq)^T$

où 3nN est le nombre de modes internes de vibration, nj le nombre d'atomes par maille, N le nombre de mailles et U (k/jq) le déplacement thermique de l'atome k pour le mode jq.

Dans le cas d'une molécule, U (k/jq) est remplacé par U^{mol} (k/jq) dont les composantes sont décrites par trois composantes de translation et trois composantes de rotation.
avec t_1 , t_2 , t_3 représentant respectivement les déplacements de la molécule le long des axes x,y,z et θ_1 , θ_2 , θ_3 les déplacements angulaires autour des axes x,y,z.

Pour une molécule dans un cristal, il est possible de raisonner de la même manière et définir une matrice similaire à B^{atome}

$$B^{mol}(k) = \sum_{jq}^{6nN} U^{mol}(k/jq) (U^{*mol}(k/jq))^{T}$$

où k identifie la molécule dans la maille primitive et n est le nombre de molécules dans la maille.

B est une matrice colonne 6x1 et peut s'exprimer sous la forme matricielle suivante :

$$B^{mol} = \begin{bmatrix} T & S \\ B^{mol} & matrice 6x6 \\ (S^*)^T & L \end{bmatrix}$$

où les matrices T,L,S introduites dans cette formule sont données par :

$$T(k) = \sum_{jk} t (k/jq) (t^* (k/jq))^T$$

$$L(k) = \sum_{jk} \theta (k/jq) (\theta^* (k/jq))^T$$

$$S(k) = \sum_{ik} t (k/jq) (\theta^* (k/jq))^T$$

Si t(k) décrit le déplacement instantané de translation de la molécule à partir de sa position d'équilibre et si $\theta(k)$ est le déplacement angulaire autour des axes du système de coordonnées cartésien passant par le centre de masse de la molécule alors nous obtenons :

$$T = \langle t(k) (t(k))^{T} \rangle$$

$$L = \langle \theta(k) (\theta(k))^{T} \rangle$$

$$S = \langle t(k) (\theta(k))^{T} \rangle$$

T : (matrice de translation) est une matrice 3x3, symétrique qui décrit le mouvement translatoire de la molécule comme pour B^{atome}. $\vec{S} \uparrow \bar{T} \vec{S}$ est le déplacement quadratique moyen de la molécule dans la direction \vec{S} , où \vec{S} est un vecteur unitaire.

L : (matrice de libration) est une matrice 3x3 symétrique décrivant le mouvement librationnel de la molécule. $\vec{S}^{T} \vec{L} \vec{S}$ est le déplacement angulaire quadratique moyen autour de la direction \vec{S} .

S : matrice de translation-libration ou matrice de corrélation. T et L ne peuvent pas seuls décrire le mouvement thermique de la molécule, il est donc nécessaire d'introduire la matrice S, représentant la corrélation entre L et T. En général, S est une matrice non symétrique, équivalente à une rotation dont l'axe ne passe pas par le centre de masse de la molécule. Cette matrice n'intervient que pour les molécules non symétriques.

III-1.3 - RELATION ENTRE LES TENSEURS D'AGITATION THERMIQUE Batome ET LES TENSEURS DE VIBRATION MOLECULAIRE (T,L,S)

Tout déplacement du groupe rigide par rapport à sa position moyenne peut se décomposer en une simple rotation suivie d'une translation. Soit \vec{r} (k α) la position à l'équilibre de l'atome α de la molécule k, relatif au centre de masse de la molécule. Le déplacement instantané de l'atome α est donné par :

$$\vec{U}(k\alpha) = \vec{t}(k) + \vec{\theta}(k) \Lambda \vec{r}(k\alpha)$$

 \vec{t} (k) et $\vec{\theta}$ sont respectivement les déplacements de translation et de rotation de la molécule rigide k. Le produit vectoriel $\vec{\theta}$ (k) $\Lambda \vec{r}$ (k α) implique que le mouvement angulaire se fait perpendiculairement au vecteur \vec{r} et $\vec{\theta}$ (k) ($\vec{\theta}$ (k) est l'axe de rotation). L'expression du produit vectoriel dans une notation matricielle nécessite l'introduction d'une matrice antisymétrique R(k α) définie par :

	0	r ₃	-r2
$R(k\alpha) =$	-r ₃	0	r 1
	r ₂	-r ₁	0

avec r_1 , r_2 , r_3 représentant les composantes cartésiennes de \vec{r} (k α). L'équation devient donc :

$$U(k\alpha) = t(k) + R(k) \theta(k)$$

Batome (kα) s'écrit alors :

$$\begin{split} \mathsf{B}(\mathsf{k}\alpha) &= \langle (\mathsf{t}(\mathsf{k}) + \mathsf{R}(\mathsf{k}\alpha)\,\theta(\mathsf{k}))\,(\mathsf{t}(\mathsf{k}))^{\mathsf{T}} + (\theta(\mathsf{k}))^{\mathsf{T}}\,(\mathsf{R}(\mathsf{k}\alpha))^{\mathsf{T}} > \\ &= \langle \mathsf{t}(\mathsf{k})\,(\mathsf{U}(\mathsf{k}))^{\mathsf{T}} > + \mathsf{R}(\mathsf{k}\alpha)\,\langle \theta(\mathsf{k})\,(\theta(\mathsf{k}))^{\mathsf{T}} > (\mathsf{R}(\mathsf{k}\alpha))^{\mathsf{T}} + \\ &\quad \langle \mathsf{t}(\mathsf{k})\,(\theta(\mathsf{k}))^{\mathsf{T}} > (\mathsf{R}(\mathsf{k}\alpha)^{\mathsf{T}} + \mathsf{R}(\mathsf{k}\alpha)\,\langle \theta(\mathsf{k})\,(\mathsf{t}(\mathsf{k}))^{\mathsf{T}} > \\ &= \mathsf{T}(\mathsf{k}) + \mathsf{R}(\mathsf{k}\alpha)\,\mathsf{L}(\mathsf{k})\,(\mathsf{R}(\mathsf{k}\alpha))^{\mathsf{T}} + \mathsf{S}(\mathsf{k})\,(\mathsf{R}(\mathsf{k}\alpha))^{\mathsf{T}} + \mathsf{R}(\mathsf{k}\alpha)\,(\mathsf{S}(\mathsf{k}))^{\mathsf{T}} \end{split}$$

représenté sous forme d'une matrice par :

$$B(k\alpha) = [IR(k\alpha)] \begin{bmatrix} T & S \\ S^T & L \end{bmatrix} \begin{bmatrix} I \\ (R(k\alpha))^T \end{bmatrix}$$

où l est une matrice unité.

Le déplacement quadratique moyen de chaque atome de la molécule est donc donné en terme de trois matrices, T,L,S, la matrice $R(k\alpha)$ déterminant la position d'équilibre de l'atome.

A noter que ce concept n'est valable que pour une unité rigide. Les éléments des tenseurs T,L et S sont déterminés par la méthode de moindres carrés. La comparaison des coefficients d'agitation thermique observés et calculés permet de déterminer si la molécule est rigide ou non.

III-1.4 - MODELE DES SEGMENTS RIGIDES

Afin d'améliorer le modèle T L S (corps rigide, Cruickshank, 1956 [47] ; Shomaker et Trueblood, 1968) [48], un certain nombre de modèles ont été proposés où nous considérons en plus, des mouvements entre différents groupes rigides de la molécule. Si l'accord de type corps rigide (défini au paragraphe précédent) est relativement médiocre, il est alors nécessaire d'introduire certains mouvements internes et d'estimer leurs amplitudes en incluant dans l'équation de moindres carrés des paramètres appropriés [49,50]. Un exemple simple est montré sur la figure ci-dessous illustrant une rotation du groupement R autour de la liaison A-B.

Si l'amplitude de libration est faible, le mouvement se fera le long du vecteur $\vec{u} = \frac{\vec{AB} \wedge \vec{AC}}{|\vec{AB} \wedge \vec{AC}|}$ passant par le point C.

Le module de l'amplitude de libration est le produit de la racine carrée du déplacement quadratique moyen Ω par la distance D du point C à l'axe de libration

$$D = \frac{\overrightarrow{AB} \wedge \overrightarrow{AC}}{|\overrightarrow{AB}|}$$

Le tenseur d'agitation thermique de l'atome C appartenant au segment R, s'écrit donc $B_{ij} = T_{ij} + C_{ijk\ell} L_{k\ell} + H_{ijk\ell} S_{k\ell} + D^2 \Omega^2 n_i n_j$ où $(R(k\alpha))^T LR(k\alpha) = C_{ijk\ell} L_{k\ell}$ et $R(k\alpha) S + S^{*T} R(k\alpha) = H_{ijk\ell} S_{k\ell}$

Donc au déplacement moléculaire T, L et S, d'autres termes ($\Omega^2 D^2 n_i n_j$) correspondant au mouvement de libration sont rajoutés. Plusieurs axes de libration intra-moléculaires peuvent être choisis et chacun d'eux agit sur un ou plusieurs atomes constituant la molécule. Le dernier terme de l'expression B_{ij} peut être remplacé par une somme appropriée sur tous les axes de libration contribuant au mouvement des atomes. Le choix de ces axes de libration se fait généralement par des considérations chimiques ou "guess work".

III-2 - AFFINEMENT DE LA STRUCTURE

L'affinement sur des paramètres structuraux de la molécule peut s'effectuer sur les facteurs de structure (F) ou leurs carrés (F²). Nous avons choisi l'affinement sur F² qui consiste à comparer les carrés des facteurs de structure théorique $F_c^2(\vec{H})$ et observé $F_0^2(\vec{H})$, de telle façon que leurs écarts soient minimums. La technique d'affinement par moindres carrés est la plus couramment utilisée et consiste à faire varier les différents paramètres pour minimiser l'expression M définie à partir des m facteurs de structure.

$$M = \sum_{i=1}^{m} W_i (|F_{0i}|^2 - k^2 |F_{0i}|^2)^2$$

où k représente le facteur qui permet de mettre les facteurs de structure observés et calculés à la même échelle. W_i est un poids affecté à l'intensité F_{oi}^2 d'une réflexion, ce poids est directement lié à la variation de F_o^2 par la relation :

$$W_i = \frac{1}{\sigma_i(F_o^2)} \ \ \, \text{avec} \ \ \sigma_i^2 \ \ (F_o^2) = \sigma_c^2 \ \ (F_o^2) + c^2 \ \ F_{oi}^2 \ \ , \label{eq:Wi}$$

Dans cette expression, le premier terme du second membre correspond à la statistique de comptage (Loi de Poisson), le second terme est empirique et

représente toutes les autres sources éventuelles d'erreurs systématiques (fluctuation de l'intensité du faisceau incident, instabilité de la chaîne de comptage etc...). Le coefficient "c" est ajusté au cours des affinements.

Les paramètres de position et d'agitation thermique des atomes lourds ont été affinés, avec pour paramètres de départ ceux publiés par J.Zyss et ses collaborateurs, à température ambiante [13].

III-2.1 AFFINEMENT DE LA STRUCTURE A PARTIR DES MESURES PAR DIFFRACTION DES RAYONS X

III-2.1.1- Détermination des paramètres d'agitation thermique des hydrogènes

Les paramètres thermiques des atomes d'hydrogène ne peuvent pas être proprement déterminés par les données des rayons X. L'analyse thermique de la molécule montre que pour les atomes lourds, celle-ci se comporte comme un ensemble de blocs rigides. Il est donc possible d'estimer le tenseur d'agitation thermique de chaque atome d'hydrogène comme étant la somme algébrique d'une contribution due aux vibrations externes des fragments de la molécule sur lesquels les atomes d'hydrogène sont attachés plus une contribution due aux vibrations propres des atomes d'hydrogène (F.L. Hirshfeld, 1976,1980) [51,52].

Pour avoir une estimation plus réaliste du tenseur d'agitation thermique des atomes d'hydrogène, nous avons placé ceux-ci théoriquement et fixé leurs positions à 1.085 Å et 0.97 Å des atomes porteurs C et O, respectivement.

Les mesures par spectroscopie infra-rouge et Raman effectuées sur des composés contenant des groupes tels que : CH3, CH2, CH, OH nous permettent de calculer les déplacements quadratiques moyens longitudinaux V_I (stretching), tangentiels V_t (in-plane bending) et normaux V_n (out-of-plane bending) relatifs aux modes internes de ces groupes. Ces déplacements quadratiques sont calculés pour un oscillateur harmonique en appliquant l'expression [53] :

$$\langle v^2 \rangle = \frac{h}{8\pi^2 c \mu v} \operatorname{coth} \left(\frac{h c v}{2 k T}\right)$$

avec h : constante de Planck

- k : constante de Boltzman
- T : température ambiante
- c : vitesse de lumière
- v : fréquence de la vibration en cm⁻¹
- μ : masse réduite de l'oscillateur

Nous avons déduit les valeurs des déplacements quadratiques moyens à partir des mesures spectroscopiques infra-rouge et Raman publiées dans la littérature [54,55]. Ces valeurs sont de V₁ = 0.0056 Å², V_t = 0.014 Å², V_n = 0.025 Å² pour les atomes d'hydrogène du cycle aromatique, V₁ = 0.0057 Å², V_t = 0.015 Å², V_n = 0.0224 Å² pour les atomes d'hydrogène du cycle L-prolinol de type CH2 et CH et V₁ = 0.005 Å², V_t = 0.0025 Å², V_n = 0.012 Å² pour l'hydrogène de l'hydroxyl (HO₃).

Les valeurs des paramètres de position et de vibration U_{ij} des atomes d'hydrogène calculées sont données dans les tableaux III-2-1 et III-2-2.

III-2.1.2 - Affinement de la structure

Dans le cadre du modèle des atomes sphériques, nous avons procédé à divers affinements en utilisant le programme LINEX [56] :

- un affinement avec l'ensemble des données (full data)

- un affinement à grand-angles (HO)

Les facteurs de diffusion atomiques de Doyle et Turner de type relativiste Hartree-Fock [45] ont été utilisés pour les atomes lourds. En ce qui concerne les atomes d'hydrogène, ce sont les facteurs de diffusion donnés par Stewart, Davidson et Simpson (1965) [57] qui ont été choisis.

Les paramètres de position et d'agitation thermique des atomes d'hydrogène ont été maintenus à leurs valeurs initiales, par contre les paramètres structuraux des atomes lourds ont été affinés en utilisant différents domaines de $\frac{\sin\theta}{\lambda}$. Les caractéristiques des affinements reportées dans les tableaux III-2-3 et III-2-4, nous permettent de comparer la qualité des deux spectres de diffraction des rayons X. Les indices résiduels nous indiquent que les données obtenues par le diffractomètre CAD4 NONIUS avec un cristal de bonne qualité sont meilleures que celles obtenues avec le diffractomètre PHILIPS sur un échantillon non monocristallin. Ces remarques seront confirmées sur les cartes de densité de déformation.

Dans le cas de l'affinement à grands angles du cristal préparé dans l'espace (affinement d), l'écart-type S d'une observation de poids unité (GOF= goodness of fit) est inférieur à 1. En effet, il semble que lors du traitement des données, le formalisme de Blessing sous-estime le poids des réflexions faibles.

Notons que conjointement aux autres paramètres, un coefficient d'extinction isotrope a été calculé et affiné, les réflexions les plus affectées sont données ci-dessous (tableau III-2-5) pour les deux expériences.

Coordonnées réduites des atomes d'hydrogène avec leurs écarts-types

		X	Y	Z
HC ₂	a	0.4453	0.1738	0.5571
	b	0.4457(15)	0.1726(9)	0.5573(15)
HC ₃	a	0.6792	0.2604	0.3590
	b	0.6798(17)	0.2597(7)	0.3611(15)
HC ₅	a	0.8520	0.01245	0.09771
	b	0.8481(18)	0.0126(9)	0.0935(19)
HC ₆	a	0.6223	-0.0732	0.3002
-	b	0.6233(19)	-0.0727(8)	0.3051(17)
HC ₇	a	0.6774	0.3123	0.07010
	b	0.6748(12)	0.3121(7)	0.0754(12)
HC ₈	a	0.7101	0.2906	-0.2491
	b	0.7109(14)	0.2915(8)	-0.2462(13)
HC'8	a	0.9910	0.3659	-0.1574
-	b	0.9720(18)	0.3672(8)	-0.1649(16)
HC ₉	a	1.3068	0.2417	-0.0858
	b	1.3016(13)	0.2444(9)	-0.0851(15)
HC'9	a	1.0803	0.2060	-0.3076
	b	1.0872(17)	0.2068(9)	-0.3125(16)
HC ₁₀	a	1.1754	0.1034	0.0206
	b	1.1756(13)	0.1011(8)	0.0172(15)
HC' ₁₀	a	0.8522	0.1065	-0.1485
	b	0.8513(14)	0.1057(8)	-0.1509(13)
HC ₁₁	a	1.2899	0.3183	0.2103
	b	1.2883(12)	0.3189(7)	0.2059(15)
HC'11	a	1.0738	0.3271	0.3613
	b	1.0797(16)	0.3264(8)	0.3684(14)
HO ₃	a	1.0314	0.4619	0.2450
2	b	0.9243(15)	0.4580(8)	0.2282(16)

- a : Positions théoriques b : Affinement neutronique

,

•

 $\label{eq:ableau III-2-2} \end{tabular} Tableau III-2-2 \end{tabular} Paramètres thermiques anisotropes (10^5 x Å^2) des atomes d'hydrogène$

		U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
HC ₂	a	3931	3351	3201	505	1946	-586
	b	3546(402)	3579(614)	2731(558)	517(437)	2508(385)	-289(547)
HC ₃	a	3814	1459	3632	-83	917	-251
	b	3494(366)	1058(407)	3023(507)	-89(316)	2107(346)	226(373)
HC ₅	a	4254	2968	2943	731	1721	-480
	b	4459(434)	2248(454)	4435(794)	470(459)	3546(472)	-377(521)
HC ₆	a	4448	1434	3680	-154	857	-41
	b	4622(472)	1434(395)	3497(604)	-724(443)	2508(412)	-8(434)
HC ₇	a	2263	2445	3891	455	1302	70
	b	2029(244)	2265(414)	2468(468)	581(301)	1043(250)	967(394)
HC ₈	a	3219	3194	2752	-158	-74	22
	b	3209(481)	3273(533)	1948(618)	-874(443)	1434(405)	1887(494)
HC'8	a	4107	2430	3085	-740	1303	240
	b	4804(319)	2469(561)	3228(456)	-52(406)	-77(266)	497(399)
HC ₉	a	2589	3823	3589	-476	1305	-865
	b	2336(424)	3095(551)	3851(476)	-517(431)	1200(350)	-503(536)
HC'9	a	4727	3902	2333	-488	1699	-780
	b	4884(298)	2960(548)	2050(608)	-544(392)	1068(308)	112(374)
HC ₁₀	a	3121	2762	2875	-402	702	-768
	b	2721(307)	3080(567)	4347(613)	2552(402)	850(315)	-956(533)
HC' ₁₀	a	3177	2670	3128	986	775	-329
	b	3447(322)	3126(579)	2099(433)	-1016(387)	1514(295)	-2210(449)
HC ₁₁	a	2299	2980	3310	396	902	-465
	b	1499(227)	2059(409)	5254(653)	269(299)	916(260)	125(479)
HC'11	a	4058	2422	2188	402	1293	543
	b	5030(462)	3022(583)	1795(477)	-377(475)	975(383)	-343(427)
HO ₃	a	4904	1999	3023	301	1883	-266
	b	2876(345)	2287(440)	4996(762)	741(398)	2515(385)	-35(536)

a : Modèle T L S + les vibrations internes

b : Affinement neutronique (U_{ii} corrigés de l'écart de température)

Type d'affinement	Affinement (a)	Affinement HO (b)
No	5433	3548
Nv	144	144
S	8,086	1,5758
R ₁	0,104	0,106
R ₂	0,039	0,065
R ₃	0,096	0,133
R ₄	0,076	0,124
К	12,42	11,73

