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- Abstract -

The rising industrial interest in advanced materials with better adapted properties to their
specific function, intensified considerably the research effort on micromechanics in the past
decade. The development of such materials demands an optimal design of the microstructure
and requires a fundamental understanding of the role of the microstructure on the overall
properties. The microstructural parameters controlling the macroscopic properties are on one
hand the morphology of the microstructure and on the other hand the constitutive behaviour of
each individual component (e.g. plastic deformation, damage).

Based on experimental findings on a two-phase tool steel, a numerical model is developed
which aims to study the deformation and damage behaviour of general particle reinforced
MMCs. Local damage criteria in conjunction with advanced simulation techniques are
proposed to automatically simulate failure events at the hard phases (HP) like particle fracture
and interfacial debonding, as well as to predict the onset of damage in the ductile metal matrix
(MM). To deal with elevated plastic strains, the classical J,-flow theory is extended to full
large deformation analysis.

FE-simulations on the microscale exhibit the strong influence of geometrical aspects like
amount, shape and spatial distribution of HP on the local stress and strain pattern. First
occurrence of damage is found to be controlled by the HP-shape as well as by the spacing and
orientation between neighbouring HP with regard to the principal load direction. The sudden
loss of load carrying capacity by microcracking affects stress redistribution and promotes
failure of neighbouring HP. When HP are not regularly distributed over the microstructure but
concentrated within colonies, the degree of continuity of such colonies becomes an important
parameter: The large "matrix net" within cluster arrangements is found to act as an obstacle for
microcracks of neighbouring clusters to link together.

In addition, different transition schemes between the micro- and macroscale are developed.
Homogenization methods are applied to predict the overall behaviour in terms of effective
properties of the composite. A new approach to derive an effective damage parameter from
automatic simulation of progressive microcracking is proposed. This scheme allows to
effectively quantify the influence of microstructural parameters on the overall damage
response.

Finally, a microscopic section ahead of a fatigue crack of a TPB-specimen under realistic
boundary conditions is modelled, combining the macro- with the microscopic model.
Progressive carbide fracture is monitored over the macroscopic load.

Keywords
two-phase materials, metal matrix composites, finite element method, homogenization,
plasticity, damage, particle fracture, interfacial debonding, large deformation
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- Résumé -

Durant les derniéres années, l'intérét des industriels pour les matériaux avancés possédant des
caractéristiques mieux adaptées a leur utilisation a intensifié considérablement la recherche en
micromécanique. L'objectif est d'acquérir une meilleure compréhension de la liaison entre la
microstructure et les caractéristiques mécaniques macroscopiques. Les paramétres d'influence
de cette relation sont d'une part la topologie de la microstructure et d'autre part le
comportement de chaque composant individuel (déformation plastique, endommagement, etc.).

Le développement d'un modeéle numérique, basé sur les observations expérimentales d'un acier
d'outil bi-phasique, a permis d'étudier le comportement et 'endommagement de composites
renforcés a matrice métallique. Différents critéres d'endommagement locaux combinés a des
méthodes de simulations avancées ont été proposés. Ceci afin de simuler la défaillance locale
des phases dures (HP) par fissuration ou décohésion et afin de prévoir l'initiation de
I'endommagement ductile de la matrice métallique (MM). Pour une analyse précise du
comportement de la matrice a hautes déformations plastiques, la théorie géométriquement
linéaire élasto-plastique a été étendue aux grandes déformations.

Les simulations a l'échelle microscopique montrent une forte influence des paramétres
géométriques tels que la quantité, la forme et la distribution des phases dures sur le champs
local de contraintes et de déformations. L'apparition initiale d'endommagement est contrdlée
par la forme, la distance et l'orientation des phases dures voisines par rapport a la direction
principale de charge. La perte soudaine de capacité de charge par microfissuration affecte la
redistribution des contraintes et favorise la défaillance des phases dures voisines. Dans le cas
ou celles-ci ne sont pas distribuées réguliérement sur la microstructure mais concentrées en
dehors des colonies, le degré de la continuité de ces colonies devient un paramétre important.
La largeur des "bandes de la matrice" dans le cas d'arrangements groupés ("clusters") agit
comme un obstacle a l'unification des microfissures des"clusters" adjacents.

Par ailleurs, différentes méthodes de transition entre I'échelle micro et macroscopique ont été
développées. Des méthodes d'homogénéisation sont appliquées afin de prévoir le
comportement global a partir des propriétés équivalentes du composite. Une nouvelle
approche est proposée qui consiste a dériver un parameétre d'endommagement équivalent par
des simulations incrémentales de microfissuration progressive. Cette méthode permet de mettre
en valeur linfluence des caractéristiques microstructurales sur la réponse globale
d'endommagement. Finalement, une section microscopique a la pointe d'une fissure de fatigue
d'une éprouvette sollicitée en flexion trois points est modélisée. Les conditions aux limites
réelles sont reproduites en combinant le modéle macro et microscopique. La rupture
progressive des phases dures est visualisée au fur et 2 mesure du chargement macroscopique.

Mots-clés

matériau  bi-phasique, “composite 4 matrice métallique, “méthode des é&léments finis,
homogénéisation, \ plasticité, \ endommagement, rupture des particules, décohésion
matrice/renfort, grandes déformations
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- Glossary of Conventions and Notations -

CONVENTIONS

Vectors are given in boldface

Tensors are given in boldface block letters

Einstein's summation convention is adopted throughout this thesis

Material quantities - upper case e.g. €%, €P, (elastic, plastic strains)

Spatial quantities - lower case e.g. £y, &yy, (strain components)

Phase quantities - lower case e.g. C, C; (constitutive tensor of phase 0 (= matrix), of phase r)

NOTATIONS

ABBREVIATIONS

CDM Continuum damage mechanics

HP Hard phase

MM Metal matrix

HHPc Region with high HP content

LHPc Region with low HP content

CMC Ceramic matrix composites

MMC Metal matrix composite

PMMC Particle reinforced metal matrix composites
bee Body centered cubic

fec Face centered cubic

sc Simple cubic

FPZ Fracture process zone

RA Retained austenite

RVE Representative volume element

SEM Scanning electron microscope

TPB Three-Point-Bending

Analytical approaches

ESH Eshelby's equivalent solution

SC Self Consistent model ,
HSW-/+ Lower and upper bound by Hashin Shtrikman Walpole
MT Mori Tanaka

TPM Three Phase model (Generalized self consistent model)
TENSORS AND MATRICES

Latins

A Eulerian strain tensor (Almansi-Euler)

Ay Strain localisation tensor of phase a

B Left Cauchy-Green tensor

B Strain-displacement matrix

B, Stress concentration tensor of phase a
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- Glossary of Conventions and Notations -

Ce

space

—
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Greeks
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VECTORS

< s =3 -y

SCALARS
Latins

oma

Right Cauchy-Green tensor

Elastic constitutive matrix

Rate-of-deformation

Tensor to transform stresses and strains from the physical into the effective

Green-Lagrange strain tensor
Deformation gradient

Matrix of derivatives of the shape functions N
Unit tensor of second order

Unit tensor of fourth order

Jacobian matrix

Tangent stiffness matrix

Velocity gradient

Compliance matrix

Interpolation function

Orthogonal rotation tensor

Tensor of rigid body rotation
Residual forces

Second Piola-Kirchhoff stress tensor
Eshelby's tensor of phase o
Lagrangian right stretch tensor
Lagrangian left stretch tensor

Spin tensor

Macroscopic strain tensor

Linear strain tensor

Stress-free strain (or eigenstrain)

Spin tensor with respect to the orthogonal rotation tensor Q
First piola-Kirchhoff stress tensor

Macroscopic stress tensor

Cauchy stress tensor

Kirchhoff stress tensor

Body force
Surface traction
Normal vector
Displacement
Velocity

- Total strain at rupture

Contiguity parameter of phase o
Young's modulus
Damage parameter
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- Glossary of Conventions and Notations -
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Mean linear particle spacing of phase a
Diameter of phase a

Yield function

Porosity

Shear modulus

First, second and third invariants

Bulk modulus

Mean size of phase o

Matricity of phase a

Hardening exponent

Plastic potential

Upper and lower yield limit, respectlvely
Yield limit (at 0,01 and 0,2 % plastic deformation, respectxvely)
Ultimate tensile stress

Fraction of cluster parameter of phase a
Surface

Interface density of phase o

Volume

Crack opening

Equivalent plastic strain
Hardening parameter

Crack deflection

Plastic multiplier

Aspect ratio

Poisson's ratio
Crack-path-width
Dewiatoric stress
Hydrostatic stress
Equivalent stress of v. Mises
Initial yield stress

Volume fraction
Configuration of a structure
Stress triaxiality




- General Introduction -

Background and Objectives of this thesis

Metal-matrix composites (MMCs) are rather recent material developments. Research work on
this class of materials has occured for thirty years, mainly pushed by the aerospace industry.
The great potential of MMCs with regard to both performance / reliability and ductility makes
them attractive in various branches of applications. Other materials can only meet either one of
these requirements: Fiber reinforced plastics are not suitable for high temperature applications,
ceramic-matrix composites (CMCs) suffer under low ductility.

