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Introduction 

High-resolution NMR 

Despite its short existence, Nuclear Magnetic Resonance (NMR) has become 

a powerful technique of investigation used for research in a wide range of 

domains: biology, physics, chemistry, etc. Indeed, unlike other spectroscopie 

methods, NMR has the special feature of being able to select separately 

each nucleus. Therefore, it is possible to probe the local environment of 

a specifie nucleus through the characterisation of its interactions. Thanks 

to the Brownian motion of molecules, interactions in liquids are restricted 

to an isotropie component such that the NMR spectrum is composed of 

extremely narrow bands. Thus, the distinction between the different groups 

of atoms within the structure of a molecule is possible. The development 

of two-dimensional NMR experiments in 1971 is an event to underline, as it 

gave new insights to the technique. From then on, a huge number of new 

experiments emerged, mainly dedicated to liquids. Today, two- and even 

three-dimensional NMR experiments are essential to determine the structure 

of biological molecules, which can sometimes involve thousands of atoms! 

Solid-state NMR has still not reached this stage of high resolution. The 

problem cornes from the rigidity of the crystal lattice, which renders the 

different interactions anisotropie. Moreover, researchers often study pow­

der samples in NMR since it is difficult to obtain single-crystals of sufficient 
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dimensions (> 1mm3 ). Consequently, the anisotropie features of the inter­

actions, in addition to the presence of crystallites of various orientations, 

generate homogeneous and inhomogeneous broadenings of the resonances. 

For spin I = 1/2, these anisotropie broadenings can be averaged out either 

by rotating the sample at a certain angle (magic angle) or by manipulating 

the spins using apropriate pulse sequences. 

Other spins (I > 1/2) undergo an additional quadrupolar- interaction 

which contributes to the broadening of the NMR spectrum. U nfortunately, 

the magic angle rotation does not cancel out the whole quadrupolar broaden­

ing. Since quadrupolar nuclei constitute almost 3/4 of the existing elements, 

it has always been of high interest for researchers m materütl science to find 

new methods of averaging these anisotropies. 

Solid-state NMR of quadrupolar nuclei 

For quadrupolar nuclei, the development of nevv methods of high resolution 

has been slower compared to other fields in NMR. Indeed, the theoretical 

foundations used up to then in solid-state NMR needed time to mature. 

Moreover, certain technological challenges, such as the rotation of the sam­

ple at high speeds, have hindered the application of the theory. In 1988, two 

new experiments based on the double rotation of the sample were proposed 

to enable scientists to obtain isotropie spectra of quadrupolar nuclei. These 

techniques (DOuble Rotation and Dynamic Angle Spinning) rely on the ma­

nipulation of the spatial part of the quadrupolar Hamiltonian. With these 

methods, researchers had to face the problem of spinning simultaneously or 

sequentially a given sample at two specifie angles. However, such technolog­

ical challenges have still not been fully overcome, which explains why double 

rotation experiments have failed to become routine experiments in chemistry. 
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While many were trying to solve the problem of spinning a sample at 

two different angles, a few researchers started to focus their attention on the 

spin part of the Hamiltonian. They highlighted the fact that the Hamil­

tonian is dependent of the multiple- and single-quantum transition that is 

excited. Unfortunately single-quantum transitions are the only observable 

transitions in NMR. It was in 1995 that Frydman showed that the aver­

aging of the quadrupolar broadenings is experimentally possible. In fact 

he replaced the second rotation of the sample by a correlation of single­

and multiple-quantum transitions in a two-dimensional experiment. This 

Multiple-Quantum Magic Angle Spinning experiment efficiently combines the 

manipulation of both spatial and spin parts of the Hamiltonian. Therefore, it 

technologically requires the equipment used for simple magic angle spinning 

experiments. 

Organization of the Ph.D. 

I started my Ph.D. within the group of Prof. Amoureux in December 1995, 

that is about 8 months after Frydman presented his first experimental results 

on MQMAS. Thus, my work was naturally oriented towards the development 

of this method and especially the problem of the quantification of 2D spectra. 

At the same time, I had the strong desire to work with Dr. Klinowski 

whose interest was to use the MQMAS experiment to solve structural prob­

lems in microporous materials. Through a collaboration developed between 

the two laboratories, I was able to share my time between the laboratory in 

Lille (France) and the one in Cambridge (UK). In Cambridge, the labora­

tory is equiped with Chemagnetics facilities. Thus, I had to first adapt the 

MQMAS experiment to the available hardware. Then, Dr. Klinowski put 

me in contact with Dr. Welch from the Natural History Museum of Lon-
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don, in order to apply the MQMAS experiments to the study of minerals 

(amphiboles). 

In Lille, Prof. Amoureux's group has had over ten years of experience in 

the development of numerical calculations applied to NMR experiments. The 

softwares (QUASAR, PULSAR) written by Profs. Amoureux and Fernandez 

have been of great help for the improvement of the MQMAS experiment. At 

the time I commenced my Ph.D., MQMAS spectrum provided poor quantita­

tive information. Thus, as a student in their group, I was asked to contribute 

to the development of a numerical method, which would correct the intensi­

ties. 

On several occasions, I have had the possibility to meet professors, lec­

turers and students from other laboratories who came to Lille to geta better 

understanding of the MQMAS experiment. These encounters have been chal­

lenging as it often gave me the chance to apply both the MQMAS technique 

and the method of quantification, which I was developing, to samples with 

structural uncertainties. The materials were microporous materials (zeolites) 

containing quadrupolar nuclei (27Al, 170, 23 Na). 

Organization of the manuscript 

I deliberately chose to write my thesis in english despite the extra work that 

I knew it would require. After working in Cambridge and with researchers 

coming from the US, India and Germany, it was important for me to complete 

my three years of research with a manuscript that they could understand and 

thus, fairly evaluate. However, I have included a summary in french at the 

end of each chapter in order to fulfill the conditions of submission for a french 

university. 

The first chapter of this manuscript concerns the theoretical basics of 
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NMR. After a general section to introduce the phenomena involved in NMR, 

I give the different interactions, which occur in solids. The development of 

the Hamiltonian has been limited to the quadrupolar interaction only. Then, 

I focus on the spatial part of the quadrupolar Hamiltonian until I obtain an 

expression for the first-order interaction. The basics of magic angle spinning 

experiments are explained at that point. A development of the Hamiltonian 

to the second-order is also achieved in order to get an equation, which will 

be the starting point for the second chapter on MQMAS. 

Whereas spin parts of the quadrupolar Hamiltonian were left out in the 

first chapter, they are introduced in the second chapter explicitly written 

in order to explain how it is possible to remove quadrupolar hroadenings by 

correlating the single- and multiple-quantum coherences in a two-dimensional 

MAS experiment. In a further section, I go through with detail the main steps 

involved in the acquisition and the processing of a 2D MQMAS spectrum and 

I present as well the optimal experimental conditions that should be used. 

Finally, a selected example demonstrates the fiexibility of the technique by 

showing combination of other spin manipulations (CP and REDOR) that are 

possible with the MQMAS experiment. 

The third chapter starts by showing the problem that occurs when one 

wants to obtain quantitative results in solid-state NMR of quadrupolar nu­

dei. It is stated and explained why such information is difficult to obtain 

when materials are badly crystallised or amorphous. Thus, the theoretical 

foundations of the method of quantification are given. Such a calculation 

requires a program, namely PULSAR, which can take into account experi­

mental parameters to simulate the NMR lineshape. At this point, I give two 

examples of quantification by inversion of the MQMAS spectrum in order to 

demonstrate the validity of the method. 
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Finally, the fourth chapter is the grouping of three articles published or 

in the process of being published that present new and interesting results. 



Chapter 1 

Spin interactions in solids 

1.1 Basics in NMR 

1.1.1 Spin Angular Momentum 

N uclear Magnetic Resonance phenomenon results from the interaction of 

magnetic fields (static and oscillating) with physical properties of the nuclei, 

specifically linked to the spin of the considered particle. The theoretical study 

of NMR could be lead by simply considering the nucleus as a small magnet. 

Its physical properties would th en come from classical mechanics. However, 

quantum mechanics is convenient, even necessary, as it introduces new prop­

erties for the nucleus. Indeed, NMR is only possible when the system under 

consideration possesses a magnetic moment J.-L as well as an angular momen­

tum J so that J.-L=ryJ. "( is the gyromagnetic ratio that differencia tes nuclei 

from each other. As J is proportional to the spin kinetic momentum 1, the 

magnetic moment of a spin will be written 

(1.1) 
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where ti = h/27r denotes the reduced Planck's constant. 

Of course, in the quantum theory, J.L, J and 1 are treated as operators. 

Then, 12 has eigenvalues J(J + 1) which are either integer or half-integer. We 

must also consider eigenvalues m of the projection Iz of 1 onto the Oz axis, 

taken parallel to the static magnetic field B0 . I and m are denoted the spin 

quantum number and the magnetic quantum number respectively, the latter 

taking any of the 2/ + 1 values, I, I- 1, ... , -!. 

Consequently, nuclei 1X with a spin quantum number equal to zero (for 

A and Z even) are not sensitive to NMR excitation. Other nuclei can be 

observed by NMR, their spin number I being integer or half-integer. We will 

further distinguish nuclei with spin quantum number I equal to 1/2 from 

quadrupolar nuclei for which the spin number I can take any integer or half:.. 

integer values superior to 1/2. The present work is mainly dedicated to the 

latter category as quadrupolar nuclei represent 75% of the periodic table and 

reveal an important source of structural information. 

