UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE

n 🕐 an the Carlor

THESE

Presentée pour l'obtention du grade de Docteur en Sciences de la Vie et de le Santé

TRISTRAM Frankie

CONTRIBUTION A L'ELABORATION DU CHAMP DE FORCES SPASIBA DE SUCRES

Soutenue le 25 juin 1996 devant la commission d'examen

Professeur André VERBERT Professeur Frederick TOBIASON Professeur Benjamin VAN DER VEKEN Docteur Solo GOLDSTEIN Professeur Gérard VERGOTEN Professeur Pierre LEGRAND Président Rapporteur Rapporteur Examinateur Examinateur Examinateur ,

Je remercie :

- Monsieur le Professeur André VERBERT pour l'honneur qu'il m'accorde en présidant mon jury de thèse.

- Messieurs les Professeurs Ben Van der VEKEN et Fred TOBIASON d'avoir accepté d'être les rapporteurs de cette thèse.

- Monsieur le Docteur Solo GOLDSTEIN et Messieurs les Professeurs Gérard VERGOTEN et Pierre LEGRAND d'avoir examiné ce travail. J'exprime toute ma reconnaissance à Gérard qui m'a épaulé tout au long de mon 3^{6me} cycle et auprés de qui j'ai toujours trouvé une aide quelques soient les circonstances.

J'associe à ce travail tous ceux avec qui un échange scientifique a pu être possible :

- le Docteur Philippe LAGANT
- le Docteur Mostafa CHHIBA
- le Docteur Roman EFREMOV

ainsi que mes "pères" en matière de modélisation :

- Le Docteur Manuel DAUCHEZ
- Le Docteur Philippe DERREUMAUX
- Le Docteur Abdelaziz ELASS

sans oublier le Docteur Viviane DURIER qui s'est trouvée comme moi confrontée au difficile problème des sucres dés son arrivée au Laboratoire.

A Calou...

. •

DANTE

CHAPITRE 1

La classe des saccharides peut être divisée en deux sous-classes identifiées par leurs rôles. La première sous-classe est constituée de polymères qui possédent un rôle de réserve, de stockage en vue d'une utilisation pour la synthèse d'énergie cellulaire ; c'est l'exemple de l'amidon. Elle est aussi composée de polymères ayant un rôle de protection telle la chitine. La deuxième sous-classe est constituée d'oligosaccharides souvent associés à des protéines (glycoprotéines) ou à des lipides (glycolipides) mais qui cette fois posséde un rôle biologique plus complexe, comme celui d'intervenir dans le phénomène de reconnaissance cellulaire.

Pour ce qui est des glycolipides, la partie glycannique est fixée au lipide par l'intermédiaire de la sphingosine. La biosynthèse de l'oligosaccharide se réalise grâce aux oses activés (oses liés à un nucléotide) et à des glycosyl-transférases (*Paulson JC*, 1989). La spécificité de ces dernières dicte la configuration des liaisons glycosidiques au cours de l'élongation du sucre par le côté non réducteur.

Dans le cas des glycoprotéines (*Kobata A*, 1992), le glycanne peut être fixé par différentes liaisons à la protéine suivant qu'il est fixé à une cystéine (liaison avec un soufre), une sérine (liaison avec un oxygène) ou une asparagine (liaison avec un azote) (Figure 1).

Figure 1 : Différents types de liaisons d'oligisaccharide à une protéine.

Nous nous limiterons aux sucres liés à une asparagine (*Roitsch T et al.*, 1989). Ces oligosaccharides conjugués aux protéines, communément appelés glycannes, sont de trois types différents (Figure 2) :

- N acétyl lactosaminique (1)
- oligomanosidique (2)
- hybride (3)

Figure 2 : Les types de glycannes liés de façon N-glycosidique.

Ils sont tous issus des réactions de post-traduction. Ces réactions qui surviennent après l'étape de la traduction entrainent une modification de la chaîne polypeptidique. Le plus souvent ces remaniements commencent par le côté N-terminal alors que le côté Cterminal n'est pas totalement synthétisé. Ces réactions sont à mettre en relation, dans le temps, avec le repliement de la protéine ou 'folding'. Celui-ci se fait de façon spontanée, dicté par la séquence même de la chaîne polypeptidique et ne fait pas partie des réactions de post-traduction. Les réactions de post-traduction peuvent être classées en six groupes (*Borel JP*, 1988):

- la formation de ponts disulfures.

- le clivage de certaines liaisons peptidiques, avec ou sans délétion d'acides aminés.

- la transformation d'acides aminés terminaux ; en N terminal : la cyclisation de l'acide glutamique, la méthylation, l'acétylation, etc..., en C terminal :
l'amidification du carboxyle par exemple.

les réactions de modification des résidus non terminaux, comme la N
 méthylation, la N acétylation, l'hydroxylation, la phosphorylation, la
 sulfurylation, l'halogénation, la carboxylation...

- la fixation de groupement prosthétique.

- la glycosylation.

Dans ce dernier type de modification post-traductionelle, le type oligomanosidique joue un rôle central, en effet chacun des deux autres types glycanniques, lors de sa biosynthèse, passe par l'étape oligomanosidique et plus précisément par l'étape Man9GlcNAc2, pour ensuite être différencié. Après ces étapes de modifications, la protéine devient réellement fonctionnelle. Son activité est consignée dans sa structure, et de façon plus large, dans la dynamique de celle-ci dans son milieu. Il est donc toujours nécessaire de connaître la séquence d'un polymère biologique mais dans le but ultime d'en déterminer sa structure tridimensionelle.

Les méthodes classiques d'analyse de la structure, que sont entre autres la diffraction des rayons x ou la diffraction des neutrons, ne permettent pas dans le cas d'oligosaccharides libres, de taille supérieure aux tétrasaccharides, d'obtenir une information structurale suffisante. Certaines techniques dérivées de ces deux dernières le permettent, mais cette fois-ci la molécule n'est plus libre, et donc l'information obtenue ne concerne que le complexe formé.

Il apparaît que si la structure est assez difficile à obtenir, par contre il est quasiment toujours possible de connaître la séquence, soit par l'analyse dérivée du métabolisme, soit par la chimie. C'est ainsi que la modélisation moléculaire propose par l'intermédiaire de calculs théoriques, de déterminer la structure à partir de l'information "séquence" et quelquefois d'analyser le comportement dynamique de la molécule.

LA BIOLOGIE DE L'OLIGOSACCHARIDE MAN9GLCNAC2

L'ORIGINE DE L'OLIGOSACCHARIDE MAN9GLCNAC2

L'origine de cet oligosaccharide se confond en fait avec le début du phénomène post-traductionnel de glycosylation. En effet, la glycosylation, qui s'effectue dans

4

différents compartiments cellulaires mais majoritairement dans le reticulum endoplasmique rugueux (RER) (*Kornfeld R et al.*, 1985) et l'appareil de Golgi (*Hirschberg CB et al.*, 1987), commence par la synthèse de cet oligosaccharide substitué de glucose et de pyrophosphodolichol en ce qui concerne les deux compartiments cités (Figure 3).

L'enchaînement de réactions se produisant dans le RER et l'appareil de Golgi est appelé cycle des dolichols (Abeijon C et al., 1990) (Figure 4). Lors de ce cycle un intermédiaire polyprénique phosphaté se lie à deux N-acétyl-glucosamine via l'intervention de nucléotides phosphates portant ces monosaccharides (sur la face cytoplasmique du RER). La séquence GlcNAcβ14GlcNAcαPPdolichol est aussi obtenue. Ensuite dans le même compartiment sont ajoutés cinq mannoses, toujours par l'intermédiaire de nucléotides phosphates. Ce nouveau complexe, tout en restant amarré à la membrane, change de compartiment pour se retrouver sur la face luminale du réticulum endoplasmique rugueux (Snider MD et al., 1984). C'est à cet instant que sont ajoutés quatre mannoses supplémentaires pour former le Man9GlcNAc2aPPdolichol. L'étape suivante constitue la première modification de l'oligosaccharide Man9GlcNAc2 : dès sa biosynthèse, trois résidus de glucose sont ajoutés (Kornfeld R et al., 1985). C'est ce dernier intermédiaire qui est transféré pour ce qui est de la partie oligosaccharidique, sur une protéine possédant un site de glycosylation reconnu par l'enzyme oligosaccharidyltransférase (Hirschberg CB et al., 1987). La liaison créée entre la partie oligosaccharide et la partie protéique est une liaison pseudo-glycosidique (β 1N) entre un résidu asparagine de la protéine et le résidu terminal de N-acétyl-glucosamine.

Figure 3 : Maturation d'un glycanne.

Figure 4 : Le cycle des dolichols.

LA DESTINEE DU GLYCANNE MAN9GLCNAC2

Le glycanne peut alors suivre deux voies différentes. La première est dite voie de maturation et s'effectue dans l'appareil de Golgi (*Munro S et al., 1987*), ainsi que dans le réticulum endoplasmique. Elle voit, par l'intervention de nombreux enzymes qui dans un premier temps dégradent en partie le glycanne, l'apparition de 2 nouveaux types glycanniques : les types N-acétyl-lactosaminique et hybride. Dans ce cas, le glycanne Man9GlcNac2 ne constitue qu'une étape de la biosynthèse d'un glycanne de type différent. Cependant, le glycanne Man9GlcNac2 peut ne subir aucune modification et donc rester dans son état pour donner un glycanne de type oligomanosidique. Le glycoconjugué ainsi

formé peut alors assurer son rôle biologique dans la cellule à l'extérieur de celle-ci. Mais il est bien évident que, comme toute structure biologique, le glycoconjugué sera catabolisé après une certaine période d'existence (qui définira son "Turn Over") pour ensuite être synthétisé à nouveau. Il est à noter que l'étude du catabolisme a permis la compréhension des différentes étapes de dégradation des glycannes ainsi que des enzymes impliqués (Chanev W et al., 1989). Le catabolisme des chaînes glycanniques intervient après le début, tout au moins, de la dégradation de son aglycône. Cette dégradation est principalement localisée dans le cytosol. Le processus du catabolisme comme par le clivage du résidu di-N-acétyl-chitobiose libérant ainsi le glycanne amputé d'un résidu de N-acétyl-glucosamine (Song Z et al., 1987). A l'heure actuelle l'hypothèse d'une dégradation lysosomale du glycanne est envisagée (Michalski JC, 1984). En effet des mannosidases participant aux phénomènes de dégradation ont été caractérisées et différenciées dans le lysosome et le cytosol (Caroll M et al., 1972). Cependant, quelque soit le chemin du catabolisme emprunté par le glycanne Man9GlcNAc2, celui-ci sera toujours le même ; en effet la première étape de retrait d'un mannose concernera toujours le même résidu (i.e D2 dans le cas de la maturation dans le reticulum endoplasmique rugueux). Ceci est un fait remarquable, en effet, les mannoses terminaux sont tous identiques (de type Mana12). Cette sélectivité ne peut s'expliquer que par une accessibilité différente des trois mannoses à l'enzyme qui effectuent la réaction. Dans ce cas, il serait alors possible d'expliquer la variabilité de la glycosylation d'une protéine pour un individu donné, selon que lors du processus de maturation, les enzymes conduisant aux types Nacétyl-lactosamique et hybride, aient pu réagir avec le glycanne.

LES METHODES EXPERIMENTALES D'ETUDE DES GLYCANNES

La compréhension de l'activité d'une molécule ou d'une famille de molécules passe, à l'heure actuelle par l'élucidation de sa structure ainsi que de son comportement lors de l'activité. Bien sûr, il est toujours possible de déterminer une activité associée à une famille de molécules sans en comprendre les chemins réactionnels, comme il est possible de déterminer une structure sans pouvoir la corréler à une activité. L'étude de la structure et du comportement dynamique d'une molécule requiert l'emploi de méthodes expérimentales. Nous développons ici les principales méthodes utilisées associées à l'étude des sucres.

LA DIFFRACTION DES RAYONS X

C'est sans aucun doute la méthode expérimentale la plus adéquate pour la détermination de structure des petites molécules ainsi que des macromolécules (*Amoros JL et al., 1968*). Le plus souvent ces résultats sont directement utilisés comme point de départ de nombreux calculs, telle la dynamique harmonique (*Dauchez M, 1990*). La diffraction des Rayons X permet de déterminer entre autre les positions atomiques, cellesci sont bien évidemment des positions moyennes, ainsi que les fluctuations atomiques. Actuellement, il n'existe pas de méthodes pour obtenir des cristaux utilisables en diffraction de Rayons pour des oligosaccharides de plus de 4 résidus, ceci étant dû à des effets de cristal. Cependant pour des tailles inférieures, nombreuses sont les données déjà recueillies. L'utilisation des formes méthylées (*Barker SA et al., 1954*) est souvent employée sur la partie réductrice évitant ainsi tout problème d'anomérie. Les exemples de glycannes résolus sont assez rares encore. Le premier qui l'a été est celui du fragment cristal de l'IgG1 humaine (*Deisenhofer J*, *1980*) (Figure 5). Mais dans ce cas ainsi que dans tous les cas de cocristallisation du glycanne et d'une autre partie, qui peut être une lectine ou un glycône, l'information structurale recueillie prend en compte des effets extérieurs au sucre.

Figure 5 : Le fragment cristallisable de l'IgG1.

LA DIFFRACTION DES NEUTRONS

La diffraction des neutrons permet de déterminer la structure tridimensionnelle des macromolécules ainsi que des molécules plus petites. Cette fois-ci ce sont les noyaux des atomes qui permettent le phénomène de diffraction des neutrons et non plus les électrons des atomes comme dans le cas de la diffraction des rayons X. Les noyaux les plus légers

diffractent donc le plus, c'est ainsi qu'il est possible de connaître précisement les positions des atomes d'hydrogène. Il faut voir en cette méthode une analyse complémentaire de la diffraction des rayons X et la comparaison de ces 2 méthodes est souvent une source d'informations importantes. La diffraction des neutrons n'a que très peu été utilisée pour les sucres (*Brown G*, 1979).

LES METHODES SPECTROSCOPIQUES

Les mouvements moléculaires peuvent être perçus par l'intermédiaire de grandeurs physiques directement liées à la molécule : le moment dipolaire par exemple. Les différentes techniques qui accèdent à ces données se distinguent par leurs technologies : méthode de détection, base des temps caractéristiques... De plus, l'analyse des différents mouvements est différente suivant la méthode spectroscopique utilisée et on en tirera soit une information de position, soit une information dynamique ou les deux.

Les spectroscopies infrarouge (IR) et Raman

L'analyse des mouvements rapides (10^{-13s}) peut être effectuée à l'aide de la spectroscopie de vibration. C'est ainsi que les spectroscopies IR et Raman ont été et sont toujours très appréciées dans le cas des sucres pour déterminer les formes des cycles ainsi que leur anomérie (*Mathlouti M et al., 1980* et *Mathlouti M et al., 1985*). Les spectroscopies IR et Raman permettent aussi de déterminer les transitions conformationnelles des formes ${}^{1}C_{4}$ et ${}^{4}C_{1}$ par exemple, les populations des différents conformères peuvent être alors analysées par la mesure du rapport des intensités des bandes ou raies caractéristiques des deux conformères (*Vasko D, 1971*). Malheureusement, du point de vue purement vibrationnel aucune attribution certaine

n'existe et des calculs de mode normaux de vibration sont nécessaires pour tenter d'en analyser les résultats. De nombreux travaux ont ainsi été effectués sur le glucose (*Vasko D*, *1971*), galactose et mannose (*Well H*, *1977*), mais peu d'études portent sur les oligosaccharides.

La résonance magnétique nucléaire (RMN)

La spectroscopie de RMN est une source précieuse d'informations sur la structure et son environnement (*Wüthrich A*, 1986). Cette méthode spectroscopique a permis l'élucidation de nombreuses séquences de monosaccharides avec des précisions sur la nature du monosaccharide, l'anomérie et le type de liaisons glycosidiques engagées (*Lipkind GM et al.*, 1985). Ceci est rendu possible grâce à l'attribution compléte des spectres ¹H- et ¹³C- du sucre. La détermination de structure requiert la mesure des effets nucléaires Overhauser (nOe) et des constantes de couplage vicinales ³J. Les nOe représentent une information importante pour la détermination de la structure en terme de distances, alors que les couplages sont traduits en dièdre ϕ et ψ (et éventuellement ω) de la liaison glycosidique (*Thoegersen H et al.*, 1980) et qui définissent alors la structure d'oligosaccharide. Les données de RMN sont relatives à la conformation moyenne des différentes conformations prises par la molécule alors que les oligosaccharides ont rarement une seule et rigide conformation. L'exploitation de cette donnée expérimentale devient complexe, l'utilisation des méthodes de calculs de la mécanique moléculaire pour interpréter les différents résultats expérimentaux apparait évidente (*Van halbeek H*, 1994).

LES AUTRES METHODES

D'autres méthodes peuvent être utilisées pour obtenir des informations structurales et dynamiques. Ce sont par exemple, la dépolarisation de fluorescence, la résonance paramagnétique électronique, la diffusion inélastique des neutrons, la spectroscopie Mössbauer. Cependant, ces méthodes ne sont pas utilisées pour les saccharides ou n'apportent pas de données structurales précises et par conséquent elles ne seront pas développées ici.

CHAPITRE 2

Les technologies actuelles en matière d'ordinateurs et de terminaux graphiques permettent de visualiser et de manipuler des molécules, ainsi que des macromolécules de façon interactive. Ces récentes avancées technologiques ont entraîné des progrès considérables en Biochimie et plus particulièrement en Pharmacologie.

L'édifice moléculaire, doué de mouvements d'ensemble et d'adaptabilité conformationnelle, peut être caractérisé par son énergie moléculaire interne. Celle-ci peut être calculée par résolution de l'équation de Schrödinger non relativiste, c'est la méthode dite *Ab Initio*. Malheureusement, cette méthode ne reste actuellement appliquée qu'aux molécules de taille réduite du fait de son coût élevé en temps de calcul.

Dans un premier temps la solution pour diminuer le temps de calcul est d'utiliser, dans certaines étapes du traitement, des approximations basées sur des mesures expérimentales. On parle alors des méthodes semi-empiriques. La taille du système traité peut donc être plus importante que pour le calcul *Ab Initio*. Enfin, pour les systèmes moléculaires les plus importants on utilise les méthodes empiriques, où le système atomique est perçu comme un noyau dans le champ électronique moyen. Ces dernières méthodes se basent sur un modèle de la fonction énergie potentielle moléculaire. Les méthodes empiriques peuvent avoir deux buts bien distincts : le premier est d'obtenir une structure stable de la molécule et le second de décrire le comportement dynamique par l'intermédiaire de la résolution des équations du mouvement de Newton. Dans ce chapitre, les différentes méthodes seront abordées et un commentaire sera fait sur leurs principales applications aux sucres. Toutefois les méthodes empiriques qui seront les plus utilisées lors de notre travail sont traitées de façon beaucoup plus précise.

LES METHODES QUANTIQUES AB INITIO ET SEMI-EMPIRIQUES

Le but des méthodes quantiques appliquées aux systèmes moléculaires est de prédire *Ab Initio* leurs structures ainsi que leurs propriétés chimiques, c'est-à-dire que tous les calculs sont effectués avec, comme données initiales, les masses des électrons, neutrons et protons, la célérité des photons dans le vide, et, la constante de Planck. Il est bien évident que dans ce cas le calcul doit être limité à un nombre restreint d'atomes pour conduire à des temps de calculs raisonnables.

La mécanique quantique explique le comportement dual de particules comme les électrons. L'équation de Schrödinger fait intervenir la fonction d'onde qui décrit l'état stationnaire d'une particule et l'opérateur Hamiltonien du système : $H\Psi(r,t)=E\Psi(r,t)$ où $\Psi(r,t)$ est la fonction d'onde. Dans le cas d'une molécule, l'équation de Schrödinger est similaire, mais Ψ devient fonction des coordonnées de tous les atomes de la molécule. La résolution de cette équation permet d'accéder aux différents termes d'énergie et aux fonctions d'onde solutions de l'équation de Schrödinger qui correspondent aux différents états stationnaires du système. La méthode *Ab Initio* permet de réaliser les trois types de calculs suivants:

- L'évaluation de l'énergie et de propriétés liées à une géométrie spécifique.

15

- L'optimisation d'une géométrie et le calcul des propriétés afférentes à celle-ci.

- Le calcul des fréquences de vibrations pour une géométrie optimisée.

Ces calculs pourront être réalisés avec plus ou moins de précision selon la méthode et l'ensemble de bases choisies. Lors de notre travail nous avons utilisé les méthodes Hartree/Fock (*Hartree DR*, 1928 et Fock V, 1930) et post-Hartree/Fock (i.e. calcul de perturbation et fonctionnelle de densité). L'ensemble de bases choisies est le plus souvent 6-31G*, et lorsqu'il fallait tenir compte de la polarisation des liaisons comportant des atomes légers nous avons choisi 6-31G**. Le temps de calcul varie avec le nombre d'atomes, la méthode et l'ensemble de bases.

L'optimisation de géométrie conduit également à la détermination des propriétés moléculaires suivantes:

- Les différentes énergies du système.

- Les moments dipolaire, quadripolaire...

- Les charges atomiques partielles et la densité de charge.

Dans tous les calculs *Ab Initio*, l'évaluation de l'énergie est faite au préalable. Il est à noter que la détermination des charges atomiques partielles est réalisée grâce à certaines méthodes comme l'analyse des populations de Mulliken (*Mulliken RS, 1928*), Natural Bond Orbital analysis (NBO) (*Glendening ED et al., 1990*), ou la procédure CHarge electrostatic potential (CHelp) (*Breneman CN et al., 1990*). Le choix de celles-ci conditionne le calcul des charges partielles. Le nombre d'itérations et le critère de convergence peuvent être choisis pour optimiser soit le temps de calcul soit la précision. De plus certaines interfaces graphiques permettent de visualiser les résultats du calcul comme la densité de charge ou le spectre de vibration.

L'optimisation de géométrie permet d'obtenir une structure d'énergie minimum à partir d'une conformation donnée. Après cette minimisation, différents paramètres moléculaires peuvent être calculés. Lors du calcul nous pouvons contrôler le nombre de pas de minimisation, le gradient maximum autorisé pour terminer le calcul (un gradient nul serait idéal mais non réaliste du point de vue informatique), la différence entre la structure en cours de minimisation et une structure de référence, et l'algorithme de minimisation utilisé.

Le calcul des modes normaux de vibration peut aussi être réalisé. Une optimisation de géométrie est effectuée auparavant. Par l'intermédiaire de ce calcul nous obtenons les constantes de forces associées à chaque coordonnée interne et une attribution de chaque mode de vibration. Malheureusement les valeurs ainsi calculées sont très différentes (le plus souvent surestimées) des données expérimentales et nécessitent l'application de facteurs d'échelle.

Le calcul *Ab Initio* a très peu été utilisé pour les sucres. La taille du système monosaccharide est encore trop importante du point de vue analytique. Cependant des travaux ont été effectués sur le glucose (*Jeffrey G and Yates J, 1980*) et sur le fructose (*Szarek et al., 1984*). Ces derniers ont permis d'obtenir la structure optimisée, les charges résiduelles partielles et le moment dipolaire avec une bonne précision. Cependant la reproduction des spectres de vibration n'est pas satisfaisante.

Les méthodes semi-empiriques permettent de tirer les mêmes résultats que le calcul *Ab Initio*. Cependant seules quelques méthodes ont été utilisées pour les sucres. Ce sont

17

celles dont les approximations sont les plus adéquates pour les sucres. La méthode PCILO (*Giacomini M et al., 1970*) a été l'une des premières appliquées aux sucres, puis la méthode MNDO (*De Vries N and Buck H, 1987*) a permi d'obtenir de bons résultats concernant la géométrie et les moments dipolaires.

LES METHODES EMPIRIQUES

La description mathématique complète d'une molécule inclut les aspects quantiques et relativistes, elle est l'un des plus grands enjeux de la physique actuelle étant données les vitesses et la taille des systèmes : c'est la mécanique quantique. En ce qui concerne la mécanique et la dynamique moléculaire ces considérations sont évidemment exclues. Les données expérimentales sur lesquelles elles s'appuient contiennent implicitement les effets relativistes et quantiques. Ces méthodes sont en conséquence appelées empiriques.

Il est possible de décrire l'énergie E(r) de la molécule en fonction, uniquement, des coordonnées noyaux des atomes : E(r) représente l'hypersurface d'énergie potentielle. Le but de la mécanique moléculaire est de reproduire E(r) le plus fidèlement possible sans considérer de façon explicite les électrons mais plutôt le déplacement des noyaux des atomes dans le champ moyen des électrons. Une série d'approximations est utilisée :

- les atomes et leurs électrons sont confondus.

- les liaisons chimiques sont assimilées à des ressorts.

- la distribution des charges est représentée par des monopoles atomiques.

- la polarisation des atomes n'est pas décrite explicitement.
- les interactions non liées sont négligées au delà d'une distance seuil.

Comme pour l'approximation de Born-Oppenheimer en mécanique quantique, on peut en mécanique classique définir l'énergie potentielle moléculaire comme fonction des coordonnées des noyaux des atomes. Elle s'exprime par l'intermédiaire d'une équation différentielle : $\frac{-dE}{dr} = m \frac{d^2r}{dt^2}$ (dans l'espace des coordonnées r et t) : c'est l'équation du mouvement de Newton. Dans cette équation E représente la surface d'énergie potentielle, et, la solution de l'équation r(t) représente la trajectoire (ou espace des conformations), c'est la dynamique moléculaire. La différence avec la mécanique moléculaire, est que la notion de temps est introduite. En effet en mécanique moléculaire, seules sont déduites les propriétés "statiques" de la molécule : géométrie, différence d'énergie conformationnelle...

L'ensemble des paramètres permettant l'ajustement de l'hypersurface d'énergie potentielle calculée à l'expérimentale (ou dérivant de la mécanique quantique), ainsi que la forme mathématique de l'équation énergie potentielle est appelé champ de forces. Le plus souvent un champ de forces décrit les molécules à l'aide de coordonnées internes pour décrire les liaisons chimiques. On peut de plus différencier deux types de champs de forces :

- champ spectroscopique (exemple: UREY-BRADLEY (Urey H and Bradley C, 1931).

19

- champ de mécanique moléculaire (exemple : TRIPOS (*Clark M et al.*, 1989), AMBER (*Weiner SJ et al.*, 1986)).

