
USTL

N° Ordre : 141 8

Laboratoire d'Informatique
Fondamentale de Lille

Année: 1995

présentée à

L'Université des Sciences et Technologies de LILLE

pour obtenir le titre de

Docteur de l'Université

spécialité

I~FOR:\fA TIQl!E

par

Howaida S~IER IF AH~1ED
(ln~Iénieur B.Sc.- M.Sc.)

Mufti-Résolution de Programmes PROLOG

Soutenue le vendp·:oJ .::J Jar.

Membres du Jury :

Président
Rapporteurs

Directeur de thèse
Codirecteurs de thèse

Examinateurs

J.M.GEIB
C.PERCEBOIS
B.PLATEAü
B.TOüRSEL
G.GO~CALYES
P.LECOUFFE
J.CHASSI;-\ de KERG0~1MEACX
Ph.DEVIE~;\E

tmision d'examen :

Professeur- LIFL
Professeur- JRIT - Toulouse
Professeur- E!\SIMAG- Grenoble
Professeur- EUDIL
Professeur- Université d'Artois
It:T-A -Villeneuve d'Ascq
Ci'\RS -IMAG!LGI- Grenoble
C?\RS- LIFL

uNIVERSITE DES SCIENCES
ET TECHNOLOGIES DE LILLE

DOYENS HONORAIRES DE L'ANCIENNE FACULTE DES SCIENCES

M. H. LEFEBVRE, M. PARREAU

PROFESSEURS HONORAIRES QES ANCIENNES FACULTES DE DROIT
ET SCIENCES ECONOMIQUES. QES SCIENCES ET PES LffiRES

M:-1. AR:\'OüLT, BO:\'TE, BROCHARD, CHAPPELO;-.:. CHAUDRON, CORDONNIER, DECUYPER,
DEHECVELS, DEHORS, DION, FACVEL. FLElJRY, GERMAIN, GLACET, GONTIER,
KOCRGA::\OFF, LA.\101TE, LASSERRE. LELO:'\G. LHOMME, LIEBAERT, MARTINOT-LAGARDE,
MAZET, MICHEL. PEREZ, ROIG, ROSEAL·. ROL"ELLE. SCHILTZ, SAVARD, ZAMANSKI, Mes
BEACJEC, LELO:\'G.

PROFESSEUR EMERITE

M. A. LEBR Cr\

ANCIENS PRESIDENTS DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

l'vl~l. ~1. PARREAlJ, J. L0~1BARD, :tvl. ~1IGEO~. J. CORTOIS. A.DCBRULLE

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNOLOGIES PE LILLE

M. P. LOUIS

PROFESSEURS - CLASSE EXCEPTIONNELLE

~1. CHA~lLEY Hervé
M. CO:\STA:'-.1 Eu~ène
l\1. ESCAIG Bertran-d
l\1. FOCRET René
M. GABILLARD Roben
l\1. LABLACHE COMBlER Alain
M. LOMBARD Jacques
M. MACKE Bruno

G~otechnique
Electronique
Physique du solide
Physique du solide
Elecrroniqut>
Chimie
SocioJooie
Physiqu~ moléculaire et rayonnements aonosphériques

M. MIGEON Michel
M. MONTREUil... Jean
M. PARREAU Michel
M. TRIDOT Gabriel

M. BACCHUS Pierre
M. BIA YS Pierre
M. Bll.LARD Jean
M. BOILL Y Bénoni
M. BONNELLE Jean Pierre
M. BOSCQ Denis
M. BOUGHON Pierre
M. BOURIQUET Roben
M. BRASSELET Jean Paul
M. BREZINSKI Claude
M. BRIDOlJX Michel
M. BRUYELLE Pierre
M. CARREZ Christian
M. CELET Paul
M. COEURE Gérard
M. CORD0l\"J'-.11ER Vincent
M. CROSNIER Yves
:Mme DAO-lARRY Monique
M. DAUCHETMax
M. DEBOCRSE Jean Pierre
M. DEBRABAl\l"f Pierre
M. DEO...ERCQ Roger
M. DEGA UQUE Pierre
M. DESCHEPPER Joseph
tvlrne DESSAUX Odile
M. DHAINAUT André
tvlrne DHAINA UT Nicole
M. DJAF ARI Rouhani
M. DOR..\1ARD Serge
M. DOUKHAN Jean Claude
M. Dl..JBRULLE Alain
M. DUPOUY Jean Paul
M. DYME!\l"f Anhur
M. FOCT Jacques Jacques
M. FOUQUART Yves
M. FOUR:N'ET Bernard
M. FRONTIER SerE:e
:M. GLORIEUX Pierre
M. GOSSELIN Gabriel
M. GOUD!\1Al\'D Pierre
M. GRANELLE Jean Jacques
M. GRUSO:\' Laurent
M. GUILBA ULT Pierre
M. GUILLAUME Jean
M. HECTOR Joseph
M. HEI'\R Y Jean Pierre
M. HER~1A~ Maurice
M. LACOSTE Louis
M. LANGR.A~'D Claude

EUDIL
Biochimie
Analyse
Chimie appliquée

PROFESSEllRS ·)ère CLASSE

Astronomie
Géographie
Physique du Solide
Biologie
Chimie-Physique
Probabilités
Ale:èbre
Biologie Végétale
Géométrie et topologie
Analyse numérique
Chimie Physique
Géographie
lnfornmique
Géologie générale
Analvse
Inforrnatique
Electronique
Géographie
Inforn1atique
Gestion des entreprises
Géologie appliquée
Sciences de gestion
Electronique
Sciences de l!estion
Spectroscopie de la réactivité chimique
Biologie animale
Biolo!!ie animale
Physique
Sciences Economi4ues
Physique du solide
Spectroscopie henzienne
Biologie
Mécanique
Métallunrie
Optique am10sphérique
Biochimie structurale
Ecologie numérique
Physi4ue moléculaire et rayonnements aonosphériques
Socioloe:ie
Chimie.:-Physique
Sciences Economiques
Al!!èbre
Ph~·siolol!ie animale
.\1 ié:robiolo~ie
G~ométrie ~
Génie mécanique
Physi4ue spatiale
Biolol!ie Yél!étale
Prob:iliilités -et statistiques

M. LA TŒUX Michel
M. LA VEINE Jean Pierre
Mme LECLERCQ Ginette
M. LEHMANN Daniel
Mme LENOBLE Jacqueline
M. LEROY Jean Marie
M. LHENAFF René
M. LHOMME Jean
M. LOUAGE Françis
M. LOUCHEUX Claude
M. LUCQUIN Michel
M. MAILLET Pierre
M. MAROUF Nadir
M. MICHEAU Pierre
M. PAQUET Jacques
M. PASZKOWSKI Stéfan
M. PETIT Francis
M. PORCHET Maurice
M. POUZET Pierre
M. POVY Lucien
M. PROUVOST Jean
M. RACZY Ladislas
M. RAMAN Jean Pierre
M. SALMER Georges
M. SCHAMPS Joël
Mme SCHWARZBACH Yvette
M. SEGUIER Guy
M. SIMON Michel
M. SLIW A Henri
M. SOMME Jean
Melle SPIK Geneviève
M. STANKIEWICZ François
M. THIEBAULT François
M. THOMAS Jean Claude
M. THUMERELLE Pierre
M. TILLIEU Jacques
M. TOLTLOTTE Jean Marc
M. TREANTON Jean René
M. TURRELL Georges
M. V AI\TEECLOO Nicolas
M. VAST Pierre
M. VERBERT André
M. VERNET Philippe
M. VIDAL Pierre
M. W ALLART Françis
M. WEL'\fSTEIN Olivier
M. ZEYTOUN1AN Radyadour

lnfom1atique
Paléontologie
Catalyse
Géométrie
Physique atomique et moléculaire
S pecrrochimie
Géographie
Chimie organique biologique
Electronique
Chimie-Physique
Chimie physique
Sciences Economiques
Sociologie
Mécanique des fluides
Géologie générale
Mathématiques
Chimie organique
Biologie animale
Modélisation - calcul scientifique
Automatique
Minéralogie
Electronique
Sciences de gestion
Electronique
Spectroscopie moléculaire
Géométrie
Electrotechnique
Sociologie
Chimie organique
Géographie
Biochimie
Sciences Economiques
Sciences de la Terre
Géométrie - Topologie
Démographie - Géographie humaine
Physique théorique
Automatique
Sociolo~rie du travail
Spectrochimie infrarouge et raman
Sciences Economiques
Chimie inorganique
Biochimie
Génétique
Automatique
Spectrochimie infrarouge et raman
Analyse économique de la recherche et développement
\1écanique

M. ABRAHAM Francis
M. ALLAMANDO Etienne
M. A~URIES Jean Claude
M. ANTOINE Philippe
M. BALL Steven
M. BART André
M. BASSERY Louis
Mme BATI1AU Yvonne
M. BAUSIERE Robert
M. BEGUIN Paul
M. BELLET Jean
M. BERNAGE Pascal
M. BERTHOUD Arnaud
M. BERTRAND Hugues
M. BERZIN Robert
M. BISKUPSKI Gérard
M. BKOUCHE Rudolphe
M. BODARD Marcel
M. BOHIN Jean Pierre
M. BOIS Pierre
M. BOISSIER Daniel
M. BOIVIN Jean Claude
M. BOUCHER Daniel
M. BOUQUELET Stéphane
M. BOUQUIN Henri
M. BROCARD Jacques
Mme BROUSMICHE Claudine
M. BUISII\i"E Daniel
M. CAPURON Alfred
M. CARRE François
M. CATTEAU Jean Pierre
M. CAYATTE Jean Louis
M. CHAPOTON Alain
M. CHARET Pierre
M. CHIVE Maurice
M. COMYN Gérard
Mme CONSTANT Monique
M. COQl:"ER Y Jean Marie
M. CORIA T Benjamin
Mme CORSIN Paule
M. CORTOIS Jean
M. COUTURIER Daniel
M. CRAMPON Norbert
M. CURGY Jean Jacques
M. DANGOISSE Didier
M. DE PARIS Jean Claude
M. DECOSTER Didier
M. DEJAEGER Roger
M. DELAHA YE Jean Paul
M. DELOR!YŒ Pierre
M. DELOR:iv1E Robert
M. DEMU~TIR Paul
Mme DEMUYNCK Claire
M. DEI\TEL Jacques
M. DEPREZ Gilbert

PROFESSEURS • 2ème CLASSE

Composants électroniques
Biologie des organismes
Analyse
Génétique
Biologie animale
Génie des procédés et réactions chimiques
Géographie
Systèmes électroniques
Mécanique
Physique atomique et moléculaire
Physique atomique, moléculaire et du rayonnement
Sciences Economiques
Sciences Economiques
Anal v se
Physique de l'état condensé et cristallographie
Ahrèbre
Biologie végétale
Biochimie métabolique et cellulaire
Mécanique
Génie civil
Spectrochimie
Physique
Biologie appliquée aux enzymes
Gestion
Chimie
Paléontologie
Mécanique
Biologie animale
Géographie humaine
Chimie organique
Sciences Economiques
Electronique
Biochimie strUcturale
Composants électroniques optiques
Inforn1atique théorique
Composants électroniques et optiques
Psychophysiologie
Sciences Economiques
Paléontologie
Physique nucléaire et corpusculaire
Chimie organique
Tectolique géodynamique
Biologie
Physique théorique
Anal v se
Composants électroniques et optiques
Electrochimie et Cinétique
lnfonnatique
Phvsiolo!!ie animak
Sciences -Economiques
Sociolo~ie
Physiqu'ë atomique, moléculaire et du rayonnement
lnfonnatique
Physique du solide - christallographie

M. DERIEUX Jean Claude
M. DERYCK.E Alain
M. DESCAMPS Marc
M. DEVRAINNE Pierre
M. DEW All...L Y Jean Michel
M. DHAMELINCOURT Paul
M. DI PERSIO Jean
M. DUBAR Claude
M. DUBOIS Henri
M. DUBOIS Jean Jacques
M. DUBUS Jean Paul
M. DUPONT Christophe
M. DUTHOIT Bruno
Mme DUVAL Anne
Mme EVRARD Micheline
M. FAKIR Sabah
M. FARVACQUE Jean Louis
M. FAUQUEMBERGUE Renaud
M. FELIX Yves
M. FERRIERE J acky
M. FISCHER Jean Claude
M. FONTAINE Hubert
M. FORSE Michel
M. GADREY Jean
M. GAMELIN André
M. GOBLOT Rémi
M. GOURIEROUX Christian
M. GREGORY Pierre
M. GREMY Jean Paul
M. GREVET Patrice
M. GRIMBLOT Jean
M. GUELTON Michel
M. GUICHAOUA André
M. HAIMAN Georges
M. HOUDART René
M. HUEBSCHMANN Johannes
M. HUTTI\.TER Marc
M. ISAERT Noël
M. JACOB Gérard
M. JACOB Pierre
M. JEAN Ravmond
M. JOFFRE Patrick
M. JOURNEL Gérard
M. KOENIG Gérard
M. KOSTRUBIEC Benjamin
M. KREMBEL Jean
Mme KRIFA Hadjila
M. LANGEVIN Michel
M. LASSALLE Bernard
M. LE MEHA U1E Alain
M. LEBFEVRE Y annie
M. LECLERCQ Lucien
M. LEFEBVRE Jacques
M. LEFEBVRE Marc
M. LEFEVRE Christian
Melle LEGRAND Denise
M. LEGRAND Michel
M. LEGRAND Pierre
tvlme LEGRAND Solan~!e
Mme LEHMANN Josiane
M. LEMAIRE Jean

Microbiologie
Infom1atique
Physique de l'état condensé et cristallographie
Chimie minérale
Géographie humaine
Chimie physique
Physique de l'état condensé et cristallographie
Sociologie démographique
Spectroscopie hertzienne
Géographie
Spectrométrie des solides
Vie de la firme
Génie civil
Algèbre
Génie des procédés et réactions chimiques
Algèbre
Physique de l'état condensé et cristallographie
Composants électroniques
Mathématiques
Tectonique- Géodynamique
Chimie organique, minérale et analytique
Dynamique des cristaux
Sociologie
Sciences économiques
Géographie urbaine, industrielle et démographie
Algèbre
Probabilités et statistiques
I.A.E.
Sociologie
Sciences Economiques
Chimie organique
Chimie physique
Sociologie
Modélisation,calcul scientifique, statistiques
Physique atomique
Mathématiques
Algèbre
Physique de l'état condensé et cristallographie
Infom1atique
Probabilités et statistiques
Biologie des populations végétales
Vie de la firme
Spectroscopie hertzienne
Sciences de gestion
Géographie
Biochimie
Sciences Economiques
Al !Zèbre
En'ibryologie et biologie de la différenciation
Modélisation,calcul scientifique,statistiques
Physique atomique,moléculaire et du rayonnement
Chimie physique
Physique
Composants électroniques et optiques
Pt!trologie
Al2:èbre
Astronomie - Météorologie
Chimie
Algèbre
Analvse
Spectroscopie hertzienne

M. LE MAROIS Henri
M. LEMOINE Yves
M. LESCURE François
M. LESENNE Jacques
M. LOCQUENEUX Robert
Mme LOPES Maria
M. LOSFELD Joseph
M. LOUAGE Francis
M. MAHIEU François
M. MAHIEU Jean Marie
M. MAIZIERES Christian
M. MANSY Jean Louis
M. MAURISSON Patrick
M. MERIAUX Michel
M. MERLIN Jean Claude
M. MESMACQUE Gérard
M. MES SEL YN Jean
M. MOCHE Raymond
M. MONTEL Marc
M. MORCELLET Michel
M. MORE Marcel
M. MORTREUX André
Mme MOUNIER Yvonne
M. NIA Y Pierre
M. NICOLE Jacques
M. NOTELET Francis
M. P ALA VIT Gérard
M. PARSY Fernand
M. PECQUE Marcel
M. PERROT Pierre
M. PERTUZON Emile
M. PETIT Daniel
M. PLlliON Dominique
M. PONS OLLE Louis
M. POST AIRE Jack
M. RAMBOUR Serge
M. RENARD Jean Pierre
M. RENARD Philippe
M. RICHARD Alain
M. RIETSCH François
M. ROBL"\TET Jean Claude
M. RCXiALSKI Marc
M. ROLLAND Paul
M. ROLLET Philippe
Mme ROUSSEL Isabelle
M. ROUSSIGNOL Michel
M. ROY Jean Claude
M. SALERNO Françis
M. SANCHOLLE Michel
Mme SANDIG Anna Margarette
M. SA WERYSYN Jean Pierre
M. STAROSWIECKI Marcel
M. STEEN Jean Pierre
Mme STELLMACHER Irène
M. STERBOUL François
M. TAILLIEZ Roger
M. T ANRE Daniel
M. THERY Pierre
Mme TJ OTT A Jacqueline
M. TOURSEL Bernard
M. TREANTON Jean René

Vie de la fim1e
Biologie et physiologie végétales
Algèbre
Systèmes électroniques
Physique théorique
Mathématiques

• Informatique
Electronique
Sciences économiques
Optique- Physique atomique
Automatique
Géologie
Sciences Economiques
EUDIL
Chimie
Génie mécanique
Physique atomique et moléculaire
Modélisation,calcul scientifique,statistiques
Physique du solide
Chimie organique
Physique de l'état condensé et cristallographie
Chimie organique
Physiologie des structures contractiles
Physique atomique,moléculaire et du rayonnement
Spectrochimie
Systèmes électroniques
Génie chimique
Mécanique
Chimie organique
Chimie appliquée
Physiologie animale
Biologie des populations et écosystèmes
Sciences Economiques
Chimie physique
lnforrnatique industrielle
Biologie
Géographie humaine
Sciences de gestion
Biologie animale
Physique des polymères
EUDIL
Anal v se
Composants électroniques et optiques
Sciences Economiques
Géographie physique
~vlodélisation,calcul scientifique,statistiques
Psychophysiologie
Sciences de gestion
Biologie et physiologie végétales

Chimie physique
lnfom1atique
Infom1atique
Astronomie - Météorolocie
lnfom1atique ~
Génie alimentaire
Géométrie- Topologie
Systèmes électroniques
\-lathématiques
lnfo1111atique
Sociologie du travail

M. TURREL Georges
M. V ANDIJK Hendrik
Mme V AN ISEGHEM Jeanine
M. V ANDORPE Bernard
M. VASSEUR Christian
M. VASSEUR Jacques
Mme VIANO Marie Claude
M. W ACRENIER Jean Marie
M. W ARTEL Michel
M. W A TERLOT Michel
M. WEICHERT Dieter
M. WERNER Georges
M. WIGNACOURT Jean Pierre
M. WOZNIAK Michel
Mme ZINN JUSTIN Nicole

Spectrochimie infrarouge et raman

Modélisation,calcul scientifique,statistiques
Chimie minérale
Automatique
Biologie

Electronique
Chimie inorganique
géologie générale
Génie mécanique
Infom1atique théorique

Spectrochimie
Algèbre

Remerciements

Cette étude a été effectuée au Laboratoire d'Informatique Fondamentale de Lille (LIFL - UA 369
du CNRS), dirigé par Monsieur le Professeur J.M.Geib qui a bien voulu me faire l'honneur de
présider le jury de cette thèse.

Je remercie Monsieur le Professeur C.Percebois, qui a participé au jury en tant que rapporteur,
pour ses remarques constructifs qui ont permis d'améliorer la rédaction du document.

Je remercie Madame B.Plateau d'avoir accepté de rapporter mon travail.

Je remercie Monsieur J.Chassin de Kergommeaux et Monsieur P.Devienne d'avoir accepté de
participer au jury.

Je remercie Monsieur le Professeur B.Toursel qui m'a bien accueillie dans son équipe et qui a suivi
la progression de ce travail.

Je remercie Monsieur le Professeur G.Goncalves qui a suivi l'évolution de ce travail, pour sa
disposition à tout moment et ses discussions utiles.

J'adresse mes vifs remerciements à Monsieur P.Lecouffe, qui est l'initiateur de cette étude, pour
son aide précieux, ses conseils et son soutien tout au long du travail.

Mes remerciements sont aussi adressés à Madame M.P.Lecouffe pour sa sympathie dans les
moments les plus difficiles.

Je remercie Madame I.Deligniers qui a bien assuré la lecture de ce document.

Les simulations ont été effectuées à l'IUT-A (Informatique), je tiens à remercier les personnels
pour leur patience et leur coopération.

J'adresse également mes remerciements aux collègues de l'équipe de recherche PALOMA pour
leur soutien.

Je remercie la Mission Française de Recherche et de Coopération au Caire pour m'avoir proposé
une bourse d'étude tout au long de mon travail depuis 1991.

Je tiens enfin à remercier Monsieur H.Glanc qui a assuré la reprographie de ce mémoire dans des
délais très rapides.

Avec reconnaissance,

A ma famille

~efuce __ __

Preface

The past few years have seen an explosion of interest in the field of logic programming. An

indication of interest is the nurnerous number of workshops and conferences held and the

joumals that are now devoted exclusively to logic programming.

Much of the current research involves techniques for implementing and improving logic

programming languages. One of the attractions of logic programming is the clean separation

between semantics and control. It is easy to separate what a program should compute from

how an implementation can efficiently compute it. Accordingly, though earl y

implementations were quite inefficient compared to conventional programming languages,

there had been a promise for more efficient implementations since it is possible to experiment

different implementation techniques without violating the semantics.

The major advantage of the separation of semantics from control, however, is the potential

of parallelism. Logic programrning languages, like languages based on applicative models,

are often inefficient compared to traditional languages when implemented on the von

Neumann architectures. More hope for efficient implementation lies in parallel architectures.

ln fact, sorne argue the other side of the coin: languages based on non von Neumann models

provide the key to the acceptance of large scale parallel machines, due to inherent difficulties

of exploiting parallelism in von Neumann languages.

Prolog has always been the rnother tongue of logic programming languages. Since its

existence, research efforts have never ceased to understand, study or improve Prolog.

Different techniques were proposed to enhance the execution model of Prolog programs,

whether sequential or parallel.

The main feature that characterises the classic execution model of Prolog is the backtracking.

The use of traditional backtracking to explore a search space top down starts with the initial

1

Preface-------------------------------

state as the current state. Then, for each forward derivation step, one of the operators

applicable to the current state is used to derive a new state. This forward execution is

repeated un til either a solution state is reached, and success is reponed, or the set of unused

opera tors applicable to the current state is empty. At this point, the search backrracks. The

current state is dropped, its predecessor is redefined as the current state and forward

execution restarts. If backtracking beyond the initial state is required, failure to find any

more solutions is reponed.

Thus, afrer reaching a failing state, the system simply returns to the previous states.

Sometimes, however, doing this does not prevent the repetition of the same failure .

Focu sing on a failing state, a thrashing traffic can result where the system performs an

exhaustive search over a sub space which is irrelevant to the failure. Severa! effons were

proposed to achieve intelligent backtracking th at succeeded in reducing the number of retried

states attempted to find all the solutions of a given problem.

In this thesis, an attempt is made to eliminate the classic deep backtracking while executing a

fini te non deterministic Prolog pro gram. No returning to predecessor states takes place; each

state is tried once and on/y once. The resolution resembles greatly a breadth-first search

without the enormous evolution of memory space due to a synchronous OR layer that

assembles ali the possible solutions from an OR node, before attempting the foilowing state.

The execution starts from the initial state, where ail alternatives are attempted, then ail the

resulting solutions are assembled into packets, successes and failures together, and these

packets propagate in a forward sense to successive states and the same operation is repeated

until the final state is attempted. The final outcome is a packet of solution s. This packet

conforms normaily to the outcome of standard Prolog, i.e. same number of solutions and

same order as standard Prolog.

This model necessitates a detailed study. The idea is to change the manner of finding the

solutions . We are faced with a packet of solutions propagating between the different states.

Accordingly, variables are multi-insranriated, in the sense that a variable may be bound to

more than one value at a time. Semanticaily, this means that the system attempts to solve the

goal by one scan to its search space and stores ail the possible alternative solutions during

the multi-resolution.

Consequently, the standard unification algorithm implemented in the standard resolution

model is not sufficient to support ali the unification operations between two terms. The

mu/ti-unification algorithm specifies the manner of unifying two terms, whether non , mono

2

~efucc __ __

or multi-instantiated. It is based upon the classical unification algorithm but with added

modifications to support multi-unification.

The failures occuring during the multi resolution were treated, at the first place, statically

after the end of the resolution at the moment of the display of all possible solutions. When

running large benchmarks, it proved to be inefficient due to its large consumption of

memory space and computation time. We theo attempted to treat, as muchas possible, the

failures during the unification operations dynamically to discard all useless instantiations

during the following attempts to satisfy the coming states.

A simulator is built based on a meta interpreter, written in Prolog, with the objective to

observe the behaviour of the proposed model. It executes the Prolog programs in the multi­

resolution mode, performs the multi-unification, identifies correctly the multi-instantiations

of the variables and produces the correct results. The simula tor also supports the execution

of programs including arithmetic and relational operations. Comparing the results obtained to

that produced by standard Prolog, the output of the simulator conforms to Prolog, producing

the same number of solutions, in the same order as Prolog.

The results are prornising, in the sense that employing the multi-resolution mode! may result

in speedups when compared to the standard resolution model, even in the sequential mode.

This is due to the elimination of redundant computations where ali the solutions are produced

after one full scan of the search states.

Another potential of the model emerges from the fact that we succeeded to represent the

ensemble of solutions in a vector-like form. We discuss different underlying intrinsic

parallelism features that may be exploited in the multi-resolution model.

3

~efuce __ __

Organization of the Thesis

Chapter One

In this chapter, a survey study is presented on logic programming, namely Prolog. This

includes the classic execution mode! of Prolog and the main features that is of our interest. A

special attention is given to the backtracking feature, where we discuss thoroughly its

definitions, types and ali the already attempted propositions and optimisations to ameliorate

the execution of a standard Prolog program. To better understand the problem, we present a

simulation of the AND/OR process mode! of Prolog that observes the backtracking

behaviour. We terminate with the objectives of the work presented in this thesis.

Chapter Two :

Chapter two discusses the basic idea of the execution mode! that we are presenting. We

quickly pass through the different phases , demonstrating the role of each phase in the

proposed multi-resolution. Different underlying problems that might occur due to the

replacement of the deep backtracking by the multi-instantiated objects are made clear.

Chapter Three :

Here , we define the new mode! for the execution of Prolog programs, the multi-resolution

mode!. The main characteristics of the mode! are presented including the representations of

the vari ables, the multi-unification algorithm, and the internai data structures that are

employed to store the information of the search in the different states. We prove the

soundness of our mode! by overcoming ali the previous ambiguities discussed in the

previous chapter.

Chapter Four :

In this chapter, we discuss the failures occuring during the multi-resolution of Prolog

programs. Different techniques are proposed to treat different types of failures. A

comparison between these techniques is given together with a full criticism on their

perfonnance.

4

~efuce __ __

Chapter Fiye ;

This chapter is dedicated to a discussion on the evaluable arithmetic operations and

predefined predicates and how to execute such instructions in the multi-resolution model. A

representation of an arithmetic multi-instantiation is discussed followed by the multi­

unification algorithm for arithmetic and relation operations. We discuss how l/0 predicates

may be implemented, taking the write as an example. It also serves for the display of the

solutions to the users. We present two algorithms to display the solutions with a full

comparison between them.

Chapter Sjx ;

A detailed description of the simulator is presented. It is written in LPA MacProlog. It is

based on a meta-interpreter for the standard resolution model as well as the multi-resolution

model. Tested benchmarks are presented that demonstrate the performance parameters

comparing multi-resolution to classical resolution and to related work discussing the same

idea. We also discuss the complexity of the multi-unification algorithm with respect to the

standard unification algorithm.

Chapter Seven ;

Terminating the discussion on the model, we recapitulate the different properties of the

multi-resolution model on situating each aspect with respect to the already existing research

domains. We discuss the perspectives of this work, pointing out the underlying the

potentials of parallelism in the multi-resolution model.

5

Contents

Introduction (en français)

1 Motivation and Objectives

1.1 Introduction

1.2 Basic elements in Prelog

1.2.1 Facts

!.2.2 Queries

1.2.3 Rules

1.2.4 The logical term

1.2.4.1 The logical variable

1.3 Control in Prelog

1.4 Matching and unification

1.5 Resolution tree

1.5.1 A choice point

1.5.2 Solution paths

1.6 Failures in Prelog

1.7 Determinism of a goal

1. 7.1 Deterministic goal

1.7.2 Nondeterministic goal

1.7.2.1 Don't know nondeterminism

1.7.2.2 Don't care nondeterminism

1.8 Backtracking :Definition

1. 8.1 Types of backtracking

1.8.1.1 Shallow backtracking

1.8.1.2 Deep backtracking

1.8.2 Overhead of backtracking

1.8.3 Standard AND/OR

1.8.3.1 AND/OR process model

1.8.3.2 Priciple

1.8.3.3 Running severa] benchmarks

1.8.3.4 Recapitulation

1.2

1.3

1.3

1.4

1.4

1.4

1.5

1.6

1.7

1.8

1.8

1.9

1.10

1.11

1.11

1.11

1.12

1.12

1.13

1.13

1.13

1.14

1.15

1.16

1.16

1.16

1.17

1.21

1.8.4 Optimisations of backtracking

1.8.4.1 Intelligent backtracking

1.8.4.2 Semi intelligent backtracking

1.8.4.3 Partial elemination of backtracking

1.9 Motivations and objectives

II Basic Idea: A Look Through

1.21

1.21

1.22

1.23

1.23

11.1 Introduction ll.2

11.2 Mode! structure II.6

ll.3 The multi-execution module II.7

11.3.1 Search strategy 11.7

ll.3.2 Memory representation of a multi-instantiation 11.11

II.3.3 Coherency of an instantiation II.11

11.3.4 Coherency of an operation including 2 multi-instantiations II.13

ll.3 .5 Multi-unification operations II.15

II.3.5.1 Multi-unifying a multi-instantiation to another term II.15

-II.3.5.2 Treatrnent of partial success/failures II.20

II .3.5.3 Types of partial success/failures II.25

11.3.5.4 Recapitulation 11.26

II.3 .6 The multi-resolution tree II.27

ll.4 The multi-outputs module II.27

II.4.1 Existing data structures II.27

11.4.2 Display of solutions II.28

II.4.2 .1 Reconstruction of the standard resolution tree II.28

11.4.2.1 Without the reconstruction of the standard resolution tree 11.29

11.5 Conclusion

III The Multi-execution model

ITI.1 Introduction

ill.2 The multi-execution mode!

III.2.1 The multi-execution algorithm

lll.3 Representation of a multi-instantiation

lll.3 .1 A multi-instantiation

III .3.2 Memory representation of a multi-instantiation

III.3 .3 A choice point

III.3.4 A branch in a choice point

III.3 .5 A date path

II.30

III.2

III.4

III.4

III.5

III.5

III.6

III.9

III.lO

III.l 0

IJI.3.5.1 Construction of a date-path

111.3.5.2 Features of a date-path

ll.4 Multi-unification algorithm

lll.4.1 The standard unification algorithm

III.4.2 The multi-unification algorithm

III.4.2.1 The failures database

III.4.2.2 Multi-unification cases

111.4.2.3 A general example

III.4.2.4 Coherency of a sub-term

III.4.2.5 Coherency of a multi-unification operation

111.4.2.6 Partial success/failures

111.4.2.7 Recapitulation of failures

III.5 The multi-resolution tree

III.6 Conclusion

IV Failures in Multi-resolution

IV.l Introduction

IV.2 Classes of failures

IV .2.1 Explicit failures

IV .2.2 Implicit failures

IV.3 Types of implicit failures

IV .3.1 Partial success/failure

IV.3.2 Total failures

IV.3.2.1 Direct total failures

IV.3.2.2 Indirect total failures

IV.4 Treatment of failures

IV.4.1 Failures' database

IV.4.2 Record structure

IV.4.3 Representation of a partial success/failures

IV.5 Transcations of the failures' database

IV.5.1 Update of the database

IV.5.1.1 Total failures' treatment

IV.5.1.2 In the synchronous OR level

IV.5.2.Utilisation of the database

IV .5.2.1 Failures in the multi-unification

IV. 5.2.1.1 ln the same branch location

IV.5.2.2 Failures in the multi-outputs phase

IV.6 Conclusion

III.12

111.13

111.15

111.15

111.17

111.18

111.19

Ill.28

Ill.30

111.32

111.35

111.37

111.38

111.43

IV.2

IV.2

IV.2

IV.3

IV.4

IV.4

IV.4

IV.4

IV.5

IV.5

IV.6

IV.6

IV.6

IV.13

IV.13

IV.13

IV.14

IV.19

IV.19

IV.20

IV.22

IV.23

V Arithmetic and predefined predicates

V.l Introduction V.2

V.2 A standard arithmetic operation V.2

V.3 A multi-arithmetic operation V.3

V.4 The multi-unification algorithm for multi-arithmetic V.4

V.4.1 Multi-unification cases V.5

V.4.2.Memory representation of arithmetic multi-instantiations V.9

V .4.3 Creation of date-paths of an arithmetic sub-term V .12

V.4.4 Coherency of an arithmetic sub-term V.12

V.4.5 Coherency of an arithmetic multi-unification operation V.12

V.4.6 Treatment of failures V.l4

V .5 Predefined predicates V .15

V.5.1 Input/Output predicates V.15

V.5.1.1 read V.15

V.5.1.2 write V.19

V.5.1.3 Display of solutions V.20

V .5.1.3.1 Same order and number as Prolog V .20

V.5.1.3.2 Not same number nor same order as Prolog V.21

V.5.2 fail V.22

V.5.3 The!

V.5.4 not(X)

V.6 Conclusion

VI Model Performance

VI.l Introduction

VI.2 Complexity of the multi-unification

VI.3 The meta-interpreter of the multi-resolution

Vl.3.1 Perfomance parameters

Vl.3.2 Experimental results

VI.3.2.1 Model performance

Vl.3.2.2 Speedups

VI.3.2.3 Recapitulation

VI.3.2.4 Theoretical speedup

VI.3.2.5 Memory consumption

VI.4 Conclusion

V.22

V.24

V.25

VI.2

V1.2

VI.6

VI.6

VI.7

VI.7

VI. lü

Vl.16

Vl.l6

VI.18

VI.20

VII Summary and Perspectives

Vll.l Introduction VII.2

Vll.2 Related Work VII.2

VII.2.1 Reducing the amount of work VII.2

VII .2.1.1 A more intelligent backtracking VII.3

VII.2.1.2 Constraint logic programming languages (CLP) VII.3

VII.2.1.3 Hybrid parallel models VII.4

VII.2.1.4 DAP Prolog VII.5

VII.2.1.5 MultiLog VII.5

V11.2.2 Multiple-bindings of variables VII.?

VII.2.2.1 Multi-sequential model VII.8

VII.3 Perspectives

VII.ll

VII.3.1 Parallelism potentials in the multi-resolution model

VI1.12

VII.3.2 Implementation of the multi-resolution model

VII.13

VII.4 General conclusion

VII.14

Appendix A Benchmarks listings

References

Introduction

Introduction

Ce travail est consacré à l'amélioration de temps d'exécution de programmes

Prolog. Nous présentons le modèle de mu/ti-résolution de Pro log dans lequel le

retour arrière profond est éliminé. Ce modèle est basé sur une résolution OU

synchrone et une gestion des multi-instanciations. Nous discutons toutes les phases

différentes du modèle proposé. Nous comparons des résultats de simulation basée

sur un meta-interpreteur avec la résolution standard. Nous terminons avec une

ourerture sur les travaux futurs.

1

Introduction

1. Introduction

L'accroissement des performances nécessaires au développement des applications en

intelligence artificielle utilisant la programmation logique, notamment Prolog, nécessite

une accélération des temps d'execution, pouvant etre obtenue en séquentiel et en

parallèle.

Ce travail est une conséquence de plusieurs travaux menés précédemment au LIFL :

d'abord sur un modèle d'exécution à grain fin basé sur l'arbre ET/OU [22,23] puis sur

des améliorations du modèle multi-séquentiel [3] au niveau de la gestion de taches et des

instanciations multiples. L'exécution parallèle de Prolog posant des problèmes au niveau

des instanciations multiples, nous avons cherché à mettre en oeuvre un modèle articulé

autour de ces instanciations multiples. Cela nous a conduit à un modèle gérant des

environnements multiples, synchronisé au niveau OU, sans redondances d'exécution et

sans le retour arrière classique. On appelle ce modèle la multi-résolution de Prolog.

Ce modèle n'est pas a priori un modèle d'exécution parallèle, mais doit être vu comme un

modèle général d'exécution de programmes Prolog, non déterministes. Ce modèle peut

être utilisé pour accélérer J'exécution séquentielle en bénéficiant de la non redondance de

certains traitements . Nous montrons quelques résultats de simulations où des

accélérations intéressantes ont été obtenues. De plus, les instanciations multiples des

variables peuvent être tout naturellement représentées par des vecteurs, permettant de ce

fait un traitement sur des machines travaillant en mode SPMD.

2 Optimisations du retour arrière

Pour accélérer l'exécution d'un programme Prolog, il y a trois approches différentes : la

première est d'améliorer l'implantation de laW AM [45,46,47] pour une exécution plus

efficace, la deuxième est d'exploiter le parallélisme du modèle d'exécution standard de

Prolog et exécuter le programme sur une machine parallèle [6,7,9,10,18,48], et la

troisième est de définir d'autres modèles d'exécution pour les programmes

[12, 15,26,30,34,3 8].

Nous avons choisit la troisième approche en tenant de conserver les potentialités offertes

par les deux autres aspects. L'accélération séquentielle nous a tenté à l'étudier pour

2

Introduction

plusieurs raisons : on utilise les machines séquentielles qui existent déjà et on ne change

rien dans la syntaxe de programmes déjà écrits.

L'élément caractéristique du modèle d'exécution classique de Prolog est le retour arrière.

Dans les programmes non déterministes, à cause des échecs et des retours arrière, on ne

peut pas empêcher la répétition de certains calculs plusieurs fois. Pour mieux observer ce

phénomène, des simulations ont été effectuées et nous avons remarqué que la ré­

exécution de sous buts à cause du retour arrière pouvait être fréquente.

Pour avoir une modèle d'exécution plus efficace, on peut essayer de diminuer la

redondance due au retour arrière.

Dans le cadre d'une étude bibliographique, nous présentons quelques travaux réalisés

précédemment pour optimiser le comportement du retour arrière dans le modèle de la

résolution standard de Prolog. Deux approches différentes peuvent être choisies:

l'optimisation du nombre de retours arrière effectués ou l'élimination partielle du retour

arrière. Nous discutons chaque approche plus en détail.

1- L 'optjmjsatjon du comportement dy retour arrière

a- Le retour arrière intelligent

Cette approche est basé sur la mémorisation de la cause des échecs précédents

[4,5, 12, 13,19,30,31 ,35,36]. Considérons le programme suivant :

p(a). p(b).

q(1). q(2).

r(b,J). r(b,2).

et la question :- p(X), q(Y), r(X,Y).

Dans une résolution standard de Prolog, la variable X est lié à a et Y à 1. Le sous-but

r(a,J) échoue. Un retour arrière est effectué et Y est lié à 2 et essayer de résoudre r(a,2),

conduit à un nouvel échec.