The attractive compromise between performance and ductility is founded on the combination
of the advantages of two different constituents inherent in the material. The potential of
ductility is attributed to the matrix whereas the reinforcements contribute to a high hardness,
wear resistance, stiffness and strength of the material.

Dependent on the structural applications, the reinforcements are long fibers, short fibers,
whiskers or particulates. Fiber or whisker reinforced MMCs are mainly used when the primary
aim is to enhance overall strength and stiffness. Among them, continuously reinforced MMCs
promise the highest performance. However, this is coupled with elevated processing costs. A
rather good compromise between high performance and production costs is provided by
particle reinforced MMCs. In addition, hard particles contribute to increase overall wear
resistance particularly when they are embedded in a hardened matrix. This makes this class of
materials irreplaceable in structural applications under severe tribological conditions. The term
"particle reinforced metal matrix composites”" (PMMCs) as such allows to attribute additionally
a wide class of tool steels to MMCs since they consist of ceramic particles (metallic carbides)
embedded in a metal matrix (e.g. o mixed crystal or martensite).

The development of advanced materials with better adapted properties to their specific
function demands an optimal design of the microstructure. This requires a fundamental
understanding of the role of the microstructure (microscale) on the overall properties
(macroscale). This relationship is in particular influenced by irreversible processes on the
microscale like plastic deformation and damage of the individual phases.

To this end, the major objective is to reveal the influence of microstructural parameters on
these processes. These parameters are of geometrical (amount, size, shape, and distribution of
reinforcements) as well as of physical nature (mismatch of elasto-plastic and damage related
properties).

The present work aims to get a deeper insight and comprehension on this subject. For this
analysis the FE-method is used. The development of the proper FE-Code Crackan started ten
years ago aiming to model the deformation and damage behaviour of PMMCs on the
microscale. Following this strategy, the present work has complemented the former works
completing gaps in some domains. This concerns in particular the constitutive relations chosen
for the individual constituents on the microscale as well as suitable transition schemes from the
microscopic to the macroscopic model. This was realized by specific extensions of the FE-
Code Crackan and additionally by the numerical formulation of a semi-analytical mean field
approach.
Both, the FE-Code Crackan and the semi-analytical model are applied to a specific material
which is representative for the broad class of particle reinforced MMCs. Here the ledeburitic
chromium steel SAE-D3 (X210Cr12) was addressed. The reason for this choice is twofold:
a) industrial motivation, since the material is used in various branches of applications,
b) practical motivation, since extensive experimental work has been performed in former
mvestigations.
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- General Introduction -

Outline and original contributions to this thesis '
This study is presented within six chapters:

Chapter I aims to summarize main contributions to the geometrical and mechanical analysis of
general two-phase materials. Special emphasis is placed on the description of the
microstructure and on the analysis of deformation and damage characteristics of the individual
constituents and of the composite. Basic methods and strategies as well as important findings
from experimental, theoretical and numerical point of view are reviewed and discussed.

Chapter II addresses the considered material. Experimental findings of former works on this
material are summarized. The outcome of these findings (geometrical and mechanical
characterization) [BRO 94, LUS 95] provides an important basis for the development of the
numerical model and its calibration.

Chapter III is concerned with the continuum mechanical framework. Since the deformation of
the ductile matrix during loading is accompanied by large plastic strains, the classical
geometrically linear theory within the elastic-plastic constitutive relations is no longer
adequate. Therefore a fully nonlinear elastic-plastic constitutive model allowing for large
strains has been developed. Basics of this large strain theory are presented within this chapter.

Chapter IV describes the microscopic model chosen for the individual constituents including
the consideration of local failure. A numerical homogenization scheme is presented to predict
the overall properties which characterizes the mechanical behaviour of the composite. Special
attention is here devoted to the prediction of an effective macroscopic damage parameter. This
scheme allows to quantify damage in an effective manner. In addition, these parameters may be
used as fitting material parameters for subsequent macroscopic simulations using continuum
damage mechanics models (CDM). Finally an adequate CDM-model is presented to describe
the effective deformation and damage characteristics of the composite.

Chapter V presents in detail the FE-program. It is explained how the above mentioned
constitutive equations are implemented into the FE-Code Crackan. Attention has been attached
to the integration of the non-linear set of equations satisfying locally the constitutive equations
and the global (virtual work principle) equilibrium. Finally, the FE-based equations for the
formulation of the microscopic model are presented as well as the couplmg between the micro-
and macroscopic model.

Chapter V1 is devoted to the numerical and semi-analytical analysis in order to investigate the
deformation and damage behaviour of the material. It is studied how specific microstructural
parameters influence the local field quantities (microscopic response). Applying the
homogenization scheme their influence on the overall field quantities (macroscopxc response) is -
equally investigated. The results are discussed in detail.

The thesis ends with a general conclusion. An outlook of further possible developments is
discussed.
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Chapter 1 - Two phase materials-their geometrical and mechanical characterization -
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Chapter 1 - Two phase materials-their geometrical and mechanical characterization -

I.1-Experimental investigations
1.1.1-Geometric Characteristics

1.1.1.1-THE COMPONENTS

A microstructure is firstly characterized by the number of individual components (phases or
phase mixtures). In general, a number of microconstituents is allocated to one component if
they have same mechanical properties (e.g. own constitutive equations). It is the task of the
quantitative metallography to provide adequate parameters when describing the geometry of
each individual component as well as the morphology of the composite assembly (see e.g.
[EXN 86]). The most important quantitative geometrical parameter is the volume fraction & to
measure the amount of one component. For a material with n+1 phases the volume fraction is
defined by

\Y N
g, v with §0§,=1 (L.1.1)

Within a metallographic polished section the area fraction is determined either from linear
fraction (fraction of a straight line) or from point fraction (fraction of points of a point grid that
fall on one component) [EXN 93]. For an isotropic material the volume fraction is identical
with the area fraction, for an anisotropic one it is associated to the averaged value by three
orthogonal polished sections.

The mean size L, of one component r is measured by the arithmetic mean value of all chord
lengths 1 (mean free path) formed by straight lines when intersecting adjacent components and
is inversely proportional to the interface density Sid, of that component

_ 4t
Lr —EE (IlZa)
with
Sid_ =5t (1.1.2b)
v

where S, is the area of the interface between the phase r and its neighbouring phase (e.g. the
matrix) and V is the considered volume (e.g. the total volume of the specimen).

Correspondingly, the mean linear particle spacing D, may also be expressed in terms of either
L, or Sid, '

_40-¢,) L(1-¢§,)
T Sid g,

r

D

(I.1.3a)

Here it shall be noticed that for a discrete regular distribution of spherical particles o with
diameter d,, in a continuous matrix, the mean particle spacing Dy, is approximated in the plane

by Ashby [AsH 64]
b, =% | T (11.3b)
2 V&,

and in the space by Hahn and Rosenfield [HAH 73]
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Chapter [ - Two phase materials-their geometrical and mechanical characterization -

(1.1.3¢)

The description of the shape of a component by only one parameter might be difficult due to its
statistical distribution. A global quantitative parameter which describes the sphericity of a
phase is proposed by Exner et al [EXN 93]. It compares the interface density of a phase with an
hypothetical interface for spherical constituents of one phase with same size

_ Sid, (spheres of identical size )
"shape  Sid_(real microstructure)

A

(1.1.4a)

If the constituents of a phase are
elongated in a preferred orientation
their shape is effectively described by
the aspect ratio;, the fraction of
highest h to lowest dimension b (Fig.
I1.1).