Pour un champ de forces spectroscopiques, les paramètres sont obtenus par reproduction des fréquences de vibration moléculaire observées en spectroscopie d'absorption infrarouge ou de diffusion Raman avec une erreur moyenne la plus faible possible (de l'ordre de 10%). L'information contenue dans un mode de vibration permet de discriminer une base de paramètres d'une autre. Par contre, un champ de mécanique moléculaire permet pour les états stables de la molécule, la détermination des différentes caractéristiques macroscopiques et microscopiques en relation avec la structure et l'énergie moléculaire. Il est aussi possible de réaliser des calculs de dynamique moléculaire avec ce type de champ de forces. C'est cet ensemble de possibilités de calculs qui s'appelle mécanique moléculaire.

LA MECANIQUE MOLECULAIRE

Cette méthode est donc basée sur un champ de forces par l'intermédiaire duquel on peut déterminer la géométrie de la molécule, des grandeurs thermodynamiques et quelquefois les propriétés vibrationnelles. Il faut donc déterminer les paramètres du champ de forces, c'est l'étape de paramétrisation, pour ensuite minimiser l'énergie potentielle de la molécule. Les champs de forces de mécanique moléculaire les plus couramment utilisés sont AMBER (*Weiner SJ et al., 1986*), CHARMM (*Nilsson L and Karplus M, 1986*), TRIPOS (*Clark M et al., 1989*) et MM3 (*Allinger N et al., 1989*).

La fonction énergie potentielle empirique

Elle est la somme des interactions entre les atomes liés et non liés. Les interactions entre atomes liés sont généralement résumées comme la somme des termes de liaisons, d'angles de valence, d'angles dièdres et de déformations hors du plan. L'approximation harmonique est quasiment toujours utilisée pour les potentiels de liaison et d'angles de valeur $E(r) = \frac{1}{2} \sum K_r (r - r_0)^2$ et $E(\theta) = \frac{1}{2} \sum K_{\theta} (\theta - \theta_0)^2$ où K_r et K_{θ} sont les constantes de forces de liaisons et d'angles. r_o et θ_o sont les valeurs d'équilibre de la coordonnée considérée. En ce qui concerne le potentiel de torsion les formes sont variées, CHARMM, AMBER et GROMOS (Van GunsterenWF and Berendsen HJC, 1987) possèdent un potentiel sinusoïdal d'ordre 2 ou 3 : $E(\phi) = \frac{1}{2}V_n(1 + \cos(n\phi - \delta))$ où V_n est la barrière de rotation interne, ϕ l'angle de rotation, δ la phase et n la multiplicité (ou nombre de minima sur l'espace de ϕ). Pour ce qui est du potentiel de déformation angulaire hors du plan, GROMOS, CHARMM et AMBER possèdent la même forme analytique qui est un potentiel harmonique du type : $E(\omega) = \frac{1}{2} \sum K_{\omega} (\omega - \omega_0)^2$ où K_{ω} est la constante de force, ω l'angle impropre et ω_0 l'angle à l'équilibre. Le potentiel des interactions non liantes regroupe généralement:

- Le terme des interactions de type LENNARD-JONES (*Lennard-Jones JE*, 1949) ou terme 6-12 $E(R) = \frac{A_{i,j}}{R_{i,j}^{12}} - \frac{B_{i,j}}{R_{i,j}^6}$ où A_{ij} , B_{ij} sont des constantes et R_{ij} la distance

entre atomes i et j. On peut aussi utiliser un potentiel de type Buckingham :

 $E_{B}(r)=Ae^{-Br}-Cr^{-6}$ où A, B et C sont des constantes et r la distances entre deux atomes.

- Le terme de liaison hydrogène $E(R) = \frac{C_{i,j}}{R_{i,j}^{12}} - \frac{D_{i,j}}{R_{i,j}^{10}}$ ou terme 10-12, où C_{ij} et D_{ij}

sont des constantes et R_{ij} la distance entre ces atomes.

- Le terme d'interactions électrostatiques $E_{ES}(R) = \frac{q_i q_j}{R_{i,j} \varepsilon}$ où ε est la constante

diélectrique, q_i et q_j les charges résiduelles des atomes i et j et R_{ij} la distance entre les atomes i et j.

La paramétrisation

La fiabilité du champ de forces de mécanique moléculaire dépend de sa capacité à reproduire le plus grand nombre de grandeurs expérimentales, ainsi que de la transférabilité de ses paramètres d'une molécule à une autre. L'étape de paramétrisation permet d'obtenir un tel champ de forces. La détermination de l'ensemble des constantes de forces se fait par comparaison avec des valeurs expérimentales en rapport avec la structure, les énergies, la thermodynamique, etc...

Les spectres vibrationnels sont utilisés ici comme moyen de vérification de la validité du champ de forces. Cependant, les écarts moyens produits entre les fréquences calculées et observées sont très importants (de l'ordre de 50 à 100 cm⁻¹).

La minimisation

C'est la première utilisation des champs de forces appliqués à des modèles obtenus par diffraction des Rayons X ou par RMN afin d'éliminer les interactions trop importantes. Les formes biologiquement actives possèdent une énergie potentielle. On détermine une structure moyenne autour de laquelle le système évolue. La recherche d'un minimum d'énergie, avec des fonctions comportant 3 N variables (si N est le nombre d'atomes) est complexe. On a donc recours à des algorithmes (ou minimiseurs) d'analyse numérique. Ceux-ci vont permettre de déterminer les minima locaux de la fonction E(r). On suppose aussi que la minimisation nous amène dans une conformation proche de celle du minimum d'énergie absolue. Du point de vue mathématique un minimum existe si grad(E(r)) = 0. et $\Delta(E(r)))0$. Il existe de nombreux algorithmes, mais seuls certains d'entre eux sont utilisés couramment :

- La méthode de la plus grande pente (Wiberg K, 1965) :

Les modifications de structure s'effectuent dans une direction opposée au gradient de l'énergie, direction vers laquelle E(r) diminue localement le plus rapidement. Si l'énergie obtenue est inférieure à celle de départ la nouvelle structure est conservée sinon elle est rejetée. La convergence de cette méthode est mauvaise lorsqu'on se trouve proche du minimum. Elle est donc utilisée en début de minimisation du fait de son grand rayon de convergence.

- La méthode du gradient conjugué (Van Gunsteren et al., 1982)

La méthode est la même que pour la précédente mais on tient également compte des itérations précédentes pour déterminer la direction de minimisation. C'est une méthode aux dérivés premières ce qui est plus coûteux en temps de calcul que la première. Elle est utilisée généralement après quelques itérations de la première méthode sous peine de ne pas converger.

- La méthode Newton-Raphson (Boyd R, 1968)

Ici à chaque pas le minimum du développement d'ordre 2 de la fonction E(r) est calculé. C'est une méthode aux dérivés secondes, donc extrêmement coûteuse en temps de calcul et à n'utiliser que lorsque l'on est proche du minimum sous peine de diverger. Il faut donc effectuer quelques étapes de méthodes à grand rayon de convergence pour localiser un minimum.

LA DYNAMIQUE MOLECULAIRE

Le but de la dynamique moléculaire est de balayer l'espace des configurations des molécules. Ces molécules comportent un grand nombre de degrés de liberté, fonction de leur complexité. Les méthodes expérimentales qui fournissent des données dynamiques sont la diffraction des Rayons X qui nous renseigne sur les fluctuations isotropes dans le cristal, la diffusion des neutrons qui nous renseigne sur les mouvements moléculaires, la RMN qui nous renseigne sur les distances inter-atomiques en solution, la RPE qui nous renseigne sur les fluctuations des atomes lourds, et, les spectroscopies IR, Raman. qui nous renseignent sur les modes de vibration. Cependant ces méthodes ne permettent qu'un accès incomplet aux mouvements moléculaires. Il est intéressant, grâce aux ressources informatiques actuelles, de simuler les mouvements moléculaires conformationnel de la molécule peut être exploré et les grandeurs thermodynamiques associées calculées.

Principe de la dynamique moléculaire

Cette méthode est basée sur l'intégration des équations du mouvement de Newton : $-\text{grad}(\mathbf{E}(\mathbf{r})) = \sum_{i} m_{i} \frac{d^{2}r_{i}}{dt^{2}}$. La solution de cette équation décrit les mouvements de la molécule dans l'espace et le temps. La température du système est alors calculée par : $E_{cinetique} = \frac{1}{2} \sum_{i} m_i (\frac{dr_i}{dt})^2 = \frac{3}{2} NkT$ et n'a aucune signification réelle, elle représente les barrières énergétiques que la molécule est autorisée à franchir. Si le système est isolé $E_{totale} = C^{te}$ nous avons à faire à un ensemble microcanonique ou NVE (*Reichl LE, 1983*) par contre s'il existe un échange d'énergie avec l'extérieur du système, les molécules sont soumises à une force aléatoire moyenne, dans le temps, nulle. L'équation complète s'écrit alors : $m_i \frac{d^2 r_i}{dt^2} + \beta_i \frac{dr_i}{dt} = F_i - f_i(t)$ où $f_i(t)$ est la force aléatoire, β_i un coefficient de friction appliqué à chaque atome. Le système peut aussi être simulé dans le vide ou dans une boîte remplie de solvant, c'est-à-dire à volume constant. Dans le cas où la simulation s'effectue à température constante nous avons un ensemble dit canonique ou NVT, les vitesses des atomes sont étalonnées à chaque pas de simulation pour conserver une énergie cinétique constante.

Les algorithmes

Les algorithmes de dynamiques moléculaires sont équivalents mais différents par l'ordre des différentes étapes du calcul. L'algorithme le plus utilisé est celui de Verlet (*Verlet L., 1967*), qui est récurrent et d'ordre 2. Il conserve la quantité de mouvement et l'énergie, et permet une bonne précision de calcul. Un autre algorithme utilisé est celui de Verlet « Leap Frog » (*Van Gunsteren WF and Berendsen HJC*, 1977).

La mise en oeuvre

Il faut premièrement choisir une structure de départ, proche de la structure expérimentale. On peut ensuite définir quatre étapes principales :

- La minimisation de la structure où les "mauvais contacts" sont éliminés, par les méthodes précédemments citées .

La thermalisation où le système est amené à la température de simulation. Les équations du mouvement sont alors intégrées en augmentant régulièrement les vitesses (à l'aide d'un multiplicateur) afin d'élever régulièrement la température.
Généralement la thermalisation est atteinte au bout d'une dizaine de picosecondes de simulation.

- L'équilibrage, où on stabilise le système à la température de simulation. Il y a un échange entre l'énergie cinétique et l'énergie potentielle du système.

-La phase dynamique proprement dite où sont sauvegardées toutes les 1 ps par exemple les différentes structures et vitesses pour rendre compte de l'histoire de la dynamique moléculaire.

-L'analyse de la dynamique conduit à des données statistiques et fonctions du temps des différentes propriétés de la molécule.

L'analyse de dynamique

On vérifie que la molécule n'est pas "détruite" lors de la simulation, par le contrôle des déplacements atomiques, via l'évolution d'une différence structurale entre géométrie initiale et pendant la simulation. Afin de moyenner les fluctuations rapides il est toujours plus intéressant de regarder l'évolution sur un maximum de 50 femtosecondes. L'analyse atome par atome peut être associée aux facteurs de température des rayons X. Ces fluctuations isotropes sont dues, pour la simulation, à l'absence d'environnement cristallin ou à une simulation sommaire du solvant.

La majorité des champs de forces utilisés pour les sucres sont généralistes, cependant d'autres ont été élaborés pour reproduire les propriétés particulières des sucres. Une des premières approches a été celle de Lemieux et al. avec HSEA (Thoegersen H et al., 1980). Ce champ de forces permet de reproduire la structure d'oligosaccharides. Dans ce champ de forces un terme a été introduit pour reproduire l'effet gauche (Wolfe S, 1970) et des constantes de champ de forces spécifiques des conformères α et β ont été déterminées à l'aide du calcul Ab Initio sur des molécules possédant des fonctions acétals (Jeffrey JG et al., 1978). Les résultats obtenus avec ce champ de forces sont souvent en accord avec les résultats de la RMN. Le cycle est considéré comme rigide, ce qui n'est pas le cas expérimentalement (Brady JW et al., 1991), ce modéle est donc perfectible (Dauchez M, 1990). Rasmussen et al. ont eu une approche un peu différente avec leurs champs de forces PEF (Potential Energy Function), le cycle du monosaccharide n'est plus rigide et un minimum de constantes de forces est conservé (Rasmussen K et al., 1982). Malgré cette simplicité apparente les résultats obtenues sur la structure des mono et disaccharide sont correctes. L'approche de Perez et al. en 1978 de la conformation des sucres est du même genre. Son champ de forces PFOS (Potential Function For OligoSachharides) est la somme de termes d'interaction entre atomes non liés et de termes de torsion pour la liaison glycosidique (Perez S et al., 1978). Les résultats structuraux

obtenus sur différents oligosaccharides sont en bon accord avec les données expérimentales.

D'autres tentatives ont été menées avec des champ de forces généralistes qui sont les plus utilisés. La plus notable est celle de Allinger *et al.* avec ces champs de forces MM1, MM2 et MM3. Le plus souvent les paramétres de ces champs de forces ont été adaptés pour les sucres, c'est par exemple MM1-CARB (*Jeffrey JG et al., 1980*) et MM2 revisé (*Murata M et al., 1993*). Malheureusement si les résultats concernant la structure sont bons, ceux relatifs aux données vibrationelles le sont moins (*French AD et al., 1978*). Le potentiel de Momamy et Sheraga a lui aussi été modifié par de nombreux auteurs pour l'étude des sucres (*Momamy FA et al., 1974*) en ce qui concerne les études structurales. Ce champ de forces a été mis au point à l'aide de résultats du calcul semi-empirique.

D'autres champs de forces comme CHARMM (*Brooks B et al., 1983*) pour la dynamique moléculaire de macromolécules permet d'obtenir des résultats satisfaisants quant à la structure (*Tran VH et al., 1990*), d'autres comme RAMM permettent d'effectuer l'analyse conformationelle d'oligosaccharides (*Kozar T et al., 1990*) avec succès. Plus récemment des versions de AMBER ont été modifiées pour les sucres par Glennon *et al.* et par Woods *et al.*, dans les deux cas le but est d'essayer de reproduire les propriétés vibrationnelles des sucres. Glennon *et al.* mettent l'accent sur la solvatation et les interactions avec l'extérieur alors que Woods *et al.* s'intéressent plus particulièrement aux torsions des différentes liaisons. Cependant si les fréquences de vibration sont reproduites dans le cas de Glennon *et al.*, que penser de l'attribution des fréquences par rapport à l'expérimental qui apparait secondaire dans ce travail ?

Nombreuses sont les méthodes de mécanique moléculaire developpées pour les sucres, mais actuellement aucune ne permet de modéliser correctement à la fois les propriétés structurales et vibrationnelles des monosaccharides et disaccharides. En fait, au

CHAPITRE 3

Depuis quelques années, la mécanique moléculaire s'est imposée comme étant un outil performant d'étude de la structure moléculaire et de ses propriétés dérivées. Les champs de forces tels AMBER (*Weiner SJ et al., 1986*), CHARMM (*Nilsson N et al., 1986*), TRIPOS (*Clark M et al., 1989*) et MM3 (*Allinger NL et al., 1989*) ont été depuis étendus à de nombreuses fonctions chimiques. Dans chaque cas, le champ de forces ne donne pas une bonne représentation du spectre de vibration. Alors que si l'on considère la dynamique moléculaire comme l'application souhaitée, il est impératif que le champ de forces reproduise au moins les structures et les propriétés vibrationnelles d'une molécule pour espérer étudier le comportement dynamique de celle-ci.

La seule chose qui soit réellement importante en modélisation moléculaire est la qualité du champ de forces que l'on utilise. De lui dépend essentiellement la qualité des résultats et de notre confiance en ces derniers. Le champ de forces SPASIBA, en développement au laboratoire, a donc été conçu pour reproduire dans le même temps, les structures moléculaires, les énergies conformationnelles et les spectres de vibration.

Les fonctions chimiques déjà paramétrées concernent les alcanes (Derreumaux P et al., 1993), les alcènes (Chhiba M et al., 1995), les acides carboxyliques (Chhiba M et al., 1995), les acides aminés aliphatiques (Derreumaux P et al., 1995), les esters carboxyliques (Chhiba M et al., 1995), les groupements phosphates (Chhiba M et al., 1995). Ces fonctions ont été testées avec succès sur des biomolécules telles les protéines (Derreumaux P, 1989) ou les lipides (Chhiba M et al., 1995).
Au cours de cette thèse ont été développés les paramètres de champs de forces pour des fonctions éther (*Tristram F et al., 1996*), alcool (*Tristram F et al., 1996*) et acétal (*Tristram F et al., 1996*). Ces champs de forces ont ensuite constitué un point de départ pour l'étude des saccharides (*Durier V, Tristram F and Vergoten G, 1996*). Pour l'établissement du champ de forces de ces derniers, les monosaccharides suivants : glucose, N acétyle glucosamine et mannose ainsi que la liaison glycosidique ont été étudiés.

L'efficacité du travail réalisé tient en l'idée qu'une constante de force peut être transférée aux molécules portant la même fonction chimique, et donc en reproduire les différentes propriétés. Une telle hypothèse réduit considérablement le nombre de constantes de forces à établir, celui-ci devant être le plus petit possible. Les constantes de forces sont déterminées en grande partie grâce aux spectres de vibrations, par ajustement des fréquences calculées et observées et, où la meilleure déviation moyenne est recherchée. La connaissance de la base de données du champ de forces de SPASIBA nous aide à déterminer les nouveaux paramètres. Ces derniers permettent, pour chaque fonction étudiée, ainsi que pour les saccharides, de calculer un spectre de vibration avec une erreur moyenne inférieure à 15 cm⁻¹.

LA FONCTION ENERGIE POTENTIELLE SPASIBA

La fonction énergie potentielle empirique SPASIBA combine l'expression de AMBER et celle de la fonction Urey-Bradley-Shimanouchi (*Shimanouchi T, 1963*) :

$$V_{\text{SPASIBA}} = V_{\text{AMBER}} + V_{\text{UBS}}$$
(1)

Cette nouvelle fonction potentielle V_{SPASIBA} a l'avantage d'être l'hybride d'une fonction potentielle de mécanique moléculaire V_{AMBER} et d'une fonction adaptée aux études de spectroscopie vibrationnelle (Spectroscopies Infrarouge et Raman) V_{UBS} . L'expression de la partie de la fonction potentielle provenant d'AMBER à la forme suivante :

$$V_{AM}(r_{ij}) = \sum_{dièdres} \frac{V_n}{2} (1 + \cos(n\phi - \gamma)) + \sum_{non liés} (\frac{A_{ij}}{r_{ij}^{1/2}} - \frac{B_{ij}}{r_{ij}^{1/6}})$$

$$(I) \qquad (II)$$

$$(2) + \sum_{non liés} (\frac{q_i q_i}{\epsilon r_{ij}^{*}}) + \sum_{liaisons H} (\frac{C_{ij}}{r_{ij}^{1/2}} - \frac{D_{ij}}{r_{ij}^{1/6}})$$

$$(III) \qquad (IV)$$

Le premier terme (I) correspond au potentiel de torsion qui est un potentiel sinusoïdal d'ordre 2 ou 3 dépendant de la symétrie de la rotation considérée. Les paramètres V_n , ϕ , n et γ sont respectivement la barrière libre de rotation, l'angle dièdre relatif à l'axe de rotation, l'ordre ou multiplicité (nombre de minima) et la phase ou le

minimum. Il est important de noter que la barrière de rotation dépend du nombre de coordonnées internes torsionnelles définies autour de l'axe de rotation. Cette même expression est utilisée pour les déformations angulaires hors du plan ou angles impropres. Les autres termes (II, III et IV) représentent les interactions entre atomes non liés. Les termes (II) et (III) rendent compte de l'énergie potentielle d'origine répulsive (qui provient des interactions dipôle-dipôle induites par les fluctuations de la charge d'un atome en présence d'un autre atome), dispersive (due aux répulsions nucléaires) et électrostatique (III), associée à une paire d'atomes i et j non liés qui sont séparés par une distances r_{ii} et de charges résiduelles atomiques q_i et q_j . A_{ij} , B_{ij} sont les paramètres de Lennard-Jones pour chaque type de paires d'atomes i et j. ε est la constante diélectrique du milieu, elle est égale à 1 pour les calculs réalisés en phase gazeuse ou en solution avec des molécules de solvant explicites. Elle peut être dépendante de la distance ou sigmoïdalle (Daggett V et al., 1991). Ces termes (II) et (III) correspondent respectivement à des interactions de Van der Waals et de Coulomb et reflètent l'attraction à longue distance et la répulsion à courte distance entre deux atomes. S'il y a une liaison hydrogène entre ces deux atomes, ces deux termes sont remplacés par le terme (IV). Le potentiel de liaison d'hydrogène est représenté par une fonction potentielle de type 12-10 et les constantes C_{i,i} et D_{i,i} sont des paramètres spécifiques pour chaque type de liaison d'hydrogène. Le potentiel de Lennard-Jones (Lennard-Jones JE, 1949) représentant le terme (II) peut être remplacé par un potentiel de Buckingham (Buckingham AD et al., 1970), fonction exponentielle de rij. De même le terme électrostatique (III) tient quelquefois compte des interactions multipolaires (Allinger NL, 1983). D'autres auteurs ont aussi amélioré le terme (IV) afin de tenir compte de la dépendance angulaire de la liaison hydrogène (Dunitz JD, 1985).

Cette partie du potentiel V_{AM} représente le potentiel intermoléculaire à l'exception du terme torsionnel (I) qui est un terme intramoléculaire. La partie du potentiel intramoléculaire en dehors du terme torsionel dans le champ de force SPASIBA est représenté par le potentiel V_{uBS} .

L'expression de ce potentiel V_{ubs} est séparée en 4 termes dont les formes sont :

$$V_{1} = \sum_{\text{liaisons}} K(r_{ij} - r_{ij0})^{2} + \sum_{\text{liaisons}} K'r_{ij0}(r_{ij} - r_{ij0})$$
(2)

$$V_{2} = \sum_{\text{angles}} \text{Hr}_{ij0} r_{jk0} (\theta_{ik} - \theta_{ik0})^{2} + \sum_{\text{angles}} \text{Hr}_{ij0} r_{jk0} (\theta_{ik} - \theta_{ik0})$$
(3)

$$V_{3} = \frac{1}{2} \sum_{\text{distances 1-3}} F_{ij} (q_{ij} - q_{ij0})^{2} + \sum_{\text{distances 1-3}} F_{ij} q_{ij0} (q_{ij} - q_{ij0})$$
(4)

$$V_4 = V_{1-4tg} + V_L + KapF_{red}$$
(5)

La combinaison des potentiels V1, V2 et V3 est appelée le champ Urey-Bradley (*Urey HC et al., 1931*). Il contient le potentiel associé aux mouvements d'élongation (V1), de déformation angulaire (V2) et le potentiel de répulsion 1-3 (entre deux atomes liés au même atome central). Dans ces expressions, r_{ij0} , q_{ij0} , q_{ij0} , sont les valeurs d'équilibre de la liaison entre les atomes i et j, l'angle de valence entre les atomes i et j et la distance 1-3, respectivement. K, H, F sont les constantes de force quadratique, K', H', F' sont les termes linéaires correspondants. Le potentiel V3 défini par Urey-Bradley (*Urey HC et al., 1931*).

D'après Shimanouchi (*Shimanouchi T, 1949*) les constantes de force K', H' et F sont liées par les relations suivantes (par la dépendance linéaire des coordonnées internes q, r et θ).

$$F'_{ij} = -0.1F$$
 (6)

si l'énergie de répulsion est de type r⁹

$$r_{ij0}K' + \sum_{j \neq i} s_{ij}q_{ij0}F'_{ij} = 0$$
 with $s_{ij} = (r_{ik0} - r_{jk0}\cos\theta_{ij0})/q_{ij0}$
(7)

$$r_{ij0}r_{jk0}H_{ij} + r_{ik0}r_{kj0}\sin\theta_{ij0}F_{ij} + Kap a_{ij} = 0$$
(8)

ajj est le paramètre linéaire du potentiel de redondance F_{red} inclu dans le potentiel V4 décrit ci-dessus. Le potentiel V4 est composé de F_{red} ainsi que de deux termes d'énergies d'interactions (V_{1-1} , V_{1}) spécifiques aux groupements méthyle(CH3) et méthylène(CH2). F_{red} traite la redondance angulaire qui apparaît quand un atome central est lié à plus que trois autres atomes dans l'espace (tous les six angles autour d'un atome central ne peuvent croître au même temps). Selon Shimanouchi (*Shimanouchi T et al., 1964*), ce terme F_{red} a la forme suivante :

$$F_{red} = \sum_{i < j} a_{ij} d\theta_{ij} + \frac{1}{2} \sum_{i < j} b_{ij} (d\theta)_{ij}^2 + \frac{1}{2} \sum_{i,j < k} c_{ij}^k (d\theta)_{ij} (d\theta)_{ik}$$
(9)

+
$$-\frac{1}{2}\sum_{i=j=k=l}d_{ij}^{kl} d\theta_{ij} d\theta_{kl}$$

où les cœfficients a_{ij} , b_{ij} et d_{ij} sont donnés dans la littérature. Le potentiel d'interaction V_{1-4ig} et le terme d'interaction angulaire V_i sont deux termes de croisement entre liaisons et angles. V_{1-4ig} est spécifique aux groupements CH3 et CH2, mais peut être aussi défini pour un atome d'hydrogène comme dans le cas de deux anomères du glucose (*Lanczas C, 1970*). Auparavant, dans les calculs de spectroscopies vibrationnelles, le potentiel V_{1-4ig} était inclu uniquement si l'angle dièdre \emptyset_{ijkl} était compris dans un espace angulaire (170,190) pour la conformation trans et [(50,70)ou(290,310)] pour le conformère gauche.

interaction trans

interaction gauche

Afin d'éviter une discontinuité de la surface d'énergie potentielle, une modulation spéciale de l'angle dièdre des termes croisés angle-angle a été ajoutée (plus simple que la modulation cosinus couramment utilisée pour les termes en question). La forme analytique du potentiel V_{1-4ig} a la forme suivante:

$$V_{1-4tg} = f(qik-qik0)(qil-qjl0)$$
(10)

où la constante de force f est égale à t ou g dans les domaines cités précédemment, mais cette constante de force décroît linéairement vers zéro avec l'angle dièdre variant de dix degrés.