Un interpréteur intelligent analyse la cause d'échec. Il mémorise que le sous-but r(a,_)

échoue toujours à cause de la présence de l'atome a en premier argument. Dans ce cas,

3

Introduction

quand le sous-but r(X,Y) donne un échec, le système effectue un retour arrière jusqu'au

point de choix p(X) (et pas q(Y)) sans perdre de temps à essayer des alternatives

différentes pour Y.

b- Le retour arrière semi-intélligent

Considérons la question:

:-p(A), q(B), r(A).

avec les mêmes faits que pour le retour arrière intelligent. Quand r(A) échoue, on peut

sauter q(B) dans le retour arrière parce que ce sous but ne peut pas donner une alternative

de A pour que r(A) réussisse. Cette approche est valable pour les sous-buts independent

(qui ne partagent pas les variables) [34].

2- L'élimjnation partielle du retoyr arrière

Dans les deux approches précédentes, on a essayé d'optimiser le nombre de foi le retour

arrière est effectué. D'autres travaux ont tenté d'éliminer partiellement le retour arrière.

DAP Prolog, proposé par Kacsuk et al. [26], est une extension du Prolog standard

tournée vers une exécution SIMD. Dans cette approche, seulement des parties de

programmes peuvent s'exécuter sans retour arrière. Ces parties ne comportent du non

déterminisme que sur des faits. Pour des règles différentes dans un point de choix, le

retour arrière classique est effectué.

Dans MultiLog[38,39,40], on élimine partiellement le retour arrière en ajoutant un

opérateur (disj) avant quelques sous buts non déterministes. Ces sous buts sont résolus

en essayant toutes leurs alternatives puis on passe une disjonction de solutions au sous

but suivant. Dans ce modèle il y a un encombrement de taille mémoire du à la

multiplication des environnements : en effet, chaque fois qu'une nouvelle alternative est

explorée, on copie tous les environnements.

Une étude bibliographique plus complète sur ces travaux est présentée au chapitre 1.

4

Introduction

3 Notre proposition

Tout les approches pour éliminer le retour arrière déjà proposées concernent des parties

de programmes (base de faits en DAP Prolog). Le programmeur doit sélectionner des

parties de programmes pour ajouter des annotations (set_mode pour DAP Prolog ou disj

pour MultiLog). Nous proposons une approche plus générale, transparente à l'utilisateur,

où on élimine complètement le retour arrière profond quelle que soit la nature du

programme (base de faits, règles, récursivité) et ceci sans modifier la syntaxe originale

des programmes.

Notre idée de base est de ne pas répéter un travail déjà réalisé. Nous éliminons

totalement le retour arrière profond: on résout chaque sous but une seule fois en essayant

tous les alternatives (têtes de clauses) mais on conserve le retour arrière superficiel.

Ensuite, on rassemble toutes les instanciations des variables avant de tenter le sous but

suivant. On ne retourne jamais en arrière au sous but précédent.

Dans le chapitre 2, nous présentons plus en détailles idées de base du modèle.

Considérons le début du programme de génération de nombres premiers suivant :

gener(l). gener(2). gener(3). gener(4).

impair(X) :-X mod 2 is 1.

premier(X):- ...

et la question :- gener(X), impair(X), premier(X).

En Prolog classique, à cause des échecs et sorties de solutions, le sous-but impair est

exécuté 4 fois, le sous-but premier 2 fois et 2 solutions sont sorties pendant la résolution.

Dans notre modèle, il n'y a pas de retour arrière profond, les sous-buts impair et premier

ne sont exécutés qu'une seule fois, ce qui implique que les 4 cas possibles pour le sous­

but gener soient exécutés avant de passer au sous-but impair. Plus précisément les 4 faits

gener doivent être exécutés, les 4 instanciations différentes de X doivent être

mémorisées. Quand toutes les alternatives d'un sous-but ont été exécutées (ce n'est pas

toujours des faits comme ici) une phase de synchronisation OU est effectuée. Pour

chaque variable de sous-but, les instanciations sont regroupées sous forme

5

Introduction

d'instanciations multiples. Pour l'exemple ci-dessus, les 4 instanciations de X sont

regroupées, de façon ordonnée, dans une structure notée :

{ 1, 2, 3, 4}

La variable X est alors instanciée à la structure précédente, elle est dite multi-instanciée et

sera reconnue comme telle par la suite par rapport aux variables mono-instanciées

classiques qui coexistent. Le premier sous-but étant complètement exécuté, le deuxième

sous-but impair peut être à son tour exécuté. La variable X étant multi-instanciée; pour 2

instanciations il y aura succès et pour les deux autres il y aura échec. Bien entendu

comme la variable X est multi-instanciée l'unification classique ne peut pas être utilisée et

il faut utiliser la multi-unification décrite ci-dessous. Pour la suite de la multi-résolution,

il est nécessaire de garder trace de ces succès et de ces échecs. Plusieurs solutions sont

alors possibles, comme:

- modifier la variable X, mais cela pose des problèmes si le sous but a plusieurs

alternatives.

- ne pas modifier la variable et garder des informations sur l'échec; c'est la solution qui a

été retenue.

La prise en compte des échecs, mais aussi des problèmes techniques de mise en oeuvre

du modèle, nécessitent d'ajouter à chaque instance de variable une information

supplémentaire dite date d'instanciation. Pour une exécution séquentielle chaque

unification (ou multi-unification) effectuée est numérotée (datée) par un entier positif et

toutes les variables instanciées lors de cette unification ont cette date qui leur est associée.

De plus, on numérote les points de choix dans un ordre croissant selon leur apparition

dans la multi-résolution. Ainsi, la variable X de l'exemple précédent sera effectivement

multi-instanciée à la structure :

{ 1, [Q, 1), (l, 2), Gi. 3), <±. 4)]}

le chiffre en gras est le numéro du point de choix, et les petits chiffres soulignés

correspondent aux dates d'instanciations des différentes instances. La création de cette

multi-instanciation se passe dans la phase OU synchrone de ce point de choix.

6

Introduction

Le numéro du point de choix et les dates ont deux rôles essentiels: d'une part déterminer

si deux variables ont été instanciées en même temps ou pas, d'autre part mémoriser les

échecs.

Les détails du modèle sont présentés en chapitre 3.

4 Le modèle de multi-résolution

Le modèle de multi-résolution diffère sensiblement de la résolution classique. La multi­

résolution ressemble a priori beaucoup à un parcours d'arbre en largeur d'abord, mais ce

n'est pas le cas à cause de la synchronisation OU. Voici une partie des arbres de

résolution de l'exemple précédent dans le cas classique et dans le cas de multi-résolution :

gener(l) gener(2) gener(3) gener(4) gener(l) gener(2) gener(3) gener(4)

X={l,[(l ,1),(2,2),(,l,3),(~,4)]}

impair(l) impair(2) impair(3) impair(4) impair((l,[Q ,1).(2 ,2),(.3.,3),(:4.4)]}

Arbre de résolution classique Arbre de mu/ti-résolution

Dans l'arbre de multi-résolution, la synchronisation OU est représentée par la zone

grisée. On remarque que le sous but impair n'est exécuté qu'une seule fois, mais avec

une multi-instanciation.

La résolution classique de Prolog fait un parcours d'arbre de gauche à droite en

profondeur d'abord. Dés qu'une solution est trouvée, elle peut être sortie. La multi-

7

Introduction

resolution fait un parcours d'arbre de gauche a droite, quasi largeur d'abord et les phases

OU synchrone créent les multi-instanciations, alors toutes les solutions apparaissent en

même temps à la fin de la multi-résolution.

Donc, le modèle de multi-résolution est divisé en deux phases : la phase de multi­

exécution et la phase de multi-sorties.

Ci-dessous nous discutons chaque phase en plus de détails.

1- La phase de multj-exécution

C'est la première phase du modèle de multi-résolution. Elle correspond à la résolution

multiple d'un but donné. Les entrées sont un programme Prolog et une question. Chaque

sous-but est résolu une seule fois en essayant toutes les alternatives de manière

séquentielle (dans l'ordre d'écriture dans le programme). A la suite de chaque sous-but,

est exécuté tine phase OU synchrone où les multi-instanciations sont crées. Ceci est local

à chaque point de choix.

Du fait de la présence des variables multi-instanciées, l'algorithme standard d'unification

ne peut pas être utilisé. C'est pourquoi on a définit l'algorithme de multi-unification.

L 'a!~orithme de multi-unification

La multi-unification est l'unification standard de Prolog à laquelle a été ajoutée la prise en

compte des multi-instanciations. Les détails de cet algorithme est présenté en chapitre 3,

et on le compare avec l'algorithme d'unification standard.

La figure ci-dessous précise le fonctionnement de la multi-unification pour tous les cas où

des multi-instanciations apparaissent. X et Y sont des variables, x et y sont des

constantes, Xi et Yi sont des variables ou des constantes, {Ci, ... } représente une multi­

instanciation, di est la date de branche du sous-terme Xi. ':=' est une opération

d'affectation, et '=' symbolise une opération de multi-unification. Les premières

colonnes sont les termes à unifier, la troisième indique les actions à effectuer et la

dernière indique la complexité de ces actions.

8

Introduction

terme X terme Y action(s) complexité

x rcv l X:=fCv ... l 0(1)

{Cx, ... } y Y:=(... } 0(1)

x (Cy,[(d },y 1), ... ,(dn,Yn)J} x=yj pour i=l-n O(n)

{Cx,[(dl ,x 1), ... ,(dn,xn)]} y y=xj pour i=l-n O(n)

(C,[(d 1 ,X 1), ... ,(dn,Xn)]} [C,[(dl ,y}), ... ,(dn,yn)]} Xi=Yi pour i= 1-n O(n)

{Cx,[(dl .x 1), ... ,(dn,xn)]} {Cy,[(dt .YI), ... ,(dm,Ym)] Xi=Yi pour i=l-m etj=l-n O(m*n)

fl({ C,[(d J.X 1), ... ,(dn,xn)] f2(t) échec 0(1)

Deux algorithmes de multi-unification sont présentés : le premier pour les opérations non

arithmétiques qui sont représenté par partage de données, et le deuxième pour les

opérations arithmétiques qui sont présenté par copie. Ce dernier est discuté au chapitre 5.

Durant la multi-unification, lors des accès aux sous-termes, des dates de branche sont

rencontrées .. Ces dates sont assemblées pour former ce qu'on appelle des chemins

d'accès aux sous-termes. Ce sont ces chemins qui servent à mémoriser les échecs.

Dans Prolog classique, l'unification d'un sous-but conduit soit à un échec soit à un

succès. Une des particularités de la multi-unification est de conduire à trois cas possibles

dans le cas où il y a des variables multi-instanciées :

- il y a succès pour toutes les combinaisons des variables multi-instanciées, on a alors un

succès total.

- il y a succès pour certaines combinaisons des variables multi-instanciées et il y a échec

pour certaines combinaisons des variables multi-instanciées, on a alors un échec/succès

partiel.

- il y a échec pour toutes les combinaisons des variables multi-instanciées, on a lors un

échec total.

En cas d'échec total, on dé-instancie toutes les variables qui ont été instanciées, et un

retour arrière superficiel est effectué pour essayer la tête de clause suivante comme en

Prolog classique.

La multi-unification doit aussi mémoriser des informations concernant les échecs partiels

et traiter les échecs éventuels provenant de multi-unifications précédentes. Ces échecs

9

Introduction

partiels sont gardés dans une structure de données spéciale qu'on appelle la base des

échecs.

Dans chapitre 4, nous présentons en détaille traitement des échecs dans le modèle de

multi-résolution.

2 Le phase de multi-sortjes

C'est le deuxième phase du modèle de multi-résolution. Ses entrées sont les structures de

données crées dans la phase de multi-éxecution, c'est-à-dire les multi-instanciations des

variables de la question, la base des échecs et l'arbre de multi-résolution. C'est ici, qu'on

affiche les solution à l'utilisateur.

Au début du travail, nous avons écrit uri algorithme qui reconstitue l'arbre de résolution

standard en profondeur d'abord et de la gauche à droite. Avant de considérer une

instanciation d'une variable, on vérifie en consultant la base des échecs que cette

instanciation n'a pas donné un succès/échec partiel sur la branche courante. Cet

algorithme permet de sortir les mêmes solutions que Prolog (même nombre de solutions

et même ordre).

Après quelques simulations, il est apparu que cet algorithme consomme souvent un

temps plus élevé que le temps de multi-exécution, ceci à cause de la recréation de l'arbre

de la résolution standard qui est fréquemment complexe.

Nous avons donc écrit un autre algorithme de sortie de solutions plus efficace pour

profiter pleinement des performances du modèle dans la phase de multi-exécution. Nous

avons abandonné la reconstitution de l'arbre de résolution standard : les solutions sont

produites à l'aide des multi-instanciations et de la base des échecs. Cet algorithme sort les

bonnes solutions, mais ni dans le même ordre ni le même nombre que Prolog standard :

Prolog standard peut produire (de façon qu'on peut juger redondante) des solutions

identiques qui n'apparaissent qu'en un seul exemplaire dans cet algorithme.

Les deux algorithmes sont présentés en détail au chapitre 5, avec quelques prédicats

prédéfinits. Les différences en terme de performances du modèle en employant chaque

algorithme de multi-sorties sont présentés dans le chapitre 6 avec d'autres résultats de

simulations.

JO

Introduction --------------------------------

5 Performances du modèle

Le modèle de multi-résolution a été validé à l'aide d'un simulateur basé sur un méta­

interpréteur écrit en Prolog. Les entrées sont un programme Prolog standard, sans

aucune modification de la syntaxe et une question à résoudre, et les sorties sont les

solutions possibles.

Nous avons étudié deux types de perlonnances dans ce modèle: l'accélération et la

consommation de mémoire. Pour le premier, nous avons mesuré l'accélération théorique

et mesures de temps.

Nous avons mesuré le temps passé dans chaque phase de la multi-résolution : la multi­

éxecution et la multi-sorties. Pour la dernière, les chiffres indiquent la différence de

perfom1ance entre les deux algorithmes de sortie de solutions.

Nous avons simulé aussi le modèle standard de l'exécution de Prolog où tout est écrit de

façon aussi semblable que possible. Nous avons calculé l'accélération d'exécution du

modèle multi-résolution par rapport au modèle standard. Dans certains cas, on a eu une

amélioration très intéressante.

La penom1ance du modèle est présenté au chapitre 6.

Une autre mesure de performance est l'accélération théorique. Cette mesure est inspiré du

travail du Kacsuk et al. [26]. Ils mesurent l'accélération en terme de taille de l'arbre de

résolution de leur modèle par rapport au modèle standard. Nous avons fait le même avec

le modèle de multi-résolution en mesurant la taille de l'arbre de multi-résolution et la

comparant avec celle de la résolution standard. Les chiffres donnés montrent la différence

dans taille de l'espace de recherche de deux modèles.

L'accélération de l'exécution d'un programme donné se fait souvent au détriment de

l'encombrement mémoire. Cet encombrement mémoire est le dernier paramètre que nous

avons mesuré. Il est évident que notre modèle d'exécution occupe plus de mémoire que le

modèle standard pour exécuter le même programme. Par contre, à cause de la

synchronisation OU, la multi-résolution n'a pas la complexité d'un parcours d'arbre en

largeur d'abord. L'encombrement mémoire théorique du modèle standard de Prelog

(profondeur d'abord) est de l'ordre de 0(d) où d est la profondeur moyenne de l'arbre de

11

Introduction --------------------------------

résolution. Pour le modèle largeur d'abord cet encombrement est de l'ordre O(bd) où b

est le nombre moyen de branche de point de choix. Dans le modèle multi-résolution, la

profondeur et la largeur moyennes de l'arbre multi-résolution sont les même mais par

contre l'encombrement de mémoire théorique est de l'ordre O(b*d) . Ça montre que le

modèle de multi-résolution se situe entre le modèle de profondeur d'abord et le modèle de

largeur d'abord.

6 Conclusion

Nous avons présenté le modèle de multi-résolution qui est une amélioration de

l'exécution de certains programmes écrits en Prolog. La seule contrainte est que ça soit

un programme fini (déterministe ou non déterministe). Nous avons éliminé le retour

arrière profond et conservé le retour arrière superficiel. Chaque sous but est résolu une

seule fois, en essayant toutes les alternatives. Les solutions sont assemblés pour créer

des multi-instanciations. Des algorithmes pour les multi-unifications pour des données

représentées par copie ou par partage sont présentés. Les échecs sont gérés et nous avons

comparé l'ensemble des solutions qui sortent avec celles fournis par Prolog standard.

Nous avons ecrit une simulation, basée sur un meta-interpreteur de la multi-resolution et

l'avons comparé avec le modèle standard de Prolog vis à vis le temps d'exécution et de

l'encombrement mémoire. Des accélérations encourageantes sont obtenues.

Le modèle présenté possède des potentialité de parallélisme au niveau des données. Ca

merite une étude plus profonde pour exploiter ce type de parallélisme. Des propositions

pour des travaux futurs à effectuer concernent l'implantation du modèle en séquentiel et

en parallèle. Une adaptation de la WAM au modèle de multi-résolution serait intéressante

à étudier pour pouvoir faire tourner réellement le modèle sur une machine séquentielle,

voir parallèle.

12

Chapter One : Motivations and Objectives -------------------

Chapter One

Motivations and Objectives

Abstract

A survey study is presented on logic programming, namely Prolog. Certain

basic concepts in the language that we will be frequent/y recalling are

emphasised. Existing optimisations to enhance the performance of the execution

of Prolog programs are discussed. Final/y, the motivations and objectives of

this work are highlighted.

1.1

Chapter One : Motivations and Objectives --------------------

1.1 Introduction

The phrase logic programming refers to the use of formulae of first order predicate logic as

statements of a programming language. The key idea underlying logic programming is

programming by description. In traditional software engineering, one builds a program by

specifying the operations to be performed in solving a problem, that is by saying how the

program could be solved. In logic programming, one constructs a program by describing its

application area, that is, by saying what is true. At the heart of the program is an application

independent inference procedure, which accepts queries from users, the facts in its

knowledge base, and deduces conclusions, and sometimes recording these conclusions in its

knowledge base. Thus, the attractive feature of logic programming is the clean separation of

semantics and control. It is easy to separate specification of what a pro gram should compute

from how an implementation can efficienùy compute it.

A logic program may be defined as a set of axioms, or rules, defining relationships between

objects. A program defines a set of consequences. A computation of a logic program is a

deduction of the consequences of the program. The art of logic programming is in

constructing concise and elegant programs that have the desired meaning. When interrogated

by the user, the inference procedure replies after drawing conclusions from the facts in the

knowledge base.

The first logic programming system, Prolog, was developed by Colmerauer and his

colleagues at Marseilles[6] growing out of a project to implement an automatic theorem

prover. Since then, the semantics of logic as a programming language have been formalized

and there have been a number of implementations of Prolog, a high level language that

extends the formalism of logic programming in ways that makes it more useful and efficient

for problem solving.

A pure Prolog program is basically a logic program, in which an order is defined for both

clauses in the program and goals in the body of the clause. Two major decisions have to be

taken into account to conven the abstract interpreter for logic programs into a form suitable

for a concrete programming language . First , the arbitrary choice of which goal in the

resolvant to be reduced, i.e. the scheduling policy, must be specified, and second the

nondeterministic choice of the clause from the program to effect the reduction must be

implemented.

1.2

Chaptcr One : Motivations and Objectives -------------------

Severallogic programming languages exist. Loosely, there are two categories; Prolog and its

extensions (Prolog II, IC Prolog, MU Prolog) which are based on sequential execution

[16,32]. Other languages such as Parlog, Concurrent Prolog, GHC are based on parallel

execution [5,18,43]. The distinction between Prolog and its extensions is in the choice of the

goal to reduce. Prolog's execution mechanism is obtained from the abstract interpreter by

choosing the leftmost goal instead of an arbitrary one. This strategy will be full y explored in

the following sections. Also nondeterministic choices of a clause are replaced by defining

search for a matching clause and backtracking.

The remaining sections of this chapter explore different specifie aspects of Prolog. The

objective is not to recite previous definitions, but to emphasize certain basic concepts in the

language before starting to discuss the work presented in this thesis. First, we quickly recall

the definitions of the different elements that construct a Prolog program. We then highlight

mostly on the execution model of Prolog, together with the backtracking phenomenon which

is of major interest to our work. How Prolog behaves when a failure is reported, and how

unification takes place are two important concepts that we are keen to discuss. Finally, we

termina te this chapter by a discussion on the motivations and objectives of the work that we

present in this thesis.

1.2 Basic Elements in a Prolog Program

The basic constructs of a Prolog program are terms and statements inherited from logic.

There are three basic statements; facts, rules and queries. There is one single data structure;

the logical term. We present each of these constructs, together with demonstrating examples.

1.2.1 Facts

Facts are a means of stating a relationship between objects. It is also called a predicate. An

example is

father(john,mary).

The above statement is a fact, calledfather, stating that john is the father of mary. The objects

that are enclosed within the round brackets are called the arguments.

1.3

Chapter One : Motivations and Objectives --------------------

Facts that have the same name are norrnally defined consecutively in a logic program.

Semantically, this means that the relationship father is applicable to a certain set of argument

pairs.

A fini te set of facts constitutes a Prolog pro gram, which is in its simplest forrn. The program

in this case could also be regarded as a database.

1.2.2 Queries

The second form of the statements in a logic program is a query. It is the sole means for

retrieving information from a Prolog program. It is basically a question, the user

interrogating the program about the validity of a certain relationship between certain objects.

Th us,

:- father(john,mary).

is a query whose answer is yes. We sometimes call a query a goal.

A simple query consists of a simple goal. A more general query consists of a number of

subgoals such as:

:-p(X), q(Y), r(X,Y,Z).

How does a pro gram res pond to a query? If the query is a simple interrogation of facts, this

is straight forward. If a fact identical to the query is found, then the answer is yes, otherwise

the answer is no. But facts are simple statements in a Prolog program. More complex

statements , called ru/es, may exist. Following, we present the definition of a rule, then in

section I.3, we de scribe how rules are solved.

1.2.3 R ules

Rules, sometimes called implications, are statements of the form

We defi ne A as the head of the rule, and B 1 , .. . ,Bn are the body of the rule A.

1.4

Chapter One : Motivations and Objectives -------------------

The above rule is read declaratively A is implied by the conjunction of the B /s and

interpreted procedurally by to solve A, solve the conjunctive query (subgoals) BI> .. Bn.

An example is a rule expressing the son relationship,

son(X,Y):-father(Y,X),male(X).

Procedurally, reading the above rule we have to prove th at X is the son of Y, prove that Y is

the father of X as weil as X is male.

Ru les serve in two different ways. They are the means of expressing new or complex queries

in terms of simple queries as well as implying a set of facts to prove a rule. Here, a new

query son relationship has been bÜilt from simple queries ofjather and male relationships.

1.2.4 The Logical Term

The tem1 is a single data structure in logic programs. It could be a constant, a variable or a

compound term. Constants and variables are terms, e.g. a, john, 1, and X, Result, .. . etc. A

compound term is a functor and a number of arguments with a certain arity. The functor

consists of its name, which is an atom and the arity of the functor is the number of

arguments, e.g.j(a1, ... ,aJ wherefis the functor, ai is the i!h argument, and the arity of this

compound term is n.

1.2.4.1 The Logical Variable

What if the required query is to ask the program who is thefather of mary? There are severa!

possible ways to answer this query. One possible way is to ask ali the facts sequentially until

one responds with a correct answer. Apparently, this is a costy and tedious way. A better

way is to make the query resemble actually the desired question. ln this case, the above query

is represented as

:- father(X,mary).

where X is an unknown term, namely a logic variable, that may be assigned to john as a

re suit of the query.

Hence, a query containing a variable asks whether there is a value for the variable that makes

the query a possible logical consequence of the pro gram.

1.5

Chaptcr One : Motivations and Objectives --------------------

At the beginning of the resolution, variables are unbound (free or uninstantiated), i.e their

values are unknown. During execution, variables take values, thus become bound, or

instantiated to another term. This other term becomes the value of the variable. Once the

variable is instantiated, it keeps its value. If a variable occurs in many places, every

occurrence takes the same value at the same time.

1.3 Control in Prolog

The control in Prelog programs is like in conventional procedurallanguages as long as the

computation progresses forward. Goal invocation corresponds to procedure invocation, and

the ordering of goals in the body corresponds to the sequence of statements. We define the

term resolvent which is the current goal at any stage of the computation. Prelog employs a

procedural reading where each goal atom is viewed as a procedure The clause,

can be viewed as a definition of a procedure A similar to

procedure A
calf B J.

cal! B2,

cal! Bn
end.

To satisfy A, Prelog attempts to satisfy each goal, from B 1 to Bn, in turn by searching a

matching goal in the database. Ali goals have to be satisfied in order for the satisfaction of the

main goal A. Assuming there are different alternatives for each subgoal, Prelog attempts to

satisfy the first subgoal of B 1. If this reports a success, Prelog will mark its place with a

place marker and attempts to satisfy the second subgoal. If the second subgoal is satisfied,

then Prelog will also mark that goal's place in the database and starts to attempt B3., ... and so

on. The resolution continues in the forward sense, from left to ri~ht. until Bn is satisfied. At

this point, we say that the goal A is satisfied and success is reported.

1.6

Chapter One : Motivations and Objectives -------------------

1.4 Matching & Unification

A prerequisite to solving a resolvant is to attempt to unify the goal with a clause (factor rule)

head. Unification is a pattern matching operation. Initially, ail variables in both terms should

be free or uninstantiated. Two terms are unifiable if they are syntactically identical, or if

variables in either terms can be replaced by terms in order to make them identical. The terms

are identical if they have the same function symbol, the same arity, and the corresponding

argument terms are unifiable.

When unifying two terrns, a variable can be replaced by another terrn, including another

variable, as long as the replacement is consistent throughout the two terms. For example,

q(f(a)) and q(X) can be unified, since when X is replaced by f(a) in q(X) both terms are

equivalent; q(f(a)).

The two input terrns to be unified must not have any variables in common. The scope of a

variable is the clause that contains it, and hence the effect of a binding is confined to the

resolvent, and the variables in the input clauses are not modified.

Unification is the operation that binds variables during a proof. The set of bindings created

during unification is known as the substitution. After unifying two terms, Prolog applies the

substitution generated during unification to the remaining occurrences of the variables in the

two input clauses in order to forrn the resolvent.

The rules for deciding whether a goal matches the head of a clause are as follows:

- An uninstantiated variable will unify with any object, whether another variable, an atom or a

structure. As a result, this object will be what the variable stands for. In the case of two

variables, as soon as one is instantiated, the other will immediately be instantiated to that

same value.

- An atom (integer or symbol) will only match with itself.

-A structure will match with another structure having the same functor name and the same

number of arguments, taking into account that ali the corresponding arguments must match.

We will rediscuss the standard unification algorithm in more details in chapter 3.

1.7

Chaptcr One : Motivations and Objectives --------------------

1.5 Resolution Tree

For a Prolog program, a search tree (sometimes called goal tree) is a tree where each node

represents a goal statement. Immediate descendants of a node N are goal statements

derivable from N in one inference step. The root of the tree is the goal, G, typed by the user

and the interior nodes are the subgoal statements, and the leaves of the tree are either null

statements or failure nodes.

There is an edge leading from a node N for each clause in the pro gram P whose head unifies

with the selected goal. Each branch in the tree from the root is a computation of G by P.

Leaves of the tree are the either success nodes or failure nodes, depending whether the

selected goal has been reached or not. Success nodes correspond to the solutions of the root

of the tree. The number of success nodes is the same for any search tree of a given goal with

respect to a program. Search trees contain multiple success nodes if the query has multiple

solutions.

Sorne conventions are considered when searching trees in Prolog. The leftmost goal of a

node is the goal always selected. The edges are labeled with substitutions that are applied to

the variables in the leftmost goal. These substitutions are computed as part of the unification

algorithm.

We define a number of definitions that we will be frequently recalling afterwards:

1.5.1 A Choice Point

A choice point is a node representing a subgoal, that includes more than one alternative

(clause head) in the program. Often, choice points offer more than one solution to the same

goal.

Figures (I.l a) and (1.1 b) point out the difference between a single clause head and a choice

point.

1.8

Chapter One : Motivations and Objectives -------------------

,subgoal, ,subgoal, ..

choice point

Figure (1.1 a) : Figure (!.lb):

A single clause head A choice point

1.5.2 Solution Paths

A solution path is a continuous path in the resolution tree starting from the root, representing

the goal, and tenninating by a leaf node, representing a solution. For a multiple-solutions

goal, we have multiple solution paths in the same resolution tree.

Examole:

Consider the program,

p(a).

q(a.J).

r(Y):- Y< 6.

s(a).

solve the query,

p(b).

q(a,2).

s(b).

:- p(X), q(X,Y), r(Y), s(Z).

p(c).

q(c,4). q(c,6).

The resolution tree representing the different solutions of X,Y and Z is given by:

/.9

Chapter One : Motivations and Objectives ------------------

p(X)

q(a,Y) q(b,Y) q(c,Y)

fail

r(l) r(2) r(4)

1 1

s(Z) s(Z) s(Z)

Z=aÂ Z=/\ Z=aÂ

/ Z=~ /z=b\ 1 Z=~

r(6)

fail

[X=a,Y=l,Z=a] ... [X=c,Y=4,Z=b]

Figure (1.2): Solutions paths in a standard resolution tree

In the above graph, the bold lines represent the paths that resulted in a success. A continuous

path is an ensemble of paths, starting from the root node until a leaf is reached which

represents one solution path of the goal. We count 6 leaf nades, indicating 6 distinct

solutions to the given query.

1.6 Failures in Prolog

Prolog responds to the query asked by the programmer by trying to satisfy the conjunction of

goals, whether they appear in a rule body or in the question itself, using the given set of rules

in the program. It attempts to satisfy these goals from left to right, i.e. no trials to satify a

certain goal will take place unless its neighbour to the left has been satisfied.

1.10

Chapter One : Motivations and Objectives -------------------

When a failure occurs, the flow of control in Prolog returns back along the way until the last

choice point. At this point, it atternpts to resatisfy the goal by finding another alternative

clause. First it undoes (uninstantiate) ali the instantiations of the variables that took place

during the previous goal satisfaction. Then, it searches in the database where the last

placemarker was put. If it finds another matching possibility, it marks the place and the

resolution continues normally. Now ali the goals to the right of this choice point will be tried

from scratch, i.e. attempting ali possible alternatives for each, beginning from the very first.

It is worth noting that Prolog will satisfy them and not resatisfy them. If no other matching

possibility is possible, then the goal .fails and Prolog returns further backwards to the

previous choice point and the same operation is repeated.

When a goal fails, it reports its failure toits neighbour to the left. If it has no neighbours,

then it reports its failure to the goal that caused it to be invoked.

1. 7 Determinism of a Goal

It is clear that Prolog attempts to solve the goal under investigation by computing one

solution at a time. Due to the simple declaration of rules, Prolog has been popular since its

existence in implementing artificial intelligence techniques. These, by default, include various

solutions to a problem. Hence, we are faced by a class of problems, or goals, with more than

one possible solution. Such problems are nondeterministic. We could distinguish a

detern1inistic goal from a non deterministic goal as follows:

1. 7.1 Deterministic goal

A deterministic goal is a goal which has exactly one output solution for each distinction

combination of its inputs (only one solution exists).

1. 7 .2. 1\' ondeterministic goal

If there is more than one solution, then the goal is nondeterministic. For nondeterministic

goals, we have two types, don 't know nondeterminism interpretation of the goal , and don 't

care nondeterminism interpretation of the goal.

/.11

Chaptcr One : Motivations and Objectives --------------------

1.7.2.1 Don't know nondeterminism

The don't know nondeterminism interpretation implies that the programmer need not know

which of the choices specified in the program is the correct one. It is the responsibility of the

execution of the program to choose correctly when several transitions are enabled.

Don't know nondeterminism simply could be sensed in a manner where failing computations

'don't count' and only successful computations may produce observable results.

1. 7.2.2 Don 't ca re nondeterminism

On the other band, the don't care interpretation of nondeterminism requires that results of

failing computations be observable. Hence, a don't care nondeterminism may produce partial

output even if it is not known whether the computation will eventually succeed or fail.

Although nondeterminism of abstract computational models is commonly interpreted as don't

know nondeterminism, such models are also open to the don't care interpretation. In the logic

programming domain, Prolog takes the don't know interpretation whereas concurrent logic

languages often take the don't care interpretations.

Formally, the two interpretations of nondeterminism induce different notions of equivalence

on the set of programs. For example, in logic programs, two computations on the same initial

goal are equivalent if they have the same answer substitution and the same mode of

termination. Under two don't know interpretations, two programs are equivalent if they have

successful computations. Onder don't care interpretation, two programs are equivalent if they

have equivalent computations, whether successful or not.

However, it is not possible in general, to know in advance whether a computation will

succeed or fail.

1.8 Backtracking: Definition

As previously mentioned, Prolog starts searching the database of rules from the very top. A

matching fact may exist and the goal is satisfied immediately. A marker is placed in the base

pointing to the current matched goal. If there are variables then they will be instantiated.

1.12

Chaptcr One : Motivations and Objectives -------------------

The matching fact may be a rule, th us reducing the task to a conjunction of subgoals. Each of

these subgoals should be satisfied to satisfy the original goal.

If a goal cannot be satisfied due to nonexisting clause heads or due to a unification error, we

say that the goalfailed. At this point, Prolog initiates backtracking. Backtracking consists of

undoing what has actually been done, and attempting to resatisfy the goals by finding an

alternative way to satisfy them. Accordingly, ali previously instantiated variables will be

uninstantiated, then the search is resumed in the database beginning from where the goal's

place marker was put. This new 'backtracked' goal might succeed or fail in the sarne manner.

1.8.1 Types of backtracking

According to the execution model of standard Prolog, there are two types of backtracking;

shallow backtracking and deep backtracking. To clearly introduce a distinction of the

difference between the two types, we will always refer to the following example,

:- m, p.

with the following base,

ml. m2. m3.

p.

where m has three alternatives and p has only one alternative.

1.8.1.1 Shallow backtracking

As previously mentioned, in nondeterministic problems, severa} clause heads might appear

for the same problem, i.e. more than one solution might exist. When a goal is attempted, the

Prolog program starts to search the database from the very top starting with the leftmost goal.

Since m has three different alternatives; m1,m2 and m3 , resolution attempts to satisfy the

objective goal m by matching it first with m]. If unification succeeds, then the marker is put

at this alternative and resolution continues classically to satify the next goal to the right, that is

p.

Alternatively, a unification with m] could also result in a failure during unification. At this

point, Prolog backtracks to the goal, the fast choice point, to attempt another alternative. This

1.13

Chaptcr One : Motivations and Objectives --------------------

backtracking is shallow as it talees place between different alternatives of a clause. No

variables have been instantiated to undo them. No previous matching has occurred and

accordingly, Prolog continues to satisfy the goal under investigation by continuing the search

starting from the next rule after the place marker has been put.

m_l m_2 m_3

Figure (1.3): Shallow backtracking

If m2 satisfies the goal, we say that the variables are bound to the instantiations due to the

success of this unification process. If no more goals exist, then we say we have a solution

and success is reported, otherwise, resolution then continues to attempt the satisfaction of the

next goal to the right of m, p.

1.8.1.2 Deep Backtracking

What if another solution was demanded after the success of p, where p, as previously

mentioned, is a unique alternative clause. In this case, Prelog returns back to the previous

goal, m. This is deep backtracking. The resolution backtracks to the previous goal to the left,

in this case m, undoing ali the instantiations that resulted from the last unification and stans to

attempt to resatisfy m by trying the next alternative after the marker, mJ. According to the

result of this attempt, resolution continues.

1.14

Chaptcr One : Motivations and Objectives --------------------

failure rn2

p

(success)

Figure (1.4) : Deep backtracking

m3

variables are
uninstantiated

If mj failed, we have no more alternatives for a shallow backtracking of m. Hence, Prolog

repons a failure to find more solutions.

1.8.2 Overhead of backtracking

In the above example, if the attempt to satisfy m3 succeeded, then in this case Prolog

resumes resolution to instantiate the variables, attempting the body clauses if m3 was a rule.

Normally after satisfying the body clauses, Prolog attempts p again. This is the interesting

part; p has a unique alternative only, i.e. the same rule has been reexecuted but with different

instantiations of the variables. Considering a general program and ail the possible backtracks

made during the resolution, we can see that p will be solved numerous times.

The number of times a subgoal is reattempted is what we consider as the overhead of

backtracking. It is the work done until ali solutions are produced.

For a complex program, it is obvious that the overhead of backtracking over certain subgoals

is costy due to a tedious repetition of the same operations. To understand better the

backtracking phenomenon, we wrote a meta-interpreter of an AND/OR process model of

Prolog.

1.15

Chapter One : Motivations and Objectives -------------------

1.8.3 Standard AND/OR

In this section, we present the meta-interpreter by which we tried to observe the behaviour of

the backtracking phenomenon during the execution of a standard Prolog program. We first

present the AND/OR model followed by the architecture of the simulator, the benchmarks

tested, the results obtained and how we interpreted them. From this discussion, we focus on

the different aspects that motivated us to proceed with the work presented hereafter.

1.8.3.1 AND/OR process model

ln the AND/OR process model, there are 2 types of processes; the AND processes and the

OR processes. An AND process is created to solve a goal statement, a conjunction of one or

more subgoals. An OR process is created by an AND process to solve exactly one of these

subgoals. If there is a non unit clause in a procedure of a subgoal, the OR process will start an

AND process for the body of the clause.

A computation in a Prolog pro gram can be described by an AND/OR tree of processes, with

the initial goal statement defining an AND process at the root of the tree. Messages are used

to start and cancel descendants (in case of failures) and return results to higher levels of the

tree.

1.8.3.2 Principle

The simulator is written in LPA Prolog. It is a meta-interpreter that observes the real

execution of Prolog programs following the AND/OR model. This observation is

accompli shed by the aid of a trace of the execution of the programs. This trace is obtained by

inserting the spy predicate between the different literais of the clause to be executed.

This simulator is in fact built to achieve two objectives; the first is to construct the complete

AND/OR tree of the goal, and the second is to store ali information related to each node

(subgoal) for further observation of different parameters, including the number of unification

operations that took place in each node together with the corresponding instantiations of the

variables, during the computation of the different solutions for a given query.

The output of this simulation is the number of times each node in the AND/OR tree was

invoked, together with the different bindings of the variables during each invokation. We

1.16

Chaptcr One: Motivations and Objectives-------------------

analysed this information (the number of invokations of each node) in terms of shallow

backtracks and deep backtracks.

Moreover, a graph of the AND/OR tree that corresponds to th execution of a given query is

produced by this simulation. In this graphical output, AND nodes are represented by squares

and OR nodes by circles. The size of each node is proportional to the number of unifications

attempted and the number of solutions that ascended. This output gives a quick estimtation of

the exhausted nodes when attempting to find the different solutions of the given query.

1.8.3.3 Running several benchmarks

In this section, we will discuss severa] tested benchmarks.

1- The permute problem:

The program listing is given in appendix A.

The queries are:

:-permute([a,b,c],R).
:-permute(a,b,c,d],R).

We actually chose this problem because it is an example of recursive programs where no

failures take place.

When running the corresponding program with only 3 elements in its list as an input

parameter, the graphie output of the program is as shown in fig.(l.5).