Fig.1.1.1. Geometrical illustration of the aspect ratio
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1.1.1.2-THE MORPHOLOGY

CoNnTtINUITY

Besides amount, size and shape, the spatial arrangement of the individual components strongly
influences the overall mechanical behaviour; hence its geometrical description is of prime
interest. In this context, the degree of interconnectivity or the continuity are important qualities
of the morphology of the microstructure. A first step to quantify these features was done by
Gurland [GUR 58] who introduced the contiguity parameter to describe the spatial arrangement
of grains; contiguity C,, is defined as the ratio of grain boundary area to the total interface area
(grain and phase boundary area) belonging to that phase

2500 (L1.4)

Cp=—>"7"2—
2854 +Sup

S denotes the area per volume of the a/a- and B/B-grain boundaries and o/B-phase boundaries.
A simple method of its measurement is reported by Exner et al [EXN 93]. The contiguity
parameter is dependent on volume fraction (linearly) and grain size and due to the latter case,
not adequate for the general use. In numerous multi-phase materials the spatial arrangement of
a component is more significant with respect to overall macroscopic properties than the
coherence within itself Recently, Poech et al [POE 94] proposed a novel stereological
parameter, measured by automatic image analysis, which is also applicable for phases without
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grain boundaries. It evaluates the degree of connectivity of a microstructural component and
hence provides information to what extent a matrix-inclusion topology or an interwoven
network is present. By means of automatic image analysis, the topology of the structure
(continuity and extent of branching) is reproduced by skeletonization of a binary image. The
total length of the skeleton lines referred to one phase is a measure of its continuity. The
parameter matricity of phase r is defined as the ratio of the total skeleton line length LSk, of
that phase to the overall line length (Fig. 1.1.2a)

=N
M, ==Kt yith'TM, =0 (L1.5)
LSk, r=0
r=0

For materials with intermediate volume fractions, the definition of an additional stereological
parameter has been proven useful. For each phase the number of isolated grain clusters N, is
counted. The fraction of cluster parameter r, is then defined as the ratio of N; to the overall
number of clusters [SIE 93] (Fig. 1.1.2b)

N . r=N
= rch , with ‘_V_Or, =0 (1.1.6)
2N, ~
r=0

Siegmund et al. [SIE 93] have shown the relevance of this parameter in duplex-microstructures
with respect to the prediction of the overall limit flow stress.

(2) (®)

1,0

m|0,5

Fig 1.1.2. Sghematical interpretations of geometrical quantities describing the degree of
continuity: (a) matricity [POE 94] --(b) fraction-of cluster parameter [BOH 94]

Remark

Matricity and fraction-of clusters parameter both aim to quantify the transition in topology
from a matrix-inclusion arrangement (for m— O or 1, r — 0 or 1) to an interwoven arrange-
ment (for m— 0,5; r— 0,5) .
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MICROSTRUCTURAL INHOMOGENEITY _
The specific orientation of elongated components is an important geometrical feature since it
may be the source of macroscopic anisotropic mechanical behaviour. Materials undergoing
warm forging are one example of a microstructure with preferred orientation. In this case three
axis are distinguished after norm ASTM E399-74 [AST 76]: the l-axis coincides with the axis of
highest deformation, the s-axis with that of the highest forging load; and the t-axis
perpendicular to both of them. The orientation of precracked specimen is specified by two
letters, the former indicates the load direction and the latter the direction of crack propagation
(Fig. 1.1.3).

S — Rs— 1'/ L
LU ™

_ l/ R I R

v // //// | T-S

Fig. 1.1.3. Specification of the orientation of precracked specimen

The interface density Sid or alternatively the mean size L may be used in order to quantify the
onentation of microstructures. The degree of orientation is related to the ratio of the oriented
boundary surface to the total boundary surface.

Alternatively the illustrative elongation parameter Aclong may be used, which is defined by the
ratio of the mean linear chord length in the direction of the elongation L, and perpendicular to
it L [ExN 93]

L
T, (I.1.7)

elong =

I.l..2-Deformation Characteristics

With the addition of second-phase reinforcements to a monolithic matrix, one aims to combine
favourable properties of the individual phases into one composite material. For example, the
specific combination of hard and brittle with soft and ductile components promises an adapted
compromise of overall stiffness and strength, with ductility and fracture toughness.

In ge;neral, the stiff and hard component carries the greater part of the load while the soft and
fllfgtlle one undergoes the greater part of the strain. Plastic deformation in the material is
Initiated in the soft phase around the hard one. The overall stresses and strains can be obtained
when the implicit stress and strain partitioning among the individual phases is known

O = 8,04 +&30g (1.1.8a)
B =EoEq +EpEg (1.1.8b)

G and € denote the stresses and strains in the composite (c) and in both components (o and f3).

"I'he‘overall response is only uniquely determined by the above eqn. if o, OB, Eqs EB denote the
In-situ stresses and strains. It is important to emphasise that the in-situ deformation
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characteristics of the components within the composite strongly deviate from those in their

respective bulk state. This is explained due to the following mechanisms

(i1)- enhanced density of geometrically necessary dislocations [FIS 73, ASH 70]

(12)- strengthening due to back stresses [MOR 70] .

(13)- phase boundaries are stronger obstacles than grain boundaries with regard to slip transfer
[WER 90]

(14)- residual stresses emerging during cooling from either thermal contraction mismatch
between the components or by phase transformations [FIS 92, PYZ 94]

(i5)- matrix and interfacial precipitation [CHR 88]

(16)- mutual constraint of the deformation of adjacent components [CHR 89, DIE 93, SAU 93]

However, up to now the in-situ stress and strain partitioning in the sense of eqn (I.1.8) is not
known and only approximated by experiments. For example strain measurements have been
derived from microhardness indentations [FIs 77, OLA 93], from the distortion of a reference
grid printed on a surface [ANK 82, ALL 94] or from X-ray measurements to determine average
strains in hard phases, to mention only some techniques.

The prediction of the overall deformation characteristics in terms of the bulk properties of the
components accounting implicitly for the for mentioned items is a complicated task.

A first model in this line was suggested by Tamura et al [TAM 73] termed as the rules-of-
mixture. Derived from the linear bounds of Voigt and Reuss (see also 1.2) it postulated that the
stresses and strains are partitioned among the phases in proportion to their respective volume
fraction (it is identical with eqn. (1.1.8) except that the stresses and strains of the components
are taken in their respective bulk state). The partitioning is quantified by the parameter m (Fig.
1.1.4. [SAU93)) '

_Baz0d (L1.9)

] >
. fa BB B -
Fig 1.1.4. Schematic of the partitioning of equivalent stresses and strains among the phases

This e:mpirical model addresses continuous fibre composites (parallel loading; eqn a) or
sandwich composites (serial loading; eqn b) and has also been proven useful for the prediction
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of the overall stress-strain behaviour of dual steels. However, it is not theoretically justified
since it violates the condition of strain compatibility at the phase boundaries [item (i6)]:

The mutual constraint of deformation between adjacent phases for perfect interface bondings
increases substantially the triaxial stress state and influences in particular the plastic straining of
the matrix around hard particles. An important measure to describe the mutual constraint is the
triaxiality defined as

=31 (1.1.9)A
oV

where oy is the hydrostatic stress and o, the effective stress according to von Mises. A
consequence of this mutual constraint is that the soft phase behaves harder and the hard phase
softer than their respective bulk states [DIE 93].

Here it shall be mentioned that a modified rule-of-mixture based on the sandwich-model
accounting for the condition of strain compatibility was proposed by Poech et al. [POE 92A,C].
The predicted overall stress-strain response was found to be in good agreement with
experimental ones for WC-Co and martensitic-austenitic dual systems.

L.1.3-Damage Characteristics

Prior to the sudden rupture of structures, local failure events develop due to excessive loading
(e.g. during material processing, thermal and/or mechanical loading). The damage behaviour of
numerous composite systems has received much consideration by experimental investigations
in the last three decades; among them two-phase steels (ferrite-cementite, high speed steels,
tool steels), hard metals (e.g. WC-Co) and metal-matrix composites (Al-SiCp, being mostly
studied). Due to the different amount of hard and soft components and the ductility of the soft
components in those systems, different steps of damage have been reported. In Al-SiC
systems for instance, progressive fracture of reinforcements was found to be the principal
source of the composite failure [LLO 93, BOU 94]. Shape, size and orientation of the
reinforcements are the relevant parameters in the early stage (large reinforcements elongated in
load direction being privileged to fail); interaction between particles and microcracks in the
later stage of damage.

Some authors have also detected particle/matrix debonding [e.g. MUM 93]. Microcracks
developed by particle cracking were observed to be straight and to follow particular
crystallographic planes and therefore assumed to be a result of exceeding the critical tensile
stress [KAS 77]. Damage in Co-WC is initiated, as opposed to the Al-SiC system, in the softer
phase. The small amount of the Co phase results in high plastic stretching of the ligaments in
the binder phase and favours void nucleation at stacking fault intersections due to plastic
accumulation [Fis 88, SIG 88].