1.1.2 Zeeman Interaction 

The application of an external static magnetic field B 0 to the spin system 

produces a coupling with the magnetic moment J.L. The interaction between 

Bo and J.L is commonly named the Zeeman interaction and involves an energy 

of amount - J.L.B0 . Taking the field B 0 along the z-direction, we find 

(1.2) 

The eigenvalues of the Zeeman Hamiltonian are multiples of the eigenval­

ues rn of Iz so that the allowed energies are 



1.1 Basics in NMR 3 

(1.3) 

with m = I,I -1, ... , -!. 

These eigenvalues are illustrated in Fig. 1.2 for the case I = 3/2, corre­

sponding to nuclei such as 23 Naand 11 B. It must be noted that the levels are 

equally spaced, the distance between successive levels being !:lE= "(nB0 . 

The energy distribution of individual nuclear momenta under B0 is ruled 

by the Boltzmann theory which says that there is a population difference to 

the benefit of the lowest energies. Consequently, this Boltzmann distribution 

of energy levels creates a macroscopic magnetization M 0 = 2::::{:1 /-Li which 

is directly linked to the paramagnetism detectable in NMR. M 0 and B 0 are 

related by the paramagnetism susceptibility, denoted X· The coefficient x is 
written 

(1.4) 

Eq. 1.4 points out that the efficiency of an NMR excitation strongly de­

pends on the gyromagnetic ratio 'Y of the nucleus and that the intensity of 

the NMR signal is proportional to the number N of particles in the sample. 

1.1.3 Pulsed NMR 

The acquisition of an NMR signal is liable to the detection of the param­

agnetism. However, this is generally rendered difficult due to the fact that 

at room temperature, x (~ 10-5 ) is small and the corresponding paramag­

netism is hidden by the electronic diamagnetism. Therefore, modern NMR 

has found in the resonance phenomenon a way to increase the paramagnetic 

effect. 
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The most common way of producing magnetic resonances is to apply 

an alternating magnetic field B 1 perpendicularly to the static magnetic field 

B 0 . This alternating field will induce transitions between the Zeeman energy 

levels provided that the resonance condition is fulfilled. Since the Zeeman 

levels are separated by a quantity 6.E = rliB0 , wc can deduce the Larmor 

frequency w0 = rB0 .
1

• 
2 Considering the actual values for B0 (up to 21 Tesla), 

the Larmor frequency is in the radio-frequency domain. 

It may be helpful now to examine the behavior of the magnetization after 

the application of a radio-frequency pulse, at the Larmor frequency, perpen­

dicular to B 0 . This is illustrated in Fig. 1.1. At equilibrium (Fig. 1.1-a), 

the magnetization M 0 is parallel to B 0 . Then, a rf pulse creates a preces­

sion of the magnetization through the torque M 1\ B 1 (Fig. 1.1-b) which is 

equivalent to inducing transitions between Zeeman levels. At resonance, the 

magnetization can th us be transferred into the plan x' Oy' perpendicular to 

B 0 if the pulse length is correctly adapted ( 1r /2 pulse). Finally, wh en the 

rf field B 1 is removed, the magnetization M is described by the differentiai 

Eq. 1.5, if we only consider the effect of B 0 . Therefore, it appears that this 

equation describes a perpetuai motion of the magnetization M around B 0 . 

dM 
dt= rMI\Bo (1.5) 

Bloch3 introduced a longitudinal relaxation time Tl and a transverse re­

laxation time T2 in order to illustrate the last stage of a pulsed experirnent: 

the relaxation times result from the interactions of the nucleus with its en-

vironment. Thus, Bloçh equations (Eqs. 1.6 after a 1r /2 pulse) contain ex­

ponential terms in T1 and T2 that impose the magnetization to return to its 
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z z z 
Bo Bo Bo 

Mo 

MT(t) 
y' y' y' 

x' x' x' 
(a) (b) (c) 

Figure 1.1: Vectorial representation of the influence of a pulse excitation on 

the magnetization 

equilibrium position. 

(1.6) 

Mr(t) denotes the complexe relaxation in the transverse plan x'Oy' and 

it is commonly named the Free Induction Decay (FID) (Fig. 1.1-c) . .6.w = 

w- w0 corresponds to the offset, i.e., the difference between the frequency of 

the spin system and the Larmor frequency. 

The acquisition of an NMR signal consists of recording real and imaginary 

parts of the FID. This is carried out by a synchronous detection dephased by 

90°. A Fourier transform of these two signais yields absorption and dispersive 

spectra. 

The advantage of pulsed NMR, in comparison with previous continuous­

wave techniques, rests with the ability to obtain a spectrum over a wide 

frequency range, in a limited time and with a signal-noise ratio (S/N) in­

creased by successive repetitions of the pulse sequence. Today, we realize 
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that this technique has also lead NMR to even more complexe multiple-pulse 

experiments. 

1.1.4 Multiple-Quantum Transitions 

We have previously shown that an rf field B 1 at Larmor frequency induces 

transition between the 2/ + 1 energy levels of a spin I. The most common 

experiment is composed of a single weak pulse that will induce transitions 

between adjacent energy levels. Such transitions are denoted single-quantum 

transitions as they involve only one energy rfiB0 . Additionally, non-adjacent 

transitions can be excited by applying a stronger rf field. 4 The latter will 

be referred to as p-quantum transitions when involving an energy equal to 

PrfiB0 . This definition naturally suggests another possible representation 

of the energy levels of a spin J, in terms of multiple-quantum transitions 

(Fig. 1.3). This diagram is usually preferred in multiple-pulse NMR studies, 

especially for two-dimensional NMR experiments. The deliberate separation 

of transitions of opposite sign (p/2 --+ -p/2 and -p/2 --+ p/2) will be 

further justified when two-dimensional experiments will be introduced. 

Multiple-pulse experiments allow the excitation of varions different single­

and multiple-quantum transitions. However, the selection rule of Eq. 1. 7 

clearly states that only single-quantum transitions are observable in NMR, 

i.e. whatever the number of pulses and whatever the multiple-quantum tran­

sitions involved in the sequence, the pulse preceding the acquisition must 

be optimized in order to populate mainly single-quantum levels. It must be 

pointed out that the convention is to take p = -1 for the acquisition. 
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p= ±3 

1 

p= ±2 

t ! p = ±1 

t 

m 

3/2 

1/2 

-1/2 

-3/2 

Figure 1.2: Zeeman energy levels for a nucleus with 1 = 3/2 

p 

+3 
+2 
+1 

0 
-1 
-2 
-3 

7 

Figure 1.3: representation in terms of coherence-arder pathways p, deduced 

from Fig. 1.2. Coherence-arder pathways of opposite signs are considered 

separately. 
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'2: 6.mi = ±1 (1. 7) 

Even though quantum mechanics is not necessary to understand the ba­

sics in NMR, it becomes essential when elaborate interpretations of NMR 

spectra have to be made. Bloch equations are basically limited to liquid 

NMR where most internai interactions that affect the relaxation are aver­

aged out by Brownian motion of molecules. In solids, different interactions 

generally alter the relaxation of the spins. Thus, solid-state NMR spectra 

are rendered even more complicated by various broadenings. On the other 

hand, solid-state NMR may bring valuable structural informahon provided 

that these broadenings are correctly interpreted. Special quantum mechani­

cal developments are required to explain NMR spectra of solids. Therefore, 

the next section will overview the tools as well as the main principles that one 

may encounter in solid-state NMR. We will mostly consider the quadrupolar 

interaction as it remains the central tapie of the present work. 

1.2 Spin Hamiltonians in Solids 

A nucleus has different ways to communicate with its surroundings.5 We 

previously considered the effects of long distance interactions with external 

magnetic fields such as B 0 and B 1 . However, even though these two inter­

actions are essential in NMR, they do not provide any relevant information 

on the structure of the materials. Therefore, in addition to the Zeeman in­

teractions, local magnetizations have to be taken into account to explain the 

relaxation of the spins and to understand the shape of the spectra. 6 These 

internai interactions have different origins and they strongly depend on the 

local symmetry around the nucleus. We will limit the present work to the 
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study of the three most important ones in solid-state NMR, i.e. the dipole­

dipole, chemical shift and quadrupolar interactions. They can be classified 

in terms of magnitude with respect to the dominant Zeeman interaction (Ta­

ble 1.1). 

Zeeman Quadrupolar Dipolar Chemical Shift 

Table 1.1: Order of magnitude of the interactions in solids (given for 27Al at 

104.106 Hz, B0 = 9.39 Teslas). 

1.2.1 Origin of Interactions 

Dipole-Dipole Coupling 

Classically, nuclei can be considered as magnetic dipoles. Thus, in liquids and 

solids, there exists a dipolar interaction resulting from the coupling between 

two magnetic dipoles. Experimentally, such couplings lead to a broadening 

of the NMR spectrum. Therefore, the study of dipolar interactions, which 

are dependent on the interatomic distances, provides important information 

on the structural features of the materials. However, when considering the 

magnitude of this interaction compared to the others present in solids, we 

notice that it is largely dominated by the quadrupolar interaction. Mm·eover, 

many nuclei are generally coupled with each other and the extraction of 

structural information from the resulting broadening is consequently made 

much more complicated. 
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Chemical Shift Interaction 

Generally speaking, interactions result from the mutual influence of two cou­

pling partners. 7• 8 Indeed, the action of the a pp lied static magnetic field B 0 is 

opposed to a local magnetic field created by the electron cloud around the nu­

cleus. This magnetization generates an induced magnetic field, proportional 

to B0 so that the real field that a nucleus undergoes is given by 

Breal = (1 - Œ)Bo (1.8) 

where C5 is a proportional constant. 

Quadrupolar Interaction 

When the spin number I is greater than 1/2, the nucleus possesses an elec­

tric quadrupole momentum due to the non spherical distribution of the pro­

tons. The interaction of the local electric field gradients, EFGs, with this 

quadrupole momentum leads to the corresponding quadrupolar interaction. 