Caractérisation des affinements par moindres carrés (premier cristal)

a : Affinement sur toutes les réflexions d'intensité $I \ge 2 \sigma(I)$

b : Affinement HO caractérisé par un seuil $(\frac{\sin \theta}{\lambda})_{min} = 0,75 \text{ Å}^{-1}$, seules les réflexions d'intensité l $\geq 2 \sigma$ (l) ont été prises en compte,

No : Nombre de réflexions utilisées dans l'affinement

N_v : Nombre de paramètres variables

$$R_{1} = \Sigma |F_{0}^{2} - K^{2} F_{c}^{2}| / \Sigma F_{0}^{2}$$

$$R_{2} = \left\{ \Sigma W |F_{0}^{2} - K^{2} F_{c}^{2}| / \Sigma F_{0}^{4} \right\}^{1/2} \text{ avec } W = \frac{1}{\sigma F_{0}^{2}}$$

$$R_{3} = \Sigma |F_{0}|^{2} - k^{2} |F_{c}|^{2} / \Sigma |F_{0}|^{2}$$

$$R_{4} = \left\{ \Sigma W |F_{0}^{2} - K^{2} F_{c}^{2}| / \Sigma F_{0}^{4} \right\}^{1/2}$$

$$W = \frac{1}{\sigma (F_{0}^{2})}$$

$$S = \left\{ \Sigma W |F_{0}^{2} - K^{2} F_{c}^{2}| / N_{0} - N_{v} \right\}^{1/2}$$

Type d'affinement	а	b	С	d
No	3683	3807	1833	1921
Nv	144	144	144	144
S	1,979	1,95	0,964	0,956
R ₁	0,0399	0,0420	0,045	0,050
R ₂	0,0440	0,0444	0,035	0,035
R ₃	0,0586	0,0589	0,061	0,062
R4	0,0888	0,0891	0,067	0,068
К	7,287	7,288	7,343	7,342

Caractérisation des affinements par moindres carrés (2eme cristal)

a : Affinement sur toutes les réflexions d'intensité l \ge 2 σ (I)

b : Affinement sur toutes les réflexions,

c : Affinement caractérisé par un seuil $\{\frac{\sin\theta}{\lambda}\}_{min} = 0,80 \text{ Å}^{-1} \text{ tel que I} \ge 2 \sigma$ d : Affinement caractérisé par un seuil $\{\frac{\sin\theta}{\lambda}\}_{min} = 0,75 \text{ Å}^{-1} \text{ tel que I} \ge 2 \sigma$ $R_1 = \Sigma \left[|F_0| - k| |F_c| \right] / \Sigma |F_0|$

$$R_2 = \Sigma W [|F_0| - k|F_c|]^2 / \Sigma W |F_0|^2$$

$$R_3 = \Sigma |F_0|^2 - k^2 |F_c|^2 / \Sigma |F_0|^2$$

$$R_{4} = \left\{ \Sigma W | F_{0}^{2} - K^{2} F_{c}^{2} | / \Sigma F_{0}^{4} \right\}^{1/2}$$
$$W = \frac{1}{\sigma(F_{0}^{2})}$$
$$S = \left\{ \Sigma W | F_{0}^{2} - K^{2} F_{c}^{2} | / N_{0} - N_{v} \right\}^{1/2}$$

h	k	e	k _{ext}	k _{ext}
			(1er cristal)	(2ème cristal)
1	0	1	0.77	0.97
0	2	1	0.92	0.98
0	2	0	0.97	0.97

Les paramètres de position et de vibration des atomes obtenus par les affinements b et d sont donnés dans les tableaux III-2-6 et III-2-7, respectivement.

Les ellipsoïdes d'agitation thermique obtenus par le programme ORTEP sont représentés sur la figure III-2-1.

III-2.2 AFFINEMENT DE LA STRUCTURE A PARTIR DES MESURES DE DIFFRACTION NEUTRONIQUE

Les données neutroniques ont été corrigées de l'absorption par la méthode d'intégration de Gauss [28]. Les longueurs de diffusion utilisées sont [58] :

 $b_{C} = 6.646(12) \text{ fm}$ $b_{N} = 9.360(20) \text{ fm}$ $b_{O} = 5.803(04) \text{ fm}$ $b_{H} = -3.739(11) \text{ fm}$

L'affinement a été effectué sur toutes les réflexions dont l'intensité est supérieure à trois fois l'écart-type de celle-ci. Les facteurs de confiance résultant de cet affinement sont reportés dans le tableau III-2-8 ci-dessous.

No	1000
Nv	272
S	1.59
R ₁	0.040
R ₂	0.031
R ₃	0.062
R ₄	0.062
К	0.100

Tableau	<u>III-2-8</u>
---------	----------------

		X	Y	Z
C ₁	а	0.51918(28)	0.04552	0.43916(19)
-1	b	0.51900(69)	0.04552	0.43873(65)
	C	0.51933(24)	0.04552	0.43952(17)
Ca	а	0.53564(28)	0.13925(10)	0.45658(19)
- <u>-</u> 2	b	0.53653(68)	0.13879(39)	0.45531(65)
	С	0.53559(25)	0.13929(11)	0.45592(17)
C	a	0.66535(28)	0.18775(10)	0.34437(19)
~3	b	0.66480(68)	0.18808(45)	0.34400(59)
	С	0.66567(25)	0.18763(10)	0.34416(17)
C	а	0.78000(27)	0.14359(08)	0.20984(18)
-4	b	0.78066(65)	0.14363(33)	0.21021(57)
	с	0.78009(24)	0.14351(10)	0.20982(16)
Cء	a	0.76366(31)	0.04787(11)	0.19761(20)
-5	b	0.76318(69)	0.04856(39)	0.19811(63)
	с	0.76364(25)	0.04789(11)	0.19747(17)
C	a	0.63422(30)	-0.00027(10)	0.31091(21)
~0	b	0.63557(64)	-0.00037(45)	0.31141(63)
	с	0.63472(25)	-0.00007(11)	0.31078(18)
C ₇	a	0.87437(24)	0.28915(10)	0.06553(18)
-,	b	0.87286(55)	0.28921(38)	0.06474(62)
	с	0.87415(23)	0.28945(11)	0.06558(17)
C.	а	0.90336(32)	0.30116(10)	-0.14079(19)
-8	b	0.90299(62)	0.30068(41)	-0.14011(60)
	С	0.90279(26)	0.30117(11)	-0.14104(17)
Co	a	1.09709(32)	0.22532(11)	-0.15798(20)
- y	b	1.09456(66)	0.22575(46)	-0.15868(71)
	c	1.09748(27)	0.22550(12)	-0.15779(18)
C ₁₀	a	1.00913(30)	0.14672(10)	-0.05163(20)
- 10	b	1.00704(67)	0.14715(41)	-0.05177(68)
	c	1.00927(26)	0.14675(11)	-0.05182(17)
C11	a	1.09269(26)	0.34089(10)	0.21639(19)
	b	1.09028(55)	0.34043(41)	0.21596(60)
L	c	1.09273(25)	0.34070(11)	0.21655(17)
N_1	a	0.38405(27)	-0.00400(10)	0.55719(19)
-	b	0.38507(46)	-0.00448(36)	0.55699(47)
	c	0.38417(22)	-0.00371(10)	0.55721(15)
N_2	a	0.90001(25)	0.19102(10)	0.09442(17)
-	b	0.89857(42)	0.19116(37)	0.09494(43)
	С	0.89963(21)	0.19100(10)	0.09426(15)
0 1	a	0.34832(31)	-0.08572(10)	0.53136(20)
	b	0.35150(85)	-0.08573(48)	0.53189(80)
	c	0.34893(20)	-0.08587(10)	0.53152(14)
O ₂	a	0.30466(43)	0.03779(11)	0.68123(28)
-	b	0.30420(98)	0.03764(53)	0.67773(15)
	C	0.30407(22)	0.03798(11)	0.68108(15)
03	a	1.07079(27)	0.43489(09)	0.18211(19)
	b	1.06956(76)	0.43463(45)	0.18297(76)
	С	1.07012(10)	0.43505(10)	0.18163(14)

<u>Tableau-III-2-6</u> : Coordonnées réduites avec leurs écarts-types

a: affinement en hauts indices

b: affinement neutronique

c: affinement en prenant toutes les réflexions (full data)

		U ₁₁	U ₂₂	U33	U ₁₂	U ₁₃	U ₂₃
C,	a	1675(42)	973(26)	1413(35)	-80(26)	657(32)	19(24)
-1	b	2093(121)	1017(166)	1782(205)	-266(143)	784(130)	55(160)
	c	1497(48)	1117(42)	1447(45)	-140(37)	610(38)	121(36)
C	a	1658(43)	1002(27)	1559(38)	-60(27)	796(34)	-44(25)
-2	b	2024(144)	1157(179)	1833(219)	-136(139)	1031(134)	-67(154)
	С	1661(55)	1107(44)	1611(50)	-11(38)	719(42)	-109(37)
C,	a	16201(41)	845(25)	1579(37)	11(25)	718(33)	-57(24)
-3	b	2032(128)	1330(191)	1831(197)	84(156)	1065(126)	-151(160)
	c	1588(52)	856(41)	1559(46)	63(36)	613(40)	-59(35)
C,	а	1297(36)	833(27)	1344(33)	47(24)	487(29)	32(22)
- 4	b	1695(124)	767(154)	1083(185)	34(134)	437(110)	-79(135)
	c	1230(48)	957(41)	1375(45)	14(35)	468(37)	6(34)
C,	a	1966(45)	819(27)	1654(39)	82(28)	920(35)	-39(25)
	b	2273(143)	1121(198)	2762(254)	-109(155)	1409(148)	-290(181)
	c	1858(54)	946(42)	1696(49)	134(39)	822(42)	-18(37)
C,	a	2034(47)	866(25)	1801(42)	-23(28)	912(37)	11(26)
- 0	ь	2329(137)	949(174)	2091(232)	-104(157)	1055(136)	-191(162)
	c	1990(55)	887(40)	1822(51)	-1(38)	853(44)	2(36)
C_7	a	1273(33)	906(23)	1474(35)	14(24)	487(27)	98(22)
	Ъ	1444(118)	1350(189)	1923(193)	37(142)	489(112)	261(166)
	c	1392(47)	878(39)	1604(45)	-3(35)	534(37)	159(34)
C,	a	2078(46)	1354(30)	1449(36)	-153(28)	484(33)	182(25)
0	ь	2700(149)	1517(185)	1485(180)	-94(161)	398(126)	854(159)
	c	2125(55)	1374(45)	1485(46)	-122(42)	576(41)	157(37)
C _o	a	1978(45)	1539(31)	1707(39)	-231(31)	917(35)	-81(29)
	ь	2481(140)	1985(207)	1859(234)	-420(169)	1369(139)	-325(174)
	c	1975(56)	1664(50)	1727(50)	-204(42)	935(44)	-18(39)
C ₁₀	a	1732(43)	1193(29)	1620(38)	55(28)	803(32)	-81(26)
10	ь	1613(116)	1554(192)	1822(221)	-145(140)	892(113)	-439(157)
	c	1863(54)	1250(45)	1671(49)	55(39)	935(42)	-181(38)
C ₁₁	a	1505(38)	1025(25)	1727(38)	-48(25)	462(31)	-133(24)
	Ъ	1682(118)	1077(168)	1675(194)	57(124)	555(113)	-20(150)
	c	1573(50)	961(38)	1811(48)	-10(37)	487(40)	-109(37)
N ₁	a	1722(38)	1222(26)	1679(38)	-225(26)	796(31)	92(25)
	Ъ	2318(93)	1400(127)	1943(154)	-353(114)	1099(94)	184(120)
	c	1643(45)	1302(40)	1690(44)	-214(35)	695(37)	159(35)
N_2	a	1666(39)	817(23)	1590(36)	-27(22)	815(32)	-13(22)
_	ь	1990(97)	919(118)	1783(138)	-201(97)	1057(93)	-250(118)
	c	1760(48)	736(35)	1595(41)	-29(32)	884(36)	-91(31)
O ₁	a	2502(48)	1127(24)	2124(39)	-485(28)	909(35)	84(24)
	ь	3271(180)	1220(200)	2372(248)	-941(192)	1086(163)	-102(201)
	c	2502(46)	1172(35)	2146(43)	-500(33)	888(36)	88(30)
O ₂	a	3583(72)	1653(33)	2953(58)	-393(36)	2382(59)	-253(33)
_	b	4758(252)	1985(249)	4242(382)	-881(248)	3299(249)	272(262)
	c	3470(55)	1765(42)	2895(50)	-280(40)	2287(45)	-169(38)
O ₃	a	2093(38)	932(21)	2375(39)	-164(24)	1182(33)	-194(23)
	b	2409(155)	1004(190)	2898(285)	2(151)	1263(154)	11(197)
	c	2270(44)	891(31)	2496(44)	-217(31)	1280(37)	-230(31)

<u>Tableau III-2-7</u> : Paramètres thermiques $(10^5 \text{x}^{\text{Å}2})$ des atomes lourds

a : Affinement en hauts-indices

b : Affinement neutronique c : Affinement " full data "

Figure III-2-1 : Ellipsoïdes d'agitation thermique de la molécule de NPP

Les paramètres de position des atomes de carbone, d'azote et d'oxygène obtenus par les affinements à grands angles et neutronique sont similaires (tableau III-2-6). Les plus grandes différences enregistrées sont 0.002Å, 0.0025 Å et 0.003 Å suivant la coordonnée X, pour les atomes de carbone C₁, C_o et d'oxygène O1, respectivement et de 0.0035 Å suivant la coordonnée Y pour l'atome d'oxygène O2. De plus les écarts-types de ces paramètres obtenus par l'affinement neutronique sont supérieurs à ceux obtenus par les rayons X (HO). Il en va de même pour les paramètres thermiques (tableau III-2-7) à l'exception des atomes de carbone C_4 et C_{11} pour lesquels nous notons une diminution des composantes de vibration U_{22} et U_{33} de C₄ et U₃₃ de C₁₁. Leurs écarts-types sont également plus élevés pour la diffraction neutronique. Ces écarts importants entre ces différents paramètres sont le signe d'une forte agitation thermique. L'explication la plus probable de ces divergences entre les résultats obtenus par la diffraction des rayons X et diffraction de neutrons serait du à une différence de température entre les deux expériences. Nous avons calculé la valeur moyenne des rapports Vi déterminés à partir de la relation ci-dessous sur l'ensemble des U_{ii} :

$$V_{i} = \frac{\overline{U}_{ii \text{ (neutrons)}}}{\overline{U}_{ii \text{ (R-X(HO))}}}$$

 $V_1 = 1.22$ $V_2 = 1.19$ $V_3 = 1.19$ $\overline{V} = 1.20$ (valeur moyenne)

Nous pouvons admettre que les paramètres de vibration $(U_{ii})_{R-X(HO)}$ et $(U_{ii})_{neutrons}$ sont dans un rapport constant. Dans l'hypothèse d'une variation linéaire des paramètres de vibration U_{ii} ave la température et sachant que l'expérience de diffraction des rayons X a été effectuée à 120 K, la température du cristal utilisé devait être de 144 K pour la diffraction neutronique. Les paramètres thermiques des hydrogènes sont ainsi remis à l'échelle en les divisant par le

rapport V. Une analyse plus détaillée des paramètres de vibration est reportée dans le tableau III-2-9.

Des situations semblables entre les paramètres ont été observés dans la littérature mais le rapport V était inférieur à 1 c'est à dire que les paramètres thermiques déterminés par les neutrons étaient inférieurs à ceux obtenus par les rayons X [44,55] [59-63].

<u>Tableau III-2-9</u> : Valeurs de \overline{U}_{ii} (10⁶ x Å²) pour les affinements à grands angles et neutronique ainsi que les rapports $r_{ii} = \frac{\Sigma \overline{U}_{ii} (N)}{\Sigma \overline{U}_{ii} (HO)}$ pour tous les atomes et groupes d'atomes

groupe	Atomes	НО	Ū ₁₁ (HO)	 U ₂₂ (HO)	- U 33 (HO)	Ū ₁₁ (N)	Ū ₂₂ (N)	Ū33 (N)	r 11	r22	r33
1	tous les atomes	≥ 0,75	30383	17106	28049	37113	30352	33385	1,22	1,19	1,19
	de la molécule	≥ 0,80	30423	17252	28241	37113	30352	33385	1,22	1,18	1,18
2	cycle	≥ 0,75	10251	5338	9350	12447	6341	11383	1,21	1,18	1,22
	benzénique	≥ 0,80	10379	5362	9613	12447	6341	11383	1,20	1,18	1,18
3	cycle L-prolinol	≥ 0,75 ≥ 0,80	12325 12315	7766 7851	11943 11937	14319 14319	9406 9406	13445 13445	1,16 1,16	1,21 1,20	1,12 1,13
4	NO ₂	≥ 0,75 ≥ 0,80	7807 7729	4002 4039	6756 6691	10347 10347	4605 4605	8557 8557	1,33 1,34	1,15 1,14	1,26 1,28

- 81 -

Eu égard cette différence entre les paramètres thermiques, l'affinement neutronique a cependant permis de localiser sans ambiguité les atomes d'hydrogène.

III-3 - APPLLICATION DE L'ANALYSE THERMIQUE

Nous avons utilisé le programme THMA 11 (Trueblood (1990)) [64] pour l'analyse de l'agitation thermique. Les éléments des tenseurs T, L et S sont obtenus par affinement par moindres carrés, les observables étant les tenseurs d'agitation thermique U_{ij} déterminés lors de l'affinement structural. En fait, il s'agit de minimiser les expressions :

$$R_{W} = \left(\sum W |U_{obs} - U_{cal}|^{2} / \sum W |U_{obs}^{2}| \right)^{1/2}$$

E.S.D = $\left[\sum (W (U_{obs} - U_{cal}))^{2} / (N_{obs} - N_{par}) (6N/\Sigma W^{2}) \right]^{1/2}$

N est le nombre d'atomes inclu dans l'affinement.

E.S.D : Ecart quadratique moyen

U_{obs} et U_{cal} sont les coefficients d'agitation thermique respectivement déterminés par diffraction des R-X et calculés à l'aide des tenseurs T, L et S.

Les résultats présentés ci-dessous ont été obtenus avec le cristal préparé dans le laboratoire de bagneux (CNRS N° 250) en prenant les paramètres structuraux de l'affinement d (Tableau III-2-4).

Tout d'abord, nous avons considéré les atomes lourds de la molécule comme constituant une unité rigide, les facteurs de confiance étant :

RW	= 0.134
ESD	= 0.0019
N _{ob}	= 96 = Nombre d'observations indépendantes
N _{par}	= 20 = Nombre de paramètres indépendantes de l'unité rigide.

Les éléments du tenseur T, L, S sont reportés dans le tableau III-3-1. Notons qu'il existe des différences importantes entre les paramètres thermiques observés (U_{obs}) et les paramètres thermiques calculés (U_{cal}) (Tableau III-3-2). Ceci nous a incité à introduire dans les calculs, les librations entre les fragments rigides. Nous avons donc considéré trois librations (Fig. III-3-1) :

- libration autour de la liaison C₁-N₁ (groupe 1)
- libration autour de la liaison C₄-N₂ (groupe 2)
- libration autour de la liaison C_7 - C_{11} (groupe 3).