Interface debonding plays a crucial role in the deterioration process of fiber and sandwich
composites; in continuous reinforced fiber composites it triggers fiber pull-out under axial
loading and delamination under transverse loading. Delamination by continuous interface
debonding is also the principal failure mechanism in sandwich composites. In two-phase
materials with discrete distribution of hard or soft particles two failure initiation mechanisms,
Interface decohesion and particle fracture are in competition. Sometimes one failure mechanism
15 dominant: Typically, softer and spherical particles are more prone to fail by decohesion
(MnS in ductile steels, graphites in cast iron) and stiffer and harder particles by particle fracture
(hard carbides in MM). In other materials both failure mechanisms coexist and the whole
deterioration process is a result of their synergistic contribution.
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Microvoids are nucleated by the previously described failure mechanisms and initiate crack
growth in the matrix. The crack path follows the spread-out of the matrix plastification, while
the growth-rate is strongly controlled by the triaxial stress state. The triaxial stress state
quantified by the triaxiality (eqn. (I.1.9)) has often been emphasized in the literature as the
driving force for crack growth [RIC 69, LEM 85A, KON 93]. It is also the major factor when
predicting the brittle/ductile nature of crack propagation. Teirlinck et al. [TEI 88] distinguish
between brittle fracture (inter- or transcrystalline), ductile (dimple) fracture and shear fracture.
The transition between them is determined by the ratio of hydrostatic stresses to effective
stresses (Fig. 1.1.5).

CHAcleavagq"."
// .

ductile
fracture

~ )
atan ¢ ¢ ? o,
_~"|shear

| fracture

ed
pd

Fig. 1.1.5. Interaction between competing fracture mechanisms and the influence of the
triaxiality (for a 1045 spheroidized steel [see alsoTEI 88])

In. all cases damage mechanisms are identified qualitatively by direct methods (optical
micrographies, SEM/REM etc.). In addition, "real-time" fracture techniques such as in situ
SEM observation of crack initiation and growth may be used to correlate microscopic damage
evolution to macroscopic loading [e.g. BOU 94]. However, it describes only the damage
Processes on the free surface, the damage behaviour within the bulk might be different. Indirect
methods such as acoustic emission, loading/unloading cycles to measure the loss of stiffness
may be applied to quantify global damage in the bulk of the material [MuM 93, LLO 93]. A
different crack propagation behaviour at the surface and in the bulk was discovered, when
studying the fracture surface over the whole thickness. A more smooth fracture surface was
observed at the surface [LUS 95]. The smoothness of the fracture surface may also provide first
information about the toughness of the material. In this context one important quantity is the

crack-path-width p which is an indicator of the degree of crack deflection ¢ along the entire
crack path (Fig. 1.1.6).
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crack path

>\4“>" ;

crack tip A

Fig. 1.1 6. Definition of crack deflection ¢ and crack-path-width p

In all materials mentioned above these failure events decrease the overall ductility. In contrast
microcracking in rocks, ceramics and their composites has been identified as an additional
source of toughening [e.g. MEG 93, HUT 87, RUH 87]. Whether the interaction of microcracks
might have a shielding or an amplification character is strongly influenced by the location and
orientation of microcracks in the fracture process zone (FPZ). The shielding effect by
microcracking is explained by the reduction of the effective moduli and the strain arising from
the release of residual stresses [HUT 87]. It has been suggested to relate toughening to the
fo.llowing quantities: microcrack density, microcrack length distribution, residual opening of
microcracks.

A vparallel is given to transformation toughening where the effective stresses at the
macroscopic crack tip are reduced by the permanent dilatation [RUH 87]. For instance stress
induced martensitic transformation may occur in steels containing retainedaustenite ahead a
macroscopic crack tip [BRO 94].
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I.2-Analytical approaches
1.2.1-Effective elastic properties

1.2.1.1-GENERAL CONSIDERATIONS

In the past three decades considerable progress of analytical works in the field of
micromechanics has been made. Its main objective, the correlation between the microstructure,
its microconstituents and the macroscopic properties, is addressed by homogenization
methods. To this end, the concept of a representative volume element (RVE) is introduced
(e.g. [HIL 63]): A RVE for a material point of a continuum mass is a material volume which is
statistically representative for the infinitesimal material neighbourhood of that material point
[NEM 93]. Therefore it has to include the most dominant microscale features that have first-
order influence on the overall properties of concern. The RVE may be viewed as a
heterogeneous medium under prescribed boundary conditions which correspond to the uniform
local continuum fields. The major scope then is to estimate the overall average properties of
the RVE in order to describe the local properties of the continuum material element. More
precisely, its task is to compute the overall (average) strain (strain increment, for an
incremental formulation) as function of the corresponding prescribed (incremental) surface
forces or, conversely, the average stress (stress increment) as function of the prescribed
(incremental) surface displacements. Under the prescribed boundary conditions, the RVE must
be in equilibrium and its overall deformation compatible. Considering uniform boundary
conditions, the external surface of the RVE may be subjected to a displacement u :

uy=Ex;  xeV (1.2.1a)

which would provide an uniform strain E, if the material will be homogeneous. Conversely, a
prescribed surface traction f, compatible with an uniform stress X is defined by

fi=o;n;=Z;n, xeV (12.1b)

The general scheme of all micromechanical methods follows three main steps [BoU 94]:

1-Description of RVE

Respecting the above defined concept of RVE, all information concerning the geometrical and
mechanical characterization of the microconstituents have to be covered. In general the
mechanical behaviour of the "in-situ" constituents can not be determined experimentally, the
micromechanical behaviour of the individual phase is assumed to be identical with the
macroscopic behaviour of the respective bulk material. Considering elastic behaviour, the
constitutive relation reads

o(x,)=Ce(x,) or (1.2.2a)
e(x,)=Mo(x,) with C,=M,"' _ (1.2.2b)

Here, and in the following a composite is considered which consists of a matrix (subscript r=0)
and N-reinforcing phases (subscript r=1, N). o, and €, represent the stresses and strains,
respectively at point x,, belonging to phase r.

The phase which is distributed discretely, is geometrically quantified by the volume fraction,
aspect ratio and its orientation to the load direction. In most of the methods the arrangement of
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this phase is considered perfectly disordered; one exception within the concept of RVE is the
assumption of a perfectly periodic microstructure.

2-Strain localisation or stress concentration
This section provides the link between the local stresses o or strains € and the macroscopic
imposed stresses I or strains E. The relations of strain localisation and stress concentration in
the linear elastic setting read

o(x,)=B(x,) X and e(x,)=A(x)E 1.23)
The mean stress and mean strain within the phase r are given by
o, =(o(x)), and & =(s(x)), (1.2.4)

<z>; denoting the average of z over the volume V, of phase r

(z) = % fzav, (12.5)

Vi

In terms of their mean values, eqn. (1.2.3) becomes
6,=BZX and g =AE 12.6)
A; and B, are called strain localisation and stress concentration tensor. They give information

about how the external load is transmitted over the individual phases.

3-Homogenization scheme
Employing the virtual work principle, the relation between the overall average stress ¢ or

Stgain € and the macroscopic stress I or strain E, respectively, may be derived by (Hill-Mandel
relation) : ‘

<os)=% JcedV=ZE=—\l7jf‘udS (1.2.7)
\% S

Satisfying the boundary conditions (1.2.1), it holds for the local stresses and strains

(6)=% (1.2.8a)
(e)=E (1.2.8b)

and by using (1.2.5), it follows

M=
o
Qa

= (1.2.9a)

]
(=]

r

M=z
ol
o

E= (1.2.9b)

-
]
o

and gives finally the expression for the compliance and elastic tensor of the composite
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M= ig,M,B, (1.2.10a)
r=0

C= i £CA, (1.2.10b)
r=0

It has to be noticed that the summation of B, and A, over all phases gives the identity matrix

N N
2EB. =1 and Y EA =1 12.11)
r=0 r=0

Taking advantage of the above relation, eqn. (I1.2.10) can be reformulated in order to specify
the role of the matrix (phase 0) with respect to the other phases

M=Mo+§:§,(M,—M0)B, (1.2.12a)
r=1
C-= C0+i§,(C,—CO)A, (1.2.12b)

r=1

Remark

All micromechanical models have these three steps in common. However, they propose
different schemes in order to determine the matrices A, and B,. These hypotheses concern in
particular the geometrical description of the microstructure.

In the following, some estimates and bounds are reviewed.

1.2.1.2-THE BOUNDS OF VOIGT AND REUSS

First-order bounds are given by Voigt [VoI 10] and Reuss [REU 29] under the consideration
that strains and stresses, respectively are uniform over all phases.

Accordingly, the strain localisation tensor A, for the Voigt model and the stress concentration
tensor B, for the Reuss model become the identity matrix.