This interaction is generally considered to be the most important in mag­

nitude and consequently provides an unique mean of determining the local 

environment of the nucleus. Indeed, quadrupole effects are strongly linked 

to the local symmetry of the nucleus. In a cubic symmetry, the quadrupo­

lar interaction vanishes whereas quadrupole effects are amplified when the 

environment becomes more asymmetrical. 

1.2.2 Mathematical Tools 

Irreducible Spherical Tensors 

In solids, spin interactions can be represented in the laboratory frame (LAB) 

by a nine component cartesian tensor. Nevertheless, it is more convenient to 
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express them in terms of irreducible spherical tensors when rotations are in­

volved. The nine comr- .:ments of the irreducible spherical tensor are deduced 

from the cartesian components using Eqs. 1.9. 

Aoo = -(1/J3)[Axx + Ayy + Azz] 

Aw = -(ijv/2)[Axy + Ayx] 

Al±l = -(1/2)[Azx- Axz ± i(Azy - Ayz)] 

A20 = (1/J6)[3Azz- (Axx + Ayy + Azz)] 

A2±1 = =f(l/2)[Axz + Azx ± i(Ayz -Azy)] 

A2±2 = (1/2)[Axx- Ayy ± i(Axy - Ayx)] 

Laboratory Frame and Principal Axis System 

(1.9) 

In monocrystalline samples and for each species, there exists a Principal 

Axis System (PAS) for each interaction depending on the symmetry of the 

surroundings (the axes of the PAS are defined with capitalletters XYZ). In 

this PAS of eigenvectors, the interaction will be represented by a diagonal 

tensor. In polycrystalline or disordered samples, each crystal is associated 

with its own PAS. But, in NMR final calculations should be completed in 

the laboratory frame (LAB=Oxyz) where the relaxation will be measured. 

Moreover, the static magnetic field B0 is also linked to this frame, taken 

parallel to the z-axis. Therefore, we must finally define the Euler angles 

o:, (3, r by which the laboratory frame can be brought in coïncidence with the 

PAS for a crystal, for a particular species and a given interaction. 

Parameters characterizing one interaction are known into its PAS so that 

a rotation has to be applied in orcier to deduce the components of this tensor 

into the laboratory frame (Eq. 1.10). The tensor components will be referred 

to as the capitalletter A1m in the laboratory frame and as the lower case a1m 
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in the PAS. 

+l 

Alm = L v;:},m(o:,/3,/)alm' (1.10) 
rn'=-l 

where the D;:},m are Wigner matrix elements6
• 

9 

'D(I) (o: r:1 "~) = e-im'o:d(l) (r:i)e-imr 
m'm '/J, t m'm fJ (1.11) 

The second-order (l = 2) reduced matrix elements d~}m (/3) are found in 

Table 1.2. 

rn 

2 1 0 -1 -2 

2 (t+~os~r - l+~os ,6 sin j3 J~ sin
2 j3 - 1-~os ,6 sin j3 c-~os~r 

1 l+~os ,6 sin j3 cos2 j3- 1-~os,B -J~ sin2j3 l+cos ,6 - cos2 j3 
2 

- 1-~os ,6 sin j3 

0 /J sin
2 

j3 j~ sin 2/3 3cos2 ,6-1 -Ji sin 2/3 }_i sin2 j3 2 

-1 1-~os ,6 sin j3 l+~os ,6 - cos2 j3 J~ sin 2/3 cos2 j3 _ 1-~os ,6 - 1 +~os ,6 sin j3 

-2 (~l~ 1-~os ,6 sin j3 [i sin2 j3 l+~os ,6 sin j3 C+~os~r 

Table 1.2: Reduced Wigner rotation matrix elements d~Î,m (j3) in terms of 

the Eulerian angle j3 

Spin Hamiltonian in Spherical Representation 

The spin Hamiltonian can be expressed for each interaction À (À taking the 

values Q, D or CJ for respectively the quadrupolar, dipolar and chemical shift 

interactions) as 
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(1.12) 
i,j=l 

in the cartesian reference systemY The c>.. are constants which are given 

for each interaction in Table 1.3. 

Quadrupolar Dipolar Chemical Shift 

CQ = 21(;~-1) cD = -2"(["fs ccr = /I 

Table 1.3: Constants c>.. encountered in Spin Hamiltonians for the three 

interactions. 

In both cartesian and spherical representations, the spin Hamiltonian is 

the scalar product of a spatial tensor R>.. and a spin tensor T>... 

Spatial components are generally better known in the PAS where the 

tensor describing the interaction is diagonal. 

R>.. -
(PAS) -

Rxx 0 0 

0 

0 0 

0 

Rzz 

However, instead of these three eigenvalues Rxx, Ryy, Rzz, it is of­

ten convenient to introduce three parameters that better characterize the 

strength of the interaction. One of them is the trace Tr( R>..) of the tensor 

from which the two others will be deduced and denoted c5>.. and 'Tl>..· Eq. 1.13 

shows that c5>.. relates to the strength of the anisotropy, whereas 'Tl>.. (Eq. 1.14) 

symbolizes the asymmetry of the interaction ( TJ>.. = 0 in a cu bic environment). 
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(1.13) 

(1.14) 

As far as spin tensor components Tj~i are concerned, they stem from the 

product of two vector components Xj and Yi (Eq. 1.15). The vector X is 

always a nuclear spin vector 1 whereas the second vector Y can be the same 

nuclear spin vector 1 (for À=Q), another nuclear spin vector S (À=D) or the 

external magnetic field B 0 (À = Œ). 

T~- = X 3·Yi J,t (1.15) 

with (i,j = x,y,z) 

As previously mentioned, a representation in terms of irreducible spheri­

cal tensors6
' 9 is preferable for a theoretical study of polycrytalline and amor­

phous samples due to the multiple rotations that are to be performed (from 

PAS to LAB frame and later when the sample will be spun). The spin 

Hamiltonian is therefore written in a general form 

+l 

1i>. = c>- L L ( -1)m R2-mTl~m (1.16) 
l m=-l 

where the spherical tensor components Rt,-m and Tt,m are derived from 

the Cartesian tensor components Ri,j and Tj,i using Eqs. 1.9. 

It is now interesting to study each interaction in detail, taking into ac­

count its origin and using the previous presented definitions of tensors. We 
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will further discover that Eq. 1.16 can be significantly simplified by con­

sidering the particular symetries of each interaction. The next section will 

focus on the quadrupolar case whereas results for chemical shift and dipolar 

interactions will be discussed briefly. 

1.2.3 Hamiltonians of Spin Interactions 

Quadrupole Hamiltonian 

The quadrupolar interaction cornes from the coupling of the electric qua­

drupole moment of a spin I with an electric field gradient depending on the 

spatial coordinates of the electric charges. In a cartesian basis, the quadrupo­

lar Hamiltonian can be expressed as 

eQ 
1iQ = 21(21- 1) I. Q. I (1.17) 

where the spatial tensor operator Q is commonly named the electric field 

gradient (EFG). In its PAS, the EFG tensor has three eigenvalues Vxx, Vyy 

and Vzz. 

Nevertheless, convenient parameters Tr( Q), bQ and TJQ are introduced to 

characterize the EFG. As QPAS must satisfy the Laplace's equation 'V.QPAS = 

0, we find that the spatial tensor is traceless (Tr(Q) = 0). Consequently, the 

quadrupolar interaction can be fully described by the bQ and TJQ parameters 

that are respectively labelled the field gradient and the asymmetry parameter 

of the quadrupolar interaction. 

Vzz being taken equal to eq, quadrupolar parameters are directly deduced 

from Eqs. 1.13 and 1.14, 
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bq= Vzz = eq 

Vyy- Vxx 
TJQ = 

Vzz 

and the EFG tensor will be written in the PAS, 

1)q-l 0 2 

Q(PAS) = eq. 0 -1)q-l 
-2-

0 0 

0 

0 

1 

(1.18) 

(1.19) 

A standard measure of the strength of the quadrupole coupling is also 

found in the quadrupolar coupling constant 

e2qQ 
Cq = -h- (1.20) 

which has more pleasant units of frequency. This parameter will be 

later preferred to r5q to describe the strength of the quadrupolar interac­

tion whereas TJQ will be kept to describe the deviation of the field gradient 

from axial symmetry. 

Then, spatial spherical components of the EFG are deduced from carte­

sian components (matrix Q(PAS)) using the set of Eqs. 1.9. 

(Q) - (Q) - (Q) - (Q) 
roo - rlO - rl±l - r2±1 = 0 

r~~) = fjeq (1.21) 

(Q) - 1 r 2±2 - eqT}q 2 
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We notice that rank-0 and rank-1 tensor components are null and rank-2 

tensor is composed of only three nonzero components. In terms of irre­

ducible spherical tensor operators, the Hamiltonian of Eq. 1.16 can therefore 

be grandly simplified in the case of the quadrupolar interaction if we only 

consider nonzero R~m components that derive from the r~m of Eqs. 1.21. 

Only l = 2 and m = 0, ±2 terms must be retained in the Hamiltonian, 

leading to the quadrupolar Hamiltonian 1-lQ 

eQ +2 

1-lQ = 2J(2f- 1) L ( -1)m R~-mT~m 
m=-2 

(1.22) 

As far as spin part of the interaction is concerned, the components of the 

tensor 7i5 = lili can be reduced in spherical components using the same 

Eqs. 1.9. This transformation leads to the five components of Eqs. 1.23 if 

we neglect spin terms with l =1= 2 that do not appear in the quadrupolar 

Hamiltonian. 