Paramètres de l'unité rigide exprimés dans le système cartésien cristallographique

	valeur	écart-type	e valeur	écart-type
	rad ²		deg ²	
L11 =	0.00107	0.00016	3.517	0.517
L12 =	0.00093	0.00015	3.065	0.500
L13 =	-0.00045	0.00012	-1.481	0.378
L22 =	0.00156	0.00017	5.117	0.545
L23 =	-0.00053	0.00013	-1.741	0.436
L33 =	0.00066	0.00011	2.167	0.355
		٥		
		Ų		
	T11 =	0.01218	0.00060	
	T12 =	0.00097	0.00049	
	T13 =	0.00127	0.00055	
	T22 =	0.00817	0.00052	
	T23 =	-0.00034	0.00048	
	T33 =	0.01357	0.00060	
		. ?		
		rad-A		
	S11 =	0.00008	0.00014	
	S12 =	-0.00003	0.00020	
	S13 =	0.00040	0.00016	
	S21 =	0.00035	0.00016	
	S22 =	0.00004	0.00018	
	S23 =	0.00083	0.00017	
	S31 =	0.00034	0.00014	
	S32 =	-0.00008	0.00019	
	S33 =	-0.00012	0.00014	

ī

<u>Tableau III-3-2</u> : Tenseurs de vibration U_{obs} et U_{calc}

atoma	TT	TT	TT	TT	TT	TT	<u> </u>
C	0.0167	0.0007	0.0141		0.0044	0 0002	oheared
	0.0178	0.0097	0.0141	-0.0000	0.0079	-0.0004	calculá
	-0.0011	-0.0001	-0.0023	0.0000	-0.0012	0.0003	différence
	0.0166	0.0100	0.0156	-0.0006	0.0080	-0.0004	observé
<u> </u>	0.0190	0.0100	0.0184	-0.0007	0.0104	-0.0012	calculé
	-0.0024	0.0000	-0.0028	0.0001	-0.0024	0.0008	différence
C.	0.0162	0.0084	0.0153	0.0001	0.0072	-0.0006	observé
	0.0151	0.0085	0.0161	-0.0004	0.0074	-0.0009	calculé
	0.0011	-0.0001	-0.0003	-0.0003	-0.0003	0.0003	différence
C .	0.0130	0.0083	0.0134	0.0005	0.0049	0.0003	observé
4	0.0129	0.0082	0.0132	0.0009	0.0047	-0.0003	calculé
	0.0001	0.0001	0.0003	-0.0005	0.0002	0.0006	différence
C _c	0.0197	0.0082	0.0165	0.0008	0.0092	-0.0004	observé
	0.0168	0.0082	0.0153	0.0006	0.0067	-0.0007	calculé
	0.0029	-0.0001	0.0013	0.0002	0.0025	0.0003	différence
C,	0.0203	0.0087	0.0180	-0.0002	0.0091	0.0001	observé
	0.0178	0.0085	0.0162	0.0000	0.0069	-0.0001	calculé
	0.0025	0.0002	0.0018	-0.0002	0.0023	0.0002	différence
С,	0.0127	0.0091	0.0147	0.0001	0.0049	0.0010	observé
	0.0131	0.0093	0.0155	0.0007	0.0049	0.0011	calculé
	-0.0004	-0.0002	-0.0008	-0.0006	-0.0001	-0.0001	différence
C ₈	0.0208	0.0135	0.0145	-0.0015	0.0048	0.0018	observé
	0.0175	0.0135	0.0153	-0.0017	0.0048	0.0025	calculé
	0.0033	0.0000	-0.0008	0.0002	0.0000	-0.0007	différence
С,	0.0198	0.0135	0.0145	-0.0015	0.0048	0.0018	observé
	0.0228	0.0135	0.0153	-0.0017	0.0048	0.0025	calculé
	-0.0031	0.0000	-0.0008	0.0002	0.0000	-0.0007	différence
C ₁₀	0.0173	0.0119	0.0162	0.0006	0.0080	-0.0008	observé
	0.0210	0.0114	0.0162	-0.0006	0.0102	-0.0017	calculé
	-0.0036	0.0005	-0.0007	0.0012	-0.0022	0.0009	différence
C ₁₁	0.0150	0.0102	0.0173	-0.0005	0.0000	-0.0013	observé
	0.0156	0.0099	0.0168	-0.0013	0.0063	-0.0007	calculé
	-0.0006	0.0003	0.0005	0.0008	-0.0017	-0.0006	différence
N ₁	0.0172	0.0122	0.0168	-0.0023	0.0080	0.0009	observé
	0.0233	0.0125	0.0200	-0.0027	0.0113	0.0003	calculé
	-0.0061	-0.0002	0.0032	0.0004	-0.0034	0.0006	différence
N ₂	0.0167	0.0082	0.0159	-0.0003	0.0081	-0.0001	observé
	0.0133	0.0090	0.0133	0.0007	0.0049	-0.0002	calculé
	0.0034	-0.0009	0.0026	-0.0010	0.0032	0.0001	différence
0,	0.0250	0.0113	0.0212	-0.0048	0.0091	0.0008	observé
	0.0250	0.0123	0.0215	-0.0033	0.0108	0.0014	calculé
	0.0000	-0.0010	-0.0002	-0.0016	-0.0017	-0.0006	différence
0,	0.0358	0.0165	0.0295	-0.0039	0.0238	-0.0025	observé
	0.0315	0.0159	0.0252	-0.0048	0.0186	-0.0014	calculé
	0.0043	0.0006	0.0044	0.0009	0.0052	-0.0011	différence
0,	0.0209	0.0093	0.0238	-0.0016	0.0118	-0.0019	observé
	0.0213	0.0096	0.0234	-0.0022	0.0106	-0.0008	calculé
T	-0.0004	-0.0003	0.0003	0.0005	0.0012	-0.0012	différence

Figure III-3-1

Les indices résiduels après l'introduction de ces mouvements internes dans le calcul, sont améliorés nettement.

RW	= 0.059
E.S.D	= 0.0009
Nobs	= 96
Npar	= 20

Les nouveaux tenseurs T,L,S sont consignés dans les tableaux III-3-3. Les angles de rotation autour des liaisons $C_1 - N_1$, $C_4 - N_2$ et $C_{11} - O_3$ des trois groupes sont de 11,695°; 11,708° et 1,401°, respectivement, alors qu'ils étaient de 12,538°; 12,629° et 1,696° pour le premier cristal. De plus, l'écart maximum entre les coefficients d'agitation thermique observés et calculés (Tableau III-3-4) est en valeur absolue de 0,0027Å² alors qu'il était de 0,0061Å² dans le tableau III-3-2.

Le tableau III-3-5 présente les différences entre les déplacements quadratiques moyens (MSDA) de toutes les paires d'atomes de la molécule et nous permet de tester le critère des liaisons rigides selon Hirshfeld [51]. En effet, pour des structures bien affinées basées sur de bonnes données, les différences résultantes entre les déplacements quadratiques moyens projetés sur l'axe de la liaison doivent être plus petites que 10.10⁻⁴ Å². La valeur moyenne des déplacements quadratiques moyens pour toutes les paires (valeurs soulignées) est de 0.35 10⁻⁴ Å². Le modèle de Hirshfeld est donc vérifié pour les fragments de la molécule mais comme l'indique les valeurs dans les colonnes 1, 2, 3, 6, les projections sur une liaison fictive de deux atomes appartenant à deux fragments différents sont importantes , ce qui confirme le choix des trois librations introduites dans nos calculs.

Tableau III-3-3 : Paramètres de l'unité rigide

Cosinus directeurs des axes de libration liés aux groupes rigides exprimés dans le système cristallin

(Groupe	\mathbf{v}_1	v ₂	v ₃	L/deg ²	\sqrt{L}
1	$C_1 - N_1$	-0.64876	-0.51078	0.56410	11.695	3.420
2	C_4-N_2	0.62527	0.51781	-0.58387	11.708	3.422
3	C ₁₁ -O ₃	0.54022	0.50057	0.67646	1.962	1.401

Tenseurs de vibration T, Let S exprimés dans le système cristallin cartésien

	valeur rad ²	écart-type	valeur deg ²	écart-type.
L11 =	0.00160	0.00037	5.259	1.215
L12 =	0.00107	0.00024	3.508	0.785
L13 =	-0.00115	0.00027	-3.781	0.870
L22 =	0.00120	0.00035	3.951	1.133
L23 =	-0.00092	0.00022	-3.005	0.712
L33 =	0.00156	0.00034	5.111	1.118

Å2

T11 =	0.01262	0.00045
T12 =	0.00082	0.00034
T13 =	0.00122	0.00041
T22 =	0.00796	0.00033
T23 =	-0.00048	0.00034
T33 =	0.01345	0.00044

rad-Å

S11 =	0.00026	0.00025
S12 =	-0.00030	0.00028
S13 =	0.00031	0.00031
S21 =	0.00006	0.00019
S22 =	-0.00010	0.00020
S23 =	0.00032	0.00018
S31 =	-0.00018	0.00029
S32 =	0.00022	0.00026
S33 =	-0.00016	0.00025

atome	U ₁₁	U22	U ₃₃	U ₁₂	Uia	U ₂₃	
C.	0.0167	0.0097	0.0141	-0.0008	0.0066	0.0002	observé
-1	0.0153	0.0096	0.0150	-0.0002	0.0060	0.0002	calculé
	0.0014	0.0001	-0.0008	-0.0006	0.0006	0.0000	différence
C.	0.0166	0.0100	0.0156	-0.0006	0.0080	-0.0004	observé
- 2	0.0166	0.0098	0.0161	0.0000	0.0079	-0.0009	calculé
	0.0000	0.0003	-0.0006	-0.0006	0.0001	0.00005	différence
C,	0.0162	0.0084	0.0153	0.0001	0.0072	-0.0006	observé
3	0.0160	0.0083	0.0155	0.0002	0.0072	-0.0011	calculé
	0.0002	0.0001	0.0003	-0.0001	0.0000	0.0005	différence
C,	0.0130	0.0083	0.0134	0.0005	0.0049	0.0003	observé
	0.0135	0.0080	0.0134	0.0007	0.0049	-0.0004	calculé
	-0.0005	0.0003	0.0000	-0.0003	-0.0001	0.0007	différence
C,	0.0197	0.0082	0.0165	0.0008	0.0092	-0.0004	observé
	0.0193	0.0080	0.0170	0.0009	0.0089	-0.0005	calculé
	0.0004	0.0002	-0.0005	-0.0001	0.0003	0.0001	différence
C,	0.0203	0.0087	0.0180	-0.0002	0.0091	0.0001	observé
	0.0206	0.0082	0.0180	-0.0002	0.0082	-0.0001	calculé
	-0.0002	0.0005	0.0001	-0.0004	0.0000	0.0002	différence
C,	0.0127	0.0091	0.0147	0.0001	0.0049	0.0010	observé
<u>(</u>	0.0153	0.0092	0.0148	0.0002	0.0049	0.0010	calculé
	-0.0026	-0.0002	0.0000	0.0000	-0.0001	0.0009	différence
C.	0.0208	0.0135	0.0145	-0.0015	0.0048	0.0018	observé
•	0.0196	0.0136	0.0157	-0.0010	0.0064	0.0024	calculé
	0.0012	-0.0001	-0.0012	-0.0005	-0.0016	-0.0006	différence
C.	0.0198	0.0135	0.0145	-0.0015	0.0048	0.0018	observé
,	0.0201	0.0146	0.0164	-0.0023	0.0090	-0.0005	calcuié
	-0.0003	0.0008	0.0007	0.0000	0.0002	-0.0003	différence
C ₁₀	0.0173	0.0119	0.0162	0.0006	0.0080	-0.0008	observé
10	0.0186	0.0116	0.0168	-0.0009	0.0091	-0.0017	calculé
	-0.0012	0.0003	-0.0005	0.0014	-0.0010	0.0008	différence
C.,	0.0150	0.0102	0.0173	-0.0005	0.0000	-0.0013	observé
	0.0154	0.0099	0.0176	-0.0014	0.0063	-0.0008	calculé
	-0.0003	0.0003	-0.0003	0.0010	-0.0017	-0.0006	différence
N ₁	0.0172	0.0122	0.0168	-0.0023	0.0080	0.0009	observé
	0.0182	0.0124	0.0171	-0.0017	0.0076	0.0009	calculé
	-0.0010	-0.0002	-0.0003	-0.0005	0.0004	0.0000	différence
N ₂	0.0167	0.0082	0.0159	-0.0003	0.0081	-0.0001	observé
	0.0145	0.0090	0.0138	0.0003	0.0055	-0.0003	calculé
	0.0022	-0.0008	0.0021	-0.0006	0.0027	0.0001	différence
O ₁	0.0250	0.0113	0.0212	-0.0048	0.0091	0.0008	observé
	0.0252	0.0129	0.0203	-0.0045	0.0102	0.0007	calculé
	-0.0002	-0.0016	0.0009	-0.0004	-0.0011	0.0001	différence
0,	0.0358	0.0165	0.0295	-0.0039	0.0238	-0.0025	observé
	0.0357	0.0163	0.0298	-0.0049	0.0233	-0.0020	calculé
	0.0001	0.0002	-0.0002	0.0009	0.0005	-0.0006	différence
0,	0.0209	0.0093	0.0238	-0.0016	0.0118	-0.0019	observé
	0.0213	0.0096	0.0203	-0.0024	0.0110	-0.0008	calculé
	-0.0004	-0.0003	0.0004	0.0008	0.0008	-0.0011	différence

<u>Tableau III-3-4</u> : Tenseurs de vibration U_{obs} et U_{calc}

Tableau III-3-5
Différences entre les déplacements quadratiques moyens
(1000 MSDA) de toutes les paires d'atomes de la molécule

	03	0 ₂	o ₁	N ₂	N ₁	C ₁₁	C ₁₀	C9	C8	C7	с ₆	C5	C4	C ₃	C ₂
С ₁	9	1	-5	-4	<u>-6</u>	26	13	13	21	-1	Z	1	0	1	2
C ₂	10	19	-10	-1	-2	32	9	11	21	1	-1	-7	4	<u>9</u>	
C ₃	6	9	-7	-10	-8	21	-3	0	8	-8	3	-6	<u>0</u>		
C4	6	6	7	<u>-5</u>	-6	16	4	10	15	1	5	<u>-1</u>			
C5	0	-2	14	-12	-8	7	11	12	12	-2	<u>2</u>				
С ₆	4	-14	13	-12	-13	15	8	9	12	-4					
C7	4	19	4	<u>-5</u>	-3	<u>0</u>	4	12	<u>6</u>						
C8	1	-2	-11	-6	-24	8	-8	<u>-12</u>							
C9	-30	-2	2	-11	-18	-6	<u>-2</u>								
C ₁₀	-20	-6	4	<u>-4</u>	-19	-12									
C ₁₁	<u>-4</u>	-15	-30	-4	-36										
N ₁	15	<u>-9</u>	<u>-13</u>	2											
N ₂	6	13	15												
0 ₁	15	-6													
02	11														

1

III-4 - ANALYSE STRUCTURALE

III-4.1 - CONFIGURATION MOLECULAIRE

La vue stéréoscopique de la molécule NPP est représentée sur la figure (III-4-1). Les longueurs des liaisons et les angles de valence obtenus par l'affinement à grands angles (HO) sont comparés dans les tableaux III-4-1 et III-4-2 aux valeurs valeurs obtenues par les neutrons. Nous remarquons que les longueurs des liaisons entre les atomes lourds obtenues par les neutrons sont globalement plus courtes, notamment pour les liaisons C_1 - C_2 , C_4 - C_5 , C_4 - N_2 , C_7 - C_8 , C_8 - C_9 , N_1 - O_1 et N_1 - O_2 . La longueur de la liaison N_1 - O_2 est légèrement plus longue que la liaison N_1 - O_1 en diffraction des rayons X, soit une différence de 0.009 Å. Par contre elles sont presque égales par affinement neutronique. Le tableau III-4-3 donne les distances des atomes lourds par rapport aux plans moyens des différents fragments de la molécule et les angles dièdres entre les différents plans.

La molécule dans son ensemble est plutôt quasi-plane, l'écart maximum étant de 0,683 Å pour le C_{11} lié au carbone C_7 hybridé en Sp³.

Le cycle benzénique est plan. La déviation maximale d'un atome de carbone de ce cycle est de 0.008 Å. Les atomes d'azote N₁ et N₂ sont légèrement hors de ce plan, du même côté, de 0.012 et 0.044 Å, respectivement. Les atomes O₁ et O₂ du groupement dioxyde d'azote sont de part et d'autre du plan aromatique.

Les atomes du cycle L-prolinol sont en position alternée par rapport au plan moyen, l'atome d'azote N₂ appartenant à ce plan. Cette structure alternée liée au carbone Sp³ qui forme ce noyau est responsable du mouvement de "puckering" (papillon) compliqué de cette partie de la molécule.

Les distances intermoléculaires O....HO₃....O₃ et O....HO₃ sont notées dans le tableau III-4-4 ci-dessous.

	R-X (HO)	Neutrons	R-X Température ambiante
O ₁ HO ₃ O ₃	3.374 Å	3.367 Å	
O ₂ HO ₃ O ₃	2.838 Å	2.841 Å	2.860 Å
O ₁ HO ₃		2.585 Å	
O ₂ HO ₃		1.913 Å	

Tableau III-4-4

Figure III-4-1 : Vue stéréoscopique de la molécule de NPP

Tableau III-4-1: Distances interatomiques

	······	T	
		Rayons X	Neutrons
C ₁	C ₂	1,395(2)	1,386(5)
	C ₆	1,396(2)	1,393(6)
	N ₁	1,434(2)	1,432(5)
	C ₃	1,379(2)	1,372(6)
	C ₄	1,419(2)	1,416(6)
C ₄	C ₅	1,422(1)	1,411(8)
C ₄	N ₂	1,355(2)	1,345(5)
C ₅	C ₆	1,380(2)	1,377(6)
C ₇	C ₈	1,530(2)	1,516(6)
C ₇	C ₁₁	1,532(2)	1,527(6)
C ₇	N ₂	1,470(2)	1,467(8)
C ₈	C ₉	1,531(2)	1,515(7)
C ₉	C ₁₀	1,526(2)	1,524(7)
C ₁₀	N ₂	1,469(2)	1,464(5)
C ₁₁	O ₃	1,413(2)	1,413(8)
N ₁	01	1,231(2)	1,221(8)
N ₁	0 ₂	1,239(2)	1,223(7)
C ₂	HC ₂		1,087(11)
C ₃	HC ₃		1,067(12)
C ₅	HC ₅		1,099(13)
C ₆	HC ₆		1,072(13)
C ₇	HC ₇		1,099(08)
C ₈	HC ₈		1,078(09)
C ₈	HC'8		1,077(13)
C ₉	HC ₉		1,089(11)
C ₉	HC'9		1,119(11)
C ₁₀	HC ₁₀		1,109(11)
C ₁₀	HC' ₁₀		1,100(10)
C ₁₁	HC ₁₁		1,092(10)
C ₁₁	HC' ₁₁		1,119(11)
O ₃	HO3		0,957(10)

.