In this case, there are 6 solutions. Observing the maximum number of unification operations

occuring, we find that the insert subgoal was unified 6 times though there were no failures

that occured during the unification operations. Every time a new solution is demanded, the

same subgoals are reattempted. In other words, 6 deep backtrackings took place to produce

ali the solutions.

/.17

Chapter One : Motivations and Objectives --------------------

pennute

pennute

pennute

pennute

insert

Figure (1.5): The AND/OR treefor permute([a,b,c],R)

Increasing the complexity of the problem to 4 elements, the number of output solutions

reaches 24 different alternatives. Though no failures existed, the insert subgoal was unified

24 differeni times for 24 instantiations of the variables in the clause header. Again, we

understand that 24 deep backtracking to the insert subgoal took place.

pennuter

24 unifications

~
' insert

pennuter

pennuter

Figure (1.6): The AND/OR treefor permute([a,b,c,d],R)

1.18

Chapter One : Motivations and Objectives -------------------

The same thing for a permute with 5 elements, 120 solutions are produced. Again, the insert

subgoal was unified 120 times to produce these solutions.

Our first comment is that even in the absence of failures, sin ce the backtracking feature is the

only control in the execution model of Prolog there is an overhead due to the repetitive times

a subgoal is reattempted in order to fmd ali the solutions.

2- The bits-palondromic problem:

A more motivating example is the bits-palondromic problem that includes different types of

failures. It is inspired from [28]. It is a program that generates 6 elements, each having one

of two values, then reversed to produce a symmetric list. The program listing is given in

appendix A.

Figure (1.7): The AND/OR treefor bits-palondromic of order 6

1.19

Chaptcr One : Motivations and Obje(:tives --------------------

In the above figure, if we zoom on the shaded choice point, we find that 32 descents took

place. This means that the system deeply backtracked 32 times. Since this choice point has

two alternatives, then we understand why 64 solutions ascended from this node. ln other

words, to produce ali the solutions (16), 32 deep backtracks and 2 shallow backtracks took

place to this subgoal. We cannot avoid the shallow backtracking if we are interested in ali the

possible solutions. On the other hand, it is a waste of rime to reattempt the same subgoal 32

different times until ali the solutions are produced.

We will return to this example once more in chapter 6.

3- The 11-gueens prob!em:

The last benchmark executed was the n-queen mode! with different indices. For n=4, we

have 2 distinct solutions, with a subgoal like index was unified 24 times. For n=6, the

program suggests only 4 possible moves, and at the same time, a subgoal like save is

executed 216 times. For n=8, we arrive to a figure of 4544 unification operations with the

subgoal index, while the suggested solutions are 120!

Figure(/ .8): The AND!OR treefor the 4 queens problem

1.20

Chapter One : Motivations and Objectives --------------·-----

1.8.3.4 Recapitulation

Given ali the above figures, the complexity of the standard computational model of Prolog is

qui te remarkable. For different instantiations to different variables, the resulting backtracking

feature, needed to explore ali the different possibilities leads to a high traffic over the same

subgoals again and again. This, obviously, results in enormous execution times due to

redundant attempts to repeat the same operations.

1.8.4 Optimization of Backtracking

Several efforts have tried to enhance the resolution of Prolog programs by trying to optimise

the number of backtracks th at take place. We discuss the most popular approaches.

1.8.4.1 More Intelligent backtracking Systems

ln such systems, a control mechanism is applied that optimises the performance of the naive

backtracking while executing a program. In other words, more 'intelligent' backtracking is

defined. Such systems are related to the occurence of failures. When a failure occurs, the

system analyses the cause of this failure, and memorises the instantiations that led to this

failure. This is to serve two objectives: the first is to backtrack to the effective choice point, i.e.

the choice point that will change the instantiation that led to the previous failure, and secondly,

to assure that this failure will not be repeated in the future. Such systems that include such a

mechanism are called intelligent backtracking systems.

Such systems are based on the variable dependence between the different subgoals. Two wide

classes are defined: the intelligent backtracking and the semi-intelligent backtracking. We detail

each of these classes.

1.8.4.1.1 Intelligent Backtracking

Intelligent backtracking was introduced independently by Cox [19] and Perira et Porto [35,36]

to reduce the number of backtracks. This approach is actually related to the occurence of

failures in the standard execution model. When a failure takes place, the system analyses the

cause of th at failure.Consider the following set of unit clauses,

1.21

Chapter One : Motivations and Objectives -------------------

p(a).
q(l).
r(b,l).

with the goal statement,

p(b).
q(2).
r(b,2).

:- p(X), q(Y), r(X,Y).

A depth first interpreter first solves p(X), binding X to a, then solves q(Y), binding Y to 1,

and then tries to solve r(a,J). Wh en the ~atter fails, the interpreter backtracks. The most recent

choice point is in the selection of q(Y); when this is redone, uninstantiating Y, another

solution is found binding Yto 2, and the next goal will be r(a,2), which will also fail.

Both of these calls to r fail because the solution of p(X) binds X to a value that cannot be

used to sove r(X,Y). When the ineterpreter backs up only as far as q(Y), it cannot fix this

erroneous choice, and by re-solving q(Y) and binding Y to a different value, it is wasting

time.

An interpreter designed and implemented by Pereira et al. performs this type of analysis[].

In the example given above, it finds that any goal of the form r(a,_) fails because of the

presence of the term a in the first argument position. Since X was bound to a in the call to

p(X), the interpreter backs up past the call to q(Y), ali the way to a choice point in the

solution of p(X) . When p(X) is solved again, binding X to b this time, the entire goal list

could be solved, without the wasteful attempt to resolve r(a ,2) .

A first attempt to introduce intelligent backtracking in a Prolog complier was proposed by Lin

et al. [30,31] . Codognet et al. extended the WAM architecture to include the intelligent

backtracking feature. An extended unification-related instructions was introduced mainly to

rememorise the source of the bindings. They proposed the DIB machine [12] th en the

W AMIB [13] th at resulted in a more efficient implementation where speedups upto a factor of

10 for nondeterrninistic programs are achieved.

1.8.4.1.2 Semi Intelligent backtracking

This is the case when there is no variable dependence between two subgoals. Here, the analysis

of a failure and the decision making to decide the backtracked choice point are simpler. An

example is

1.22

Chapter One : Motivations and Objectives -------------------

:- p(A), q(B), r(A).

When r(A) fails, q(B) could be skipped on backtracking since it does not produce any values

that affect the solution of r(A). This is a case where it is not necessary to analyse the exact

cause of the failure; it is only necessary to notice that a new solution of q(B) cannot help

solve r(A) as q(B) and r(A) have no variables in common. This has been called semi

intelligent backtracking[34] since it is not quite as effective as the intelligent backtracking.

For example, a semi intelligent backtracking could not make the correct backtracking choice

for the first example in the section.

The above discussed types of backtracking will be re-discussed when coming to the

presentation of related work in chapter 7.

1.8.4.3 Partial elimination of backtracking

The backtrackfng feature, though a powerful control in the computational model of Prolog,

yet it results in redundant computing while solving a goal, hence consuming more execution

time as weil as memory space to store all required information on already attempted choice

points in order to be able to backtrack in case of failures or further trials.

The above presented optimisations represent partial enhancements to reduce the number of

times that the system backtracks. But alternatively, regarding previous research, we observe

several efforts to present execution models for extended Prolog that partially eliminate

backtracking. All these efforts were oriented to parallelism in their execution. We cite the

most close ideas here.

An example is DAP Prolog [26] which is an extension of Prolog. It focuses on large

relational database systems and tends to eliminate backtracking. It is actually a set-oriented

view of Prolog, where two new data structures, together with their relevant support code are

added to the system. It is described by: DAP Prolog = Prolog + Sets + Arrays. The DAP

Prolog programmer thinks in terms of sets rather than individual binding values. He is

responsible to define the code segments that will be treated in a set mode. These segments are

large database predicates. For rules, normal backtracking takes place and is not eliminated.

Hence list-oriented progams could not benefit from this approach.

MultiLog [38,39,40] is another approach where a prefix unary operator disj is added to the

syntax of Prolog. The programmer may annotate any subgoal by this operator, whose role is

1.23

Chaptcr One : Motivations and Objectives -------------------

to attempt to gather sorne of the solutions that solve the given subgoal and produce a set of

environments. Such environments partially replace backtracking as the operational

embodiment of disjunction.

Firebird [44], which is a commited choice logic programming language bears also sorne

similarity to the same idea. In a non detenninistic derivation step, if there is any unbound

domain variable X in the system, with the domain {al , ... ,an}, Firebird will execute each

bran ch with a constraint: X = ai, 1 ~ i ~ . . Here, all constraints are tried in each branch, but

in parallel.

1.9 Motivations and objectives

The above study motivated us to think on a more global platform. To understand the

behaviour of the standard execution model of Pro log program, we wrote the meta-interpreter

of the AND/OR execution model that proved that to produce all the solutions of a given

problem, redundant work took place. We believe that this redundant work resulted in longer

execution times.

Our main objective is actually to reduce the execution time of Prelog programs. This problem

has been tackled by different research demains. Severa! approaches exist that may result in a

faster execution: the first is to optimise the current implementation of Prelog (the WAM

architecture [45,46,47]), the second is to introduce parallelism [5,6,718,43], and thirdly is to

define other execution models for Prelog sources. We chose the third approach to achieve

our objective.

From here, we started to think of a way to optimise backtracking. We are not interested in

adding any modifications to the existing standard Prelog syntax, which confirms to the

Edinburgh syntax. Modifying a language means simply rewriting already existing programs,

and this, we believe, is not an optimum way to tackle the problem.

Also, our interest is not to present a model that treats a certain programming style as that

proposed by DAP Prelog, but rather a very general approach that may be applied to any style

of Prelog programs (databases, recursive clauses, sequential list searching,etc.).We simply

state that our target program is any finite nondeterrninistic standard Prelog program.

1.24

Chaptcr One : Motivations and Objectives --------------------

The idea that we had in mind is not to repeat any previous attempt in solving subgoals. This

means th at we want to construct the resolvant of the given query by passing once and only

once over each subgoal. We thought of eliminating the classical deep backtracking feature

and preserving the shallow backtracking. The resulting solutions from each choice point are

assembled. We do not want to reattempt the choice point that solves this subgoal again. AU

the possible solutions propagate in the forward sense of the resolution (from left to right) and

the resolution never returns backwards.

This mode! is transparent to the programmer, in other words, no added load lies on the user,

where no modifications in the syntax is required, nor a certain programming style is

essential. We called this model, the multi-resolution mode! for Prolog programs.

The main feature that characterises the proposed multi-resolution mode! is the presence of

multiple bindings of variables. What we present in this thesis is a detailed discussion on the

treatment of such multi-instantiated variables that replace the deep backtracking feature. These

variables are involved in the different phases of the multi-resolution. In the work presented in

this thesis we study:

- the multi-resolution model, conceming the different phases of execution,

-the methodology of creation of multi-instantiated variables (when and how),

- the impact of the presence of such variables on the unification operations for numeric and

non numeric operations, on the occuring failures, and on the display of solutions, and finally

-the re suit of employing multi-instantiated objects on the performance of the execution (lime­

wise, memory-cost-wise) with respect to standard Prolog.

By proposing this model, we aim to enhance the performance compared to previous related

work. We are interested in the amelioration of the execution in the sequential mode as well as

in the parallel mcxie.

AU details conceming each phase in this multi-resolution will be clearly discussed in the

remaining chapters of this thesis.

1.25

Chapter Two: Basic Idea : A Look Through ------------------

Chapter Two

Basic ldea: A Look Through

Abstract

We discuss the basic idea of the mu/ti-resolution execution mode/. The structure of the

mode/ is presented, demonstrating the role of each phase. Different underlying

problems of replacing deep backtracking by multi-instantiated variables are discussed.

11.1

Chapter Two : Basic ldea: A Look Through ------------------

11.1 Introduction

The multi-resolution execution model of Prolog programs is a new execution model with

which we aim to enhance the execution of Prolog programs in both modes; sequential and

parallel. It is a powerful model for nondeterministic finite problems as well as clause

problems related to large databases. The main underlying theme is to elirninate completely

the deep backtracking feature defined in the standard Prolog execution model. This means

that for a query such as:

?- subgoa/1 ,subgoal2 , ... ,subgoalf, ...

each subgoali is traversed only once. subgoali is attempted with each of its clause heads

sequentially, i.e. preservinfi shallow backtrackin2. After exploring ali its alternatives, i.e. no

more clause heads exist, the different solutions are gathered. Now, when the multi­

resolution proceeds with the following subgoal, subgoali + 1, control never returns

backwards to suhgoalj . In other words, subgoali will never be reattempted.

After the attempt of all the subgoals, the model produces the solutions. These are the correct

combinations derived from the different solutions gathered throughout the multi-resolution

of the query.

We will demon strate clearly the basic idea of the multi-resolution model with the following

example.

Example:

Given the following program,

number(l) . number(2) . number(3). number(4) . number(5).

odd(X):- X mod 2 is 1.

prime(X):-

consider the following query,

?- number(X) , odd(X), prime(X).

We will explain the difference between the standard resolution and our proposed multi­

resolution. In the standard execution model of Prolog, the execution starts by selecting the

first subgoal to be resolved, which is number(X) . Unifying it with the first clause head,

11.2

Chapter Two: Basic !dca: A Look Through ------------------

number(1), will result in a success and X is instantiated to 1. The standard resolution directs

control to the next adjacent right subgoal, odd(X), where X is already instantiated to 1. The

unification operation with the clause head succeeds and the execution of the body will also

succeed. Afterwards, the third subgoal, prime(X), is attempted, which will also succeed and

a first solution is produced, X = 1.

Now to produce further solutions, deep backtracking takes place and the control returns to

the odd clause, which due to the fact that it bas only one alternative, i.e. not a choice point,

will pass the control to the number choice point as it is the last choice point encountered. The

variable X is deinstantiated and the second clause head is considered. The standard

resolution continues in the same manner as discussed in chapter one until all solutions are

produced.

The interesting point is that due to the fails and deep backtracking operations that take place

during the standard resolution, the odd goal is executed 5 times though it consists of a

unique alternative only. The prime goal is executed 3 times resulting in 3 solutions.

The standard resolution tree could be represented as shown in fig. (ll.l).

:- number(X), odd(X), prime(X)

number(X)

odd(5)

prime(!) fail prime(3) fa il prime(5)

Figure (11.1): Standard resolution tree

It is worth noting that once a solution pa th reaches a leaf node, the solution is displayed to the

user then deep backtracking takes place to compute a new solution.

11.3

Chapter Two : Basic Idea : A Look Through ------------------

What we propose is a multi-resolution approach which is more efficient in executing such a

program as we aim to eliminate redundant work. Here, we select each subgoal once,

attempting ali its alternatives sequentially before proceeding with the next subgoal. This

implies that the number(X) subgoal should be executed 5 times, as we preserve the shallow

backtracking feature, before passing to the odd subgoal. Hence, the subgoals odd(X) and

prime (X) are attempted once and only once. It should be noted that before attempting the

odd subgoal, it should be memorised that X was instantiated to 5 different alternatives. We

say that the variable X is mufti- instantiated. To differentiate it from the list structure defined

in Prolog, we have chosen the ' {}' to represent a multi-instantiated variable. Hence, X is

represented as follows:

X={l,2,3,4,5}

Note that now onwards, X will be bound to these five alternatives and the subgoal number

will never be re-attempted.

We state a number of relevant definitions that we will be frequently recalling throughout our

discussion.

Following, we present a naive definition of a multi-instantiation.

Definition 2.1: A Multi-instantiation

A multi-instantiation is given by:

where

- the structure { ... } denotes a multi-instantiation, and

- ai is the ith instantiation which could be any multi-term.

Definition 2.2: A Multi-term

A multi-term is an atom, a variable, a compound term or a multi-instantiation.

Retuming to our example, we then come to the odd subgoal. The variable X in the subgoal

head is already multi-instantiated to the 5 values. A single unification operation is attempted

to ail the 5 values of X. The odd test will take place on each of the 5 instantiations

sequentially resulting in 2 failures for the values X = 2 and X= 4, and 3 successes for X=

JJ.4

Chapter Two : Basic !dca: A Look Through ------------------

1, X= 3 and X = 5. The multi-resolution continues with the prime subgoal in the same

fashion.

Fig. (ll.2) shows the resolution tree of our multi-resolution model.

:- number(X), odd(X), prime(X)

x= { 1, 2, 3, 4, 5 }

number(l) number(2) number(3) number(4) number(5)

x= { 1, 2, 3, 4, 5 }

odd({ 1 ,2,3,4,5}) .,
prime({ 1 ,2,3,4,5})

Figure (11.2): The mu/ti-resolution tree

In the above figure, the multi-resolution tree may be viewed as if it consists of different

steps. Each step corresponds to a subgoal in the given query with ali its alternatives

attempted and terminated by a phase where the solutions are gathered. We called this phase

the local-synchronous-OR-phase. It is represented in the above figure by the dotted area

bounded by the bold horizontal lines. It is in this phase where the variables are multi­

instantiated. It has a vital role in the multi-resolution which will be discussed in the

following sections of this chapter.

The steps' order corresponds to the order by which the subgoals are written. The first step

corresponds to number(X), the second to odd(X) and the third to prime(X). By terminating

the attempts of the last subgoal, the multi-resolution is over.

Il.5

Chapter Two : Basic Idea : A Look Through ------------------

11.2 Model Structure

The multi-resolution model is represented in fig. (11.3). It takes a standard written Prolog

program as its input without any special modifications in the syntax of the program

(Edinburgh syntax). It produces ru! the solutions of the given query as its output.

Standard Prolog Program

~,

Multi-Execution

Module

'
Multi-Outputs

Module

~,

Ensemble of solutions

Figure (ll.3): The mu/ti-resolution mode/ structure

Inherently, it is divided into two phases; the mu/ti-execution phase and the mufti-outputs

phase. The former is responsible for the actual resolution of the goal in a multi-resolution

fashion, whereas the latter is responsible for the production of the ensemble of the correct

solutions. The output of the first phase is the input of the second phase. We will detail the

roles of both phases in the following sections.

I/.6

Chapter Two: Basic Idea: A Look Through ------------------

11.3 The Multi-Execution phase

The input to this phase is the query to be solved. It may consist of one, or more, subgoals. In

either cases, this phase handles one subgoal at a rime. For each subgoal, the different clause

heads are examined sequentially, in the same order as they are wrinen in the program. This is

why we mentioned previously that we preserve the shallow backtracking feature. For each

clause header, a special unification operation which we will call mu/ti-unification takes place

between the subgoal and the clause head. If the multi-unification succeeds, then the body

clauses are attempted before proceeding with the next clause head.

After exploring ali the alternatives, the multi-resolution proceeds to assemble ali the resulting

solutions. This takes place in a certain phase during the multi-resolution, that we called the

synchronous OR phase. There is a local synchronous OR phase for each choice point.

Instead of proceeding the multi-resolution with different instantiations of the variables, in this

phase all solution~ are assembled in a certain structure (multi-instantiation) to be assigned to

the original variables in the subgoal head. We called such variables multi-instantiated

variables.

Multi-instantiated variables could be multi-unified to other multi-terms. This is the role of the

mu/ti-unification algorithm. It manipulates all types of operations dealing with multi­

instantiated variables. Besides, this algorithm processes the failures occuring during the

multi-resolution. We will retum to this point later in this chapter.

When all the subgoals are fully attempted, the multi-execution phase terminates its role by

passing the saved data structures to the multi-outputs phase. These data structures contain ali

the information of the multi-resolution encountered when attempting to solve the original

query to be processed by the output phase, including the instantiations of the different

variables, the occured failures and the multi-resolution tree, to produce the correct ensemble

of solutions.

Now, we will discuss thoroughly each phase in the multi-execution phase.

11.3.1 Search Strategy

The search strategy adopted in the multi-resolution model resembles greatly the breadth first

strate gy. To solve a goal, its subgoals are selected sequentially, starting from the leftmost

l/.7

Chapter Two: Basic Idea: A Look Through -------------------

subgoal. All the alternatives of each subgoal are explored, in a sequential manner, before

proceeding to the next subgoal.

Multi-unifying a subgoal with each clause head will result in a number of instantiations to the

variables appearing in the head of the subgoal. If originally these clause heads are facts, such

as number(X) in the example discussed in section 11.1, then the different solutions are

assembled to be assigned to the variable X, and now onwards we say that the variable X is

multi-instantiated. Fig.(ll.2), discussed in the previous section, demonstrates clearly this

case.

On the other hand, if any of the clause heads was a rule, we investigate the rule to the very

end. In other words, the body clauses of this rule are attempted before attempting the next

clause head of the original subgoal. These body clauses are investigated in the same manner;

one at a time, from left to right, searching for all possible solutions for each subgoal. When

all the body clauses are attempted, control retums to the next alternative of the original

subgoal and the multi-resolution continues in the same manner. A scheme representing the

proposed strategy is given in fig.(ll.4).

sub-tree of the body
clauses

Figure (11.4): The combined breadth-first, depth-first
search strategy for a choice point in the
mu/ti-resolution mode/

If the body clauses are not executed before the following alternatives, this will turn into a

breadth-first strategy, with its disadvantageous high memory consumption.

ll.8

Chapter Two: Basic Idea : A Look Through ------------------

In the following example, we illustrate the difference between the depth-first search (adopted

in the standard resolution model of Prolog), the breadth-first search, and the search strategy

adopted in the multi-resolution model.

Example:

Given the program,

p(a). p(X):-s(X). p(z).

s(b). s(c).

q(a,aa). q(c,cc).

consider the query,

:- p(X), q(X,Y).

X=a

1

p(X)

2

~ 3/ '\4
X=b X=c

q(X,Y)

~
Y=aa Y=cc

Figure (liSa):

Mu/ti-resolution search

5

X=z

The first subgoal to be attempted is p(X). In the multi-resolution model, multi-unification

takes place between p(X) and the first clause head, p(a), resulting in the instantiation of X =a

(branch number 1). Shallow backtracking takes place to attempt the second clause head,

p(X). This clause head contains a body clause, s(X). Here, the multi-resolution proceeds to

solve the body clauses before retuming to the following clause head.

Multi-resolving s(X) will result in the instantiations X=b and X=c. The local-synchronous­

OR phase of this choice point, s, assembles the different instantiations and multi-instantiates

X to {b,c}.

Retuming to the third clause head, p(z), X will be instantiated to z. The local-synchronous­

OR phase of the choice point p will multi-instantiate X to {a, {b, c}, z}.

In the above figure, (2.5a), we did not emphasize what actually happens in the local­

synchronous-OR phases because this is not our objective when discussing this example.

Here, we are interested in how the branches are searched until ali solutions are produced. In

this example, the number of traversed branches in the multi-resolution model is 7.

11.9

Chapter Two : Basic ldea: A Look Through ------------------

:-p(X), q(X,Y)

X=a s(X) X=z

Y=aa fail X=b X=e fail

fail fail fail Y=ec

Figure (Il .Sb):

[)epthjftrst~earch

fail

:-p(X), q(X,Y)

X=a s(X) X=z

AAA
Y=aa fail X=b X=c fail fail 10/\12/\3

fail fail fail Y=cc

Figure (11.5c) :

Breadth-first search

In the depth-first strategy, fig. (II.5b), when the unification operation between p(X) and p(a)

succeeds, the resolution ignores (temporarily) the rest of the clause heads, and proceeds to

satisfy the following subgoal, q(X,Y). The first alternative, q(a,aa), succeeds and a first

solution is obtained X=a, Y=aa.

To find the rest of the solutions, the system backtracks (shallow) to the last choice point,

q(X,Y), and attempts the following clause head, q(c,cc), that will result in a failure. At this

moment, deep backtracking takes place to the predecessor choice point, p, and tends to

anempt the second clause head, p(X), which contains a body clause, s(X).

The resolution attempts s(X), with its first clause head, s(b), resulting in the instantiation of

X to b, th en proceeds to the following subgoal, to reattempt again q(X ,Y) with its two

alternatives. Both will result in a failure, resulting in a deep backtracking to the second

alternative of s, s(c). Repeating the same operation, the first alternative of q will fail, while

the second succeeds, resulting in a second solution X=c, Y=cc .

Since no more alternatives exist fors, deep backtracking takes place and the third clause head

of p is attempted, instantiating X to z. Satifying q(z,Y), will result in a failure when

anempting both alternatives.

11.10

Chapter Two: Basic ldca: A Look Through ------------------

In the depth-first search strategy. the number of traversed branches until ali solutions are

produced is 13. Comparing this figure to that in the multi-resolution model, a reduction of

almost 47% is achieved when adopting the multi-resolution model. This is an interesting

figure that we will discuss in detail when we present ourresults (chapter 6).

In the breadth-first search strategy. fig. (II.5c). we have the same number of traversed

branches as in the depth-first strategy, 13, but the search is done in another manner. Here,

the search takes place on a breadth level. The different branches of the same level are

attempted sequentially, from left to right. In this case. p(X) will be unified to the frrst clause

head, p(a), resulting in the instantiation of X to a, then to the second, resulting in a new

subgoal s(X), then the third, instantiating X to z.

After the complete investigation of the first level, the search stans to resolve the branches of

the second level. q(a,Y) is attempted, so as s(X) and q(z,Y). The search continues in the

same manner on ali levels until the same solutions are produced.

11.3.2 Memory representation of a multi-instantiation

It is worth noting that comparing the memory cost between the multi-resolution search and

the breadth-first search, we find that the memory consumption of the latter is far higher than

that of the former. This is because in the multi-resolution strate gy ali instantiations concerning

each variable are assembled before proceeding with the following subgoal, whereas in the

breadth-first strategy, the different instantiations of the variable are stored in the memory. At

the same time, data sharing is adopted in the multi-resolution model, i.e. we do not create a

copy of the variable each time a new alternative is invoked, but rather the same variable is

shared among ail the alternatives. This is also responsible for the reduction of the memory

consumption in the multi-resolution search. In other words, the environment in the multi­

resolution modelisa single environment that includes multi-instantiations.

11.3.3 Coherency of an instantiation

Iri the multi-resolution model, single assignment is employed; i.e. once a variable is multi­

instantiated, its value cannot be modified.

We return to the definition of a multi-instantiation (definition 2.1). Logically, it is a structure

that includes different instantiations assigned to the same variable resulting from different

alternatives of a choice point. Each of these instantiations may be any multi-term defined in

the multi-resolution model (definition 2.2).

Il.ll

Chapter Two: Basic Idea : A Look Through ------------------

But what does a multi-instantiation actually represent? It represents an ensemble of

instantiations that Prolog produces in a sequential manner (one instantiation at a time). A

multi-instantiation {a, b, c} represents actually 3 different terms represented by Prolog; a, b,

and c.

An example of a compound multi-tenn is p(j({q,r))), where the argument of the functorfis

multi-instantiated to 2 values. It represents p(j(q)) and p(j(r)).

Another compound multi-tenn is [{a,b}/{c,d)J. This is a list whose elements are multi­

instantiations. Actually, this multi-tenn represents 4 different lists represented in Pro log,

which are the result of the different combinations between both multi-instantiations. The four

lists are: [ajc], [a/d], [b/c] and [b/d].

Though simple, the representation of a multi-instantiation, as given in definition 2.1, may

lead to ambiguous interpretations. Consider the following example:

Example:

Consider the query,

:- (X=a, Y= c; X= b, Y= d), A=[X/Y].

Multi-resolving the first subgoal will result in X= {a,b) and Y= {c,d}. The second subgoal

results in the instantiation of A = [{ a,b} 1 { c,d}]. In multi-resolution, this would represent 4

lists ;[a/c], [a/d], [bjc], and [b/d]. Double-checking with the standard resolution of Prolog, we

find that only 2lists exist; [ajc] and [b/d].

This illustrates that the multi-resolution model may represent incoherent multi-terms with

respect to those produced by the standard execution of the pro gram.

Problem 2.1

A multi-instantiation, as defined in definition 2.1, may cteate incoherent multi-tenns. The

given representation does not include ali the necessary information to avoid the creation of

/1.12

Chapter Two: Basic ldea : A Look Through ------------------

incoherent multi-tenns. The following chapter discusses thoroughly the representation that

we propose and how the coherency of multi-tenns is ensured in the multi-resolution model.

11.3.4 Coherency of an operation including 2 multi-instantiations

The same concept of coherency of a multi-tenn applies to the coherency of any perfonned

operation that involves two multi-instantiations. It is imperative that a verification of the

coherency of the first multi-tenn with respect to the second should take place. This is to

ensure that the performed operations in the multi-resolution model are the same as those that

take place in the standard resolution model.

Two multi-instantiations may result from the same subgoal, or from different subgoals. To

make clear this concept, we present the following examples, that point out certain ambiguities

with respect to standard Prolog.

Examnle 1:

Given the program,

p(a). p(b).

q(c). q(d).

Solve the query,

:- p(X), q(Y) .

After the multi-resolution of the above query,

X= {a,b} and Y= {c,d}.

When we want to know how many solutions are actually reached, we try ali the different

combinations between the instantiations of X to th ose of Y. We find that we have 4 solutions:

X=a,Y=c

X=a,Y=d

X=b,Y=c

X=b,Y=d

11.13

Chapter Two: Basic Idea : A Look Through ------------------

Comparing the results to that produced by the standard resolution of the program, we obtain

the same results. This example is the case of creating multi-instantiations from different

subgoals (different multi-unification operations).

Example 2:

For the program,

p(a,c). p(b,d).

q(X,Y,Z):- ...

solve the query,

:- p(X,Y), q(X,Y,Z)

then the different instantiations of the variables are X= { a,b) and Y= { c,d). To attempt

q(X,Y,Z), the variables X and Y are multi-instantiated. The different combinations of X and

y are:

X=a,Y=c

X=a,Y=d

X=b,Y=c

X=b,Y=d

whereas standard Prolog considers only:

X=a,Y=c

X=b,Y=d

That is, not all combinations between the multi instantiations are permitted systematically.

This is the case of two multi-instantiations resulting from the~ subgoal (same multi­

unification operation).

Problem 2.2

An important aspect in the multi-resolution model is to check that the multi-resolution model

performs the same operations, as in the standard resolution. The given representation of the

11.14

Chapter Two: Basic Idea : A Look Through ------------------

multi-instantiations (definition 2.1) is not sufficient to detect the order by which the variables

were multi-instantiated to ensure the coherency of the perfonned operations.

11.3.5 Multi-Unification Operations

It is clear that the standard unification algorithm does not support ali multi-unification

operations dealing with multi-instantiated variables. Here, we define an appropriate

algorithm for multi-unifying two multi-terms in the multi-resolution. This algorithm is called

the multi-unification algorithm. The multi-unification algorithm includes the standard

unification operations together with ali opera~ons of multi-instantiated variables. It is worth

noting that basically it respects ali rules of the standard unification algorithm defined by

Robinson [37].

The different added cases are summarised in the table shown in table (II.l). X andY are

variables, x and y are atoms, Xi and Yi are variables or atoms, { ...) represents a multi-

instantiation. ':=' is an assignment operation, and '=' represents a multi-unification

operation. The first two columns are the two multi-tenns to be multi-unified, the third

indicates the actions that will take place.

term X term Y action(s)

x (... } X:=(... }

(... } y Y:=(... }

x (Y 1 , ... ,yn} x=yj for i=l ton

{XJ, ... Xn} y y=xj for i=lto n

{x], ... xnl (yJ, ... ,ynl x=yj for i=l ton

{XJ, ... Xn} {YJ, ... ,Ym) yj=Xi for i=lto n and j=l tom

Table (11.1): Mufti-Unification cases including multi-instantiatied variables

The detailed presentation of this algorithm is defined in the following chapter.

11.3.5.1 Multi unifying a multi instantiation to another multi­
term

1- Total-success;

The first is the case of total-success where ali the instanùations of a multi-instantiation result

in a success when being multi-unified with the corresponding parameter in the clause head. ln

this case, the multi-resolution continues nonnally.

11.15

Chapter Two : Basic Idea: A Look Through ------------------

In standard Prolog, unifying a subgoal containing instantiated variables in its head results

nonnally in one of two cases; either a success or a failure. In the multi-resolution model,

there exist three cases when trying to unify a subgoal containing multi-instantiations with a

clause head.

Example:

Given the following program,

p(a). p(b).
q(M,N).

with the query,

?- p(X), q(X,X).

:- p(X), q(X,X)

1
p(X)

p(a) p(b)

X=(a,b}

q((a,b}, { a,b})

q(M,N)

Figure (l/.6): Total success

After the first subgoal, X will be multi-instantiated to {a , b}. The second subgoal bas X as

its arguments, which is already multi-instantiated. Multi-unifying this clause to the

corresponding clause head, the result of this operation is a total success with all the different

sub-tenns resulting in M = {a,b} and N = {a,b}.

11.16

Chapter Two: Basic Idea : A Look Through ------------------

2- Total-failure;

The second case is the total-failure and that is when each instantiation of the multi­

instantiation results in a failure during the sarne multi-unification operation.

Example:

In the previous example, modifying the above clause head of q to

q(x,y).

the above query willlead to a total failure where none of the multi-instantiations of X resulted

in a success. This is because multi-unifying either values of X tox or toy will result in a

complete failure.

:- p(X), q(X,X)

p(X)

p(a) p(b)

X={a,b}

q((a,b}, (a,b})

Failure

q(x,y)

Figure (Il.7): Totalfailure

We note that once a total failure is encountered, ali the variables that were instantiated during

the failing multi-unification operation will be deinstantiated as in standard Prolog.

11.17

Chapter Two : Basic ldca : A Look Through ------------------

3- Partial success/failure;

The interesting case is the third case when a partial successljailure is achieved, where sorne

instantiations of a multi-instantiation result in a success of the subgoal while others, in the

~mu! ti-unification operation, result in a failure. To illustrate clearly this case, consider the

following example.

Examole:

Consider the following program,

p(a) .

q(l,m):- s(l).

s(a) .

r(f) .

with the query,

p(b) .

q(bf) .

s(z) .

:- p(X), q(X ,Y) , r(Y).

First, p(X) is attempted resulting in the multi-instantiation of X to {a , b}. The subgoal q

has two alternatives. The first alternative will result in the multi-instantiation of 1 to {a,b}.

The body clause, s({ a,b }), is to be solved before trying the next clause head. When

attempting to solve s(X), the first alternative results in a partial success/failure due to the fact

that multi-unifying the second instantiation of X to a will result in a failure . On the other

band, multi-unifying either values of X with z will result in a complete, or total, failure.

Fig.(II.8) illustrates the multi-resolution of the above query showing the resulting states of

the multi-unification operations.

11.18

Chapter Two: Basic ldea : A Look Through -----------------

partial

failure

p(a)

p(X)

p(b)

X= {a, b

q(X,Y)

~ partial failure

q(l,m) q(b,f)

s(l)

A
s(a)

total

failure
s(z)

Y={m,f}

r(Y)

partial failure

r(f)

Figure (1/.8) Different types offailures; partial and total

If we examine closely the different instantiations of X and Y, we find th at, potentially, there

are 4 solutions:

X=a,Y=m

X=a,Y=f

11.19

Chapter Two : Basic Idca : A Look Through ------------------

X=b,Y=m

X=b,Y=f

Now considering the solutions that are produced by standard Prolog, we find the only

solution is X = b , Y = f.

Problem 2.3

The case of partial success/failure necessitates a certain technique to identify occuring failures

and consider them lately when dealing with multi-instantiations that include already failing

instantiations.

11.3.5.2 Treatment of partial success/failures

Generally speaking, there are several proposais to treat partial success/failures commonly

occuring during the multi-unification operations. We present different propositions to treat

such type of failures.

1- variable modification:

An elementary approach was to modify the multi-instantiations of the variables. As

previously mentioned, variables sharing is adopted in the multi-resolution model, and hence

this solution presents problems. Consider the following example:

Example;

Given the program,

p(a). p(b). p(c).

q(a). q(c).

with the query,

:- p(X),q(X).

Multi-resolving p(X), the variable X will be multi-instantiated to { a,b,c }. We now attempt

to solve q(X). There are two clause heads, so the first is considered, q(a). Multi-unifying X,

which is already multi-instantiated, to a, will result in a partial success/failure as the values b

II.20

Chapter Two : Basic Idea : A Look Through ------------------

and c will result in a failure. Now if we modify X to include only the succeeding values, then

in this case it will be equal to {a}.

:- p(X), q(X)

p(X)

p(a) p(b) p(c)

X= {a,b,c}

q({a,b,c})

q(a) q(c)

false failure ! ! !

Figure (Il.9): Failing variable's modification

The next step is to attempt the second clause head, in this case, q(c). Given that X is now

instantiated to {a}, a total failure is achieved, while this is not true when comparing with the

standard resolution. We should have multi-unified the three values of X toc, resulting in

another partial success/failure, but since the contents of X were modified, then the multi­

resolution did not proceed correcùy (did not confirrn to Prolog behaviour).

Another point of view was to keep the contents of multi-instantiation as it is, and simply

adding a status flag to each instantiation. When a failure occurs, the corresponding

instantiation that caused this failure is disabled. Afterwards, in the multi-resolution, this

instantiation will never be considered.

11.21

Chapter Two : Basic Idea : A Look Through -------------------

The drawback of this approach is due to the problems resulting from sharing the multi­

instantiations between the alternatives of a choice point. Modifying a multi-instantiation in

one alternative will result in incomplete multi-resolution of the following alternatives.

Another important problem results from the case of having different multi-instantiations that

belong to the same choice point. In this case, when a modification is made on a multi­

instantiation, all the corresponding multi-instantiations should be modified accordingly. But

there are cases when this is not qui te evident:

Example:

Considering the following multi-instantiations; X = { a,b,c} and Y= [m 1 { a,b,c}], where X

and Y belong to the same choice point, if X was modified to { c}, due to a partial

success/failure, we cannot guarantee that Y will be accordingly modified to [m 1 { c}].

In DAP Prolog [26] , a similar approach is implemented by employing a mask to each set,

where relational database programs were treated (and not rules). Adopting this approach in

the multi-resolution mode!, a status mask was created for each choice point. A status bit 1

indicates that the instantiation is valid , and a status bit 0 means that the corresponding

instantiation has resulted in a partial success/failure. The resolution takes place as follows:

The initial statu s masks of the multi-instantiations are true before attempting any alternatives.

For each new alternative, a copy of the initial status of the masks is created. During the multi­

resolution of each alternatives, partial success/failures may occur. In this case, this bit is reset

to indicate a failure . A reset bit may not be attempted.

At the local synchronous OR leve! of this choice point, an OR operation takes place between

the different copies of the status masks to crea te the resultant status mask of the initial multi­

instantiations.

Due to the sharing representation and the association of severa! multi-instantiations to the

same choice points, false results were produced. An example of such a case is as follows:

11.22

Chapter Two: Basic Idea: A Look Through ------------------

Example;

Considering the following multi-instantiations; X = { a,b) and Y = { a,b), where X and Y

belong to different choice points, and the query :-(X=Y; X=\=Y). The multi-resolution tree

including the status masks are as shown in the following fig. (II.l 0).

X= {a,b} Y= {a,b}

ŒE1 ITliJ

X= Y X=\= Y

1 d 1 1 x ŒiïJ x

y IJII] 1 1 II 1 y

Figure (/1.10): Status masks for multi-instantiations

In the first alternative, X= a succeeds with Y= a (i.e. the first bits are set in both masks),

whereas the same instantiation (X=a) fails with Y=b. This is the first conflict that might

occur. Another problem is that X=b succeeds with Y=b (the second bits are set in both

masks) but this is not evident when we examine the status masks as there are no failures that

are recorded to indicate that partial success/failures took place between particular

instantiations.