(1.23) 

with h = Ix ± ify 

Dipolar and Chemical Shift Interactions 

A dipolar interaction concerns the coupling of two spins, I and S, and its 

strength is logically proportional to the inverse cube of the distance r· be­

tween the two coupling partners. For the same reason as previously stated, 

the dipolar tensor is traceless. On the contrary, the chemical shift tensor 
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has a trace in the PAS. Results concerning both of these interactions are 

summarized in Table 1.4. 

1 0 0 -2 
1 1 D(PAS) =-. 0 0 

r3 2 

0 0 1 

O"u 0 0 

CT(PAS) = 

Spatial components of the irreducible spherical tensors in the PAS are de­

duced from the cartesian tensors D(PAS) and CT(PAS), for dipolar and chemical 

shift interactions, respectively and results are given in Table 1.5. 

Spin components of the irreducible spherical tensors are then calculated 

regarding that Ti~ = IiSj and Ti~j = IiBo1 (Table 1.6). 

According to these simplifications, dipolar anJ chemical shift Hamiltoni­

ans Hv and Ha are written 

+2 

Hv = -lns L ( -1)m Rf_mTfm (1.24) 
m=-2 

and 

+l 

Ha= ri L L (-1)mRr,_mTl~rn (1.25) 
l=0,2m=-l 

It must be pointed out that the development of the chemical shift Hamil­

tonian Ha will give one additional term with respect to other Hamiltonians 

Hv and HQ, for l =O. 



1.2 Spin Hamiltonians in Solids 19 

Interaction Trace bÀ TJÀ 

Di polar TrD =0 1 0 r3 

Chemical shift Tru= aiso ~~a ~ 0"22-0"11 
3 2 ~(T 

Table 1.4: bD, bu and TJu parameters of dipolar and chemical shift interactions 

as a function of r, aiso = (au + azz + a33)/3 and ~a = 3(a33 - aiso)/2, 

respectively. 

Interaction À Too À Tzo À 
Tz±z 

Di polar 0 ~1 r3 0 

Chemical shift -.J3aiso ~~(J -~(T'r} 
3 (T 

Table 1.5: Components of the irreducible spherical di polar and chemical shift 

tensors. 

Interaction Too 

Di polar not used 

Table 1.6: Second-rank irreducible spin tensors for dipolar and chemical shift 

interactions (I± =Ix± ily and S± = Bx ± iSy) 
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So far, we have summarized the most relevant results of quantum me­

charries concerning interactions in solids, focusing on the quadrupolar one. 

This led to the general form of the quadrupolar Hamiltonian (Eq. 1.22) and 

the definition of the various terms that compose its expression. In order to 

see the effect that each interaction has on the spin-relaxation as well as on 

appearance of the final NMR spectra, we now have to develop the different 

Hamiltonians taking into account the experimental characteristics. Basically, 

interactions in solids result in a broadening of the spectrum and for the last 

40 years, rotations of the sample have been considered as the best way to 

fake the brownian movements in liquids. We will now develop quantum me­

chanical calculations to explain how rotations about one or more axes can 

affect spectra in NMR. 

1.3 Motional Narrowing 

In 1959, Andrew and co-workers10 proved that anisotropie dipolar broadening 

could be removed by spinning the sample about an axis inclined at a specifie 

"magic angle" with respect to the static magnetic field. By using a pertur­

bation theory, we will show that, to first order, magic angle rotation cancels 

all interactions. However, quadrupolar interactions are worth considering in 

detail: indeed, Magic-Angle Spinning (MAS) experiments do not completely 

average out the quadrupolar broadening. Therefore, second-order correction 

must be considered in the quadrupole case, which justified the use of double 

rotation experiments. 
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1.3.1 General 

Let us consider the total Hamiltonian of a spin as a sum of two terms: a 

dominant Zeeman interaction in high-field NMR and a weaker interaction 

such as the chemical shift anisotropy or the quadrupolar coupling. As calcu­

lations are logically made in the Zeeman basis, the perturbated Hamiltonian 

becomes explicitly time-dependent in this representation so that the total 

hamiltonian is written 

(1.26) 

However, such time-dependency can be overcome by using an Average 

Hamiltonian Theory (AHT) 11 which consists of a sum of time-independent 

Hamiltonians (also called the Magnus expansion) 12 

(1.27) 

which approximates the time-dependent Hamiltonian of Eq. 1.26. 

The first term of Eq. 1.27 is the first-order correction to the Zeeman 

interaction. We will see that the first-order correction is equivalent to keeping 

the terms in the Hamiltonian which commute with the Zeeman interaction. 

The next term in the Magnus expansion is referred to as the second-order 

correction which is required if the first-order correction vanishes for certain 

transitions. Actually, we will demonstrate that the second-order correction is 

necessary for the quadrupolar interaction. The other terms are higher-order 

corrections that are rarely taken into consideration in NMR. 
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1.3.2 Averaging First-order interactions 

Static Hamiltonian 

During the relaxation process, spins subject to an external magnetic field as 

well as to an internai interaction À may be described by the Hamiltonian 

+l 

1i =Hz+ HÀ = -wolz + c>- L L ( -l)m R~_mT/m, (1.28) 
1=0,2 m=-l 

in terms of irreducible spherical tensors. Note that we consider the pertur­

bated hamiltonian of the chemical shift interaction (l = 0, 2) bearing in mind 

that the term for which l = 0 should be removed in dipolar and quadrupolar 

cases. 

The dominant Zeeman Hamiltonian constitutes the zeroth-order term and 

the first-order correction is found by keeping the secular terms of the Hamil­

tonian 1i>,, i.e., terms of 1i>- that commute with the Zeeman interaction. 

Then making use of the commutation rule 

(1.29) 

we find that terms for which m =f 0 vanish so that the total Hamiltonian 

is simplified to the first-order and given by 

(1.30) 

The second term of Eq. 1.30 does not exist in dipolar and quadrupolar 

Hamiltonians and should simply be removed. However, for chemical shift 

interaction, the total Hamiltonian may be written, after appropriate substi­

tutions using components of spin and spatial tensors in Tables 1.5 and 1.6 
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(1.31) 

The second term of Eq. 1.31 contains the isotropie chemical shift aiso 

which is usually included within the Zeeman interaction so that the effective 

Larmor frequency is now w~ = (1- aisa)w0 . Consequently, the spectrum will 

be shifted compared to the 'pure' Zeeman spectrum but Zeeman levels will 

still be separated by the same energy. 

The anisotropie broadening arises from the last term of Eq. 1.30. R~ 0 , 

can be developed for each interaction using Eqs. 1.10 and 1.11 to show that 

the spatial tensor R~ 0 depends on the orientation of the PAS relative to 
' 

the Zeeman interaction's reference frame (LAB frame) given by the three 

Euler angles. Eq. 1.32 stems from the expansion of the spatial R~0 term 

in the quadrupolar case. Such developments for dipolar and chemical shift 

interactions yield similar results. 

(1.32) 

For a single crystal, where only one orientation of the PAS is present, 

the anisotropy will be the same for ali equivalent nuclei and the spectrum 

will consist of one line. However, in polycrystalline or disordered samples, 

each crystallite has its own set of euler angles and will contribute to the final 

spectrum with different intensities and frequencies. The consequence is a 

broadening of the spectrum that we usually denote the anisotropie powder 

pattern. 

It is worth looking at the frequency shift resulting from the first-order 

correction to the quadrupolar perturbation. The quadrupolar frequency per-
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turbation between Zeeman levels m and m + 1 derives from Eq. 1.32 and is 

written 

w~L,m = ~ [ (m + 1l1ig) lm+ 1) - (ml1ig) lm) J 

where 

= (m + ~) te2

qQ) [3 cos2 {3- 1 + 'T/Q sin2 {3 cos 2a] 
2 4/ 21- 1 fi 

= ( m + ~) W
2
Q [ 3 cos2 {3 - 1 + 'T]Q sin2 {3 cos 2a J 

WQ = 2/(2/- 1)fi 

is commonly named the quadrupolar frequency. 13 

(1.33) 

(1.34) 

Note that WQ is also called the angular dependent frequency and written 

as 

(1.35) 

The most relevant information that follows from this equation is that 

for the central (1/2 +-+ -1/2) transition, the frequency is unchanged from 

the Zeeman frequency. Therefore, a second-order correction is essential to 

compute the actual quadrupolar frequency for this central transition. 

The anisotropie part of Eq. 1.30 suggests that an averaging of the aniso­

tropie part goes through the manipulation of either the spin term by multiple­

pulse experiment or the spatial term using sample reorientation. Waugh et 

al. 14 have invented a series of pulse sequences, among them the well-known 

WAHUHA sequence, in order to average out first-order interactions by ma­

nipulating the spin part of the Hamiltonian. In particular, they proved that 



1.3 Motional Narrowing 25 

homonuclear dipolar broadening could be removed. However, such pulse 

sequences are not applicable to the averaging of the second-arder quadrupo­

lar interactions since the amplitude of this interaction is generally much 

greater than the amplitude of the available rf fields (1-lQ » Hrd. There­

fore, methods using sample reorientation have revealed to be more efficient 

to get rid of broadenings arising from first-order dipolar, chemical shift as 

well as quadrupolar interaction. These techniques will be discussed in the 

following section. 

Magic Angle Spinning 

Let us consider that the sample is now rotating at a frequency wr about 

an axis inclined at () with respect to the static field. In that case, the re­

lation between PAS and LAB frames is clearly time-dependent. However, 

this problem can be overcome by using two transformations (see Fig. 1.4). 

The first one concerns the PAS in a sample-fixed frame (rotor) and is time­

independent whereas the second transformation is time-dependent since it 

describes the rotor frame into the LAB frame. The latter transformation is 

expressed through the euler angles (wrt, (), (). 