A titre d'exemple:

f = t(q-160)/10 entre 160 et 170°

f = -t(q-200)/10 entre 190 et 200°

Notons que q_{ixo} est la valeur d'équilibre de l'angle entre les atomes i et k et les constantes de force t, g sont exprimées en kcal mol⁻¹rad⁻². Le potentiel d'interaction V₁ est seulement utilisé dans le cas du groupement méthylène (X₁-C(H1,H2)-X₂)

Son expression est:

$$V_{1} = \sum_{i=1}^{2} l(\theta_{X_{1}CH_{i}} - \theta_{0})(\theta_{X_{2}CH_{i}} - \theta_{0}) - \sum_{j=1}^{2} l(\theta_{X_{j}CH_{1}} - \theta_{0})(\theta_{X_{j}CH_{2}} - \theta_{0})$$

(12)

où l est la constante de force angulaire exprimée en kcalmol⁻¹ rad⁻².

Comme nous l'avons vu, la fonction énergie potentielle UBS est plus compliquée que la plus part des fonctions de mécanique moléculaire couramment utilisées, qui prennent en compte uniquement les termes harmoniques d'élongations des liaisons et de déformations angulaires (ce qui concerne le potentiel intramoléculaire). Notons que, les distances d'équilibre des liaisons sont introduites dans les termes d'énergies des angles de valence pour améliorer la transférabilité des constantes de force angulaires. Un grand nombre de calculs de modes normaux ont souligné l'intérêt des potentiels V_{1-41g} , V_1 et le terme UB associe à la constante de force F. Ces derniers augmentent la qualité d'ajustement entre fréquences calculées et observées. Par exemple, les anciens calculs de spectroscopies vibrationnelles montrent la nécessité des termes donnés dans l'équation 12 (*Daggett V et al., 1991*) pour augmenter la fréquence de rotation CH₂ et diminuer la fréquence de balancement CH₂.

PARAMETRISATION ET PROCEDURE DE CALCUL

La parametrisation du champ de forces SPASIBA a été réalisée précédemment sur plusieurs séries de molécules, à savoir les alcanes (*Derreumaux P et al., 1993a*) et les acides aminés non aromatiques (*Derreumaux P et al., 1995*). D'autres séries de molécules sont en cours de préparation (amines et esters).

Une étude en dynamique moléculaire sur 320 ps a été réalisée sur l'octane linéaire en utilisant les champs de forces AMBER et SPASIBA (*Derreumaux P et al.*, 1993b). Il apparaît clairement qu'une plus grande flexibilité peut être atteinte avec SPASIBA. Les passages entre les formes trans et gauches sont alors nombreux contrairement au comportement harmonique observé avec AMBER. Des résultats de dynamique moléculaire ont été aussi obtenus sur des peptides (*Derreumaux P et al., 1993c*). Ils ont confirmé la plus grande adaptabilité conformationnelle enregistrée avec SPASIBA.

Dans le présent travail, la paramétrisation de la fonction énergie potentielle SPASIBA est étendue aux sucres, molécules qui comportent à la fois des fonctions alcools et semi-acétalique. Nous avons procédé aux paramétrisations successives des classes de molécules suivantes :

- les éthers dans le but d'obtenir les paramètres du groupement COC.

- les alcools qui permettent d'avoir les paramètres des groupements COH.

- les acétals pour les paramètres du groupement semi-acétalique OCO.

Cela conduira à fournir à la banque de paramètres du champ de forces SPASIBA tous les paramètres nécessaires à l'étude des différents types de sucres.

PROCEDURE DE CALCUL

Les paramètres initiaux du champ de forces ont été pris de plusieurs travaux suivant la série de molécules considérée. En général, les constantes de forces des angles (H, F, Kap) ont été tirées des travaux de Shimanouchi et de ses collaborateurs, tandis que les autres paramètres ont été pris du logiciel AMBER original (*Weiner SJ et al., 1986*). Il faut noter que les paramètres du champ de forces SPASIBA provenant des

études précédentes (*Derreumaux P et al., 1993a ; Derreumaux P et al., 1995*) ont été transférés et sont restés inchangés durant tout le travail ce qui souligne, si besoin en était, leur grande transférabilité. La méthode d'optimisation des contantes de forces pour chaque molécule a été effectuée selon les étapes principales suivantes :

- Nous calculons la géométrie d'énergie minimale qui est en accord avec la structure observée expérimentalement. Puis les fréquences vibrationnelles sont obtenues pour la même géométrie et comparées à l'expérience. Si la molécule possède les spectres de vibration des dérivés deutériés, les fréquences théoriques correspondantes seront calculées et comparées avec celles observées. Cette étape fournit principalement les constantes géométriques du champ de forces.

- Nous optimisons les paramètres du champ de forces pour chaque composé par minimisation de la déviation moyenne entre les structures et les différences d'énergie conformationnelle et de l'écart type entre les fréquences vibrationnelles calculées et observées, ainsi que d'autres quantités prédites (moment dipolaire, moment d'inertie, etc..)

- Enfin notre attention sera portée sur les paramètres du champ de forces qui sont transférables d'une molécule à une autre dans la série considérée.

Comme nous venons de voir, la reproduction des fréquences vibrationnelles est une partie fondamentale pour la paramétrisation de la fonction énergie potentielle SPASIBA. Tous les résultats obtenus dans ce travail ont été effectués avec une constante diélectrique égale à 1, et les interactions électrostatiques sont totalement prises en compte. Les interactions 1-4 de Van der Waals ont été pondérées par un facteur de 0.50. Les paramètres du champ de forces pour les éthers, alcools linéaires et groupements acétaliques sont regroupés dans les tableaux 1, 1bis et 1ter respectivement.

TABLEAU 1 : LES PARAMETRES DU CHAMP DE FORCES SPASIBA POUR LES **ETHERS**

TYPE ATOMIQUE

- . .
- СТ carbone sp3 avec 3 ou 1 hydrogénes
- carbone sp3 avec 2 hydrogénes CE
- oxygéne d'éther OS
- hydrogéne sur CT ou CE HC
- hydrogéne dans le plan sur CT seulement tout type d'hydrogéne H1
- H*

ELONGATION	K (Kcal. mo	l'. Å ^{.2}	r, (Å)
CT-HC	315.2		1.097
CT-HI	281.5		1.089
CE-HC	310.0		1.097
CE-CT	305.0		1.521
CT-OS	265.0		1.412
CE-OS	250.0		1.420
DEFORMATION ANGULAIR	E H(Kcal.mol ⁻¹ .rad ⁻²)	F(Kcal.mol ⁻¹ . Å ⁻²)	$\theta_{o}(deg)$
HC CT HC	28 5	10.5	109.0
HC CE HC	31.0	10.0	109.0
HICTHC	27.7	13.3	109.8
CT CE OS	21.5	60.0	110.0
CT OS CT	33.5	25.0	109.8
CT OS CE	40.5	25.0	109.8
CE OS CE	26.5	25.0	109.8
HC CT OS	21.5	11.0	109.4
HC CE OS	15.5	110.0	109.4
HC CE CT	14.7	69.4	109.5
HI CT OS	23.9	97.0	109.4
CE CT H*	10.5	69.4	109.5
TORSION	Vn/2(Kcal. mol ⁻¹)	φ(deg)	<u>n</u>
X-CT-OS-X	1.15	0.	3.
X-CE-OS-X	1.55	0.	3.
X-CE-CT-X	1.40	0.	3.
X-CT-CT-X	1.30	0.	3.

42

TABLEAU 1 bis : LES PARAMETRES DES ALCOOLS DU CHAMP DE FORCES SPASIBA

•

TYPES ATOMIC	QUES			
CTcarbone sp3avec 3 ou 1 hydrogéneCEcarbone sp2 avec 2 hydrogénesOHoxygéne d'hydroxyleHOhydrogéne d'hydroxyleHChydrogéne sur un CTHMhydrogéne sur un CEH1hydrogéne dans le plan (pour CT seulement)*clé pour tous les atomes				
ELONGATION	K (Kcal.mol ⁻¹ .	Å ⁻²)	r	
CTHC CTH1 CTCE CEHM CEOH OHHO CTOH	308 286 180 305 200 226 226		1.097 1.089 1.530 1.097 1.426 0.945 1.426	
DEFORMATION	ANGULAIRE H (Kcal.mol ⁻¹ .rad ⁻²)	F (Kcal.mol ⁻¹ .Å ⁻²)	θ	
HMCEHM H*CTHC CEOHHO CTOHHO H1CTOH HCCTOH HMCEOH CTCEOH C*C*H* CTCTCT	29.6 29.0 29.0 31.0 21.0 16.2 21.0 22.7 14.9 18.7	$ \begin{array}{r} 10.50 \\ 10.50 \\ 45.52 \\ 45.52 \\ 102.42 \\ 136.90 \\ 102.00 \\ 48.00 \\ 67.90 \\ 47.00 \\ \end{array} $	107.7 107.7 107.0 107.0 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4	
TORSION	Vn/2 (Kcal.mol ⁻¹)	γ(deg)	n	
X -C*-OH-X X -CT-CE-X	0.385 1.350	0.0 0.0	3.0 3.0	

TABLEAU 1ter : LES PARAMETRES DU CHAMP DE FORCES SPASIBA DES ACETALS

TYPES ATOMI	QUES		
CTcarbone sp3 avec 3 ou 1 atomes d'hydrogèneCEcarbone sp3 avec 2 hydrogènes engagées dans la partie semi-acétalCAcarbone sp3 avec 2 hydrogènes dans la partie acétalOHoxygène de semi-acétalOSoxygène de semi-acétalHOhydrogène de semi-acétalHChydrogène de CTHMhydrogène de CEH1hydrogène sur CT seulement*Tout type atomique			
ELONGATION	K (Kcal.mol ⁻¹ .	Å ⁻²) Γ ₀	······································
CEHM CEOH OHHO CAHM CAOS CTHC CTH1 CTOS CEOS CTC*	291.00 200.00 516.00 278.00 250.50 312.30 280.00 265.65 250.00 320.00	1.100 1.435 0.977 1.100 1.370 1.108 1.108 1.430 1.370 1.400	
DEFORMATIO	NANGULAIRE H (Kcal.mol ⁻¹ .rad ⁻²)	F (Kcal.mol ⁻¹ .Å ⁻²)	Θ,
HMCEHM HMCEOH OHCEOH CEOHHO HMCAHM HMCAOS CTOSCA H1CTHC HCCTHC H1CTOS HCCTOS O*C*OS CTOSC* CTOSC* CTC*OS HMCEOS C*C*HC, HM CTCTCT	$\begin{array}{c} 8.05\\ 21.80\\ 55.00\\ 34.50\\ 12.50\\ 17.00\\ 22.51\\ 26.00\\ 29.50\\ 21.10\\ 15.50\\ 48.00\\ 22.51\\ 21.50\\ 17.00\\ 14.70\\ 10.70\end{array}$	$\begin{array}{c} 36.00\\ 90.00\\ 55.21\\ 59.00\\ 36.00\\ 104.00\\ 26.46\\ 13.20\\ 9.74\\ 120.00\\ 108.50\\ 45.21\\ 26.46\\ 69.43\\ 104.00\\ 60.00\\ 47.00\\ \end{array}$	112.70 109.50 116.40 109.00 112.70 110.30 111.50 107.70 107.70 110.30 110.30 114.50 111.50 110.00 110.30 109.50 111.70
TORSION	Vn/2 (Kcal.mol ⁻¹)	γ(deg)	n
X -CE-OH-X X -C*-OS-X X -CT-OS-X X -CT-C*-X	1.150 2.500 0.700 2.700	19.0 07.0 0.00 0.00	3 3 3 3

Le calcul des fréquences *a priori* constitue le problème séculaire inverse. Il s'agit de calculer des constantes de forces à partir de données cinématiques (la matrice G : fonction des masses des atomes et de la géométrie moléculaire) et de données expérimentales (la matrice A). Dans le cas d'une molécule possédant n atomes on doit déterminer $n_k=n(n+1)/2$ constantes de forces à partir de n_{exp} valeurs expérimentales indépendantes (n est le nombre de degrés de liberté de vibration). Le choix du champ de forces et la symétrie moléculaire diminue le nombre de constantes de forces et n_k (indépendant) devient inférieur à n_k . De plus on ne peut obtenir une solution que si n_k (indépendant)< n_{exp} .

La solution du problème séculaire inverse est la matrice F qui s'exprime F=G⁻¹L Λ L⁻¹ où G et Λ sont connues. On atteint la solution F à l'aide d'une matrice de départ F₀ puis on résout l'équation séculaire GF₀L₀=L₀ Λ_0 . Les fréquences calculées différent des valeurs expérimentales. Soit $\Delta\Lambda$ la matrice diagonale des écarts Λ - Λ_0 ayant 3N-6 éléments $\Delta\lambda_i$. Il faut F telle que $\sum \Delta(\lambda_i)^2$ soit minimum.

On peut utiliser la méthode des moindres carrés pour trouver F, à l'aide du Jacobien des fréquences $J_{i,j} = \frac{\partial V_i}{\partial t_j}$ qui régi le processus de raffinement. La solution trouvée est une fonction harmonique, qui dépend de notre champ de forces, et qui approxime la fonction anharmonique réelle (*Brodersen S et al., 1962*). Il n'existe donc pas de solution unique mais de multiples approximations. Toutefois le critère de transférabilité des constantes de forces permet d'évaluer la qualité du modèle de la fonction potentielle choisie.

Lors du raffinement de nos constantes de forces nous avons utilisés de façon analytique et mimé de façon manuelle la méthode des moindres carrés amortis. cette méthode consiste à minimiser non plus $\sum_{i} \Delta(\lambda_{i})^{2}$ mais $\sum_{i} \Delta(\lambda_{i})^{2} + a \sum_{k} \Delta C^{tes}$ (a est le facteur d'amortissement) donc les écarts sur les fréquences et sur les constantes de forces entre chaque itération, ce qui permet au processus de ne pas diverger et de trouver un minimum le plus localement possible.

LA FONCTION CHIMIQUE ETHER

LE GROUPEMENT METHYLE DANS LA FONCTION CHIMIQUE ETHER

Les études spectroscopiques en micro-onde sur les éthers (*Blukis U et al., 1963*) ont montré de grandes similitudes entre les structures des éthers et des alcanes, spécialement à propos du diméthyle éther et du propane (*Snyder RG et al., 1963*). On retrouve la même orientation des hydrogènes des méthyles et les valeurs des barrières de rotation de ces derniers sont proches : 1150 cal.mol⁻¹ pour le diméthyle éther et 1300 cal.mol⁻¹ pour le propane (*Kistiakowsky G et al., 1940*).

La distance C-H de 0.96 Å obtenue par micro-onde sur le diméthyle éther est du même ordre que celle obtenue pour les alcanes (*Snyder RG et al., 1965*). Il est donc raisonnable de trouver les fréquences associées à l'élongation C-H des éthers aliphatiques dans la même région spectrale que ceux des alcanes, c'est-à-dire de 2800 cm⁻¹ à 3000 cm⁻¹. En effet pour le diméthyle éther nous observons trois bandes (2996, 2952 et 2817 cm⁻¹ calculées à 2996, 2965 et 2817 cm⁻¹) représentant les modes d'élongation symétrique et antisymétrique des liaisons C-H. La bande à 2996 cm⁻¹ est attribuée à un mode antisymétrique, la bande à 2817 cm⁻¹ est attribuée à un mode

symétrique. Les modes associés à l'élongation de liaison C-H des groupements méthylènes liés à un oxygène sont localisés dans la région 2850-2965 cm⁻¹ (calculés entre 2866 et 2965 cm⁻¹). Le mode d'élongation antisymétrique est ici 2965 cm⁻¹ et le mode symétrique 2850 cm⁻¹. Finalement, en ce qui concerne le mode d'élongation C-H du groupe isopropyle ((C2) CH-), il apparaît à 2935 cm⁻¹ (calculé à 2932 cm⁻¹) (*Snyder RG et al., 1967*).

LE DIMETHYL ETHER

Le diméthyl éther est le motif de base sur lequel nous avons construit le reste des molécules. En effet, un minimum de trois constantes de force : l'élongation C-O, les constantes pour l'angle COC et CCO sont nécessaires pour reproduire la fonction éther. Le diméthyle éther nous apporte les informations sur la constante d'élongation CO et la constante d'angle COC.

La spectroscopie de micro-onde (Blukis U et al., 1963 ; Kanazawa Y et al., 1962) et la diffraction des électrons (Tamagawa K et al., 1984 ; Crawford B et al., 1938 ; Taylor R et al., 1957) nous renseignent sur la géométrie du diméthyle éther, le moment dipolaire et la barrière de torsion autour de la liaison CO.

Tous les calculs ont été effectués sur la conformation décalée qui est la plus stable. La différence d'énergie conformationnelle autour de la torsion CO entre les conformations éclipsée et décalée est connue (*Blukis U et al., 1963*). Le champ de forces SPASIBA est ici plus précis que le champ de forces MM3 (*Allinger NL et al., 1989*) qui donne une valeur de 2.45 kcal/mol, et permet aussi une meilleure représentation des paramètres géométriques, en accord avec les valeurs expérimentales

46

(Tableau 2). L'erreur moyenne entre les paramètres géométriques expérimentaux et calculés est de 0.01 Å pour les longueurs de liaison et 0.01° pour les angles.

Les deux paramètres principaux (l'élongation CO et la déformation angulaire COC) ont été ajustés pour reproduire au mieux les spectres infrarouge et Raman (*Perchard JP et al., 1971*) : 928 cm⁻¹ pour l'élongation symétrique CO et 418 cm⁻¹ pour la déformation angulaire COC (Tableau 3). La déviation moyenne entre les fréquences calculées et observées est de 7.4 cm⁻¹ contre 35.9 cm⁻¹ pour MM3. De plus, nous avons choisi des spectres de vibration pour des molécules dans l'état gaz contrairement à d'autres travaux (*Allinger NL et al., 1990*) puisque la simulation est effectuée dans le vide. En effet, dans le solide le spectre est compliqué par les effets du champ cristallin (*Snyder RG et al., 1967*) : il devient alors impossible de séparer les paramètres intramoléculaires et intermoléculaires et on obtiendrait alors un champ de forces non transférable.

Il faut maintenant remarquer qu'une liaison C-H, du groupement méthyle, est différente des 2 autres. Ce résultat, déjà rapporté par Kjaergaard et al. (*Kjaergaard H et al., 1991*) est confirmé par un calcul *Ab Initio* (HF/6-31G*) à l'aide du programme GAUSSIAN 92 (*Frish M et al., 1992*). Nous notons une différence d'environ 20% dans la valeur des différentes constantes de forces *Ab Initio* des liaisons CH. La liaison concernée est celle qui se trouve dans le plan COC de la molécule en conformation décalée (symétrie C_{2v}). Cette différence peut être attribuée aux doublets libres de l'oxygène ; c'est l'effet Bohlman. Nous avons donc à différencier les atomes d'hydrogène, tout au moins celui dans le plan COC des deux autres. Le paramètre de déformation angulaire pour les angles HCO est dégénéré du fait des différentes interactions entre O⁻H et O⁻H₁, nous avons donc deux paramètres HCO et H₁CO. Le paramètre de déformation angulaire du dièdre CO permet de reproduire les basses fréquences associées aux déformations diédrales et la barrière de torsion. La valeur de $\frac{v_n}{2}$ est 1.15 kcal/mol ce qui est proche du paramètre $\frac{v_n}{2}$ associé à la torsion C-C dans

TABLEAU 2 : PARAMETRES STRUCTURAUX DU DIMETHYLE ETHER (décalé)

Paramètre [*]	Exp ^{₄l ∉}	HF/6-31G*	MM3'	SPASIBA
CO	1.415	1.391	1.418	1.415
CH (moyen)	1.118	1.080	1.110	1.096
<coc< td=""><td>111.8°</td><td>113.8°</td><td>111.9°</td><td>111.8°</td></coc<>	111.8°	113.8°	111.9°	111.8°
< HCH (moyen)	109.2°	-	108.7°	109.1°
MOMENT DIPOLAIRE °	1.30	1.47	1.309	1.30
DIFFERENCE D'ENERGIE	2.72	-	2.45	2.62

;

.

a - Longueurs de liaison (Å) et angles (deg).
b - KCal.mol⁻¹ (de micro-ondes).
c - Debye (de micro-ondes).

d - Kanazawa Y et al., 1962 ; Crawford B et al., 1938.

e - Taylor R et al., 1957.

TABLEAU 3 : SPECTRE DE VIBRATION DU DIMETHYL ETHER (C_{23})

N°	Expérimentale [*]	MM3 ^b	SPASI	BA P.E.D.
1	2996	2978	2996	100% CTHC
2	2996	2976	2996	100% CTHC
3	2952	2975	2965	100% CTHC
4	2952	2974	2863	100% CTHC
5	2817	2876	2817	100% CTHI
6	2817	2876	2817	100% CTH1
7	1464	1497	1477	40% HICTHC, 30% HICTOS
8	1464	1488	1476	50% HICTHC, 20% HICTOS
9	1464	1476	1469	85% HICTHC
10	1464	1454	1469	60% HICTHC
11	1452	1434	1460	70% HICTHC
12	1452	1431	1455	90% HICTHC
13	1244	1174	1243	30%HCCTHC, 25%HICTOS
. 14	1227	1173	1204	50% CTOS
15	1179	1140	1180	50% HCCTOS, 40% HICTHC
16	1150	1084	1132	60%HCCTOS
17	1102	1044	1085	65% CTOS
18	928	924	945	88% CTOS
19	418	400	419	95% CTOSCT
20	242	273	251	100% CTOS Tor
21	203	188	203	100% CTOS Tor

Erreur moyenne

•

:

 35.9 cm^{-1} 7.4 cm⁻¹

.

.

a - Taylor R et al., 1967 ; Perchard JP et al., 1934. b - Allinger NL et al., 1990.

. .

les alcanes (i.e 1.30 kcal/mol). Le spectre de vibration pour le diméthyle éther est décrit dans la Tableau 3. La structure est correctement calculée, comme pour MM3, bien que SPASIBA offre une meilleure précision dans le calcul des spectres de vibration. En fait la différence majeure se situe pour les modes à 1102 cm⁻¹ qui est reproduite par Snyder et al. et Allinger et al. avec une erreur de 45 cm⁻¹. De plus pour valider nos paramètres, des calculs ont été réalisés sur les composés deutériés CD3OCH3 et CD3OCD3 avec une erreur moyenne entre les spectres calculés et observés de 12.8 cm⁻¹ et 10.7 cm⁻¹, respectivement et avec l'approximation que les constantes de forces sont les mêmes que pour la molécule non deutériée (Tableau 4). Dans chaque cas, l'attribution des modes de vibration est en accord avec les données expérimentales. Les paramètres ainsi calculés pour la liaison CO et l'angle COC sont transférés au méthyl éthyl éther.

LE METHYL ETHYL ETHER

Cette molécule nous apporte les informations sur la déformation angulaire CCO, qui est le dernier paramètre à établir pour avoir une description complète de la fonction chimique éther.

Les différents paramètres structuraux nous sont donnés par des études de diffraction des électrons (*Onyanagi K et al., 1978*) et de micro-ondes (*Hayashi M et al., 1982*). Cette molécule possède trois conformations possibles : cis, trans et gauche. C'est en fait la conformation trans qui est la plus stable (*Perchard JP et al., 1970*). Les données structurales relatives à la forme trans sont décrites dans le tableau 5 où elles sont comparées aux valeurs correspondantes calculées par les champs de forces MM3 et SPASIBA. Nous pouvons calculer, sur la base des paramètres obtenus pour le diméthyle éther, une structure en accord avec les données expérimentales. L'erreur moyenne entre les paramètres structuraux calculés et observés est de 0,01 Å pour les

51

TABLEAU 4 : SPECTRE DE VIBRATION DE CD3-O-CH3 (décalé)

N°	Expérimentale [*]	SPASIE	BA PED
1	2992	2996	100% CTHC
2	2932	2964	100% CTHC
3	2819	2817	100% CTH1
4	2244	2214	100% CTDC
5	2189	2168	90% CTDC
6	2058	2045	90% CTD1
7.	1463	1477	50% HICTHC, 25% HCCTOS
8	1462	1464	65% HCCTHC
9	1453	1462	85% HCCTH1
10	1212	1230	38%CTOS
11	1156	1171	65% CTOS
- 12	1156	1161	50% OSCTHC, 40% HCCTHI
13	1111	1122 3	5% CTOS, 20% DICTDC, 20% DICTOS
14	1061	1039	85% DICTDC
15	1061	1030	70% DCCTDC, 20% DICTDC
16	947	957	60% CTOS
17	901	907	60% DCCTOS, 35% DICTOS
18	860	852	55% CTOS, 30% DICTOS
19	395	390	90% CTOSCT
20	227	233	100% CTOS Tor
21	164	165	100% CTOS Tor
	N° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	N°Expérimentale*129922293232819422445218962058714638146291453101212111156121156131111141061151061169471790118860193952022721164	N°Expérimentale'SPASIE129922996229322964328192817422442214521892168620582045714631477814621464914531462101212123011115611711211561161131111112214106110391510611030169479571790190718860852193953902022723321164165

Erreur moyenne

12.8 cm⁻¹

a - Kanazawa Y et al., 1962.

.

5

• • •

.

· ·•

TABLEAU 5 : PARAMETRES STRUCTURAUX DU TRANS METHYL ETHYL ETHER

Paramètre	Expérimentale [*]	SPASIBA	MM3 ^b
CH	1.118	1.09	1.112
CO.	1.413-1.422	1.415-1.421	1.418-1.421
CC	1.520	1.520	1.526
CCO	109.4	108.9	108.7
COC	111.9	111.9	112.1
τCΟ	-	180.	-
Moment dip	olaire ^c 1.98	1.73	-
$\Delta E (T-G)^{d}$	1.4	1.51	1.49

a - Oyanagi K et al., 1978 ; Hayashi M et al., 1982. b - Allinger NL et al., 1990. c - en Debye.

d - en kcal mol⁻¹.