We conclude that it is impossible to adopt the solution of modifying a multi-instantiation to

treat an occuring partial success/failure.

2- Yarjable Copyin~:

A second approach is to work with a~ of the modified variable. If we apply this idea to

the previous example, then we create a new copy of the variable each time we attempt to

multi-unify the subgoal with a clause head, and create a copy of the resulting succeeding

values. Fig. (II.ll) re presents su ch a case.

11.23

Chapter Two: Basic ldea : A Look Through ------------------

:- p(X), q(X)

p(X)

p(a) p(b) p(c)

X= {a,b,c}

q(X)

Figure (11.11): Failing variable copying

The same aspects discussed in the previous approach represent the sources of inconvenience

of this solution. Shared multi-instantiations and having more than one multi-instantiation that

originate from the same choice point are the main sources of confusion.

Imagining a system of multi-instantiated variables together with their duplicates, surely an

elevated memory consumption will be the end result and this is what we are aiming to avoid

at the first place. Hence we conclude the inconvenience of this proposition.

3- Sayjn2 faj!yres;

The third proposai is to keep ali the original multi-instantiations as they are, and when a

partial success/failure is reached, the system memorises the failing instantiations. In our

example, we should record that the second and the third instantiations resulted in a partial

l/.24

Chapter Two: Basic Idea : A Look Through ------------------

success/failure in the first alternative of q, while the frrst and second instantiations resulted in

another partial success/failure of the second alternative. In this case the multi-resolution

continues with the initial ensemble of multi-instantiations, and utilises the failures information

wh en necessary.

Actually, this is the solution th at we adopted in our model. Chapter 5 is dedicated to a detailed

discussion of the failures phenomenon in general and a profound presentation of the partial

success/failures in particular where we explain how a special treatment was applied for

optimal performance.

11.3.5.3 Types of partial success/failures

When multi-unifying 2 multi-terms, a partial success/failure might take place. Following are

the different types of partial success/failures.

1- Durin& the sarne unification oneration:

Sorne partial success/failures are vital to be treated in the multi-unification or else useless

multi-execution continues. Consider the following example.

p(1). p(2).

q(l ,2). q(2 ,3).

:- p(X), q(X ,X).

p(3).

In this pro gram, X will be multi-instantiated to { 1, 2, 3 } . Wh en attempting to solve

q(X,X), the first clause head is selected. Multi-unifying X to 1 will result in a partial

success/failure with the instantiations 2 and 3. Sin ce a total failure was not reported, multi­

unification continues to multi-unify the second pair of arguments X and 2. Again, partial

success/failures are detected. The same operation is repeated with the second clause head.

Standard Prolog fails when attempting to solve the above query. Thus, it is expected that the

multi-unification algorithm detects a total failure in this case.

Problern 2.4

Detection of total failures th at occur as a result of an ensemble of partial success/failures in

the same multi-unification operation.

11.25

Chapter Two: Basic !dea : A Look Through ------------------

2- Durjn2 different unification operations:

Problem 2.5

In the general case, when attempting to solve a subgoal, sorne partial success/failures may

occur. It would be optimum if the following subgoals detect such failures to optimise the

performance by neglecting the instantiations that led to previous failures and will serve no

more to find a solution.

Example:

For the query,

:- (A= [a,a]; A= /b,b]; A= [c,c]), A=\= /b,b], A= [B,C].

A will be multi-instantiated to { [a,a], [b,b], [c,c] }. The second subgoal results in a partial

success/failure. If this partial success/failure is taken into account during the third subgoal,

the variables B and C will be equal to:

B = {a, c} and not {a, b, c}

C = { a , c} and not { a , b , c}

reducing the memory consumption.

11.3.5.4 Recapitulation

From the above discussion, it is evident that the definition of a multi-instantiation (definition

2.1) is insufficient to solve the different problems that we explored throughout the discussion

of the multi-unification algorithm. We summarise these problems:

- problem (2.1): ensuring the coherence of an instantiation,

- problem (2.2): ensuring the coherence of an operation involving two multi-instantiations,

- problem (2.3): memorising instantiations that led to partial success/failures,

- problem (2.4): recognizing total-failures resulting from partial success/failures in the same

multi-unification operation, and

-problem (2.5): taking into account already occurred partial success/failures in the following

subgoals.

l/.26

Chapter Two : Basic Idea : A Look Through ------------------

It is clear that the individual instantiations bound to each variable play an important role in the

multi-resolution. Hence, a more clear, nonambiguous representation of multi-instantiations is

required. This is what we present in the following chapter.

11.3.6 The Multi-Resolution Tree

ln the multi-execution phase, we traversed complete! y the multi-resolution tree resolving the

given query. The multi-resolution tree is a tree representing the different succeeding traversed

choice points, and the different succeeding branches representing the succeeding alternatives

for each subgoal.

Conceptually, the multi-resolution tree differs from the standard OR resolution tree in the

same way as the multi-resolution mode! differs from the standard resolution. Each choice

point is represented only once, as deep backtracking is eliminated. No solution paths are

visible on the multi-resolution tree. Figures (11.1) and (II.2) of this chapter showed clearly a

standard OR resolution tree and its equivalent multi-resolution tree. Other figures throughout

this chapter explained in detail the concept of the multi-resolution tree.

11.4 The Multi-Outputs phase

In the above sections, we explored thoroughly the different steps of the multi-execution

phase, which was the first phase in the multi-resolution model of Prolog programs. We

eliminated deep backtracking and we introduced multi-instantiated variables. Now, we come

to the final phase which is the display of the ensemble of solutions. Given such a system,

how could we display for the user ali the possible true solutions for the nondeterministic

problem under investigation?

To answer this question, we first state what we have and what we want to produce. At this

level, the complete multi-execution of the given guery took place, resulting in a number of

data structures. U sing these data structures, we want to dis play ali the solutions of the given

guery to the user.

11.4.1 Existing Data Structures

The data structures produced by the multi-execution phase are the input to the multi-output

phase. At this level, we have the following data structures stored in the memory of the

system:

l/.27

Chapter Two : Basic ldca : A Look Through -------------------

- the multi-resolution tree

- instantiated objects (mono instantiated or multi-instantiated), and

- encountered failures.

Now, the question is using the existing data structures how could we display the correct

solutions?

11.4.2 Display of solutions

The phase of display of solutions is an important phase in the multi-resolution. It is here

where the partial success/failures are really processed and the succeeding values are

displayed to the user.

A first approach was to produce same order and the same number, of solutions as standard

Prolog. To satisfy this constraint, this necessitated the reconstruction of the standard

resolution tree with the aid of the stored data structures. We observed that this approach

consumes a considerable time. Since a remarkable speedup was achieved from the multi­

execution phase, which we will discuss in detail in chapters 6, we found that the time taken

to process the existing data structures to produce the solutions consumed a considerable

time. We intended to reduce the time taken to display the solutions as muchas possible.

Accordingly, our second approach depends on the multi-instantatiations of the variables

mentioned in the query subgoals without the reconstruction of the standard resolution tree.

Such an approach does not guarantee the order of the displayed solutions to be sirnilar to that

of standard Prolog. Nevertheless, it produces the same results.

We present each of the se approaches.

11.4.2.1 Reconstruction of the Standard Resolution Tree

In this approach, we actually construct the different solution paths of the query in a standard

resolution tree. A val id solution pa th is defined by a list of succeedin g alternatives of

different choice points, starting from the root, until a leaf is reached, making sure that no

partial success/failures occured along this solution path.

The input to this algorithm is the list of variables in the query, toge th er with the failures'

information and the multi-resolution tree. By default, it stans to construct the different

11.28

Chapter Two: Basic Idea: A Look Through -------------------

solution paths starting from the root. At each level, it retrieves from the tree the succeeding

successors. Selecting one successor at a time, it builds a solution path. The algorithm

favours the left-most successor. After the completion of this solution path, the same

operation is repeated on all brothers.

Each time bef ore the system appends a new branch to the solution path under construction, it

should verify that no partial success/failures occured in this branch. If a failure is recorded,

then this branch, and accordingly this solution path, are omitted, otherwise it continues,

depth-wise, the construction of the solution pa th.

A complete path is detected when no more successors exist for the current branch, and that

no failures were encountered along the constructed path. If this is the case, then the system

displays the solutions of the variables corresponding to this solution path. Afterwards it

resumes the above routine.

This algorithm follows the standard execution model of Prolog; it favours the first

succeeding son, i.e. left-most. Deep backtracking takes place, but with no unification

operations. Only the correct solution paths are constructed. This is why, it was expected to

produce the same number of solutions as that produced by Prolog and in the same order as

weil, as it adopts the same search criteria.

This approach is a valid approach, it produces the same solutions as standard Prolog, in

order and number. The drawback of such an approach is the long tedious algorithm that

occupies a considerable execution time. We compared the processing time versus the time

required for the display of the solutions of such a method when running large benchmarks,

and it was qui te surprising. It almost took about 60-70% of the execution time to display the

solutions. This motivated us to try to display the solutions alternatively without the

dependance on the resolution tree. The corresponding algorithm is presented in the following

section.

11.4.2.2 Without the reconstruction of the standard resolution
tree

This approach relies on the different multi-instantiations. Given the list of variables in the

query, different combinations of the instantiations take place to produce aU the solutions.

Hence, coherency tests are necessary in such a case. Also, checking with the partial

success/failures should take place to produce the correct solutions only.

II.29

Chapter Two : Basic ldca : A Look Through -------------------

This algorithm consumes considerably less time than the previous one as it is less complex

because we do not reconstitute the standard resolution tree. It is worth noting that it is

possible that it does not guarantee the order by which the solutions are produced.

11.5 Conclusion

In this chapter, we presented the basic idea of the multi-resolution model. After a thorough

look through the different phases of the model, substituting deep backtracking by multi­

instantiated variables is as simple as it seems. Certain ambiguous cases occur due to the

naïve representation of the multi-instantiations. The following chapter resolves such

ambiguities with a more sound representation.

II .JO

Chapter Three: The Multi-Execution Model __________________ _

Chapter Three

The Moiti-Execution Model

Abstract

In this ch.apter, we present the different characteristics of the mode! including the

representatio.n of multi-instantiated variables assuring the elimination of ali the

discussed problems in the previous chapter. A detailed study of the mu/ti-unification

algoritlzm is presented that includes coherency tests and treatment offailures.

l/1.1

Chapter Three: The Multi-Execution Model __________________ _

111.1. Introduction

The previous chapter was dedicated to a full discussion of ail the underlying difficulties in

the multi-resolution model due to the replacement of the deep backtracking feature by the

multi-instantiated variables. We concluded that to overcome the mentioned problems, a

major modification in the simple structure representing a multi-instantiation was necessary.

Recalling definition 2.1, a multi-instantiation is represented by {a 1 , .. ,a0 }, where ai is the ilh

instantiation and could be any multi-term (definition 2.2). When running severa}

benchmarks, we found many special cases where the given representation of a multi­

instantiation does not en sure the coherency of an instantiation (problem 2.1) or the

coherency of an operation including 2 multi-instantiations (problem 2.2). An example is the

case when two multi-instantiations, originating from the same choice point, are involved in

an operation.

A first attempt was to give each branch (alternative) in the multi-resolution tree a distinct

date. This date is the multi-unification number. Instantiating any variable in a branch, the

instantiated value will be associated to the date of the branch where the multi-unfication took

place. Thus, we represented a multi-instantiation by:

where datei is the ith date associated to the i!h instantiation.

In the case of two multi-instantiations that are originally from the same choice point, we

remarked, when running severa! benchmarks, that they might not have the same number of

instantiations due to occuring failures. Given the above representation, it was difficult to

assure the coherency features due to long complicated routines.

On the other hand, in the treatment of partial success/failures, we concluded that memorising

the occurred partial success/failures was the solution that we decided to adopt in our model

(problem 2.3). In an early stage of this work, we represented partial success/failures in

terms of the dates of the failing instantiations which were not processed except in the multi­

outputs phase.

/11.2

Chapter Three: The Multi-Execution Model __________________ _

Again, when running large benchmarks, we found that there are several important counter

aspects:

- Treating partial success/failures at the very end in the multi-outputs phase was not the

optimum decision due to the large number of partial success/failures that have occurred (we

are considering complex benchmarks). This resulted in a considerable time to produce the

solutions which spoilt the speedup that we gained in the multi-execution phase.

- At the same time, postponing the processing of the partial success/failures to the very end

resulted in sorne cases, in useless work that should not have been done, if these failures

were treated during the multi-execution. An example is the case of partial success/failures

that lead to a total-failure (problem 2.4).

- Another aspect was the optimisation of the memory size. If previously occurred partial

success/failures are considered at the moment of a new multi-unification operation, then the

new created multi-instantiations will not include the failing instantiations that will reduce the

size of the multi-instantiation and hence the memory size used (problem 2.5).

To sum up, we modified the representation of the multi-instantiation to include the choice

point number, which will have a major role in the multi-resolution, which we will discuss

later. We also introduced different mechanisms to treat the failures during the multi­

execution phase that will assure the correctness of solutions and avoid any false solutions

(problem 2.4). We consider the aspect of problem 2.5 an optimisation aspect, that we will

not discuss in this chapter.

Recalling what was previously mentioned, we need a simple representation that contains ali

the necessary information to solve the problems that were previously discussed:

- Problem 2.1: detection of incoherent multi-terms,

- Problem 2.2: detection of incoherency in operations th at involve two instantiations,

- Problems 2.3: structured enough to memorise partial success/failures,

- Problem 2.4: treating partial-failures that might lead to a total-failure (same multi-

unification operation).

11/.3

Chapter Three: The Multi-Execution Mode! __________________ _

111.2 Moiti-execution model

We present here an informai algorithm of the multi-execution of a query that takes place in

the multi-execution phase. We clearly detail the methodology of the creation of the multi­

instantiation s.

111.2.1 The multi-execution algorithm

The model performs the following operations:

For each subcoa!:

A- Check if a choice point exists or not. A choice point exists, if, in the program, there

exists more th an one clause head to solve that query. If yes, then :

111.4

1-A new unique sequential choice-point-number is given to this choice point. It is the

number of apparition of this choice point in the multi-resolution. A choice point having

a choice-point-number= 2 is a choice point that appeared in the multi-resolution before

another choice point whose choice-point-number = 3, for example.

2- Clause heads are selected from the left to the right, i.e. in the order by which they

were written in the program (sirnilar to Prolog).

3- For each clause head (alternative or branch):

1- A new branch-date is generated. This is a distinct date, generated

independently from the numbering of the choice points, and that tags ali

instantiations that will occur in this alternative.

2- A multi-unification operation is attempted between the subgoal and this clause

head.

3- If the multi-unification with the clause head succeeds, then each instantiation

that took place will be tagged by the branch-date. Hence, the created structure

will be in the form (branch date,value), which we will cali an instantiation-pair.

4- If this clause head is a rule, then the body clauses are invoked, in the same

mann er.

Chapter Three: The Mulli-Execution Model __________________ _

5- If the multi-unification fails totally, then this alternative is completely omitted

and any variables that were instantiated in this branch will be de-instantiated.

The multi-resolution proceeds to the next clause head.

6- If partial success/failures occur, then these failures are recorded in afailures

database in terms of the date-paths of both failing terms, together with the

failing-branch-location. Following is a clarification of these terms.

7- The same operation takes place each time the subgoal is being unified to a

new clause head.

4- After no more clause heads exist, the local-synchronous-OR-phase for this choice

point performs the following operations:

1- It gathers the different solutions, or instantiation-pairs, of the different

variables in the clause heads, from the different branches of this choice point.

2- lt creates the multi-instantiated variables, in terms of the choice-point-number

and the instantiation-pairs.

3- Multi-execution proceeds to the following subgoal.

B- If a choice point for this subgoal does not exist, then a multi-unification is attempted

between the subgoal and the unique clause head. The result of this multi-unification is a

total-success, a total-failure or a partial success/failure. In the case of a total-failure, then a

failure is reported. In the case of partial /success failure, the failing branch-location is

predecessor branch of this subgoal. If no predecessor exists, then it is recorded to the root

level so as to sense this partial failure on a global level to avoid any further operations

including the two instantiations that caused this partial-failure.

111.3 Representation of multi-instantiation

111.3.1 A multi-instantiation

Now onwards the naive representation of a multi-instantiation given by definition 2.1 (page

I1.4) is no more valid. We redefine the representation of a multi-instantiation.

l/15

Chapter Three: The Multi-Execution Model __________________ _

Definition 3.1; A multj-jnstantjatjon

We present a fonnal form of a multi-instantiation as follows:

{ choice-point-number, [Instantiation-pairs] }

where,

- the structure, { ... }, represents a multi-instantiation,

- choice-point-number is a unigue choice point number,
- Jnstantiation-pairs = (date1,value1), (date2_,value2), ... , (daten,valuen)

- ~i,valuei) is the ith instantiation-pair of a variable V,

-~i represents the date of the ith instantiation-pair of V, and

- valuei is corresponding ith sub-term associated to the ith date of V.

Definition 3.2; A sub-term

A sub-tenn is a value to which a variable was instantiated in a certain branch. It could be any

multi-terrn in the multi-resolution.

111.3.2 Memory representation of a multi-instantiation;

A general sc herne representing a multi-instantiation is given in fig. (III.l):

datel Valuel

Choice point number
daten Valuen

Figure (1/I.l) : A multi-instantiation

We store in the memory the branch-date for each sub-term, together with the choice point

where this multi-instantiation was created.

We emphasize that multi-instantiations are shared in the multi-resolution. Creation of new

sub-terms that are equal to (or include) a multi-instantiation is done by a simple memory

lll.6

Chapter Three: The Multi-Execution Model __________________ _

reference. No copying takes place, except for certain special cases that we will discuss in the

following chapter. Multi-instantiation examples are presented hereafter.

Examole 1:

This is the case of a simple multi-instantiation. AU sub-tenns are atoms. Each sub-tenn is

tagged by the corresponding branch-date.

1- X = { 1 , [(l,a), (2c,b), (_l,c)] }

1 a

1 b

c

Figure (ll/.2): A variable multi-instantiated to 3 atoms

Examole 2:

X= { 2 , [(1_,a), (~,{ 1, [(l,a), (2c,b), (l,c)] }) , (Q,m)] }

The given multi-term is a more complex multi-instantiation. The second sub-term is a multi­

instantiation. When X is being represented in the memory, a memory reference is made to

the second multi-instantiation. No copying takes place.

~ a

2 ~

Q rn •
1 a

1 2 b

~ c

Figure (ll/.3): A multi-instantiated complex abject

Jll.7

Chapter Three: The Multi-Execution Model _________________ _

Example 3:

X = { 3 , [(~,[a,b]) , (~,[])] }

This case is the case of a multi-instantiation of lists.

.
.5.

a

3 1
Q [] 1 ... -

Figure (111.4): A variable multi-instantiated to different lists

Example 4:

X = [{ 1 , [Q,a) , (2_,b)] } 1 { 2 , [Q,c) , (4_,d)] }]

This is the case of a list whose elements are multi-instantiated. Each element location

includes a pointer that points to the multi-instantiation in the memory.

III.8

. 1 a ... 1 ...

.l 1 b
T
.3. c ...
[] 2

~ d

Figure (Ill 5): A mono instantiated abject including multi-instantiated

variables

Chapter Three: The Multi-Execution Model __________________ _

111.3.3 A Choice Point

Definition 3.3: A chojce-pojnt-number:

It is a unigue number assigned to each new choice point. The choice points are numbered in

the order by which they appear during the multi-execution of the query.

choice_point_l

..... __ c_h_m_· ce_point_2

Figure (/l/.6): Numbering of choice points

in the mu/ti-resolution tree

If given two multi-instantiations that include choice_point_l and choice_point_2,

respectively, we may deduce the following:

-if choice_point_l is equal to choice_point_2 then both multi-instantiations originated from

the same choice point.

-if choice_point_l is not equal to choice_point_2 then the two multi-instantiations originated

from different choice points.

We will see afterwards that associating this information about the choice point to the

representation of the multi-instantiation will facilitate enonnously the coherency tests

(problems 2.1 and 2.2). A full discussion is given in sections III.4.2.4 and III.4.2.5 of this

chapter.

JJT.9

Chapter Three: The Multi-Execution Model _________________ _

111.3.4 A branch in a choice point:

Definition 3.4: A branch-date;

In a choice point, each alternative (clause head) is given a uniQue branch number, which we

called branch-date. It is actually the number of the multi-unification operation that multi­

unifies a subgoal to this clause head. The numbering system of the branches of a choice point

is independant of the numbering system of the choice points. Branches are numbered

sequentially. The ordering of the branches is not of any significance in the multi-execution.

branch_date3

branch_date2

Figure(IIJ.7): Numbering of different branches of a choice
point

After the exploration of all alternatives, the local synchronous OR phase of this choice point,

the choice point number together with all its branch dates are stored.

Definition 3.5: A branch-location:

The branch-location of an alternative in a choice point is defined in terms of its date

associated to the choice_point_number of the choice point to which it belongs. It is given by

the term (choice-point-number,branch-date).

111.3.5 A Date-path

Definition 3.6: A date-path:

A date-path of a sub-term is a list of branch-locations. It represents the path to access a

multi-term in a multi-instantiation. It is constructed sequentially. For the multi-instantiation,

l/I.JO

Chapter Three: The Multi-Execution Model ________________ _

{ 1, [Q,a), (2_, { 2, [Q.,x),(!,y),(i,z)]} , (Q.,c)] }

the date-path of the first sub-term, a, is [(1,1)]. Given the new representation of multi­

instantiation, this information is very clear as follows:

{ 1' [Q,a), a. { 2, [(.l,x),(!,y),(i,z)]} , (Q.,c)] }
1 __ ,

The date-path is constructed in terms of the choice-point-number 1 and the branch-date

associated to the sub-term a, in this case 1.

The date-path of the multi-instantiation (the second sub-term) is [(1,1)].

{ 1, [Q,a), (2_, { 2, [(l,x),(!,y),(i,z)]} , (Q.,c)] }

'----
To access the sub~term x in the multi-instantiation, we encounter the first branch-location

(1 ,1) th at is the date-path of the second multi-instantiation, th en we traverse (2,l) to reach

x. Hence, its date-path is given by [(1,2.), (2,1)].

{ 1, [Q,a), (I, { 2, [(l,x),(!,y),(~,z)]} , (Q.,c)] }

1 '-'

Similarly, the date-paths of the other sub-terms of the given multi-instantiation could be

retrieved in the same way. Table (3.1) represents the different date-paths.

Sub-term Date-pa th

a [(1,1)]

{2,[(3 ,x),(4,y),(5 ,z)]} [(1,2)]

x [(1,2),(2,3)]

y [(1,2),(2,4)]

z [(1,2),(2,5)]

c [(1,6)]

Table (1/1.1): Date paths of different sub-terms of a

multi-instantiation

111.11

Chapter Three: The Multi-Execution Madel __________________ _

111.3.5.1 Construction a date-path

The date-path is constructed in terms of branch-locations. As previously mentioned, a

branch-location is given by (current choice point number, current branch-date). The

date-path is constructed sequentially. We illustrate this with the following example:

Example:

For the multi-instantiated variable X, given by

X = { 3 , [Q,a) , (8_, { 1, [(l,x),(~,y),(l,z)] })] }

it includes two sub-terms; a, tagged by the branch-date 1. and a multi-instantiation, { 1, [

(l,x),(1,y),(.3_,z)] } , tagged by the branch-date ~. The date-path of the former is [(3,1)],

while th at of the latter is [(3,.8_)].

Now, if we are to access the sub-term x in the multi-instantiation, we have already created a

part of its date-path that be gins with [(3,.8_)]. To really reach x, we have to traverse another

branch-location, which is (1,1). Before appending this branch-location to the already

existing date-path, we have to perform a number of coherency tests (problems 2.1 and 2.2,

page II.l4) that we will discuss later in this chapter. If these tests are satisfied, then the

branch-location (1,1) is appended to the path [(3,~)] resulting in the new date-path

[(3,~),(1 ,1)]. This new date-pa th represents a coherent sub-term. The details of the

coherency tests are presented in the sections III.4.2.4 and lll.4.2.5.

Each time a new branch-location is appended to the already constructed date-path, the

system checks whether the encountered sub-term, corresponding to the existing date-path,

might be multi-unified to the other multi-term or not. If this is the case, then a multi­

unification takes place between the encountered sub-term and the other multi-term,

otherwise, it continues the construction of the date-path until another sub-term is

encountered.

Examnle 1;

multi-unify (X,Y), where

X= {1, [(1,a), (1,b)]} and Y= a

/11.12

Chapter Three: The Multi-Execution Model __________________ _

Since X is multi-instantiated, then each sub-tenn will be multi-unified independently. We

will detail the different cases of the multi-unification in the following section, meanwhile we

are interested in the construction of the date-paths. To access the sub-term a, the

corresponding date-path is [(1,1)]. The system tends to multi-unify the encountered sub­

tenn, that is a, to the atom a which will result in a success.

Example 2:

multi-unify(p({ {1, [(l,a), (2_,b)]}),q(X)).

The multi-unification fails (as in standard Prolog) before even starting to construct the date­

paths of the different sub-terrns of the first multi-tenn. This is because the functor names are

different and hence non unifiable.

The above example points out the case where a multi-unification operation rnight take place

before encountering the actual sub-tenn constituting a multi-instantiation. We will clarify

this point again throughout the discussion of the different cases of the tenns to be multi­

unified.

Examole 3:

multi-unify({l, [(l,a), (~,b)]},Y)

Since Y is a variable, a direct assignment takes place with neither the construction, nor

validation of the date-paths of the different sub-tenns assigned toX.

111.3.5.2 Features of a date-path

There are sorne rules concerning the construction of the date-paths:

1~ A date-path of any sub-terrn should never include two different branch-locations of the

same choice point. Assuming a date-path is given by:

date-path = [... , (choice-point-i,datei), (choice-point-j,datei), ...]

then choice-point-i is never equal to choice-point-j unless if datei = datei.

II/.13

Chapter Three: The Multi-Execution Model _________________ _

This is to satisfy the rule restricting the coherency of a sub-term that states that it is

prohibited to access two alternatives of the same choice point. This immediate! y solves the

problem 2.1. That is, just knowing the choice points from which two branch-locations

originated, we can easily perform the coherency tests.

2- A date-path may include redundant branch-locations. Consider the following example:

Example;

For the multi-instantiated variable X given by:

X = { 1 , [(l,a) , (2_, { 2 , [(_1,x) , (!.. { 1 , [(2.,b)]})]})] }

1 1 1 1 1_1

the date-path of the sub-term bis [(1,2_), (2,~), (1,2_)].

This feature is accepted as long as the coherency rules are not violated. An optimisation to be

proposed is to eliminate any redundancy existing in a date-path. This is to ameliorate the

performance.

3- A date-path includes unsoned branch-locations.

Example:

{ 1 , [(l,a) , (2_, { 3 , [(i,x) , (§.,_ { 1 , [(2_,{ 2 , [(_l,m,(!,n))]})]})]})] }

1 __ 1 __ 1

The date-path to access the sub-term rn is [(1,2_), (3,.Q), (1,2_), (2,.3,)]. This is an unsoned

date-pa th, but it is a coherent correct one.

An optimisation is to son the date-path. This feature influences the treatment of failures. We
will discuss the sorting problem of a date-path in chapter 4, when examining the failures

treatrnent.

4- date-path for a ground term = [].

lll.J4

Chapter Three : The Multi-Execution Model ________________ _

111.4 Moiti-unification algorithm

Before presenting a detailed discussion of the multi-unification algorithm, we recall severa!

aspects conceming the standard unification algorithm.

111.4.1 The Standard Unification Algorithm

The following program, unify(X,Y), represents the standard unification algorithm expressed

in a Prolog pro gram without the occur-check included. The case when the two terms X and

Y are not equal are separated for analogy reasons when examining the multi-unification

algorithm.

unify(X,Y):-

atomic(X), atomic(Y), !, X== Y.

unify(X,Y):-

var(X), nonvar(Y),! ,X= Y.

unify(X,Y):-

nonvar(X), var(Y), !, Y= X.

unify(X,Y):-

var(X), var(Y),! ,X= Y.

unify(X,Y):-

nonvar(X), nonvar(Y), functor(X,F,N), functor(Y,F,N), !,

unify _arguments(N ,X, Y).

unify _arguments(O,X, Y).

unify _arguments(N ,X,Y):-

arg(N,X,Xn), arg(N,Y,Yn), unify(Xn,Yn),

Nl is N-1, unify_arguments(Nl,X,Y).

Program(Ill.l): The Standard Unification Algorithm without the occur check

lll.l5

Chapter Three: The Multi-Execution Model __________________ _

In the unification algorithm presented above, the relation unify(X,Y) succeeds if X unifies

with Y. The clauses of unify outline the possible cases. The first case is that of two atoms.

Two variables unify in standard Prelog. On the ether hand, if X (or Y) is a variable, then X

(or Y) unifies with Y (or X).

Finally, if X and Y are compound functions, with the same functor and the same arity, then

their corresponding arguments are unified respective! y.

Alternatively, if there arrives a case outside these stated above, a failure is detected and the

algorithm terminates. If not, th en the terms unify.

We might represent the different inputs and outputs of this algorithm as shown in figure

(III.8).

Tmn X ~ l TermY

Standard unification

' Result

~
failure success

t
lnstantiation of variable(s)

Figure (II/.8): Inputs and outputs of the standard unification

algorithm

The inputs to the algorithm are X and Y; the two terms to be unified. The output is either a

total-success or a total-failure. In the case of a total-success, variables, if any existed, will be

instantiated. On the ether hand, in case of a total-failure, ali variables that were instantiated

in this unification operation will be deinstantiated.

/I/.16

Chapter Three: The Multi-Execution Model __________________ _

111.4.2 The Moiti-Unification Algorithm

The main feature of the mu! ti-resolution model is the presence of multi-instantiations. It is

evident that the standard unification algorithm does not support ali unification operations

dealing with such multi-instantiated variables. Accordingly, we defined the multi-unification

algorithm to support ali unification operations in the multi-resolution model. The multi­

unification algorithm is an extension of the standard unification algorithm, including the

standard unification operations together with ali operations of multi-unifying multi­

instantiated variables.

The multi-unification algorithm performs the classical unification operations, together with

other features:

- it supports ali unification operations between any two multi-terms,

- it constructs the date-paths of the accessed sub-term to ensure their coherency

according to the rules, previously stated (problem 2.1, page 11.12),

- it ensures the coherency of the mu! ti-unification operation between the two sub-terms

to be multi-unified (problem 2.2, page 11.14),

- it signais any partial success/failures occuring during multi-unification (problem 2.3,

page 11.20), and

- it recognises certain failures and treats them (problem 2.4, page 11.25).

The inputs to the multi-unification algorithm are the two multi-terms, X and Y to be multi­

unified. Moreover, the current choice-point-number and the current-branch-date,

constituting the current-branch-location are also inputs to the algorithm.

A scheme representing the inputs and output of the algorithm is given in fig. (III.9).

l//.17

Chapter Three: The Multi-Execution Mode! __________________ _

Multi-tenn X

Current
Choice point Multi-Unification

Result

Multi-tenn Y

Current

_lranch date -

Total success Total failure Partial success/failure

' t instantiation of variables instantiation of variables

+
ensemble of partial failures

Figure (lll.9): Inputs and outputs ofmulti-unificationa/goritlvn

The output of the multi-unification algorithm is one of three cases; a total-failure, a total­

success or a partial success/failure. In the case of total-failure, a failure to multi-unify the

two multi-terms is reported. If total-success is achieved, then the variables are instantiated.

In the case of partial success/failures, an ensemble of the partial-failures that took place will

be reported together with the different instantiations of the variables resulting from this

multi-unification.

Before discussing the different unification cases that take place in the multi-unification

algorithm, we present the failures' data base (the solution to the problem 2.3):

111.4.2.1 Failures database

Problem 2.3 (page II.20) was concerned with the methodology of memorising partial

success/failures that might occur in a multi-unification operation. Given the concrete

representation of a multi-instantiation, we decided to save the partial success/failures in a

IIJ.18

Chapter Three: The Multi-Execution Model __________________ _

database, which we called the failures' database. Each time a partial failure is encountered, a

new record is 'asserted' that contains ail the information of this partial success/failure.

As discussed in section II.3.5.2, we discussed the different possibilities to treat the partial

failures. We concluded that we will memorise the failures aside. A failure occurs between

two sub-terms in a certain bran ch-location. We representa partial failure in terms of the date

paths of both sub-terms that led to this failure, together with the current branch-location as

the failing branch-location, which is given by: (current-choice-point-number, current­

branch-date).

Fig. (lll.l 0) shows the record structure of the failures' database.

date-path-1 date-path-2 failing branch-location

Figure (ll/.10): Failures' database record structure

111.4.2.2 Multi-Unification Cases

If the tests, mentioned above in section III.4.2, are satisfied, then we say that we have two

coherent terms and that the multi-unification operation between these two terms is a coherent

operation. In this case, the system proceeds to the actual unification between these two

tenns. We enumerate the different cases handled by the multi-unification algorithm. The

following pro gram segment states the different cases of both terms:

III.19

Chapter Three: The Multi-Execution Modcl _________________ _

multi_unify(X,Y):­
atomic(X),atomic(Y),!,
(X== Y-> true; signal_failure).

multi_unify(X,Y):-
var(X), var(Y), !, X=Y.

multi_unify(X,Y):-
var(X), nonvar(Y), !, X= Y.

multi-unify(X,Y):-
var(Y), nonvar(X), ! , Y =X.

multi_unify(X,Y):-
nonvar(Y), Y = { Choice_point_y, Instantiation_pairs_y },!,
varsin(X,Vx),
findall(Vx,

mul ti_unify _mono _multi (X, Choice _point_y ,Instantiation_pairs_y),
List_of_solutions),

assign(Vx,List_of_solutions).

multi_unify(X,Y):-
nonvar(X), X = { Choice_point_x,Instantiation_pairs_x}, !,
varsin(Y,Vy),
findall(Vy,

multi_unify _mono_multi(Y ,Choice_point_x,Instantiation_pairs_x),
List_of_solutions),

assign(Vy ,List_of_sol utions).

multi_unify(X,Y):-
nonvar(X), functor(X,Fx,Ax),
nonvar(Y), functor(Y,Fy,Ay),!,
((Fx==Fy),(Ax==Ay)->multi_unify _arguments(Ax,X, Y);

signal_failure, fail).

multi_unify _mono_multi(X,Choice_point_y,[(Date 1, Valuel)!Rest]):-
check_coherency(.. , ... , ...)
check_fail ures(.. , ... , ...),

multi_unify(X,Value 1).

multi_unify _mono_multi(X,Choice_point_y,[(Date 1 ,Value 1)!Rest]):­
mul ti_unify _mono _rn ul ti (X, Choice _po in t_y ,Rest).

multi_unify _arguments(O,_,_).
multi_unify_arguments(A,X,Y):-

arg(A,X,Xn), arg(A,Y ,Y n), multi_unify(Xn, Y n),
Al is A- 1, multi_unify_arguments(Al,X,Y).

Program (IJ/.2): The Mu/ti-unification Algorithm

1//.20

Chapter Thrce: The Multi-Execution Model __________________ _

We enumerate the different cases of X and Y, keeping in mind that either X or Y, each

maintains a uni gue date-path.

1- X - atom 1 Y - atom:

The treatment in this case is similar to that in the standard unification algorithm. An equality

test takes place between X and Y. If the result of this test is true, then the multi-resolution

continues norrnally. Altematively, if the result is a failure, here a failure is signaled between

both terms. This failure is stored in the failures database.

Example:

Assume that is required to multi-unify the two atoms a and b, with their corresponding date­

paths; dl and d2 at the branch-dated 1 in the choice-point-number3. The result of this test is

a failure. This failure is recorded in the failures database as the following entry:

dl d2 (3, 1)

Figure (111.11): Failures' database

This data is stored temporarily until further processing, and the multi-unification reports a

failure.

Note:

In case of a single clause head, and a partial success/failure occurred, then the failing­

branch-location is the branch-location of the predecessor branch of this clause head.

2- x - varjable 1 y - varjable:

As in the standard unification algorithm, the two terrns unify, with the result X= Y.

3- X - variable 1 Y - Nonvarjable:

By nonvariable, we mean any multi-terrn. Here, a direct assignment operation takes place.

The nonvariable Y is assigned toX. We say that X= Y.

I/1.21

Chapter Three: The Multi-Execution Mode! __________________ _

In case of Y is a multi-instantiation, we point out that we do not explore the multi­

instantiation, i.e. we do not construct the date-paths for the respective sub-terms, and hence

the coherency tests are not performed. This is the main reason why we have incoherent sub­

terms in a multi-instantiation.

But at the same time, the fact that we assign the multi-instantiation to a variable in one step is

the power of the algorithm. This is because a remarkable execution time is reduced in this

step. The case of multi-unifying a variable to a multi-instantiation is commonly occuring in

Prolog programs. Thus, we expect that an enhancement in the execution takes place when

the multi-resolution model is adopted compared to the standard model. Chapter 6 is

dedicated to a full discussion of the speedups attained when running several benchmarks.

Examnle:

For the operation multi-unify(X,{ 1,[(l,a), (.~,b), Q,c)]}), the variable X will be

equal to these three alternatives in one assignment operation, (without accessing the different

sub-terms of the multi-instantiation) instead of 3 assignment operations when considering

the standard resolution. The result is

X= { 1,[Q,a), (2_,b), (.3_,c)]}

4- X - Nonvarjable • Y - Varjab!e:

This is the reverse case. The result is th at Y = X, irrespective of the contents of X.

5- X js a non yarjab!e . Y is multj-jnstantiated:

Y= {Choice_pointy, [(datel,valuel), ... (daten,valuen)]}:

Multi-unifying a multi-term, X, to a multi-instantiation, Y (containing n sub-terms), results

in a single multi-unification operation where inherently a multi-unification operation takes

place between this multi-term and each sub-term of the multi-instantiation. These multi­

unification operations are invoked sequentially, in the order of the multi-instantiations.The

algorithm in this case is given by:

For i = 1 ton

ll/.22

Chapter Three: The Multi-Execution Model __________________ _

multi-unify (X,Yi).

Naturally, any of these invoked multi-unifications might resemble any of the above

mentioned cases.

Example:

multi-unify(x,{ 1,[(l,a), (2_,x)] }) will result in 2 inherent multi-unification

operations:

multi-unify(x, { 1 ,[Q,a) , (2_,x)] })

1 1 -------> multi-unify(x,a), ~

-------> multi-unify(x,x).

6- X = multj-instantjated 1 Y js a non yarjable:

The reverse operation of the above case takes place.