Tableau III-4-2 : Angles de valence

	Rayons X	Neutrons		Rayons X	Neutrons
C ₂ - C ₁ - C ₆	121,1(1)	120,7(4)	C ₁₁ - C ₇ - N ₂	112,1(1)	111,6(4)
C ₂ - C ₁ - N ₁	119,0(1)	119,7(3)	C7 - C8 - C9	103,3(1)	104,0(4)
C ₆ - C ₁ - N ₁	119,9(1)	119,6(3)	C ₈ - C ₉ - C ₁₀	103,3(1)	103,0(4)
C ₁ - C ₂ - C ₃	119,7(1)	120,7(4)	C ₉ - C ₁₀ - N ₂	103,7(1)	103,8(4)
C ₂ - C ₃ - C ₄	120,8(1)	112,0(4)	C7 - C11 - O3	111,3(1)	111,4(4)
C ₃ - C ₄ - C ₅	118,2(1)	118,2(4)	C ₁ - N ₁ - O ₃	119,5(1)	119,7(4)
C ₃ - C ₄ - N ₂	121,1(1)	120,7(4)	C ₁ - N ₁ - O ₂	118,2(1)	117,5(4)
C5 - C4 - N2	120,6(1)	121,1(4)	O ₁ - N ₁ - O ₂	122,3(2)	122,9(5)
C ₄ - C ₅ - C ₆	120,6(1)	121,4(4)	C ₄ - N ₂ - C ₇	124,1(1)	124,6(4)
C ₁ - C ₆ - C ₅	119,6(1)	119,0(4)	C ₄ - N ₂ - C ₁₀	121,9(1)	121,7(4)
C ₈ - C ₇ - C ₁₁	111,7(1)	111,8(4)	C7 - N2 - C10	112,3(1)	118,9(3)
C ₈ - C ₇ - N ₂	112,1(1)	111,6(4)			
С ₁ -С ₂ -НС ₂		119,0(7)	C ₈ -C ₉ -HC ₉		110,6(7)
C ₃ -C ₂ -HC ₂		120,3(7)	С ₈ -С ₉ -НС' ₉		114,8(7)
С ₂ -С ₃ -НС ₃		119,6(7)	С ₁₀ -С ₉ -НС ₉		109,8(7 ₎
С ₄ -С ₃ -НС ₃		120,5(7)	C ₁₀ -C ₉ -HC' ₉		111,1(6)
С ₄ -С ₅ -НС ₅		119,6(8)	HC ₉ -C ₉ -HC' ₉		107,4(9)
С ₆ -С ₅ -НС ₅		119,0(8)	С ₉ -С ₁₀ -НС ₁₀		112,7(6)
С ₅ -С ₆ -НС ₆		122,2(7)	C ₉ -C ₁₀ -HC' ₁₀		111,8(6)
С ₁ -С ₆ -НС ₆		118,8(7)	N ₂ -C ₁₀ -HC ₁₀		111,4(6)
N ₂ -C ₇ -HC ₇		110,0(6)	N ₂ -C ₁₀ -HC' ₁₀		110,4(6)
С ₈ -С ₇ -НС ₇		111,9(6)	HC ₁₀ -C ₁₀ -HC' ₁₀		106,8(8)
С ₁₁ -С ₇ -НС ₇		108,5(6)	C ₇ -C ₁₁ -HC ₁₁		109,3(6)
С ₇ -С ₈ -НС ₈		110,0(6)	C ₇ -C ₁₁ -HC ₁₁		111,6(6)
С ₇ -С ₈ -НС' ₈		112,6(7)	O ₃ -C ₁₁ -HC ₁₁		107,9(7)
С ₉ -С ₈ -НС ₈		110,2(6)	HC ₁₁ -C ₁₁ -HC' ₁₁		107,7(8)
С ₉ -С ₈ -НС' ₈		113,6(7)	O ₃ -C ₁₁ -HC' ₁₁		108,8(7)
HC ₈ -C ₉ -HC'8		106,4(9)	С ₁₁ -О ₃ -НО ₃		109,3(8)

ANGLES DIEDRES ENTRE LES DIFFERENTS PLANS DE LA MOLECULE

1) PLAN MOYEN	DE LA MOLECULE :				
L'EQUATION DU F C1 C4 C7 C10 N2 03	PLAN EST - 0,7532 2 0,005 - 0,065 0,422 - 0,217 - 0,062 - <u>0,211</u>	X+ 0,2101 Y- 0,6 C2 C5 C8 C11 O1	234 Z+3,0990 = (0,184 - 0,265 0,921 - 0,683 0,005	C3 C6 C9 N1 O2	0,144 - 0,227 - 0,019 0,048 <u>0.141</u>
2) PLAN DU CYCL	E BENZENIQUE (C1, PLAN EST - 0.6923 2	C2, C3, C4, C5, x+ 0.0809 Y - 0.7	C6) 7171 Z +3.3595 =	0	
C1	0.007	C2	- 0.001	C3	0.008
C4	0.006	C5	- 0.007	C6	- 0.004
C7	0,355	C8	0,997	C9	0,276
C10	0,119	C11	- 0,896	N1	0,012
N2	0,044	01	. 0,133	02	-0,095
03	- 0,584				
3) GROUPE NITRO	O (N1, O1, O2) PLAN EST - 0,7128	X+ 0.1777 Y- 0.6	784 Z +3,2240 =	0	
C1	0,016	Ć C2 Ć	0,145	C3	0,160
C4	0,058	C5	- 0,094	C6	- 0,112
C7	0,561	C8	1,154	C9	0,298
C10	0,071	C11	- 0,593	N1	0,000
N2	0,115	01	0,000	02	0,000
03	- 0,155				
4)PLAN FORME P	PAR LES ATOMES (C) PLAN EST - 0.7728 X	7, C8, C9, C10, N (- 0.2235 Y- 0.59	√2) 40 Z +4.4786 = ()	
C1	1,146	C2	0,727	C3	0,335
C4	0,366	C5	0,778	C6	1,165
C7	- 0,125	C8	0,244	C9	- 0,233
C10	0,107	C11	- 1,548	N1	1,548
N2	0,024	01	2,02	02	1,411
03	- 1,684				
5) PLAN FORME	PAR LES ATOMES (C PLAN EST - 0.9157.)	7, C8, C9, C10, ((+ 0 1643 Y- 0 3)	C11, N2, O3) 667 7 + 4 0071 =	0	
C1	1.362	C2	1.500	C3	1.084
Č4	0.350	Č5	0,383	C6	0.798
C7	0,539	C8	0,575	C9	- 0,511
C10	- 0,160	01	1,785	N1	1,797
02	2,187	O3	- 0,115		

ANGLES DIEDRES ENTRE LES DIFFERENTS PLANS

Plan numéro	Plan numéro	Angle dièdre en degrés
1	2	09,776
1	3	04,341
1	4	25,122
1	5	17,751
2	3	06,105
2	4	19,458
2	5	24,468
3	4	23,921
3	5	21,459
4	5	27,397

Nous remarquons que la longueur de la liaison hydrogène O_2 $HO_3 - O_3$ a diminué en moyenne de 0.02 Å à 120 K. La distance intermoléculaire O_2 HO_3 . est plus courte que O_2 HO_3 , soit une différence de 0.672 Å. L'angle de la liason hydrogène O_2 $HO_3 - O_3$ est de 162,6(10)°. Par contre l'angle O_1 $HO_3 - O_3$ est de 139,0(9)°. Notons cependant que cette liaison hydrogène est d'une force tout à fait moyenne (liaison longue).

III-4.2 - EMPILEMENT MOLECULAIRE CRISTALLIN

La caractéristique la plus intéressante de l'empilement moléculaire dans le cristal est la proximité du plan moyen de la molécule avec le plan cristallographique (1 0 1). L'angle entre ces deux plans est de 5,24°, par contre à température ambiante, il est égal à 11° (J. Zyss et coll.) [13]. L'angle d'inclinaison de l'axe de transfert de charge N_1 - N_2 par rapport à l'axe polaire est de 58,9°. Cet empilement moléculaire, présenté dans les figures III-4-2 et III-4-3, suggère que le plan (1 0 1) est un plan possible de clivage. A l'intérieur de ce plan, la structure cristalline est caractérisée par une infinité de chaînes de liaisons hydrogènes le long de l'axe binaire. Cette liaison hydrogène O_2H O_3 - O_3 connecte le groupement hydroxyl avec le groupement dioxyde d'azote de la molécule adjacente supérieure.

III-5 - DENSITE ELECTRONIQUE EXPERIMENTALE

la densité électronique de déformation expérimentale est calculée à partir des paramètres structuraux obtenus par l'affinement à grands angles $(X-X_{HO})$ ou en utilisant ceux de l'expérience neutronique faite à la même température $(X-X_N)$. Ces paramètres permettent également de calculer les facteurs de structure des atomes selon le modèle sphérique. En cristallographie conventionnelle, la densité électronique de déformation s'exprime par :

$$\Delta \rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{H}} \left[|\mathbf{F}_{obs}(\mathbf{H})| - |\mathbf{F}_{sph}| \right] e^{-2i\pi \mathbf{H} \cdot \mathbf{r}}$$

où K est le paramètre qui permet de mettre les facteurs de structure calculés (F_{sph}) et observés (F_{obs}) à la même échelle.

Nous avons établi dans différentes sections de la molécule (NPP) des cartes de densité de déformation $\Delta \rho_{exp}(\vec{r})$. Pour toutes les cartes, le pas de contour est de 0,05e⁻ / Å³. Les densités électroniques positive et négative sont représentées par des traits pleins et en pointillés, respectivement. La limite de $\sin\theta/\lambda$ (cut-off) est spécifiée pour chaque section.

Figure III-4-2 : Empilement de la molécule NPP dans la maille cristalline.

III-5.1 Densité de déformation expérimentale dans le cycle benzénique (Fig. III-5-1)

Dans le plan moyen du cycle benzénique, l'écart des atomes du cycle par rapport au plan n'excède pas 0,005 Å. Nous observons que les pics de densité des liaisons sont quasiment centrés à l'exception du pic de la liaison C_5 - C_6 . D'une façon générale, les liaisons équivalentes ne présentent pas la même hauteur de pic de densité.

Les figures IIII-5-2 et III-5-3 mettent en évidence une distribution de densité dans le plan des électrons π , montrant un allongement du pic de liaison perpendiculairement au plan benzénique.

III-5.2 Densité de déformation expérimentale dans le plan du groupement dioxyde d'azote (NO₂) (Fig. III-5-4)

Nous remarquons que les pics des doublets libres des atomes d'oxygène sont bien résolus. Nous retrouvons les mêmes caractéristiques que dans la molécule p-Nitropyridine-N-oxide [65] et dans la molécule 3-methyl-4-Nitropyridine oxide [55]. Les pics des liaisons N_1 - O_1 et N_1 - O_2 ont la même hauteur, soit de $0,3 e^-/Å^3$.

III-5.3 Densité de déformation expérimentale dans le cycle L-prolinol (Fig.III-5-5)

Les écarts des atomes C_8 , C_9 , C_{11} et O_3 du cycle L-prolinol, représentés sur la figure III-5-5 par rapport au plan défini par C_7 , N_2 et C_{10} , sont de 0,37 ; 0,23 ; 1,36 et 0,359 Å, respectivement. Les pics de densité dans les liaisons du cycle sont bien résolus et centrés. Leurs hauteurs différentes sont en partie dû à la non planéité du cycle.

<u>Figure III-5-2</u> : Densité de déformation expérimentale dans le plan perpendiculaire au plan (C₁,C₂,C₃) et passant par C₂-C₃ ; cut-off = 0,90 Å⁻¹.

Figure III-5-3Densité de déformation expérimentale dans le plan médiateur de C_2 - C_3 ;cut-off = 0,90 Å-1.

<u>Figure III-5-4</u> : Densité de déformation expérimentale dans le plan (O₁,N₁,O₂) ; cut-off = 0,90 Å⁻¹.

<u>Figure III-5-5</u> : Densité de déformation expérimentale dans le plan (N₂,C₇,C₁₀) ; cut-off = 0,90 Å⁻¹.

CHAPITRE IV

AFFINEMENT KAPPA. AFFINEMENT MULTIPOLAIRE. DENSITES ELECTRONIQUES DYNAMIQUE ET STATIQUE.
• •

.

IV-1 - AFFINEMENT KAPPA

L'affinement Kappa a été réalisé sur tous les facteurs de structure. Nous avons contraint certains atomes ayant le même environnement chimique à présenter les mêmes paramètres de contraction-dilatation κ et κ ' (Tableau IV-1-1).

En ce qui concerne les fonctions radiales, nous les avons choisies de type Slater pour tous les atomes. Nous avons suivi les recommandations de Hansen et Coppens pour les valeurs de ne des atomes de la première ligne de la classification des éléments [20]. Le tableau IV-1-2 regroupe nos différents choix.

Nous avons affiné les coefficients Kappa (κ) et les populations de valence en appliquant la méthode des moindres carrés. Au terme de cet affinement, les facteurs de confiance sont reportés dans le tableau IV-1-3.

	and the second sec
No	3807
Nv	185
S	2.69
R ₁	0.0424
R ₂	0.0311
R ₃	0.0493
R ₄	0.0628
к	7.099 (23)

Tableau IV-1-3

Les charges atomiques et les coefficients d'expansion-contraction (κ) sont présentés dans le tableau IV-1-4.

IV-2 - AFFINEMENT MULTIPOLAIRE

IV-2.1 - REDUCTION DU NOMBRE DE COEFFICIENTS DE POPULATION

Les harmoniques sphériques utilisées dans le modèle de Hansen-Coppens sont fonctions des coordonnées dans des systèmes d'axes locaux orthogonaux, centrés sur les atomes, et sont invariantes sous l'effet d'une rotation. Un choix judicieux de l'orientation de ces systèmes en fonction des symétries moléculaires permet alors de réduire le nombre de coefficients de population $P_{\ell m}$ à affiner.

Atome	type de déformation	symétrie locale
N ₂	1	m
C ₂ ,C ₃ ,C ₅ ,C ₆	2	m
C ₁ ,C ₄	3	m
N ₁	4	m
O ₁ ,O ₂	5	m
C8,C9,C10	6	m
C ₇	· 7	m
C ₁₁	8	m
O ₃	9	m
HC ₂ ,HC ₃ ,HC ₅ ,HC ₆	10	mm
HC ₇ ,HC ₈ ,HC _{8'} ,HC ₉ ,HC _{9'}		
HC ₁₀ ,HC _{10'} ,HC ₁₁ ,HC ₁₁ ·		
HO ₃		

<u>Tableau IV-1-1</u>: Symétries locales et types de déformation imposées aux atomes de la molécule

<u>Tableau IV-1-2</u> : Valeurs des différents paramètres intervenant dans l'expression de la fonction radiale

e	0 monopole 2	1 dipoles	2 quadripoles	3 octopoles	4 hexadécapoles
n _ℓ (C,O,N)	2	2	2	3	4
ξ _ℓ (C) en Å ⁻¹	2.8	2.8	2.8	2.8	2.8
ξ _ℓ (O) en Å ⁻¹	4.0	4.0	4.0	4.0	4.0
ne(H)	2	2	0	0	0.
ξ _ℓ (H) en Å ⁻¹	2.0	2.0	2.0	2.0	2.0
ξε(N) en Å-1	5.06	5.06	5.06	5.06	5.06

Tableau IV-1-4

Coefficients d'expansion-contraction et charges atomiques obtenus par affinement Kappa

	T	
atome	к	Pv
C1	1.077(9)	4.106(63)
C2	1.038(6)	4.096(51)
C ₃	1.038(6)	4.465(55)
C ₄	1.077(9)	3.705(63)
C ₅	1.038(6)	4.526(53)
C ₆	1.038(6)	4.237(49)
C ₇	1.025(11)	4.325(87)
C ₈	1.044(6)	4.285(48)
C ₉	1.044(6)	4.461(50)
C ₁₀	1.044(6)	4.124(52)
C ₁₁	1.056(11)	4.289(81)
N ₁	1.053(10)	4.491(70)
N ₂	1.041(9)	5.185(66)
0 ₁	1.001(6)	6.432(48)
O ₂	1.001(6)	6.428(48)
O ₃	0.990(7)	6.624(65)
HC ₂	1.292(19)	0.804(29)
HC ₃	1.292(19)	0.705(24)
HC ₅	1.292(19)	0.690(27)
HC ₆	1.292(19)	0.722(25)
HC ₇	1.292(19)	0.730(23)
HC ₈	1.292(19)	0.687(24)
HC'8	1.292(19)	0.816(26)
HC ₉	1.292(19)	0.771(25)
HC'9	1.292(19)	0.707(26)
HC ₁₀	1.292(19)	0.766(26)
HC' ₁₀	1.292(19)	0.786(24)
HC ₁₁	1.292(19)	0.714(26)
HC'11	1.292(19)	0.780(26)
HO ₃	1.292(19)	0.539(26)

Les repères locaux utilisés pour le NPP sont présentés dans la figure (IV-2-1). Les contraintes ont été appliquées en fonction des analogies chimiques répertoriées dans le tableau IV-1-1.

Nous avons tronqué le développement de la densité de valence au niveau des hexadécapoles (ℓ =4) pour les atomes de carbone, d'azote et d'oxygène et au niveau des dipoles pour les atomes d'hydrogène. Le tableau (IV-1-1) indique les symétries locales introduites sur chacun des atomes et définit le type de déformation auquel l'atome appartient. Les populations à affiner figurent dans le tableau (IV-2-2). A noter que nous avons choisi les mêmes fonctions radiales que pour l'affinement Kappa.

IV-2.2 - STRATEGIE DE L'AFFINEMENT

Etant donné le nombre important de paramètres à affiner et les analogies entre les fonctions qui décrivent les différents processus (les fonctions qui expriment les facteurs de Debye Waller et les quadripoles sont du même type), nous avons, lors de chaque cycle d'affinement, divisé les variations des paramètres par 4. Les variations des paramètres des fonctions radiales κ et κ' ont été divisées par 8, après avoir noté d'importantes corrélations > 0.8 entre certains paramètres.

Après convergence de tous les paramètres multipolaires, les facteurs de confiance sont présentés dans le tableau IV-2-3.

and the second se	
No	3807
Nv	433
S	1.02
R ₁	0.026
R ₂	0.012
R ₃	0.020
R ₄	0.023
К	7.239 (1)

Tableau IV-2-3

Nous notons que les indices statistiques après affinement multipolaire ont diminué de 54 % par comparaison avec l'affinement à grands angles. Ces résultats nous permettent d'affirmer que notre modèle est validé.

Un autre critère de validité du modèle est l'examen des cartes résiduelles. Si la déformation est correctement représentée par le modèle, aucune densité ne doit apparaître sur ces cartes.

Figure IV-2-1 Systèmes d'axes locaux relatifs aux atomes de la molécule de NPP

٠

<u>Tableau IV-2-2</u> : Paramètres $P\ell_m$ affinables

1 : paramètre affiné

0 : paramètre non affiné

٠

.

Atomes	Mono	poles	C)ipole	s		Qu	adripo	oles				Octo	pole	S						Hex	adéc	apole	s		
	M1	M2	11 [.]	+ 11"	10	20	21+	21 ⁻	22+	22 ⁻	30	31+	31-	32+	32-	33+	33-	40	41+	41-	42+	42-	43+	43-	44+	44-
N2	1	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0
C ₂ ,C ₃ ,C ₅ ,C ₆	1	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0
C1,C4	1	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0
N1	1	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0
01,02	1	0	0	1	1	1	0	1	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0
C8,C9,C10	1	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0
C7	1	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0
C ₁₁	1	0	Ô	1	1	1	0	1	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0
O3	1	0	0	1	1	1	0	1	1	0	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0
Hydrogènes	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

٠

Ainsi, nous avons reproduit deux cartes résiduelles, la première dans le plan du cycle benzénique (Fig. IV-2-2), la seconde dans le plan formé par le groupement du dioxyde d'azote (Fig. IV-2-3).

Ces deux cartes présentent des densités de l'ordre de grandeur de l'erreur expérimentale sauf peut-être pour les pics de 0.1-0.15 e⁻/Å⁻³ au voisinage de O₁ et au milieu de la liaison C₄-N₂. Evidemment, ces pics ne signifient pas nécessairement que les modèles sont incorrects mais peuvent être dus à des erreurs systématiques sur les données.

Les tableaux IV-2-4 et IV-2-5 rassemblent les coefficients d'expansioncontraction et les charges atomiques, d'une part, et les valeurs des paramètres multipolaires d'autre part. Les paramètres de position et vibration sont présentés dans le tableau IV-2-6.

La valeur de κ ' de 0.620 pour l'atome N₁ est en rapport avec la forte délocalisation des électrons de cet atome.

IV-2.3 - DISCUSSION

Les charges atomiques nettes obtenues par les affinements Kappa et multipolaire sont présentées dans le tableau IV-2-7. Nous remarquons qu'elles sont peu différentes pour les atomes d'hydrogène. Pour tous les autres atomes, les écarts entre les modules sont plus importants. Les atomes de carbone C₁ et N₂ chargés positivement avec l'affinement Kappa deviennent chargés négativement par l'affinement multipolaire. Une explication possible à cette différence est que nous avons imposé la même contrainte κ aux deux atomes de carbone C₁ et C₄ (κ =1.043) car nous nous étions limités à dix types de fonctions de déformation. En réalité, ces atomes n'ont pas le même environnement chimique. De ce fait, les charges atomiques peuvent être biaisées. A noter que la charge atomique de l'atome d'oxygène O₁ du groupement dioxyde d'azote est légèrement inférieure à celle de l'oxygène O₂ quel que soit l'affinement.