-

TABLEAU 6 : SPECTRES DE VIBRATION DES DERIVES DEUTERIES DU METHYL ETHYL ETHER

СН3-(CHD-O-CH3	СН3-(CD2-OCH	CD3-0	СН2-О-СН3	CD3-C	CD2-O-CH3
Exp *	SPASIBA	Exp*	SPASIBA	Exp*	SPASIBA	Exp*	SPASIBA
-	127	-	125	-	120		125
-	208	-	208	-	168	-	208
-	246		243	-	239	-	243
-	289	-	287	-	271	-	287
-	420	-	416	-	408	-	416
-	737	-	693	808	814	721	696
836	847	824	847	-	815	864	844
931	929	878	925	903	910	914	923
-	955	915	926	961	923	942	931
1036	1041	941	955	997	1010	-	951
1063	1106	1019	1004	-	1012	1053	1002
1120	1157	1106	1086	-	1030	1100	1088
1158	1180	1157	1147	-	1041	1134	1148
1215	1214	1168	1160	1110	1129	1175	1160
1337	1309	1190	1213	-	1164	1196	1213
1347	1335	-	1268	-	1183	1238	1265
1383	1372	1382	1359	1277	1286	-	1352
1453	1453	1449	1453	1300	1340	-	1453
-	1456	-	1456	1400	1388	1460	1456
1461	1462	-	1462	1450	1455	-	1462
-	1464	-	1463	1476	1455	1473	1463
-	1476	-	1476	1488	1491	-	1476
-	2198	2162	2169	2058	2045	2164	2169
2824	2817	-	2228	2184	2167	-	2228
2876	2866	2820	2816	-	2214	2819	2816
2907	2923	2882	2866	2866	2865	-	2866
2934	2925	-	2924	-	2923	-	2924
-	2964	-	2925	2937	2925	2934	2925
2989	2996	-	2964	2983	2992	-	2964
3002	3008	2988	2996	-	3023	2991	2996

Erreur

moyenne: 12.5 cm⁻¹ 15.8 cm⁻¹

 13.5 cm^{-1}

 14.5 cm^{-1}

a - Perchard JP, 1970.

.

longueurs de liaisons et 0,2° pour les angles. Dans le tableau 6 nous présentons les spectres expérimentaux et calculés pour le méthyle éthyle éther. L'erreur moyenne est de 13 cm⁻¹. Ce manque de précision peut être attribué au fait que pour obtenir une base de données cohérentes pour SPASIBA les paramètres CCH et HCH sont restés inchangés par rapport aux travaux antérieurs. Sans tenir compte des fréquences associées à ces dernières coordonnées internes, l'erreur moyenne serait de 9 cm⁻¹. Ensuite chaque partie de la molécule (CH3O et CH3CH2O) a été testée individuellement par une substitution isotopique au deutérium. Pour ce qui est de la partie CH3O, cela constitue une validation de la transférabilité des paramètres du diméthyle éther. Celle-ci se fait correctement, les paramètres du diméthyle éther sont bien transférables à un analogue supérieur. Pour la partie hydrocarbonée CH3CH2O, la bonne transférabilité des paramètres des alcanes nous permet d'éviter les grosses erreurs rencontrées par le champ de forces MM3. En effet MM3 ne considère qu'un seul type de méthyle alors qu'il nous est apparu judicieux de distinguer un méthyle lié à un oxygène et un méthyle lié à un carbone, les environnements électroniques étant différents. Le paramètre de déformation angulaire associé au dièdre CO a été mis au point avec les données vibrationnelles et structurales (en effet, on connaît expérimentalement la différence d'énergie conformationnelle trans-gauche qui est de 1.4 ± 0.2 kcal/mol (*Kitagawa T et al.*, 1968). Avec le champ de force de SPASIBA nous calculons 1.51 kcal/mol contre 1.49 kcal/mol pour MM3. Le moment dipolaire est aussi correctement reproduit avec 1.73 Debye pour une valeur Ab Initio (HF/6-31 G*) de 1.98 Debye.

DIETHYL ETHER

Cette molécule ne nous apporte pas de nouvelles informations pour la paramétrisation, mais permet de tester la qualité des paramètres obtenus auparavant. En

55

TABLEAU 7 : PARAMETRES STRUCTURAUX TRANS TRANS DIETHYL ETHER

Paramètre ^d	Exp ^{*l •} I	HF/6-31 G*	SPASIBA
CH (moyen)	1.100	1.087	1.099
CO	1.415	1.396	1.425
CC	1.518	1.516	1.519
COC	112.20	114.7	112.96
ССО	108.3	108.6	111.3
Moment dipolaire	-	1.64	1.57
$\Delta E (TT-TG)^{c}$	1.1	1.151	1.45

.

. .

. .

.

a - Wieser H et al., 1968.

b - en Debye.

c - en kcal-mol⁻¹.

d - longueurs de liaison (Å) et angles (deg.).

effet, les constantes d'élongation CO, de déformation angulaire COC et CCO sont déjà connues. Le calcul nous permet de dire que la conformation trans-trans est plus stable que la conformation trans-gauche de 1.45 kcal/mol contre 1.61 avec MM3. Les valeurs des deux angles dièdres CO sont de 179.5° et 79° contre 176.7° et 74.8° pour MM3. Une étude en spectroscopie infrarouge et Raman nous montre clairement (Wieser H et al., 1968) que le conformère trans-trans prédomine et que la différence d'énergie conformationnelle avec le conformère trans-gauche est de 1.1 kcal/mol. Cette dernière valeur est très proche de celle retrouvée par Ab Initio (HF/6-31 G*) qui est de 1.15 kcal/mol et peu différente de celle obtenue avec SPASIBA. La géométrie du conformère trans-trans est décrite dans le tableau 7. L'erreur moyenne sur les liaisons est de 0.005 Å et sur les angles de 1.5°. Les moments dipolaires ont été calculés pour les conformères trans-trans et trans-gauche. Nous obtenons des moments de 1.57 Debye et 1.50 Debye respectivement contre 1.64 Debye et 1.53 Debye expérimentalement (1.64 Debye et 1.60 Debye par le calcul Ab Initio (HF/6-31 G*)). Le spectre de vibration de l'espèce non deutériée est décrit dans le tableau 8. Les spectres de vibration des espèces C2H5OC2H5, C2D5OC2H5. CD3CH2OCH2CD3 est et CH₃CD₂OCD₂CH₃ dans leur forme trans ont été calculés, l'erreur moyenne par rapport à l'expérimentale est de l'ordre de 13 cm⁻¹ (Tableaux 8 et 9).

METHYL ISOPROPYL ETHER

La qualité de la constante de force associée à la déformation angulaire CCC peut être vérifiée avec la molécule méthyl éthyl éther. Cependant, à ce stade de la paramËtrisation, il n'existe pas de données vibrationnelles relatives à l'état gaz. De plus à l'état liquide, il existe un équilibre entre au moins deux conformères, c'est pourquoi nous avons décidé d'utiliser les données expérimentales relatives à l'état solide (*Snyder RG et al., 1967*). Ces valeurs expérimentales ne nous ont pas guidé dans le processus

TABLEAU 8 : SPECTRE DE VIBRATION DU TRANS TRANS DIETHYL ETHER

N°	Exp ^{al a}	SPASIBA	PED
1	-	117	100% CEOS Tor
2	-	121	100% CEOS Tor
3	-	212	50% CTCEOS, 40% CTOSCE
4	-	230	100% CTCE Tor
5	-	244	100% CTCE Tor
6	370	413	28% CEOS, 50% CEOSCT
7	443	440	75% CTCEOS
8	800	807	30% CTCEHC, 30% CTECTHC
9	835	826	30% CECTHC, 20% CTCEHC
10	850	854	30% CEOS, 50% CECTHC
11	918	895	25% CEOS, 45% CECTHC
12	1083	998	30% CECTHC, 25% CTCEHC
13	1045	1024	30% CTCEHC, 20% CECTHC
14	1097	1093	75% CEOS
15	1119	1120	75% CEOS
16	1149	1159	50% CECT, 25% CEOS
17	1160	1168	60% CECT
18	1267	1265	60% HCCEOS
19	1300	1297	60% HCCEOS
20	-	1327	50% HCCTHC
21	1353	1330	60% HCCTHC
22	1387	1377	45% CTCE, 20% CTCEHC
23	1419	1409	50% CTCE, 20% HCCEOS
24	1448	1454	100% HCCTHC
25	1448	1454	100% HCCTHC
26	1455	1455	90% HCCTHC
27	1455	1455	90% HCCTHC
28	1486	1495	75% HCCEHC
29	-	1499	75% HCCEHC
30	2856	2865	100% CTHC
31	2856	2865	100% CTHC
32	2932	2923	100% CTHC
33	2932	2923	100% CTHC
34	2948	2925	100% CTHC
35	2948	2925	100% CTHC
36	2985	2991	100% CEHC
37	2990	2993	100% CEHC
38		3023	100% CEHC
39	-	3024	100% CEHC

Erreur moyenne: 10.6 cm⁻¹

a - Wieser H et al., 1968.

.

TABLEAU 9 : SPECTRES DE VIBRATION DES DERIVES DEUTERIES DU TRANS TRANS DIETHYL ETHER

Exp^{al a} SPASIBA Exp^{al} * SPASIBA Exp^{*i} SPASIBA -_ 1 17 ----_ ---_ --_ -1010 998 -1124 1159 1012 1008 1286 1299 1052 1047 1134 1147 --1143 1154 1362 1374 --1280 1275 -_ 1378 1366 ------1487 1492 ---2167 2167 2062 2058 2170 2170 -2245 2228 2161 2167 -2245 2229 --2180 2175 2167 2171 2869 2866 2180 2175 -2910 2924 2179 2177 2910 2924 2961 2992 -2990 3022 2239 2230 2948 2925 2990 3024 - 15.1 cm^{-1} 13.5 cm^{-1} Erreur moyenne 9.7 cm⁻¹

CH3-CD2-O-CD2-CH3 CD3-CH2-O-CH2-CD3 C2D5-O-C2D5

a- Wieser H et al., 1968.

TABLEAU 10 : PARAMETRES STRUCTURAUX DU METHYL ISOPROPYL **ETHER**

Paramètre'	Exp	SPASIBA	MM3 [°]
CO(moyen)	1.416 - 1.422	1.418 - 1.418	1.419 - 1.425
CC(moyen)	1.528- 1.519	1.536- 1.536	1.530- 1.531
COC	112.5	113.5	113.9
CCO	113.7-107.7	111.1 - 107.86	106.5-109.8
CCC	112.7	111.03	110.5
CCOCgauche	71.9	77.0	76.3

a - Longueurs de liaison (Å) et angles (deg) b - Nakagawa J et al., 1984. c - Allinger NL et al., 1990.

.

de raffinement. Nous avons donc testé le champ de forces par le biais de la géométrie et du spectre de vibration sans tenir compte des différences prévisibles dues au fait du changement d'état physique entre simulation et expérimentation. Les différences affectent principalement la région des balancements des méthyles, ceux-ci sont en effet très sensibles à l'environnement et donc à l'état physique. Avec ces approximations nous obtenons une erreur moyenne de 11.5 cm⁻¹ entre les spectres calculés et observés (tableau 11). L'erreur la plus grande est de 32 cm⁻¹ et est associée au mode de déformation angulaire COC. La géométrie est reproduite avec une erreur sur les longueurs de liaisons de 0.007 Å et sur les angles de 1.5° (tableau 10).

LA FONCTION CHIMIQUE ALCOOLS

METHANOL

Le méthanol constitue le motif de base sur lequel nous avons construit le reste des molécules modèles d'alcools. En effet, un minimum de quatre paramètres de champ de forces : les constantes d'élongation CO et OH, les constantes de déformation angulaire COH et CCO sont nécessaires pour reproduire la fonction chimique alcool. Le méthanol nous donne des conformations sur les paramètres d'élongation CO, OH et de déformation angulaire COH. La structure du méthanol est connue par diffraction des électrons (*Kimura K et al., 1959*)et micro-onde (*Lees RM et al., 1968*). Le moment dipolaire ainsi que la barrière de torsion sont aussi connus (tableau 12). Les constantes d'élongation OH et de déformation angulaire COH ont été adaptées pour reproduire au mieux les fréquences rapportées par les spectres infrarouge et Raman du méthanol ainsi que des dérivés isotopiques (*Serrallach A et al., 1974*). Les attributions des spectres de

TABLEAU 11 : SPECTRE DE VIBRATION DU TRANS METHYLISOPROPYL ETHER

N°	Exp*	* SPASIBA	PED
1	-	102	100% CTOS Tor
2	-	205	45% CTOS Tor 55 % CTCT Tor
3	-	213	100% CTCT Tor
4	-	245	55% CTCT Tor 45% CTOS Tor
5	312	305	45% CTOSCT30% CTCTOS
6	371	361	40% CTCTOS
7	453	456	40%CTCTOS
8	501	469	40%CTOSCT
9	799	810	30% CTOS25% CTCT
10	-	856	30% CTOS35% CTCTHC
11	-	871	70% CTCTHC
12	909	886	70% CTCTHC
13	-	1029	20%CTCT20% CTCTHC
14	1082	1069	60% CTOS
15	1115	1093	45% CTOS
16	1136	1143	60% CTOS
17	1159	1163	30% HICTOS50% HCCTOS
18	1214	1226	40% CTOS
19	1256	1252	30% HCCTHC20% CTCTHC
20	1299	1282	40% HCCTHC20% CTCTHC
21	1333	1316	35% CTCTHC20% CTCTHC
22	-	1430	40% HCCTOS20% HCCTHC
23	1449	1455	90% HCCTHC
24	-	1460	90% HCCTHC
25	-	1461	60% HCCTHC
26	-	1462	60% HCCTHC20% HICTHC
27	-	1464	25% HCCTHC40% HCCTOS
28	-	1472	40% HCCTOS20% HCCTHC
29	-	1486	50% HICTHC20% HCCTOS
30	2822	2816	100% CTHI
31	-	2861	100% CTHC
32	2875	2863	100% CTHC
33	-	2923	100% CTHC
34	-	2924	100% CTHC
35	2932	2925	100% CTHC
36	2975	2964	100% CTHC
37	-	2996	100% CTHC
38	-	3075	100% CTHC

Erreur moyenne 11.5 cm⁻¹

a- Snyder et al., 1967.

	Micro-onde					
Paramètre [*]	et	HF/6-31G*	MP2/6-31G*	MP4/6-31G*	MM3'	SPASIBA
	Diffraction					
	des					
	électrons⁵			•		
СН	1.093-1.095	1.083	1.087	1.098	1.111	1.094
OH	0.945-0.960	0.946	0.946	0.973	0.948	0.947
CO	1.42-1.428	1.399	1.399	1.427	1.431	1.425
HCH	108-109.3	108.18	107.7	108.4	108.9	108.5
COH .	108.3-109.3	109.45	109.45	107.126	108.3	108.52
Différence						
d'énergie	1.07	-	-	-	0.78	0.85
conformationelle						
Moment dipolaire	1.71	1.866	1.94	1.945	1.71	1.69

TABLEAU 12 : PARAMETRES STRUCTURAUX DU METHANOL

a-Longeur de liaison en Å, angles en degrés et moment dipolaire en Debye.

b- Kimra K et al., 1559 ; Lees RM et al., 1968.

c- Allinger NL et al., 1990.

.

TABLEAU 13 : SPECTRE DE VIBRATION DU METHANOL (C.)

 numéro de fréquence	Fréquences expérimentales *	MM3 ⁶	SPASIBA	PED
 1	271	263	271	100%τCO
2	1033	1052	1036	50%CO, 25%COH
3	1076	1086	1088	80%CO
4	1145	1106	1133	50%HCH, 50%HCO
5	1334	1287	1305	70%COH
6	1451	1430	1459	60%НСН, 40%НСО
7	1466	1446	1464	90%HCH
8	1473	1484	1472	80%HCH
9	2844	2873	2839	100%CH
10	2960	2970	2966	100%CH
11	3000	2976	2995	100%CH
12	3681	3679	3692	100%OH

a- Serrallach A et al., 1974.

b- Allinger et al., 1990.

vibrations dans la littérature sont différentes, et souvent en rapport avec le groupement méthyle. Pour éviter tout problème lié à l'environnement de la molécule, nous avons choisi des spectres en phase gaz. C'est le cas des travaux de Serrallach et al. où la molécule est quasi isolée et le pourcentage de liaison hydrogène est estimé à moins de 0,5 %. Nos simulations sont donc réalisées sur une molécule dans le vide. La fonction alcool est définie par le motif COH où C est un carbone sp3. Du point de vue structural nous obtenons une erreur moyenne de 0,0003 Å pour les longueurs de liaisons et de 0,3° pour les angles par rapport aux données expérimentales. La différence d'énergie conformationnelle entre les formes éclipsées et décalées a été calculée. La conformation décalée est plus stable de 1.07 kcal/mol expérimentalement, nous calculons 0,85 kcal/mol alors que MM3 donne une valeur de 0,78 kcal/mol. Le champs de forces de SPASIBA permet de calculer un moment dipolaire de 1,70 Debye contre 1,71 Debye expérimentalement et 1,71 Debye avec MM3. Les charges associées au COH seront transférées pour tous les alcools. Le spectre de vibration est correctement reproduit avec une erreur de 12 cm⁻¹ contre 59 cm⁻¹ pour MM3 (Tableau 13). Deux substitutions isotopiques sont utilisées CD3OH pour tester la partie CH3 et CH3OD pour tester la partie COH (Tableau 14 et 15). Pour ces deux spectres les erreurs moyennes sont respectivement de 10 cm⁻¹ et 12 cm⁻¹. Dans chaque cas, l'attribution (sur la base de la distribution d'énergie potentielle) est en accord avec l'expérimentale. Ces résultats nous amènent à transférer à l'éthanol les différents paramètres obtenus. Comme il l'a déjà été fait mention pour les éthers, nous rappelons qu'un atome d'hydrogène est différencié des autres pour un méthyle lié à un oxygène (Tristram F et al., 1996a). Dans le cas du méthanol, celui qui se trouve dans le plan des atomes COH sera appelé H1 (tableau 1).

TABLEAU 14 : SPECTRE DE VIBRATION DU METHANOL -D, (Cs)

Numéro de fréquence	Fréquence*	SPASIBA	PED
1	259	258	100%τCO
2	859	860	50%H*CH*,
			50% D*CTOH
3	897	893	50% D1CTOH,
			50% DCCTOH
4	976	979	80%CO
5	1068	1040	70% DCCTDC
6	1068	1042	80% D1CTDC
7	1127	1130	40% CTOH,
			30% D1CTDC
8	1293	1291 -	80%COH
9	2070	2060	100%CD1
10	•	2167	100%CD
11	2243	2209	100%CD
12	3675	3692	100%OH

a- Serrallach A et al., 1974.

.

ſ	Numéro de fréquence	Fréquence	SPASIBA	PED
ŀ	1	213	215	100%тСТОН
F	2	864	890	85%CTOHDO
ľ	3	1040	1040	80%CTOH
.+[4	1141	1133	50% H1CTHC,
			- · · ·	50% НССТОН
	5	1220	1163	30% CTOHDO,
				30% H*CTH
ſ	6	1456	1459	70% H1CTHC
	7	1460	1464	85% H1CTHC
	8	1473	1471	80% HCCTHC
	9	2704	2685	100%OHDO
ſ	10	2840	2840	100%CTH1
ſ	11	2960	2966	100%CTHC
	12	3001	2994	100%CTHC

TABLEAU 15 : SPECTRE DE VIBRATION DU METHANOL -OD (C_s)

a- Serrallach A et al., 1974.
Paramètre'	expérimental ^b	HF/6-31G*	MM3'	SPASIBA
СН	1.094	1.084	1.11	1.090
ОН	0.945	0.946	0.948	0.946
CC	1.529	1.521	1.525	1.530
СО	1.425	1.403	1.433	1.428
НСН	108.3	108.565	107.7	108.10
СОН	108.32	107.309	108.3	108.26
ссо	108.0	110.879	109.0	109.20
CCH	110.18	110.521	110.8	110.0
тССОН	-	180.0	-	180.0
Moment dipolaire	•	1.90	-	2.5

TABLEAU 16 : PARAMETRES STRUCTURAUX DU TRANS ETHANOL

a-Longeur de liaison en Å, angles en degrés et moment dipolaire en Debye.

b- Sasada Y et al., 1971.

. .

• . • :

c- Allinger NL et al., 1990.

Cette molécule nous apporte une information sur la constante de force associée aux déformations angulaires CCO dans les alcools. C'est le modèle le plus simple des alcools primaires. Expérimentalement on trouve la forme trans plus stable que la forme gauche de 0.4 kcal/mol (Schaefer L et al., 1982). Avec le champ de forces de SPASIBA nous calculons 0.3 kcal. La barrière de rotation du dièdre est calculée à 2.95 kcal/mol alors qu'expérimentalement nous avons 3.08 kcal/mol et MM3 calcule une valeur un peu basse avec 2.80 kcal/mol. Ces résultats indiquent une bonne caractérisation de nos paramètres de déformation diédrale. La géométrie du conformère trans est connue par des études en micro-ondes (Sasada Y, 1971). Les résultats sont décrits dans le tableau 16 et sont comparés aux structures calculées par MM3 et SPASIBA. Les longueurs de liaisons sont calculées sur une erreur de 0.01 Å et les angles avec une erreur de 0.2°. Le moment dipolaire est correctement prédit : 2.5 Debye contre 1.95 Debye par le calcul Ab Initio (HF/6.31 G*). Les charges du groupement méthyle et les paramètres associés au CH3 sont tirés de la base de données de SPASIBA et ne sont pas recalculées dans ce contexte moléculaire pour être cohérentes avec les autres champs de forces de SPASIBA. Nous connaissons les spectres infrarouge de l'éthanol, ainsi que pour certaines espèces isotopiques, dans l'état gaz et en matrice d'argon (Perchard JP et al., 1968). Chaque mode est correctement calculé à l'aide de SPASIBA pour le trans-éthanol ainsi que précisément attribué (tableau 17). La plus grande erreur est faite sur le mode d'élongation CO à 879 cm⁻¹ avec une erreur de 22 cm⁻¹ ¹ alors que MM3 connaît une erreur de 45 cm⁻¹. L'erreur moyenne est de 13 cm⁻¹ entre les spectres calculés et expérimentaux à l'aide de SPASIBA. Chaque partie de l'éthanol est ensuite étudiée par substitution isotopique (i.e. CH3, CH2 et COH) et l'erreur moyenne pour ces analogues est inférieure à 15 cm⁻¹ (Tableau 18). La substitution isotopique et l'information de couplage entre les bandes associées aux déformations (i.e. CH3, du CH2 et du COH permettent d'ajuster précisément les constantes de forces pour

TABLEAU 17 : SPECTRE DE VIBRATION DU TRANS ETHANOL

numéro de fréquence	Fréquences expérimentales *	MM3 ^b	SPASIBA	PED
1	-	227	230	τCΟ
2	-	237	244	τCC
3	419	409	404	100%CCO
4	800	856	772	100%CCH
5	879	896	856	80%CO
6	1030	993	1020	80%CC
7	1066	1041	1088	60%CO
8	1090	1106	1113	40%CO
9	1241	1290	1243	90%COH
10	-	1299	1337	70%HCO
11	1370	1370	1369	60%COH
12	1390	1434	1375	90%HCH
13	1445	1452	1449	90%HCH
14	1445	1457	1449	90%HCH
15	1480	1537	1490	90%HMCH
16	-	2870	2791	100%CH
17	2984	2898	2884	100%CH
18	2928	2949	2914	100%CH
19	-	2964	2943	100%CH
20	2975	2965	2971	100%CH
21	-	3679	3690	100%OH

a- Perchard JP et al., 1968.

.

.

b- Allinger et al., 1990.

ľ

CH3-CH2-OD		CH3-CD2	2-OH	CD3-CH2	2-OH
Expérimentale [*]	calculé	Experimentale	calculé	Experimentale	calculé
-	170	-	230	-	230
-	244	-	240	-	244
423	400	421	404	-	405
790	790	671	698	-	847
802	809	848	850	-	860
903	924	890	908	1022	1020
1055	1048	958	961	1035	1039
1106	1123	1005	1000	1059	1090
1130	1130	1016	1022	1225	1234
1365	1353	1093	1068	1325	1326
1386	1361	1169	1168	1340	1341
1393	1394	1273	1289	1385	1382
1445	1449	1374	1361	-	1448
1445	1449	1443	1447	-	1448
1482	1491	1460	1450	1480	1490
-	2685	2120	2147	2115	2110
-	2907	2207	2205	2220	2228
-	2960	•	2793	2242	2256
-	2966	2931	2934	2903	2895
-	2970	2973	2969	2948	2947
-	2993	-	3690	-	3690

TABLEAU 18 : SPECTRE DE VIBRATION DES COMPOSES DEUTERIES DU TRANS ETHANOL

a- Perchard JP et al., 1968.

.

70

Paramètre [*]	HF/6-31G*	MP2/6-31G*	SPASIBA
CC _{moyen}	1.529	1.517	1.531 ·
CH _{moyen}	1.094	1.094	1.095
CO	1.425	1.433	1.426
OH	0.945	0.972	0.945
CCC	108.30	112.45	112.18
CCO _{nvyen}	108.32	105.68	108.53
СОН	108.00	107.26	108.00
HCO _{moven}	110.18	110.00	108.90
тССОН	177.22	179.26	176.30
Moment dipolaire	1.7	1.9	2.1

TABLEAU 19 : PARAMETRES DU PROPANE-2 OL

a- Longeur de liaison en Å, angles en degrés et moment dipolaire en Debye.

.

l'éthanol. Il est important de noter qu'entre 1000 cm⁻¹ et 1500 cm⁻¹ les déformations angulaires du COH apparaissent dans de nombreux modes, mais avec une contribution maximale à environ 1250 cm^{-1} .