7- Optjmjsatjons:

The previous two cases (5 and 6) are the cases of multi-unifying a multi-instantiation to a

multi-term. Since a multi-term may be a multi-instantiation (definition 2.2, page II.4),

frequently the multi-unification performs the multi-unification operation between two multi­

instantiations. Widely speaking, there are two cases, the case when both multi-instantiations

belong to the same choice point (same choice-point-number), and the case when they belong

to different choice points (different choice-point-numbers). The algorithm as shown in

program (III.2), handles these cases, but for clarity reasons we detail these two cases as

optimisations:

7.a - X is multi-instantiated 1 Y is multi-instantiated:

X= {Choice_pointx, [(datel,value1), ... (daten,valuen))}:

Y= {Choice_pointy, [(datel,valuel), ... (datem.valuem)]}:

This is the case of the multi-unifying 2 multi-instantiations originating from two different

choice points; Choice_pointx and Choice_pointy. It is the most complex case. It is as if we

are trying to multi-unify two sub-trees, with different alternatives.

Il/.23

Chapter Three: The Multi-Execution Model __________________ _

Here, the multi-unification algorithm invokes multi-unification operations between ali the

combinations of the sub-terms in both multi-instantiations, i.e. a multi-unification between

the first sub-term of X with Y, then between the second sub-term of X with Y, and so on.

Each of such multi-unification operations resembles any of the cases mentioned above.

The difference between expliciùy mentioning this case in the multi-unification algorithm or

not is the order by which the multi-unification takes place. Leaving the above cases to handle

the multi-unification, no control could be super imposed on the order by which the loops

representing the multi-instantiations are multi-unified. Alternatively, here, we can state

explicitly which loop starts bef ore which according to a certain condition (superiority,

inferiority).

Ordering of loops in the multi-unification operation is a technical aspect, that concerns the

optimisation of the treatment of failures. Same results are produced in both cases. The

algorithm as shown in program (III.2) will not allow any control to perform the loops in a

certain order. Stating the cases of multi-instantiations explicitly in the multi-unification

algorithm will allow to these operations to be performed in a certain order (ascending or

descending). We will return to this point again when discussing failures in chapter 4.

Example:

Given two multi-instantiated variables X and Y such that:

X = { 1, [Q,a), (J_,B)]} and

Y = { 3, [Q,a), (.Q.,bb)]}

it is required to multi-unify(X,Y).

Since both variables are multi-instantiated, the algorithm examines their choice-point­

numbers. Since they are different, then this means that they belong to two different choice

points. This is because the numbering of the choice point is distinct; each choice point is

given a unigue number to distinguish it from other choice points.

A number of multi-unification operations are invoked between each sub-term of X with all

sub-terms of Y as follows:

multi-unify({ 1, [(l,a), (.f.,B)]},{ 3, [(2,a), (.Q.,bb)]})

Jll.24

Chapter Three: The Multi-Execution Model _________________ _

____ 1 ---> multi-unify(a,{ 3, [~.a), (.Q,bb)]}) then

__ 1 ---> multi-unify(B,{ 3, [~.a), (Q,bb)]}).

We remind the reader that the date-path of the first term, a, in the frrst invoked multi­

unification is [(1,1)] while that of B, in the second multi-unification operation is [(1,~)].

Each of the invoked multi-unifications resembles the previous case. The algorithm handles

each of them separa tel y, and in order. The first invoked operation is the frrst to be treated,

resulting in the following invoked multi-unifications:

multi-unify(a,{ 3, [~.a), (.Q,bb)]})

---> multi-unify(a,a) then

______ 1 ---> multi-unify(a,bb).

The first multi-unification results in a success, while the second results in a partial failure.

This failure is recorded in the failures database in terms of the date-paths of both terms:

[(1, J)] [(3, Q)] current branch-location

Figure (//1.12): Failures' database

The algorithm then handles the second sub-term of X, B. The same operation is repeated

where a multi-unification operation is invoked between Band ail the sub-terms of Y.

multi-unify(B, { 3, [~.a), (Q,bb)]})

This is the case of multi-unifying a variable to a nonvariable. A direct assignment takes place

and we say that B = { 3, [~.a), (.Q,bb)]}).

By this the multi-unification between the multi-instantiated multi-terms X and Y is

accomplished.

7.b- X is multi-instantiated. Y is multi-instantiated:

X= { Choice_point, [(date1,value}), ..]}:

Y= {Choice_point, [(date1,value}), ..]}:

II1.25

Chapter Three: The Multi-Execution Mode! __________________ _

This is the case of multi-unifying two multi-instantiated variables, belonging to the same

choice point. Here, the corresponding pairs of sub-terms having the same-branch-dates are

multi-unified. In such a case, a multi-unification operation is invoked between every

correponding pair of terms in X and Y. No combinatorial tests are allowed.

Every two corresponding terms are called by the multi-unification algorithm with their

corresponding date-paths. Each multi-unification resembles any multi-unification case stated

above, with the same procedure of manipulation of dates.

Examnle:

multi-unify({ 1, [Q,a) , (2_,b)] } ' { 1, [(1 ,rn), (2_,b)] }),

The above multi-unification operation between the two multi-instantiated variables will result

in two inherent multi-unifications.

multi-unify({ l, [Q,a) , (2_,b)] } ' { 1, [(1 ,rn), (2_,b)] }),

---> multi-unify(a,m) then

_________ 1 ---> multi-unify(b,b).

The first multi-unification operation between the sub-term a of the first multi-term and the

sub-term m of the second multi-term will result in a partial success/failure.

Note:

An important characteristic which we emphasize is that in the case of two multi-instantiations

belonging to the same choice point, this does not necessarily imply that both multi­

instantiations have the same length (same number of sub-terms constituting each multi­

instantiation).

Examnle:

Given,

pl (X,A):- X=[Aja].
p2(X,B):- X=[b/B].

and the q uery,

/ll.26

Chapter Three: The Multi-Execution Mode! __________________ _

?- (X= [aja]; X= [b/b]), pl(X, Y), p2(X, Z), Y= Z.

The variables X, Y and Z will be multi-instantiated as follows:

X= { 1 , [(l,[ala]) , (l,[blb])] },

Y = { 1 , [(l,a)] } , and

z = { 1 ' [(2_,b)] }

This example is the case of the multi-instantiation that includes a single instantiation.

Now we come to the test Y = Z. Both variables are multi-instantiated, with the same choice

point number, 1, but with different branch-dates. It is prohibited to perform the test between

a and b due to the fact that these two values are generated from two different alternatives, 1
and ~. of the same choice point, 1. This test violates the semantics of standard Prolog

resolution where one and only one alternative of each choice point is considered during the

whole resolution. Hence, the result of this mu} ti-unification operation is a complete failure.

Another remark that we would like to add is that this case of multi-instantiations belonging

to the same choice point is also handled by the coherency test procedure that ensures that the

date-paths of both multi-terms results in a permitted coherent multi-unification operation.

9- X and Y are functors:

The last case is the multi-unification between two compound terms, namely functors. The

test is similar to that in standard unification, where a test occurs to assure that the two

functors' names are identical, and that the number of arguments in both terms is the same. If

both conditions are satisfied, then multi-unification operations are invoked between every

two corresponding arguments. These operations could be any of the above mentioned cases.

Note that the multi-unification operations between the different pairs of arguments are

independent. No coherency is checked between the different arguments of a clause head,

even if these arguments are (or include) multi-instantiations.

Example 1;

multi-unify(p(X), p({l,[Q,a), (f.,b)]}).

III.27

Chapter Three: The Multi-Execution Model _________________ _

Since both functors are the same and include only one argument, then the result is the

invokation of the operation:

multi-unify(X,{l,[Q,a) , (l,b)]})

which, in turn, will multi-instantiate X to {1,[Q,a) , (l,b)]}.

Examo!e 2:

multi-unify(fl ({1,[(l,a) , (l,b)]}),f2({1,[(l,a) , (l,B)]})).

The above operation will fail before invoking any multi-unifications due to the difference in

the functors' names. The failure took place before exploring the different sub-terms of the

multi-instantiated arguments.

111.4.2.3 A general example

multi_unify (m,{3,[(.Q.,{l, [(2_,A), (.3_,{ 2, [(±,a), Q,b)]})]}) , (l,m)]}).

This is a multi-unification operation between rn and a multi-instantiation. The latter includes

two multi-tenns; a multi-instantiation and a single instantiation (mono-instantiation), tagged

by the branch-dates .Q. and 1 respective! y. Hence the date-pa th of the multi-instantiation is

[(3,.Q.)], while that of the mono instantiation is [(3,1)].

multi_unify (m,{3,[c.Q.,{ l, [(2_,A), (.3_,{ 2, [(±,a), G_,b)]})]}) , (l,m)]}).

The result is the invokation of 2 mu! ti-unification operations as follows:

multi-unify(m,{l, [(2_,A), (.3_,{ 2, [(±,a), (~,b)]})]}),and

multi-unify(m,m).

The second multi-unification is simple, and willlead to a success.

ll/.28

Chapter Three: The Multi-Execution Model _________________ _

The first invoked multi-unification operation is between rn and another multi-instantiation,

which in turn will invoke two other multi-unifications between rn and each sub-term of this

multi-instantiation.

multi-unify(m,{l, [(2_,A), (3_,{ 2, [(~,a), (.l,b)]})]}),and

1 __ _

resulting in the following multi-unification operations:

multi-unify(m,A), and

multi-unify(m,{ 2, [(.4_,a) , ~.b)]})]}), and

where the variable A has a date-path = [(3,§),(1,2.)] and the multi-instantiation has a date­

path = [(3,§),(1,})].

The first multi-unification operation is the case when one term is a variable and the other is a

non variable. Here, a direct assignment takes place and A will be equal to m.

On the other hand, the multi-unification operation is between the atom m and the multi­

instantiation { 2, [(~.a) , (.l,b)]})] } . This will lead to two other multi-unification

operations between m and each sub-term of this multi-instantiation as follows:

multi-unify(m,{ 2, [(.4_,a), ~.b)]})

1

resulting in:

mul ti-unify(m,a),

multi-unify(m, b).

The date-path of the sub-term ais [(3,§), (1,1), (2.~] while that of bis [(3,§), (1,1),

(2,.2)].

The first multi-unification operation will fail. The failure is stored temporarily in the failures

database as follows:

l/1.29

Chapter Three: The Multi-Execution Model __________________ _

[] [(3, Q),(1, 3.),(2, ~)]

Figure (//1.13): Failures' database

The first date-path is [] as the first multi-tenn is a ground tenn.

Now, attempting to multi-unify the atom m to the mono instantiation b, another failure is

detected, that is stored in the failures database.

[] [(3, Q),(1, ~).(2, ~)] ...
[] [(3, Q),(1, ~),(2, ~)] ...

Figure (1/1.14): Failures' database

The last multi-instantiation led to a total-failure as none of the invoked multi-unification

operations led to a success (the two branches of the choice point number 2 have failed). This

implies a failure of the branch that invoked this choice point. In this case, the choice-point­

number 2 is full y omitted and we record a panial failure of the instantiation whose date-path

is [(3,.Q),(l,])]. Bence the above records in the failures database are modified to:

[] [(3, Q),(1, 3.)]

Figure (111.15): Failures' database

111.4.2.4 Coherency of a sub-term

As previously mentioned, while constructing a date-path, each time a new sub-tenn is

encountered, before appending its new branch-location to the already constructed pans of

the date-path, several tests are perfonned to assure the coherency of the constructed date­

path until this moment.

A test is made to check if the choice-point-number of the branch-location to be appended

already exists in the constructed part of the date-path. If this is true, then a test is made to

make sure that both branch-locations: the one already existing and the one to be appended,

belong to the ~ alternative, i.e. have the ~ branch-dates. This is to ensure, by

JJJ.30

Chapter Three: The Multi-Execution Model _________________ _

analogy to the standard resolution, that we are traversing the same solution path and not

considering 2 alternatives of the same choice point.

The following Prolog program performs the above test:

check_coherency _1 (Choice_point_number ,Branch_date,Path):­

on((Choice_point_number,Date),Path),!,

Date = Branch_date.

Program (/11.3): Object coherency test

It is clear that with the new representation of multi-instantiations (definition 3.1), it is quite

evident how simple a coherency test may be performed.

In case of incoherency, a failure is reported and the multi-unification operation that was

handling this incoherent sub-term is abandonned.

Example 1:

Given a variable X such as

X={l,[(l,a), (.2_, {2,[(l,x), (.4,{1,[(l,c), (2_,d)]})]})]}

to be multi-unified to another multi-term, say Y, each sub-term in X will be examined before

performing this operation. By examining a sub-term, we mean that we create its date-path

and test its coherency.

The following table enumerates the corresponding date-paths for the different sub-terms of

X:

Object Date _path

a [(1,1)]

{2,[(3,x),(4,{ 1 ,[(1 ,c),(2,d)]})] } [(1,2)]

x [(1,2),(2,3)]

{l,[(l,c), (2,d)]} [(1,2),(2,4)]

c r o .2.).<2 ,4),(1, 1) 1
d [(1,2),(2 ,4),(1 ,2)]

Table (/11.2): Objects and their corresponding date-paths

l/1.31

Chapter Three: The Multi-Execution Model __________________ _

In the above table, when we observe the different date-paths of the different instantiations,

we find that they ail respect the rules defining a date-path, except for that corresponding to

the instantiation c. Its date-path includes 2 branch-locations belonging to the same choice

point; i.e. the same choice-point-number mentioned twice with two different branch-dates.

This violates the rule that only one branch-date of each choice point should be considered at

a time.

Given the representation of the multi-instantiations, we proved in section III.3.5.1 that it is

sufficient to indicate the incoherency of any sub-tenn. Note that the test of coherency takes

place before actually performing any operation. ln case of incoherency, this operand is

completely omitted and the mu! ti-resolution continues with the following sub-tenn.

111.4.2.5 Coherency of a moiti-unification operation

A mu} ti-unification operation requires two multi-tenns as its inputs. To ensure the coherency

of the performed operation, we have to ensure the coherency of the two multi-tenns. To

check the coherency between these two multi-instantiations, we have to check the coherency

of the date-path under construction with respect to the second-date-pa th.

Appending a new branch-location to the date-path under construction, the system checks

whether a branch-location belonging to the same choice point exists in the already

constructed path and the date-path of the other tenn or not. If this is true, then we should

validate that the branch-dates of the three branch-locations: those in both paths and that to be

appended, have the same branch-date. If this condition is not satisfied, then an incoherency

is signaled and a failure is reported.

If the appended branch-location does not exist on the already constructed path, but exists in

the date-path of the second term, then, again, the algorithm should make sure that the

branch-dates are equal otherwise it is an invalid operation for the same reason mentioned

above; i.e. those two terms cannot be unified as they belong to different solution paths.

The above tests validating the coherency of sub-terms and operations are perfonned by the

following Prolog program:

ll/.32

Chapter Three : The Multi-Execution Mode! _________________ _

check_coherency_2(Choice_point_number,Branch_date,First_path,Second_path):­

check_coherency _1 (Choice_point_number,Branch_date,First_path),

check_coherency _1 (Choice_point_number ,Branch_date,Second_path).

Program(l/1.4): Operations coherency tests

where check_coherency_1 is the program (ll1.2).

We present a detailed example, where we show how date-paths are constructed and

coherency checks take place.

Example 1:

For the query,

(A=[ala];A=[blb]),A=[BIC],A=D,(Z=[BIC];Z=D),Z=A.

the different variables will be multi-instantiated to:

A = { 1 , [(1, [ala]) , (l, [blb])] }

B = { 1 , [Q, a) , (,2_, b)] }

C = { 1 , [Q, [a]) , (l, [b])] }

D = { 1 , [(1, [ala]) , (l, [blb])] }

Z = { 2, [(~, [{ 1, [(l,a) , (2,,b)]} 1 { 1 , [(l,[a]) , (2.,[b])]}]) ,

(Q, { 1, [(l,[ala]) , (2,,[blb])]})]}

When coming to test the equality between Z and A, the sub-terms are accessed by their date­

paths. We compare the date-paths of each pair of operands. If no coherency test are

performed then the 16 operations given in the following table. It is here where we can detect

any incoherency between the operands. Once an incoherency is detected in the date-path of

either terms, this operation will be totally omitted, and control proceeds with the following

combination. We enumerate the coherent cases:

I/1.33

Chapter Three: The Multi-Execution Model _________________ _

Tl Date pathl T2 Date path2 Results

a [(1,1)] a [(2,.5,),(1' 1)] coherent

[a] [(1,1)] (a] [(2,.5,),(1' 1)] coherent

a [(1,1)] a [(2,6),(1, 1)] coherent

[a] [(1,1)] [a] [(2,6),(1,1)] coherent

b [(1,2)] b [(2,5),(1,2)] coherent

[b] [(1,2)] [b] [(2,.5,),(1 ,2)] coherent

b [(1 ,2)] b [(2.~),(1 ,2)] coherent

[b] [(1 ,2)] [b] [(2,6),(1,2)] coherent

Table (III. 3): Tes ting date-paths for coherency of operations

The algorithm checks the date-paths of both multi-terms involved in the same multi­

unification operation. It should validate that the Tl is a coherent sub-term(the previous test),

and that T2 is a coherent sub-term, and that Tl and T2 are coherent to be involved in the

same operation. This last test is done by validating that all branch-locations encountered for

both terms are coherent, i.e. if the same choice point is encountered in both date-paths, th en

their branch-dates should be the same, otherwise an incoherency is signaled, and both pairs

are neglected without performing this false operation. The algorithm continues to test the

remaining pairs of terms in the same fashion.

To ensure the correctness of the performed test operations, we present the standard

resolution tree of the above query, fig. (III.16).

III.34

Chapter Three: The Multi-Execution Model _________________ _

query

A=[al a] A=[blb]

B =a, C =[a] B = b, C = [b]

D =[a 1 a] D=[blb]

A A
Z=[ala] Z=[ala] Z=[blb] Z=[blb]

1

a=a a=a b=b b=b

[a] = [a] [a] = [a] [b] = [b] [b] = [b]

Figure (Il/.16): Standard resolution tree

We find that the number of perfonned unification operations are only 8 operations, which

are the same as those perfonned in the multi-resolution mode!. By this, we conclude the

soundness of the representation of the multi-instantiated variables from which incoherency

of sub-terms and operations could be easily detected (problem 2.2 (page II.14) is resolved).

111.4.2.6 Partial success/failures in the same multi-unification
operation

While constructing the date-path of a sub-term, the algorithm ensures that no partial

success/failures have occured between this date-path to be constructed and the date-path of

the second term in this same multi-unification operation (problem 2.4, page III.25). If a

failure is encountered in the failures database, then this unification operation is omitted as it

is a waste of time to multi-unify two terms that already proved to be failing tenns.

lll.35

Chapter Three : The Multi -Execution Mode! __________________ _

This encountered failure might have occurred during the same multi-unification operation,

but with previous arguments, or during another multi-unification operation that took place

before the current operation. We have proposed a treatment of the first type of encountered

failures.

The following Prolog program treats this case:

check_failure(Branch_location,First_path,Seeond_path):­

(failures([Branch_locationiFirst_path],Second_path,Current_branch_location);

fail ures(Second_path, [Branch_loca tioniFirst_pa th] , Current_ branch_location))

->fail ; true).

Program (ll/.5): Treatment offailures while multi-unifying two sub-terms

This program checks the occurrence of a failure that includes the given branch-location in the

failures database. If this is the case, then a failure is reported and the multi-unification

operation is dropped , whereas if the database does not include this entry, then it performs

the multi-unifi cation operation between the corresponding two sub-terms.

Ex ample:

Given the program,

p(a).

q(a,b).

p(b) .

q(b,c).

solve the following query,

:- p(X) , q(X,X) .

After anempting the frrst subgoal, the variable X will be multi-instantiated to:

X = { 1 , [(l,a) , (l_,b)] }

111.36

Chapter Three: The Multi-Execution Model _________________ _

To solve q(X,X), we attempt the clause head q(a,b). Multi-unifying the frrst multi-term of

the subgoal to the first multi-term of the clause head, the first sub-term in X will result in a

success, while the rest will result in partial success/failures. The current choice point number

X= { l,[{l,a),(Z.b)]}

signal total failure

Figure (1//.17): Mufti-resolution tree

is 2, and the current branch-location is J,. This partial success/failure are stored in the

failures database as follows:

1 [(1,2)] [] (2, ~)

Figure (11/.18): Failures' database

Now, coming to multi-unify the second multi-term in the subgoal, which is X, and the

second multi-term in the clause head, always in the same multi-unification operation, the

algorithm attempts each sub-term instantiated toX to the atom b. Starting witha, by checking

the failures database, the system does not recognize any previous failures, but multi-unifying

a to b results in a failure that will be appended to the above mentioned records.

[O,z)] [] (2, ~)

[(1, 1)] [] (2, l)

Figure (3.19): Failures' database

l/1.37

Chapter Three: The Multi-Execution Model __________________ _

Now, the algorithm considers the following sub-term, which is b. Its date-path is [(1,1)]. By

scanning the failures data base, the system recognises that the date-paths of the sub-terms to

be multi-unified to b have already caused a failure. Accordingly, this alternative is

abandonned and the mu! ti-unification resumes the operation with the following sub-terms.

In the same manner, the system detects that ali the other sub-terms of X will fail due to the

same reason, bence reporting a total-failure of the multi-unification of the subgoal to this

clause head. The same phenomenon is repeated with ali the other clause heads resulting in a

total-failure of the subgoal q.

By this the problem (2.4) is resolved.

111.4.2. 7 Recapitulation of failures in the moiti-unification

Let us now recapitulate the different locations where a total-failure might result in the moiti­

unification of any two multi-terms:

1- atom 1 atom,

2- functor 1 functor,

3- incoherent sub-term (problem 2.1),

4- incoherent multi-unification between two sub-terms of two multi-instantiations problem

(2.2),

5- total-failure of ail sub-terms of a multi-instantiation when being multi-unified to another

multi-term, and

6- result of double checking with failures database due to a previous partial success/failure

during the~ multi-unification operation (problem 2.4).

These are actually the different cases where the multi-unification algorithm results in a total­

failure. In the first two cases, partial success/failures are stored in the failures database in

terms of the date-paths of both sub-terms that caused the failure, together with the failing

branch-location where this failure took place. In the rest of the cases, a general failure is

reported to the system and the algorithm abandons the current multi-unification operation

that caused this failure.

/11.38

Chapter Three: The Multi-Execution Mode! __________________ _

111.5 The Moiti-Resolution Tree

Before tenninating the discussion about the multi-resolution phase, we present the multi­

resolution tree. It was graphically presented in ali the discussed examples, but we did not

approach the algorithm that creates it.

In the multi-execution phase, we traversed completely the multi-resolution tree resolving the

given query. The multi-resolution tree is a tree representing the different succeeding

traversed choice points, and the different succeeding branches representing the succeeding

alternatives for each subgoal.

As previously stated, the multi-resolution tree differs from the standard OR resolution tree in

the same way as the multi-resolution model differs from the standard resolution. Each choice

point is represented only once, as deep backtracking is eliminated. No solution paths are

visible on the multi-resolution tree. In the previous chapter, we presented severa] figures

demonstrating a comparison between the traversed multi-resolution tree with respect to its

equivalent standard resolution tree. Other figures throughout this chapter explained in detail

the concept of the multi-resolution tree.

What we want to emphasize is that the multi-resolution tree is created dynamically during the

multi-execution of the query. By the termination of the multi-execution phase, we may

consider the multi-resolution tree as a static tree.

In our model, each timea choice pointis completely investigated, a new level in the multi­

resolution tree is appended to the already existing part of the tree. This takes place in the

local-synchronous-OR-level of this choice point.

The multi-resolution tree is represented in terms of a list including father-son pairs.

Definition 3.7; A father-son pair

Each father-son pair is defined as:

([list of predecessor branche-dates] , [list of successor branche-dates])

where,

IJ/.39

Chapter Three: The Multi-Execution Model _________________ _

list of predecessor branche-dates are the branch-dates of .!ill the succeeding branches

belonging the same choice point. If only one branch suceeded, then it includes only one

date. The same concept applies to the list of successor branche-dates.

Example:

We recall the example mentioned in section II.3.4.1 when we discussed partial

success/fail ures.

p(a).
p(b).

q(l,m):- s(I).
q(b,f).

s(a). s(z).

r(f).

with the query,

:- p(X), q(X,Y), r(Y).

The multi-resolution tree is represented as follows:

lll.40

Chapter Three: The Multi-Execution Mode! ________________ _

0
p(X)

1 z

p(a) p(b)

X= { 1 , [(l,a), (2,b)]}
.. . :..

q(X,Y)

~
q(I,m) q(b,f) partial failure

~

s(I)

partial ~1
failure

s(a)

Y = { 2, [(3,m),(7 ,f)]}

r(Y)

.8. partial fail ure

r(f)

Figure(/11.20): The mufti-resolution tree

We explain what actually happens to create this data structure:

Il/.41

Chapter Three: The Multi-Execution Model __________________ _

-The multi-execution stans from the root level. The first subgoal is p(X). A corresponding

choice point exists, hence it is given a unique number, 1. Both alternatives succeed, with

dates 1 and 2. respectively.

- At the synchronous OR level of that choice point, the branch-dates of the succeeding

alternatives are assembled in a list.

- The system recalls the predecessor of this choice point, which is the root level, denoted by

Q.

-The frrst entry in the multi-resolution tree representing the first examined level is the father­

son pair:

Tree = [([.Q] , [l,IJ)].

-The next subgoal to be investigated is q(X,Y). A corresponding choice point exists, which

is identified by the choice point number 2. Multi-unification with the first alternative

(branch-date J) results in a complete success: 1 is multi-instantiated to { l,[Q,a),(2,,b)]} and

a first solution of Y is (l,m). The body clause of this alternative is invoked that tests

s({ 1 ,[(La),(l,b)]}).

The first alternative for the subgoal s (branch-date .4) will result in a partial success/failure,

and the second brnach (dated .i) will lead to a total failure. Since there are no more

alternatives, then cornes the role of the local synchronous OR phase for this choice point, s,

where ali the bran ch dates of the current choice point are assembled to add a new entry in the

tree data structure. The only succeeding branch is ,4, that was invoked by its predecessor },

hence the new tree information is:

Tree = [([0], [1,2..]), ([}], W)]

The body clause of the first alternative has been totally explored. Now, the multi-resolution

returns to the second alternative of q. The current branch-date is ~ (because ~ was the date of

the branch that led to the total failure). The multi-unification results in a partial

success/failure that will be stored in the failures' database.

Ali the alternatives of the subgoal q have been attempted, and hence the local synchronous

OR phase will assemble the different solutions to multi-instantiate Y to {2,[(J,,m),~,f)]}.

Ali branch-dates of this choice point are assembled [},~], the predecessor of which is the

/11.42

Chapter Three: The Multi-Execution Model __________________ _

previous choice point, having the branch-dates [l,Z]. Accordingly, a new father-son pair is

added to the tree.

Tree = [([0], [l,Z]), ([.l], [fi), ([l,Z], Ll,Ql)]

The last subgoal to multi-resolve is r(Y). This is a single clause having the branch-date 1.
that will lead to a partial success/failure. Its predecessor is the choice point, having the

ensemble of branch-dates [l,.Q]. At this stage, the multi-resolution tree is given by:

Tree = [([0], [l,Z]), ([1] , [.4.]), ([l,Z], [~,Q:1), ([l,QJ,[1])]

Checking with fig.(II1.20), this representation fits totally to the given graph.

In the above representation, we observe that the branch ~ is a predecessor to the branch 1
and the branch 1. though they are not included in the same term. This is to indicate that if a

branch has 2 successors, then one is its body clause, while the second is the following

sub~oal. We differentiated between the two cases by their corresponding branch-dates. The

date 1 is less than the date 1 indicating that 1 was encountered before 1. We deduce that 1 is

the body clause while 1 is the next subgoal, as we decided from the very beginning that we

multi-execute the body clauses of a clause head before proceeding either with the next clause

head or the next subgoal.

This data structure will be used together with failures database to reconstruct the standard

resolution tree. The details of this algorithm is given in the chapter 5 which is dedicated to a

discussion on predefined predicates.

111.6 Conclusion

This chapter was dedicated to a deep study of the multi-execution which is the first phase of

the multi-resolution model. We explained how and where multi-instantiations were created.

We discussed the multi-unification algorithm and compared it to the standard unification

algorithm. We will be comparing their complexities in chapter 6. We also showed how this

model was able to resolve all the problems mentioned in the previous chapter.

/11.43

Chapter Four: Treaunent of Failures. ____________________ _

Chapter Four

Treatment of Failures

Abstract

This chapter considers the mu/ti-resolution from thefailures' point ofview. We exp/ain

the difference between the failures encountered in the standard resolution and those in

the mu/ti-resolution. We present the different treatments proposed for the different

types of failures. We demonstrate how the failures' database is a dynamic database

throughout the mu/ti-execution phase ready to be processed statically in the mu/ti­

outputs phase to display the ensemble of solutions.

IV.J

Chaptcr Four: Treaunent of Failures ____________________ _

IV .1 Introduction

A logic program is a program, including facts and/or relations and a query, which is to be

satisfied. Answering a query with respect to a program is actually determining whether the

query is a logical consequence of the program. The query is attempted to be unified to the

different clause heads and an answer is expected. If the answer is yes (true), then the query is

proved. If the answer is no, then we say that afailure has occurred. It means that the posed

query is not a logical consequence of the program. This answer does not reflect on the tru th

of the query; it merely sa ys that the system failed to prove the query from the given program.

There are several reasons for the occurrence of a failure. To present a comparison of the

different classes of failures that occur in the standard resolution as weil as in the multi­

resolution models, we will recall several definitions and phenomena already discussed in

previous chapters to demonstrate how we treated each class clearly.

IV .2 Classes of Failures

We can widely classify the failures occuring during the execution of a Prolog program into ·

two classes; the explicit failures and the implicit failures. We detail each classas follows:

IV .2.1 Explicit Failures

An explicit failure is a failure due to an explicitfai/ stated in the body of a clause (or goal).

The impact of an explicit fail is the same in either models; the standard resolution model or

the multi-resolution model. When such type of a failure is encountered, an immediate

failure is signaled to the system. Ali variables instantiated in this alternative (or goal) will

be deinstantiated and we say that the clause (or goal) has failed.

IV.2

Chapter Four: Treaunent of Failures ____________________ _

Examnle:

For the program,

p. q.

p. q.

r.

solve the query :

:- p,qjail,r, ..

p

~
q

~
1

fail

Figure (JV.J):

Explicitfailure in mu/ti-resolution

Assuming t~at both p and q result in success, the query fails after solving q, and r will never

be attempted.

IV .2.2 Implicit Failures

In the standard resolution model, implicit failures may occur while unifying two terms.

Examining closely the different unification operations, we find that an implicit failure occurs

if:

- 2 different atoms are to be unified, or

- 2 different functors (different functor names and/or different arities) are to be unified.

When such a failure is encountered, the alternative where this failure took place is

abandonned. Variables already instantiated during this unification operation are deinstantiated

and backtracking takes place to attempt to solve the subgoal with another clause header.

By analogy, in the multi-resolution model, an implicit failure may occur while multi-unifying

two multi-terms. The multi-unification cases that might lead to an implicit failure are:

- 2 different atoms are to be multi-unified

- 2 different functors (different functor names and/or different arities)

- incoherent sub-term (problems 2.1)

!V.3

Chapter Four: Treaunent of Failures, ____________________ _

-incoherent rnulri-unification operation (problern 2.2)

- previous failures that occured in the sarne multi-unification operation (problern 2.4)

- previous failures in previous multi-unification operations (problern 2.5)

- failure of ail sub-terrns of a rnulti-instantiation to be rnulti-unified to another rnulti-term.

In the following sections, we detail the different types of irnplicit failures in the multi­

resolution rnodel, together with the different proposed algorithrns for the treatrnent of each

type.

IV.3 Implicit failures in the moiti-resolution

In the rnulti-resolution rnodel, we have replaced deep backtracking by rnulti-instantiated

variables. When atternpting to solve a goal containing rnulti-instantiated variables, we might

encounter one of two types of irnplicit failures; either partial success/failures or total failures.

IV .3.1 Partial success/failures

This is the case when atternpting to rnulti-unify a rnulti-instantiation to any rnulti- term. Here,

each instantiation is to be rnulti-unified to that rnulti-term, as explained in section II.3.4.1. A

partial success/failure may be encountered due to any of the reasons mentioned above. It is

when sorne sub-terms result in a success, while others, in the same rnulti-unification

operation, result in a failure.

Problems 2. 3 & 2.5 are concerned with the treatrnent of partial success/failures.

IV .3.2 Total Failures

In a rnulti-unification operation between a rnulti-instantiation and a multi-terrn, if all the sub­

terms resulted in a failure, then a total-failure is reported. Basically, there are two causes for a

total-failure, the direct total failures and the indirect total failures.

IV .3. 2.1 Di reet total fa il ures

It is the case when attempting to rnulti-unify a rnulti-instantiation to another multi-term and

that not one instantiarion leads to a success (all instantiations fail). We call this a direct total

failure. Total because all instantiations failed, and direct because the cause of this failure is

IV.4

Chaptcr Four: Treauncnt of Failures ____________________ _

clear as the multi-unification algorithm records an immediate failure while multi-unifying

these two multi-terms.

Example:

multi-unify({ 1, [(l,a), (2_,b)]} ,c)

In the above example,all the sub-terms will fail when being multi-unified to c. This is the

case of a direct-total failure.

IV .3.2.2 Indirect Total Failures

A total failure may result indirectly from an ensemble of partial failures. This is why we call

this type of failure indirect-total-failure. This was previously represented in the problem 2.4.

A typical example of such a failure is the following program.

Examplr:

p(1).
p(2).
[J(3).

q(l ,2).
q(2 ,3).
q(3,4).

solve the query,

:-p(X),q(XX).

p(X)

l~i
/ 21 "

x= { 1 ' [(1 ,1), (2 ,2), (l3)]}

indirect total

failures

q(X,X)

indirect total failures

indirect total

failures

Figure (JV.2): Example on indirect totalfailures

This example was previously discussed in section III.4.2.6.

IV .4 Treatment of Failures

We presented the different types of failures that might be encountered in the multi-execution

phase . In section Il.3.4.2, we decided that memorising the occured failures will be the

JV.5

Chaptcr Four: Treaunent ofFailures ____________________ _

solution that we are going to adopt in our model. Failures are stored in a data structure that

we called the failures' database. We detail the record structure of this database together with

the different operations that manipulate its entries in both phases; the multi-execution phase

and the multi-outputs phase.

IV.4.1 Failures' database

Partial success/failures are stored in a failures' database. For any program, there is only one

global failures' database. During the multi-execution phase, it is a dynamic data structure.

When a partial success/failure occurs, it is stored in this database. The contents may be

updated due to any redundancy that might exist. Once, the multi-execution phase terminates

its role, the multi-outputs phase processes this data structure statically. It may be considered

as a lookup table that is to be checked before the solutions are displayed to the user.

IV.4.2 Record Structure

Partial success/failures are stored in terms of the two multi-terms that caused this failure. We

store the date-path for each multi-term as weil as the branch-location when this partial

success/failure took place.

A record representing this information is appended to the failures' database. It is represented

as follows:

Date-path-1 1 Date-path-21 Branch-location

Figure (JV.3): Record structure of the failures' database

where the branch-location is given by the current choice-point-number and the current

branch-date of the alternative where the failure took place.

Afterwards, the multi-execution continues, al ways with the same multi-instantiations of the

variables.

IV.4.3 Representation of a partial success/failure

The class of partial success/failures that occured in multi-unification operations is a

complicated type of failure to treat. In ail the material that we presented un til now, ali partial

success/failures occured during the multi-unification are due to two multi-terms th at failed to

IV.6

Chapter Four: Treaunent of Failures. ____________________ _

be multi-unified or as a result of an error in a multi-arithmetic operation. In multi-arithmetic

operations, we either have single-operand instuctions or double-operands instructions.

Hence, we normally have two multi-terms that result in this partial success/failure. Examples

of operations that might result in a failure are: multi-unify(X,Y), >(X,Y), =(X,Z), etc.(The

arithmetic operations are discussed in the following chapter). As we mentioned, this failure is

stored in terms of the date-path for each multi-term in the failing operation, together with the

failing branch-location.

To recognize a failing sub-term, we check the contents of the data base. If its corresponding

date-path is present, then it means that this sub-term has already failed and that any further

processing is fruitless.

Examole:

Given the multi-instantiated variables,

X = { 1, [(l,a) , (l,b)]} , Y= { 2, [(1,a) , (~,c)]}

it is required to solve the query,

:- ... , X=Y, write([X,Y}).

After the equality test, the following failures will be stored in the failures' database.

[(1, 1)] [(2, ~)] ...

[(1, 2)] [(2, ~)] ...

[(1, 2)] [(2, 1)] ...
Figure (JV.4): Failures' database

When coming to the next subgoal, the different values of X and Y are computed. Since both

multi-instantiations be long to different choice points, th en normally, if no failures have

occured, ali combinations of the different sub-terms are permitted.

Before writing each combination, a check is made with the failures' database to validate that

both sub-terms have never previously resulted in a partial success/failure. If the date-paths of

IV.7

Chaptcr Four: Treaunent of Failures. _____________________ _

both terms are not an entry in the database, then this combination is a permitted (safe)

combination. On the other hand, if a records exists, having the date-paths of both sub-terms,

then the operation is abandonned as this combination is a failing combination.

This is a simple case. A more compound problem arises from a user predefined predicate

such as ===(X,Y,Z) (which is read as X=Y=Z) or >>>(X,Y,Z) (X is greater thau Y and Y

is greater thau Z). If a partial success/failure occurs in such a case, then we have to store the

date-paths of the three sub-terms of X, Y and Z that caused this failure.

The failures' database record structure consists of only two date-paths, and bence a problem

arises. Severa} possible solutions are:

- modifying the database record structure to store the three date-paths, or

- merging the date-paths of the three sub-terms into one date-path, or

- performing this operation on two internai steps, the first between the first two operands

(X= Y or X> Y) and then between the second two operands (Y =Z or Y>Z).

We discuss the pros and cons of each of the proposed solutions.

1- Modifyin~ the record structyre:

This solution is an unpractical solution, because what if another user defined a predicate that

handles more than three operands. This means that the model is not a fixed model, and that it

solves a certain class of problems and this is contradicting to our objectives. We are keen to

solve any problern expressed in Prolog and thus designing the failures' database with a

certain number of date-path fields is not a practical approach. Hence, we reject the first

solution.

2- Mer~in~ the date-patbs of the failin~ mylti-terms:

We attempted the second solution at the early phases of this research, but it proved its

weakness. Merging the date-paths of ali the sub-terrns, two or more, will result in the Joss of

sorne information about the failures that might be required afterwards. We clarify this point

with the following example.

Example:

Assuming that we have the three multi-instantiations:

JV.8

Chapter Four: Treaunent of Failures. __________________ _

X = { 1, [(l,a),(.~,b)]}

Y = { 2, [(l,a),(!,b)]}

Z = { 3, [~.a),(.Q.,b)]}

and it is required to perform the rest of the query,

:- ... , ===(X,Y,Z), X=Z.

To perform the first equality operation, severa! panial success/failures will take place that will

be stored in the failures' database in terms of a merged date-path of the date-paths of the

corresponding sub-terms of X,Y and Z. We can imagine the database in this case to be:

[(1, 1), (2, .3.), (3, .Q)] [] ...

[(1, 1),(2, ~).(3, ~)] [] ...

[(1, 1), (2, ~), (3, .Q)] [] ...

[(1, l), (2, .3.), (3, ~)] [] ...

[(l,l),(2, .3,),(3, .Q)] [] ...

[(1, 2), (2, ~), (3, ~)] [] ...