Les charges atomiques nettes et les coefficients de contraction-dilatation (κ) (affinement Kappa) de deux molécules cristallisées dans une structure non centrosymétrique : le NPP et le 3-Méthyl-4-Nitropyridine-N-oxide (POM) [55], et d'une molécule cristallisée dans une structure centrosymétrique : le p-Nitropyridine-N-oxide [66] sont présentés dans le tableau IV-2-8. La comparaison entre les résultats nous permet de conclure que les signes des charges atomiques nettes identiques et que les valeurs des coefficients κ sont quasi-similaires.

Figure IV-2-2 : Carte résiduelle dans le plan du cycle benzénique Pas de contours : 0,05 e⁻/Å³

<u>Figure IV-2-3</u> : Carte résiduelle dans le plan dioxyde d'azote (NO₂) Pas de contours : 0,05 $e^{-}/Å^{3}$

Tableau IV-2-4

otomo o	10	ا مير	D
atome	ĸ	n	r _v
<u> </u>	0.999(8)	1.043(47)	3.810(122)
C ₂	0.977(4)	1.054(21)	4.251(84)
C_3	0.977(4)	1.054(21)	4.307(80)
C ₄	0.99(8)	1.043(47)	3.933(105)
C ₅	0.977(4)	1.054(21)	4.351(81)
C ₆	0.977(4)	1.054(21)	4.392(86)
C ₇	0.971(9)	0.975(33)	4.390(113)
C ₈	0.965(5)	1.022(17)	4.443(79)
C ₉	0.965(5)	1.022(17)	4.451(66)
C ₁₀	0.965(5)	1.022(17)	4.506(63)
C ₁₁	0.972(9)	1.005(42)	4.323(98)
N1	1.004(10)	0.620(34)	4.816(133)
N ₂	0.996(6)	0.951(85)	4.921(73)
O ₁	0.984(4)	0.921(55)	6.273(60)
O ₂	0.984(4)	0.921(55)	6.200(62)
O ₃	0.979(4)	1.164(105)	6.343(45)
HC ₂	1.084(12)	2.113(85)	0.778(31)
HC ₃	1.084(12)	2.113(85)	0.770(30)
HC ₅	1.084(12)	2.113(85)	0.683(32)
HC ₆	1.084(12)	2.113(85)	0.747(31)
HC ₇	1.084(12)	2.113(85)	0.694(32)
HC ₈	1.084(12)	2.113(85)	0.724(26)
HC'8	1.084(12)	2.113(85)	0.772(29)
HC ₉	1.084(12)	2.113(85)	0.772(27)
HC'9	1.084(12)	2.113(85)	0.731(26)
HC ₁₀	1.084(12)	2.113(85)	0.730(26)
HC' ₁₀	1.084(12)	2.113(85)	0.719(26)
HC ₁₁	1.084(12)	2.113(85)	0.734(30)
HC' ₁₁	1.084(12)	2.113(85)	0.755(29)
HO ₃	1.084(12)	2.113(85)	0.684(20)

.

Coefficients d'expansion-contraction et charges atomiques obtenus par affinement multipolaire

<u>Tableau IV-2-5</u> : Paramètres multipolaires

Atomes de carbone, azote et oxygène

	11-	10	20	21-	22+	30	31-	32+	33-	40	42+	42-	44+	44-
C ₁	-0.016	0.071	-0.093	-0.048	-0.150	0.186	-0.010	-0.117	-0.010	0.005	0.052	-0.012	0.030	0.003
C ₂	0.022	0.023	0.125	-0.004	-0.169	0.250	0.010	0.219	-0.020	0.250	-0.075	0.006	0.024	0.038
C ₃	-0.034	-0.013	0.058	0.024	-0.149	0.200	-0.021	0.172	-0.005	0.064	0.029	-0.051	0.007	0.068
C4	0.054	0.002	0.053	-0.020	-0.169	0.288	0.007	0.181	-0.011	0.079	0.016	0.046	0.007	0.026
C5	-0.117	-0.034	0.041	0.017	-0.202	0.230	-0.017	0.215	-0.014	0.029	0.017	-0.030	0.026	0.016
C ₆	0.005	-0.012	-0.092	-0.003	-0 .194	0.262	0.036	0.230	-0.007	0.005	0.013	-0.010	-0.054	0.002
C7	-0.057	-0.042	0.016	0.053	0.070	0.295	-0.044	-0.040	0.327	0.047	-0.005	0.059	-0.196	0.084
C8	-0.091	-0.076	0.005	0.074	0.059	0.285	-0.084	0.007	0.271	0.104	-0.039	-0.032	-0.084	0.030
C9	-0.089	-0.135	-0.049	0.063	0.050	0.280	-0.003	-0.022	0.267	0.058	-0.002	-0.004	-0.028	0.004
C ₁₀	-0.086	-0.053	0.039	0.086	0.059	0.323	-0.076	0.010	0.283	0.128	0.027	0.029	-0.134	0.010
C ₁₁	-0.176	-0.092	-0.031	0.096	-0.011	0.228	0.012	0.018	0.286	0.067	-0.031	-0.063	-0.055	0.058
N1	-0.040	0.082	0.154	-0.027	-0.148	0.248	0.127	0.177	-0.056	0.077	-0.082	-0.017	0.035	0.011
N ₂	-0.001	0.028	-0.029	0.033	0.050	0.118	0.003	0.082	0.014	0.012	-0.014	-0.026	-0.027	0.011
01	-0.048	-0.004	-0.008	-0.060	-0.010	0.079	-0.036	0.045	0.010	0.047	-0.047	-0.006	-0.015	-0.004
02	0.068	-0.004	-0.107	0.098	-0.084	0.067	0.049	0.046	-0.004	0.010	0.024	0.015	-0.015	0.035
03	-0.029	-0.020	-0.040	0.026	-0.077	0.088	0.004	0.004	-0.004	0.018	0.012	0.006	-0.009	-0.023

Atomes d'hydrogène

	HC ₂	HC ₃	HC ₅	HC ₆	HC ₇	HC ₈	HC'8	HC ₉	HC'9	HC ₁₀	HC ₁₀	HC ₁₁	HC' ₁₁	HO ₃
P ₁₀	0.073	0.063	0.056	0.057	0.078	0.045	0.044	0.027	0.074	0.065	0.071	0.051	0.080	0.115

Atoma		T 37	
Atome	X	<u> </u>	Z
C ₁	0.51957(11)	0.04552	0.43945(7)
C ₂	0.53560(11)	0.13924(5)	0.45625(8)
C ₃	0.66584(11)	0.18779(4)	0.34441(7)
C ₄	0.78002(11)	0.14367(08)	0.21002(7)
C ₅	0.76355(11)	0.04798(5)	0.19791(8)
C ₆	0.63450(11)	-0.00014(5)	0.31107(8)
C ₇	0.87433(10)	0.28940(5)	0.06527(7)
C ₈	0.90361(12)	0.30105(5)	-0.14052(8)
C9	1.09699(12)	0.22538(5)	-0.15781(8)
C ₁₀	1.00904(11)	0.14689(5)	-0.05179(8)
C ₁₁	1.09205(11)	0.34095(5)	0.21611(8)
N ₁	0.38372(10)	-0.00397(4)	0.55712(7)
N ₂	0.89972(09)	0.19113(5)	0.09420(6)
O ₁	0.34855(09)	0.08584(4)	0.53143(6)
O ₂	0.30400(09)	0.03796(5)	0.68091(7)
O ₃	1.07059(08)	0.43487(4)	0.18160(6)

<u>Tableau IV-2-6</u> : Paramètres structuraux

Paramètres de position

Paramètres thermiques (10⁵xÅ²)

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
C ₁	1627(22)	916(18)	1449(19)	-87(16)	671(17)	24(16)
C ₂	1684(24)	983(19)	1577(22)	-42(17)	834(18)	-77(16)
C ₃	1632(23)	796(18)	1543(20)	9(16)	735(18)	-62(15)
C ₄	1294(21)	810(18)	1373(20)	7(15)	523(16)	14(15)
C ₅	1955(24)	798(18)	1718(22)	67(17)	952(19)	-57(16)
C ₆	2009(24)	820(18)	1791(22)	-28(17)	947(19)	-13(16)
C ₇	1246(20)	909(17)	1469(20)	-13(15)	471(16)	52(15)
C ₈	2023(24)	1299(19)	1438(20)	-131(18)	489(18)	219(16)
C9	1917(24)	1581(21)	1641(22)	-246(18)	892(19)	-72(17)
C ₁₀	1741(23)	1144(19)	1586(21)	24(17)	791(18)	-82(16)
C ₁₁	1477(22)	1024(17)	1688(21)	1(16)	453(17)	-105(16)
N ₁	1819(20)	1141(18)	1741(19)	-245(15)	897(16)	87(15)
N ₂	1567(21)	811(16)	1524(18)	-7(14)	729(16)	14(14)
01	2443(20)	1154(15)	2083(19)	-485(14)	912(16)	52(52)
O ₂	3437(24)	1648(18)	2909(22)	-334(18)	2307(20)	-187(17)
03	2004(19)	906(14)	2333(19)	-198(13)	1137(16)	-205(14)

Tableau IV-2-7

Charges nettes obtenues par les affinements Kappa et multipolaire

Atomes	Карра	multipolaire	Atomes	Карра	multipolaire
Cı	-0 106	+0 190	HCo	0 196	+0.220
	0.006	0.051		0,100	+0.220
02	-0.096	-0.251	пСз	0,295	+0.230
C ₃	-0.465	-0.307	HC ₅	0,31	+0.317
C4	+0.295	+0.067	HC ₆	0,278	+0.253
C5	-0.526	-0.351	HC ₇	0,27	+0.306
C ₆	-0.237	-0.392	HC ₈	0,313	+0.276
C7	-0.325	-0.390	HC ₈	0,184	+0.228
C ₈	-0.285	-0.443	HC ₉	0,229	+0.228
C9	-0.461	-0.451	HC'9	0,293	+0.269
C ₁₀	-0.124	-0.506	HC ₁₀	0,234	+0.270
C ₁₁	-0.289	-0.323	HC' ₁₀	0,214	+0.281
N ₁	+0.509	+0.184	HC ₁₁	0,286	+0.266
N ₂	-0.185	+0.079	HC'11	0,22	+0.245
O ₁	-0.432	-0.273	HO ₃	0,461	+0.316
O ₂	-0.428	-0.200			
O3	-0.624	-0.343			

ş

Tableau IV-2-8

Charges atomiques nettes des fragments quasi-identiques des molécules NPP, POM et p-Nitropyridine-N-Oxide (Affinement Kappa)

		NPP	РОМ		p-Nitropyridine-N-Oxide	
	κ	charge nette	κ	charge nette	κ	charge nette
C ₁	1,08 (1)	-0,11 (6)	1,08 (1)	-0,11 (4)	1,05 (1)	-0,16 (5)
C2	1,04 (1)	-0,10 (5)	1,09 (1)	-0,00 (7)	1,05 (1)	-0,09 (6)
C3	1,04 (1)	-0,47 (6)	1,08 (1)	-0,13 (5)	1,05 (1)	-0,18 (5)
C ₄	1,08 (1)	0,30 (6)	(N) 1,07 (1)	0,22 (5)	(N) 1,04 (1)	0,09 (6)
C5	1,04 (1)	-0,53 (5)	1,08 (1)	0,05 (4)	1,05 (1)	-0,06 (5)
С ₆	1,04 (1)	-0,24 (5)	1,08 (1)	-0,04 (4)	1,05 (1)	-0,16 (5)
N1	1,05 (1)	0,51 (1)	1,07 (1)	0,48 (5)	1,06 (1)	0,42 (7)
01	1,00 (1)	-0,43 (5)	1,01 (1)	-0,40 (4)	1,06 (1)	-0,14 (6)
O ₂	1,00 (1)	-0,43 (5)	1,01 (1)	-0,40 (4)	1,06 (1)	-0,14 (5)
HC ₂	1,29 (2)	0,20 (3)			1,40	0,05 (5)
HC3	1,29 (2)	0,30 (2)	1,21 (3)	0,19 (3)	1,40	0,25 (4)
HC5	1,29 (2)	0,31 (3)	1,21 (3)	0,13 (3)	1,40	0,09 (4)
HC ₆	1,29 (2)	0,28 (3)	1,21 (3)	0,14 (3)	1,40	0,16 (4)

.

IV-3 - DENSITE DE DEFORMATION DYNAMIQUE

IV-3.1 - EFFETS DES PHASES DERIVEES PAR L'AFFINEMENT MULTIPOLAIRE

Comme nous l'avons signalé, la structure que nous avons étudiée est non centrosymétrique, et donc se pose le problème de l'exactitude des phases des facteurs de structure ; celles-ci jouent un rôle très important dans le calcul de la densité de déformation. Les cartes de densité de déformation déterminées par le modèle multipolaire sont calculées selon :

 $\Delta \rho(\vec{r}) = \frac{1}{V} \sum_{H} \left[|F_{M}(H)| \exp \left[i \Phi_{M}(H) \right] - |F_{S}(H)| \exp \left[i \Phi_{S}(H) \right] \right] \exp \left[-2\pi i \overrightarrow{H} \cdot \overrightarrow{r} \right]$ où M désigne le modèle multipolaire et S désigne le modèle sphérique.

Si nous posons $|F_M| = |F_S| + \Delta |F|$ et $\Phi_M = \Phi_S + \Delta \Phi$ $\Delta \rho (\vec{r})$ devient alors :

$$\Delta \rho(\vec{r}) = \frac{1}{V} \sum \left[\left(||F_{S}| + \Delta |F| \right) \exp \left(i \Phi_{M} \right) - |F_{S}| \exp \left(i \Phi_{S} \right) \right] \exp \left[-2\pi i \vec{H} \cdot \vec{r} \right]$$

 $\Delta \rho(\vec{r}) = \frac{1}{V} \sum \Delta |F| \exp (i\Phi_M) \exp(-2\pi i \vec{H} \cdot \vec{r}) + \frac{1}{V} \sum |F_S| \left[\exp \Phi_M - \exp \Phi_S \right] \exp(-2\pi i \vec{H} \cdot \vec{r})$

$$\Delta \rho(\vec{r}) = \Delta \rho_{\text{sph}}(\vec{r}) + \Delta \rho(\Delta \Phi)$$

Le premier terme $\Delta \rho_{sph}(\vec{r})$ représente la différence des modules des facteurs de structure affectés de la même phase Φ_M (ou Φ_S). Il correspond à la densité de déformation obtenue lorsque nous utilisons des phases calculées à partir d'un affinement de type sphérique. Le deuxième terme $\Delta \rho$ ($\Delta \Phi$) résulte de la différence de phase entre le modèle multipolaire et le modèle sphérique ($\Phi_M \neq \Phi_S$), ce terme intervient seulement dans le cas des structures non centrosymétriques

 $\Delta \rho$ ($\Delta \Phi$) peut s'écrire sous la forme [67] :

$$\Delta \rho(\Delta \Phi) = \frac{2}{V} \sum_{H} |F_{S}| \sin\left(\frac{\Delta \Phi}{2}\right) \exp\left[i\frac{(\Phi_{S}+\Phi_{M}+\frac{\pi}{2})}{2}\right] \exp\left(-2\pi i \overrightarrow{H}, \overrightarrow{r}\right)$$

Les composantes de Fourier des amplitudes de $\Delta\rho$ ($\Delta\Phi$) sont 2 | F_S| sin ($\frac{\Delta\Phi}{2}$) lesquelles, comme $\Delta\Phi$ est toujours faible, se réduisent à | F_S| $\Delta\Phi$ et les phases sont la moyenne de Φ_S et Φ_M plus une phase d'avance de $\frac{\pi}{2}$.

Afin de voir quel est le type de réflexions qui intervient dans la densité électronique $\Delta \rho$ ($\Delta \Phi$) due à l'erreur des phases des facteurs de structure, nous avons calculé la distribution $2F_S \sin \left(\frac{\Delta \Phi}{2}\right)$ en fonction de $\frac{\sin \theta}{\lambda}$, d'une part, et du module des facteurs de structure $|F_S|$ d'autre part. Ces distributions sont représentées sur les figures IV-3-1 et IV-3-2, respectivement.

La distribution $\Delta \rho (\Delta \Phi)$ décroît globalement en fonction de $\frac{\sin \theta}{\lambda}$. Comme la densité électronique de valence affecte principalement les facteurs de structure à bas $\frac{\sin \theta}{\lambda}$; l'évolution de $\Delta \rho (\Delta \Phi)$ apparaît tout à fait normale. Par ailleurs, $\Delta \rho (\Delta \Phi)$ ne semble pas suivre une loi simple en fonction du module des facteurs de structure (F). Les réflexions faibles semblent contribuer à $\Delta \rho (\Delta \Phi)$ avec un poids analogue à celui des réflexions fortes. Il en résulte que dans le cas d'une structure non centrosymétrique, la mesure et le traitement des intensités faibles sont très

Afin de montrer clairement l'influence de la phase des facteurs de structure sur la densité de déformation, nous avons établi dans différentes sections de la molécule, des cartes de densité de déformation $\Delta p_{corr}(\vec{r})$ et $\Delta p_{non corr}(\vec{r})$.

importants.

IV-3.2 - CARTES DE DENSITE DE DEFORMATION DYNAMIQUE

IV-3.2.1 - Densité de déformation dans le cycle benzénique (Fig. IV-3-3, Fig. IV-3-4)

Nous observons que dans le cas de $\Delta \rho_{non \ corr}(\vec{r})$, les pics de densité de déformation des liaisons ne sont pas centrés. L'introduction des phases multipolaires dans le calcul de la densité de déformation $\Delta \rho$ (\vec{r}), augmente la hauteur des pics de densité comme le montre le tableau IV-3-1 et centre leurs maxima sur les liaisons. La densité maximale de $\Delta \rho$ ($\Delta \Phi$) est de 0.15 e⁻/Å³ et la variation de la moyenne de la densité dans les liaisons est de 0.125 e⁻/Å³.

2 F_s Sin($\Delta \varphi/2$)

Figure IV-3-2 : 2F sin $(\frac{\Delta \Phi}{2})$ en fonction de F

<u>Figure IV-3-3</u> : Densité de déformation dynamique (phase non corrigée) dans le plan du cycle benzénique. Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

Figure IV-3-4 : Densité de déformation dynamique (phase corrigée) dans le plan du cycle benzénique.

Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

Liaison	^{Δρ} non corr (e⁻/Å ³)	Δρ _{corr} (e⁻/Å ³)	Δρ _{corr} -Δρ _{non} corr (e⁻/Å ³)
C ₁ -C ₂	0.45	0.65	0.2
C ₂ -C ₃	0.40	0.55	0.15
C ₃ -C ₄	0.40	0.45	0.05
C ₄ -C ₅	0.45	0.6	0.15
C ₅ -C ₆	0.40	0.5	0.1
C ₁ -C ₆	0.40	0.5	0.1

<u>Tableau IV-3-1</u>: Tableau des pics de déformation dans les liaisons du cycle benzénique

Une coupe de la densité perpendiculairement au plan benzénique (Fig. IV-3-5, IV-3-6, IV-3-7 et IV-3-8), nous indique une augmentation moyenne de 0,18 $e^{-}/Å^{3}$ et une extension latérale des pics de densité correspondant au système conjugué des électrons π .

La même influence des phases a été observée sur des cartes de densité expérimentales établies dans le même plan (Fig. IV-3-9 et Fig. IV-3-10). Ces cartes sont calculées à partir de l'expression :

$$\Delta \rho_{exp}(\vec{r}) = \frac{1}{V} \sum \left[|F_{ob}| e^{i\Phi M} - K|F_{sph}| e^{i\Phi_{sph}} \right] e^{2\pi i \vec{H} \cdot \vec{r}}$$

Elles sont comparables aux cartes dynamiques, bien que les courbes des pics dans les liaisons soient plus déformées. Ceci peut être expliqué par le fait qu'au problème des phases s'ajoute les erreurs expérimentales qui affectent chaque réflexion mesurée.