N
MReuss = ZérM-r (12138)
r=0
N
CVoig1 = Zércr (12 1 3b)
r=0

From a geometrical point of view they describe a specific morphology, where infinite aligned
fibres are arranged parallel (Reuss) or perpendicular (Voigt) to the load direction. Their
predicted elastic properties bound the true elastic properties in the material for an arbitrary
mucrostructure. It holds [HIL 63]

EMeus € S EM e = £Ce < £Cyu € Ve (12.14)

For isotropic materials these bounds can be formulated in terms of bulk, shear or Young's
modulus. A dem{anon for the Poisson's ratio is more complicated. For example for an isotropic
two-phase material the Young's modulus is bounded by
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EReuss <Ex< EVoigt (12 153)
with
1 éo 51 : i
=30 431 and Ey, 2E.E,+EE (1.2.15b)
EReuss Eo El Voigt éO 0 E.»l 1

The above given inequality is necessary for Poisson's ratio mismatch [HIL 63].

1.2.1.3-ESHELBY'S EQUIVALENT INCLUSION SOLUTION

Remark -
In this context inclusion means a region with same elastic properties as the matrix containing
stress-free strains (will be explained below) and should not be confused with second phase
particles embedded in a matrix.

Many scientists were stimulated by the celebrated paper of Eshelby in 1957 [ESH 57] in order
to work on the new domain of micromechanics. Since this work provides some ﬁmdampntal
results covered in many micromechanical models, its main ideas are reviewed in the following.

The transformation problem .

A region (the 'inclusion’) V; which undergoes a spontaneous change of its geometrical form
within an infinite homogeneous isotropic elastic medium Vp, is considered .

The region, cut and removed from the matrix may be subjected to a free deformation (e.g.
thermal dilatation) without any constraints. Therefore it holds for any point x of the volume V

e*(x) =&*xy(x) (1.2.16a)
with
0 VxeV
- m 1.2.16b)
Xy, (%) {1 Yxev (

e* is named differently in the literature; stress-free strain [ESH 57), polarization strain [KRO
58], eigenstrain [MUR 87], [NEM 93].

Then, surface tractions are applied such that the region is restored to its original form. After
putting it back in the hole of the matrix the surface tractions, becoming body forces now acting
on the interface S between inclusion and matrix, are relaxed. The constraint of the surrounding
matrix results in an elastic stress-strain field in both domains. Figure 1.2.1 gives an illustration
of the different imaginary operations.
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Fig. 1.2.1. On the transformation problem [WIT 89]

The total strain in the inclusion is decomposed (in the range of infinitesimal deformations) into
the stress-free strain €* and elastic strain €€.

g5 = & +Ej (12.17)
The total strain must be compatible, thus
€; =%(ui,j+uj,i) ' (1.2.18)
The elastic stresses o in x of the entire domain is given by Hooke's law
6;(x) = Cija(Eg — €% (X)) (1.2.19)
Since the elastic tensor C is symmetric, the above equation becomes with eqn. (I.2‘. 18)
O'ij(x) = Cijkl (uk,l"‘ t;]X(x)) (1.2.20)
Formulating the equilibrium conditions it follows

Cijatiy; + Ciagian 5(x) = 0 (1221a)
with
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{ v S being the interface between V; and V| :
Xxe S
o(x) = n the outward normal to S (1.2.21b)
0 otherwise '

It can be seen that the contribution of the stress-free strain €* in eqn. (I1.2.21a) is similar to that
of a body force b for an equivalent homogeneous medium

b; = CyuEnn; (1.2.22)

The solution for eqn. (I1.2.21) with given stress-free strain €* may be obtained applying
methods of periodicity, Fourier series (integrals) or Green' s function [MUR 87]:

y, = JG (% = X')C jimE Ny (X' )dS' (12.23)
and with the help of Gauss theorem, finally
1 .
Sm = {-Ecﬁdm[\{ Gij.kn (X - X')dV' + JGm’k] (X - x')dV')}Slm (1224)

Green's function Gp(x-x') is the displacement component in the x,-direction at point x when a
unit body force in the x direction is applied at point x' in the infinitely extended material.

In general, it is not simple to calculate their derivations. However, if the inclusion is of
ellipsoidal shape embedded in an isotropic medium, then the strain field within the inclusion is
uniform and eqn. (1.2.24) becomes [ESH 57]

with S being a 4th-rank tensor depending only on Poisson's ratio of the matrix and geometrical
parameters of the inclusion. S is called Eshelby's tensor. Analytical expressions of S for some
specific inclusion shapes can be found e.g. in [MUR 87].

The inhomogeneity problem

The inclusion problem of the last chapter where all elastic constants are the same is now
extended to the inhomogeneous case: The ellipsoidal region V; with elastic moduli C; is
embedded in an infinite elastic medium V,, with elastic tensor C Here, we are mterested in
finding out how a uniform stress applied at large distances is disturbed by the inhomogeneity.
The local stress field in both domains due to an uniform stress £ applled at large distances,
which would cause a uniform strain E if the material will be homogeneous, is expressed by

Z+o™ = C(E+¢€™), in V. (I.2.26a)
Z+o™ =C(E+¢™), in V, (1.2.26b)

where oP! and eP! denote the local perturbation stresses and strains, respectively.
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The inhomogeneity of the inclusion is now replaced by the homogeneous inclusion with
transformation strain €*. We find :

Z+cM"=C(E+e"-¢), in 'V, (1.2.27a)
Z +6” = C(E+¢€™), inV, (1.2.27b)

If both, the transformation and the inhomogeneity problem, are equivalent it must hold
C(E+e™)=C(E+eM-€’) inV, (1.2.28)
The solution of the last chapter gives
=8 (1.2.29)
and therefore
& =[(C;-O)S-CJ(G-OF (1.2.30)

Finally, the elastic strain € in the inhomogeneity V; is related to the macroscopic strain E by
[Bou 94]

e=[I+SCC-O] E iV, 1231)
or for the stresses explicitly

o=C[1+sC(C-O]'C'T iV, (12.32)

The Dilute Solution-(ESH)

The assumption that the mean strain in all reinforcements is given by eqn (1.2.31) has led to the
first homogenization method based on the theory of Eshelby. Each reinforcement is embedded
in an infinite medium with elastic moduli Cy of the matrix. Interaction of elastic fields around
neighbouring reinforcements is not accounted for by this model; hence it may only be applied
to composites with low volume fractions of reinforcements.

The strain localisation tensor for this dilute solution becomes

1
AP =[1+8,67(C-C)] 1233)
and the elastic effective tensor is
N
C*" = Co+ Y &(C, - CAF (1.2.34)
r=1

Quantities which are related to the specific phases are denoted by a subscript r. The phase r=0
is the matrix, all reinforcements are identified by r=0. For convenience, a "phase”, other than

the matrix, is defined in this context as the collection of inhomogeneities whose shape (or
aspect ratio), orientation and elastic moduli are identical.
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1.2.1.4-OTHER BOUNDS AND ESTIMATES

Self-Consistent Scheme-(SCS)

The self-consistent scheme was onginally developed by Hershey [HER 54] and Kroner [KRO
58] to estimate the elastic properties of polycrystals. These materials have no matrix instead
they are aggregates of particles with different elastic properties and interaction among the
different particles becomes more prominent in this case.. To account for this effect, the main
idea of the self-consistent scheme consists in placing successively all grains in a fictitious
unbounded homogeneous medium with yet-unknown overall properties of the polycrystal.
Later on Hill [HIL 65] and Budianski [BUD 65] extended this method to matrix composites.

The equivalent homogeneous medium is subjected at large distances to the macroscopic stress
Z or strain E. The strain localisation tensor is similar to that defined by Eshelby (eqn. 1.2.33)
except that the homogeneous matrix is replaced by the homogeneous composite

A*=[1+sCc. -0 (12.35)

Accordingly, Eshelby's tensor is calculated for a reinforcement embedded in an infinite matrix
which has the properties of the equivalent composite. If the latter is not isotropic, the method
involves more computational effort due to the complex mathematical expression of Eshelby's
tensor. The elastic moduli are given by

C°=G, +§&,<c, - CALS (1.2.36)
r=1

Since A, depends on the effective elastic tensor C, this scheme is implicit and therefore eqn.
(1.2.36) has to be solved by iteration.

Remark

It should be noted that the self-consistent scheme yields a unique overall compliance (or
elasticity) tensor whether the macrostress T or the macrostrain E is regarded prescribed. The
term self-consistent is used in the literature to emphasize the existence of this inverse property.

Generalized Self-Consistent Scheme (Three-Phase Model)-(TPM)

In the self-consistent scheme the reinforcement is not in interaction with the matrix but with
the equivalent composite; this leads to a "stiffer" estimation of the effective properties
compared to the real composite material. To overcome this inconvenience, Christensen and Lo
[CHR 79] have proposed to include three-phases into the model consisting of spherical
reinforcements (phase 1 with radius a) surrounded by a "matrix-layer" (phase 0 with radius b)
both embedded in an infinite equivalent homogeneous medium (EHM). The radius ratio a/b
determines the volume fraction of the reinforcement and hence has to be respected.