Figure (IV 5): Mergingfailing date-paths in one date-path

When we come to multi-execute X=Z, again, we try all the possible combinations of the sub­

terms since both multi-instantiations belong to different choice points, making sure that each

pair of sub-terms did not cause previous partial success/failures. The different possibilites of

the sub-terms of X and Z are

[(l,DJ , [(3,~]

[(l,DJ , [(3,.6)]

[(1,~] ' [(3,~]

[(1,~] ' [(3,.6)]

IV.9

Chaptcr Four: Trcaunent of Failures. _____________________ _

For the second case, checking the database, we cannot retrieve a partial success/failure

between [(l,D] and [(3,.Q)], though it is implicitly present in the merged date-path. For more

complicated programs, this problem is more evident.

We concluded that by merging the date-paths of the failing multi-terms, we lost ali

information about any partial success/failure between any two specifie multi-terms. In other

words, this solution proved to be inefficient.

3- Djvjdine the reguired operation jnto n-cascaded steps:

The third solution is a general and very convenient solution. Irrespective of the degree of the

problem, we guarantee the multi-resolution of the problem, by splitting the original operation

into n-cascaded stages. Each stage deals with two multi-terms at a time and hence any

partial success/failures that might occur are stored in terms of two date-paths only.

This solution, though simple, but is very critical. Severa! deduction rules are required to

continue the multi-resolution of the following subgoals of the query, which will use the

failures' database, to identify the succeeding sub-terms from the failing sub-terms.

When a new subgoal, that includes severa! multi-instantiations, is to be multi-resolved, we

consider the different combinations of sub-terms. For each pair of sub-terms, we have 2

distinct date-paths, date-path-i and date-path-j. We examine the failures' database for each

date-path independently. We start with date-path-i:

- if no entries exist that includes this date-path-i, then we deduce that the corresponding sub­

term did not cause any previous partial success/failures.

- if date-path-i is found (date-path-1 or date-path-2), we observe the other date-path in the

database:

-if it is egual to date-path-j, then the desired operation will not be performed since we

found an entry in the failures' database between these two sub-terms.

-if it is not egual to date-path-j, then we store this date-path, which we will call a

suspected date-path, in a global list until the verification procedure is over.

The same procedure is repeated for date-path-j, storing any date-path in the same list of the

suspected date-paths as date-path-i.

IV. JO

Chaptcr Four : Trcatment of Failures. ____________________ _

After the termination of the checking of the database, we consider the temporary data

structure containing the suspected date-paths. If we encounter ali alternatives dates of the

same rhoice point, irrespective which one in the multi-reso1ution tree, then the desired

operation is a failing operation since an intermediate choice point has totaliy failed. The

inforn1ation about the relevant branch-dates to a choice point are stored during the multi­

resolution. If this condition is not satisfied, then the required operation between the two sub­

terms will be performed.

The above deduction rule could be clarified by the following graph:

subgoa1-1

failwe
subgoal-2

Figure (JV.6): Standard resolution tree

Considering the standard resolution, assume that we wish to execute subgoal-3. The second

branch of subgoal-1 led to a failure of ali alternatives of subgoal-2, making it impossible to

proceed with subgoal-3 for this alternative.

To demonstrate how treatment of failures may take place in this case, we reconsider the

previous example.

X = { 1, [(l,a),(2,,b)]}

Y = { 2, [Q,a),(!,b)]}

Z = { 3, [(~,a),(.6,,b)]}

The first equality test will be performed in two steps.

JV.ll

Chaptcr Four: Trcaunent of Failures, ___________________ _

===(X,Y,Z):- =(X,Y), =(Y,Z).

The failures' database in this case will be represented by:

[(1, 1)] [(2, 1)]

[(1, 2.)] [(2, 3.)]

[(2, ~)] [(3, Q)]

[(2, 1)] [(3, ~)]

Figure (JV.7): Failures database when
performing the test on 2 cascaded steps

...

...

...

...

Coming to the following subgoal X=Z, we want to know which are the permitted

combin~tions of the sub-terms between X and Z. We enumerate the same date-paths

mentioned above:

[(1,1)] ' [(3,~)]

[(1,1)]' [(3,.Q)]

[(1,~)] ' [(3,~)]

[(1 .~)] ' [(3,.Q)]

Considering the first operation, we examine the failures' database for the first date-path,

[(1,1)]. The suspected date-path is [(2,,4)] which will be stored in a list. Considering the

date-p~th of the second sub-term, [(3,~)], no correponding records exist in the database.

Since this date-path is not equal to the suspected date-path, then we could perform the desired

operation (X=Y) which will result in a success.

The same operation is repeated for the date-paths of the second pair of sub-terms. The

suspected date-paths list includes: [[(2,,4)], [(2,3.)]]. These two suspected date-paths are ali

the alternatives of the choice point 2. Accordingly, the required operation will not be

perforn1ed due to a total failure of an intermediate choice point.

The same phenomenon is encountered for the third pair of date-paths, that will fail for the

same rea son, due to a total failure of the choice point 2.

JV.12

Chapter Four: Treaunent of Failures. ____________________ _

The equality test will be perfonned on the last pair of sub-tenns as only one date-path was

suspected [(2,3_)], which is not equal to neither suspected date-paths of the sub-tenns.

IV .5 Transactions of the failures' data base

As we previously explained, the failures' database is a data structure that serves to store ali

partial success/failures that occur during the multi-resolution of a query. We classify any

transaction into one of two classes; either an update of the database, or a utilisation of the

database. We discuss each of these classes in the foliowing sections.

IV.5.1 Update of the failures' database

By updating the database, we mean addition, deletion or modification of records. We

describe wh en and how each of these transactions may take place.

IV .5.1.1 Total failures in the multi-execution phase

Before describing the algorithm to treat a total failure, we first should know how to detect a

total failure. After the exploration of an alternative, i.e. attempting to multi-unify a clause

head and a subgoal, and before the shallow backtracking proceeds to multi-unify the subgoal

to the following clause head, the system checks if this last alternative resulted in a total

failure. In case of success, the multi-resolution proceeds nonnally, as previously explained,

to attempt the following clause head, whereas in the case of a total failure ali the records in

the failures' database representing ill.Lthe failures that took place during this alternative, will be

removed from the database to minimise its size as much as possible. These records are

distinguished by their failing branch-locations. They are the records that are tagged with the

current failing branch-location = (current choice-point-number, current branch-date).

Moreover, ali the variables instantiated (or multi-instantiated) in this alternative will be

deinstantiated, and no information about this branch is appended to the multi-resolution tree.

It is as if this branch was never traversed, and the multi-resolution proceeds to multi-unify

this subgoal to the following clause head.

We emphasise that the above treatment is valid after each attempt to multi unify the subgoal to

a clause head (whether it belongs to a choice point or not).

/\1.13

Chapter Four: Treaunent of Failures'-----------------------

IV.5.1.2 Treatment of failures in the local synchronous OR phases

The failures' database includes the records of ali the partial success/failures that have occured

in the multi-execution. Given a number of deduction rules, it tends to optimise the

information stored by discarding either instantiations or alternatives to optimise the

performance and to reduce the time taken to multi-resolve the rest of the query. By the

termination of the multi-execution phase, the information stored in the failures' database is

the optimum information about all types of failures th at were traversed while multi-executing

the query.

The synchronous OR phases are intermediate phases between different subgoals, where

certain processing takes place. In the previous chapters, we have seen that the local

synchronous OR phase is responsible for the creation of the multi-instantiated variables.

Another important role of these phases is the treatment of partial success/failures encountered

while resolving a subgoal. This treatment is not evident until.all the clause heads to solve a

subgoal are attempted, i.e. the corresponding choice point is fully explored, afterwhich we

detect if only one alternative succeeded or more than one alternative succeeded. We explain

how the database is updated in both cases.

It is worth noting that a choice pointis also explored when attempting to multi-unify a multi­

term to a multi-instantiated variable. What we present as treatment in the synchronous OR

phase is exactly similar to what happens after the termination of a multi-unification operation

between a multi-instantiation and another multi-term.

J. Sin2le Clause;

This is the case when only one clause (or one sub-term of a multi-instantiation) succeeds

from a choice point. After the termination of the exploration of all alternatives, in the local

synchronous OR phase of this choice point, the system will discover th at only one clause has

solved the subgoal.

An algorithm searches in the failures' database if any sub-term of a multi-instantiation caused

a partial success/failure in this alternative. If any entries are found, these failures are rippled

up to its predecessor, where the records representing the partial success/failures in this

alternative are deleted and new records are rewritten with the predecessor branch-location as

the failing branch-location.

JV.l4

Chaptcr Four: Treatment of Failures. ___________________ _

choice point i

choice point i+ 1

total partial total
failure failure failure

::::::::::::::::::::::::::::: ... ·.'.· .. : .. ::,.'.·'··:·;.;.;.;:','.=·,:.,:.':·:','.'::'.'.: .. :'.:'.'' .. :::,,'.:'·,' .. ,':'·',.,':',::.·,'.','.:.·.·,:.:: .. '.'.·.'. ,'.','.:,:.:·,:.:.'.·.',:.:,:.:,:·.: ~=~=~=~=~::::::::::;:::::::::

Figure (IV.8): Rippling up of partial success!failures of a
single alternative

Example:

For the program,

p(a). p(b). p(c).
q(/). q(X):- s(X).
s(m). s(b).

solve the query,

:- p(X), q(X).

:i:l:=:~:l:~:l:~:~:l:~:~:=:~:~: .. ,.::::;::·.:' .. '.:','.,·:.::.:.·'.,'.·'.:'.·'.:'.·'.:','.:',','·,'.:'.·'.:','.,::~.=,.'.'.:',~.:=,~.:=
ti~i:!:~:i:i:~:i:i:i(:i:':·:::::::

Figure (JV.9): Rippling up partial
success!failuresfrom a single alternative of a
clwice point

/V./5

Chaptcr Four: Treaunent of Failures ____________________ _

In this example, X is multi-instantiated to { 1, [Q,a), (l,b), Q,c)]}. The first alternative of

q results in a total success. The second alternative includes a choice point, s, where only one

alternative succeeds partially (branch number]j, resulting in the following entries in the

failures' database:

[(1, 1)] [] (3, 1)

[(1, ~)] [] (3, 1)

Figure (IV.IO): Partial success!failures before
rippling up

In the local synchronous OR phase of choice point 3, these partial success/failures are rippled

up to the predecessor branch (dated ~) since only one alternative succeeded (branch-date 1).
These records are modified to:

[(1, 1)] [] (2, ~)

[(1, 2)] [] (2, ~)

Figure (JV.ll): Partial success!failures after
rippling up

The main benefit in doing this is to sense the partial success/failures on a more globallevel to

avoid using these sub-terms in future computations.

2- A Choice Point:

This is the case when attempting to multi-unify a subgoal, including at least a multi­

instantiated variable, to a number of clause heads representing a choice point. Here, we

consider one sub-term that led to a partial success/failure during the multi-unification to ali the

clause heads.

When a sub-term of a multi-instantiated variable leads to a consistent partial success/failure

when attempting ali the clause heads of a subgoal, it should be signalled that this sub-term

al ways leads to a failure. At the local synchronous OR phase of this choice point, a check is

made to test if a certain date-path caused repeatedly a partial success/failure on all the

IV.16

Chaptcr Four: Treaunent of Failures. _____________________ _

consecutive branch-locations of this choice point. If so, then these failures, will be rippled up

to its predecessor level, by deleting ali the records representing the partial failures at the

different branches, and rewriting a new record signaling this failure at its predecessor branch­

location.

partial fail partial fail
X=a X=a

partial fail
X=a

partial fail
X=a

Figure (IV.l2) Consistent partial success!failure of
a sub-term of a multi-instantiation

We come to this predecessor, which might be either an alternative or a choice point. In the

case of an alternative, the result is simple, as the failing branch-location will be the branch­

location of this alternative. On the other hand, if its predecessor is another choice point

(synchronous OR phase of the previous choice point), and not a bran ch, th en this means that

the total failure trapped should be recognised on a globallevel, i.e. at the root to avoid any

further processing of this instantiation during the multi-execution of the query.

This operation is a very optimising operation in the contents of the data base. First, a number

of records are replaced by only one record, leading to a space-wise optimisation. Second! y,

redundant information is eleminated so that the multi-resolution senses any failures that will

occur at an early stage.

IV.J7

Chapter Four: Treaunent of Failures ___________________ _

Example:

For the program,

p(a). p(b). p(c).
q(J). q(X):- s(X).
s(b). s(c).

solve the query,

:- p(X), q(X).

~
1

X= {1,[(1 ;a),(l,b),(.le)]}

~ rippling partial

3
_,:À \success!failures

partial / ~ parti~ success/
success/failure frulure

:-:-:·=···. ·· · >=·=-=· :::::====·=·=-:·····=· (X-a)
(X=a) :_:_:.:_:.:_:.:_:.:_:.:_:.::_.i,_'.:_:.:_:.:_:.•.:.:.'.•·.'.i.'.•·.'.i.i.' ,.,:,,,:,:,,,,,,,,,,,,,,,,,,,, .. ,.,.. -

:-:-::;.;.;.;.:.:·:·:-·>:·>·.·····

Figure (IV.J3): Rippling up partial success!failures
of a certain sub-tenn of a multi-instantiation

In this example, when the subgoal s(X) is being multi-resolved, its local synchronous OR

phase will realise that X =a al ways leads to a partial success/failure by a simple examina ti on

of the failures' database, figure (IV.l4).

[(1, 1)] [] (3, .6)

[(1, .3.)] [] (3, Q)

[(1, 1)] [] (3, 1)

[(1, 2.)] [] (3, 1)

Figure (IV.l4): Partial success!failures

before rippling up

We notice that the date-path [(1,1)] has resulted in a partial success/failure in all the

alternatives of the choice point 3 (branch dates .Q. and 2). We can report this partial

success/failure at the predecessor level. This takes place by deleting all the entries

representing these failures and writing a new record representing this failure, but having the

predecessor branch-location as the failing branch-location. Hence the entries in the database

will be:

IV.l8

Chapter Four: Treaunent of Failures. ____________________ _

[(1, .l)] [] (3, .Q)

[(1, 2)] [] (3, 1)

[(1, 1)] [] (2, .5.)

Figure (IV.l5): Panial successljailures after
rippling up

This will be of great use in the multi-outputs phase, while reconstituting standard resolution

tree. Rippling up a failure information to predecessor levels will avoid creating the long

solution paths that already led to failures. This is n optimisation made to ameliorate the

performance of this algorithm.

IV .5.2 Utilising the failures' data base

In the above. sections, we presented the different treatments of failures in the different phases

of the multi-execution phase. We demonstrated the different operations that could be

performed to update, or moreover optimise, the information content of the failures' database.

To make this discussion complete, we now present the locations where the same database is

accessed (statically) to utilise the information stored for optimisation of the performance of

the mu! ti-resolution as a whole. These are:

- checking the failures' database when accessing two sub-terms before performing a certain

operation, and

- displaying the ensemble of solutions in the multi-outputs phase.

IV .5.2.1 Treatment of failures in the multi-unification algorithm

As detailed in chapter 3, the multi-unification algorithm is responsible to perform ail the

multi-unification operations between any two multi-terms in the multi-execution phase. We

enumerated the different cases of the two multi-terms to be multi-unified. Here, we are

concerned with the cases involving a multi-instantiated variable. These cases are the case of

multi-unifying a mono instantiated variable to a multi-instantiated variable, the reverse case,

or multi-unifying two multi-instantiated variables. In each of these cases, each sub-term of

the multi-instantiated variable is to be multi-unified to the second multi-term, according to the

rules previously mentioned when discussing the algorithm. Similar to coherency test, there

IV.J9

Chaptcr Four: Treaunent of Failures. ____________________ _

are the failures tests that verifies whether the two multi-terms to be multi-unified have

eventually caused panial success/failures.

The main role of the failures' database is to store all the already occured partial

success/failures so as to avoid, as much as possible, performing useless computations. In

chapter 2, we demonstrated the necessity of double checking with the failures' data base for 2

cases; failures that occured during the same multi-unification operation (problem 2.4) and

failures that occured in previous multi-unification operations (problem 2.5). We describe

how we treated each of the se problems.

IV .5.2.1.1 Partial success/failures in the sa me branch-loaction

This case may take place in the same multi-unification operation, or in different multi­

unification operations.

1- Same multi-unjficatjon ooeratjon:

This is the case when a sub-term results in a panial success/failure during a multi-unification

operation. Later, in the same operation if any sub-term having the same date-path that failed

is involved in an invoked multi-unification operation, the corresponding sub-term will be

abandoncd as it already proved to be a failing sub-tenn.

Considering a more general example than that we mentioned in section IV .3.2.2 when

discussing indirect total failures.

Examole:

For the shown program,

p(a,a).
q(fa/b}).

solve the query,

p(b,b).
q([b/a]).

:- p(X,Y), (Z=m,· Z=[X/Y]), q(Z).

Multi-resolving the first subgoal, we have the following multi-instantiations:

X = { 1 , [(l,a) , (2,,b)] } and Y = { 1 , [(l,a) , (2_,b)] }

IV.20

Chapter Four: Treaunent of Failures. ___________________ _

The second subgoal will result in the multi-instantiation of Z to:

Z = { 2 , [(_l,m) , (±, [{l,[(l,a) , (~,b)]} 1 {l,[(l,a) , (~,b)]}])] }

To multi-unify q(Z) to the frrst clause head, we attempt to multi-unify each sub-term with

{a/b]. The first sub-term m will result in a partial success/failure as we are trying to unify an

atom to a list. The second sub-term (which is a list of multi-terms) will invoke a number of

interna] multi-unifications. The multi-unification of the heads of the list will result in the

following partial success/failures:

[(2, :1)] [] (3, ~)

[(2, ~),(1, 2)] [] (3, ~

Figure (JV.l6): Partial success!failures
entries

When coming to the tails' multi-unification, the algorithm tends to multi-unify the sub-term a

to the corresponding argument in the clause head. Checking with the failures' database, there

is no entry that indicates that the date-path of this sub-term ([(2,1),(1,1)]) has caused a

partial success/failure in the same multi-unification operation (3,~. Performing the

operation, a partial success/failure is detected, which will be appended to the database.

[(2, :1)] [] (3, ~)

[(2, ~),(1, 2)] [] (3, ~)

[(2, ~),(1, 1)] [] (3, ~)

Figure(IV.l7): Failures' database

Coming to the next sub-term, b, again, a check if any failures with the same branch-location

resulted from the same date-paths. It is found, accordingly, the current multi-unification

operation is dropped as it already caused a failure and bence any further computation with

this sub-term is just a waste of processing ti me.

The algorithm resumes the following mu] ti-unifications in the same manner.

IV.21

Chaptcr Four: Treaunent of Failures'---------------------

2- Different multj-uojfjcatjoo operations:

Consider the following multi-instantiations:

X= { 1, [(l,{ 2, [(2_,a),(,l,b)]}),(!, { 3, [(i,c),(§.,d)]})]}

Y = { 1, [(l,x),(!,y)]}

and the query,

:- ... , X=\=a, X=\=b, write(Y).

For the first equality test, we have the following partial success/failure:

[(1, 1),(2, 2)] [] (0, Q)

Figure (N.l8): Partial successljailures
entries

The current branch-location is given by (O,.Q) because the failure took place in a single clause

(not a choice point), hence any occuring failures are sensed on a globallevel.

After the second equality test, a new record is added:

[(1, 1),(2, 2)] [] (0, .Q)

[(1, 1),(2, ~)] [] (0, Q)

Figure (JV.J9): Partial successljailures
entries

We observe that all the alternatives of the choice point 2 have failed in the same branch­

location (O,Q) resulting in an indirect total failure of the choice point 2. If no special treatment

is made, then when writing the different values of Y (the following subgoal), we will not

take know that the first sub-terrn has failed.

In this case, these records that represent an indirect total failure are deleted and a new entry

indicating that the sub-terrn whose branch-location is [(1,D] has failed at (O,Q). Accordingly,

IV.22

Chapter Four: Treaunent of Failures ____________________ _

when displaying the different values of Y, checking with the failures' database, the

information that the frrst sub-tenn is a failing sub-tenn is clear and retrievable.

IV.5.2.2 In the multi-outputs phase

To make this discussion complete, another important role of the failures' database is during

the display of solutions. Before considering a sub-tenn of a multi-instantiation, a double­

check is made with the failures' database to make sure that it did not result in a partial

success/failure. The algorithms for displaying the solutions will be discussed in the next

chapter.

IV .6 Conclusion

We discussed in this chapter how failures are treated in the multi-resolution model. We

justified our choice to the way by which we treated these failures. We pointed out how the

failures database is updated dynamically during the multi-execution phase to optimise its

information content. We also showed how it is treated statically during the multi-outputs

phase to display the solutions. The correponding algorithms will be discussed in more detail

in the following chapter.

JV.23

Chapter Five : Arithrnetic & Predefmed Predicates ____________ _

Chapter Five

Arithmetic & Predefined Predicates

Abstract

We explain lww arithmetic operations are performed in the mu/ti-resolution mode/.

The mu/ti-unification algorithmfor multi-arithmetic operations is presented. We also

discuss the possibility of treating severa! predefined predicates in our mode!,

terminating our discussion with a detailed explanation of the different algorithms

implemented to display the solutions.

V.J

Chapter Fivc : Arithmetic & Predefmed Predicates ____________ _

V.l Introduction

Within the fonnalism of logic programming, there are two methods for doing arithmetic

operations. One tedious method is possible by giving the relationship explicitly as a set of

assenions of the relationship, for example, sqr(X,Y) could be defined in the form of a table

for ali possible different cases. In this case, arithmetic operations will be table searches.

Obviously, the entire infmite relation cannet be stored and the defined subset will consume a

large amount of memory space. Alternatively, the relation can be computed, which is the

case in Prelog. In Prolog, arithmetic is performed by metalogical evaluable predicates

analogous to the built-in primitive functions of applicative languages. The evaluable

predicates are metalogical because arithmetic is done by escaping from the system of

resolution and using another formai system, in this case, the underlying machine hardware.

Prelog uses the machine for arithmetic because it is faster. Numbers are a subset of atoms,

and the evaluable predicates implementing arithmetic operations are restricted to operating on

tenns representing numbers.

V .2 A standard arithmetic operation

Arithmetic is performed by a number of predefined arithmetic opera tors (+, -, *, /, mod, ++,

--, **, //, <, >,;:::, ~. =:=,=\=)or the evaluable predicate is.

The arithmetic operators are defined to the system as infix operators. A call of the fonn

Operation(number,Value) or

Operation(numberl,number2,Value)

will bind the variable Value to a numeric value, where number is a numeric atom or a

variable bound to a number.

The evaluable predicate is is a binary predicate that can be used as an infix operator. The

second argument must be a legal arithmetic expression, constructed from the usual operators

and integer terms, and the first argument can either be an integer or a variable. When isis

called, the expression is evaluated, and the first argument is unified with the value of the

expression. If it is a variable, then it is bound to this value.

V.2

Chapter Five : Arithmetic & Predefmed Predicates ____________ _

A simple example is the goal X is 3+5, which bas the solution X=8. The goal 8=3 +5

succeeds. The goal3+5 is 3+5 fails, because the left hand argument, 3+5, does not unifiy

with 8, the result of the evaluation of the expression.

V .3 A multi-arithmetic operation

It corresponds to an arithmetic operation in the multi-resolution model. The main difference

from the standard arithmetic operation is that the required arithmetic operations may operate

on multi-instantiations.

Since the standard arithmetic operators are predefined in Prolog, calling them in the multi­

resolution model will fail if operands are multi-instantiated. Accordingly, we trap such

operations and perform them differently in the multi-resolution mode.

When regarding the structure of an arithmetic instruction, we find it in the form:

Operation(A,B,R)

where Operation is any standard arithmetic operation,

A, B are operands of the operation, and

R is the result (always a variable).

In the multi-resolution mode!, A and B may be any two multi-terms (non variables), but R

should be strictly a variable, though it might be multi-instantiated to other variables.

Performing an arithmetic operation on multi-instantiated operands and storing the result in

another multi-instantiation in the same step is a complex operation .

Example:

+({1,[(1,10), (2_,{3,[(~,1), Q,2)]}), (!,{4, [(ll,100), (ll,200), (ll,300)]})]},

{3,[(~,5) '(2,10)]},

{8,[(li,A), (16,{7,[20,B), (ll,C)]}))})

Performing the addition operation between the first two multi-instantiations is already a

complicated operation. Adding to that, we have to map the result of this addition operation to

the third multi-instantiation, the resultant is a very complicated operation.

V.3

Chapter Fivc : Arithmetic & Predefined Predicates. ____________ _

Accordingly, we defined another mechanism to perform any multi-arithmetic operation,

which is totally transparent to the user. It is a special algorithm that is responsible to perform

the multi-arithmetic operation into two steps as follows:

Step 1:

First, it multi-unifies the operands and multi-perfonns the desired multi-arithmetic operation

on them. The output of this phase is a multi-result stored in an intermediate variable. A

special algorithm is responsible to execute this phase which we will describe in the following

section.

Step 2:

Second, it multi-unifies the multi-result (the intennediate variable)with the original variable,

R, where the result is to be stored in. It is a standard multi-unification operation, and may be

any of the cases mentioned in the previous chapter. It is possible that this variable R might

be already multi-instantiated to another ensemble of variables.

Hence, the above operation is analysed to

Operation(A,B,R):- perform_operation(Operation,A,B,R 1), multi-unify(R l,R).

A special multi-unification algorithm for arithmetic operations was defined, that is reponsible

to multi-unify the operands, and performs the multi-arithmetic operation (step 1). Ail

operations concerning the dates are manipulated. Previously discussed coherency features

impose (for a multi-term and a multi-arithmetic operation), and failures are also treated.

We describe the different functions performed by the multi-unification algorithm for

arithmetic operations.

V .4 Multi-uniflcation algorithm for multi-arithmetic
operations

The algorithm described in the previous chapter deals with multi-terms resulting from non

arithmetic operations. Here, we define the algorithm that handles arithmetic multi-terms. The

following program is an example on how to handle double operand instructions in the multi­

resolution model.

V.4

Chapter Five : Arithmetic & Predefined Predicates. ___________ _

double_op(O,A,B,Rl):-
atomic(A), atomic(B), !, O(A,B,Rl).

double_op(O,A,B,Rl):-
nonvar(A), A= { Choice_pt,XX},!,
varsin(Rl,V),
findall(V, (multi_mono_double_op(O,XX,B,Rl),L),
assign_ values(V ,L).

double_op(O,X, Y ,R 1):-
nonvar(A), A= { Choice_pt,YY},!,
varsin(R 1 ,V),
findall(V, (mono_multi_double_op(O,A,YY,Rl),L),
assign_ values(V ,L).

multi_mono_double_op(O,[XliXn],B,R 1):­
check_coherency (...),
double_op(O,X 1 ,B,R 1).

multi_mono_double_op(O,[X 11Xn],B,R 1):­
multi_mono_double_op(O,Xn,B ,R 1).

Pro gram (V.l): Mu/ti-unification algorithmfor a double operand arithmetic operation

V .4.1 Unification cases

In ail the following cases, RI is a variable.

1- A js an atom. B js an atom:

This is the standard case. The resu1t is performing the required operation (addition,

subtraction, etc.) storing the result in the intermediate variable R'. If a failure occurs, then

this failure is stored in the same manner in the failures' database in terms of the date-paths of

both multi-operands and the current branch-location as the failing branch-location.

Examples:

1 - +(2,6,R) will result in the instantiation of an intermediate variable to 8. This variable, in

return will be bound to R.

2- /(5,0,R).

V.5

Chaptcr Five : Arithmetic & Predefmed Predicates ____________ _

This operation is false operation that results in a failure. This failure is stored in the failures'

database.

2- A is a multi-term. B js a multj-jnstantiatjon:

This resembles the mono/multi case in the standard multi-unification algorithm. The desired

operation is performed between the operand A and each operand in B. The result is a multi­

instantiated variable R' where the results of ali the performed operations are stored.

Exarnple:

For the operation ,

+(1,{1, [Cl,lO), {2, [(2_,20), (.3_,30)]}, (.4,40)]}, R1)

the result is R1 = {1, [(1,11), {2, [(.f.,21), (.3_,31)]}, ~,41)]}.

3- A js a mu!ti-jnstantjatjon. B is a rnono-jnstantjatjon;

It is the reverse operation.

4- Optimisations;

The 2 above cases (2 and 3) handle a multi-operation between a multi-instantiation and any

multi-term. This latter may be another multi-instantiation. We might mention this case (2

multi-instantiations) explicitly in the algorithm. The only difference is the control to override

the originalloops' order so that the multi-arithmetic operation may be perfomed according to

a certain condition (ascending/descending order of choice-point-numbers). The ordering of

the loops when multi-unifying two multi-instantiations is an optimisation issue with respect

to failures.Imposing a certan order to execute the loops is to impose a certain ordering on the

date-paths when failures occur. This is a technical aspect that facilitates the search in the

failures' database.

As we previously explained, there are two cases of optimisations; performing a multi­

arithmetic operation on two multi-instantiations belonging to the same choice point, or two

multi-instantiations that belong to two different choice points.

V.6

Chaptcr Fivc : Arithmetic & Predefined Predicates. ____________ _

We discuss each of these cases.

4a · A - f Ç l. B :{Ç l:

A = { Choice_point , [(.dl,vl) ... , (Qn.,vn)]}

B = { Choice_point , [(.dl,vl) ... , (Q.m,vm)]}

Here, we have two multi-instantiated operands, originating from the same choice point. The

result is that we perform the arithmetic operations on the operands that have the~

branch-dates.

Examo!e:

+({1,[(1,10), (2_,20)]},{1,[(1,1), (2_,2)]},R).

This operation results in two simple addition operations between the corresponding elements

of the two inulti-terms. The result is the multi-instantiation {1,[(1,11), (2.,21)]} which

will then multi-unifed with the resultant variable.

Note:

In case of 2 multi-instantiated variables, originating from the same choice point, but with

different lengths, only the terrns having the same branch-dates are multi-unified, otherwise a

failure is recorded.

Ex am ole:

For the instruction,

+({1,[(1,1), (2.,2), (l,3), (±,4)]},{1,[(1,10), (~,20), (±,40)]},R)

only two addition operations will take place between the terrns dated 1 and±. The resulting

multi-instantiation is {1,[(1,11), (±,44)]}.

V.7

Chapter Five : Arithmetic & Predefmed Predicates ____________ _

4b- A - {Ca l. B = fCb l:

A= { Choice_point_a , [(dl,v1) ... , (illl,vn)]}

B = { Choice_point_b, [(dl,v1) ... , (gm,vm)]}

As for the multi-operands instantiated at different choice points, consider two multi­

instantiations of lengths m and n respectively. In this case, all combinations are possible

between the different operands. The desired operation is performed between each operand of

A with ali the operands in B. Thus, m*n operations will be invoked. Each of the resulting

operations converge to the second case mentioned in this algorithm (mono/multi).

Examnle:

For the instruction,

+({ 1, [(1, 1),(2c,2),0 .• 3)]}, {2, [(2, 1 0),(.8.,20))} ,R)

ali combinations between the two terms are permitted, i.e. 6 addition operations take place.

The resulting multi-instantiation is

{1,[(1,{2,[(2,11) , (.8.,21)]})' Q,{2,[(2,12) ' (.8.,22)]})' (1,{2,[(2,13) ' (.8.,23)]})]}

which in turn will be multi-instantiated to the variable R.

Note:

We note that a certain order is considered when performing the operations. We consider the

choice points in an ascending order.

If the order by which the above operations were reversed, then the resulting multi

instantiation is

{2,[(2,{1,[(1,11)' Q,12) '(1,13)]}),(.8.,{1,[(1,21) '(2c,22) '(.3_,23)]})]}

Both structures represent the same operations. The only difference is the order of loops

execution by which the multi-instantiation were created. This ordering problem is a feature

that concerns mainly the failures' treatment. Chapter 5 discusses this aspect in more details.

V.8

Chapter Five : Arithmetic & Predefmed Predicates. ____________ _

V.4.2 Memory representation of arithmetic multi-instantiations

The arithmetic multi-instantiation is represented formally similar to the non arithmetic multi­

instantiation. A scheme of the representation of an arithmetic multi-instantiation in the

memory is given in fig. (5. 1).

datel Valuel

Choice-point -num ber
daten Valuen

Figure (V.l): An arithmetic multi-instantiation

From the above discussion, it is clear th at the arithmetic multi-instantiation is not represented

by data-sharing. No memory references can take place in a multi-arithmetic operation as the

desired operation is perfomed while multi-unifying the two multi-terms, and not left to be

applied at the end of the multi-resolution. Hence, in the multi-resolution model, when

dealing with multi-instantiations, data-copying is employed on the multi-instantiation each

rime a new alternative is attempted.

This is a costy representation due to the copying of already large data structure.

Example:

Consider the following program:

number(JO). number(20). number(30).

For a non arithmetic query:- number(X), number(Y), Z = [X/Y]. the variables X and Y are

given by:

x = { 1, [(1,10) ' (~,20) ' Q,30)]}

y = { 2, [(!, 1 0) ' (~,20) ' (.6.,30)] }

z = [{ 1, l c1.1o) , a.2o>, Q,3o) n 1 { 2, l <!.IO) , ~.2o) , CQ.,3o) nJ.

These variables are represented in the memory as shown in fig. (V.2).

V.9

Chapter Five : Aritlunetic & Predefmed Predicates ____________ _

z
1 10 . ..

1 2 20 - x
l 30

• . ~ 10

y
..

~ 20 ... 2
[] fi 30

Figure (V.2): Data sharing is implemented to create non­

arithmetic multi-term~

X and Y are created and stored in the memory. Any new structure (resulting from a non

arithmetic subgoal) that includes either X or Y will not copy the already existing structures.

A memory reference is enough to create this new structure.

If we change the last subgoal in the above query to

:- ... , +(X,Y,Z).

in this case, the memory representation of the multi-instantiated variable is as follows:

1 10 ~ 20

x 1 2 20 __. 2 ~ 30

~ 30 z .6 40

~ 10 1 ~ 30
y 2 ~ 20 1 2 ---- ~ 2 ~ 40

Q 30 .J fi 50

~ 40

L+ 2 ~ 50

Q 60

Figure (V.3) : Data copying is implemented to create arithmetic multi-terms

V. JO

Chaptcr Fivc : Arithmetic & Predefined Predicates ____________ _

Here, copying of the original multi-terms takes place to create a new multi-instantiation. ln

arithmetic multi-terms, there are no memory references. Each timea multi-instantiation is

considered, the desired multi-arithmetic operation is perfomed on the different sub-terms of

this multi-instantiation resulting in another multi-instantiation.

It is worth noting that a multi-instantiation represented by data-sharing may be represented

by data-copying, but the reverse case is not true. In our example, Z = [X/Y] may be

represented as shown in fig. (V.4):

1 10 z 1 10 .
x 1 2 20 ... 1 2 20

~ 30 ~ 30

~ 10 • .
.... 20 2 .5.

y

~ 10

2 .5. 20

Q 30 [] .Q 30

Figure (V.4) :A non aritlvnetic multi-instantiation represented by data-copying

For the same variable Z, the two representations, given in figures (V.2) and (V.4) are

equivalent. For non arithmetic multi-instantiations, we adopt data-sharing to avoid waste of

memory space, whereas in the case of arithmetic multi-instantiations we cannot help not

represeming these multi-instantiations by data-copying because the required multi-arithmetic

operation has to be performed.

V .4.3 Creation of date-paths of an arithmetic sub-term

To access a sub-term of a multi-instantiation, its corresponding date-path is created. The

manner of creation of date-paths of arithmetic sub-terrns is similar to that of non arithmetic

sub-terms, as discussed in section 111.3.5. The same features, previously discussed, are

applicable. Similarly, coherency checks impose for each sub-term and for each multi­

arithmetic operation.

V.JJ

Chapter Fivc : Arithmetic & Predefmed Predicates. ___________ _

V.4.4 Coherency of an arithmetic sub-term

It respects the same concepts of the coherency of a nonnal multi-tenn, that we discussed in

section II.3.3 (problem 2.1). Each timea new sub-tenn is encountered, its branch-location is

appended to the already constructed date-path. Before systematically appending this bran ch­

location, the coherency of this sub-tenn with respect to the operation is checked. This check

is perfonned by the same program mentioned in section III.4.2.4.

V .4.5 Coherency of the performed multi-arithmetic operation

Before explaining how incoherency of a multi-arithmetic operation is detected, we present

the follwoing example which demonstrates a common case of incoherency on the multi­

arithmetic operation level (even when multi-instantiations are represented by data-copying).

Example:

Consider the following base of facts,

number _i(I). number _i(2).

number _j(IO). number _j(20).

with the following guery,

:- nwnber _i(l), number _j(J), RI is 1+1, R2 is 1+1, Ris RI-R2.

1 will be multi-instantiated to { 1 , [Q,l) , (1,2)] },

while J will be multi-instantiated {2, [Q,lO), (4,20)] }.

After the frrst addition operation, RI will be multi-instantiated to:

Rl = {1, [(1.{2 , (Q,ll), (±,21)]}), (1,{2, (Q,l2) , (±,22)]})]}

Sirnilarly, R2 will be multi-instantiated to:

R2 = {2, ((1,{1 , [Q,ll), (2_,12)]}), {±,{1, [Q,21), (2_,22)]})]}

V.I2

Chapter Five : Arithmetic & Predefined Predicates ____________ _

(The difference in the contents of RI and R2 resulted from the difference in the order of the

loops by which RI and R2 were created respectively. Both structures are equivalent. It is

when partial success/failures will occur that the corresponding date-paths of RI will be

sorted, while those of R2 will not be sorted. Sorted date-paths will facilitate the search in

the failures' database).

Coming to the last sub goal, Ris the result of the subtraction operation between RI and R2.

Since RI and R2 belong to different choice points (1 and 2 respectively), then ali

combinations of the multi-instantiations of RI and R2 are tried. RI contains four values, and

R2 con tains also four values. If no coherency checks are performed then we meet the same

problem of coherency of operations (problem 2.2) resulting in the performance of 16

subtraction operations.

Double checking with standard Prolog, we regard the classical resolution tree, fig. (V.5).

There are only four solutions (zeroes) are produced! That points out that there are a number

of unnecessary, evenmore false, operations that could be performed during the multi­

resolution of the given query if no coherency tests were performed.

V.J3

Chapter Five: Arithmetic & Predefined Predicates ____________ _

:- number(X)

A
1=1 1=2

1\ 1\
J = 10 J = 20 J = 10 J = 20

R1 = 11 R1 = 21 Rl = 12 Rl = 22

R2 = 11 R2 = 21 R2 = 12 R2 =22

R=O R=O R=O R=O

Fig. (V.5): Standard resolution tree

The illegality of the performed subtraction operation is proved by violating the strict rule that

no two multi-terrns resulting from two distinct alternatives of the same choice point could be

utilized in the same operation. Accordingly, it is required to sense the validity of the

operation to be performed.

The program that performs this operation is the same as that responsible to detect

incoherencies in non arithmetic operations. lt was discussed in detail in the previous chapter

(programs 111.3 and III.4).

V.4.6 Treatment of failures

The encountered failures are the same as that discussed in the normal multi-unification; total

failures and partial success/failures. Treatement and types, discussed throughout section

TI.3.5 are applied in the multi-arithmetic operations.