IV-3.2.2 - Densité de déformation dans le groupement dioxyde d'azote (NO₂) (Fig. IV-3-11, Fig. IV-3-12)

La correction de la phase a permis de centrer les pics sur les liaisons, de séparer les doublets libres de l'atome d'oxygène O_2 de la liaison N_1 - O_2 et de renforcer les liaisons en électrons comme le montre le tableau IV-3-2 ci-après :

. .

<u>Figure IV-3-5</u> : Densité de déformation dynamique (phase non corrigée) dans le plan perpendiculaire au plan (C₁,C₂,C₃) et passant par C₂-C₃. Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

<u>Figure IV-3-6</u> : Densité de déformation dynamique (phase corrigée) dans le plan perpendiculaire au plan (C_1, C_2, C_3) et passant par C_2-C_3 . Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

- 121 -

Figure IV-3-7: Densité de déformation dynamique (phase non corrigée)
dans le plan médiateur de C_2 - C_3 .
Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

<u>Figure IV-3-8</u> : Densité de déformation dynamique (phase corrigée) dans le plan médiateur de C₂-C₃. Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

- 123 -

٥

Figure IV-3-9 : Densité de déformation expérimentale (phase corrigée) dans le plan du cycle benzénique. Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

<u>Figure IV-3-10</u> : Densité de déformation expérimentale (phase corrigée) dans le plan médiateur de C₂-C₃. Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

0 1 24

<u>Figure IV-3-11</u> : Densité de déformation dynamique (phase non corrigée) dans le plan du dioxyde d'azote. Pas de contours = 0,05 e⁻/Å³ ; cut-off = 1,2 Å⁻¹

<u>Figure IV-3-12</u> : Densité de déformation dynamique (phase corrigée) dans le plan du dioxyde d'azote.

Pas de contours = $0,05 \text{ e}^{-}/\text{Å}^3$; cut-off = $1,2 \text{ Å}^{-1}$.

Liaison	∆ρ _{non} corr e⁻/Å ³	Δρ _{corr} e ⁻ /Å ³	Δρ _{corr} - Δρ _{non corr} e ⁻ /Å ³
C ₁ -C ₂	0.45	0.60	0.15
C ₂ -C ₆	0.45	0.50	0.05
C ₁ -N ₁	0.45	0.70	0.25
N ₁ -O ₁	0.40	0.40	0.0
N ₁ -O ₂	0.45	0.60	0.15

Tableau	IV-3-2
---------	--------

Nous observons une meilleure résolution des pics qui représentent les doublets libres des atomes d'oxygène. La densité des doublets libres de l'atome d'oxygène O_2 qui était de 0,40 e⁻/Å³ ($\Delta \rho_{non \ corr}$) prend la valeur de 0.6 e⁻/Å³ ($\Delta \rho$) après correction de la phase. Une différence subsiste dans les profils des pics des doublets de l'atome d'oxygène O_1 comme le montrent les figures IV-11 et IV-12.

De plus, nous remarquons que les pics de densités électroniques dans les liaisons C_1 - N_1 , N_1 - O_1 et N_1 - O_2 , sont décentrées vers l'azote N_1 .

Les résultats obtenus avec le premier cristal (fig. IV-3-13) sont de moins bonne qualité (la localisation des doublets libres est plus floue, la hauteur des pics est plus faible) et montre l'importance de la qualité des mesures dans ce type de travail.

> IV-3.2.3 - Densité de déformation dans le cycle L-prolinol (Fig. IV-3-14, Fig. IV-3-15)

Nous observons dans le cas de $\Delta \rho_{non \ corr}$ (Fig. IV-3-14), l'existence de deux résidus positifs, l'un au centre de l'atome et l'autre à l'intérieur du cycle. L'introduction des phases multipolaires dans le calcul fait disparaître ces pics parasites (Fig. IV-3-15). La correction de la phase n'a apporté qu'une légère augmentation de la densité dans les liaisons, sauf pour la liaison N₂-C₇ où $\Delta \rho (\Delta \Phi) = 0,15 \ e^{-}/A^3$.

IV-3.2.4 - Densité électronique dans le plan de la liaison hydrogène

Les figures IV-3-16 et IV-3-17 représentent la densité dans le plan de la liaison hydrogène, formé par les atomes (O_1, HO_3, O_2) . Les atomes N_1 , O_3 et C_{11}

<u>Figure IV-3-13</u> : Densité de déformation dynamique dans le plan du dioxyde d'azote (premier cristal). Pas de contours = 0,05 e⁻/Å³ ; cut-off = 1,2 Å⁻¹.

- 127 -

Figure IV-3-14: Densité de déformation dynamique (phase non corrigée)
dans le plan défini par (N_2, C_7, C_{10}) .
Pas de contours = 0,05 e⁻/Å³; cut-off = 0,90 Å⁻¹

Figure IV-3-15: Densité de déformation dynamique (phase corrigée)
dans le plan défini par (N_2,C_7,C_{10}) .Pas de contours = 0,05 e⁻/Å³ ; cut-off = 0,90 Å⁻¹

Figure IV-3-16: Densité de déformation dynamique (phase non corrigée)
dans le plan défini par (O_1, HO_3, O_2) .
Pas de contours = 0,05 e⁻/Å³ ; cut-off = 1,2 Å⁻¹

Figure IV-3-17: Densité de déformation dynamique (phase corrigée)
dans le plan défini par (O_1, HO_3, O_2) .Pas de contours = 0,05 e⁻/Å³ ; cut-off = 1,2 Å⁻¹

sont respectivement à -0.129 Å, 0.171 Å et -0.35 Å du plan défini par ces trois atomes.

Une déficience de charge existe dans la densité électronique de déformation entre le donneur et l'accepteur de cette liaison hydrogène. Cette déficience devient très important en corrigeant la phase (-0.35 e⁻/Å³) (Fig. IV-3-17). Des phénomènes similaires ont été observés dans plusieurs études des liaisons hydrogènes O-H....O et N-H....O [67-71].

Des calculs théoriques de la distribution de la densité électronique [72,73] ont montré que la déficience de charge est principalement due à la contribution électrostatique qui est le terme le plus important dans l'énergie de liaison.

La localisation des doublets libres de l'atome d'oxygène O₂ est peut être due à la présence de cette liaison hydrogène.

IV-4 - CARTES DE DENSITE DE DEFORMATION STATIQUE

IV-4.1 - DENSITE DE DEFORMATION STATIQUE DANS LE PLAN DU CYCLE BENZENIQUE (Fig. IV-4-1)

Les pics de densité de déformation des liaisons sont plus élevés que ceux obtenus à partir des cartes dynamiques, ceci était prévisible puisque la densité électronique statique est déconvoluée de l'agitation thermique comme le montre le tableau ci-après (tableau IV-4-1).

Liaison	∆p _{statique} e⁻/Å3	∆ρ _{dynamique} e⁻/Å ³	Δρ _{stat} - Δρ _{dyn} e ⁻ /Å ³
C ₁ -C ₂	0.8	0.65	0.15
C ₂ -C ₃	0.7	0.55	0.15
C ₃ -C ₄	0.5	0.45	0.05
C4-C5	0.7	0.60	0.10
C5-C6	0.6	0.50	0.10
C ₆ -C ₁	0.6	0.50	0.10

Tableau IV-4-1

Notons que pour C₃-C₄, cette augmentation n'est que de 0,05 e⁻/Å³. Nous observons qu'il subsiste de la densité électronique positive au niveau du coeur de certains atomes du cycle (C₁,C₂,C₅,C₆).

<u>Figure IV-4-1</u> : Densité de déformation statique dans le plan du cycle aromatique. Pas de contours = 0,1 e⁻/Å³.

IV-4.2 - DENSITE DE DEFORMATION STATIQUE DANS LE PLAN DU GROUPEMENT DIOXYDE D'AZOTE NO₂ (Fig. 4.2)

Les cartes statiques et dynamiques ont les mêmes caractéristiques, elles diffèrent cependant par la hauteur de leurs pics dont la comparaison pour les liaisons C_1 - N_1 , N_1 - O_1 , N_1 - O_2 est rapportée dans le tableau ci-dessous (tableau IV-4-2).

Liaison	^{∆ρ} statique e⁻/Å3	∆ρdynamique e⁻/Å ³	Δρ _{stat} - Δρ _{dyn} e ⁻ /Å ³
C ₁ -N ₁	1.0	0.70	0.30
N ₁ -O ₁	1.0	· 0.40	0.60
N1-O2	1.0	0.60	0.40

Tableau IV-4-2

L'examen des cartes statique de la molécule de NPP (Fig. IV-4-2) et théorique de la molécule NPO (Fig. IV-4-3) [74] montre qu'elles présentent les mêmes caractéristiques dans le cycle aromatique et dans le groupement dioxyde d'azote.

IV-4.3 - CARTES DE DENSITE DANS LE PLAN FORME PAR LES ATOMES (C₄,N₂,C₃) (Fig. IV-4-4, Fig. IV-4-5, Fig. IV-4-6)

Afin de comparer les cartes de densité électronique expérimentale, dynamique et statique, nous avons établi des cartes dans le plan formé par les atomes C₄, N₂ et C₃. Les atomes les plus éloignés de ce plan sont les atomes C₁₁, C₇ et C₈ avec les valeurs 0.98, -0.89 et 0.7 Å, pour écarts respectifs.

Ces trois cartes sont globalement semblables, elles montrent une accumulation importante de la densité électronique dans les liaisons, à l'exception des liaisons du groupe de dioxyde d'azote (NO₂) de la carte expérimentale.

Cette anomalie est en rapport avec la présence des doublets libres qui diffractent à très hautes valeurs de $\frac{\sin\theta}{\lambda}$. Nous pouvons noter que les modèles multipolaires ont par construction une résolution quasi-infinie. Eu égard cette remarque, la densité électronique près du noyau de l'atome qui n'est pas mesurable par diffraction R-X, peut être modelée par les fonctions de déformation.

<u>Figure IV-4-2</u> : Densité de déformation statique dans le plan du dioxyde d'azote. Pas de contours = 0,1 e⁻/Å³

	нз	<u>.</u> H1]
	.C4	.C2	02
.01	N2	. <mark>C1</mark>	N1
	.C5	.C3	.02
	H4	.H2	

<u>Figure IV-4-3</u> : Densité de déformation statique de la molécule (NPO). Pas de contours = 0,05 e⁻/Å³

<u>Figure IV-4-4</u> : Densité de déformation expérimentale dans le plan (C₄,N₂,C₃). Pas de contours = 0,05 e⁻/Å³

Y

<u>Figure IV-4-5</u> : Densité de déformation dynamique dans le plan (C₄,N₂,C₃). Pas de contours = 0,05 e⁻/Å³

••••

Y

1

2A

0

<u>Figure IV-4-6</u> : Densité de déformation statique dans le plan (C_4, N_2, C_3) . Pas de contours = 0,1 e⁻/Å³

IV-5 - MOMENT DIPOLAIRE MOLECULAIRE [44] [75,76]

Le moment dipolaire d'une molécule ou d'un fragment de molécule $\vec{\mu}$ exprimé en e⁻ Å peut être calculé à partir de l'expression

$$\vec{\mu} = \sum_{i} \vec{r}_{i} q_{i} + \sum_{i} \vec{\mu}_{i}$$

où : \vec{r}_i : vecteur position du noyau de l'atome i exprimé en Angstrom (Å)

qi : charge nette de l'atome i exprimée en électrons

 $\vec{\mu_i}$: moment dipolaire de l'atome i ; ces moments sont exprimés en fonction des coefficients des composantes des dipoles du développement multipolaire.

La charge atomique nette qi est déterminée par

$$q_i = Z_i - (P_{ic} + P_{iv} + P_{ioo})$$

Zi est la charge du noyau de l'atome i

 P_{ic} et P_{iv} sont les coefficients de population des fonctions p_i coeur et p_i valence, en nombre d'électrons

Pioo est égal à zéro d'après le choix des axes locaux.

Les composantes du moment dipolaire dans le système d'axes cristallins sont donc :

$$\mu_{x} = \sum_{i} x_{i} q_{i} + \sum_{i} \mu_{ix}$$

$$\mu_{y} = \sum_{i} y_{i} q_{i} + \sum_{i} \mu_{iy}$$

$$\mu_{z} = \sum_{i} z_{i} q_{i} + \sum_{i} \mu_{iz}$$

Le module du vecteur moment dipolaire est :

$$|\overrightarrow{\mu}_{c}| = 4.803 (\overrightarrow{\mu}^{T} G \overrightarrow{\mu})^{1/2}$$

où G est la matrice réelle symétrique dont les éléments sont $g_{ij} = \vec{a}_i \vec{a}_j$. Les vecteurs \vec{a}_i sont les vecteurs de base de la maille.

Dans le système d'axes de la maille, il est difficile de repérer l'orientation du vecteur $\overrightarrow{\mu}$ par rapport à l'orientation de la molécule dans la maille.
Il est donc souvent plus aisé de déterminer le vecteur moment dipolaire dans un système d'axes moléculaires qui tient compte des symétries de la molécule.

IV-5.1 - MOMENT DIPOLAIRE DANS UN SYSTEME D'AXES MOLECULAIRES

Le choix de l'origine et des vecteurs de base du système d'axes moléculaires est arbitraire sauf dans le cas des molécules chargées (ions).

Pour une interprétation pratique des résultats, l'origine est choisie au centre de masse G de l'entité chargée et le système d'axes moléculaires est choisi orthogonal.

Soient $\vec{e_i}$ les vecteurs de base du système moléculaire et $\vec{a_i}$ les vecteurs de base du système cristallin. Nous pouvons écrire les relations :

$$\vec{e}_i = B \vec{a}_i$$

$$\vec{r}_i = B^{-1} (\vec{r}_i - \vec{T}_o)$$

où $\vec{r_i}^M$ et $\vec{r_i}$ représentent les positions atomiques dans les systèmes moléculaire et cristallin respectivement, \vec{T}_o , la translation de l'origine et B, la matrice de transformation des vecteurs de base.

Si G et G^M sont les matrices réelles symétriques dont les éléments sont définis précédemment pour les systèmes cristallin et moléculaire, nous aurons alors :

$$G^{M} = B^{T} GB$$

 $\vec{\mu}^{M} = \sum_{i} \vec{r}_{i}^{M} q_{i} + \sum_{i} \vec{\mu}_{i}^{M}$

 $\vec{\mu}^{M} = B^{-1} \vec{\mu} - B^{-1} \vec{T}_{0} \sum_{i} q_{i}$

Le moment dipolaire dans le système moléculaire prend la forme :

ou

Pour une molécule neutre $\sum_{i} q_{i} = 0$, le moment dipolaire moléculaire $\overrightarrow{\mu}^{M}$ ne dépend pas du choix de l'origine

$$\vec{\mu}^{M} = B^{-1} \vec{\mu}$$

et puisque B est unitaire,

$$|\overrightarrow{\mu}M| = |\overrightarrow{\mu}|$$

Par contre, pour un fragment de molécule chargé, $\sum_{i} q_{i}$ n'est pas nul et $\vec{\mu}^{M}$ dépend de la translation \vec{T}_{o} .

IV-5.2 - ORIENTATION DU MOMENT DIPOLAIRE

Dans le cas général, seule l'orientation du moment dipolaire moléculaire dans le système moléculaire choisi conduit à une interprétation directe.

Soit θ_i l'angle du dipole $\vec{\mu}^M$ avec le vecteur de base \vec{e}_i . Nous pouvons définir θ_i par cos θ_i tel que :

 $\vec{\mu}^{M} \vec{e}_{i} = |\vec{\mu}^{M}| |\vec{e}_{i}| \cos \theta_{i}$

Or, $\{ \overrightarrow{e}_i \}$ est un système normalisé donc

ou

IV-5.3 - RESULTATS

Les moments dipolaires moléculaires ont été calculés pour l'ensemble de la molécule à partir des valeurs obtenues par les affinements Kappa et multipolaire. Ces résultats, exprimés dans le système cristallin, sont présentés dans le tableau IV-5-1.

Les directions des moments dipolaires épousent grossièrement l'axe de transfert de charge (Fig. IV-5-1). Dans les deux cas, nous pouvons noter l'influence de la charge de l'atome d'oxygène du groupement hydroxyl (O₃) qui repousse les deux vecteurs vers l'atome de carbone C₁₀. Les angles entre les deux vecteurs $(\vec{\mu}_{K} \text{ et } \vec{\mu}_{M})$ et aussi chacun de ces vecteurs avec l'axe du transfert de charge (N₁-N₂) sont de 12,8° ; 9,8° et 7°, respectivement.

Le calcul des moments dipolaires du groupement dioxyde d'azote NO₂ qui constitue le fragment identique du NPP, du POM et du p-Nitropyridine-N-oxide a révélé que ces moments sont de 3.726 et 3,8 Debyes pour le NPP et le p-Nitropyridine-N-oxide, respectivement alors qu'il est de 7,2 Debyes pour le POM [55]. A noter que ces calculs sont obtenus à partir des affinements Kappa.

<u>Tableau IV-5-1</u> Moments dipolaires moléculaires exprimés dans le système cristallin

méthode	μ _X	μ _Y	μ _Z	μ (Debye)
affinement Kappa	0.2649	0.0963	-0.3517	16.702(0.626)
affinement multipolaire	0.1469	0.0802	-0.1670	9.483(1.386)

 $\vec{\mu_k}$: moment dipolaire moléculaire obtenu par affinement Kappa

 $\vec{\mu_M}$: moment dipolaire moléculaire obtenu par affinement multipolaire

<u>Figure IV-5-1</u>: Orientation des moments dipolaires moléculaires par rapport au système cristallin

CHAPITRE V PROPRIETES ELECTROSTATIQUES PSEUDOMOLECULAIRES

....

14 . -

V-1 - INTRODUCTION

Dans les chapitres précédents, nous avons montré que les propriétés globales (par exemple la densité électronique) s'obtiennent plus facilement que les propriétés plus locales commes les charges atomiques.

Les différences observées entre les charges atomiques déduites des affinements Kappa et multipolaire illustrent des difficultés rencontrées lorsque nous désirons obtenir des valeurs quantitatives.

La précision des mesures, le type du modèle utilisé et le problème des phases dans le cas présent sont bien évidemment responsables des différences observées dans nos résultats.

Dans ce chapitre, nous reportons une autre méthode de calcul des propriétés électrostatiques de la molécule de NPP par intégration directe de la densité de charge [77,78].

Bien que les cartes de densité de déformation fournissent une grande quantité d'informations qualitatives sur la structure électronique de la molécule dans un cristal, elles ne peuvent être facilement comparées avec les résultats d'autres mesures physiques de propriétés dépendantes de la distribution électronique : les moments internes et externes. Les moments internes comme le gradient du champ électrostatique au voisinage du noyau, sont fortement dépendants des données à grands angles. En revanche, les moments externes (dipole, quadripole, etc...) sont principalement déterminés par les réflexions de bas indices. Ceux-ci apportent des informations utiles sur le comportement chimique des molécules.

Toute dérivation des propriétés moléculaires à partir de la distribution continue de charges dans un cristal nécessite une partition soigneuse de l'espace cristallin en volumes associés avec chacune des molécules. La partition de l'espace cristallin ne présente pas de difficulté quand les forces intermoléculaires sont faibles, contrairement à la partition de la molécule en atomes.

Deux techniques différentes peuvent être utilisées pour partager le cristal moléculaire : "Discrete Boundary Partitioning" et "Fuzzy Boundary Partitioning". La première technique consiste à diviser le cristal en cellules de Wigner-Seitz [77], qui sont des volumes polyédriques distincts contenant les molécules. L'attribution d'une sous-unité de vecteur de position \overrightarrow{r}_i à l'atome A ou B se fait selon le critère :

$$\frac{(\vec{r}_{i} - \vec{r}_{A})\vec{r}_{AB}}{R_{A}} > \frac{(\vec{r}_{i} - \vec{r}_{B})\vec{r}_{AB}}{R_{B}}$$

où \overrightarrow{r}_{AB} est le vecteur unitaire dirigé de A vers B, R_A et R_B les rayons de Van der Waals des deux atomes A et B dans les différentes molécules, \overrightarrow{r}_A et \overrightarrow{r}_B sont les vecteurs de position des atomes A et B par rapport à la sous-unité (Fig. V-1-1) et \overrightarrow{r}_i est la distance de l'origine à la i^{eme} sous-unité.