The estimate for the bulk modulus K and shear modulus G is realized by two separate

boundary value problems: hydrostatic pressure and simple shear. The effective bulk modulus
e.g. is given by

KM _ &K, - Ky)
K°+1+(1-al> ) 230
Ko+ 3 G,
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The Bounds of Hashin-Shtrikman-Walpole-(HSW)

More rigorous bounds than those of the Voigt & Reuss type have been originally developed by
Hashin & Shtrikman [HAS 63] restricted to isotropic matenals using energy variational
principles. They found that the strain and complementary strain energy functionals of the
equivalent homogeneous medium, assuming the existence of stress-free strains (or strain-free
stresses), are stationary for the exact stress-free strains (or strain-free stresses), These
functionals give global maximum or minimum values for the actual total strain and
complementary energy functionals. Schematically this model is close to the self-consistent
scheme (SCS); however the surrounded matrix in the SCS is here replaced by a fictitious
homogeneous medium. This medium has elastic properties and is either weaker Cyy;,, or stiffer
Cnax (in the sense of eqn. (1.2.35)) than all phases present in the composite. Accordingly, they
provide lower and upper bounds for the overall elastic moduli of the composite. The imposed
macroscopic strain E at infinity is that of the fictitious medium. For the lower bound the mean
strains in the reinforcements are obtained by

eV =TV (1.2.38a)
with
T =[C,+ Coin(S7 - D] 'CpS;' (1.2.38b)

and therefore the strain localisation tensor reads

_ [ =N . -1
APSW — vI;HSW (Z&r HSW ) (1239)
r=0

Finally the lower bound is expressed by

CcHsW =(§:§,c, “SW')(igr “SW') | (1.2.40)
and the upper bound by ° "
sV = (ia,c, HSW )(ig “SW‘)_I (1.2.41a)
with " e
T = [+ G (57~ D] CpasS;! (1.2.41b)

It shc?u]d be noted that these bounds in their original formulation restricted to isotropic
materials, have been extended to composites reinforced by long cylindrical same oriented fibers
[WAL 69]. However, they are not applicable to short discontinuous reinforced composites.

The Mori-Tanaka Model-(MT)

For a long time the method originally proposed by Mori and Tanaka in 1973 [MOR 73] has
suffered from the lack of a clear physical description. It addressed the problem of averaging
stresses and elastic energy in the matrix (also called mean-phase estimate in the literature)
including an inclusion (same properties) with a given stress-free strain. Lateron in 1987
Benveniste's [BEN 87] interpretation gave a physical sound explanation for this method and
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provided as well the link to Eshelby's equivalent inclusion solution. All reinforcements are
embedded in the matrix which is subjected at large distances to the mean strain experienced by
itself

eMl = TMTg, (1.2.42a)
with
: ]
T =[C.+ G5 - D] s (12.420)
The strain localisation tensor reads
N -1
AMT = MT(Z g, MT) (1.2.43)
. r=0
and the elastic effective tensor
N N -1
M = (Zg,c,T,MT)(Zm;W) (1.2.44)
r=0 - r=0

These tensors are similar to those given by the Hashin-Sthrikman bounds (eqn. 1.2.40, 1.2.41a).
In addition if the material consists of spherical reinforcements embedded randomly in a
"weaker" matrix, than both methods give exactly the same results.

Remark

Like the self-consistent scheme, the predicted elastic tensor of the Mori-Tanaka scheme as well
can be obtained indifferently by imposing either uniform macroscopic stress X or strain E
which was proven by Weng [WEN 84].

1.2.5-DISCUSSION AND COMPARISON OF THE DIFFERENT APPROACHES

General considerations '

Except the bounds of the Voigt and Reuss type and the generalized self-consistent scheme all
micromechanical models adopted the equivalent inclusion model of Eshelby. The geometry of
the reinforcement is taken analytically as spherical or ellipsoid. The latter characterized by their
aspect ratio (I/d) (see I.1) is present in form of four different types: long fibers (I/d=cx), short
fibers (10 < V/d < 50), particles (1 < V/d < 5) and discs (I/d=0).

The way how the different models account for the specific morphology of the material
influences the accuracy of results. While the bounds of the Voigt and Reuss type consider
infinite parallel aligned fibers, the others assume a perfect random discrete dispersion of
reinforcements in the matrix and hence give a better estimation of the effective properties.
However, some of them are not valid in the general case (TPM restricted to isotropic
materials; HSW restricted to the shape of reinforcements (long fibers, spherical reinforcements,
small discs), dilute solution of Eshelby restricted to a weak volume fraction of the
reinforcements).

In general, the methods differ by the way how the surrounding equivalent medium is presented
and how the boundary conditions are imposed at large distances (Fig. 1.2.2).
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Fig. 1.2.2. Comparison of the different approaches [BOU 94]

Isotropic two-phase material

As an example the different models are applied to an isotropic material with a matrix-inclusion
topology where the reinforcements are of spherical shape and stiffer than the matrix. As an
example the effective bulk modulus of an Al-SiCp is computed as function of the reinforcement
volume fraction. .
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Fig. 1.2.3. Normalized effective bulk modulus over the reinforcement volume fraction

As explained earlier, the bounds by Voigt and Reuss hold for any material. All other
approaches must be bounded by these two curves. Accordingly, Eshelby's equivalent dilute
solution can only be applied for low reinforcement volume content (£<0,2). For the chosen
case (matrix weaker than the reinforcement (shape: spherical) the predictions by the Mori-
Tanaka (MT) model and the lower bound of Hashin Shtrikman Walpole (HSW-) coincide,
hence only one curve is found. The figure does not contain the results of the self-consistent
model (SC), the corresponding curve will be found between the curves of HSW+ and TPM.
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Other related models

Further analytical based approaches can be found in the literature. The review paper by Hashin
[Has 83], for instance, provides a comprehensive list of the literature. Among them one can
cite the differential scheme, the bounds of the composite spheres (and cylinders) assemblage
by Hashin, the periodic solution etc. Furthermore, recent extensions of the here presented
models shall also be cited here: The concept of morphological motifs by [BOR 93] is a first
approach to localise strain heterogeneities.

1.2.2-Analysis of irreversible processes

1.2.2.1-ELASTO-PLASTIC BEHAVIOUR OF THE MATRIX

Different schemes are proposed to include elasto-plastic behaviour into the model. Kroner
[KRO 61] applied the concept of stress-free strains within the equivalent inclusion to
elastoplasticity. Since the stress-free strains are added to the elastic strains this method is
known in the literature as the elastic accommodation of plastic deformation.(see e.g. [WIT
89]). If the matrix only possesses a plastic potential with plastic strains €P, then the stress-free
strains €L within the reinforcements are assumed to be gl=-P. The total macroscopic strains E
are decomposed by

E=E+E" (12.452)

with
E° = (Blef) = (M,B,)Z (1.2.45b)
E" = (Bel) (1.2.45¢)

where the notation < > denotes the volumetric mean.

Hill [HIL 65] firstly suggested the use of the tangent moduli C'8 to describe the softening effect
due to the plastification of the matrix. Accordingly, the tangent Young's modulus decreases
with increasing matrix plasticity. The constitutive equations are therefore formulated in rate
form :

-C%(¢,-E) (1.2.46)

The decrease of the Young's modulus in terms of the total values leads to the use of secant
moduli Cse¢ (see e.g. [TAN 88]). It is a simple extension from elastic to plastic behaviour; in all
equations the elastic moduli are replaced by their secant moduli.

The plastic behaviour of the matrix may be expressed by the model of Ludwik

G, = Oyo +h(ed)’ (12.47)

where o, and €} are the equivalent stress (von Mises) and strain, respectively. Gy, hy and n
denote the initial yield stress, plastic resistance coefficient and hardening exponent,
respectively. Assuming that the total strains are the sum of the elastic €5 and plastic €”
(equivalent) strains allows to define the secant modulus E§ by (equivalence of uniaxial and
triaxial stress state)
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o, _ 1
e, +eb 1 €l

E, Oyo t ho(sg)n

EX = (1.2.48)

The advantage of the easy implementation is compromised by its restriction to monotone
loading.