V.l4

Chapter Five : Arithmetic & Predefmed Predicates, ____________ _

The same problems conceming failures (problems 2.3, 2.4 and 2.5) exist in multi-arithmetic

operations. Partial failures are stored in the failures' database in terms of the date-paths of

the two operands and the failing branch-location. Partial failures leading to total failures

(problem 2.4) are treated in the multi-unification algorithm for arithmetic operations in the

same manner.

V .5 Predefined predicates

In Prolog, there are several predefined predicates to perform certain operations ,such as the

input/output operations, or to impose control on the resolution as the fail, !, or not

predicates. We examined the behaviour of sorne of these predicates in the multi-resolution

mode! and we found out that a special treatment was required to handle each of them.

Following is a discussion of selected predicates and how we propose to treat them in the

multi-resolution mode!.

V.5.1 Input/Output Predicates

A very important class of predicates is the input/output predicates. In Prolog, the basic

predicate for input is read(X). This goal reads a term from the current input stream. The term

that has been read unifies with X, and read succeeds or fails depending on the result of the

unification. The basic predicate for output is write(X). This goal writes the term X on the

current output stream.

V.5.1.1 read(X)

The normal use of read is with a variable argument X, which acquires the value of the first

term in the current input stream. When backtracking to a previous choice point takes place,

each timea solution is demanded. read(X) succeeds with a (possibly) different value for X.

In the multi-resolution model, we pass each subgoal only once and no deep backtracking

takes place. Hence, only one value will be entered and thus processed (instead of several

values). We examined the different cases where a read may exist. Its presence is relatively

rare in the known benchmarks. Nevertheless, we discuss severa! propositions for its

treatment.

V.l5

Chapter Five : Arithrnetic & Predefmed Predicates ____________ _

Considering a simple goal that includes only one read. A proposition is that the user enters

ail the required values of X in one step, which will be defined as a multi-instantiation to the

system. As we previously said, any multi-instantiation is characterised by its choice point

number and its branch-dates. What we are creating here is an artificial choice point. Its

choice point number is the choice-point-number of the predecessor choice point. Afterwards,

the multi-resolution proceeds normally as previously discussed.

The following example demon strates the case of a single read in a query.

Example:

For the program,

p(l). p(2). p(3).

consider the. query,

:- p(X), read(Y), Z = [X/Y].

In the standard resolution, each time p(X) succeeds, X will be instantiated and the system

waits for the user to enter Y. Since three backtracking operations take place, we will asume

that the three values the user has entered are a,b,c corresponding to each value of X

respectively. The solutions displayed are

X= 1, Y= a, Z = [1/a]

x= 2 'y= b 'z = [2/b]

x= 3' y= c 'z = [3/c}

In the multi-resolution model, p(X) is attempted that results in the multi-instantiation of X to

3 different sub-terms. X will be multi-instantiated to { 1, [(1,1), (1,2), (J,3)]}, and the

subgoal p(X) will never be reattempted.

To obtain the same results as in the standard resolution, we expect that the user enters ail the

different values of Y in one step. Since there are three values to be entered (a,b,c),then it is

as if we are creating a choice point for Y, i.e. Y will be multi-instantiated. To obtain the

same solutions as Prolog, the choice-point-number of Y has to be that of X, so that the

solutions of X and Y are the sub-terms that have the~ branch-date. In this case, Y will

be given by:

V.16

Chapter Fivc : Arithmetic & Predefined Predicates ____________ _

Y = { 1, [(l,a), {l,b), Q,c)]}

whose choice-point-number is 1, and the branch-dates are from 1 to 1. The different

solutions of Z are produced by the multi-outputs module, which will be the same as that

produced by standard Prolog.

Actually, this is a simple proposition to solve the problem arising from the read predicate.

Considering a more complicated case where the predecessor choice-point is not a simple

choice point, as that in the previous example.

Example:

Consider the program,

p(1). p(X):-s(X).

s(2). s(3).

solve the query,

:-p(X), read(Y), Z = [X/Y].

Multi-resolving the frrst subgoal, X will be multi-instantiated to

x= { 1, [Q,l), (2_, {2, [(.J_,2),(!,3)]})]}

Now, if the user enters ali the solutions of Y, which we will assume that they will also be

a,b and c, the created choice point of Y has to be created analogous toX, i.e.

Y = { 1, [(l,a), (2_, {2, [(.J_,b),(_4,c)]})] }

In more complicated predecessor choice points, i.e. the resulting multi-instantiations include

nested multi-instantiations too, we have to ensure the coherency of Y with respect to the

already created multi-instantiations. This could be the case if severa! reads may exist.

Consider the following example:

Example:

p(l). p(2). p(3).

\'.17

Chaptcr Fivc : Arithmetic & Predefmed Predicates, __________ _

:- p(X), p(Y), read(A), p(Z), read(B).

The standard resolution tree is given by

p(X)

)1\)f\~
Ali A21 A31 A41 A51 A61 A71 AS 1 A91

p(Zit\Z/î\ Il\ IÎ\!l\ !l\IÎ\ Il\ ;KZI

BI B2 B3 B26 B27

Figure (V.6): Standard resolution tree

ln the multi-resolution model, the variables X and Y are given by:

x= { 1, [(1,1), (2,, 2), (l,3)]}

Y = { 2, [G,1), ~. 2), (§.,3)]}

To enter the different alternatives of A, they should be assembled in the multi-instantiation,

A={ 1,[(1,{2,[(±,A1),(,~,A2),(§.,A3)]}),

(l,{2,[(±,A4),(5_,A5),(§.,A6)]}),

Q,{2,[(±,A 7),(5_,A8),(§.,A9)]})]}

Multi-resolving p(Z) will result in the multi-instantiation

z = { 3, [(l, 1), (,[, 2), (.2.,3)]}

V.18

Chapter Five : Arithmetic & Predefmed Predicates ___________ _

For the second read, B will be mapped to the sub-tree of ail the predecessor choice points as

follows:

B={ 1,[(1, {2,[(1, { 3,[(1,Bl),(B.,B2),(2,B3)]}),

~. { 3,[(1,B4),(.8_,B5),(2,B6)]}),

(.2,{3,[(1,B7),(B.,B8),(2,B9)]})]}),

(1,{2,[(1,{3,[(1,B 10),(.8.,B 11),(2,B 12)]}),

~.{3,[(1,B 13),(B.,B 14),(2,B 15)]}),

(.Q,{3,[Q,B 16),(~,B 17),(2,B 18)]})]}),

Q,{2,[(~,{3,[(1,B 19),(.8.,B20),(2,B21)]}),

~.{3,[(1,B22),(.8.,B23),(2,B24)]}),

(Q,{3,[(1,B25),(B.,B26),(2,B27)]})]})]}

which is relatively a complex structure.

From ail the above examples, we conclude that treating the read predicate in the multi­

resolution model, though complex, yet it is possible to obtain the same semantics of the

standard Prolog execution. It requires that the user enters ali the required data at once, taking

into consideration the structure of the predecessor sub-tree.

V.5.1.2 write(X)

If write(X) was a subgoal in the query to be solved, the standard resolution will display the

current value of X on the output stream. ln the multi-resolution model, write(X) will display

ill the possible values of X. Given that the variables may be multi-instantiated, the multi­

resolution utilises these multi-instantiations together with the failures' database and the multi­

resolution tree to write the correct values of X. The same procedure takes place inherent! y in

the multi-outputs module, where ali variables' instantiations are treated to produce an

ensemble of solutions.

We detail the algorithms for the display of solutions as follows:

V.J9

Chapter Fivc : Arithmctic & Predefined Predicates ____________ _

V .5.1.3 Display of solutions

To display the required solutions of a variable, we have two alternatives, either respect the

sarne order and number of solutions that are displayed in standard Prolog, or neglect this

constraint. We explain in details each algorithm.

V.5.1.3.1 Same order and same number of solutions as Prolog

In this approach, we actually construct the different solution paths of the guery in a standard

resolution tree. The standard resolution tree is reconstructed by deep backtracking. Only the

paths that produce solutions are constructed. No unification takes place. Each timea new

solution pa th is constructed, a double check is made with the failures' database to make sure

that this solution path did not cause any partial success/failures in the multi-resolution.

A solution pa th is defined by a list of succeedin& branch-dates starting from the root, Q, until

a leaf (solution) is reached, making sure that no partial success/failures occured along this

solution path. It is given by,

Solution path = [branch daten, branch daten-t, ... , branch datej, ,O] - - -

The input to this algorithm is the list of variables (after being multi-executed) in the query.

By default, it starts to construct the different solution paths starting from the root, which we

give a date Q. At each level, it retrieves from the tree information the succeeding successors,

in terms of branch-dates. Selecting one successor at a time, it builds a solution path. The

algorithm favours the left-most successor. After the completion of this solution path, the

same operation is repeated on ail brothers.

Each time before the system appends a new branch-date to the solution path under

construction, it cross checks with the failures' database to ensure that no partial

success/failures occured in this branch. If a failure is recorded, then this branch, and

accordingly this solution path, are omitted, otherwise it continues ,deep-wise, the

construction of the solution path.

A complete path is detected when no more successors exist for the current branch, and that

no failures were encountered along the constructed path. If this is the case, then the system

V.20

Chapter Fivc : Arithmetic & Predefined Predicates ____________ _

displays the solutions of the variables corresponding to this solution path. Afterwards it

resumes the above routine.

This algorithm follows the standard execution model of Prolog it favours the first succeeding

son, i.e. left-most. This is why, it was expected to produce the same number of solutions as

that produced by Prolog and in the same order as weil, as it adopts the same search criteria.

This approach is a valid approach, it produces the same solutions as standard Prolog, in

order and number. The drawback of such an approach is the long tedious algorithm that

occupies a considerable execution time. We compared the processing time versus the time

required for the display of the solutions of such a method when running large benchmarks,

and it was qui te surprising. It almost took about 60-70% of the execution time to display the

solutions. This motivated us to try to display the solutions alternatively without the

dependance on the resolution tree.

More details on the model performance are given in chapter 6.

V.5.1.3.2 Not necessarily same order wu: same number of
solutions as Prolog

In this case, the different instantiations of a variable are considered. Possible permitted

combinations between the instantiations produce the different solutions. For each solution,

the system checks if the date-paths of any sub-term in the multi-instantiation has previously

resulted in a partial success/failure. The manner in treating these failures is more clearly

discussed in the following chapter which is dedicated to the rreatment of different types of

failures.

Anyway, once a failure is encountered, then this solution is abandonned, otherwise it is

displayed to the user.

This algorithm consumes less time than the previous one. The order of the solutions is not

the same as that of standard resolution of Prolog. And at the same time, there are cases when

this algorithm does not produce the same solutions as Prolog. These are certain redundant

cases when not ali the solutions are displayed to the user. This redundancy is not eleminated

systematically. An example is if X={ 1, [(l,a),(2_,a)]} then two solutions are produced;

X= a and X= a (similar to Prolog).

V.21

Chapter Fivc : Arithmetic & Predefined Predicates ____________ _

Alternatively, if we had the query X=a , (true;true), Prolog displays ~solutions, while

this algorithm produces only .Q!le solution; X= a.

V.5.2 fail

As mentioned in section IV.2.1, an explicit failure is a failure due to an explicitfail stated in

the body of a clause (or goal). When such type of a failure is encountered, an immediate

failure is signalled to the system. Ali variables instantiated in this alternative will be

deinstantiated and we say that the clause (or goal) bas failed.

The impact of an explicit fail is the same in either models; the standard resolution model or

the multi-resolution model.

V.5.3 The

It is a predéfined predicate that affects the procedural behaviour of the program. Its main

function is to reduce the search space of Prolog computations by dynamicaliy pruning the

search tree. The eut can be used to prevent Prolog from following fruitless computation

paths that the programmer knows could not produce solutions. It is used to commit a choice.

In terrns of tree representation, the eut eleminates ali the part that includes OR nodes that are

present in the sub-tree whose root is the predecessor of the eut, including the predecessor

subgoal, if it belongs to an OR node itself. We cali this part in the resolution tree the scope

of a eut.

Example:

V.22

For the program,

p(a).
p(b).
p(c).
q(x).
q(y).
q(X):- p(X),.I.
q(z).

solve the query,

:- q(X) .

q

,a),(5,b),(6,c)]}

1

Figure (V.7) : Scope of a eut in standard resolution

Chapter Fivc : Arithmetic & Predefmed Predicates ____________ _

We will ex plain how standard resolution of this program takes place.

The goal q is multi-unified with frrst clause head, resulting in the instantiation of X to a. The

second alternative produces another solution. The third alternative is a rule, bence the body

clauses are multi-resolved before proceeding with the following alternative.

The first subgoal is p(X). A choice point exists with three alternatives, producing a multi­

instantiation X = {2,[(i,a),(.5.,b),(Q,c)]}.

The next subgoal is a eut. The scope of this eut is to prune the brothers of the predecessor if

this latter belongs to an OR node, which is the case for p(X). Hence, we are faced with a

problem due to the complete exploration of a choice point without knowing that a eut will be

encountered further in the mutli-resolution.

What we propose is a mechanism to set partial success/failures for the solutions that should

not have been computed. In our example, it means that we signal the sub-terms ~.b) and

(Q.,c) as failing sub-terms. The se failures are stored in the failures' database in terms of the

date-path of each sub-term and the failing branch-location as its branch-location respectively.

The failures of these examples are stored as shown in fig. (V.8).

[(2, ~)] [] [(2, ~)]

[(2, .Q)] [] [(2, Q)]

Figures (V.8): Failures' database

V .5.4 not(X)

The not(X) succeeds if an attempt to satisfy X fails, and vice versa. In the multi-resolution

mode, a multi-instantiated variable X will propagate in the multi-resolution with ali its sub­

terms. Any partial success/failures are stored in the failures' database. When a not is

encountered, a special treatment is required to process the failing values as weil as the

succeeding values.

The constructive not is possible to be implemented since the relational predefined predicates

are treated. not(X= value) may be translated as a sequence of =\=(sub-term of X,value),

V.23

Chapter Five : Arithmctic & Predefined Predicates ____________ _

... ,=\=(sub-termn,value). The results of the inequality tests are stored in the failures'

database and the multi-resolution continues normally.

The case of not(subgoal) is more complex to treat. Here, a proposai may be that once a not is

encountered, a success data base is created to store the succeeding multi-terms in terms of the

date-paths and the branch-locations (similar to the failures), and the multi-execution

completes normally afterwards. At the multi-outputs module, this success database is

converted to the global failures' database and the solutions are produced.

Example:

p(a). p(b).

For the query,

:- p(X), p(Y), not(X=Y).

X and Y are multi-instantiated to

X = { 1, [(l,a), (,2_,b)]} , Y= { 2, [Q,a), (i,b)]}

For the last subgoal, the success values are stored in the success database as follows,

[(1,1)] [(2, 1)] (0, .Q)

[(1 ,_2)] [(2, i)] (0, Q)

Figures (V.9) : Success' database

At the multi-outputs module, the success' database records are appended to the failures'

data base records. When the combinations of X and Y are checked in the failures' data base,

ali the sub-terms that succeeded in the not will fail to be displayed.

The role of this intermediate database is to be local to the not opera tor that created it. If

severa! nots are encountered, we might need to alter the success databases severa! times. We

care that these artificial failures will not be considered as real failures except at the multi­

outputs phase.

V.24

Chapter Five : Arithmetic & Predefined Predicates ____________ _

V.6 Conclusion

ln this chapter, we presented how certain predefined predicates are treated in the multi­

resolution model, namely arithmetic predicates. Here, data-copying is employed. We

presented the corresponding multi-unification algorithm for arithmetic operations pointing

out the necessity to perform the coherency tests and the treatment of sorne partial

success/failures. Following, we presented a brief discussioQ on the input/output predicates.

We presented how solutions are displayed to the user. Finally, a discussion of the possibility

of treating other predefined predicates such as the eut and the not is presented.

V25

Chapter Six: Modcl Performance. _____________________ _

Chapter Six

Model Performance

Abstract

In this chapter, the meta-interpreter of the mu/ti-resolution modeZ as weil as that of the

standard resolution modeZ are presented. The performance parameters upon which the

cornparison is based are discussed. W e terminate with experimental results and

comments when running different benchmarks.

V/.1

Chaptcr Six: Mode) Perfonnance _____________________ _

VI.l Introduction

An ad v an tage offered by Prelog is that it allows a very concise description of its interpreter

using the language itself. Here, we present two meta-interpreters: one for the multi­

resolution model and the other for the standard resolution model. The first is written to

observe the performance of the multi-resolution model and the second for comparison

reasons.

Actually, we started writing the meta-interpreter of the multi-resolution model since the very

frrst phase of this work, even before the model definition was concrete. It was serving us as

an interactive tool to ameliora te the performance of the model. As a matter of fact, we were

faced by ali the problems that we discussed in chapter 2 when we ran different benchmarks

that made us continuously modify our model until its the final form has evolved. This meta­

interpreter may be considered as a prototype for testing out the implementation of the new

features proposed by the multi-resolution model.

Both meta-iryterpreters are written in LPA MacProlog on an Apple Macintosh (8MRAM). A

question might be why did we use this machine even with its constraining memory and

speed? Just because it was the most available machine for frequent testing. Nevertheless, we

kept in mind that, in future, this meta-interpreter will run on a workstation, bence we were

keen to assure its ponability.

First, we present a comparison between the complexity of the standard unification algorithm

to that of the multi-unification algorithm, concerning the cases that handle multi­

instantiations. Following, we present a discussion of both meta-interpreters toge th er with the

parameters used to compare the performance of the multi-resolution model to that of the

standard resolution model. Finally, results for different benchmarks are presented.

VI.2 Complexity of the multi-unification algorithm

In chapter 3, we have discussed in detail the different cases of multi-unifying two multi­

terms during the multi-resolution of a Prelog program. It is evident that by eliminating the

classic deep backtracking of standard Prelog, the number of unification processes decreases

significantly but with an added factor of complexity due to the presence of multi-instantiated

variables. To imagine the complexity of the algorithm, the added cases to the standard

unification algorithm concerning multi-instantiated variables are shown in table(VI.l).

V/.2

Chaptcr Six : Modcl Performance'------------------------

X andY are variables, x and y are atoms, Xi and Yi are variables or atoms, {Ci· ... }

represents a multi-instantiation and di is the branch-date of a sub-term x;. ':=' is an

assignment operation, and '=' represents a multi-unification operation. The first two

columns are the two multi-terms to be multi-unified, the third indicates the actions that will

take place and the last two columns illustrate the complexity of the corresponding actions.

The complexity is given by the product of two terms: the order of the number of times a

unification (or multi-unification) operation takes place by the order of the complexity of each

of the se operations.

First term Second term Action Complexity Complexity

Standard Res. Multi-Res.

x (Cy, ... } X:=[Cy, ... } ~(n)* 0(1) 0(1)*0(1)

lCx, ...) y Y:=f. ..) ~(n)* 0(1) 0(1)*0(1)

x {Cy,[(di ,YJ), ... ,(dn.Yn)]} x=yj pour i= 1-n ~(n)* 0(1) O(l)*O(n)

{Cx,[(d J.x 1), ... ,(dn.xn)]} y y=xi pour i=l-n ~(n)* 0(1) 0(1)*0(n)

{ C,[(d 1 ,x 1), ... ,(dn.xn)J) {C,[(dl ,y}), ... ,(dn,yn)]) Xi=Yi pour i=l-n ~(,(2)* 0(1) 0(1)*O(n)

{ Cx,[(d 1 ,x J), ... ,(dn,xn)J) { Cy,[(di ,yJ), ... ,(dm,Ym)J xj=Yj pour i=l-m ~(n*m)*O(l) 0(1)*O(n*m)

eti=l-n

f({C,[(dJ,X J), ... (dn,xn)])) g(t) failure ~(n)*O(l) 0(1)*0(1)

Table (\'1.1): Complexity of the mu/ti-unification algorithm

In the above table, we neglect the complexity resulting from the coherency tests and the

checks in the failures' database. We discuss each of the above cases.

1- An ynbound varjable and a myltj-jnstantiation:

The first two cases represent the unification process between an unbound variable and a

multi-instantiated variable. Normally, in standard unification, the variable is instantiated to a

value, resolution continues with this value, then, with deep backtracking, the old value is

undone and the following value, respecting the leftmost rule, is bound to that variable and so

on.

In multi-unification, ail possible instantiations are assigned directly in one step to that

variable. Hence, the number of unification operations is equal to 1 and at the same time, the

complexity of the unification process is in the order of 0(1). In the standard case, the

number of unification operations is ~eater than 1, (evenmore, at least n times) due to the

deep backtracking, with the complexity of each operation in the order of 0(1). Th us, we can

V/.3

Chaptcr Six : Model Performance. ______________________ _

say that a remarkable speedup may be achieved when multi-unifying an unbound variable to

a multi-instantiated variable. This is a very frequent case in common Prolog programs.

2- A multj-term (oonyarjablel and a multi-jnstantiatjon:

We come to the next two cases when unifying any multi-term (other than a variable) with a

multi-instantiated variable. Again, examining the classical case, this operation is done step

by step, unifying the multi-term with one value at a time, i.e. for a multi-instantiated variable

of n instantiations, at least n unification operations will take place, each having a complexity

in the order 0(1). In the multi-resolution model, there is ~ multi-unification operation that

invokes n multi-unifications to perform the desired operation. In this case, the complexity of

the mu] ti-unification process will be in the order of 0(1)*O(n).

It is worth noting that the above complexity when multi-unifying a nonvariable multi-term to

a multi-instantiated variable, is the lower bound of the complexity of the unification

operations occuring in a standard Prolog environment, due to the effect of deep

backtracking. This could be explained as follow:

n represents the number of multi-instantiations, which may never exceed the number of

alternatives at this choice point solving the subgoal. If standard resolution is considered,

these n alternatives will be investigated each time a backtracking occurs. Assuming that this

was the unique choice point in the program, then the number of unification operations

attempted is equal to n. Now if there is at !east another choice point in the program, then

deep backtracking takes place and the order jumps to 0(2n). If more choice points exist, then

the complexity increases due to the fails and deep backtracking that will occur. The order is

O(n*m), where mare the number of choice points, and n is the average number of

alterna ti v es.

We conclude that though the complexity in multi-unifications could be sometimes high, yet it

is stiJl the lower bound of the corresponding unification operations in the standard

resolution.

3- Iwo multi-jnstantiations:

The more complex case cornes when multi-unifying two multi-instantiated variables. Here,

we have two classes, multi-unifying two multi-instantiated variables that belong to the same

choice point orto two different choice points.

V/.4

Chapter Six : Mode! Performance. ______________________ _

a- Same choice pojnt:

For the former case, it is simple. It is always a single multi-unification operation between the

corresponding pairs of sub-terms (same branch dates), i.e. the first element of the frrst multi­

instantiation with the frrst element of the second multi-instantiation, and so on. In this case n

tests are made for two multi-instantiated structures of length n, i.e, a complexity of

O(l)*O(n).

There are cases, that we discussed, when the two multi-instantiations are not of the same

lengths. In this case, the order 0(1)*0(n) is the upper bou nd of the complexity of the multi­

unification between two multi-instantiations that belong to the same choice point.

In the standard resolution, the number of unification operations is in the order of 0(n2), due

to deep backtracking, with a complexity of 0(1) for each operation. Th us, the complexity is

quadratic in the case of the standard unification wheras it is linear in the multi-unification.

This presents a considerable speedup, that will be shown when running the benchmarks.

b- Different chojce pojnts:

For the latter case, to respect the semantics of Prolog, the complexity of the multi-unification

is more complex as a multi-unification operation is invoked between each sub-term of the

first multi-instantiation structure and all the sub-terms in the second multi-instantiation. For

two multi-instantiated variables of length m and n, the complexity of the multi-unification

algorithm is in the order of 0(1)*O(m*n).

Now considering a standard resolution, we will have two choice points; one having m

branches and the other having n branches. Due to fails and deep backtracking, this

unification operation takes place at least O(m*n) times. This is the lower bound when

compared to the standard resolution. If other choice points exist, then deep backtracking will

take place and the above number of unification operations are repeated.

5- Iwo different functors:

Here, we consider the case of multi-unifying two different functors where the argument of

one is multi-instantiated. A failure is signaled due to the difference in the functors' names.

The gain in the multi-resolutiori is that this test will take place once for all the different multi­

instantiations, whereas in the standard algorithm it will be repeated several times depending

on the number of backtracks, i.e. with a complexity W(n)*O(1) where n is the number of

sub-terms in the multi-instantiation. This failure could be considered as one of the sources of

V/.5

Chapter Six: Mode! Performance _____________________ _

the acceleration in the mu! ti-unification algorithm. In chapter 3, example 2, section ITI.3.5.1

(page IJI.l3) discussed a similar example.

We can conclude that the multi-unification algorithm supports the multi-unification between

any two multi-terms. It is al ways a single multi-unification operation, with a complexity that

depends upon the nature of these multi-terms but is always inferior or equal to the

complexity of its corresponding unification operations in the standard algorithm.

VI.3 The meta-interpreter of the moiti-resolution

We present a brief description of the meta-interpreter that we built to examine the

performance of the multi-resolution model. It is basically a Vanilla-interpreter. The input is a

Prolog program (Edinburgh syntax) and a query. The output is the solution(s) to that query.

The two phases of the multi-resolution model (the multi-execution phase and the multi­

outputs phase) are defined. The multi-unification algorithms for arithmetic and non

arithmetic operations, together with the coherency checks and the failures checks are written.

Moreover, sorne predefined predicates are treated.

To compare the performance of the multi-resolution model, we wrote the meta-interpreter of

the standard model, where the unification algorithm is defined and the ensemble of solutions

are displayed to the user.

Following we present the different parameters that we selected for the observation of the

behaviour of the multi-resolution and how such parameters were measured.

VI.3.1 Performance parameters

Two aspects are always interesting when comparing two approaches; time and memory. To

compare the performance of the multi-resolution model with respect to the standard

resolution model, we chose the following parameters:

1- Soeedup (S):

We define the speedup by the ratio between the time taken by standard Prolog to solve a

query to the rime taken by the multi-resolution model to multi-resolve the same query.

V/.6

Chapter Six: Model Performance, _____________________ _

Time measurements are managed by a system clock. Each clock count represents 1/60 of a

second. We read the clock before and after resolving a query for the standard resolution, and

before and after each phase in the multi-resolution of the same query.

2- Theoretjcal Speedup (JS);

It was inspired from [24]. It represents a ratio between the number of branches of the

standard resolution tree to that of multi-resolution tree that multi-resolves the same problem.

It indicates the difference in the search spaces in the two models.

The search space size is computed by means of a counter that counts the number of

succeeding alternatives to produce the solutions in either models.

3- Memory consumption <Mel:

It is the memory consumed to resolve (or multi-resolve) a query.

We measure the evaluation space before and after the resolution (or multi-resolution) of a

query by the aid of the predicate eval_space. We assume that the difference is the memory

consumed to produce ali the solutions.

VI.3.2 Experimental results

Before discussing the speedups and memory consumption, we present sorne experimental

results that clarify the behaviour of the different phases of the multi-resolution model. All

program listings are presented in appendix A.

Vl.3.2.1 Model performance

Our first objective was to understand the performance of the multi-resolution model. The

time elapsed to multi-resolve a query is actually divided into two times: the time taken to

multi-exerute the query and the time taken to display ali the solutions to the user. We were

interested to observe the difference between both durations that indicates the behaviour of the

model. For more details, we also compared between the times taken to display ali the

solutions by the two proposed algorithms that we discussed in chapter 5.

V/.7

Chapter Six: Mode! Performance. _____________________ _

1- bitsfn)

It is inspired from [28]. It is a recursive program that generates a list of n elements. The

value of each element is either 0 or 1. Here, there are no failures.

Pro gram Mu! ti-execution Multi-outputsl Total timel Multi-outputs2 Total time2

bits(3) 1.28 1.23 2.51 0.75 2.03

bits(4) 1.6 2.6 4.2 1.6 .u
bits(8) 2.18 3.7 5_.88 2.6 4.78

bits(lO) 4.55 290.1 ~ 157.6 1f}2,15

bits(12) 5.6 1545.6 1551,2 1421.9 142Z.5

bits(16) 8.55 5479.2 5487.75 3802.9 3811.5

bits(20) 13.1 91145.35 91158.45 63991.8 64004.9

Table (V/.2): Different rime durations (in seconds) in the different phases during the mufti­

resolution of bits(n).

In the above table, the first column indicates the time taken to multi-execute the query, i.e.

the time taken to scan the subgoals, to perform the multi-unifications, to create the multi­

instantiations and to construct the multi-resolution tree. The third and fifth columns represent

the ti me taken to display all the solutions by the two different algorithms given in chapter 3.

The fourth column is the sum of the second and third columns. The sixth column is the sum

of the second and the fifth columns.

It is clear that the multi-execution of the query does not consume a considerable time as that

taken to display the solutions to the user. For bits(20), we find that the multi-execution time

represents 0.01% of the total time!

The figures in the third column and the fifth column indicate the difference in the

complexities of the 2 algorithms. Wh en the degree of the problem is small (bits(3),

bits(4), ..), we do not really sense the difference in performance between the two algorithms.

As the degree of the problem increases, the second algorithm proves to be more fast.

The above figures justify why we were motivated to define another algorithm for the display

of the solutions independent of the reconstitution of the standard resolution tree.

V/.8

Chapter Six: Mode! Performance _____________________ _

2- bits-palindromjc<nl

The previous program was a simple generator of elements in a list. bits-pa/indromic(n) adds

the intelligent reverse algorithm after the generation of the n elements of the list. It reverses

the list to obtain another symmetric list. Adding this reverse algorithm is a sort of a 'test' that

will result in severa} failures. We observe the behaviour of the different phases as shown in

table (VI.3).

Program Mulù-execution Multi-outputsl Total ùmel Mulù-outputs2 Total time2

bits-pal(8) 5.8 16.05 21.85 9.9 .121
bits-pal(1 0) 8.3 47.6 55.9 18.8 27.1

bits-pal(12) 10.03 301.6 ~11.63 114.05 124.08

bits-pal(16) 25 882.7 2JrLl 317.5 .3AU
Table(\ '1.3): Different rime durations (in seconds) in the different phases during the mufti­

resolution of bits_palindromic(n).

Again, we observe the difference in the time consumed between the two algorithms of the

display of solutions. We also notice the difference between the time taken to multi-execute a

query and the time taken to display the solutions.

The ti me taken to produce the solutions by the reconstitution of the standard resolution tree is

smaller than in the previous example since failures have occured (in the reverse subgoal) that

reduced the size of the tree. In the multi-resolution, these failures are stored in the failures'

data base. During the reconstitution of the standard resolution tree, this information is very

useful as it signais the algprithm to avoid the creation of the solution paths that proved to be

failing.

The above runs proved that the first algorithm for the display of solutions produces the same

solutions produced by standard Prolog (same order and same number).

V/.9

Chapter Six : Model Performance ______________________ _

VI.3.2.2 Speedups

Comparing the time taken by the multi-resolution to the rime taken by the standard resolution

mode!, we observe the speedups in the different programs. Since we have already two

algorithms to display the solutions, we were interested to compare the worst-case speedups

to the best-case speedups.

1-bits(n)

s worst-case

-- best case
0,8

0,6

0,4

0,2

0
3 8 12 20

n

Figure (V/.1); Worst-case and best-case speedups
for the mu/ti-resolution of bits(n)

In this particular example, we remark that no speedup is attained in either cases. This is

somehow reasonable: bits(n) is a recursive program that generates a list. A large percentage

of the multi-resolution tree resembles the standard resolution tree. In other word, when the

same tree is traversed in both models, the standard resolution proves to be more performant.

This is due to the overhead presented by the multi-resolution mode! before and after each

choice point. Even though afterwards, a certain number of deep backtracking take place, yet

the resulting gain does not override the previous overhead.

Our first observation is that simple generate programs are not the most suitable problems

suitable to be run in the mu! ti-resolution mode!. Another example is the permute problem that

will be discussed later in this section.

V/.10

Chapter Six: Model Performance _____________________ _

2-bjts-palondromjdnl

s
200

-- worst-case
-- best case

150

100
1

50 ,.-1

1

1
1

1

,

--0~~~~~~4=~~
3 5 7 9 11 13 15

Figure (V/.2): Worst-case and best-case
speedups for the mu/ti-resolution of
bits -palindromic(n)

n

As mentioned in the previous section, bits-palindromic(n) is the bits(n) problem with an

added intelligent reverse algorithm. When multi-resolving this query, interesting speedups

are achieved. To understand wh y, we return to the pro gram source for the reverse subgoal:

reverse(First list,Second list):- reverse(First list,[],Second list).
reverse(f First term/Rest])ntermediate list,Second list):- -

reverse[kest,f First term/ 1 ntermediate list] ,Second list).
reverse(fl,List,List). - - -

We will consider the case of bits_yalindromic(4) for simplicity. Analysing more closely the

cali to the reverse subgoal in the multi-resolution, the generated list L no be reversed is given

by:

L = [{ 9,[(1.4,0),(,li, 1)] }, { 8,[(Jl,O),(,U, 1)] }, { 7 ,[(lQ,O),(lL 1)] } , { 6,[Œ.0),(2., 1)] }]

This is a list of 4 elements, each of which is multi-instantiated to two different values (either

0 or 1). The sub-terms are similar, i.e. same size and same structure. This makes funher

multi-procesing simpler. We will discuss this parameter again later in this section.

The main reverse subgoal will invoke 4 recursive reverse subgoals to reverse the list L. As

we previously said, the tree corresponding to a recursive program is the same in both

models. But, in the multi-resolution model, these 4 recursive calls are enough to reverse all

the possibilities of the list L, whereas in the standard resolution, deep backtracking takes

Vl.l 1

Chaptcr Six: Mode! Performance ____________________ _

Samc travcrsed
trec in hoth models

Standard resolution

bitr4)

length(4,L), bit_list(L)

1
bit_list([_,_,_,_])

1
bit_list([_,_,_]),bit(H 1)

1
bit_list([_,_]),bit(H2),bit(H 1)

1
bit_list([_]), bit(H3), bit(H2), bit(H 1)

1
bit_list([]),bit(H4),bit(H3),bit(H2),bit(H 1)

1
bit(H4),bit(H3),bit(H2),bit(H 1)

.6
bits(H3),bits(H2),bits(H 1)

H3=0f\= 1 H3=oj\\3= 1
~ H4 = {6,[(8,0),(9,1)])

I:Y~
; H3={7,[(10,0),(11,1)}

bhs(HZ).A(:~o/'f2=1 1\ H2=0f't!2=1 ! 12 /"'.. 1.1.

H21 ~2=y \H2=' ~2=y \ ; / "
: H2={8,[(12,0),(13,1))

bi~h~ ~0 t:f f~t/'d~ 0A 0h 1 A
; H1={9,[(14,0),(15,1))

1 reverse

1 reverse

1 reverse

1 reverse

Figure (\'1.3): Comparison between the multi-resolution
V/.12 tree and the standard resolution treefor bits-palindromic(n)

reverse

Mu !ti-resolution

Chapter Six: Mode! Performance. ____________________ _

place to repeat the creation of the list L to be reversed. Fig.(Vl.3) points out the resolution

tree for both models.

Coming to the symmetry test, the corresponding subgoal is:

reverse([],[{9,[(li_,O),(ll,l)]} ,{8,[(Jl.,O),(ll,l)]} ,{7,[(lf}.,O),(lLl)]) ,{6,[(B_,0),(2,1)]}] ,

[{6,/ (8_.0),(2.,1)]} ,{7,[(1fl,O),(lLl)]} ,{8,[(12.,0),(ll,l)]} ,{9,/(li_,O),(ll,l)]} 1)

Two lists, each having multi-instantiated elements are to be multi-unified. A multi-unification

operation takes place between the corresponding elements as follows:

multi-unify({ 9,[(J.i,0),(.12., 1)]}, { 6,[Œ,0),(2, 1)] })

multi-unify({ 8,[(ll,O),(.U, 1)]}, {7 ,[(.lQ,O),(ll, 1)] })

multi-unify({7 ,[QQ,O),(il,1)]}, { 8,[(Jl,O),(ll, 1)]})

multi-unify({ 6,[Œ,0),(2, 1)] } , { 9,[(1.4,0),(.12., 1)] })

The first two multi-unification operations will produce ali the necessary failures. It is at this

step where the acceleration is attained with respect to the standard resolution. To obtain the

same information (success+failures) in the standard resolution, deep backtracking takes

place to un do and reinstantiate variables (H 1 to H4) to create the elements that will constitute

the list L to be reversed and then at the very end (last branch in the tree) the failure takes

place.

We chose this benchmark to compare the performance of our model to MultiLog[38,39,40]

where this example proves to be very performant. For the problem bits(20), they attained a

speedup of 12. This speedup is real as sequential MultiLog is implemented. Observing our

speedup curves in both cases (worst-case and best-case), we find that even in the worst­

case, we ac hi eve a speedup of 72.9 for bits(16). In the best-case measures, this jumps to

196.6. Both speedups indeed do not result from an implementation, but, nevertheless, they

are encouraging.

This example points out one of the adequate classes of programs to be run in the multi­

resolution mode. They are the programs th at genera te a large number of multi-instantiations

of simple and similar shapes followed by a test procedure that select the solutions.

V1.13

Chapter Six : Modcl Performance. ______________________ _

3-bj t s- na ive- na 1 jo d romjc(n)

When the naive reverse algorithm is employed instead of the intelligent one, more interseting

speedups are obtained. The same analysis as for the previous example may be applied for

reasoning.

s
600 ••

500 •

400 ·r
300 •

200.

100 ·r ..,-
~·

0 . .
3 5 7 9 11

1
1

1
1

J ..,
/

13

worst-case
- - best -case

.
1

n

Figure (V/.4): Worst-case and best-case speedupsfor the
mufti-resolution of the bits-naive-palindromic(n)

4-perrou te(ra1~n1B.l

An example to show that again the generate class of programs may not run efficient! y in the

multi-resolution model is the permute problem. Recursion is used to generate the

permutations. Here, the standard search tree and the multi-resolution search tree resemble

each other to a great extent making it irrelevant to adopt the multi-resolution model due to the

overhead at each choice point. This explains why no speedups were produced.

V/.14

s
0,7
0,6
0,5
0,4
0,3
0,2

0,1

_ worst -case
-- best-case

... -------­-- -- ___.. -- -

0+-----------~----------~
3 4 5

n

Figure (V/5): Worst-case and best-case speedupsfor the
mufti-resolution of permute([al, ... an},R)

Chapter Six : Model Performance, _____________________ _

5- Otber cases:

Here, we present a number of other benchmarks that we tried. We measure the multi­

execution time only and compare it to the standard resolution time.

Al2orithm Standard-resolution Moiti-execution phase

quicksort 744.3 29.7

naïve reverse 49765.93 282.55

intelligent reverse 28659.7 241

mutation 116.8 124.3

Table (V/.4): Standard resolution rime and mu/ti-execution rime (in seconds)

We cannot conclude any concrete results from the above table as we are neglecting the delay

resulting from the display of solutions (ali the measurements in the previous section consider

the display delay).

The only case where these results may be indicative is the case of the mutation problem.