Cette méthode de partition situe la frontière dans une région physiquement raisonnable de densité de charge très faible quand nous nous intéressons à la différence des densités et ainsi peut fournir des renseignements sur les moments de la molécule.

La seconde technique est appliquée aussi bien aux densités électroniques totales qu'aux différences de densité. Elle est basée sur le chevauchement des volumes moléculaires définis par le concept de Stockholder de Hirshfeld [18]. A chaque point de la grille d'intégration, est attribué un poids Wi défini par : - Dans le cas d'une répartition atomique

$$W_{i}(r_{i}) = \frac{\rho_{sphérique,i}}{\sum_{j=1}^{tomes} \rho_{sphérique,j}}$$

- Dans le cas d'une répartition moléculaire

$$W_{i}(r_{i}) = \frac{\rho_{promolécule,(r_{i})}}{\sum_{cristal} \rho_{promolécule,(r_{i})}}$$

Les densités atomiques des atomes de la promolécule p_{sphérique} peuvent être calculées par les fonctions d'onde de Clementi [46] ou gaussiennes [79]. Ces dernières sont détaillées dans l'annexe 1.

V-2 - MOMENTS EXTERNES

En général, les moments d'une distribution de charge sont donnés par :

où l'intégration se fait dans notre cas sur le volume V_T associé à une molécule dans le cristal, $\hat{\gamma}_{\alpha,\beta...\eta}(\vec{r})$ étant un opérateur qui est une fonction des composantes $r_{\alpha} (\alpha = x,y,z)$ du vecteur \vec{r} . En remplaçant $\rho(\vec{r})$ par son expression développée en série de Fourier dans l'expression V-1, nous obtenons :

$$\mu_{\alpha,\beta,\dots\eta}(\vec{r}) = \frac{1}{V} \sum_{H} F(\vec{H}) q \left[\vec{\gamma}_{\alpha,\beta\dots\eta} (\vec{r}), \vec{h} \right] \qquad V-2$$

 $\mu_{\alpha,\beta...\eta}$ sont relatifs à l'origine de la maille cristalline et dépendent du choix du centre de la distribution. L'intégrale q [....] est définie par :

$$q\left[\overrightarrow{\gamma}_{\alpha,\beta,\dots\eta}(\overrightarrow{r}),\overrightarrow{h}\right] = \int_{V_{T}} \widehat{\gamma}_{\alpha,\beta\dots\eta}(\overrightarrow{r}) e^{-2\pi i \overrightarrow{H}.\overrightarrow{r}} d^{3}\overrightarrow{r} \qquad V-3$$

La densité électronique $\rho(\vec{r})$ peut être exprimée sous la forme :

$$\rho(\vec{r}) = \rho_{\text{promolécule}} + \frac{1}{V} \sum_{\vec{H}} \vec{\Delta F}(\vec{H}) e^{-2\pi i \vec{H} \cdot \vec{r}}$$
 V-4

Nous pouvons donc intégrer soit sur F soit sur $\overrightarrow{\Delta F}$.

Une évaluation pratique de q[...] est réalisée par la subdivision du volume de la maille cristalline en un ensemble de sous unités t_i identiques que nous choisissons sous forme d'un parallélépipède avec des côtés parallèles aux axes cristallographiques $(\vec{a}, \vec{b}, \vec{c})$. Cette intégrale est indépendante de l'origine et identique pour chaque sous-unité t_i. En appelant, les demi-largeurs de la sousunité t_i par δ_x , δ_y et δ_z , la transformation de l'intégrale devient alors :

$$q\left[\gamma_{\alpha,\beta,\dots\eta}(\vec{r}),\vec{h}\right] = \int_{-\delta_{x}}^{\delta_{x}} \int_{-\delta_{y}}^{\delta_{y}} \int_{-\delta_{z}}^{\delta_{z}} r^{\alpha} r^{\beta} \dots r^{\eta} e^{-2\pi i \vec{H} \cdot \vec{r}} d^{3}\vec{r} \qquad V-5$$

Cette intégrale peut être calculée exactement, les expressions des moments externes jusqu'au second ordre des sous-unités t_i sont données dans le tableau V-2-1. En conclusion, l'expression V-1 peut être facilement programmée.

Une formulation alternative proposée par Buckingham définit les moments quadripôlaires comme des combinaisons du moment du second ordre. Ils sont donnés par les expressions [80] :

$$\theta_{xx} = \mu_{xx} - \frac{1}{2} (\mu_{yy} + \mu_{zz})$$

 $\theta_{xy} = \frac{3}{2} \mu_{xy} \text{ etc...}$
V-6

Ainsi, le moment quadripolaire de Buckingham est nul pour une promolécule. Notons également qu'il y a seulement cinq composantes indépendantes du moment quadripolaire, alors qu'il y a six composantes pour le moment du second ordre. Le moment quadripolaire peut donc être dérivé du second moment mais la réciproque est impossible.

<u>Tableau V-2-1</u> Expressions de q [$\overrightarrow{\gamma}$ (\overrightarrow{r}) , \overrightarrow{h}] \overrightarrow{r} pour les moments extérieurs

Ŷ	propriété	q[Ŷ(r), ħ];
1	charge	V _T J ₀ (2π h δ _x) J ₀ (2π h δ _y) J ₀ (2π h δ _z)
rα	dipôle μ_{α}	-i V _T δ _α J ₁ (2π h _α δ _α) J ₀ (2π h _β δ _β) J ₀ (2π h _γ δ _γ)
r _α r _β α≠β	moment du second ordre μ _{αβ}	-V _T δ _α δ _β J ₁ (2π h _α δ _α) J ₁ (2π h _β δ _β) J ₀ (2π h _γ δ _γ)
$r_{\alpha} r_{\alpha}$	moment du second ordre $\mu_{\alpha\alpha}$	$-V_{T} \delta_{\alpha}^{2} \left\{ \frac{J_{1}(2\pi h_{\alpha} \delta_{\alpha})}{\pi h_{\alpha} \delta_{\alpha}} - J_{0} \left(2\pi h_{\alpha} \delta_{\alpha} \right) \right\} J_{0}(2\pi h_{\beta} \delta_{\beta}) J_{0}(2\pi h_{\gamma} \delta_{\gamma})$

 J_0 et J_1 sont les fonctions sphériques de Bessel d'ordre 0 et 1.

$$J_0(X) = \frac{\sin X}{X} \quad ; \quad J_1(X) = \frac{\sin X}{X^2} - \frac{\cos X}{X}$$

cas spéciaux :

$$\lim_{X \to 0} J_0(X) = 1 \quad , \quad \lim_{X \to 0} J_1(X) = 0$$
$$\lim_{X \to 0} X \to 0$$

 $x \rightarrow 0$

V-3 - POTENTIEL ELECTROSTATIQUE

A l'extérieur d'une distribution de charge, le potentiel électrostatique peut être exprimé comme une série de moments externes menant à une simplification considérable dans le calcul. Mais dans ce cas, la distribution de charge ne peut pas être satisfaite. Cependant, au-delà des rayons de Van der Waals, la densité moléculaire descend à des valeurs très infimes, les erreurs commises dans l'utilisation d'un développement des moments externes seront négligeables.

Comme Buckingham l'a proposé, le potentiel en un point Q à l'extérieur d'une distribution de charge est donné par le développement :

$$\Phi = \frac{\mu^0}{R_Q} + \frac{\mu_\alpha R_{Q\alpha}}{R_Q^3} + \frac{1}{2} \left[3R_{Q\alpha} R_{Q\beta} - R_Q^2 \delta_{\alpha\beta} \right] \frac{\mu_{\alpha\beta}}{R_Q^5} + \dots \qquad V-7$$

où la sommation des indices répétés sous-entendus μ^0 , μ^{α} et $\mu_{\alpha\beta}$ sont respectivement les moments d'ordre zéro, un et deux de la distribution de charge et \overrightarrow{R}_Q est le vecteur du centre de la distribution P à Q (Fig. V-3-1) et a les composantes $R_{Q\alpha}$. Au-delà de la périphérie de la molécule, le potentiel dû à la promolécule est nul. Pour cette raison, le potentiel électrostatique dans cette région est principalement dû à la distorsion de la promolécule provoquée par la formation des liaisons. Le remplacement de la distribution de charge moléculaire par un ensemble de moments moléculaires, conduit généralement à une série lentement convergente. Au contraire, le remplacement de la densité moléculaire par un ensemble de moments centrés sur des sites variables dans la molécule conduit à une convergence plus rapide de l'équation V-7.

V-4 - RESULTATS

La maille cristalline est divisée en entités moléculaires identiques de 0.0053 Å³. Afin de montrer l'influence des phases des facteurs de structure sur les charges atomiques et les moments dipolaires moléculaires du NPP, l'intégration directe a été effectuée sur la différence entre les facteurs de structure :

 $-\Delta F = (F_{ob} - F_{sph}) e^{i\Phi_{sph}}$ (phase non corrigée) ... $-\Delta \overrightarrow{F} = (F_{ob} e^{i\Phi_M} - F_{sph} e^{i\Phi_{sph}})$ (phase corrigée)

Figure V-3-1

O : est l'origine du système de coordonnées.

P et A sont deux centres alternatifs de la distribution (aire hachurée).

Q : est un point externe de la distribution auquel le potentiel est évalué.

V-4.1 - "FUZZY BOUNDARY PARTITIONING"

Les poids W_i des sous-unités sont calculés en utilisant les fonctions gaussiennes contractées. La charge de chaque entité est dérivée par transformée de Fourier, partagée entre les atomes constituant la maille selon le concept de "Stockholder". Ces contributions atomiques sont alors utilisées pour calculer les moments moléculaires. Les charges atomiques nettes et les moments dipolaires et quadripolaires, moléculaires sont présentés dans les tableaux V-4-1 et V-4-2, respectivement.

Le potentiel électrostatique dans et au-dessus (1,95 Å) du plan moyen de la molécule de NPP est représenté sur les figures V-4-1 et V-4-2, respectivement. La section à 1,95 Å au-dessus du plan moyen de la molécule montre un élargissement considérable du potentiel négatif (attractif), lequel s'étend jusqu'au cycle (L)-Prolinol.

V-4.2 - "DISCRETE BOUNDARY PARTITIONING"

En plus de l'ensemble des rayons de Van der Waals accepté par la communauté scientifique (A), trois autres ensembles ont été choisis, différent principalement pour les rayons des atomes d'oxygène et d'hydrogène. Ces trois groupes supplémentaires permettent de montrer l'influence des rayons de Van der Waals sur les moments moléculaires (Tableau V-4-3).

V-4.3 - DISCUSSION

L'influence des phases sur les résultats est importante. Les moments dipolaires moléculaires $\vec{\mu}_F$ et $\vec{\mu}_D$ déterminés par les techniques de "Fuzzy et Discrete Boundary Partitioning", respectivement sont du même ordre. L'angle entre $\vec{\mu}_F$ et $\vec{\mu}_D$ est de 5,0° (Fig. V-4-3). De plus, les angles formés par $\vec{\mu}_F$ et $\vec{\mu}_D$ avec l'axe de transfert de charge N₁-N₂ sont de 17,4° et 22,4° respectivement. Les moments quadripolaires moléculaires de Buckingham indiquent qu'il y a une expansion de la densité électronique par rapport à celle de la promolécule suivant l'axe moléculaire \vec{X} (moments négatifs) et une contraction de la densité électronique suivant les axes moléculaires \vec{Y} et \vec{Z} .

Les modules des charges atomiques nettes déterminées par la méthode de "Fuzzy Boundary Partitioning" sont inférieurs à ceux déterminés par les autres méthodes (affinements Kappa et multipolaire) (tableau V-4-1). En effet, les affinements Kappa et multipolaire utilisent l'approximation de convolution pour

Charges atomiques nettes	déterminées par intégration directe
(Fuzzy Boundary Partitioning)	et les affinements kappa et multipolaire

Atome	Intégration sur	Intégration sur	Affinement	Affinement
	ΔF	ΔF	Kappa	multipolaire
C ₁	0.0346	-0.0668	-0.106	0.190
C ₂	-0.0116	-0.0218	-0.096	-0.251
C ₃	-0.0155	-0.0859	-0.465	-0.307
C ₄	-0.0018	0.0311	0.295	0.067
C ₅	-0.0577	-0.1768	-0.526	-0.351
C ₆	0.0012	-0.1282	-0.237	-0.392
C ₇	-0.0496	-0.0328	-0.325	-0.390
C ₈	-0.0875	-0.0753	-0.285	-0.443
C9	-0.0580	-0.0786	-0.461	-0.451
C ₁₀	-0.0334	0.0105	-0.124	-0.506
C ₁₁	-0.0617	-0.0976	-0.289	-0.323
N ₁	0.0936	0.1923	0.509	0.184
N ₂	-0.0485	-0.0423	-0.185	0.079
O ₁	-0.1324	-0.1807	-0.432	-0.273
O ₂	-0.1851	-0.1031	-0.428	-0.200
O ₃	-0.1707	-0.1916	-0.624	-0.343
HC ₂	0.0979	0.0809	0.196	0.220
HC ₃	0.0591	0.0817	0.295	0.230
HC ₅	0.0554	0.0471	0.310	0.317
HC ₆	0.0766	0.0551	0.278	0.253
HC ₇	0.0812	0.1209	0.270	0.306
HC ₈	0.0216	0.0834	0.313	0.276
HC'8	0.0078	0.0136	0.184	0.228
HC9	0.0361	0.0355	0.229	0.228
HC'9	0.0452	0.0925	0.293	0.234
HC ₁₀	0.0508	0.0559	0.234	0.270
HC' ₁₀	0.0449	0.0875	0.214	0.281
HC ₁₁	0.0701	0.0595	0.286	0.266
HC' ₁₁	0.0514	0.0635	0.220	0.245
HO ₃	0.0857	0.1703	0.461	0.316

<u>Tableau V-4-2</u> : Moments moléculaires déterminés par intégration directe (Fuzzy Boundary Partitioning)

Axes moléculaires normalisés							
Axe \overrightarrow{X}	-0.09243	-0.03493	0.08290				
Axe \overrightarrow{Y}	-0.08271	0.05713	0.03168				
Axe \overrightarrow{Z}	-0.15951	-0.00938	-0.11583				

Moments dipolaires moléculaires

Méthode	μ_{X}	μ _Y	μ _Z	μ(Debye)
intégration sur ∆F	-0.414	-0.200	0.167	2.351
intégration sur	-1.292	0.570	0.263	6.900

Moments quadripolaires de Buckingham

Méthode	θχχ	θχγ	θ _{XZ}	θγγ	θ _{YZ}	θZZ
intégration sur ∆F	-5.417	2.199	-0.450	3.978	-0.094	1.439
intégration sur $\overrightarrow{\Delta F}$	-3.676	4.058	-2.870	3.347	-0.219	0.329

ъ.,

<u>Figure V-4-1</u> : Potentiel électrostatique de déformation dans le plan moyen de la molécule de NPP. Pas de contours = 5 kcal/mole trait plein : contour équipotentiel positif pointillés courts : contour équipotentiel négatif pointillés longs : contour équipotentiel nul.

Figure V-4-2 : Potentiel électrostatique de déformation au-dessus du plan moyen de la molécule de NPP (1,95 Å). Pas de contours = 5 kcal/mole trait plein : contour équipotentiel positif pointillés courts : contour équipotentiel négatif pointillés longs : contour équipotentiel nul.

<u>Tableau V-4-3</u> : Moments moléculaires déterminés par intégration directe (Discrete Boundary Partitioning)

Axes moléculaires normalisés

Axe \vec{X}	-0.09243	-0.03493	0.08290
Axe $\overrightarrow{\mathbf{Y}}$	-0.08271	0.05713	0.03168
Axe Z	-0.15951	-0.00938	-0.11583

Moments dipolaires moléculaires

Méthode	$\mu_{\rm X}$	μ _Y	μ _Z	μ (Debye)
Α	-0.375	-0.018	0.097	1.863
В	-1.548	0.584	0.257	8.040
С	-1.479	0.600	0.244	7.755
D	-1.496	0.595	0.254	7.831
Е	-1.400	0.605	0.251	7.425

Rayons de Van der Waals

	C	N	0	H
A et B	1.7	1.5	1.4	1.2
C	1.65	1.55	1.52	1.2
D	1.7	1.5	1.4	1.1
E	1.7	1.5	1.4	1.1

Moments quadripolaires de Buckingham

Méthode	θχχ	θχγ	θxz	θγγ	θγΖ	θ _{ZZ}
Α	-6.098	1.569	-0.065	4.337	-0.111	1.761
В	-4.597	3.976	-2.999	3.988	-0.353	0.609

A : Intégration sur ΔF

B : Intégration sur ΔF

 $\vec{\mu_k}$: moment dipolaire moléculaire obtenu par affinement Kappa

 $\vec{\mu}_{M}$: moment dipolaire moléculaire obtenu par affinement multipolaire

 $\vec{\mu}_{\rm D}$: moment dipolaire moléculaire obtenu par la "Discrete Boundary Partitioning"

 $\vec{\mu_{F}}$: moment dipolaire moléculaire obtenu par la "Fuzzy Boundary Partitioning"

Figure V-4-3 Orientation des moments dipolaires moléculaires par rapport au système cristallin

séparer la densité de charge statique du mouvement thermique. Par contre, l'intégration directe des facteurs de structure ne permet pas une telle séparation. D'autre part, nous remarquons que les signes des charges atomiques nettes déterminées par la "Fuzzy Boundary Partitioning" et l'affinement Kappa sont concordants à l'exception de l'atome de carbone C_{10} . Les trois méthodes utilisées sont en accord sur l'évaluation des charges atomiques nettes des atomes d'azote N₁ et d'oxygène O₁ et O₂ du groupement dioxyde d'azote. La charge négative de l'atome d'oxygène O₁ étant légèrement supérieure à celle de l'atome d'oxygène O₂, cette différence est en rapport avec la liaison hydrogène entre l'atome d'hydrogène HO₃ du groupement hydroxyl d'une molécule avec l'atome d'oxygène O₂ du groupement dioxyde d'azote (NO₂) de la molécule adjacente.

Un écart important existe entre les modules du moment dipolaire obtenus par l'affinement Kappa d'une part et les autres techniques d'autre part. Il semble que l'influence des termes multipolaires (dipoles, quadripoles, etc...) est très important lors des affinements dans le cas des structures non centrosymétriques. Ces termes apportent des contributions non négligeables dans la correction des phases des facteurs de structure. Les écarts angulaires entre les orientations des vecteurs des moments dipolaires oscillent entre 7° et 22° avec l'axe de transfert de charge (Fig. V-4-3).

.

CONCLUSION

,

Le but de ce travail était d'étudier la répartition de la densité électronique et de déterminer les propriétés électrostatiques de la molécule de N-(4-Nitrophenyl)-(L)-Prolinol en abrégé NPP.

La détermination de la densité électronique précise à partir d'une expérience de diffraction de rayons X nécessite des soins tout à fait particuliers à la fois dans le domaine expérimental et dans le traitement des données.

- Rappelons par exemple qu'avant chaque enregistrement, il est indispensable de faire coïncider la partie homogène du faisceau de rayons X avec le centre optique de l'appareil.

- Par la suite, les intensités diffractées obtenues seront traitées par différents programmes (formalisme de Blessing) afin d'éliminer dans la mesure du possible toutes les causes d'erreurs systématiques.