The spatial tensor components are deduced from their values in the PAS, 

using these two successive transformations 

+2 +2 

R~,m = L V~Î,m(w~.t, (), () l: V~Î',m'(a, /3, 'Y)r~,m"· (1.36) 
m'=-2 m"=-2 

If we apply this relation to the term R~ 0 , with m = 0, we find 
' 

+2 +2 

R~,o = L V~Î,o(wrt,(),O) L v~J',m'(a,/3,')')rtm"' (1.37) 
m'=-2 m"=-2 
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PAS~ ROTORC~)LAB 
(X,Y,Z) (X',W,J} 

Figure 1.4: Representation of the magic angle spinning experiment, showing 

the different transformations 
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with m" = 0, ±2 due to nonzero r~ m" values. 
' 

The reduction of the second-arder Wigner rotation matrices using Eq. 1.11 

leads to 

R,\ -
20-

' 
m'=-2 

+2 

2: 
m"=-2 

(2) ( (J ) ,\ v m" m' a, ''Y r2 m"" 
' ' 

(1.38) 

The second sum in Eq. 1.38, with m' = 0, coïncides with the previous 

static case (term into square brackets in Eq. 1.32). The first sum gives 

rise to a time-independent component (for m' = 0) proportional to d6~6(e) 

and time-dependent terms for m' = ±1, ±2. However, in the fast-spinning 

limit, spinning sidebands arising from the time-dependent terms, which we 

group in the function F(±wrt + "(, 2(±wrt +'Y)), disappear. For the sake 

of simplicity, we will consider that the spinning speed is much higher than 

the strength of the interaction as to ignore these oscillating terms. However, 

sorne authors15
• 

16 have given these expressions and readers should refer to 

their papers. Therefore, Eq. 1.38 can be rewritten as 

+2 

R~,o = d~~6(e) L v~:,,o(a, (J, O)r~,m" + F(±wrt + "(, 2(±wrt +'Y)). 
m"=-2 

(1.39) 

Eq. 1.39 shows that whatever the perturbated interaction, the first-order 

correction is proportional to the reduced Wigner matrix d626(e) which simply 
' 

varies as second Legendre polynomials 

p. ( e) 3 cos
2 e - 1 

2 cos = 2 . (1.40) 

Since this polynomial can be zeroed, it is possible to completely average 

first-order anisotropies by selecting a rotation axis of e = arctan(1/ J3) = 
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54.74° which corresponds to the well-known "magic angle". The effect of 

the magic angle rotation is illustrated in Fig. 1.5. The width of the sodium 

resonance is reduced by a factor of at least 3 compared to the spectrum taken 

under static condition. 

As an example, the frequency of a crystallite is given in Eq. 1.41 in first­

order correction theory for the quadrupolar interaction as a perturbation of 

the Zeeman one. 

Wm,m+l ~ -Wo 

( ) 

(1.41) 
+ m + ~ W

4
Q (3 cos2 

()- 1) [3 cos2 !3- 1 + TlQ sin2 !3 cos 2a] 

We have seen that first-order interactions could be removed provided 

that the sample is spun at sufficient high-speed, at a magic-angle of 54.7 4 a 

with respect to the static field. Heteronuclear dipolar broadenings are gen­

erally easily averaged out by standard MAS experiments but chemical shift 

anisotropies are sometimes so broad (a few MHz for 51 V) that spinning si de­

bands are present even at high-spinning speed ( up to 35 kHz). In su ch 

a case, the spinning sidebands of one site may overlap with other non­

equivalent sites. A simulation of the powdered pattern, including spinning 

si de bands, can be performed in arder to extract parameters ( 'Tla) that illus­

tra te the local symmetry of the nucleus. 17 In such a case, time-dependent 

terms F(±wrt + "(, 2(±wrt + "!)) have to be taken into account to approxi­

mate the experimental results with accuracy. Moreover, the anisotropie part 

of the chemical shift Hamiltonian 1-lt;t given in Eq. 1.31 is proportional to 

the static magnetic field B 0 (w0 = "(Bo) so that the anisotropie broadening 

increases with the static field. Consequently, several experiments at high and 

low static fields may be necessary to distinguish the effects of the different 

interactions that a nucleus undergoes. 
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(a) 

(b) 

lOO 50 0 -50 

pp rn 

-lOO -150 

29 

Figure 1.5: 23 Na spectra of Na2804 under static (a) and magic angle spinning 

(b) conditions. In the static case, the linewidth is due to the contributions 

of the quadrupolar, dipolar and CSA interactions. In MAS, only the second­

arder quadrupolar contribution remains. 



30 Spin interactions in solids 

As far as the quadrupolar interaction is concerned, we have seen that 

the frequency of the central transition remains unchanged by a first-order 

correction. Consequently, second-arder effects must be considered to deter­

mine whether they are large enough to cause observable perturbations to the 

energy levels. Furthermore, we will demonstrate that other sample reorienta­

tions, more complexe than MAS, can completely average out the quadrupolar 

broadening due to the first- and second-arder Hamiltonian terms. 

1.3.3 Second-order Averaging 

Theory 

The theoretical approach will be slightly different than the one used in first­

order corrections as the expression of second-arder frequencies will not be 

given literally. We will rather focus on the spatial terms that arise from a 

second-arder energy correction, deliberately omitting the spin terms that will 

be given in Chapter two. Since second-arder theory is relevant to quadrupo­

lar interaction only, superscript Q, that previously denoted quadrupolar pa­

rameters in contrast with dipolar and chemical shift orres, will simply be 

removed. 

Let us now consider the second-arder energy correction to the Zeeman 

energy calculated using a Static Perturbation Theory: 18, 19 

E(2) =""' (n\1-lQ\n')(n'\1-lQ\n) 
n ~ (0) (0) 

n'#n En -En' 
(1.42) 

where E~0)\n) = -nw0 \n). 

By substituting Eq. 1.22 and after separating spatial and spin elements, 

we find 
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E~2) = ~
2 L ( -l)m+m' R2,-mR2,-m' L (niT2,ml~?~n~T2,m'ln). (1.43) 
0 m,m' n':;én 

The selection rule in Eq. 1.44 imposes that n = m +n' and n'= m'+ n 

be true simultaneously. 

(1.44) 

This leads to considering m = -m' and replacing n' by n - m so that 

Eq. 1.43 becomes 

(1.45) 

After a last straightforward substitution, the second-order energies of 

Eq. 1.46 can be converted into the operator 1-lg> of Eq. 1.47. 

(1.46) 

(2) - C
2 L R R [T2,-m, T2,m] 'HQ - - 2 -m 2 m.::__....:..__....:.._....:. 

w ' ' m 0 m>O 

( 1.4 7) 

Once again, the perturbated Hamiltonian is composed of products from 

both spin and spatial components that can be studied separately. This sug­

gests that we still have two approaches available to remove the broadening 

introduced by this additional second-arder tenn. The spin part of this Hamil­

tonian will be of high interest when multiple-quantum experiments will be 
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introduced in Chapter two. Here, we will be concerned about the spatial 

components that we will now develop. 

First, only m = 1 and m = 2 values in Eq. 1.47 contribute to providing 

secular terms in the Hamiltonian. Since it has been shown before that non­

secular terms in a spin Hamiltonian have a very small effect on lineshapes,20 

the expansion of the second-order quadrupolar term leads to 

Hg) = ~: ( R2,-1R2,1 [T2,-1. T2,1) + ~H2,-2R2,2 [T2,-2' T2,2]) . (1.48) 

Such product of spatial tensors R2 ,-mR2,m can be written explicitly for 

m = 1 and rn = 2 in terms of the spherical components of the EFG in the 

PAS and the second order reduced matrix elements, using Eqs. 1.10 and 1.11. 

+2 +2 

I: (2) ( ) Dm, -m a, {3, 'Y T2,m' , I: 
m'=-2 m"=-2 

(1.49) +2 +2 

=I: "'""' e-i(m'+m")ad(2) ((J)d(2) ((J)r IT Il 
_.L.-t 'm' ,-m m" ,m 2~m 2,m 

m1=-2m"=-2 

It is of interest to note that the second-order quadrupolar frequencies 

do not depend on the euler angle 'Y as it has disappeared from Eq. 1.49. 

Only nonzero spherical components r 2,m' need to be included in this formula. 

Nevertheless. such an expansion is time-demanding. Thus, a computational 

approach is generally preferred (for more details, see Mueller21 ). 

Certain rules on spherical tensors can advantageously be used in order to 

simplify such an equation. Indeed, quantum mechanics states that a product 

of spherical tensors Rh ,m1 Rz2 ,m2 can be reduced into new irreducible spherical 

tensors of the spin opera tors RL,M. These new tensors are expressible in 

terms of Clebsch-Gordan coefficients. In a general way, the transformation 

of the product of two spherical tensors RLJ,m
1 
R12 ,m

2 
is written 
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Rtt,m1 Rt2 ,m2 = L(ll,l2,ml,m2jlt,l2,L,Jv!)RL,M, 
L,M 

33 

(1.50) 

where (Zt, l2, m 1 , m2Jl 1, !2, L, M) are the Clebsch-Gordan coefficients. We 

should specify that the only nonzero Clebsch-Gordan coefficients are those 

which simultaneously fulfill the two conditions expressed in Eqs. 1.51. 

(1.51) 

If we apply the first rule to our specifie case, with h = !2 = 2, we find that 

the product transforms as rank-0 to rank-4 tensors (0 :::; L :::; 4). Moreover, 

products of Wigner rotation matrices V~} -m(o:, {3, 'Y)V~}, m(o:, {3, 'Y) that ap-, , 

pear in Eq. 1.49 can be reduced as well, by manipulating Eq 1.52. 