PROPANE-2-OL

Le dernier paramètre que nous avons à établir est le paramètre de déformation angulaire CCC. Nous avons choisi la molécule propane 2-ol pour l'établir. Cette molécule constituera en fait un modèle pour la fonction alcool secondaire. Malheureusement, l'information expérimentale relative à cette molécule est rare, et nous avons donc essayé d'ajuster nos paramètres à l'aide de résultats de calcul Ab Initio réalisés au Laboratoire. Les paramètres des alcanes ont été utilisés au début du travail pour ce qui est de la partie isopropyle. La géométrie optimisée a été calculée par le calcul Ab Initio HF/6-31 G* et MP2/6-31 G*, et comparée à celle obtenue à l'aide du champ de forces de SPASIBA. L'erreur moyenne comparativement aux résultats du calcul Ab Initio est de 0.01 Å pour les angles (Tableau 19). Les charges transférées du méthanol et de l'éthanol permettent le calcul d'un moment dipolaire 2.1 Debye à l'aide de SPASIBA, l'erreur par rapport au calcul quantique est de 0.4 Debye. Cette dernière est due à l'effet inductif des méthyles qui n'est pas pris en compte en mécanique classique et donc par SPASIBA. Les données vibrationnelles proviennent de l'infrarouge avec un échantillon dans le cyclohexane (Schrader B et al., 1974). Cependant comme notre simulation est réalisée dans le vide, il faut prendre garde pour la comparaison des différents modes du fait de la différence d'état entre la simulation et les résultats expérimentaux. Sans raffinement et à l'aide des paramètres de la base de données de SPASIBA nous avons une erreur moyenne entre les spectres calculés et expérimentaux de 13 cm⁻¹ (Tableau 20). La plus grande erreur est commise sur les modes associés au groupe COH couplé à l'élongation CO et à la déformation angulaire

TABLEAU 20 : SPECTRE DE VIBRATION DU PROPANE-2 OL

Numéro de fréquence	Fréquences expérimentales *	SPASIBA	PED
1	220	226	τCC
· 👷 🛛 2	-	235	τCΟ
3	-	256	τCC
4	375	367	50%CCC, 30%CCO
5	425	421	90%CCO
6	490	468	30%CCO, 30%CCH
7	819	785	70%CO
8	-	882	50%CC, 20%CC
9	935	923	50%CCH, 30%CC
10	950	956	80CCH
11	1110	1083	30%CCH, 30%CC
12	1125	1112	50% CC, 30%CCH
13	1135	1167	35%CO, 30%CCH
14	-	1263	50%COH, 40%CCH
15	1320	1326	50%НСН, 20%СОН
16	1340	1358	80%HCH
17	1385	1381	40%HCH, 30%CCH
18	1420	1413	30%HCO, 30%HCH
19	-	1445	100%HCH
20	-	1448	100%HCH
21	1452	1455	100%HCH
22	1468	1457	100%HCH
23	2882	2906	100%CH
24	2920	2909	100%CH
25	2952	2942	100%CH
26	-	2967	100%CH
27	-	2968	100%CH
28	•	2969	100%CH
29	2975	2971	_100%CH
30	-	3690	100%OH

a- Schrader B et al., 1974a.

.

Paramètre'	HF/6-31G*	SPASIBA
CC	1.530	1.535
CH _{moyee}	1.415	1.425
CO	1.085	1.090
ОН	0.947	0.944
CCC	110.77	111.0
CCO	-	107.9
СОН	109.46	106.8
HCH	-	108.0
τССОН	-	177.8
Moment dipolaire	1.75	2.1

•••

TABLEAU 21 : PARAMETRES STRUCTURAUX DU METHYL-2 PROPAN-2 OL

a-Longeur de liaison en Å, angles en degrés et moment dipolaire en Debye.

COH. Ces différences prévisibles sont probablement dues aux effets de solvant, surtout au niveau du groupement COH très sensible à l'environnement (*Perchard JP et al.,* 1968).

METHYL-2 PROPANE-2 OL

La molécule méthyl-2 propane-2 ol constitue le modèle des alcools tertiaires, cependant aucun nouveau paramètre n'est établi avec elle. En effet, l'apport d'un nouveau groupe méthyle n'ajoute rien à la complexité de la molécule. Elle sera donc utilisée comme test pour les paramètres de SPASIBA. La géométrie calculée à l'aide du champ de forces (tableau 20) est en accord avec les structures obtenues par calcul *Ab Initio*. L'erreur moyenne sur les longueurs de liaisons est de 0.01Å et sur angles de 1.5°. SPASIBA permet le calcul d'un moment dipolaire de 1.7 Debye proche des 2.1 Debye du calcul quantique. Ces deux derniers points montrent bien la transférabilité des champs de force des alcanes et des alcools. En ce qui concerne le spectre de vibration nous avons pris les données relatives à l'état liquide dans le cyclohexane (*Schrader B et al., 1974*). Malgré la différence d'état physique entre simulation et données expérimentales (*Schrader B et al., 1974*) nous avons une bonne prédiction du spectre de vibration (tableau 9). L'erreur moyenne est d'environ 10 cm⁻¹. Encore une fois l'erreur maximum est obtenue sur les modes associés à la déformation angulaire COH et à l'élongation CO, ceci pour les mêmes raisons que précédemment.

TABLEAU 23 : PARAMETRES STRUCTURAUX DU METHANEDIOL

Paramètres'	Becke3LYP/6-31G**	SPASIBA
ОН	0.977	0.978
CO	1.422	1.421
СН	1.105	1.106
OCO	112.55	112.35
сон	106.36 / 106.58	106.39 / 106.39
τCΟ	59.12 / 60.35	59.6 / 59.6
Moment dipolaire	0.32	0.34

76

a- Longeur de liaison en Å, angles en degrés et moment dipolaire en Debye.

.

, e i

METHANEDIOL

C'est la molécule de base sur laquelle tous les autres acétals seront construits. En effet, la fonction chimique acétal est constituée d'un minimum de deux paramètres caractéristiques qui sont les constantes de forces associées à l'élongation CO et à la déformation angulaire OCO. Cette première molécule nous apporte des informations à propos de la constante de force associée à la déformation de la torsion autour de la liaison CO. Le deuxième paramètre important pour la fonction acétal (i.e le paramètre de déformation angulaire) sera déterminé à l'aide des données expérimentales de vibration. La structure du méthanol n'est de spectroscopie pas connue expérimentalement. Nous avons donc optimisé la géométrie avec la méthode d'échange Becke et de corrélation Lee-Yang-Parr (6-31 G*) (BeckeLYP) à l'aide du programme GAUSSIAN (Frisch M et al., 1992). La surface d'énergie potentielle pour le dièdre CO a été déterminée et nous obtenons 4 minima qui correspondent aux couples (60, 60) (60, 180) (60, 60), (180,180). Le couple (60, 60) correspond au conformère le plus stable, le conformère gauche-gauche. La différence d'énergie conformationnelle entre les conformères gauche-gauche et trans-gauche est de 5 kcal/mol expérimentalement, nous calculons 4.5 kcal/mol à l'aide de SPASIBA et de son champ de forces. Ce dernier nous permet aussi de reproduire la géométrie optimisée par Ab Initio. L'erreur moyenne entre les structures calculées est de 0.01 Å pour les liaisons et 0.05° pour les angles (Tableau 23). Le paramètre principal, le paramètre de déformation diédrale CO est ajusté pour reproduire au mieux la barrière de torsion autour de la position d'équilibre de la molécule. Autour de cette conformation l'erreur est à peu près de 5% et nous nous satisferons du potentiel ainsi établi sur la base du calcul Ab Initio. Il aurait fallu les basses fréquences d'un spectre de vibration pour vérifier notre champ de forces. Nous

TABLEAU 24 : RESULTATS DE THERMODYNAMIQUE DU METHANEDIOL A 298.15° ET 1 ATM.

Paramètres*	Becke3LYP/6-31G**	SPASIBA
Moment d'inertie	43.86/181.89/205.18	44.50/179.42/203.38
Température Rotationelle	1.97/0.47/0.42	1.94/0.48/0.42
Energie au Point Zéro	37.09	37.01
Capacité Calorifique C,	11.81	11.81
Entropie	62.37	62.27
· · ·		

a- Les moment d'inerties sont en ua, les températures rotationelles en Kelvin, l'énergie au point Zéro en kcal/mol, la capacité calorifique et l'entropie en cal/mol K.

-.

avons réalisé nos calculs dans le vide pour simuler l'état gaz, ainsi nous pourrons séparer plus précisément les paramètres intramoléculaires et intermoléculaires, ce qui nous amènera à un champ de forces transférable. Cette molécule permet de simuler l'effet gauche (Wolfe S., 1970) résultant d'une interaction d'orbitales entre deux atomes d'oxygène liés au même carbone sp3. Du fait de cette interaction les longueurs de liaison CO varient, si une des liaisons CO augmente, l'autre diminue et vice versa. De plus, la valeur de torsion CO est toujours gauche. De tels effets d'interactions d'orbitales ne sont pas pris en compte explicitement en mécanique classique, il faut donc en tenir compte implicitement dans la constante de forces associée à la torsion CO pour reproduire l'effet gauche. Du fait de l'absence de données expérimentales pour la spectroscopie de vibration, nous avons utilisé le calcul quantique Ab Initio et comme point de départ les paramètres des alcools pour le groupement COH. Le résultat des calculs de thermochimie à l'aide du champ de forces de SPASIBA sont en bon accord avec ceux du calcul Ab Initio BeckeLYP (6-31 G**) (tableau 24 et 25). La plus grande erreur est faite sur le calcul du moment d'inertie, une différence d'environ 1 ua (environ 2% d'erreur). Dans tous nos calculs nous avons utilisé SPASIBA sans modifications, contrairement à MM3. En effet, un potentiel pour la longueur de liaison CO dans les acétales a été ajouté dans ce dernier. Ce qui démontre une définition incomplète du potentiel de MM3. Le méthanediol peut être utilisé comme modèle pour les sucres, où l'effet gauche est présent au niveau du carbone anomère. Cependant ce modèle est limité, car dans le sucre d'autres effets sont superposés. De plus, dans les sucres, un hydrogène du méthanediol est remplacé par un carbone sp3. Aussi la fonction acétal des sucres est engagée dans un cycle (cycle pyranose dans le cas le plus courant) ce qui contribue à la formation d'interactions stériques plus importantes et la proportion d'effet gauche varie selon que l'hydroxyle anomérique soit en position axiale ou Èquatoriale.

TABLEAU 25 : SPECTRE DE VIBRATION DU METHANEDIOL.

Numéro de fréquence	Fréquences Ab Initio	SPASIBA	PED
1	391	380	100% τCO
2	420	414	100% τCO
3	554	554	40% OCO, 20% CO
4	985	951	60% HCO
5	987	975	75% CO
6	1014	1007	90% CO
7	1169	1168	60% HCH
8	1331	1339	85% COH
9	1360	1352	95% COH
10	1415	1416	85% HCO
. 11	1489	1485	90% HCO
12	2932	2934	100% CH
. 13	. 2933	2933	100% CH
14	3627	3627	100% OH
15	3629	3629	100% OH
ERREUR MOYENNE		6.8 cm ⁻¹	

:

. •

•3

. .

TABLEAU 26 : PARAMETRES STRUCTURAUX DU METHOXYMETHANOL

Paramètre'	Becke3LYP/6-31G**	SPASIBA
ОН	0.966	0.977
CO _{central}	1.401	1.377
CO _{terminal}	1.421	1.431
CO HYDROXYLE	1.427	1.437
OCO	113.55	113.30
COC	113.75	114.72
τCΟ	66.10/61.77	64.3/64.9
Moment dipolaire	0.41	0.42

a- Longeur de liaison en Å, angles en degrés et moment dipolaire en Debye.

Un calcul par la méthode Ab Initio de grande précision BeckeLYP (6-31 G**) a été réalisé sur le methoxy methanol. Nous avons pu calculer les fréquences de vibration, surtout les basses qui nous intéressent pour l'établissement du paramètre de torsion du dièdre autour de la liaison CO. Ce calcul a dû être réalisé du fait de la carence en résultats de spectroscopie de vibration concernant les acétals. La géométrie obtenue par optimisation est prise en référence et est décrite dans le tableau 26, elle est ensuite comparée à celle obtenue à l'aide de SPASIBA et de son champ de forces. L'erreur moyenne sur les liaisons est de 0.01Å et 0,3° sur les angles. L'effet gauche est aussi présent dans cette molécule, comme dans le méthanediol. Nous calculons des angles dièdres autour de la torsion CO de 60.7° et 66.1°, et un moment dipolaire de 0.43 Debye contre 0.41 Debye à l'aide du calcul Ab Initio. Le calcul Ab Initio nous donne un spectre de vibration avec quatre fréquences attribuées au paramètre de torsion CO : 148, 210, 366 et 400 cm⁻¹ (Tableau 27). Une dynamique harmonique à l'aide de SPASIBA nous donne quatre fréquences à 144, 233, 352 et 411 cm⁻¹. Les modes à 352 et 411 cm⁻¹ sont associés au paramètre de torsion CO du groupement COH optimisé pour le méthanol. Les deux autres modes concernent le groupement C-O-CH3. Il est important de remarquer que nous avons choisi trois paramètres de torsion CO pour cette molécule ; deux différents pour le groupement COC et un pour le groupement COH transféré de la molécule précédente. Les paramètres CH3-O internes concernent par analogie aux sucres les effets anomeres et exoanomères. A cause d'effets électroniques la constante associée à la torsion CH3-O est plus petite que les autres. Les résultats obtenus pour cette molécule peuvent être appliqués aux monosaccharides qui possèdent le même type de fonction chimique. La molécule suivante peut être un modèle cette fois pour les méthyles monosaccharides et donc la liaison glycosidique.

TABLEAU 27 : BASSES FREQUENCES DE VIBRATION DU

METHOXYMETHANOL.

Numéro de fréquence	Fréquences Ab Initio	SPASIBA	PED
1	148	143	50% TCTOS, 50% TCEOS
2	210	233	50% TCTOS, 50% TCEOS
3	368	352	70%TCEOH
4	400	411	90%τСΕΟΗ
5	593	578	50%OSCEOH

84

TABLEAU 28 : PARAMETRES STRUCTURAUX DU DIMETYHOXYMETHANE

Paramétres*	Expérimentale⁵	HF/6-31G*	SPASIBA
CO terminal	1.432	1.431	1.432
CO central	1.382	1.260	1.380
CH msthyle	1.108	1.080	1.107
COC	114.6	123.49	114.54
OCO	114.3	105.67	114.42
HCO _{moyen}	110.3	111.72	109.70
τCΟ	63.3	72.37 / 78.74	63.1 / 63.5
Moment dipolaire	0.99	2.97	

.

.

-

. . . .

a-Longeur de liaison en Å, angles en degrés et moment dipolaire en Debye.

b- Astrup EE, 1971.

. .

· · · .

Cette molécule est la première qui apporte une information vibrationelle surtout en basses fréquences pour une fonction acétal. De plus la structure de la molécule est connue expérimentalement (Astrup EE et al., 1975) par diffraction des électrons en phase gaz. Nous l'avons aussi calculée par Ab initio (HF/ 631 G*) à l'aide du logiciel GAUSSIAN 92. La différence majeure entre ces deux géométries se situe dans les angles COC et OCO où une différence de 10° est perçue. A l'aide de SPASIBA et de son champ de forces nous produisons une structure avec une erreur de 0.001Å pour les liaisons et 1° pour les angles (Tableau 28). La conformation expérimentale de l'angle dièdre autour de la liaison CO est gauche avec une valeur de CO de 63.3°. Les charges atomiques partielles permettent de reproduire le moment dipolaire de 0.99 Debye (Aoki K, 1953) et sont transférées aux molécules suivantes, sans aucun changement pour la fonction acétal. Le spectre de vibration calculé est comparé aux données expérimentales. L'erreur moyenne produite est de 11 cm⁻¹ sur la base de l'attribution de chaque bande (Tableau 29). Mais comme nous l'avons déjà remarqué, les données en dessous de 300 cm⁻¹ n'existent pas et nous ne pourrons pas tester nos paramètres de torsion dérivés des molécules précédentes. De plus trois bandes ne sont pas correctement reproduites : 1083 cm⁻¹ avec une erreur de 27 cm⁻¹, 1204 cm⁻¹ avec une erreur de 26 cm⁻¹ et 1034 avec une erreur de 27 cm⁻¹. Sans information expérimentale en basse fréquences nous ne pouvons pas réduire ces erreurs. Les spectres des composés deutériées ont été calculés, l'erreur moyenne est de 15 cm⁻¹ sur la base de l'attribution de chaque mode. Le diméthoxy méthane est souvent utilisé comme modèle pour la liaison glycosidique. Des torsions CO de (60, 60) représentent le conformère α et les valeurs (180 ± 60) le conformère β . Il est à noter que le conformère (180 ± 60) est peu courant car il engendre des interactions stériques inter-résidus très défavorables. Dans le cas d'un méthyle oside, l'angle est généralement supérieur à 60° et les liaisons hydrogènes entre chaque résidu contrôlent en fait la liaison glycosidique. Chez les sucres, le même

Fréquences	Fréquences expérimentales	SPASIBA	PED
1	-	132	100% CAOS
2	-	162	100% CTOS
3	•	231	100% CTOS
4	320	318	70%CAOS, 30%CTOS
5	-	326	70% CTOSCA, 30% OSCAOS
6	462	467	80%CAOS
7	607	600	30%CAOS, 40%OSCAOS
. 8	914	916	50%CAOS, 50%CTOS
9	928	928	40%CTOS, 50%CAOS
10	. -	1026	50%CAOS, 30%H*C*OS
11	1063	1070	50%HCCTOS, 50%H1CTHC
12	1110	1083	50%HCCTOS, 50%H1CTHC
13	1138	1126	20%CTOS, 30%H*CTHC
14	1156	1159	40%CTOS, 40%H*C*OS
15	1186	1178	40%CTOS, 40%CAOS
. 16 .	1230	1204	40%CTOS, 40%CAOS
17	1310	1316	60%HMCEHM
18	1370	1367	70%HMCAOS
19	1407	1434	80%H1CTHC
20	•	1440	80%H1CTHC
21	1445	1445	80%HCCTHC
22		1451	80%HCCTHC
23	1460	1463	50%H1CTHC, 30%H1CTOS
24	•	1476	50%H1CTHC, 20%H1CTOS
25	1477	1479	70%HMCAOS
26	2838	2849	100%CTH1
27	2838	2850	100%CTH1
28	2903	2887	100%CAHM
29	2936	2909	100%CTHC
30	2936	2951	100%CAHM
31	2936	2952	100%CTHC
32	2998	2983	100%CTHC
33	2998	2983	100%CTHC

TABLEAU 29 : SPECTRE DE VIBRATION DU DIMETHOXYMETHANE.

a- Schrader B et al., 1974c.

.

· .

raccourcissement de liaison CO est observé comme pour les acétals quand la liaison C5O5 s'allonge. Tout ceci nous indique que nous pouvons raisonnablement, et au mieux appliquer ces paramètres aux sucres.

DIMETHOXY-2, -2 ETHANE

Le diméthoxy-2, -2 éthane nous donne des informations sur la liaison entre le carbone de la fonction acétalique et un carbone sp3 d'un méthyle. C'est une structure très proche de ce qui est observé dans les monosaccharides méthylés. Comme il n'existe pas de description de la géométrie dans la littérature, nous avons pris comme structure de départ le diméthoxyméthane auquel un méthyle est ajouté. Une dynamique harmonique a été réalisée, et l'analyse des modes normaux révèle la présence de six zéros, ce qui nous fait penser que la géométrie est correctement optimisée. Le spectre de vibration calculé est comparé au spectre expérimental (*Schrader B et al., 1974*) (Tableau 30). Ce spectre calculé est réalisé sans raffinement et constitue donc un test pour le champ de force et sa transférabilité. L'erreur moyenne est de 9 cm⁻¹, le champ de forces est donc suffisamment correct pour être transféré à des molécules possédant la fonction acétal.

Les résultats de ce travail montrent la capacité du champ de forces SPASIBA à reproduire, en même temps, la structure, les énergies conformationelles et les fréquences de vibration avec une grande précision. Au minimum d'énergie potentielle, l'erreur moyenne entre les paramètres structuraux calculés et observés est d'environ 0.01Å pour les longueurs de liaison et de 1° pour les valeurs des angles. Un ensemble d'une centaine de constantes de forces est suffisant pour décrire les structures, la surface

d'énergie potentielle et les fréquences de vibration pour les modèles d'éthers, d'alcools et d'acétals. L'erreur moyenne entre les spectres de vibration calculés et observés est de 15 cm⁻¹ pour les modèles ainsi que leurs dérivés deutériés. De plus, l'attribution obtenue à l'aide SPASIBA est en accord avec l'attribution expérimentale. Au vue des résultats obtenus, nous pouvons considérer que les champ de forces obtenus sont transférables aux molécules contenant les mêmes fonctions chimiques (i.e alcools, éthers et acétals), et qu'ils sont cohérents avec ceux préalablement déterminés (i.e alcanes, alcènes, acides aminées aliphatiques, acides carboxylique, groupements phosphatés, esters). Nous pouvons aussi penser que le champ de forces SPASIBA permet d'étudier la relation entre conformation et spectroscopie avec une bonne précision. Ces résultats sont employés dans le chapitre suivant pour la détermination du champ de forces des sucres.

Fréquences	SPASIBA	Fréquences experimentales*	PED	
1	119	•	100%CEOS	-
2	139	-	70%CEOS, 30%CTOS	
3	191	-	100%CTOS	
4	263 -	-	50%CTOS, 50%CEOS	
5	291	291	60%CTOSCE	
6	340	320	50%CTOSCE	
7	414	395	50%CTOSCE	
8	544	534	30%CTOSCE, 30%CTCE	
9	555	550	100%CTCE	
10	626	630	30%CEOS	
11	824	808	60%CEOS	
12	902	870	60%CEOS	
13	1021	992	60%CTOS	
14	1045	1047	30%CECTHC	·· ·
15	1068	1060	50%H1CTOS	
16	1106		40%H1CTHC, 40%HCCTOS	
17	1126	1122	60%CTOS	
18	1138	1139	50%CTOS, 40%H*CTOS	
19	1169	1180	40H*CTHC, 20H*CTOS	
20	1224	1210	30%CECT, 30%CEOS	
21	1248	1230	80%CEOS	
22	1350	1350	20%CTOS, 30%CEOS,	
	1000		20%CECT	
23	1397	1391	70% HCCTHC	
24	1415	-	90%H1CTHC	
25	1441	1442	90%H1CTHC	
26	1449	-	70% HCCTHC	
27	1456	1455	70% HCCTHC	
28	1464	1460	40%CECT	
29	1475	1475	30%H*CTOS, 40%H*CTHC	
30	1501	-	50%H*CTHC, 30%H1CTOS	
31	1530	-	80%HCCTHC	
32	1534	-	60% HCCTHC	
33	2838	2831	60%HCCTHC	
34	2841	2831	100%CTH1	
35	2876	2855	100%CTHC	
36	2930	-	100%CTHC	
37	2932	-	100%CTHC	
38	2951	2943	100%CTHC	
39	2951	2943	100%CTHC	
40	2981	-	100%CTHC	
41	2983	-	100%CTHC	
47	2007	2001	100%CEHM	

TABLEAU 30 : SPECTRE DE VIBRATION DU DIMETHOXYETHANE.

a- Schrader B et al., 1974d.

••.

CHAPITRE 4

L'importance des sucres dans de nombreux phénomènes biologiques a stimulé l'intérêt porté à l'étude de leurs structures et à leurs propriétés conformationnelles (*Fucuda M*, 1992 et Sharon N, 1989). Depuis quelques années les progrès des techniques expérimentales ont été considérables. La diffraction des rayons X permet une description complète d'une large gamme de sucres, principalement des monsaccharides et des disaccharides du fait de la grande flexibilité conformationnelle des sucres de plus grande taille (*Lemieux RU*, 1978). Les techniques de RMN sont maintenant utilisées pour la détermination des structures tridimensionnelles des polysaccharides en solution (*Yamasaki R*, 1991). Ces techniques couplées aux possibilités de synthèse de sucres ont permis d'étudier de nombreuses fonctions biologiques liées à ces composés.

Les nombreuses biomolécules étudiées possédent généralement une structure complexe et une taille imposante. En conséquence, les méthodes de modélisation à base de champs de forces ont été souvent utilisées pour étudier la structure, la fonction et la dynamique de ce type de molécule.

Les protéines et les acides nucléiques sont les premiers groupes de biomolécules qui furent étudiés (*Brooks B et al., 1988*) alors que les travaux relatifs aux sucres et aux lipides étaient limités. Mais depuis moins de dix ans le nombre de groupes travaillant sur ces derniers types moléculaires a considérablement augmenté, on peut notamment citer les travaux de Chhiba M *et al.* sur les lipides (*Chhiba M, 1995*). Les travaux peu probants concernant les sucres ont montré les carences des champs de forces correspondant (*Brady JW*, *1986*; *Rasmussen K*, *1982*; *Homans SW*, *1990*). Un champ de forces capable de reproduire structures et propriétés dynamiques des sucres est apparu indispensable. Cependant celui-ci devra être compatible et cohérent avec d'autres bases de paramètres (i.e les protéines et les lipides) pour pouvoir étudier des systèmes plus complexes comme les glycoprotéines ou les glycolipides.

Dans ce chapitre nous décrirons la paramétrisation du champ de forces spectroscopique SPASIBA des sucres actuellement en développement dans le laboratoire.

LA DYNAMIQUE HARMONIQUE DE MONOSACCHARIDES

LA METHODE DE CALCUL

Les paramètres du champ de forces ont été établis grâce à différentes informations expérimentales déduites de la cristallographie, de la thermodynamique et plus particulièrement de la spectroscopie de vibration IR et Raman. En effet, un spectre de vibrations est caractérisé par des bandes associées à des élongations de liaisons, des déformations angulaires, des déformations d'angles dièdraux. Toutes ces coordonnées internes interviennent dans la fonction énergie potentielle par des termes différents. De plus les vibrations caractéristiques des molécules donnent une vue dynamique du système étudié. En fait la reproduction des spectres de vibration est un critère d'évaluation de la fiabilité d'un champ de forces, si celle-ci est bonne le champ de forces peut être appliqué en confiance à des études de dynamique moléculaire.