L'utilisation des facteurs de structure à grands angles, obtenus par diffraction des rayons X a permis de localiser le coeur des atomes lourds et de déterminer leurs paramètres thermiques par affinement de moindres carrés. Afin de lever toute ambiguité sur les positions et les paramètres thermiques des atomes d'hydrogène et en particulier, l'atome d'hydrogène de l'hydroxyl, nous avons été contraint de réaliser une expérience au laboratoire Léon Brillouin à Saclay. Malheureusement, un grand écart est apparu systématiquement entre les paramètres thermiques obtenus par diffraction neutronique et ceux obtenus par les rayons X. Cette anomalie pourrait être due à une différence de température entre les deux expériences. De ce fait, la méthode X-X_N n'a pas pu être utilisée.

Nous avons pu constater que les paramètres thermiques des atomes d'hydrogène pouvaient être estimés valablement à partir des tenseurs TLS du fragment rigide de la molécule sur lequel les atomes d'hydrogène sont fixés et d'une contribution liée aux vibrations internes de ces derniers. Ces contributions sont déterminées à partir des fréquences mesurées par spectroscopie infra-rouge et Raman.

La méthode X-X_{HO} a permis d'établir des cartes de densité de déformation dans différents plans de la molécule de NPP. Nous avons montré qu'il existe une accumulation importante de la densité électronique dans les liaisons des cycles aromatiques et de L-Prolinol et du groupement dioxyde d'azote. De plus, les doublets libres des atomes d'oxygène du groupe de dioxyde d'azote (NO₂) sont bien localisés.

Les cartes dynamiques et statiques déterminées à partir du modèle multipolaire décrit par Hansen Coppens sont comparables aux cartes expérimentales. La localisation et la séparation des doublets libres de l'atome d'oxygène O₂ du groupement dioxyde d'azote est peut-être due à la présence de la liaison d'hydrogène.

Par ailleurs, l'importance du calcul de la phase dans le cas des structures non centrosymétriques est apparue primordiale. En effet, nous avons montré dans le chapitre IV que le terme supplémentaire $\Delta \rho(\Delta \phi)$ apportait une correction non négligeable allant jusqu'à 0.25 e⁻/Å³ dans le calcul de la densité électronique de déformation. Ce terme concerne toutes les réflexions à bas angles quelles que soient leurs intensités.

Les charges atomiques, entités non observables, déterminées par les différentes méthodes sont globalement en désaccord. Par contre, les moments dipolaires moléculaires, quantités mesurables, varient entre 7 et 9 Debyes pour l'affinement multipolaire et les techniques d'intégration directe. Nous avons pu mesurer l'influence des phases des facteurs de structure sur les charges atomiques et les moments dipolaires.

Enfin, ce travail nous a initié aux méthodes expérimentales de diffraction des rayons X ainsi qu'aux techniques de traitement des données obtenues par l'expérience. Nous nous sommes familiarisés avec le formalisme de Hansen-Coppens employant les tables de diffusion des multipoles et les mêmes valeurs des coefficients ξ_ℓ des fonctions radiales pour un même type d'atome, ce qui à notre avis, ne correspond pas à une réalité physique. Néanmoins, ce modèle améliore la détermination des facteurs de structure et donne une meilleure estimation des phases des facteurs de structure.

Un calcul théorique de la densité électronique de la molécule de NPP serait souhaitable afin de compléter notre étude. Ainsi, la comparaison des cartes de densité électronique théoriques et expérimentales nous permettrait de mesurer l'influence des forces intermoléculaires sur la densité électronique et de nous aider à comprendre les mécanismes de transfert de charge intramoléculaire.

Par ailleurs, il est possible de déterminer la susceptibilité de la molécule à partir des densités électroniques des liaisons en utilisant la méthode discrète d'intégration directe "Discrete Boundary Partitioning" décrite dans le chapitre V. En effet, la susceptibilité électronique peut être développée en série de Fourier comme la densité électronique :

$$\chi(\vec{r}) = -\Gamma \sum_{H} F_{H} e^{2i\pi \vec{H} \cdot \vec{r}}$$

 $\Gamma = \frac{r_e \lambda^2}{\pi V}$

Il serait important de mettre en évidence la différence entre la répartition de la densité électronique d'un état excité (état à transfert de charge) et celui de l'état fondamental, différence reflétant une migration électronique importante à l'excitation. Cette réponse électronique à une perturbation par un champ électrique serait directement mesurée sur le diffractomètre. En particulier, la mesure des réflexions les plus affectées permettrait d'apprécier l'importance du phénomène et de juger de la faisabilité de l'expérience.

4 ~ •

ANNEXE 1

•

-

•

. . . -

FONCTIONS GAUSSIENNES CONTRACTEES

Les fonctions d'onde contractées des orbitales atomiques pour les atomes du premier rang de la classification périodique sont construites en utilisant quatre groupes pour les états 1S et 2S et deux groupes pour l'état 2P :

$$\Phi_{1S} = \sum_{k=1}^{4} a_k \Phi_k^g$$
$$\Phi_{2S} = \sum_{k=1}^{4} a'_k \Phi_k^g$$
$$\Phi_{2P} = \sum_{k=1}^{2} a''_k \Phi_k^g$$

où a_k , a'_k et a''_k sont les coefficients définis afin que les fonctions des orbitales soient normées. Chaque fonction d'un groupe Φ^g_k est définie comme une combinaison linéaire de fonctions gaussiennes primitives normalisées Φ^{SouP}_{mk} ; centrées en un point A, de la forme :

$$N_{m} X_{A}^{\ell} Y_{A}^{m} Z_{A}^{n} e^{-\alpha_{m} r_{A}^{2}} :$$

$$\Phi_{k}^{g} = \sum_{m=1}^{N} C_{mk} \Phi_{mk}^{SouP}$$

Pour les fonctions gaussiennes S et P, nous avons $\ell=m=n=0$ pour l'état S et $\ell=1$, m=1, n=1 pour l'état P.

Les différents paramètres intervienant dans ces fonctions sont présentés dans le tableau A-1.

Tableau A-1

Paramètres des fonctions d'onde des orbitales atomiques gaussiennes

type		coefficient de contraction	exposant	1 S	2S	2P
S		Cm	αm	ak	a _{k'}	a _{k''}
	groupe1	0.029314 0.121599	2548.7260 781.6495	0.051931	-0.01100	
	groupe2	0.904751 0.153480 0.2433111	159.6274 41.8427 17.1893	0.979571	-0.235207	
	-	0.4537991 0.2698321	7.05910 2.52690			
	groupe3	-0.146302 1.0533749	4.93440 0.47350	0.002493	0.564327	
	groupe4	1.00000	0.14800	0.001137		
Р						
ł	groupe1	0.018533	18.1557		0.518817	0.792983
		0.115440	3.9864			
		0.3861999	1.14293			
		0.6400798	0.35945			
	groupe2	1.00000	0.1146			0.316889

<u>Carbone</u>

<u>Azote</u>

type		coefficient de contraction	exposant	1\$	28	2P
S		Cm	α _m	a _k	a _{k'}	a _k ''
	groupel	0.0292226	3489.5253	0.051956	-0.011383	
		0.1210850	218.5500			
	groupe2	0.1545241	57.2879	0.97353	-0.243131	
		0.2450818	23.5342			
		0.4569305	9.6648			
		0.2632423	3.4597			
	groupe3	-0.1432535	7.0699	0.002821	0.569631	
		1.05524427	0.6784			
	groupe4	1.000000	0.2079		0.517247	
P						
	groupe1	0.0182571	27.7860			0.795621
		0.1164081	5.95635			
		0.3901142	1.7074			
[0.6372268	0.53136		[
	groupe2	1.00000	0.165537			0.317318

Tableau A-1

Paramètres des fonctions d'onde des orbitales atomiques gaussiennes (suite)

type		coefficient de contraction	exposant	1S	28	2P
S		C _m	αm	ak	a _{k'}	ak''
:	groupe1	0.0292252	4643.4485	0.050945	-0.011500	
		0.1260360	1424.06430			
		0.9047897	290.7850			
	groupe2	0.1527631	76.2320	0.979643	-0.251770	
		0.2439912	31.3166			
		0.4582404	12.86070	•		
		0.2644382	4.60370			
	groupe3	-0.1403140	9.7044	0.003419	0.570310	
		1.0515337	0.93110			
	groupe4	1.000000	0.28250	0.001243	0.519622	
Р						
	groupe1	0.0195800	35.1832			0.787178
		0.1241899	7.90403			
		0.3947297	2.30512			
		0.6273796	0.71706			
	groupe2	1.0000000	0.21373			0.335831

<u>Oxygène</u>

<u>Hydrogène</u>

type		coefficient de contraction	exposant	15
S		Cm	αm	ak
	groupe1	0.032828	19.2406	0.050945
		0.2312081	2.899150	
		0.8172381	0.65341	
	groupe2	1.00000	0.175758	0.979643

, • . ~

.

ANNEXE 2

•

`

.

.

-

,

Tableau B-1

Charges atomiques nettes déterminées par intégration directe (Fuzzy Boundary Partitioning) en utilisant les fonctions d'onde de Clementi

	1	
Atome	Intégration directe sur $\Delta \vec{F}$	
C ₁	-0.075	
C ₂	-0.029	
C ₃	-0.097	
C ₄	0.027	
C ₅	-0.180	
C ₆	-0.132	
C ₇	-0.048	
C ₈	-0.083	
C ₉	-0.092	
C ₁₀	0.003	
C ₁₁	-0.106	
N ₁	0.192	
N ₂	-0.040	
O ₁	-0.178	
O ₂	-0.101	
O ₃	-0.193	
HC ₂	0.090	
HC ₃	0.090	
HC ₅	0.050	
HC ₆	0.059	
HC ₇	0.132	
HC ₈	0.091	
HC'8	0.016	
HC ₉	0.043	
HC'9	0.099	
HC ₁₀	0.064	
HC' ₁₀	0.096	
HC ₁₁	0.065	
HC' ₁₁	0.066	
HO ₃	0.178	
Tableau B-2

Moments moléculaires déterminés par intégration directe (Fuzzy Boundary Partitioning) en utilisant les fonctions d'onde de Clementi

Axes moléculaires normalisés

Axe $\vec{\mathbf{x}}$	-0.09243	-0.03493	0.08290
Axe $\overrightarrow{\mathbf{Y}}$	-0.08271	0.05713	0.03168
Axe Z	-0.15951	-0.00938	-0.11583

Moments dipolaires moléculaires

Méthode	$\mu_{\rm X}$	μ _Y .	μ _Z	μ(Debye)
intégration sur	-1.330	0.568	0.257	7.068

Moments quadripolaires de Buckingham

Méthode	θχχ	θχγ	θxz	θγγ	θγΖ	θZZ
intégration sur ΔF	-3.676	4.058	-2.870	3.347	-0.219	0.329

BIBLIOGRAPHIE

٠ ,

- [2] "Nonlinear Optical and Electroactive Polymers" Eds P.N. Prasad and D.R. Ulrich, Plenum Press (New York, 1988).
- [3] "Optical Nonlinearities and Instabilities in Semiconductors" Ed. H. Huag, Academic Press (London, 1988).
- [4] Y.R. Shen "The principles of Nonlinear Optics" Wiley and Sons (New York, 1984).
- [5] J. Zyss and D.S. Chemla "Quadratic Nonlinear Optics and Optimization of the Second-Order Nonlinear Optical Response of Molecular Crystals" in "Nonlinear Optical Properties of Organic Molecules and Crystals", Vol. 1, Chap. II-1, p. 23, Eds. D.S. Chemla and J. Zyss, Academic Press (New-York, 1987).
- [6] D.J. Williams, Angew. Chem. Ed. 23, 690 (1984).
- [7] P.D. Southgate and D.S. Hall, J. Appl. Phys., 43 (6), 2765 (1972).
- [8] P.D. Southgate and D.S. Hall, Appl. Phys. Lett., 18 (10), 456 (1971).
- [9] K. Kato, IEEE, J. Quantum Electron., QE-16 (12), 1288 (1980).
- [10] B.F. Levine, C.G. Bethea, C.D. Thurmond, R.T. Lynch and J.L. Bernstein,
 J. Appl. Phys. 50 (4), 2523 (1979).
- [11] G.F. Lipscomb, A.F. Garito and R.S. Narang, J. Chem. Phys. 75 (3), 1509 (1981).
- [12] J.L. Oudar and R. Hierle, J. Appl. Phys. 48, 2699 (1977).
- [13] J. Zyss, J. Nicoud, M. Coquillay, J. Chem. Phys. 81 (9), 4160-4167 (1984).
- [14] J. Zyss, D.S. Chemla and J.F. Nicoud, J. Chem. Phys. 74, 4800 (1981).

- [15] M. Sigelle and R. Hierle, J. Appl. Phys., 52, 4199 (1981).
- [16] M. Sigelle, J. Zyss and R. Hierle, J. Non-Cryst. Solids, 47, 287 (1982).
- [17] R.H. Blessing, Cryst. Rev. 1, 3-58 (1987).
- [18] F.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977).
- [19] F.L. Hirshfeld, Ist. J. Chem., 16, 226-229 (1977).
- [20] N.K. Hansen and P. Coppens, Acta Cryst. A34, 909-921 (1978).
- [21] A. Guelzim, Thèse soutenue à l'Université des Sciences et Techniques de Lille Flandres Artois N° d'ordre 7 (1985).
- [22] Manuel d'utilisation du Diffractomètre CAD4, Enraf Nonius Delft, The Netherlands (1984).
- [23] M.S. Lehman and F.K. Larsen, Acta Cryst. 7, 488-492 (1974).
- [24] R.H. Blessing, P. Coppens and P. Becker, J. Appl. Cryst., 7, 488-492 (1974).
- [25] J. Ladell, W. Parish and J. Taylor, Acta Cryst., 12, 461-567 (1959).
- [26] De Meulenaer and H. Tompa, Acta Cryst. 19, 1014 (1965).
- [27] W.R. Busing and H.A. Levy "High-Speed Computation of the Absorption Correction for Single Crystal Diffraction Measurements" Acta Cryst. 10, 180-182 (1957).
- [28] P. Coppens, L. Leizerowitz and D. Rabinovich, Acta Cryst. 18, 1035 (1965).
- [29] P. Coppens, Crystallographic Computing, Ed. F.R. Ahmed, S.R. Hall and C.R. Huber, Munksgaard, Copenhagen (1970).
- P. Becker dans "Computing in Crystallography" ed. par R. Diamond,
 S. Ramasesban et K. Venkatelsen, p. 3, 01-3, 24 Indian Academy of Science, Bangalore, India (1980).

- [31] L. Azaroff, R. Kaplow, N. Kato, R. Weiss, A.J.C. Welson and R.A. Young, "X-ray diffraction" (Mc Graw-Hill) (1974).
- [32] C.G. Darwin Phil. Mag. 43, 800 (1922).
- [33] P.P. Ewald, Ann. Phys. 54, 519 (1917).
- [34] F. Dunstetter, Thèse soutenue à l'Université Pierre et Marie Curie, Paris VI (1981).
- [35] W.H. Zachariasen, Acta Cryst., 23, 558 (1967).
- [36] W.H. Zachariasen, Acta Cryst., 16, 1139 (1963).
- [37] P. Coppens and W.C. Hamilton, Acta. Cryst., A26, 71 (1970).
- [38] P.J. Becker and P. Coppens, Acta. Cryst., A31, 417 (1975).
- [39] H. Hope et T. Otterson, Acta Cryst. B34, p. 3623-3626 (1978).
- [40] R.F. Stewart, Acta Cryst., A32, 565 (1976).
- [41] P. Coppens, G.T.N. Row, P. Leung, E.D. Stevens, P.J. Becker and Y.W. Yang, Acta Cryst. A35, 63 (1979).
- [42] G.E. Bacon, Neutron Diffraction, Oxford, Clarendon Press (1962).
- [43] P. Coppens, Topics in Current Physics Neutrons Diffraction, Ed. H. Dachs, Springer-Verlag N.Y. (1978).
- [44] L. Devos, Thèse d'Etat, n° d'ordre 546, Lille (1982).
- [45] Tables Internationales X-Ray n° IV Cryst., Vol. III, Kynoch Press, Birmingham (1962).
- [46] E. Clementi, Tables of Atomic Functions, IBM I. Res. Develop. Suppl. 9, 2 (1965).
- [47] D.W.J. Cruickshank, Acta Cryst., 9, 754-756 (1956).

- [48] V. Schomaker and K.N. Trueblood, Acta Cryst., B24, 63-76 (1968).
- [49] J.D. Dunitz and D.N.J. White, Acta Cryst., A29, 93 (1973).
- [50] K.N. Trueblood, Acta Cryst. A34, 950 (1978).
- [51] F.L. Hirshfeld, Acta Cryst. A32, 239-244 (1976).
- [52] F.L. Hirshfeld and H. Hope, Acta Cryst., B36, 406 (1980).
- [53] S.J. Gyvin, Molecular Vibrations and Mean Squares Amplitudes of Vibrations, Elsevier, Amsterdam (1968).
- [54] M. Hargottin-Maclou, J. Phys. Radium, 21, 634 (1960).
- [55] F. Baert, P. Schweis, G. Heger and M. More, J. Mol. Struct. 178, 29-48 (1988).
- [56] P.J. Becker and P. Coppens, Acta. Cryst., A30, 129 (1974).
- [57] R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Chem. Phys. 42, 3175 (1965).
- [58] Neutron News Vol. 3, n° 3 Gordon an Breach Science Publishers (1992).
- [59] P. Coppens and A. Vos, Acta Cryst., B27, 146 (1971).
- [60] J.F. Griffin and P. Coppens, J. Am. Chem. 97, 3496 (1975).
- [61] B. Rees and A. Mitschler, J. Am. Chem. Soc., 98, 18 (1976).
- [62] E.D. Stevens and P. Coppens, Acta Cryst. B36, 1864 (1980).
- [63] F. Baert, P. Coppens, E.D. Stevens and L. Devos, Acta Cryst., A38, 143 (1982).
- [64] K.N. Trueblood, "Programme THMA11" Department of Chemistry and Biochemistry, University of California, Los Angeles (1990).

- [65] P. Coppens and M.S. Lehmann, Acta Cryst., B32, 1777-1784 (1976).
- [66] P. Coppens, T.N. Guru Row, P. Leung, E.D. Stevens, P.J. Becker and Y.W. Yang, Acta Cryst. A35, 63-72 (1979).
- [67] M. Souhassou, C. Lecompte, R.H. Blessing and A. Aubry, M.M. Rohmer,
 R. Wiest and M. Bénard and M. Marraud, Acta Cryst., B47, 253-266 (1991).
- [68] J. Almlöf, Å. Kvick and J.O. Thomas, J. Chem. Phys., 59, 3901-3906 (1973).
- [69] F. Takasugawa and T.F. Koetzle, Acta Cryst., B35, 867-877 (1979).
- [70] E.D. Stevens, Acta Cryst., B34, 544-551 (1978).
- [71] Å Kvick, T.F. Koetzle and E.D. Stevens, J. Chem. Phys., 71, 173-179 (1979).
- [72] M. Dreyfus and A. Pullman, Theor. Chim. Acta, 19, 20-37 (1970).
- [73] S. Yamabe and K. Morokuma, J. Am. Soc., 97, 4458-4465 (1975).
- [74] M. Bénard, communication privée (1992).
- [75] J. Lamiot, Thèse soutenue à l'Université des Sciences et Techniques de Lille (1983), N° d'ordre 1047.
- [76] P. Chung-Wing Leung, Thèse : "Application of X-Ray Diffraction", chap. 4, Calculation of Molecular Dipole Moments, September (1982).
- [77] P. Coppens and T.N. Guru Row, Ann. New York Acad. Sci. 313, 214 (1978).
- [78] P. Coppens, G. Moss and N.K. Hansen, Crystallographic Computing P 16.01, Indian Academy of Sciences (1980).
- [79] J.L. Whitten, J. Chem. Phys., 44 (1), 359-364 (1966).
- [80] A.D. Buckingham, Ouart. Rev. 13, 183 (1959).