4 L 

v2J,-m(o:, {3, 'Y)D~},,m(a, {J,f') = L L (2, 2, m', m"j2, 2, L, N) x 
L=ON,M=-L 

(2, 2, -m, mJ2, 2, L, M)V~~(a, {3, 'Y) 

(1.52) 

Rule 1.53 gives the sign of the first Clebsch-Gordan coefficient in Eq. 1.52 

with respect to interchange m' and m". Therefore, we find that the coeffi­

cients have opposite sign wh en L is odd. As we sum over m' and m", these 

terms (L = 1, 3) vanish so that the only contributions come from terms for 

which L = 0, 2, 4. The second Clebsch-Gordan coefficient in Eq. 1.52 imposes 

that N = 0 (see Eq.C69 in Messiah22 ). 

(1.53) 
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These simplifications lead to a reduction of the product R2,-mR2 ,m into a 

sum of rank-0, rank-2 and rank-4 tensors. The Hamiltonian of Eq. 1.48 can 

be rewritten 

(1.54) 

where the RL,o are the new irreducible spherical tensors of the spatial 

operators and the ù include all other terms of Eq. 1.48 that have not been 

explicitly given. ÇLs mostly enclose spin operators as they result from the 

expansion of commuta tors [T2,-mT2,m] (see Chapter two). 

The rotation of the sample about a fixed axis at an angle () with respect 

to B0 yields the same kind of calculations than for the first-order correction 

except for the fact that an additional R4 ,0 spatial term emerges. Thus, we 

find that RL,o are modulated by the rotation as expressed in Eq. 1.55 where 

use has been made of Eqs. 1.10 and 1.11. 

L L 

R- ( ) '\"""' "'"""' -m'wrtd(L) (O)-n(L) ( j3 )-
L,O t = ~ ~ e m',O vm",m' a, '/ TL,m" (1.55) 

m'=-Lm"=-L 

It is worth pointing out the similitude with Eq. 1.38 resulting from the 

first-order correction of a spinning sample. The rL,m" (Table 1.7) are the new 

spherical tensor components23 which are deduced from the products r 2,m'r2,m" 

making use of the formalism of Clebsch-Gordan coefficients (Eq. 1.50). 

If fast spinning speed is applied in order to remove time-dependent terms 

(m'=/= 0 in Eq. 1.55), the second-order quadrupole Hamiltonian can be writ­

ten 
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ro,o = -H3 + 7]
2 )(eq)2 

r2,0 = 1~ (772 - 3)(eq)2 r2,±2 = ~/I'T](eq) 2 

r4,0 = -do-(18 + 7]
2)(eq)2 r4,±2 = !o/I'T](eq)2 

r4,±4 = ~7]2 (eq) 2 

Table 1. 7: New spherical tensor components 

1 1 

(2) c (0) (0) - (2) (2) -
2 {,_..,....__ ~ 2 

1-lQ = Wo do,o(B)(Ço'Do,o(a,jJ,O)ro,o) +do,o(B)(6 m~2 vm",o(a,J),O)r2,m") + 

d~~J(O) ( ~1 t D~}, ,0 (a,{i, O)i',,m")} 
m"=-4 

(1.56) 

Lets us now detail the last equation with special care for the tf-dependent 

reduced matrix elements d~~J ( B). The first term does not depend on angles 

as rank-0 matrix element d~~~ ( B) is equal to 1. Therefore, this part genera tes 

a frequency shift. This Quadrupolar Induced Shift (QIS) is proportional to 

C 2 jw0 so that we can expect it to decrease at high magnetic fields. Second­

and third parts are angular dependent and lead to an anisotropie second­

orcier broadening when samples are composed of many cristallites. However, 

these two parts are scaled by the second- and fourth-order components d~~6(B) 

and d~4~(B) which vary as second- and fourth-Legendre polynomials P2 (cosB) 
' 

and P4 (cos B), respectively. P2 (cos B) appeared previously in the first-order 

correction (see page 27) and can be found in Table 1.2. Therefore, a rota­

tion at Bm = 54.7° not only averages away anisotropie terms arising from 

the correction to the first-order Hamiltonians (di polar, chemical shift and 

quadrupolar) but it also cancels the second term of Eq. 1.56. 

The new term that occured in the second-order Hamiltonian 1-l~) is given 
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by the fourth-Legendre polynomial P4 (cos0): 

(1.57) 

Both P2 (cos 0) and P4 (cos 0) are plotted in Fig.1.6 as functions of the an­

gle 0. These curves show that Legendre polynomials do not have a common 

root and also proves that a rotation about a single axis does not completely 

remove the second-order anisotropies. However, a partial narrowing is still 

possible provided that the rotation angle is correctly selected. The magic 

angle experiment leaves the last part of Eq. 1.56, scaled by a factor of rv 0.5. 

Moreover, since anisotropie parts are functions of the asymmetry parameter 

ry, other angles can give a better line narrowing by decreasing simultaneously 

the contributions of P2 (cos 0) and P4 (cos 0). Such experiments where the 

angle 0 is different from the magic-angle are denoted Variable Angle Sample 

Spinning (VASS) .16• 24 Finally, the complete removal of anisotropie broad­

enings requires a rotation at two angles. The next section shows hovv such 

double rotation techniques can be implemented. 

Experimental Features 

In 1988, double rotation experiments were proposed by Llor et al. 25 in Saclay 

and the Pines group in Berkeley,26 independently. They announced that it 

was possible to suppress the whole second-order quadrupolar anisotropies by 

spinning the sample at two angles. Two techniques emerged depending on 

whether the sample was spun simultaneously (DOuble Rotation DOR)27• 28 

or sequentially (Dynamic Angle Spinning DAS) 29 at two angles. 

For DOR, the angles are easily chosen to simultaneously annul the rank-

2 and rank-4 Legendre polynomials. A schematic figure of the double rotor 



1.3 Motional Narrowing 37 

is shown in Fig. 1.7. DOR probes are basically composed of an outer rotor, 

spinning at the magic angle and in which a smaller rotor (inner) that encloses 

the sample, is inserted. The orientation of the inner rotor with respect to the 

outer rotor must be one of the two roots of P4 (cos0) (see Fig. 1.6). Experi­

mentally, the best NMR sensitivity is obtained for an inner angle 0 = 30.5° 

mainly due to a better filling factor of the rotor. A single pulse excitation is 

sufficient to get a DOR spectrum. 

Several articles and contributions have dealt with the theoretical prin­

ciples of DOR. As far as we are concerned, we will accept that anisotropie 

terms th at are associated to the Legendre polynomials P2 (cos 0) and P4 (cos 0) 

vanish if the sample is simultaneously spun at these two angles, provided that 

the spinning speed is sufficient. The implementation of such experiment is 

very tricky and up to now, only few research groups have been able to de­

velop DOR probes. The main problem lies in spinning these two rotors at 

high spinning speeds to avoid the increase in the number of spinning side­

bands. At present, the dimensions of the inner and outer rotors in addition 

to the technological challenge of simultaneous double rotation limit the spin­

ning speeds to 8 kHz and 1.8 kHz for inner and outer rotors, respectively. 

Thus, DOR spectra are often obscured by the numerous rotational sidebands. 

The method of synchronizing the acquisition with the outer rotor has been 

proposed to reduce by a factor of 2 the presence of sidebands in the final 

spectrum. 30 

The most important developments of DOR are without any doubt due to 

the Berkeley's group which built the first probe, in association with Samoson 

in Tallin, as well as published the experimental evidence of the removal of 

second-arder quadrupolar interactions. Later, spectrometer manufacturers 

(Bruker, Doty, Chemagnetics) also invested time and money in the produc-
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Figure L 7: Double rotor system 
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tion of DOR probes that would be used as a routine. However, the weak 

reliability of DOR probes that is due to the technological complexity, has 

refrained the impact of this technique. 

At the same time, Dynamic Angle Spinning (DAS) experiment was sug­

gested as a possible substitute for DOR. This technique is based on a two 

dimensional recording of single-quantum evolutions at two different angles. 

The basic DAS sequence (Fig. 1.8) is made of severa! pulses that transfer the 

magnetization while the rotor is switched between two angles that are chosen 

to fulfill the following equations: 

{ 

P2(cosfh)t1 +P2(cos02)t2 = 0 

P4(cosOI)t1 + P4(cos02)t2 = 0 
(1.58) 

This series of equations has an infinite set of solutions that are commonly 

called DAS complementary angles. However, instrumental constraints as weil 

as theoretical considerations (h = t 2 ) encourage the use of the two angles 

01 = 37.38° and 02 = 79.19°. We should point out that DAS complementary 

angles have nothing to do with the roots of Legendre polynomials. 

Since two-dimensional experiments will be fully explained in Chapter two, 

we will not enter into the details of two-dimensional DAS experiments but 

we rather refer the reader to the numerous articles. Briefly, the combination 

of these two angles creates an echo signal in time domain t2 . Furthermore. 

it can be demonstrated that the anisotropie part totally refocuses at the top 

of this echo. 