Here, no reduction of time is achieved even after the multi-execution phase. To understand

why, it is important to understand how the query mutation(M) is multi-resolved. The first

animal will multi-instantiate X to 11 animais. The second animal will multi-instantiate Y to

11 animais. Examining these multi-instantiations more closely the structure of the different

sub-tem1s constituting the multi-instantiation. Actually, X will be given by:

X= { l,[(~.[a,l,l,i,g,a,t,o,r]),Q,[t,o,r,t,u,e]),(.4,[c,a,r,i,b,o,u]),(~.[o,u,r,s]),

(.Q,f c,h,e,v ,a,l]),(2,[v ,a,c,h,e]),(.8.,[l,a,p,i,n]),(2,[p,i,n,t,a,d,e]),(l..Q,[h,i,b,o,u]),

(ll,[b,o,u,q,u,e,t,i,n]),(.!l,[c,h,e,v,r,e]), }

We notice that the sub-terms are not similar; though they are alllists, yet their sizes are not

equal. This will reflect on the failures that will occur in the following two append subgoals.

Partial success/failures will occur and multi-instantiations resulting from the same choice

point will have different lengths resulting in very complicated resolution. The overhead of

failures' checking is very costly in this case. The size of the failures' database is too large

resulting in a longer checking procedure. Adding to this the overhead to display the solutions

(which is not considered in the above table), it is clear that the mutation problem, though it

passes in the multi-resolution model, yet no speedups are expected.

On the other hand, there are cases, when the multi-outputs phase is not invoked, but the

resulting measurements are true. This is the case of clause queries, where the user

V/.15

Chapter Six : Mode! Performance ______________________ _

interrogates the program about the validity of a certain solution. Here, there are no variables

in the query header, accordingly, the display procedure will not be invoked. We made use of

this to observe the time taken to produce the frrst and last solutions in both models. We

tested the quicksort algorithm in this case.

Query Standard Multi

resolution resolution

:- sorted list([a,a,a,a,a]). 674.7 29.3

:- sorted list([z,z,z,z,z]). 692.7 31.75

Table (V/.5): Resolution rime and mu/ti-resolution time (in seconds)

sorted _list produces a sorted list. It invokes the creation of a list, the elements of which may

have different values, then passes this list (which will be multi-instantiated in the multi­

resolution) to the quicksort subgoal. The reader may refer to appendix A for the tested

programs listings.

Speedups are attained because the elements are multi-instantiated from the very beginning. In

the equality tests, the test takes place on all the multi-instantiations. In the standard

resolution, the whole solution path is repeated for every combination of the 5 elements in the

list L.

VI.3.2.3 Recapitulation

From the above discussion, it is clear that the multi-resolution accepts any program as an

input program, in other words, no restriction on the programming style (recursion, base of

facts, rules, arithmetic operations, ..). After severa! runs, we observed that eliminating deep

backtracking may sometimes result in more non redundant work with respect to the standard

resolution model. The cases that achieved highest performance were the case when the

different sub-terms of a multi-instantiations are similar: same size and same structure.

Moreover, adding a test procedure after a generation of similar multi-instantiations proved to

attain promising speedups. These two parameters are necessary for an optimal performance

of the multi-resolution.

VI.3.2.4 Theoretical speedups

Here we compare the search space in the multi-resolution to that in the standard resolution.

By eliminating backtracking, it is obvious that size of the multi-resolution tree is far less than

that of the standard resolution tree. What interests us here is to show the significant drop and

V/.16

Chaptcr Six: Mode! Performance ____________________ _

at the same time to observe the increase of the search space with the increase of the

complexity of the problem.We will only discuss the bits-palindromic(n) problem in full

details.

bits-palindromjdn)

Prof!,ram

bits-_pa)(3)

bits-pal(4)

bits-pal (5)

bits-pal(6)

bits-pal(?)

bits-pal(8)

bits-pal(9)

bits-pal(1 0)

bits-pal(11)

bits-pal(l3)

bits-pal(l5)

bits-pal(l6)

logTS
4

3

2

0
3 5 7 9 11 15

n

Figure (V/.6) : Theoretical speedups (logTS)
for bits-palindromic(n)

Standard resolution Mu/ti-resolution Theoretical Speedup (S)

53 16 3.31

97 20 4.85

205 24 8.54

373 28 13.32

765 32 23.9

1421 36 39.47

2877 40 71.93

5469 44 124.3

11005 48 229.27

42749 56 763.4

167933 66 2544.4

332029 68 4882.8

Table (\'1.6): Sizes of the standard resolution tree and the mufti-resolution tree and

the resulting theoretical speedups.

Examing the increase in size of the multi-resolution tree with the increase of n, we observe

that it follows a linear behaviour. Each time n increases, the multi-resolution goes one step

V/.17

Chapter Six : Mode! Performance, ______________________ _

deaper to create the elements of the list, and the resulting element is instantiated either to 0 or

to 1. This will, in retum, result in one more reverse subgoal.

This explains the increasing factor of 4 in the size of the multi-resolution tree. Whereas this

increase is exponential in the case of the standard resolution. This can be proved as follows:

Consider figure (VI.3), here the two trees, the standard resolution tree and the multi­

resolution tree are presented for the query bits-palindromic(4). The subgoal bits _Iist(L) is a

recursive subgoal that terminates when there are no more elements in L, i.e function of n.

This is the same in the multi-resolution of the same subgoal. When we come to the bit

subgoal, the trees will start to differ. It is starting from here that the multi-resolution differs

from the standard resolution. Given n elements in the list L, each having one of two different

values (0 or 1), the standard resolution will create a sub-tree of size equal to:

whereas the size of the corresponding sub-multi-resolution tree is 2*n.

Consequently, the number of reverse subgoals (branches) that are called in the multi­

resolution is linear (n+l) depending on the value of n, whereas the number of reverse
subgoals (branches) invoked in the standard resolution is (n+l)*2"·.

Accordingly, the resulting theoretical speedups are exponential with the increase of

complexity of the problem (n).

This demonstrates another time how the multi-resolution model reduces its search space

significantly with respect to the standard resolution.

Vl.3.2.5 Memory consumption

In any system, to achieve a speedup, the sacrifice is the memory space. This is the

compromise to ameliorate the performance. We tried to measure the difference between the

memory occupancy when we resolve a query to that when we multi-resolve the same query.

In the case of standard resolution, the memory consumption is very small relative to that

consumed in the multi-resolution. An example of different measures for different tested

programs are shown in figs (VI.7) and (VI.8).

Analysing these measures to understand such performance, we find that standard Prolog,

which follows a depth-first search occupies a memory space in the order of 0(d) where dis

the depth of the search tree.

V/.18

Chaptcr Six : Mode) Performance, ___ -"-------------------

In the multi-resolution mode!, the depth of the multi-resolution tree is the same as that of the

standard resolution tree 0(d). Since we explore ali the alternatives of a choice point, before

passing to the following chopice point, the complexity of the memory space occupied in the

multi-resolution is in the order of O(b*d) where bis the branching factor. In a breadth-first

search tree, this is in the order of O(bd).

This shows th at our modellies somewhere in between the depth-frrst search and the breadth­

frrst search. It follows a quasi breadth-first search without the enormous evolution of the

breadth-first strategy (due to the added synchronous OR phases), which was our objective

when we adopted the sharing strate gy of multi-instantiations.

Ko
300
250
200
150
100

50
0

3 5 7 9 11

Figure (VJ.7a): Memory
consumption during the multi­
reso/wion ojbits-palindromic(n)

Ko
350
300
250
200
150
100

50
0

3 5 7 9 11

15

15

Figure (\'1.8a): Memory consumption
for the mufti-resolution of
bits-naive-palindromic(n)

n

n

Ko
20

15

10

5

0
3 5 7 9 11

Figure (Vl.7b): Memory
consumptionduring the standard
resolution of bits-palindromic(n)

Ko
20

15

10

5

0
3 5 7 9 11

n

15

Figure(V/.8b): Memory consumption
during the standard resolution of
bits-naive-palindromic(n)

n

VJ.19

Chapter Six: Model Performance _____________________ _

VI.4 Conclusion

In this chapter we presented the meta-interpreter of the multi-resolution model with which

we studied its performance and compared it to the standard resolution. Running different

programs proved that our proposed model accepts any Prolog program irrespective of its

programming style. The different runs showed that the behaviour of the multi-resolution

model is very promising for the class of programs that generate many alternatives (different

in value, but similar in structure) followed by a test procedure that performs a number of

tests collectively on the generated multi-instantiations. Results also guided us to the case

where the standard resolution is favoured which is the class of recursive programs where the

traversed pa th is almost similar in both models. Of course, programs that do not include a

significant number of deep backtracks are not expected to produce any speedups when

compared to the standard resolution. More complex benchmarks may be multi-resolved by

running this meta-interpreter on a more powerful machine.

V/.20

Chaptcr Sevcn : Summary and Perspectives ------------------

Chapter Seven

Summary and Perspectives

Abstract

A ft er having derailed the different phases of the proposed mu/ti-resolution mode/ in this

tenninating chapter we will try to situate the work presented among different related

research tapies. In the closing of this work, we summarise up what was done to make

the point. The objectives, a brief highlight of the proposed mode/, and the results are

concretised. We terminate with a discussion of the relevant future work.

VJJ.l

Chaptcr Scvcn : Summary and Perspectives --------------------

VII.l Introduction

In the previous chapters, we discussed clearly the multi-resolution model for the execution of

logic programs written in Prolog (Edinburgh syntax). We explored the different features of

the mode} and we showed how we substituted the deep backtracking feature, of the standard

resolution model, by multi-instantiations, in the multi-resolution model.

The multi-resolution model proposed in the previous chapters aimed to reduce the search

space when evaluating a Prolog program by eliminating the deep backtracking which may

result in repetitive unification operations. ln achieving this objective, multi-instantiations

were introduced that, as we discussed in chapter 3, are based on a certain dating system.

Failures are memorised aside and are processed when needed.

In the following section, we compare different aspects of the presented multi-resolution

model with respect to related demains. Following, we highlight several perspectives

concerning this work. As a termination, we present a general conclusion of the work

presented in this thesis.

VII.2 Related work

The main objective of this work was to reduce the amount of work done to produce the

solutions to a given query. ln achieving this objective, the deep backtracking feature was

eliminated. A combined depth-first, breadth-first strategy was defined. Synchronisation

between different subgoals was introduced to assemble the different solutions in what we

called a multi-instantiation. Failures' information was memorised aside.

Several aspects of this model, starting from the objectives until the dating mechanism

employed to multi-instantiate the variables, can be discussed in relation with already existing

research work. We discuss several points.

VII.2.1 Reducing the amount of work

This objective has been the aim of numerous research topics related to logic programming.

Certain approaches tackled the problem of optimising the behaviour of the backtracking.

VIJ.2

Chaptcr Scvcn : Summary and Perspectives ------------------

Other domains proposed another manner relying on constraints. Even in certain parallel

models, certain techniques were defined to reduce the amount of redundant work done to

achieve a certain result. Following, we highlight different related topics.

VII.2.1.1 A more intelligent backtracking

This line of research was dealing with the optimisation of the behaviour of backtracking. By

optimisations, we mean related research where the objective was to reduce the number of

times backtracking took place. Intelligent and semi-intelligent backtracking techniques are the

most concerned in this aspect.

As mentioned in chapter one (section 1.8.4), intelligent backtracking was introduced

independently by Cox [19] and Perira et Porto [35,36] to reduce the number of backtracks.

This approach is actually related to the occurence of failures in the standard execution model.

When a failure takes place, the system analyses the cause of that failure. By 'analyses' we

mean that the system detects the instantiation that caused this failure and memorises it. This is

to achieve 2 objectives: first to avoid repeating the same failure another time, and secondly to

result in an efficient backtracking, i.e. to the choice point that alters this instantiation. An

example th at illustrates this idea was presented in chapter 1, page 1.21.

This idea was first implemented in Prolog interpreters that resulted in a considerable

overhead. A first attempt to introduce intelligent backtracking in a Prolog complier was

proposed by Lin et al. [30,31]. Codognet et al. extended the WAM architecture to include the

intelligent backtracking feature. An extended unification-related instructions was introduced

mainly to rememorise the source of the bindings. They proposed the DIB machine [12] then

the W AMIB [13] th at resulted in a more efficient implementation where speedups upto a

factor of 10 for nondeterrninistic programs are achieved.

Semi-intelligent backtracking was proposed by Hermingildo et al.[34], where it realised

intelligent backtracks in the case of independent AND subgoals. Analysis is more simple due

to the fact that variable are not shared between different subgoals. This was discussed before

in chapter 1, section !.8.4.2.

VII.2.1.2 Constraint Logic Programming Languages (CLP)

Another approach that shares our main objective is the class of constraint logic programrning

languages[15]. This class generalized logic programming by replacing the unification

Vl/.3

Chaptcr Scven : Summary and Perspectives ------------------

algorithm by a general mechanism called constraint satisfaction. This set of constraint

equations may be used actively to prune the search space. Given the current constraints of a

rule, the resolution accumulates a number of constraints from the resolution of different

subgoals. When the system fails to satisfy these constraints, a failure is signalled and

backtracking takes place. CLP languages treat a wider domain of arithmetic equations than

standard Prolog.

Firebird is a parallel constraint logic programming language based on finite domain

constraints. lts execution model bears sorne similarity to our multi-resolution model. In a

non-deterministic derivation step, a choice point based on any of the domain variables in the

system is set up and ali possible values in its domain are attempted in parallel. By this,

thousands of finite domain constraints can be solved in a single step [44].

VII.2.1.3 Hybrid parallel models

These are the parallel models that comprise more than one type of parallelism. A model that

shares our objective in reducing the work done to produce the solutions is the class of models

that include the OR and independent AND parallelism. For an AND node as that shown in

fig. (VII.l), the right hand branch is computed only once. The resulting solutions are reused

instead of backtracking. This results in a reduction of the search space[6].

Vl/.4

AND node

cross-product of solutions

Figure(VII.l): Reusing already produced solutions by different
OR branches, in the case of independent ANP parallelism

Chapter Scvcn : Summary and Perspectives ------------------

The transfer of solutions between the different branches results in an overhead irrespective of

the binding mechanism adopted.

VII.2.1.4 DAP Prolog

DAP (Distributed Array Processor) Prolog is a data parallel logic programming language,

which utilises finite domains that exploits the parallelism of an SIMD machine, namely ICL

DAP. It is an extension of the Prolog language, with two new data structures; sets and

arrays. In the DAP Pro log set mode, a set-oriented interpreter adopts a mixed depth­

first/breadth-first search strategy in which the multiple fact branches of a conventional Prolog

search tree are considered as generating bindings rather than search non determinism. DAP

Prolog distributes the database over the processors of the target machine and implements

unification of constants on a within processing element basis [26].

DAP Prolog necessitates a certain programming style for efficient treatment: databases are

favoured than sequential list searching. This is because it is easy to execute the different

alternatives of the database in parallel to create the sets of solutions.

In the multi-resolution model, both styles are allowed. There are cases when the sequential

creation of lists, for example, did not lead to any speedups, but with the addition of a test

procedure to this same list generator encouraging speedups were achieved, (section

VI.3.2.2).

VII.2.1.5 MultiLog

MultiLog is a parallellogic programming language that runs on the MasPar MPI with 8192

processsors, using DEC 5000 (MIPS) workstation as the front end running ULTRIX

V 4.2A. In MultiLog, certain goals are annotated with the unary opera tor dis}. The goal dis} G

indicates that ali or sorne subset of the solution to G should be collected and tumed into a set

of environments (disjunction of substitutions) [38,39,40].

To illustrate the difference in the environnement management between MultiLog and the

multi-resolution model, consider the following example.

Examole:

p(a). p(b). p(c).
:- disj(p(X)), disj(p(Y)).

VI1.5

Chaptcr Scvcn : Summary and Perspectives ------------------

x !al
Y(D

x[!]
p(Y)

p(X)

p(Y) p(Y)

Figure (Vl/.2): Treatment of multiple environments
in MultiLog

Here, the resolution depends on the copying strategy. Each timea new alternative (breadth­

wise) is selected a copy of the already existing environment is created. In MultiLog, X and Y

are multi-variables, each having 9 different instantiations. Conceptually, multi-variables in

MultiLog are different from the multi-instantiations in the multi-resolution model. The latter

are shared structures ali throughout the multi-resolution, and include non redundant

instantiations. Fig. (VII.2) points out the difference in the memory management.

VII.6

x
y

1

2

p(X)~

~
X={ l,[(l,a),(2,b),(3,c)]}

p(Y) ~ 2

Y ={2,[(4,a),(5,b),(6,c)]}

~1 (1 ,a) 1 (2,b) k3,c) 1

__..,_
(4,a) 1 (5,b) 1 (6,c) 1

... ,

Figure (VI/.3): Single environment in the mu/ti-resolution mode!

Chapter Seven : Summary and Perspectives ------------------

In the multi-resolution model, the different solution of different alternatives are collected in

the local synchronous OR phase for each choice point to create multi-instantiations. These

multi-instantiations are shared among ali the alternatives of the following subgoals.

In [38], the Multi-WAM architecture is defined, which is suitable for sequential execution as

well as parallel execution (SIMD or MIMD target machines).

VII.2.2 Multiple Bindings of Variables

In chapter 3 (section III.2), we presented the manner by which a multi-instantiation is

created. Different instantiations are tagged by the branch-date, which is a unique identifier,

and the ensemble of instantiation-pairs are tagged by the choice point number th at created this

multi-instantiation.

It is worth noting that in the multi-resolution model, there only exists ~ multiple

environnement, that includes mono-instantiations (i.e. normal Prolog instantiations) and

multi-instantiations (definition 3.1, page III.3). In other research domains, namely dealing

with parallelism, there exist multiple environnements. Similar dating mechanisms exist. We

enumerate severa! proposed models th at are analogous to our approach.

VII.2.2.1 Multi-sequential models

Multi-sequential models are models based on parallel execution, but with a finite (limited)

number of resources (processors- workers). Accordingly, the execution of a Prolog program

takes place by combining 2 strategies: a parallel breadth strategy and the classical sequential

strate gy.

A main feature of the multi-sequential models is the sharing of a part of the resolvant. If a

free variable exists in this part, then a writing conflict may occur as different processes are

going to bind the same variable in the shared area to different bindings. Different

propositions to treat such multiple environnements are proposed, based on copying of

environnements, duplicating previous computations, or sharing of environnements.

In the first two approaches, each process possesses a copy of the shared part of the

resolution tree. In the third approach, only one copy of this shared part of the tree exists.

Accordingly, a certain control mechanism is required that serves for 2 purposes: first to allow

V//.7

Chapter Scvcn : Summary and Perspectives -------------------

the representation of different bindings of the same variable and secondly to control the

coherency of the bindings accessed by each process. We are interested in the third approach

which bears sorne similarity to our way of representing the variables. The definition 3.1,

page III.3 was given to assure severa! aspects given that the environnement is shared in the

multi-resolution model and hence a certain mechanism was required to access a binding of a

variable and validate its coherency. Following is a number of different models in this

domain.

1- PEPSys:

In this model, a marking technique is defined that allows to validate the bindings [49]. AU

bindings are tagged by a number called OBL (OR Branch Level) that corresponds to the

number of choice points created by the process where this binding took place.

For a local variable, shallow binding takes place where the value of the variable is tagged by

the current OBL. Each process possesses a hash-window where for a non local variable the

triplet (variable, value, current OBL) is memorised.

To access the value of a local variable (dereferencing operation), the same mechanism used in

the sequential model is employed. It is the case of the dereferencement of a non local variable

which is more complex.

First, a validation process takes place that compares the field OBL of that binding with the

age of the choice point that was created by the ancestor process that resulted in the process

that is performing the dereferencing operation. If this test fails, then search takes place in the

hash-window of the current process. If this latter fails too, a second search takes place ali

along the chain of the hash windows of the ancestor processes that might have bound that

variable.

Consider the following example:

VII.8

Chapter Seven : Summary and Perspectives ------------------

Examp!e:

OBL=l

pl p2 p3

Figure (V/1.4): Binding mechanism in the PEPsys nwdel

First, the cell representing the variable is accessed. The binding X=a is not valid since the

OBL that tags this value (5) is superior than the age of the choice point (4) that created the

process P3. The search terminates since the chain of the hash windows of the ancestor

processes is reduced to an element. Hence, the result is that the variable X is free (unbound)

for the process P3.

This technique, though does not necessitate no data-copying, yet with the increase in the

number of hash-windows, the chaining search becomes costly.

VII.2.2.1.2 SRI

Here, each processor possesses a processor binding array where ali conditional bindings are

stored [46,47]. A variable bound conditionally will include an index that points out its value

in the different processor binding arrays.

The following example illustrates the binding procedure.

VJ/.9

Chaptcr Scvcn : Summary and Perspectives ------------------

Examp!e;

1
Y lul a 1

c b

1--------1 x 1 c 1 i 1

Y=a6r---...,
X=b X=c

Binding array for p 1
pl p2

Binding array for p2

Figure (V/1.5): Binding mechanism in the SRI mode!

ln the above figure, Pl and P2 bind conditionally the variable X to band c respectively. (Y=a

is a universal binding). When the variable X is dereferenced, the index i that contains the cell

that represents the variable X, is the key to the binding arrays for the dereferencement

process.

The access time of a variable is constant, but the main disadvantage of this approach is the

overhead of the creation of a new parallel task. Aurora [48] is an implementation of the SRI

madel. Actually, it off ers the most efficient implementations of parallel OR existing models.

VII.2.2.1.3 Vectors Versions

It is a variant of the SRI madel. Here, the different bindings of variables is represented by

vectors. The length of this vector is the number of the processors in the system, and hence

each cell contains the value of a binding that took place in the corresponding processor.

A variable bound conditionally is bound to a vector, the length of which is teh number of

processors, and hence each cell will include a binding value.

The recopying of the binding arrays of the SRI madel is translated here by the update of the

vectors by the bindings that take place in the branch where an alternative is found.

Vl/.1 0

Chapter Sevcn : Summary and Perspectives ------------------

v v Bindings Vector

Variable
value of Pl

value ofP2

value ofPn

Figure (VI/.6): Bindings mechanism in the versions-vector
mode/

This technique requires a synchronisation for the creation of vectors. Actually, each vector is

created dynamically by the process that binds the variable conditionally for the frrst rime. This

necessitates the synchronisation of the processes that bind simultaneously the same free

variable.

VII.3 Perspectives

Generally speaking, there are two main lines for future work based on the work presented in

this thesis: the first is exploiting the inherent parallelism and the second is the implementation

of the sequential (and eventually the parallel) model. We briefly discuss each of these

perspectives.

VII.3.1 Parallelism in the multi-resolution model

We retum to our sequential multi-resolution model. We have a system that is characterised by

the presence of multi-instantiated variables that replaced deep backtracking. Subgoals are

traversed from left to right. Each subgoal is traversed once and only once, by attempting ali

its alternatives sequentially and collecting the ensemble of solutions. Afterwards, this subgoal

is never reattempted.

V/J.ll

Chapter Scvcn : Summary and Perspectives -------------------

Recalling our objective, which was a detailed study of the treatment of the multi-instantiated

variables, we tend to study the influence of such variables on the execution from the point of

view of data parallelism.

The promising speedup figures presented in the previous chapter, mainly resulted from the

elimination of deep backtracking. We focus on the multi-unification algorithm that handles ali

the operations manipulating a multi-instantiated variable. The nature of the multi-unification

algorithm is sequential, i.e. the invoked multi-unification operations take place sequentially in

the order of the sub-terms. Our approach is to exploit the data parallelism at this phase. The

idea is simple :

Performing a mu/ti-unification operation between a multi-instantiation (n sub-terms) and

another multi-term (irrespective ofits nature) may invoke in parallel n mufti-unification

operations benveen each sub-term of the former with the latter.

This is data parallelism, where the same operation (here, multi-unification) is performed on

each sub-term of the multi-instantiation. In other words, the same subgoal is evaluated in

parallel with different arguments. Since we succeeded in presenting the multi-instantiations in

a vector-like form, we may exploit data parallelism given such a representation.

This is an appealing idea due to the fact that the model, as it is, allows the data parallelising of

certain phases, without any additional modifications in the syntax, and so the already written

programs may be executed in parallel. Here, no added load will bother the user as it is not his

role to 'think' in a parallel way. The parallelism may be exploited in a transparent manner. By

this, the corpus of Prolog programs that are already developed can be executed without any

modification to the programs' source code by a parallel machine. This view confirms the

formula "program = logic +control" [28].

Example:

multi_unify({l, [Q,a), (~,b), Q,c), ~.d), (i,e)]},c)

In chapter 3, we discussed how this multi-unification operation takes place. Since the first

term is a multi-instantiated object, a multi-unification operation is invoked between each

multi-instantiation of the first term and the second term, resulting in the following operations:

Vl/.12

Chaptcr Scvcn : Summary and Perspectives ------------------

multi_unify({l , [(l,a), (2,b), Q,c), ~.d), ~.e)]},c)

<----- multi-unify((l,a),c) tmm

<----- multi-unify((2,b),c) t~

<----- multi-unify(Q,c),c) tmm

<----- multi-unify(~,d),c) t~

<----- multi-unify((j,,e),c).

In our previous description of the algorithm, these operations take place in a sequential order,

in the order of the sub-terms in the multi-instantiation.

Our data parallel approach is to petform the above 5 multi-unification operations in parallel

since they are independent in nature. By this, a more interesting speedup is expected as we

are tending to ameliora te the petformance of the mode! after eliminating the deep backtracking

and its corresponding overhead.

VII.3.2 Implementation of the multi-resolution model

Another perspective of the presented work is the implementation of the multi-resolution

mode!. An extension of the WAM is the next step in this work to allow a real execution of the

multi-resolution mode!. We highlight the main required modifications.

Here, the search strate gy is a combined breadth-first, depth-first strategy. On the leve! of a

subgoal, the implementation is W AM-like except for a certain number of points:

- variables may be multi-instantiated, accordingly, new unification instructions should be

added to support ali the different multi-unification operations, incuding the treatment of

failures which will differ in the case of partial success/failures.

- environ ment treatment in the scope of a choice point: after the termination of an alternative

(mu! ti-unification of a clause head and multi-execution of the body clauses) the W AM

continues with the following subgoal. In the proposed extension, it is required to save

temporarily the different solutions resulting from the different alternatives, until no more

alternatives exist.

V/1.13

Chapter Sevcn : Summary and Perspectives -------------------

- the synchronisation leve! that assembles ail these temporary solution to create multi­

instantiations (single environment) and releases the above temporary solutions.

On a more globallevel, the mechanism for treating backtracking between different subgoals

is not required (at least, for the case of finite programs).

VII.4 General Conclusion

In this thesis, we have presented a new model for the multi-execution of Prolog programs,

which we called the multi-resolution model. Our objective was to improve the execution time

of Prolog programs. Our proposed model is characterised by the elimination of the deep

backtracking feature defined in the standard model. It respects the Edinburgh syntax and

hence no modification in the already existing program sources is required. It is most suitable

for fini te non deterministic programs wh en all the solutions are of interest.

The multi-resolution model follows a quasi breadth-first search; each subgoal is attempted

only once, unifying it to the different clause headers sequentially (since we preserved the

shallow backtracking). The body clauses of the current clause head are executed before the

following clause head for the same subgoal. A synchronisation level is added after the

exploration of each subgoal to assemble all the different solutions and create the multi­

instantiations. Multi-resolution never returns backwards to an already attempted subgoal.

In such a mode!, there is one environment that is multi-instantiated. This is because a sharing

strategy is adopted that is shared among the different alternatives. The only exception is the

case of arithmetic operations, where data-copying is employed. To perform the multi­

unification operations, we defined two multi-unification algorithms for arithmetic and non

arithmetic operations. The presence of such variables also influenced on treatment of failures

during the multi-resolution of a guery, which we treated as well.

Two meta-interpreters were written, the first was to justify and clarify the objective of this

work and the second to observe our proposed model. Both meta-interpreters are written in

Prolog.

VII.14

Chapter Scvcn : Summary and Perspectives -------------------

The first helped us to better understand the problem by studying closely the backtracking

phenomenon in the standard model. The results of this simulator illustrated the overhead of

the backtracking.

The second validated the sequential multi-resolution model. Both phases of the multi­

resolution (moiti-execution and multi-outputs) are defined. The moiti-unification algorithm

was written for arithmetic and nonarithmetic operations, and the two algorithms for the

display of solutions were also included. Partial success/failures were treated and several

predefined predicates were introduced.

We made use of this meta-interpreter to observe the behaviour of the mode! by introducing

severa! performance parameters. We were interested intime and memory measurements. We

compared the performance of our mode! with that of another meta-interpreter of standard

Prolog.

The different results pointed out that the multi-resolution mode! is promising compared to the

standard mode!. First, no prohgramming style is restricted. The multi-resolution model treats

recursion, databases and arithmetic operations. There are certain classes of programs that

proved to be more performant than others. This includes the generate and test programs. The

generate subgoal creates the multi-instantiations and the test operates on the different sub­

terms of these multi-instantiations without deep backtracking resulting in encouraging

speedups. We also observed that the performance is better when the different sub-terms of a

multi-instantiation are similar (same structure, same size).

On the other hand, in queries where only shallow backtracking takes place in the standard

mode!, the standard mode! is normally more performant. This result was expected due to the

overhead in the multi-resolution mode! after each choice point to create the multi­

instantiations as weil as the overhead of the algorithm of the display of solutions.

What we presented in this thesis is the base of the definition of the multi-resolution of Prolog

pro gram s. There are still severa! !ines of research th at are to necessary to be studied. First of

ali, sorne fine-tuning in the actual mode! is required. One is the proposition of a more

efficient treatment of the failures' database for a more optimal performance. Another point is

the introduction of the treatment of sorne predefined predicates such as the assert/retract,

not,etc.

V/1.1 5

Chaptcr Scvcn : Summary and Perspectives -------------------

A second aspect is to consider the implementation of this model, by introducing the necessary

extensions to the existing W AM to adopt multi-resolution in the sequential mode.

Considering the parallel aspect, we discussed the possibility of exploiting data parallelism in

the multi-resolution model due to the fact that multi-instantiations are represented in a vector­

like form making it possible to execute the multi-unification algorithm on a parallel target

machine (SPMD machine or eventually an MIMD machine).

Given the sequential mode!, it is very motivating to proceed in the details of the parallel mu! ti­

resolution model together with all the implementation problems as weiL

VI/.1 6

Appendix A

Tested Benchmarks

1

1- append:

append([],L,L).

append([AliA],B,[AliC]):- append(A,B,C).

2- permute:

permute([],[]).

pennute([HIT],L):- pennute(T,Ll), insert(H,Ll,L).

insert(A, B. [A lB]).

insert(A.I B JIR].[B liC]):- insert(A,B,C).

3- quicksort:

quicksort([}-liT] ,L):­

partition(T,H,Less,More),

quie ksort(Less,L 1),

quicksort(More,M 1),

append(L 1 ,[HlM 1] ,L).

partition([XIXs], Y ,[XILs],Bs):- x::;y, partition(Xs,Y,Ls,Bs).

partition([XIXs],Y,Ls,[XIBs]):- X> Y, partition(Xs,Y,Ls,Bs).

partition([],Y ,[],[]).

4- inteJiigent reverse:

reversel (Ll,L2):- reversel(Ll ,[],L2).

reversel ([HIT],A,L):- reversel (T,[HIA],L).

reverse l([],L,L).

5- naïve reverse:

reverse2([],[]).

reverse2([HIT],L):­

reverse2(T,L 1),

2

append(L 1 ,[H],L).

6- bits(n):

bits(n):- create_list(n,L), bit_list(L).

bit_list([]).

bit_list(lHITJ:- bit_list(T), bit(H).

bit(O).

bit(l).

7- bits-pal(n):

bits_pal(n):- create_list(n,L), bit_list(L), reversel(L,L).

8- bits-naive-pal(n):

bits_naive_pal(n):- create_list(n,L), bit_list(L), reverse2(L,L).

9- mutation(M):

mutation(M):- animal(X), animal(Y),

append([A 11A2],[B 11B2],X),

append([B 11B2],[CliC2],Y),

append(X,[C11C2],M).

animal([a,l,l ,i,g,a,t,o,r].

animal([t,o,r ,t,u,e]).

animal([c,a,r ,i,b,o, u]).

animal([o,u,r ,s]).

animal([c,h,e,v ,a,l]).

animal([v ,a,c,h,e]).

animal([l ,a,p,i ,n]).

animal([p,i,n, t,a,d,e]).

animal([h ,i,b,o,u]).

animal (l b,o,u,q ,u,e,t,i,n]).

animal([c,h,e, v ,r,e]).

3

10- Sorted list:

sorted_list(f A,B,C,D,E]):-

instantiate_each_tenn([A,B,C,D,E]), quicksort([A,B,C,D,E]).

instantiate_each_tenn([]).

instantiate_each_tenn([HIT] :- instantiate_each_tenn(T), letter(H).

letter(a).

letter(b).

letter(z).

4

References __________________________ _

References

[1] Barklund, J. Parallel Unification. Ph.D. thesis, Uppsala university, 1990.

[2] Boizumault, P. Prolog: L'implémentation. Masson, 1988.

[3] Bourzoufi, H. Définition et Evaluation d'une Machine Abstraite Parallèle pour un

Modèle Ou-parallèle Multi-séquentiel de Prolog. PhD. thesis, LTFL, USTL, 1992.

[4] Bruynooghe, M. Solving combinatorial search problems by intelligent backtracking.

1 nformation Processing Letters 12, 1981.

[5] Chassin de Kergommeaux, J., Codognet, P., Robert, P. and Syre, J.C. Une

programmation logique parallele: Les langages gardés. TSI, September 1989.

[6] Chassin de Kergommeaux, J. and Codognet, P. Parallel Logic Programming

Systems. Technical report, INRIA, Mai 1992.

[7] Chassin de Kergommeaux, J., Codognet, P., Robert, P. and Syre, J.C. Une revue

des modeles de programmation logique parallele : systemes paralleles logiques non

deterministes. TSI, September 1989.

[8] Clark, K.L. and Tarnlund, S. Logic Programming. Academie Press, London, 1982.

[9] Clark, K.L. and Gregory, S. Parlog : parallel programming in logic. Comm. of

ACM, vol. 1, pages 1-49, 1986.

[10] Clark, K.L. Parallel Logic Programming. The computer journal, vol. 33, no. 6

1990.

[11] Clocksin, W.F. and Mellish, C.S. Programming in Prolog. Springler-Verlag, New

York, 1981.

1

References---------------------------

[12] Codognet C., Codonget P. and Filé, G. Yet Another Intelligent Backtracking

Method. ICLP, 1988.

[13] Codognet, P. and Sola, T. Extending the WAM for Intelligent Backtracking./CLP,

1991.

[14] Cohen, J. A View of the Origins and the Development of Prolog. Comm. of the

ACM, vol. 31, no. 1, Jan. 1988.

[15] Cohen, J. Constraint Logic Programming Languages. Comm. of the ACM, vol. 33,

no. 7, July. 1990.

[16] Colmerauer et al. Un systeme de communication homme-machine en francais.

Research report, Groupe intelligence artificielle, Université AIX-Marseilles II, France,

1973.

[17] Condillac, M. Prolog: Fondements et Applications. Dunod, 1986.

[18] Conery, H.S. Parallel Execution of Logic Programming. Kluwer Academie

Pu bli shers, 1987.

[19] Cox, P.T. Deduction plans, a graphical proof procedure for the first order predicate

calculus. Ph.D Thesis, Dept. of Computer Science, University of Waterloo, Canada,

1977.

[20] Delahaye, J.P. Introduction a la Programmation Logique aux Systemes Experts et au

Langage Prolog. Publication LIFL, France, 1985.

[21] Genesereth, M.R. and Ginsberg, M.L. Logic Programming. Comm. of the ACM,

vol. 28, no. 9, Sep. 1985.

[22] Goncalves,G., Hannequin, I., Lecouffe, P. and Toursel, B. Une Nouvelle

Exécution OU-Paralléle de Prolog sur la Machine LOG-ARCH. Technical report, LIFL,

France, 1991.

[23] Hannequin, I. Proposition d'un Modèle d'évaluation Parallèle de Prolog. PhD.

thesis, LIFL, USTL, France,1991.

2

References---------------------------

[24] Ismail,H. and Lecouffe, P. Multi-résolution de programmes Prolog. RENPAR,

Brest, Mai 1993.

[25] Jayaraman, B. and Niar, A. Subset Logic Programming: Application and

lmplementation./CLP, 1988.

[26] Kacsuk, P. and Bale, A. DAP Prolog: A set-oriented approach to Prolog. The

computer journal, vol. 30, no 5, 1987.

[27] Kogge, P.M. The Architecture of Symbolic Computers. McGraw Hill, 1991.

[28] Kowalski, R. The Early Years of Logic Programming. Comm. of the ACM, vol. 3,

no. 1, Jan. 1988.

[29] Lecouffe, P. Prolog: Traces et Parallélisme. Technical report, LIFL, France, 1991.

[30] Lin, Y-J., and Kumar, V. An intellignet backtracking scheme for Prolog.ILPS and

ICLP, 1987.

[31] Lin, Y -J ., and Kumar, V. A Data Dependency Based Intelligent Backtracking

Scheme for Prolog. Journal of Logic Programming, vol. 4, 1988, pp. 165-181.

[32] Lloyd, J.W. Foundations of Logic Programming. Springler Verlag, 1984.

[33] Masuzawa, H. et al. Kabu Wake Parallel Inference Mechanism and its Evaluation.

FJCC, IEEE, November 1986.

[34] Muthukumar, K. and Hermenegildo, H. Determination of variable dependence

information through abstract interpretation. Proceedings of North America Conference of

Logic Programming, 1989.

[35] Pereira, L.M. and Porto, A. Intelligent backtracking in horn clause programs.

Technical report, Universtade Nuova de Lisboa, 1979.

[36] Pereira, L.M. and Porto, A. An interpreter of logic programs using selective

backtracking. Technical report, Universtade Nuova de Lisboa, 1979.

3

References _________________________ _

[37] Robinson, J.A. A machine-oriented logic based on the resolution principles. J.

ACM 12, 1965, pp. 23-41.

[38] Smith, D.A. MultiLog: Data OR-parallel Logic Programming. ICLP, 1993.

[39] Smith, D.A. and T.Hickey. Multi-SLD Resolution. LPAR, 1994.

[40] Smith, D.A. Why Multi-SLD beats SLD (even on a uniprocessor). PULP, 1994.

[41] Sterling, L. and Shapiro, E. The Art of Prolog: Advanced Programming

Techniques. MIT Press, 1986.

[42] Succi, G. and Marino, G. Data parallelism in Logic Programming. JCLP 1991.

[43] Tick, E. Parallel Logic programming. MIT press, 1991.

[44] Tong, B. and Leung, H. Concurrent Constraint Logic Programming on massively

parallel SIMD computers. ILPS, 1993.

[45] Turk, A. Compiler Optimisations for the WAM. ICLP, 1986.

[46] Warren, D.H. An abstract Prolog Instruction Set. Technical report 309, SRI ·

International, 1983.

[47] Warren, D.H. The SRI model for OR parallel execution ofProlog. ILPS, 1987.

[48] Warren, D.H. et al. The Aurora Or parallel system. New Generation Computing.

vol 7, 1990.

[49] Westphal, H., Robert, P., Chassin de Kergommeaux, J. and Syre, JC. The

PEPsys model: Combining backtracking, and and or-parallelism. ILPS, 1987.

4