La détermination des paramètres de champ de forces pour les sucres est complexe. De nombreux aspects sont à prendre en considération en même temps. Tout d'abord nous devons obtenir des paramètres pour les monosaccharides afin de reproduire leurs propriétés structurales et vibrationnelles. Malheureusement il n'existe pas d'attribution précises des bandes de vibration des spectres de monosaccharides (Wells HA, 1990 : Dauchez M et al., 1992; Hineno M, 1977). Par contre pour des structures moléculaires plus simples interviennant dans les sucres, il existe généralement une attribution précise et fiable, ce qui permet d'établir un champ de forces représentant correctement les propriétés de ces molécules et par conséquent transférable. De tels paramètres existent pour des types moléculaires se retrouvant dans les sucres comme les alcanes, les éthers, les alcools et les acétals. C'est cet ensemble de paramètres qui peut constituer le point de départ du raffinement des sucres. Envisager une paramètrisation sans point de départ cohérent avec ses champs de forces, c'est choisir au hasard un ensemble de constantes dans l'espace des paramètres et trouver une solution proche du point de départ qui minimise les erreurs. La solution trouvée est-elle réellement transférable et compatible avec les autres champs de forces de la base de données ?

Il faut aussi considérer l'influence des interactions non liantes et plus particulièrement des liaisons hydrogènes. Dans le domaine des sucres la liaison hydrogène est omniprésente, ce qui peut être mis en évidence dans le domaine des hautes fréquences des spectres de vibration. Il est donc nécessaire aussi de séparer les paramètres intramoléculaires et intermoléculaires pour ne pas tenir compte des effets intermoléculaires dans les constantes de forces relatives à la molécule. Cependant le spectre d'un monosaccharide en phase gaz n'est pas disponible actuellement, il faut donc mettre au point la liaison hydrogène à partir de modèles plus simples et sur lesquels nous avons suffisamment de données expérimentales, c'est le cas du sytème méthanol/eau. La procédure de raffinement comporte plusieurs étapes :

92

- Il faut choisir une structure initiale, les données de diffraction des rayons X seront utilisées quand cela est possible.

- Le calcul des charges résiduelles partielles par mécanique quantique (HF/6-31G** ou HF/3-21G).

- La détermination des constantes de forces pour reproduire les données expérimentales, les données structurales et ensuite vibrationnelles.

Mais avant d'entreprendre la paramétrisation du monosaccharide même, il faut établir des paramètres intramoléculaires relatifs à la liaison hydrogène. En effet, les données expérimentales sont relatives au cristal, nous devons alors simuler les liaisons hydrogènes présentes dans le cristal et donc déterminer les paramètres intermoléculaires. Cette détermination est effectuée avec un système de taille raisonnable : le système méthanol/eau. Ensuite des molécules d'eau sont placées autour du monosaccharide pour reproduire ces liaisons hydrogène, ce système est beucoup plus simple à étudier qu'une maille de cristal et les temps de calculs sont plus raisonnables. Il apparaît indispensable alors de posséder un champ de forces de l'eau qui puisse reproduire les propriétés géométriques et vibrationnelles de l'eau.

Un modèle flexible de l'eau

La structure de l'eau est connue, la longueur de liaison OH vaut 0.96Å et l'angle HOH 104.5°. Le calcul des charges a été éffectué par *Ab Initio* au niveau HF avec la base 3-21G pris au niveau post Hartree-Fock en utilisant la fonctionnelle de densité (échange : fonctionelle de Becke, corrélation : fonctionelle de LeeYang et Parr (BLYP)) (*Frisch M et al., 1992*)) et nous obtenons des charges pour l'hydrogène de 0.3205 et pour l'oxygène de -0.6410. Les paramètres de la molécule isolée ont été établis pour reproduire la structure et les propriétés vibrationnelles de la molécule H2O dans l'état gaz (tableau 1 et 2).

	BLYP/3-	HF/6-31G*	HF/6-31++G**	MP4/6-31G*	Valeurs	SPASIBA
	21G				expérimentales*	
OH en Å	0.99	0.94	0.94	0.97	0.96	0.96
HOH en	104.06	105.5	106.24	104.21	104.5	104.5
degré						
Moment	2.24	2.18	2.19	2.25	1.76	1.80
Dipolaire					1.86	
en debye						

TABLEAU 1 : Paramètres structuraux de l'eau.

a- Dyke Th R, 1984

.

Le raffinement a été principalement mené grâce aux données vibrationnelles (*Shimanouchi T, 1963*) sur les espèces H_2O , HOD et D_2O dans l'état gaz et à l'aide de la méthode des moindres carrés amortis (*Freeman JM, 1969*; *Freeman JM et al., 1968*) sur le jacobien des fréquences.

<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Fréquences	Symétrie	Fréquences	PED
• · · · · · · · · · · · · · · · · · · ·	observees			
	1595	a1	1600	HOH
H ₂ O	3657	a1	3658	OH
	3756	b1	3795	OH
	1402	a'	1403	HOD
нор	2727	a'	2711	OD
	3707	a'	3728	OH
	1178	a1	1173	DOD
D ₂ O	2671	a1	2684	OD
	2788	b1	2739	OD

TABLEAU 2 : Fréquences vibrationnelles de la molécule H2O et de ses dérivés deutériés.

a- Shimanouchi T, 1963.

Les valeurs obtenues par le calcul *Ab Initio* pour la structure et la thermochimie relative au monomère H_2O sont décrites dans le tableau 3. On note que les valeurs *Ab Initio* sont assez éloignées des valeurs expérimentales en ce qui concerne le moment dipolaire (entre 20 et 30% d'erreur). Par contre avec SPASIBA nous pouvons reproduire correctement les propriétés thermodynamiques comme la capacité calorifique à volume constant Cv, l'énergie au point zéro et l'entropie.

Ces résultats sont relatifs à la molécule isolée, il faut aussi penser que cette molécule de solvant crée de nombreuses interactions avec d'autres molécules d'eau. Pour étudier l'eau liquide, le modèle le plus courant est le dimère de l'eau. Ceci permet d'établir des paramètres intermoléculaires entre molécules d'eau. Grâce à la méthode des moindres carrés amortis nous pouvons reproduire les différentes données expérimentales accessibles, celles-ci sont consignées dans les tableaux 4 et 5 et comparées à d'autres modèles d'eau. Notre modèle permet de reproduire au mieux les deux données fondamentales que sont la variation d'énergie ΔE entre la molécule liée et non liée et la capacité calorifique à pression constante Cp, comparativement à d'autres modèles où une des deux valeurs n'est que correctement reproduite. Du point de vue structurale, et par rapport au calcul *Ab Initio*, le résultat est acceptable.

TABLEAU 3 : Résultats de thermochimie concernant H20 à 298° et 1 atm

	Capacité calorifique	Energie au point	Entropie
	à volume constant	zéro	
Valeurs expérimentales	6.045 cal/mol [*]	-	45.10 cal/mol ^b
Valeurs Ab Initio		14.39 kcal/mol	44.89 cal/mol
HF/6-31G*			
SPASIBA	6.010 cal/mol	12.90 kcal/mol	46.40 cal/mol

a- Kireev V, 1968.

b- Ab Initio Molecular Orbital Theory, John Wiley and Sons, 1985, p253.

TABLEAU 4 : Paramètres structuraux du dimère de l'eau.

	HF/6-31G*	MP2/6-31G*	SPASIBA
H1OH2	105.3°	104.2°	105.0°
НЗОН4	105.7°	104.3°	105.6°
OH _{nioyen}	0.95Å	0.97 Å	0.97 Å

Une simulation de dynamique moléculaire effectuée sur une boite d'eau permet d'obtenir la distribution radiale des atomes d'oxygène de l'eau autour des oxygènes de l'eau (Figure 1). Les valeurs expérimentales donnent un pic à 2.95Å que nous calculons à 2.93Å. La simulation de dynamique moléculaire est réalisée sur une boite d'eau contenant 126 molécules d'eau, de forme cubique et en tenant compte des conditions périodiques aux frontières. La simulation est réalisée à 300K pour une densité de 1g.cm⁻³. Une distance de coupure de 8Å pour les interactions non liées est fixée pour tenir compte des interactions à courte distance. L'interaction électrostatique est régie par le terme coulombien et la liaison hydrogène par le terme 10-12 du potentiel de Lennard-Jones. Le pas d'intégration est de 1 femtoseconde, les vitesses et donc la température sont réétalonnées toutes les 10 ps pour rester fixe autour de 300K. Le temps de simulation est de 300 ps. Les paramètres de champ de forces de l'eau sont décrits dans le tableau 6.

	R(O,O) en Å	-∆E en kcal/mol	C _p en cal/mol.deg
Valeurs expérimentales**	2.98	5.44+/-0.7	17.99
SPASIBA	2.70	5.45	16.4
	2.72	6.06	16.0
ST2 [°]	2.85	6.84	22.2
TIPS2 ^b	2.79	6.20	18.9
TIP4P [°]	2.75	6.24	19.3

TABLEAU 5 : Paramètres structuraux du dimère de l'eau.

a- Dyke Th R et al., 1974.

b- Jorgensen WL, 1973.

FIGURE 1 : DISTRIBUTION RADIALE DES ATOMES D'OXYGENES AUTOUR DES OXYGENES DE L'EAU

Les paramètres intermoléculaires

Les paramètres de Van der Waals utilisés au départ sont ceux de la base de données de SPASIBA. La liaison hydrogène est modélisée par les termes 10-12 du potentiel de Lennard-Jones. La mise au point des paramètres intermoléculaires est réalisée sur le système méthanol/eau. Les charges partielles sont calculées par *Ab Initio* (HF/6-31G**). Les bandes de vibration associées à l'élongation CO, l'élongation OH et la déformation COH sont très sensibles à la présence de liaison hydrogène. Expérimentalement on observe un déplacement des fréquences associées à ces mouvements. Nous pouvons l'observer en comparant les spectres du méthanol en phase gaz (*Perchard JP et al., 1968a*) et en phase liquide (*Perchard JP et al., 1968b*). La bande d'élongation CO se déplace de 360 cm⁻¹, celle associée à l'élongation OH de 84 cm⁻¹ et celle associée à la déformation COH de 353

cm⁻¹. Les paramètres de l'eau et des alcools ont été utilisés sans modifications. Seuls les paramètres C et D pour le système ne contenant qu'une liaison hydrogène ont été modifiés. Nous trouvons que de grandes valeurs de C et D permettent de déplacer les fréquences associées aux modes d'élongation CO et de déformation COH mais pas au mode d'élongation OH. Des valeurs plus faibles de paramètres ne permettent qu'un déplacement partiel de cette bande. Ceci suggère que la description de la liaison hydrogène par un potentiel 10-12 ne permet pas de décrire le caractère de cette liaison. Nous pouvons dire aussi, comme l'a déjà remarqué Hopfinger (Hopfinger J, 1973), que la constante de force associée à la liaison OH en présence et en absence de liaison hydrogène est différente d'un ordre de 20%. Dans le cas de la molécule de méthanol libre, c'est à dire dans le vide, la constante d'élongation vaut 538 kcal/mol, et nous évaluons à 443 kcal/mol sa valeur dans le cas où il existe une liaison hydrogène. Finalement les termes C et D déterminés sont 600 kcal/mol Å⁻¹² et 245 kcal/mol Å⁻¹⁰ respectivement. A l'aide de ces paramètres nous simulons le spectre du méthanol liquide avec une erreur moyenne de 15 cm⁻¹ entre les valeurs experimentales et calculées. Du point de vue électrostatique, nous observons aussi beaucoup de changements, la charge résiduelle de l'atome d'hydrogène de l'hydroxyle est diminuée ainsi que celle de l'atome d'oxygène. Il est clair que l'interaction électrostatique est totalement remaniée lorsqu'il existe une liaison hydrogène. Les charges, les constantes de force et la géométrie changent. Cependant, il est necessaire de faire des choix pour l'obtention des paramètres, c'est ce qui constitue le caractère empirique de la méthode.

La structure initiale de chaque monosaccharide est celle obtenue par diffraction des rayons X. Les charges atomiques partielles ont été évaluées par mécanique quantique (HF/3-21G). La solvatation est d'abord réalisée de façon aléatoire par la subroutine *SOL* du programme SPASIBA. Ensuite ne sont conservées que les molécules d'eau qui engagent une liaison hydrogène au moins avec le soluté. Nous n'avons gardé en moyenne une dizaine de molécules d'eau pour hydrater le monosaccharide et recréer les interactions monosaccharide-milieu extérieur présentent pendant l'enregistrement des valeurs

expérimentales. Ce système hydraté possède la géométrie de la cristallographie. Jusqu'à aujourd'hui les nombreux travaux de spectroscopie IR et Raman publiés donnent des résultats souvent un peu différents à propos des attributions. Par contre les spectres correctements attribués des petites molécules peuvent permettre le détermination de ces paramètres, en constituant le point de départ de la paramétrisation. Les spectres des monosaccharides sont donc calculés et comparés aux résultats expérimentaux, ainsi que pour leurs composés deutériés quand ils existent. Les paramètres intermoléculaires et intramoléculaires qui permettent un calcul correct (i.e une erreur entre spectre calculé et spectre expérimental inférieure à 15 cm⁻¹) des spectres de vibration constitueront le champ de forces des monosaccharides.

RESULTATS ET DISCUSSIONS

Compte tenu des résultats obtenus sur le système méthanol/eau nous pouvons transférer les constantes relatives à la liaison hydrogène et à l'eau. La constante relative à la tension interne des atomes de carbone du cycle est égal à 2 kcal/mol.rad². C'est à l'aide de ces paramètres et de ceux établis pour le modèle de l'alcool et de la fonction acétal que sont établis les paramètres intramoléculaires et intermoléculaires des monosaccharides. Nous avons différencié les atomes de carbone, d'oxygène et d'hydrogène engagés dans la partie anomère du sucre, des autres carbones hydroxylés. En effet, l'effet anomère est spécifique du carbone 1 ce qui entraîne de grandes variations de géomètrie, de charges et de propriétés vibrationnelles comparativement aux autres groupements COH. Les constantes de forces des deux anomères α et β sont de plus différentes, ceci résulte de l'effet gauche et de la différence dans les valeurs des angles diédraux CO autour du carbone C1 (i.e C1O5 et C1O1). Dans tous les cas les constantes sont voisines de celles déterminées pour les molécules modèles des alcools et des acétals, avec des différences

cependant au niveau des torsions. L'autre grande différence se situe au niveau de l'élongation OH qui est ici influencée par la liaison hydrogène et la valeur de la constante d'élongation est diminuée à 460 kcal/mol.

Les paramètres géométriques moyens concernant la liaison hydrogène autour des différents monosaccharides étudiés présentent une valeur moyenne de 1.8 Å pour la distance non liée O⁻⁻H et la valeur de 170.0° pour l'angle OH⁻⁻O permettant de reproduire la structure cristallographique avec une erreur moyenne de 0.01 Å pour les longueurs de liaison et 1.5° pour les angles.

Les spectres de vibration sont comparés aux spectres expérimentaux (tableaux 7-11). L'attribution de chaque bande est effectué sur la base de la distribution de l'énergie potentielle. Nous pouvons cependant décrire différentes régions spectrales, caractéristiques de mouvements vibratoires, communes aux différents monosaccharides.

La région des fréquences inférieures à 700 cm⁻¹ implique des fréquences liées aux mouvements d'atomes lourds : C-C, C-O, C-N, CCN, CCO, COC et OCO. Tous ces modes sont très couplés et il est impossible d'attribuer une fréquence à un mode bien déterminé. Nous pouvons tout de même associer la zone 50-200 cm⁻¹ aux déformations diédrales CC, alors que les modes associés aux angles dihédraux CO du groupement sont localisés au dessus de 200 cm⁻¹. Cette répartition des modes associés aux angles dièdres CO du groupement COH peut être expliquée par la présence de liaisons hydrogène, sans liaison hydrogène nous pouvions nous attendre à les observer vers 800 cm⁻¹. Les mouvements qui impliquent les différents atomes du groupement acétal sont localisés dans la région dite « empreinte anomérique » c'est à dire vers 500-700 cm⁻¹. Bien sûr là non plus les modes de vibration ne sont pas purs et comportent dans chaque cas d'autres contributions de plus faible pourcentage.

TABLEAU 7 : COMPARAISON DES FREQUENCES EXPERIMENTALES ET CALCULEES DU α -D-GLUCOSE HYDRATE

Numéro de	Fréquences	Fréquences	-			
fréquence	expérimentales	calculées	-			<i></i>
1	-	18		62	915	915
2	-	23 27		63 64	994	979
5 4	-	31		65	1000	1020
5	-	43		66	1024	1026
6	-	57		67	1050	1073
7	-	62		68	1078	1081
9	-	76		69 70	1103	1099
10	-	90		70	-	1131
12	-	118		72	-	1134
13	-	122		73	1149	1156
14	-	132		74	-	1175
15	-	138		/5 76	-	1184
10	-	143		70	1205	1209
18	-	174		78	1220	1220
19	-	177		79	-	1233
20	-	182		80	1272	1241
21	-	197		81	1282	1272
22	-	202		82	1298	1291
23	219	222		84	1320	1358
25	-	243		85	1369	1363
26	255	252		86	1381	1392
27	-	260		87	1407	1427
28	270	203		88	1430	1439
29	280	301		90	1459	1450
31	325	330		91	-	1469
32	-	333		92	•	1494
33	345	349		93	-	1718
34	360	361		94	-	1724
35	260	362		95	-	1727
30 37	309	385		97	-	1740
38	390	386		98	-	2876
39	401	405		99	-	2879
40	410	416		100	-	2887
41	420	419		101	-	2898
42	432	430		102	-	2901
44	-	448		104	-	2958
45	-	456		105	-	3354
46	-	473		106	-	3370
47	-	478		107	-	33/4
48	-	488		108	-	3386
49	-	518		110	-	3397
51	538	530		111	-	3415
52	545	559		112	-	3418
53	558	571		113	-	3420
54	589	579		114	-	3422
33 56	600	578 673		115	-	3424
50	647	642		110	-	3579
58	652	653		118	-	3587
59	725	695		119	-	3593
60	772	719		120	-	3594
61	837	834		121	-	<u></u>
			62	-	651	
-----------------	----------------	------------	----------	------	--------------	
Numéro de	Fréquences	Fréquences	63	-	660 673	
fréquence	expérimentales	calculées	65	737	702	
1	-	18	66	899	872	
2	-	21	67	913	917	
4	-	28	08 69	1006	980	
5	-	41	70	1015	1029	
6	-	51	71	1033	1040	
9	-	80	72	1039	1048	
10	-	92	74	1097	1110	
11	-	95	75	1110	1118	
12	-	102	76 77	1126	1123	
14	-	114	78	1152	1154	
15	-	119	79	-	1187	
16 17	-	128	80	1200	1207	
18	-	189	81 87	-	1211	
19	-	150	83	-	1222	
20	-	156	84	-	1241	
21	-	189	85 86	1263	1261	
23	-	191	87	1308	1293	
24	-	196	88	-	1333	
25	-	212	89	-	1341	
20	-	242	90 91	1309	1304	
28	247	244	92	1405	1420	
29	-	262	93	1410	1430	
30	2/1	209	94	1//0	1439 1448	
32	-	286	95	-	1468	
33	309	303	97	-	1711	
34 35	317	320	98	-	1715	
36	-	340	100	-	1723	
37	347	345	101	-	1727	
38	-	349	102	-	1729	
40	-	365	103	-	1752 2879	
41	-	372	104	-	2881	
42	-	381	106	-	2889	
43	387 401	387 402	107	-	2901	
45	419	410	108	-	2908	
46	425	422	110	-	2956	
4/ .	-	437 111	111	-	3338	
49	454	449	112	-	3345 3380	
50	-	465	113	-	3384	
51	-	478	115	-	3388	
52	-	487 497	116	-	3403	
54	-	499	117	-	3417	
55	519	528	119	-	3420	
56 57	555	549	120	-	3420	
<i>51</i> 58	5/4 593	582	121	-	3424 3476	
59	-	608	122	-	3560	
60	-	618	124	-	3578	
61	637	639	125	-	3584	
			126	-	3288 3590	
			128	-	3597	
			129	-	3600	

TABLEAU 8 : COMPARAISON DES FREQUENCES EXPERIMENTALES ET CALCULEES DU β -D-GLUCOSE HYDRATE

TABLEAU	9 : COMPARA CALCULE	AISON DES ES DU α-D-	FREQUENCES EX MANNOSE HYDRA	ATE	ALES EI
Numéro de	Fréquences	Fréquences			
fréquence	expérimentales_	calculées			
1	-	27	62	885	908
2	-	40	63	915	957
5 4	-	51	65	1017	1014
5	-	57	66	1038	1030
6	-	64	67	1052	1047
7	-	87	68	1064	1057
9	-	115	09 70	1070	1077
10	-	174	70	1103	1119
12	-	129	72	1114	1139
13	-	149	73	1125	1144
14	-	150	74	1138	1146
15	-	160	/5 76	-	11/3
10	-	178	70	1206	1208
18	-	187	78	1222	1216
19	195	197	79	1237	1240
20	207	204	80	1251	1272
21	-	220	81	1280	1288
22	225	230	83	1354	1309
23 74	233	235	84	-	1357
25	-	254	85	1370	1365
26	264	264	86	1391	1387
27	-	267	87	1400	1419
28	273	271	88	1420	1430
29	285 203	280	89 00	1452	1449
31	301	314	91	-	1475
32	313	321	92	-	1715
33	-	349	93	-	1718
34	355	352	94	-	1721
33	272	339	95	-	1722
30	575	381	97	-	1749
38	388	388	98	-	2878
39	402	396	99	-	2884
40	-	411	100	-	2896
41	-	427	101	•	2901
42	453	453	102	-	2925
44	467	464	105	-	2956
45	474	481	105	-	3325
46	-	487	106	-	3330
47	495	499	107	-	3335
48	208 518	520	108	-	3376
50	529	529	110	· –	3396
51	-	539	111	-	3398
52	-	554	112	-	3408
53	567	562	113	-	3411
54	575	597	114	-	5410 2424
55 56	0U/ 627	633	115	-	3424 3551
57	662	643	110	-	3561
58	679	653	118	-	3570
59	707	691	119	-	3581

. .

_

			62	-	639
Numéro de	Fréquences	Fréquences	63	-	653
fréquence	expérimentales	calculées	64 65	689 727	660
1	-	28	66	767	708
23	-	33	67	858	861
4	-	45	68	896	882
5	-	56	69 70	932	938 1009
6	-	70	70	-	1013
9	-	90	72	1029	1021
10	-	102	73 74	1041	1056
11	-	111	75	1085	1005
12	-	113	76	1104	1103
13	-	146	77	1119	1122
15	-	152	/8 70	-	1134
16	167	164	80	1154	1160
17	-	105	81	-	1179
18	-	185	82	-	1198
20	-	188	83	1211	1210
21	193	194	85	1237	1239
22	-	201	86	1258	1256
23	-	221	87	1292	1267
25	228	229	88 89	1307	1303
26	239	232	90	1334	1361
27	249	244 266	91	1350	1375
29	-	270	92	1368	1380
30	281	281	93 04	1406	1404
31	288	292	95	-	1455
32	-	302	96	1462	1460
33	-	314	97	1478	1471
35	326	321	98	-	1706
36	-	339	100	-	1720
37	-	345 350	101	-	1724
39	-	357	102	-	1731
40	-	364	103	-	1737
41	370	365	104	-	2877
42 43	394 403	384 401	106	-	2880
44	-	411	107	-	2893
45	-	417	108	-	2897 2908
46	423	428	110	-	2928
47 48	-	434 437	111	-	2958
49	444	446	112	-	3332
50	-	458	113	-	3340 3349
51	-	464	114	-	3349
52	492	4/0	116	-	3359
55	-	521	117	-	3391
55	538	530	118	-	3399
56	-	546	119	-	3413
57	-	563	121	-	3419
50 50	- 602	596	122	-	3421
60	-	611	123	-	3424
61	621	626	124	-	3340 3567
			125	-	3579
			127	-	3579
			128	-	3583
			129	-	3592

TABLEAU 10 : COMPARAISON DES FREQUENCES EXPERIMENTALES ET CALCULEES DU β -D-MANNOSE HYDRATE

559 Fréquences Fréquences Numéro de calculées expérimentales fréquence --49 74 75 76 77 12 14 991 79 16 17 ------23 24 25 26 27 88 --• -221 -----35 -104 105 106 ----_ -_ -51 -. -• . -• --_ -----

TABLEAU 11 : COMPARAISON DES FREQUENCES EXPERIMENTALES ET CALCULEES DU α-D-N ACETYL GLUCOSAMINE HYDRATE

131	-	3335
132		3340
133	3360	3342
134	3385	3388
135	-	3390
136	-	3396
137	-	3403
138		3409
139		3418
140	-	3422
141	3465	3427
142	-	3551
143	-	3554
144	-	3561
145	-	3566
146	-	3575
147	-	3585
148	-	3596

Nous trouvons dans la région 800-1200 cm⁻¹ les mouvements d'élongation des liaisons comportant des atomes lourds (i.e CO, CC et CN). Ici également les modes ne sont pas purs et comportent en faibles pourcentages des modes associés à d'autres mouvements. Nous pouvons reproduire cette zone avec une erreur moyenne, entre fréquence calculée et fréquence observée, de 10 cm⁻¹.

Les fréquences comprises entre 1200 et 1500 cm⁻¹ sont caractéristiques des modes de déformation angulaire engageant les atomes d'hydrogène (i.e COH, CCH, HCO, et HCH). Cependant les modes associés aux déformations COH sont principalement retrouvés entre 1200 cm⁻¹ et 1300 cm⁻¹. L'erreur moyenne commise sur les modes calculés et associés à ces mouvements est d'environ 10 cm⁻¹.

Les fréquences supérieures à 2500 cm⁻¹ concernent les modes d'élongation engageant un atome d'hydrogène (i.e CH, NH et OH). Les modes d'élongation CH sont retrouvés dans la zone de fréquence 2800 à 3000 cm⁻¹ alors que les fréquences associées aux modes d'élongation OH sont retrouvés plus haut vers 3300-3500 cm⁻¹. Il est à noter que la fréquence du mode d'élongation CH du groupement CH2OH se retrouve plus bas que les autres fréquences associées au mode d'élongation CH du cycle. Nous retrouvons aussi les vibrations associées aux hydroxyles des molécules d'eau. dans le cas de la N Acétyle glucosamine les modes de valence NH sont observés entre 3200 et 3270 cm⁻¹.