Experimentally, we record a 2D spectrum of which the projections onto 

the two axes are similar to the lD spectra at the two DAS angles. A shearing 
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Figure 1.8: Pulse sequence for dynamic-angle spinning experiment 

transformation yields an isotropie projection where crystallographically non 

equivalent sites should be clearly separated. A commercial MAS probe is 

obviously not adequate for performing DAS experiments. The direction of 

the rotor axis must be quickly reoriented while maintaining stable bearing 

and drive pressures. However, the idea of changing the orientation of the 

rotor during the experiment was not a new one since a few techniques such 

as magic angle hopping, had been previously invented to correlate isotropie 

and anisotropie spectra in a two-dimensional experiment. At the same time 

as they investigated the potential of DOR, the Berkeley's group built a DAS 

probe and they later published sorne results that evidenced the capability of 

the method to remove quadrupolar broadenings. 31 , 32 

However, DAS experiment suffers from a major limitation: while the 

rotor is switched from fh = 37.38° to (h = 79.19°, the magnetization must 

be stored along the z axis (second 1r /2 pulse in Fig. 1.8). Since the hopping 

time cannot mechanically be inferior to about 30 msec, nuclei for which 

the relaxation is faster than 100 msec are not good candidates. Thus, an 
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important nucleus such as aluminium cannat always be studied through DAS 

technique. Moreover, a broadening occurs during the hopping period due to 

the dipolar "fiip-fiop" terms. Finally, the mechanical constraints make it so 

that the filling factor of a DAS probe is poor. Due to the small interest 

of manufacturers in this experiment, researchers that would be interested in 

running DAS experiments must either build their own probe or collaborate 

with the few groups, mainly originating from Berkeley, that technologically 

master this experiment. Of course, such handicap completely stopped the 

development of DAS . 

1.4 Conclusion 

In this first chapter, we have given the expression of the first- and second­

arder Hamiltonians under MAS conditions. vVe got to the point that the 

single-pulse MAS technique could only remove first-order dipolar, chemi­

cal shift anisotropy and quadrupolar contributions. More complex sample 

reorientations (DOR and DAS) are needed for a complete removal of the 

quadrupolar broadening. However, insolvable technical problems have shown 

the limits of NMR sequences based on sample reorientations. 

In terms of quantum mechanics, we observe that researchers have taken 

full advantage of the spatial part of the Hamiltonian to develop MAS (first­

order averaging) and DOR/DAS (second-arder averaging) techniques. But, it 

can be noticed that spin terms have been kept in their general form. Indeed, 

we only mention the possibility to cancel first-order homonuclear dipolar 

interactions, using multiple-pulse sequences (WAHUHA). The second chap­

ter will show that a careful consideration of the spin terms for the second­

arder quadrupolar interactions yields a new NMR technique which combines 
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sample orientation (MAS) and multiple-pulse manipulations to provide an 

isotropie spectrum of quadrupolar nuclei, free of any first- and second-order 

broadening. 
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1.5 La Résonance Magnétique dans les Solides 

(résumé) 

1.5.1 Généralités sur les Interactions dans les Solides 

Principes de Base de la RMN 

Le phénomène de Résonance Magnétique Nucléaire est lié à l'existence 

pour une particule donnée, d'un moment magnétique J-t=rnl, où r est le 

rapport gyromagnétique du noyau, fi = h/27f la constante de Planck ré­

duite, et 1, le moment cinétique de spin. Sous l'effet d'un champ magnétique 

statique B 0 , les moments magnétiques individuels se repartissent statistique­

ment suivant une distribution de Boltzmann, sur les 21 + 1 niveaux d'énergie 

Zeeman Em = mrhB0 , avec m = I, I- 1, ... , -I pour créer un paramag­

nétisme nucléaire qui donne lieu à un signal détectable. 

Les différents noyaux ~X de la table périodique des éléments peuvent ainsi 

être classés selon la valeur de leur spin I : les noyaux de spin nul qui ne sont 

pas observables en RMN, et les noyaux de spin entier et semi-entier. En ce qui 

concerne l'étude que nous présentons ici, il conviendra de séparer les noyaux 

de spin 1/2 (lH, 13C, 29Si, 31P, ... ) et les noyaux quadrupolaires, de spin 

I > 1/2 (170, 27Al, 23Na, nB, ... ). Cette dernière famille nous intéressera tout 

particulièrement puisque les noyaux quadrupolaires représentent à la fois 75% 

des éléments de la table périodique et une source importante d'information 

sur la structure du composé étudié. 

Aujourd'hui, la RMN moderne fait appel au phénomène de résonance 

pour "doper" l'effet paramagnétique par rapport au diamagnétisme électron­

ique. Experimentalement, un champ magnétique oscillant B 1 (champ radio­

fréquence) est appliqué, perpendiculairement à B 0 pour induire des transi-
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tions entre les différents niveaux d'énergies Em. Les conditions de résonance 

correspondent à une fréquence de Larmor w0 = ryB0 . Après l'impulsion radio­

fréquence w, le retour à l'équilibre du système de spins, sous l'action du champ 

statique, est enregistré dans le plan perpendiculaire à B 0 pour donner le sig­

nal d'induction libre (FID). 

Le principal avantage de la RMN en mode pulsé est qu'elle permet d'ac­

quérir un spectre sur une large gamme de fréquence, en un temps limité. 

De plus, même si la règle de sélection Li t:lmi = ±1 stipule clairement que 

seules les transitions entre niveaux d'énergies consécutifs sont observables, 

il est possible d'imaginer des séquences impulsionnelles complexes qui in­

duiront des transitions entre niveaux d'énergies non adjacents. La technique 

MQMAS (Multiple-Quantum Magic Angle Spinning), présentée au Chapitre 

2, utilise d'ailleurs les propriétés de ces transitions à multi-quanta. Les fig­

ures 1.2 et 1.3 montrent la correspondance entre niveaux d'énergies m et 

ordres de cohérence p. 

Les équations de Bloch (cf. section 1.1.3) permettent de comprendre les 

phénomènes liés au retour à l'équilibre du système. Cependant, cette de­

scription se limite à l'étude par RMN des liquides, pour lesquels la plupart 

des interactions internes sont moyennées par le mouvement brownien des 

molécules. Par contre, plusieurs interactions, de natures différentes, influen­

cent la relaxation des spins dans les solides. Par conséquent, les spectres sont 

plus difficiles à interpréter à cause des élargissements résultants (échantillons 

de poudre). Cependant, une correcte interprétation de ces élargissements 

peut fournir des informations importantes quant à la structure du matériau. 

Les trois interactions les plus importantes sont introduites dans la section 

suivante. Nous ne donnerons que l'origine des interactions dipolaire et de 

déplacement chimique (cf. Section 1.2 pour plus de détails) afin de centrer la 
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discussion sur l'interaction quadrupolaire et ses caractéristiques. 

Importance des Interactions dans les Solides 

Un noyau possède différentes façons de "communiquer" avec son environ­

nement à courte ou longue distance. Ainsi, nous avons précédemment vu 

l'influence des champs magnétiques externes B 0 et B1 . Pourtant, ces inter­

actions Zeeman n'apportent aucune information structural sur le matériau. 

Il faut donc prendre en compte les effets des champs magnétiques locaux qui 

influencent la relaxation des spins. 

L'interaction dipolaire est liée au couplage de deux noyaux I et S, consid­

érés comme des dipôles magnétiques. Expérimentalement, un tel cou­

plage se traduit en RMN des solides par un élargissement des raies de 

résonance. L'interaction dipolaire est inversement proportionel au cube 

de la distance interatomique r1,s, ce qui rend son étude intéressante. 

Malheureusement, les effets de cette interaction sont souvent masqués 

par d'autres interactions, notamment quadrupolaires, dont l'amplitude 

est 100 à 1000 fois plus importante. 

L'interaction de déplacement chimique (CSA) résulte du couplage in­

direct du champ statique B 0 avec le nuage électronique entourant le 

noyau. En effet, sous l'action de B0 , les nuages électroniques se po­

larisent et créent un champ magnétique local qui s'oppose à B0 . Ainsi, 

le champ statique réel que subissent le noyau devient Breel = ( 1 - a-) B 0 

où a- est le tenseur d'écrantage chimique. 

L'interaction quadrupolaire provient du couplage des gradients de champs 

électriques avec le moment quadrupolaire électrique que possède tout 

noyau de spin I > 1/2. L'effet quadrupolaire est étroitement lié à la 
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symétrie locale du noyau et constitue un outil irremplaçable pour son-

der son environnement. 

Même si chaque interaction peut être décrite dans le repère du labora­

toire (LAB), par un tenseur cartésien à 9 composantes, il est préférable de 

l'exprimer en termes de tenseur sphérique irréductible lorsque des rotations 

diverses interviennent. Ainsi, pour chaque crystallite, un système d'axes pro­

pres (PAS) dans lequel une interaction donnée est représentée par un tenseur 

diagonal, est défini. Dans un échantillon de poudre, chaque crystallite est 

associée à son propre PAS. Les équations permettant de passer du repère 

d'axes propres (PAS) au repère du laboratoire (LAB) sont données au para­

graphe 1.2.2 (Eqs. 1.10 et 1.11). 

L'Hamiltonien quadrupolaire s'écrit comme le produit d'une partie spa­

tiale R~-m et d'une partie opérateur de spin T~m' dans un repère sphérique 

(Eq. 1.59). 

+2 
- eQ "'"""" ( )m Q Q 

1-lQ - 21(21- 1) m~2 -1 R2,-mT2,m 
(1.59) 

Les composantes du tensor Ti5 = IJj peuvent être réduites à partir des 

composantes cartésiennes, en composantes sphériques avec les équations 1.9. 

Quant aux composantes sphériques de la partie spatiale, elles sont calculées 

à partir des composantes sphériques du gradient de champ électrique r~m' 

elles mêmes déduites des composantes cartésiennes de ce tenseur. Lors de ces 

opérations, 2 paramètres bQ et T}Q, sont introduits pour caractériser au mieux 

le gradient de champ électrique. La détermination du paramètre d'assymétrie 

T}Q est d'autant plus importante qu'il est directement lié à l'environnement 

local du noyau. Les expressions des différents tenseurs peuvent être consultés 

à la section 1.2.3. 
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Afin de comprendre l'effet de l'interaction quadrupolaire sur le spec­

tre d'un échantillon de poudre, il est maintenant nécessaire de développer 

l'Hamiltonien (Eq. 1.59) en tenant compte des définitions précédentes. Que 

l'échantillon soit statique ou en rotation autour d'un axe (cf. 1.5.2), nous 

appliquerons la théorie de l'Hamiltonien moyen (AHT). En effet, nous con­

siderons l'Hamiltonien quadrupolaire comme une perturbation à l'interaction 

Zeeman dominante. L'Hamiltonien total 1l est donc défini par 

(1.60) 

où ttg) sont les corrections de l'Hamiltonien quadrupolaire à l'ordre i. A 

noter que seuls les termes de 1er et de 2nd ordres ont une influence significa­

tive sur l'allure du spectre RMN. 