1.2.2.2-DAMAGE BEHAVIOUR OF THE REINFORCEMENTS

The problem to analyse analytically local failure in composites is much more complicated than
the prediction of elasto-plastic properties. The evaluation of failure criteria might be difficult
since their determination in terms of critical stresses and strains strongly depends on the local
morphology of the microstructure. In addition, the analysis of interacting microcracks is limited
and therefore the evolution of progressive damage is found to be difficult to predict. In spite of
these difficulties, much valuable work has been done in this line, however the results have to be
interpreted necessarily in a qualitative rather than in a deterministic manner. Often, damage at
the reinforcements is introduced into micromechanical methods by specifying the geometry and
the elastic properties of the damaged phase. Simple physical models for different damage
mechanisms at reinforcements have for example been suggested by Mochida et al. [Moc 91]:
Cavities in the matrix are replaced by spherical phases, cracked particles by penny-shape
ellipsoids; both "phases" with zero stiffness. In contrast to the static analysis of damage
(assuming an initial state of damage being constant during loading), the study of damage
evolution demands for an adequate failure criterion. Since stresses and strains, which provide
in general the basis for local failure criteria, are equal for same phases, Bourgeois [BOU 94]
introduced a statistical criterion based on the Weibull law. If the failure criterion is satisfied the
particle has to be replaced. The simultaneous change of geometry and stiffness by replacing
e.g. an ellipsoid by a penny-shape ellipsoid with zero stiffness gives rise to an unsymmetric
elastic tensor. One alternative consists in preserving the particle geometry and to modify the
elastic moduli such that the stress in the load direction is no longer transmitted by the particle
(Introduction of an equivalent anisotropic undamaged inhomogeneity EAUI [FIT 95]).
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I.3-Numerical investigations

1.3.1-The micromechanical model

Beside the fields of structure-, fluid mechanics and heat transfer, micromechanics is rather a
new branch for the application of the FEM. Mostly based on a continuum mechanics
formulation, the micromechanical FE-model may be applied to a large class of materials with
coarse microstructure (see chapter 1.2). Plastic behaviour of the ductile matrix may only be
described by continuum plasticity when the reinforcement size/spacing is large as compared to
the characteristic dislocation structural scale (such as slip distance). FE-studies on a smaller
scale use atomistic models in order to study dislocation movements and separation of atoms
via a potential theory.

1.3.1.1-MODELLING THE ENTIRE MICROSTRUCTURE

Continuum Micromechanics aims to reveal the influence of microstructural characteristics on
the local (microscale) and global (overall) response of the material. Microstructural
characteristics are of geometrical nature (e.g. amount, size, shape and distribution of
reinforcements) or of physical nature (e.g. mismatch of mechanical properties like stiffness
etc.). These characteristics are the controlling mechanisms of the interaction behaviour
between matrix-inclusion and inclusion-inclusion. The latter may be effectively studied by
imposing symmetric boundary conditions where interaction between reinforcements, besides in
the inner of the model, is also established over the boundaries. These conditions are satisfied
when the edges of the model are kept straight and parallel during loading.

In the most simple form a model consists of a single matrix-inclusion system. The interior of
the model (the unit cell) is thereby considered to repeat periodically over the whole
microstructure; the approach being consequently termed wnit-cell technique or periodic
microfield approach. Hence, geometrically it describes hence a perfect regular distribution of
reinforcements. The unit cell chosen should be representative for the whole microstructure.
Mostly three different approaches have been practiced varying in their degree of complexity
and randomness: : '

1-perfect periodic arrangement of the reinforcements [e.g. BOH 93A,B, COR 95, MCH 94]
2-random distribution of reinforcements [e.g. BRO91, CHR 89]

3-random cut-out from the microstructure seen on a plane section through the material [e. g.
SAU 93, DIE 93, POE 93]

The question, how far the reality is covered by these cell calculations is strongly influenced by
the precision of the chosen geometrical model. Seldom 3D-cells have been modelled up to
now, due to the lower computational effort the third dimension has been involved by
axisymmetric or plane stress / (generalized) plane strain cells. Materials which show an
invariance in one direction are therefore suitable to be modelled two-dimensionally.
Unidirectional continuously or non-staggered reinforced MMCs are modelled for instance by
imposing symmetry conditions on all boundaries of the unit cell [e.g. BOH 93B]; on the other
iu;nd staggered reinforced MMCs [TVE 90B, SOR 94] by prescribing point symmetry (Fig.
3.1-13.2).
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Fig. 1.3.1. Unidirectional continuously reinforced MMCs and selected periodic reinforcement
arrangements ((generalized) plane strain model)

]

Fig 1.3.2. Al'igned staggered and non-staggered short fibers and the respective unit cell
(point-symmetry with respect to the midpoint C, and axis-symmetry)
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Particle (with spherical, or cylindrical shape) reinforced MMCs may be modelled by an
axisymmetric cell model. Bao and co-workers [BAO 91] have shown that the 2D-axisymmetric
cell is a good approximation to the 3D-hexagonal cell (Fig. 1.3.3).

Fig. 1.3.3. 3D-hexagonal cell and the approximation by a 2D-axisymmetric cell

When the number of reinforcements inherent in the cell is increasing up to some dozens of
reinforcements, an additional problem might arise at the edges of the cells: The periodic
extensions of the cell may produce "ghost" reflections of reinforcements intersected by the cell
edges which result in artificial shapes of the reinforcements [SAU 93 Fig. 1.3.4].

Fig. 1.3.4. Multi-inclusion unit cell with symmetry boundary conditions-
artificial inclusion shapes at cell edges

To overcome this drawback, some authors [e.g. DIE 93] have proposed to embed the matrix-
inclusion system in a surroundings with the average properties of the composite in the sense
similar to the three-phase model presented in the previous chapter.

The overall response is predicted as the homogenized response of the unit cell; the overall
stress-strain relationship is obtained from the reaction forces and the prescribed displacements
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of the cell edges. Therefore elasto-plastic properties of the composite may be predicted by the
unit cell-technique.

1.3.1.2-MODELLING A MICROSCOPIC SECTION AHEAD OF A MACROSCOPIC CRACK
Another important topic in the field of micromechanical modelling was to explore the influence
of microstructural parameters on the deformation and damage behaviour ahead of a crack tip.
This analysis mostly aims to predict the (fracture) toughness of the material. Only in few
~ examples a fully 3D numerical analysis was carried out [e.g. NAR 92, MEE 90, HAD 95], mostly
the problem was simplified by a two-dimensional analysis; a plane strain or/and a plane stress
model to describe the mechanical behaviour in the bulk or/and at the surface, respectively. The
different situation becomes visible when studying the plastic zone in front of the crack tip (Fig.
13.5).

plane stress

plane strain

plane stress

Fig. 1.3.5. Size and extent of the plastic zone in front of the crack tip

In many cases, the stress and strain field in front of the crack tip was described by fracture
mechanics based parameters. In the linear setting or within small-scale yielding the concept of
stress intensity factors (SIFs) associated to different failure modes or that of the energy release
rate was applied. If the plastic zone in front of the crack tip reaches a non-neglectable size they
are no longer justified and the J-integral concept has to be used [e.g. ROs 82]. The influence of
the heterogeneous nature of the material on these parameters has been investigated by some
authors [e.g. BRO 94, WEI 93A]. Recently, a fully 3D-formulation of the J-integral concept for
heterogeneous materials was proposed [HAD 95].

1.3.2-The Material Model

1.3.2.1-DEFORMATION OF THE COMPONENTS AND THE COMPOSITE

(An-)isotropy

In general the components are assumed to be isotropic. The composite is considered either as
an isotropic or orthotropic continuum depending on the microstructure. Orthotropy was
involved in the material model in the case of an anisotropic distribution or/and orientation of
the components (Fig. 1.3.6)
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©

Fig. 1.3.6. Schematic of isotropy (a) and anisotropy (b-c) due to a
(b) non-homogeneous distribution (c) elongation along preferred orientation
of the components

Plasticity

The elasto-plastic behaviour of the matrix is mostly described by the J,-flow theory of v. Mises
that of the orthotropic composite by the flow theory of Hill. Grain size and arrangements are
seldom taken into account. The former is commonly considered by the Hall-Petch relation, the
latter by a crystal plasticity theory. McHugh et al. [MCH 93] use such a crystal plasticity theory
in order to account for the orientation of slip systems between the individual grains in an Al-
SiC system. The resulting microscale pattern of stresses and strains is qualitatively similar to
that obtained with the v. Mises theory but strain localization and stress concentrations are
found to be more pronounced. Mostly the analysis has been restricted to the small deformation
theory which is not justified in some cases. Such examples are the analysis of ductile damage
processes like void formation, growth and coalescence and the blunting effect at the crack tip.
In theses cases moderate or even large plastic strains occur, and the use of a geometrical linear
theory would give false results.

1.3.2.2-DAMAGE OF THE COMPONENTS AND THE COMPOSITE

Damage is generally modelled by either continuum damage mechanics (CDM) concepts or by a
local approach to damage.