SIMULATIONS DE DYNAMIQUE MOLECULAIRE DE DISACCHARIDES

METHODE DE CALCUL

Cette fois-ci il n'est plus question de paramétrer le champ de forces à l'aide des spectres de vibration de disaccharides, en effet les spectres n'étant pas attribués avec certitude pour les monosaccharides il ne le sont pas non plus dans le cas des disaccharides. Il nous faut donc nous réferer à des résultats expérimentaux comme ceux fournis par la RMN pour tester le champ de forces établi pour les monosaccharides et évaluer la qualité des paramètres de la fonction acétal en tant que paramètres pour la liaison glycosidique. Nous avons donc choisi d'effectuer une dynamique moléculaire sur trois disaccharides tests qui sont présents dans le glycanne de type oligomannosidique Man9GlnNAc2 : Mana12Man, Mana13Man et Mana16Man. Les données RMN actuellement disponibles sur ces trois disaccharides nous permettent de juger de la qualité des paramètres de liaison glycosidique et de leur transférabilité à partir de la fonction acétal. De plus les paramètres de la fonction acétal, c'est à dire essentiellement les torsions CO, ont été mis au point pour des conformères d'acétals qui ont des valeurs d'angles dièdres prises par le conformère α . Ces valeurs d'angles dièdres sont très différentes de celles de l'anomère β , il en est de même pour leur barrière de torsion. En conséquence, la conformation β sera représentée par les paramètres de conformation α . Pour lever cette indétermination il faudrait des données expérimentales sur une conformation autre que gauche-gauche pour le diméthoxy méthane ainsi que les fréquences de vibrations expérimentales. Le calcul par la méthode Ab Initio pourrait aussi nous aider à déterminer la valeur de constante de force intrinsèque pour ce dièdre, mais le point de vue vibrationnel serait occulté et le résultat serait non cohérent avec le reste de la base de paramètres, ce qui ne correspond pas à notre objectif.

La dynamique moléculaire est réalisée sur les disaccharides dont l'énergie potentielle a été au préalable minimisée avec le champ de forces SPASIBA. La conformation de départ est celle de plus basse énergie obtenue par le calcul semiempirique, à l'aide de la méthode MNDO, après optimisation des liaisons et angles de valences. Le disaccharide est hydraté de façon aléatoire à l'aide de la procédure *SOL* du programme SPASIBA. La solvatation est estimée suffisante quand il existe au moins deux couches de solvant autour du disachharide. Le temps de simulation est de 300 picosecondes avec un pas d'intégration de 1 femtoseconde. Toutes les 50 ps sont enregistrées les positions des atomes ainsi que leurs vitesses. Les vitesses initiales sont réparties selon la distribution de Maxwell à 300K. La simulation est effectuée à une température de 300°K alors que la température de départ est de 0K. La période d'équilibrage est d'environ 10 ps, ce temps constituera notre origine des temps pour la simulation à 300K.

RESULTATS ET DISCUSSIONS

Le Mannose d'2Mannose

L'analyse des données recueillies portera essentiellement et classiquement sur les angles dièdraux constitutifs de la liaison glycosidique. Dans le cas du disaccharide man α 12man α nous nous intéresserons à la torsion ϕ =C1O1C'2H'2 et ϕ =C2C1O1C'2. L'angle ϕ a une valeur moyenne de 45.5° et un écart type de 6.2°, c'est donc un dièdre assez rigide. L'angle ϕ a une valeur moyenne de 166.7° et un écart type de 15.1°, il est donc plus flexible que ϕ . Le conformère moyen (45.5 ; 166.7) est à mettre en relation avec le conformère de plus basse énergie obtenue par le calcul semi-empirique par la méthode

110

MNDO (63 ; 150). Cependant ce dernier résultat est obtenu pour une molécule dans le vide. Nous calculons une distance H1⁻H'2 de 2.54 Å avec un écart type de 0.1 Å, alors que Homans *et al.* (*Homans SW et al., 1987*) obtiennent par RMN une valeur de 2.53Å. Nous sommes donc en accord avec les valeurs expérimentales de la RMN.

Le Mannose & 3Mannose

Pour ce disaccharide nous étudierons les valeurs relatives aux angles diédraux ϕ =C1O1C'3H'3 et ϕ =C2C1O1C'3. Nous obtenons à l'aide de SPASIBA une valeur de ϕ movenne de -38° avec un écart type de 7°, et une valeur φ moyenne de -155° avec un écart type de 15°. Ici encore le dièdre φ est le plus flexible, de par l'analyse de l'écart type. Ces valeurs moyennes sont à comparer avec les valeurs expérimentales de RMN (-10 ; -160) (Homans SW et al., 1987). Là encore les valeurs calculées sont comparables aux valeurs expérimentales. La valeur de ϕ obtenue par le calcul semi-empirique à l'aide de la méthode MNDO nous donne une valeur différente : 18° et une valeur de φ du même ordre -170°. Par contre le calcul de la distance H1⁻⁻H3 est moins précis car nous obtenons 2.56Å avec un écart type de 0.15Å pour une valeur expérimentale de 2.27Å, ce qui représente une erreur de l'ordre de 12%. D'autres études, comme celle de Brisson et al., permettent de dégager d'autres informations sur les valeurs des angles de torsion pour la liaison glycosidique. Ici ϕ =H1C1O1C'3 et ϕ =C1O1C'3H'3. La valeur retrouvée par RMN pour ce couple est (-45 ; -15), nous calculons à l'aide de SPASIBA (-47 ; -40). La valeur de φ est ici mal reproduite et plus proche de sa valeur dans le cristal (i.e (-58; -19)) ou de sa valeur obtenue par calcul semi-empirique à l'aide de la méthode MNDO (i.e (-45 ; -20)). Ces valeurs sont malgré tout bien reproduites et dans le bon ordre de grandeur. En effet, des champs de forces spécialisés comme celui de Homans et *al.* donnent un couple (ϕ ; ϕ) de (-50 ; 20) où φ a une valeur trés différente des valeurs expérimentales (on passe d'une

conformation gauche- à gauche+). Nous pouvons de plus ajouter à la vue des résultats que la valeur de la constante de force pour le dièdre associé à l'effet exo-anomére, c'est à dire dans ce cas X -C3-O3- X, n'est pas paramètré suffisamment correctement, même si l'erreur associée à ses mouvements soit inférieure à 15%. Comme les constantes sont tirées des molécules de type acétals, nous sommes amenés à nous poser la question de la validité du modéle des acétals pour établir des paramétres de torsion CO représentant l'effet exo-anomérique. En effet, un méthyle du point de vue mécanique ne peut se substituer à un monosaccharide. Par contre, les résultats concernant cette torsion CO peuvent servir de point de départ pour son propre raffinement.

Le Mannose & 6Mannose

Dans le cas de ce disaccharide nous avons un angle dièdre supplémentaire dans la liaison glycosidique, donc un degré de liberté en plus. Les angles diédraux qui interviennent dans la liaison glycosidique sont ϕ =C1O1C'6C'5, ϕ =C2C1O1C'6 et ω =O1C'6C'5H'5. Les travaux de RMN sur ce disaccharide réalisés par Homans *et al.* ne rapportent que les valeurs de ϕ et ϕ . Ce sont ces dernières qui seront examinées. Nous calculons une valeur de ϕ moyenne de 164° avec un écart type de 5.5° et une valeur de ϕ moyenne de -142° avec un écart type de 10°. On n'observe donc pas ici de grande flexiblité pour ces angles dièdres comme il l'a été maintes fois supposé avec de nombreux champs de forces. Mais nous sommes en accord avec les valeurs expérimentales de la RMN qui donnent un couple (ϕ ; ϕ) égale à (-175; -140), alors que le calcul semi-empirique avec la méthode MNDO donne (-120; -165) ceci constitue une grosse différence pour l'angle ϕ mais les conditions du calcul sont différentes. Nous avons donc comparé les résultats de Brisson *et al.* pour les angles dièdre qui suivent ϕ =H1C1O1C'3, ϕ =C1O1C'3H'3 et ω =O6C6C5H5. Sur le méthyle saccharide Manα16méthyl, ϕ et ϕ ont les valeurs suivantes

(-50 ; 90-200) et sur le méthyle disachharide Man α 16Man α Méthyl nous avons un couple de (-60 ; 150). En ce qui concerne l'angle ω , il existe deux valeurs stables : 180° et -60°, mais l'angle de -60° demeure le plus énergiquement stable. A l'aide de SPASIBA nous calculons une valeur de ϕ variable puisque ses valeurs vont de -180° à 180°, toutefois le maximum de population se trouve vers -40°. Par contre ϕ a une valeur moyenne de 120° qui représente les valeurs expérimentales. Nous retrouvons pour l'angle ω une valeur de -59°, mais seulement 15% de conformères possédent un angle de 180°. Mis à part les deux valeurs possibles de ω qui peuvent constituer une sorte d'aiguillage entre deux conformations -60° et 180°, la liaison glycosidique 1-6 ne possède pas de caractère de grande flexibilité.

CHAPITRE 5

Les oligosaccharides liés N-glycosidiquement sont divisés, comme nous l'avons vu en trois types : oligomannoside, N acétyle lactosaminique et complexe. Ces trois types possèdent une entité commune de type pentasaccharidique : une partie chitobiose directement liée à la chaîne latérale d'une asparagine, et d'un trisaccharide branché constitué uniquement de mannose et lié au chitobiose par une liaison de type \beta1-4. Cet ensemble pentasaccharidique constitue le noyau. En ce qui concerne le type oligomannosidique, plusieurs autres mannoses sont reliés au noyau. Lors de la biosynthèse des glycoprotéines possédant des N-glycannes, le précurseur Glc3Man9GlnNAc2 est transféré du dolichol pyrophosphate à la chaîne latérale d'une asparagine d'un site de glycosilation (Kornfeld R et al., 1985). Différents types de Nglycannes sont engendrés à partir de ce précurseur oligosaccharidique, et à travers l'action concomitante de différentes glycosidases et glycosyltransférases localisées dans le RER et l'appareil de Golgi (Kaushal et al., 1993). Bien que le processus d'assemblage du glycanne et de la protéine soit commun à la plus part des organismes, la maturation des oligosaccharides empreinte des voies très différentes (Kukuruzinska et al., 1987). Ces différences de maturation s'expliquent par la spécificité des glycosidases et des glycosyltransférases présentes dans le compartiment cellulaire. Beaucoup de maladies et de dysfonctions de systèmes protéiques peuvent être attribuées à des maturations défectueuses de glycannes (Muramatsu et al., 1993). Il est important de connaître la structure de glycannes en plus de la structure des glycosidases et glycosyltransférases du fait de l'importance des interactions du substrat oligosaccharide

avec les différentes protéines enzymatiques pendant le phénomène de maturation. Certaines structures de N-glycannes sont connues soit par cristallographie (Deisenhofer J, 1981; Sutton et al., 1983; Wilson et al., 1983; Weis et al., 1992; Shannon et al., 1991), soit par des études de modélisation moléculaire, comme les travaux de French et al. (French AD et al., 1990), Meyer B (Meyer B, 1990), Brady et al. (Brady JW et al., 1991). Les premiers travaux de modélisation moléculaire sur les structures de Nglycannes consistaient en des calculs de minimisation de l'énergie potentielle de la molécule (Biswas et al., 1987) pour déterminer la structure la plus stable ou des études de simulation en dynamique moléculaire sur des structures de type Mana12Man pendant 500 ps (Edge et al., 1990), Mana13ManB14GlcNAc pendant 500 ps avec ou sans eau (Homans et al., 1990) ou sur un glycanne de type N Acétyle lactosaminique pendant 200 ps (Dauchez M et al., 1992). L'intérêt porté à la détermination de la structure des glycannes vient du fait qu'elle permettrait d'expliquer leur(s) fonction(s). Ces renseignements sur la structure ne sont atteints que très partiellement par les méthodes expérimentales. La modélisation moléculaire se propose de faire le lien entre les résultats expérimentaux macroscopiques et le comportement au niveau microscopique. Ce type de méthode quand elle est accessible permet de relier la structure tridimensionnelle à la fonction. L'évolution des composants électroniques permet désormais de fabriquer des processeurs atteignant un grand nombre d'opérations par seconde, à l'aide d'un nombre d'instructions extrêmement réduit. Grâce à ceux-ci les calculs de simulation de dynamique moléculaire, grande consommatrice de ressources informatiques, sont devenues des méthodes de choix pour l'étude du comportement des biomolécules. Ces études sont basées sur la connaissance de la fonction énergie potentielle moléculaire empirique dont la fiabilité des résultats de simulation dépend. Dans le travail qui suit nous avons utilisé la fonction énergie potentielle SPASIBA développée dans notre Laboratoire et les paramètres décrits précédemment. En vue de tester la fiabilité de l'ensemble (paramètres et fonction) nous avons simulé une glycoprotéine hydratée par un millier de molécules d'eau pendant un temps de 400 ps

par la méthode de dynamique moléculaire. Nous détaillerons ensuite la méthode de construction du système glycoprotéine ainsi que des paramètres du calcul de dynamique moléculaire. Les résultas de simulation sont ensuite présentés et comparés aux valeurs expérimentales déduites de la RMN et à d'autres résultats de modélisation moléculaire présents dans la littérature.

METHODE DE CALCUL

DEFINITIONS

La nomenclature standard a été utilisée pour pour numéroter les atomes (Figure 1), ϕ est considére comme étant nul quand la liaison H1-C1 est éclipsée avec la liaison CX-HX et où x peut être égal à deux, trois, ou quatre dépendant du type de liaison (i.e liaison 1-2, 1-3 ou 1-4). Dans le cas d'une liaison 1-6 ϕ , ψ et χ sont redéfinis comme étant H1-C1-O-C6, C1-O-C6-C5 et O-C6-C5-H5 et lorsque le premier et le dernier atome sont en configuration cis nous définissons l'angle 0°. La structure initiale possède tous ses monosaccharides d'isomérie D et les cycles dans la configuration 4C1, la séquence et la dénomination des liaisons est décrite dans la figure 2. Leur géométrie est tirée de la cristallographie (longueurs de liaison, angles de liaison). Le groupe acétamido est fixé en conformation trans. Les valeurs d'angles diédraux initiaux sont tirées de la littérature (Tableau 1):

- carte isopotentielle de disaccharides (Satyanaryana et al., 1987)

116

FIGURE 1: Nature des angles Phi, Psi et Omega d'une liaison O-glycosidique.

FIGURE 2 : NOMENCLATURE DES LIAISONS DU GLYCANNE

TABLEAU 1 : VALEURS DES ANGLES DIHEDRAUX DES LIAISONS GLYCOSIDIQUES DE DEPART

	g1	m	3	6	23	223	36	236	66	266
φ	160	30	0	-60	-60	-60	-60	-60	-60	-60
φ	27	-60	60	120	0	0	0	0	120	0
χ	-		-	180	-	-	-	60	-	-

- études de minimisation d'énergie potentielle (Biswas et al., 1987)

Pour les angles diédraux des liaison glycosidiques du noyau et plus spécialement pour le trisaccharide GlcNAcβ14GlcNAcβ14Man les valeurs obtenues par cristallographie sur la protéine sont conservées comme point de départ. En ce qui concerne la protéine, c'est à dire le fragment de lactotransferrine bovine les coordonnées cristallographiques nous ont été fournies par le Professeur Baker (*New-Zeland*). Nous n'en n'avons conservé qu'une partie, la partie glycosylée que nous avons réduit en ne conservant que les acides aminés éventuellement accessibles par le glycanne.

LA PROCEDURE DE CALCUL

La simulation de dynamique moléculaire a été réalisée sur un temps de 400 ps en considérant explicitement les 4000 atomes du système. Ces calculs ont été effectués par un ordinateur Vax 3400 à processeur alpha de Digital Equipment Corporation et à l'aide du programme SPASIBA. Tous les termes de la fonction énergie potentielle moléculaire empirique ont été pris en compte sauf le terme d'élongation de liaison des molécules d'eau. Ces liaisons sont maintenues figées lors de la simulation ceci à cause de contraintes du logiciel en cours de développement. De plus la partie protéique reste figée dans sa position d'origine servant uniquement de contrainte pour les mouvements du glycannes. Le calcul des interactions entre atomes non liés s'effectue pour une distance maximale de 8Å. La constante diélectrique est fixée à 1 du fait de la prise en compte explicite du solvant. L'énergie potentielle du système glycoprotéine hydratée est minimisée par la méthode de la plus grande pente jusqu'à ce que le gradient du potentiel ait une valeur inférieure à 0.01kcal/Å, ensuite est effectuée une minimisation à l'aide de la méthode du gradient conjugué jusqu'à une valeur de gradient inférieure à 0.0001kcal/Â. La période d'équilibrage est de 50 picosecondes. La température est maintenue autour de 300K avec une fluctuation autorisée de 10K. Le pas d'intégration est de 1 femtoseconde, celle-ci étant effectuée a l'aide de l'algorithme de Verlet. Un enregistrement des résultats est effectué tous les 50 femtosecondes. Le solvant est considéré de façon explicite ce qui restreint les zones d'angles diédraux accessibles par les liaisons glycosidiques. En effet, des études de dynamique moléculaires menées conjointement sur des disaccharides dans le solvant explicite et dans le vide montrent que seule l'étendue de la région atteinte par les valeurs de dièdre est changée. Cependant pour des molécules de type Man9GlcNAc2, de taille plus importante, il est nécessaire de considérer le solvant (*Homans et al., 1990*). Les charges résiduelles partielles sont issues des travaux précédents, sauf dans le cas des acides aminés qui sont tirés de la base de données de SPASIBA.

RESULTATS ET DISCUSSIONS

LE GROUPEMENT EXOCYCLIQUE -CH2OH

Nous avons pu observer que toutes les positions éclipsées pour le dièdre C6-O6 avait été prise au cours des 400 picosecondes de simulation de dynamique moléculaire. Il est à noter que si des changements surviennent effectivement, ceux-ci sont peu fréquents certainement à cause des liaisons hydrogènes engagées qui stabilisent la position de l'hydroxyle. Notre attention n'a pas été portée plus longuement sur ce groupement du fait de sa non contribution dans les conformations prises par le glycanne.

LA CONFORMATION DE LA LIAISON β 1,4

Les valeurs prises par les dièdres présents dans la liaison glycosidique β 1,4 sont constantes lors de la simulation de dynamique moléculaire. Par contre les valeurs des angles dièdres des deux liaison $\beta_{1,4}$ sont différentes. Nous obtenons pour la liaison Man β 1,4Man des valeurs d'angle de torsion (ϕ m, ψ m) qui fluctuent principalement autour de 37°et 280° (Tableau 2 et 3) alors que pour la liaison GlcNAcβ1,4GlcNAc les angles dièdres (ϕ g1, ψ g1) fluctuent autour de 166° et 250° (Tableau 2 et 3). Il faut noter que \u03c8g1 est malgé tout flexible puisqu'elle peut prendre des valeurs entre 200° et 300°. Mis à part cette dernière liaison les autres valeurs de dièdre possèdent un écart type proche de 10°, ce qui prouve leur stabilité dans le temps de l'analyse. Cette valeur est beaucoup faible que celle retrouvée par Rao et al. (i.e 30°), mais leur simulation avant été effectuée dans le vide les mouvements moléculaires sont beaucoup plus amples, comme il le signale lui-même. De plus les valeurs des angles dièdres que nous retrouvons sont différentes de celles retrouvées par les calculs précédents (Biswas et al., 1987 ; Homans et al., 1990 ; Peters et al., 1993). Ces derniers trouvent des valeurs d'équilibres (ϕ et ψ) proches de 55° et 0° et identiques pour les deux liaisons Man β 1,4Man et GlcNAc β 1,4GlcNAc. La valeur de ϕ que nous calculons est cependant celle trouvée par Rao et al. pour un temps très court durant la simulation. Ces différences de valeurs s'expliquent par le fait que les calculs effectués auparavant ne tenaient pas compte des contraintes imposées par la protéine. En effet, lors de notre calcul nous avons pris pour structure de départ les coordonnées de la cristallographie pour la protéine et pour les monosaccharides du noyau. Ces derniers étant dans des positions

Temps de simulation en picoseconde

Temps de simulation en picoseconde

TABLEAU 3 : LES VARIATIONS DE L'ANGLE DIEDRE PSI DE LA LIAISON 14

non prévisibles, donc peu probables, dans le vide ou dans l'eau, car résultant de l'interaction avec la protéine.

LA CONFORMATION DE LA LIAISON α1,3

La liaison $\alpha 1,3$ n'est pas plus flexible que la précédente ($\beta 1$ -4), nous sommes ici en contradiction avec les résultats de Rao *et al.* qui prévoient les deux liaisons α 1,3 plus flexibles que la liaison β 1,4. De la même façon nous trouvons que les fluctuations des angles dièdres engagés dans ces liaisons α 1,3 possèdent la même flexibilité mais avec des valeurs différentes de celles de Rao et al.. En effet, dans le cas de la liaison Mana 1,3Man nous avons pour valeur moyenne de (ϕ 36, ψ 36) (Tableau 4 et 5) le couple (300, 310) alors que pour l'autre liaison Man α 1,3Man β nous avons une valeur de (ϕ 3, ψ 3) de (320, 350) (Tableau 4 et 5), donc une différence dans le dièdre ψ de 110°. Ici encore les différences pouvaient être prévisibles du fait des conditions de calcul très différentes. Les contraintes induites par la protéine amènent les angles dièdraux dans des régions qui ne sont pas forcément accessibles ou peu accessibles sans protéine. Rao et al. prévoient pour (ϕ 3, ψ 3) un espace de -30° à -40°, et, 0° à 30° respectivement et pour (ϕ 36, ψ 36) -45° à -60°, et, 0 à 30° respectivement. Nos prévisions sont en accord avec ces valeurs pour (ϕ 3, ψ 3) mais pour le couple (ϕ 36, ψ 36) nous notons une différence d'environ 80° en ce qui concerne le dièdre \u03e636. Ces valeurs d'angles dièdraux correspondent à des valeurs d'énergie minimum pour le disaccharide Mana1,3Man retrouvées lors d'étude de mécanique moléculaire par Imberty et al. (Imberty et al., 1990), et par Biswas et al. (Biswas et al., 1987) qui prévoient les mêmes valeurs d'angles pour les oligosaccharides suivants : G2M5, G2M6 et G2M7. Une étude de dynamique moléculaire réalisée par Homans et al. (Homans et al., 1990) sur le trisaccharide Mana

TABLEAU 4 : LES VARIATIONS DE L'ANGLE DIEDRE PHI DE LA LIAISON 13

13Manß14GlcNAcß permet aussi de retrouver ces angles avec ou sans présence d'eau, ainsi qu'à l'aide d'une simulation Monte Carlo sur le disaccharide Manα13Man par Peters *et al.* (*Peters et al., 1993*). Du point de vue expérimental, la RMN bidimensionnelle par l'intermédiaire d'effets nOe sur les oligosaccharides G2M5 et G2M9 permet de mesurer un couple (ϕ 3, ψ 3) de (-20, 30) (*Homans et al., 1987a*), l'erreur que nous commettons sur le couple (ϕ 3, ψ 3) est de 20° et 30° respectivement. Mais les conditions de mesures expérimentales sont différentes des conditions de notre calcul bien que l'oligosaccharide soit le même. L'hypothèse de Rao *et al.* qui tente d'expliquer la différence de fluctuation entre les deux liaisons α13 par une grande proximité de la branche α13 de la branche α16 du noyau ne peut s'envisager ici du fait de la présence de la protéine et donc ne permet pas une explication cohérente de la maturation de l'oligosaccharide Man9GlcNAc2.