1-Continuum damage mechanics

The former one is a phenomenological description, hence uses internal (damage) variables and
smears different damage mechanisms. Since the pioneer work of Kachanov on creep damage in
1958 [KAC 58], the CDM-concepts have been spread out fastly and proven successful in many
applications (creep-, ductile plastic-, brittle- and fatigue damage (LCF, HCF) [e.g. LEM 854,
CHA 88]). In general, the damage variable is related to the reduction of the load-carrying
surface due to microdefects like voids and cracks. The evolution laws for the internal variables
are derived from thermodynamical principles and calibrated by damage material parameters.
The damage variable enters then the constitutive equatlons in the following two possible ways
(see also chapter IV .3):

(i)-Formulation in the strain-space: The formulation in the strain space is founded on the
principle of strain equivalence: Damage of the material is taken into account by transforming
the stress tensor ¢ with the help of the transformation tensor D into the effective stress tensor
6. The undamaged material is loaded by the effective stresses. It is assumed that the resulting
strains correspond to the real strains

6=D"¢ (1.3.1)
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(ii)-Formulation in the stress space: An analogous formulation is to replace the strains € by the
effective strains € while the stresses are remaining according to the principle of stress
equivalence. '

é=De (13.2)

The internal variable may be a scalar, if only isotropic damage is considered, or a tensor to
account for anisotropic damage. In the latter case, more adjustable parameters are involved
and the resolution of the unknown set of equations becomes more difficult.

The internal variables may be interpreted physically, however, often they do not reflect a direct
microstructural parameter. The Gurson Mode! is one of few CDM-concepts which correlate
the damage variable to a specific microstructural parameter (the porosity f). This model is
mostly adopted and essentially applied to damage evolution in a ductile porous matrix by void
formation, growth and coalescence [GUR 77, NEE 84] (see also chapter IV.1). In all CDM-
Concepts the stress, deformation and damage analysis is coupled.

2-Local damage approach

In contrast, the local damage approach distinguishes different damage mechanisms by
evaluating individual local damage criteria. The damage criterion may operate as a damage
indicator or as a failure criterion.

The damage indicator localizes the susceptibility of the material to the onset of damage. Its
evaluation has no consequences on neither the geometry, the material properties nor the stress-
strain analysis; hence it is used in an uncoupled manner and may therefore be evaluated in a
quasi-postprocessing procedure. The use of that concept is no longer meaningful, if one
concentrates on the effects of damage on the subsequent material behaviour. In this case the
damage indicator has to be extended to a failure criterion.

The failure criterion determines the local critical condition of the occurrence of a microdefect
(cracks, voids). The microdefect (microcracks,-voids) is then introduced either geometrically
(modification of the geometry) or physically (modification of the mechanical properties of the
components). When the load is applied in a quasi-static manner, the coupling between damage
and deformation is covered indirectly by the subsequent load step.

Both, damage indicators and failure criteria, are typically based on stress- or/and strain
components. Mostly they are defined in a deterministic manner, statistical failure criteria are
employed as fracture criteria for brittle components, often in a Weibull formulation [e.g. Bou
94, LLO 95] For a recent review of different damage indicators the reader is referred to [ZHU
92].

1.3.3-Modelling strategies and results

Almost all investigations fall into one of the following topics:

1-Unit cell investigations studying local effects and predicting the overall tensile behaviour of
the composite.

2-FE-simulations analysing the mechanical behaviour ahead of a crack tip.

1.3.3.1-UNIT CELL INVESTIGATIONS

Deformation analysis

Systematic cell computations have investigated the favourable role of the reinforcements on the
overall stiffness and strength when compared to those of the respective monolithic alloy. The
results generally agree that the development of significant triaxial stresses within the composite
matrix, due to the constraint imposed by the reinforcements on the adjoining matrix, is one
important contribution to strengthening. Several microstructural parameters have been found
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to have a marked influence on this constraint-effect and therefore on the overall deformation
characteristics:

(i)-Reinforcement shape: Different reinforcement geometries (spheres and cylinders with
different aspect ratio (see chapter 1.1)) have been analyzed. High hydrostatic stresses are found
in the matrix close to the interface; a consequence of the mutual constraint of the deformation.
Sharp corners and high aspect ratio promote the development of hydrostatic stresses. This
local effect implies that the macroscopic stiffness, flow strength and strain hardening are
elevated for this reinforcement geometry [LLO 91A, CHR 89, BAO 91].

(ii)-Reinforcement content. With increasing volume fraction, the ratio spacing between
inclusions to inclusion-size decreases, and interaction between inclusions becomes more
important. The above described constraint effect is amplified by the increasing interaction of
reinforcements. As a result overall stiffness, flow strength and strain hardening are
considerably elevated regardless of the shape of the reinforcement [BAO 91, LLO 91A].

(iii)-Reinforcement morphology: The significant influence of the morphology of the
microstructure on the global mechanical behaviour begins to receive serious attention. Two
different topologies were addressed: the inferwoven arrangement and the matrix-inclusion
topology (see also chapter 1.1):

Interwoven arrangement: The pronounced influence of morphological characteristics like the
contiguity, and the fraction-of-cluster parameter (see chapter I.1) for instance on the overall
behaviour was investigated in [SIE 93, UGG 82]. Modified rules-of-mixture accounting for
these parameters were verified by FE-predictions. The relationship between the plastic flow
properties of the composite and the morphological continuity of the different ductile phases
was quantified: Increasing the continuity of the weaker phase causes the overall flow strength
to decrease steadily [BOH 94].

Matrix-inclusion topology: FE-investigations on microscale arrangement effects of metal
matrix composites (MMCs) started only six years ago and are still subject of current research
analysis. Continuously- [BOH 93B, BOH 94, BRO 91] as well as discontinuously reinforced
MMCs (reinforcements being whiskers, short fibers or particulates) [BAO 91, LLO 91A, CHR
89, BOH 93A] have been investigated under axial and transverse mechanical loading as well as
under thermomechanical loading.

For the former class of materials, perfectly symmetric arrangements like the square and
hexagonal arrangement and clustered arrangements have been considered [BOH 93B, BOH 94].
The results displayed a strong influence of the arrangement on the microscale field quantities.
In addition the overall (macroscopic) response to transverse mechanical loading was found to
be dependent on the microscale topology [BOH 93B]. Brockenbrough and co-workers [BRO
91] used a multi-fiber unit cell (30 fibers in a pseudo-random arrangement) in order to visualize
the effect of local clustering of the fibers on the microscale stress and strain fields. Under axial
loading no marked influence was found. The fibers carried the load almost fully and the
ultimate failure is reached prior to plastic deformation of the matrix. Consequently, the overall
properties are insensitive to the way how the fibers are distributed in the matrix. In contrast,
under transverse tension or shear, the load is transmitted across the fibers via the ductile matrix
and gives rise to a highly inhomogeneous matrix strain field. The constrained flow of the
matrix affects the evolution of hydrostatic stresses which, in turn influence the overall flow
properties of the composite.

The influence of the arrangement of aligned fibers in discontinuously reinforced MMCs in an
uniform remote array on the overall response has been studied via plane strain and
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axisymmetric models. In general the plastic flow response seems to be markedly affected while
the overall elastic response seems to be insensitive to the reinforcement distribution. Over-
lapping fibers were found to decrease the flow strength when compared to that of non-
staggered fibers [see Fig. 1.3.2, BAO 91, TVE 90B].

Christman et al. [CHR 89] and Llorca et al. [LLO 91A] both investigated clustering effects by
shifting the whiskers from the perfect uniform distribution in the axial (vertical) or radial
(horizontal) directions. For both types of clustering, the flow strength and strain hardeming
were significantly reduced as compared to those for the perfectly uniform distribution. This
reduction was more dramatic for axial clustering. These effects were equally attributed to the
way how plastic strains and particularly hydrostatic stresses evolved in the matrix.

Damage analysis o -

At present, first attempts are made to extend the above discussed analysis to account for the
effects of local damage events and evolution on overall strength and ductility.

The use of damage indicators like the triaxiality or parameters based on it [e.g. FIS 96, BOH 94]
was suggested for the damage analysis of continuously reinforced MMCs.

In discontinuously reinforced MMCs the effects of particle cracking and interfacial failure has
been studied [MIC 93, BAO 92, McH 94]. To the knowledge of the author damage was always
simulated in a static manner: a progressive damage behaviour was not modelled. This might
have been for two reasons:

Mostly a single matrix-reinforcement unit cell is used. For this reason local failure at
reinforcements is assumed to occur simultaneously in all reinforcements inherent in the
material. Another reason might be that most scientists use commercial FE-codes; the
incorporation of failure criteria might be a complicated task. Therefore it is assumed that
particles are already initially broken or debonded. The important effect of stress distribution in