LA CONFORMATION DE LA LIAISON α1,6

Il existe deux types de liaison $\alpha 1,6$ dans les oligosaccharides de type oligomannosidique : le premier se situe dans le noyau entre Man6 et Manm associé aux dièdres ($\phi 6, \psi 6, \chi 6$) et le second entre Man66 et Man6 associé aux dièdres ($\phi 66, \psi 66, \chi 66$) (Figure 2). Nous observons que la rigidité des deux liaisons $\alpha 1,6$ est la même au regard des écarts types des variations d'angles dièdres au cours de la simulation de dynamique moléculaire. Ce résultat est en opposition avec ceux de Rao *et al.* qui montre une flexibilité plus grande de la liaison incluse dans le noyau. Leurs résultats montrent une valeur préférentielle vers -60°, 180°, -60°. Nous calculons deux valeurs différentes, la première ($\phi 6, \psi 6, \chi 6$) vers (-60°, 180°, 60°) et la deuxième ($\phi 66, \psi 66, \chi 66$) vers (-60°, -120°, 60°) (Tableau 6, 7 et 8). La grosse différence se situe ici sur la valeur de χ pour les deux liaisons et aussi sur la valeur de ψ pour ($\phi 66, \psi 66, \chi 66$). Les

Temps de simulation en picoseconde

TABLEAU 7 : LES VARIATIONS DE L'ANGLE DIEDRE PSI DE LA LIAISON 16

.Temps de simulation en picoseconde

TABLEAU 8 : LES VARIATIONS DE L'ANGLE DIEDRE OMEGA DE LA LIAISON 16

études menées en RMN (Homans et al., 1987a) sur les oligosaccharides de type oligomannosidique ont montré deux valeurs possibles pour χ : -60° et 180°. Cependant ces valeurs sont à prendre dans leur contexte : l'oligosaccharide dans le solvant et sans protéine. Nous ne notons pas de grande variation pour le dièdre χ dans les deux cas. Rao et al. rapportent des valeurs de dièdre très interdépendantes les unes des autres pour les liaisons glycosidiques, nous n'observons pas un tel résultats du fait de la constance des valeurs d'angles dièdraux. D'autres calculs à l'aide de champ de forces (Biswas et al., 1987) montrent que la valeur de χ est plus probablement proche de -60° et que la différence d'énergie conformationelle entre 60° et -60° est de 2.6 kcal/mol. Notre résultat peut donc surprendre, mais les différentes liaisons hydrogènes engagées entre la protéine et le glycanne stabilisent ce dernier avec une valeur d'angle χ valant 60°. De plus les raisons de la stabilisation de χ à une valeur de -60° était la suivante : une liaison hydrogène s'engage entre l'hydroxyle 2' du Man36 et l'oxygène du carbonyle de GlcNAc2 (Brisson et al., 1983). Cette raison n'est plus valable lorsque l'on se situe dans la glycoprotéine puisque l'hydroxyle 2' du Man36 devient inaccessible au carbonyle de GlcNAc2. Nous pouvons remarquer que nos valeurs de (ϕ 66, ψ 66, χ 66) sont accessibles et correspondent aussi à un minimum sans protéine et avec solvant (Rao et al., 1994). Elles sont atteintes lors d'une simulation de dynamique moléculaire avec comme valeur d'angle dièdre de départ $\psi = \chi = 150^\circ$ et ϕ fluctuant autour de -50°. Ce résultat montre que même si la conformation 60° est défavorable (i.e 60° pour χ) dans une liaison α 1, 6 (du fait d'interactions syn-axial entre les oxygènes 4 et 6 du même monosaccharide) elle se retrouve lors de la simulation de dynamique moléculaire et constitue un minimum local. Ceci nous montre aussi que la conformation de départ a une très grande importance, sauf si le temps de simulation est infiniment grand, ce qui n'est pas concevable du point de vue stockage de l'information et temps de calcul. Les variations des angles ($\phi 6$, $\psi 6$, χ 6) sont généralement comprises entre plus et moins quinze degrés autour de la valeur moyenne. Les préférences conformationnelles de la liaison α 1-6 pour les angles dièdres ($\phi 66, \psi 66, \chi 66$) sont différentes de l'autre liaison $\alpha 1$ -6. De plus d'après Rao et al. la

conformation de cette dernière liaison al-6 dépend essentiellement du nombre de résidus de mannose présent dans le glycanne. Même si la valeur de l'angle dièdre $\chi 66$ est plus probablement autour de -60° on peut remarquer que pour les oligosaccharides où le man66 n'est pas substitué par un mannose, deux valeurs sont possibles : 60° et - 60° (les deux conformations gauches). Comme pour l'autre liaison α 1-6 la conformation gauche 60° engendre des interactions défavorables syn-axiales dues à la proximité des atomes d'oxygène O4 et O6 du monosaccharide substitué en 6 et aux interactions entre les hydrogènes non polaires du cycle pyranique et du trimannose du noyau. Nous retrouvons en tant que valeur moyenne une conformation calculée par Rao et al. pour (\$ 66, ψ 66, χ 66) (-60, -120°, 60°). Cette dernière devient la seule conformation possible d'après leur calcul si l'oligosaccharide n'est substitué que par un seul mannose en position deux et qu'il n'existe que sept ou six mannoses dans le sucre. Comme pour l'autre liaison α 1-6 nous déterminons une conformation moyenne qui n'est a priori, sans protéine et dans l'eau, pas la conformation la plus probable bien qu'elle corresponde à une conformation stable. Sur la base d'études de RMN un modèle de l'oligosaccharide Man9GlcNAc2 a été construit (Wooten et al., 1990) puis minimisé à l'aide du champ de forces AMBER. Les valeurs retrouvées pour les angles χ sont les mêmes : -60° ce qui amène à une interaction stérique défavorable entre le mannose Man266 et le noyau. Cependant cette étude est réalisée avec le champ de forces AMBER qui n'est pas paramétré pour les sucres, et donc les résultats sont plus que discutables après une minimisation de l'énergie potentielle. Notons toutefois qu'avec l'absence de paramètres spécifiques certaines valeurs d'angles sont communes chez Wooten et al. et Rao et al..

LA CONFORMATION DE LA LIAISON α 12

Les trois liaisons $\alpha 12$ des mannoses externes possèdent des valeurs (ϕ,ψ) différentes. Seul l'angle ϕ est commun et a pour valeur -60°. La variation de ce dernier est très limitée dans le temps puisqu'on observe une variation de +/- 10° en moyenne (Tableau 9 et 10). Pour ce qui est de l'angle ψ le mannose Man236 substitue le monosaccharide précédent avec un angle ψ de 60°, les deux autres mannoses externes Man223 et Man266 substitue le mannose qui les précède avec un angle ψ de -60°. Les fluctuations de ces angles sont aussi très limitées avec +/-10° en moyenne. Rao *et al.* calcule la même valeur de ϕ mais la valeur de ψ calculée est différente de la nôtre et vaut 0°. Les fluctuations calculées sont alors plus grandes que celles que nous obtenons, en effet ϕ fluctue de +/-40° et ψ fluctue de +/-25°. Cependant comme pour notre simulation, le comportement du mannose Man236 est différent des deux autres en étant plus rigide (+/-20°, +/-15°). En ce qui concerne cette liaison nous notons une différence pour l'angle ψ au regard de la RMN (*Homans et al., 1987b*) qui prédit pour l'oligosaccharide seul en solution une valeur d'angle égale à environ 0°.

Lors de cette étude nous avons étudié les différentes conformations du glycanne en considérant tous les monosaccharides ainsi que la protéine, plutôt qu'après étude des différents disaccharides et trisaccharides constituant le glycanne. Comme il a été décrit pour les différentes liaisons du glycanne, les préférences conformationelles des liaisons 1-3 et 1-6 sont différentes. Des simulations de dynamique moléculaire de quelques oligosaccharides montrent les mêmes différences entre les mêmes liaisons 1-3 et 1-6 (*Balaji et al., 1993*). De plus les récents résultats de Jeffrey *et al. (Jeffrey et al., 1993*) montrent que la construction d'oligosaccharide à partir des résultats de disaccharides et trisaccharides n'amène pas à des résultats probants.

Temps de simulation en picoseconde

Temps de simulation en picoseconde

TABLEAU 10 : LES VARIATIONS DE L'ANGLE DIEDRE PSI DE LIAISON 12

Contrairement à Rao *et al.* nous ne déterminons qu'une seule conformation privilégiée pour le glycanne Man9GlcNAc2 dans les conditions de notre calcul. Celle-ci apparaît être très importante au regard du devenir du glycanne pendant sa maturation et sa transformation ultime en un glycanne Man5GlcNac2 pendant la biosynthèse de la protéine. Les acides aminés autour du site de glycosylation stabilisent une conformation particulière du glycane Man9GlcNAc2. C'est ainsi que pour une immunoglobuline M (IgM) le glycanne Man9GlcNAc2 adopte deux conformation globales différentes du fait de la différence d'environnement en acides aminés. En conséquence le glycanne lié à l'asparagine 402 se voit amputé du mannose Man266 en premier, alors que celui qui est lié à l'asparagine 563 se voit ôté du mannose Man236 (*Cohen et al., 1980*).

CONCLUSIONS ET PERSPECTIVES

L'origine de ce travail vient du fait que jusqu'à présent aucun champ de forces n'a été réalisé, pour étudier simultanément la structure et le comportement dynamique des sucres, sur la base d'informations expérimentales d'origine vibrationnelle comme la spectroscopie infra rouge. En effet jusque là les champs de forces étaient soit destinés à des études structurales, c'est le cas de AMBER et des paramètres de Homans *et al.*, soit à des études vibrationnelles et c'est le cas du champ Urey-Bradley-Shimanouchi et des paramètres de Dauchez *et al.*. Les tentatives actuelles pour concilier les deux approches sont généralement peu informatives en ce qui concerne les propriétés vibrationelles, c'est le cas des paramètres de Glennon *et al.* pour le champ de forces AMBER. Le champ de forces SPASIBA possède l'avantage d'être un hybride entre la fonction énergie potentielle AMBER et la fonction énergie potentielle de Urey-Bradley-Shimanouchi et donc de pouvoir reproduire les comportements structuraux et dynamique des molécules simultanément.

Chaque champ de forces, peu importe son origine, doit être paramètré pour former une base de données de constantes de forces. En fonction du but donné à ce champ de forces la paramétrisation est différente. Existe-t-il une méthode de paramétrisation cohérente? Oui, c'est celle qui à tout moment de la paramétrisation prendrait en compte tous les paramètres existants dans le champ de forces...Cette solution n'est malheureusement pas envisageable quand la paramétrisation se fait manuellement, mais il est nécessaire de s'en approcher le plus possible.

La question qui se pose ensuite est celle de la transférabilité des paramètres obtenus après l'étape de paramétrisation. Il est clair que pour une fonction chimique particulière les paramètres doivent être les mêmes et donc la transférabilité doit être totale, il ne doit pas exister un champ de forces par molécule mais par fonction chimique. Le problème devient plus complexe quand on aborde les macromolécules qui regroupent plusieurs fonctions chimiques comme les acides aminés ou les sucres. Fautil paramètrer un type macromoléculaire comme on le fait pour une fonction chimique? Il apparaît que cette solution conduis à des champs de forces certes capable de reproduire les différentes propriétés demandées, mais totalement inhomogène avec le reste de la base de données. Par exemple, pour étudier une glycoprotéine il est nécessaire d'avoir le champ de forces des acides aminés et des sucres homogènes. Le problème d'homogénéité d'une base de données est un facteur extrêmement important. Dans le cas des sucres nous avons opté pour la décomposition d'un sucre en différentes fonctions chimiques que nous avons paramétré, ce sont les éthers, les alcools et les acétals, dans le but d'avoir des paramètres homogènes entre eux et avec le reste de la base de données. C'est cet ensemble de paramètres qui devait nous conduire à un champ de forces des sucres lui aussi homogène avec le reste de la base de données. Des paramètres mis au point à l'aide de données expérimentales obtenues dans l'état gaz sont représentatifs des termes intramoléculaires ce qui représente une différence avec les autres champ de forces qui puisent leurs données expérimentales dans les différents états de la matière. Le choix du système méthanol et eau pour mettre au point la liaison hydrogène est arbitraire bien que commun. Il semble toutefois bien se préter à la modélisation de la liaison hydrogène.

Au niveau du monosaccharide plusieurs problèmes se posent, le premier concerne le mélange des anomères, qui peut être évité en méthylant l'hydroxyle

134

anomère mais qui rajoute un degré de complexité au modèle. C'est sur cette région du sucre que se pose le deuxième problème, le modèle acétal est-il adéquat pour modéliser l'effet anomère des sucres? Malheureusement c'est la seule solution du fait de la carence en résultats expérimentaux à propos de la fonction acétal. De plus dans les modèles aliphatiques on ne tient pas compte de l'effet de cycle. La même question se pose pour l'application des paramètres d'acétal à la liaison glycosidique quand les seuls paramètres qui soient accessibles, aux vues des résultats expérimentaux disponibles, sont les paramètres de la forme α , les paramètres de la forme β sont le plus souvent représentés par défaut par les paramètres de la forme α . De plus notre modèle de monosaccharide hydraté, s'il tient compte des interactions non liantes entre le monosaccharide et le solvant, ne représente pas exactement les conditions expérimentales du cristal pour lequel est enregistré le spectre de vibration. Les charges sont calculées pour le monosaccharide puis pour l'eau mais pas pour l'ensemble du système, or une liaison hydrogène implique un échange électronique. Une solution consisterait à effectuer les calculs sur le monosaccharide perméthylé ce qui le rend plus volatile et finalement son spectre dans l'état gaz (la molécule est ici considérée comme isolée) devient réalisable, de plus nous possédons les paramètres de la fonction chimique éther. Aussi il n'existe pas d'attribution exacte pour les spectres de vibration des sucres, donc la procédure de raffinement des paramètres s'effectue sur nos seules présomptions ainsi que sur des travaux antérieurs. C'est ce qui constitue la plus grosse incertitude de notre travail, ainsi que celle de tous les travaux actuels concernant les sucres.

Est-il possible aujourd'hui de construire un champ de forces pour les sucres?

La réponse doit être nuancée car oui cela est possible pour un champ de forces qui ne fait que du calcul de structure (i.e AMBER) car les données structurales sont suffisamments nombreuses, par contre il apparait difficilement réalisable dans le cas d'un champ de forces spectroscopique. Cette impossibilité est due aux incertitudes expérimentales concernant les sucres. Dans de telles circonstances nombreux sont les champs de forces qui proposent des attributions, mais aucun d'entre eux ne pourra imposer son modèle par manque de possibilités de vérifications. De ce fait une simulation de dynamique moléculaire de sucres a-t-elle encore un sens? On peut simplement avouer qu'une simulation de dynamique moléculaire sera moins dénuée d'intérêts si elle est effectuée avec un champ de forces qui essaye de reproduire des données vibrationnelles.

En ce qui concerne notre simulation de dynamique moléculaire nous n'avons pas, pour la glycoprotéine, paramétré spécifiquement la liaison pseudo-glycosidique, les paramètres utilisés sont des paramètres déjà existants dans la base de données de SPASIBA, c'est donc un point perfectible à l'avenir.

Finalement, notre travail nous aura permis de réaliser un champ de forces des sucres pour SPASIBA, de compléter la base de données des fonctions chimiques élémentaires et d'amener une hypothèse de structure quant à la géométrie du glycanne Man9GlcNAc2 de la lactotransferrine bovine dans le solvant. Ce champ de forces toujours en développement au Laboratoire, mais en partie opérationnel, devra être perfectionné au gré de nouveaux résultats expérimentaux.

BIBLIOGRAPHIE

Abeijon C and Hirscherg CB J Biol Chem 265(1990)14691.

Allinger NL, Yuh YH and Lii JH J Am Chem Soc 111(1989)8551.

Allinger NL, Lii F and Yan L J. Comput. Chem., 11 (1990) 848.

Allinger NL, Rahman M, Lii JH J. Am. Chem. Soc., 112 (1990) 8293.

Amoros JL and Amoros MC Molecular Scattering, John Wiley and Sons, NY 1968.

Aoki K J Chem Soc Jpn 74(1953)110.

Astrup EE Acta Chem Scand 25/4(1971)1494.

Balaji PV, Qasba PK and Rao VSR Biochemistry 32(1987)12599.

Barker SA, Bourne E, Stacey M and Whiffen D J Chem Soc (1954)171.

Biswas M, Sekharudu YC and Rao VSR Carbhydr Res 160(1987)151.

Blukis U, Kasai P, Meyers R J Chem Phys 38(1963)2753.

Borel JP Biochimic dynamique, Ed Maloine, Paris 1987.

Boyd R J Chem Phys 48(1968)2574.

Brady JW Curr Op in Struct Biol 1(1991)711.

Breneman CN and Wiberg K J Comput Chem 11(1990)361.

Brodersen S Pure Appl Chem 4(1962)27.

Brooks B, Bruccoleri R, Olafson B, States D, Samanathan S and Karplus M J. Comput. Chem., 4 (1983) 187.

Brown G and Levy H Acta Cryst B35(1979)830.

Buckingham D, Utting BD Ann Rev Phys Chem 21(1970)287.

Buckert U and Allinger NL Molecular mechanics, Am. Chem. Soc., Washington, DC, 1982.

Caroll M, Dance N, Masson PK, Robinson D and Winchester BG Biochem Biophys Res Com 49(1972)579.

Chaney W, Sundaram S, Friedman N and Stanley P J Cell Biol 89(1989)2089.

Chhiba M Phd Thesis, Lille, 1995.

Chhiba M and Vergoten G J. Mol. Struct., 326 (1994a) 35.
Chhiba M, Derreumaux P and Vergoten G J. Mol. Struct., 317 (1994b) 171.

Chhiba M and Vergoten G In Preparation.

Clark M, Cramer RD and Opdenbosch NV J Comput Chem 10(1989)982.

Crawford B and Joyce L J Chem Phys 7(1983)307.

Daggett V, Kollman PA and Kunitz ID Biopolymers 31(1991)285.

Dauchez M Thèse de Doctorat, Université de Lille, 1990.

Deisenhofer J Biochemistry 20(1981)2361.

Derreumaux P and Vergoten G J. Mol. Struct., 295 (1993a) 233.

Derreumaux P, Dauchez M and Vergoten G J. Mol. Struct., 295 (1993b) 203.

Derreumaux P and Vergoten G J. Mol. Struct., 286 (1993c) 55.

Derreumaux P and Vergoten G J. Chem. Phys. 102(21) (1995) 8586.

De Vries N and Buck H Carbohydr Res 165(1987)1.

Dunitz JD J Am Chem Soc 107(1985)7653.

Durier V, Tristram F and Vergoten G Accepted in Theochem 1995.

Fock V Z Physik 61(1930)126.

French AD, Rowland RS and Allinger NL « Modelling of glucopyranose » in computer modeling of carbohydrates ACS Symp, Serie 430, Chap 7, 120.

Frisch M, Trucks G, Head-Gordon M, Gill P, Wong M, Foresman J, Johnson B, Shlegel H, Robb M, Gomperts M, Andres J, Raghavachari K, Binkley J, Gonzales C, Martin R, Fox D, Defrees D, Baker J, Stewart J, Popple J GAUSSIAN92; GAUSSIAN, Inc. : Pittsburgh PA, 1992.

Glendening ED, Reed AE, Carpenter JE and Weinhold F Natural Bond Order, Version 3.1.

Glennon TM, Zheng Y, Le-Grand S, Schutzberg BA and Merz KM J Comp Chem 15/9(1994)1019.

Giacomini M, Pullman K and Maigret B Theor Chim Acta 19(1970)347.

Hartree DR Proc Cambridge Phil Soc 24(1928)111.

Hayashi M and Adachi M J Mol Struct 78(1982)53.

Hirschberg CB and Snider MD Ann Rev Biochem 56(1987)63.

Homans SW Biochemistry 29(1990)9110.

Homans SW, Dwek RA and Rademacher TW Biochemistry 26(1987a)6553.

Homans SW, Pastore A, Dwek RA and Rademacher TW Biochemistry 26(1987b)6649.

Imberty A, Gerber S, Tran V and Perez S Glycoconjugate 7(1990)27.

Jeffrey G and Yates J Carbohydr Res 79(1980)156.

Jeffrey G and Taylor R J Comp Chem 1(1980)99.

Jeffrey G, Pople JA, Binkley JS and Visheshwara S J Am Chem Soc 100(1978)373.

Kanazawa Y and Nukuda Y Bull Chem Soc Jpn 35(1962)612.

Kitagawa T and Myazawa T Bull Chem Soc Jpn 41(1968)1976.

Kimura K and Kubo K J. Chem. Phys., 30 (1959) 151.

Kjaergaard H, Henru B and Tar AW J Chem Phys 94(1991)5844.

Kimma K and Kubo K J Chem Phys 30(1959)151.

Kistiakowsky G and Rice W J Chem Phys 8(1940)610.

Kobata A Eur J Biochem 209(1992)483.

Kornfeld R and Kornfeld S Ann Rev Biochem 54(1985)631.

Kozar T, Petrak F, Galova Z and Tvaroska I Carbohydr Res 204(1990)27.

Kukuruzinska MA, Bergh MLE and Jackson BJ Ann Rev Biochem 56(1987)915.

Lanczas C The vibrational principles of mechanics, Toronto Press, 1970.

Lees RM and Baker JG J. Chem Phys., 48 (1968) 5299.

Lennard-Jones JE Proc Roy Soc Lond A198(1949)14.

Lipkind GM, Shashkov AS and Mamyzn SS Carbohydr Res 141(1985)191.

Mathlouti M and Luu D Carbhydr Res 78(1980)225.

Mathlouti M and Koenig JL Adv Carbohydr Chem Biochem 44(1985)7.

Meyer B Conformational aspects of oligosaccharides Topics Curr Chem 154(1990)141.

Michalski JC Thèse de Doctorat, Université de Lille, 1984.

Momamy FA, carrathers LM, Mac Guire RF and Sheraga HA J Phys Chem 79(1974)1595.

Mulliken RS Phys Rev 32(1928)186.

Munro S and Pelham HR Cell 48(1987)899.

Murata M, Yoshie N, Sakurai M and Inoue Y Bull Chem Soc Jpn 66(1993)957.

Nakagawa J, Imachi M and hayashi M J Mol Struct 112(1984)201.

Nilsson L and Karplus M J Comput Chem 7(1986)591.

Oyanagi K and Kutchitsu K Bull Chem Soc Jpn 51(1978)2237.

Paulson JC Trends in Biochem Sci 37(1989)272.

Perchard JP and Josien ML J.Chim. Phys., 65 (1968) 1834 and 1856.

Perchard JP, Forel M and Josien ML J Chem Phys 6d(1971)707.

Perchard JP and Josien ML J Chim Phys 65(1968)1834.

Perchard JP and Josien ML J Chim Phys 65(1968)1856.

Perchard JP Spectrochem Acta 26A(1970)707.

Perez S, Thése de Doctorat, Grenoble, 1978.

Peters T, Meyer B, Styruike-Prill R, Somorjai R and Brisson JR Carbhydr Res 238(1993)49.

Rao VSR, Balaji PV and Qasba PK Glycobiology 4/4(1994)497.

Rasmussen K Acta Chem Scand A36(1982)323.

Reichl LE A Modern Course in Statistical Physics, Univ Texas 1983.

Roitsch T and Lehle L Eur J Biochem 181(1989)525.

Sasada Y, J. Mol. Spectroscop., 38 (1971) 33.

Satyanarayana BK and Rao VSR Biopolymer 11(1971)1115.

Schaefer L, Theochem., 86 (1982) 349 and 365.

Schrader B and Meier W Raman/IR Atlas Vol. 1, Verlag Chemie, Dortmund, 1974, A3-04.

Schrader B and Meier W, Raman/IR Atlas Vol. 1, Verlag Chemie, Dortmund, 1974, A3-40.

Serrallach L, Meyer R and Gunthard HH J. Mol. Spectroscop., 52 (1974) 94.

Shimanouchi T Pure and Appl Chem 17(1949)245.

Shimanouchi T Pure Appl. Chem., 7 (1963) 131.

Shimanouchi T and Onishi T Spectrochem Acta 20A(1964)325.

Snider MD and Rogers OC Cell 36(1984)753.

Snyder RG and Zerbi G Spectrochem Acta 23A(1967)391.

Snyder RG and Schatschneider JH Spectrochem Acta 19A(1963)85.

Snyder RG and Schatschneider JH Spectrochem Acta 21A(1965)169.

Song Z, Li YT and Li SC Biochem J 248(1987)145 p45.

SYBYL, Tripos Associates, 1699s Hanle Road, Suite 303, St Luis, MO. 63144, 1988.

Szarek, Korppi-tomala S, Martin O and Smith VH Can J Chem 62(1984)1506.

Tanagawa K, Takemura M, konaka S and Kimma S J Mol Struct 125(1984)131.

Taylor R and Vidale G J Chem Phys 26(1957)122.

Thoergesen H, Lemieu RU, Bock K and Meyer B Can J Chem 60(1980)44.

Tran VH and Brady JW Biopolymers 29(1990)961.

Tristram F, Durier V and Vergoten G Accepted in J. Mol. Struct. 1995a.

Tristram F, Durier V and Vergoten G Accepted in J. Mol. Struct. 1995b.

Tristram F, Durier V and Vergoten G In preparation 1996c.

Urey H and Bradley C Phys Rev 58(1931)1969.

Van Gunsteren W and Berendsen HJC Mol Phys 34(1977)1311.

Van Gunsteren W and karplus M Macromolecules 15(1982)1528.

Van Halbeek H Current Op in Struct Bio 4(1994)697.

Vasko D PhD Thesis, Case Western Reserve University, USA 1974.

Verlet L Phys Rev 159(1967)98.

Weiner SJ, Kollman PA, Nguyen DJ and Case DA J Comput Chem 7(1986)230.

Well H PhD Thesis, Appleton, England 1977.

Wiberg K J Am Chem Soc 87(1965)1070.

Wieser H, Laidlaw W, Krueger P and Fuhrer H Spectrochem Acta 24A(1968)1055.

Wolfe S Acc Chem Res 5(1972)102.

Woods RJ, Dwek RA, Edge CJ and Fraser-Reid B J Phys Chem 99(1995)3832.

Wooten EW, Bazzo R, Edge CJ, Zamze S, Dwek R and Rafemacher TW Eur Biophys J 18(1990)139.

Wüthrich A NMR of proteins and nucleic acids, Ed John Wiley and Sons, NY 1986.

TABLE DES MATIERES

CHAPITRE 1	1
LA BIOLOGIE DE L'OLIGOSACHHARIDE MAN9GLCNAC2	4
L'origine de l'oligosaccharide Man9GlcNAc2	4
La destiné du glycanne Man9GlcNAc2	7
Les METHODES EXPERIMENTALES DETUDES DE GLICANNES	9
La diffraction des neutrons	9 10
Les méthodes spectroscopiques	10
Infra-rouge et Raman	11
La résonance magnétique nucléaire	. 12
Les autres méthodes	13
CHAPITRE 2	14
LES METHODES QUANTIQUES AB INITIO ET SEMI-EMPIRIQUES	15
LES METHODES EMPIRIQUES	18
La mécanique moléculaire	20
La fonction energie potentiel empirique	21
La parametrisation	22
La minimisation	23
La méthode du gradient conjugué	23
La méthode Newton-Raphson	24
La dynamique moléculaire	24
Principe de la dynamique moléculaire	25
Les algorithmes	25
La mise en oeuvre	26
L'analyse	27
CHAPITRE 3	30
LA FONCTION ENERGIE POTENTIEL SPASIBA	32
PARAMETRISATION ET PROCEDURE DE CALCUL	38
LA FONCTION CHIMIQUE ETHER	45
Le groupement méthyle dans la fonction chimique éther	45
Le dimethyl ether	46
Le metnyl etnyl etner	50
Le méthyl isopropul éther	54
LA FONCTION CHIMIOUE AI COOI	0C 0A
Le méthanol	60 60
L'éthanol	68
Le propane-2 ol	72
Le méthyl-2 propane-2 ol	75

LA FONCTION CHIMIQUE ACETAL	77
Le méthanediol	77
Le méthoxyméthanol	82
Le diméthoxyméthane	85
Le diméthoxy-2, -2 éthane	87
CHAPITRE 4	90
LA DYNAMIQUE HARMONIQUE DE MONOSACCHARIDES	91
La méthode de calcul	91
Un modèle flexible de l'eau	94
Les paramètres intermoléculaires	98
Résultats et discussions	100
DYNAMIQUE MOLECULAIRE DE DISACCHARIDES	109
La méthode de calcul	109
Résultats et discussions	110
Le mannose 🛛 2 mannose	110
Le mannose 🖉 3mannose	111
Le mannose A6mannose	112
CHAPITRE 5	114
LA METHODE DE CALCUL	116
Définitions	116
Procédure de calcul	119
RESULTATS ET DISCUSSIONS	120
Le groupement exocyclique -CH2OH	120
La conformation de la liaison β 14	121
La conformation de la liaison $\alpha 13$	123
La conformation de la liaison $\alpha 16$	125
La conformation de la liaison $\alpha 12$	130

CONCLUSIONS ET PERSPECTIVES

BIBLIOGRAPHIE

TABLE DES MATIERES