Le calcul de la réponse d'un système de spins passent par le développe­

ment de l'Hamiltonien quadrupolaire (Eq. 1.59) en considérant la somme sur 

m. Cependant, il ne faut tenir compte que des valeurs de m pour lesquelles 

les composantes sphériques r~m ne sont pas nulles (r~m = 0 pour l i= 2 

et m i= 0, ±2). Puisqu'il ne faut garder que la partie de l'Hamiltonien qui 

commute avec l'interaction Zeeman, nous ne gardons finalement que la com­

posante sphérique r~0 = J3/2eq. Enfin, par l'intermédiaire des matrices de 

Wigner, nous obtenons une expression de l'Hamiltonien quadrupolaire au 

1er ordre dépendante des angles d'Euler a et f3 (les angles d'Euler a, {3, 1 

définissent l'orientation du PAS d'un cristallite pour une espèce donnée par 

rapport au référentiel du laboratoire). La règle de sélection limitant l'ob­

servation du signal aux seules transitions Zeeman adjacentes (rn, m + 1), la 

fréquence quadrupolaire calculée au 1er ordre s'écrit 
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w~L,m = ( m + ~) W
2
Q [ 3 cos2 (3 - 1 + 7]Q sin2 (3 cos 2a J, (1.61) 

où 

wQ = 21(21- l)n 
(1.62) 

est communément appelée la fréquence quadrupolaire. 

L'équation 1.61 nous apporte des indications supplémentaires sur l'in­

teraction quadrupolaire et ses effets en RMN. D'abord, la fréquence d'un 

cristallite dépend de son orientation-- a, 13 par rapport au champ statique. 

Dans un échantillon polycristallin (poudre) ou désordonné, chaque cristallite 

a une orientation différente et par conséquent une intensité et une fréquence 

différentes. La somme des contributions de tous les cristallites donnent un 

spectre large et discontinu. La deuxième observation que l'on peut faire sur 

cette équation est pour la transition centrale (1/2 f-7 -1/2) : sa fréquence 

s'annule prouvant que le calcul au premier ordre n'est pas suffisant. C'est 

pour cela qu'il nous faudra pousser le calcul de l'Hamiltonien quadrupolaire 

jusqu'au second ordre pour la transition centrale. 

L'équation 1.59 suggère que l'annulation des élargissements du à l'in­

teraction quadrupolaire passe par la manipulation des termes de spins T2Qm 
' 

en utilisant des séquences à plusieurs pulses (séquences WAHAHU) ou des 

termes spatiaux R~-m en orientant l'échantillon de façon judicieuse (MAS, 

DORet DAS). La deuxième catégorie d'expériences est de loin la plus effi­

cace puisqu'elle ne se limite pas à la seule interaction dipolaire mais permet 

aussi d'éliminer l'élargissement dû aux interactions plus fortes telles que le 

CSA et le quadrupolaire. La partie suivante montrera par un calcul au 1er 

ordre puis au 2nd ordre, comment une rotation de l'échantillon autour d'un 
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ou de plusieurs axes peut considérablement réduire la largeur du spectre en 

solide, jusqu'à le rendre isotrope. 

1.5.2 Moyennage Spatial de l'Interaction Quadrupolaire 

Au 1er Ordre 

Si nous mettons maintenant l'échantillon en rotation à la fréquence Wr, 

autour d'un axe faisant un angle() avec le champ statique, la relation entre les 

référentiels PAS et LAB est dépendante du temps. Cependant, ce problème 

peut être surmonté en divisant le mouvement en deux parties, l'une indépen­

dante du temps (du PAS au ROTOR), et l'autre dépendante du temps (du 

ROTOR au LAB). Ces transformations et les angles d'Euler qui y sont asso­

ciées sont représentés sur la figure 1.4. 

La composante spatial R~0 qui apparaît dans le calcul de l'Hamiltonien 

quadrupolaire, se déduit des composantes r~m" dans le PAS, grâce à deux 

transformations successives et s'écrit 

+2 +2 

R~,o = I: I: (1.63) 
m'=-2 m"=-2 

La second somme dans l'équation 1.63 coincide avec le calcul au premier 

ordre dans le cas d'un échantillon statique, si m' = 0 (cf. Section 1.5.1). 

Par contre, la fréquence dépendente des angles d'Euler a, (3 sera maintenant 

modulé par les termes provenant du développement de la première somme. 

Brièvement, la première somme est égale à d~~:,0 (0) (cf. Table 1.2) auquel 

il faut ajouter des termes dépendants du temps (m' = ±1, ±2). Toutefois, 

nous ne tiendrons pas compte des termes dépendants du temps puisque leur 

contribution est quasiment nulle à haute vitesse de rotation de l'échantillon. 

Quant à l'élément d~:,0 (0), il est tout simplement le polynôme de Legendre 
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d'ordre 2, P2 (cosB) = (3cos2
(}- 1)/2. Enfin, la fréquence d'un cristallite, 

calculée au premier ordre de la théorie de 1 'Hamiltonien moyen, prend une 

forme très similaire au cas statique mis à part la dépendance en e. 

Wm,m+l ~ -Wo 

( ) 

(1.64) 
+ m + ~ W

4
Q (3 cos2 

(}- 1) [3 cos2 {3- 1 + TJQ sin2 {3 cos 2a J 

Il apparaît que la partie dépendante de l'orientation du cristallite, et 

donc à l'origine de l'élargissement des spectres de poudre peut être éliminé 

en annulant le polynôme de Legendre P2 ( cos(}) par une rotation de l'échan­

tillon autour d'un axe faisant un angle (}M = 54.74° avec le champ statique. 

La principale caractéristique qui fait de (}M un angle magique est qu'il per­

met d'annuler toutes les interactions du premier ordre (dipolaire, CSA et 

quadrupolaire). Néanmoins, pour l'interaction quadrupolaire, nous avons vu 

qu'un calcul au second ordre s'imposer dans certains cas (transition cen­

trale). En effet, la figure 1.5 montre que la rotation à l'angle magique réduit 

considérablement la largeur de la raie sans pour autant éliminer toutes les 

discontinuités. L'élargissement résultant est en fait la contribution de l'in­

teraction quadrupolaire au second ordre. La section suivante résume donc le 

calcul au second ordre pour l'interaction quadrupolaire afin d'introduire les 

expériences de rotation à 2 angles (DORet DAS). 

Au 2nd Ordre 

Le calcul au second ordre est pour plusieurs raisons, plus complexe et 

nous encourageons le lecteur à se reporter à la partie en anglais traitant 

de ce sujet (cf. 1.3.3). L'Hamiltonien quadrupolaire au second ordre s'écrit 

encore comme le produit de termes de spins et de termes spatiaux. 
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1{(2) = C2 L R R [T2,-m 1 T2,m] 
Q 2,-m 2,m w m 0 m>O 

(1.65) 

Le commutateur [T2,-m, T2,m] sera d'une grande importance dans le deux­

ième chapitre lorsque nous étudierons l'expérience MQMAS. Ici, le développe­

ment du produit R2,-mR2,m doit nous permettre de simplifier l'expression de 

l'Hamiltonien. En mécanique quantique, un tel produit de tenseurs sphériques 

peut être réduit en une somme de tenseurs sphériques irréductibles RL.M 

dans laquelle interviennent les coefficients de Clebsch-Gordan. Les conditions 

d'annulation de ces coefficients permettent ensuite de réduire l'Hamiltonien 

à une somme de 3 tenseurs d'ordre 0, 2 et 4. L'Hamiltonien quadrupolaire 

au second-ordre se simplifie alors pour donner l'expression Eq. 1.66. 

(1.66) 

RL,o sont les nouveaux tenseurs sphériques irréductibles de la partie spa­

tiale alors que tous les autres termes, notamment la partie opérateur de spin 

[T2,-m, T2,m], sont regroupés dans les valeurs ÇL qui seront développées au 

chapitre 2. 

Comme pour le calcul au premier ordre de l'interaction quadrupolaire, 

nous trouvons que les termes RL,o sont modulés par la rotation à un angle () 

par rapport au champ statique. Ainsi, en utilisant les équations 1.10 et 1.11, 

les 3 tenseurs RL,o. avec L = 0, 2, 4, s'écrivent 

L L 

RL,o(t) = L L e-m'wrtd;;;,:0 (())1J~?,m' (a, (3, 1)ri,m", (1.67) 
m'=-Lm"=-L 

où les termes rL,m" (Table 1. 7) sont les nouvelles composantes du tenseur 

sphérique, calculées grâce au formalisme des coefficients de Clebsch-Gordan. 
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Finalement, en ne considérant que les termes indépendant du temps (m' = 0 

dans l'équation 1.67), l'Hamiltonien (Eq. 1.68) s'écrit comme la somme de 3 

termes, modulés par les éléments de matrices d~~J. 

1 1 

(2) c (0) (0) - (2) (2) -
2 {,...-"--... ~ 2 

HQ = Wo do,oUn(çoVo,o(a,,B,O)ro,o) +do,o(e)(6 m~2 vm",o(a,,B,O)r2.rn") + 

d~~6(8) ( ~' t v;:!,,0 (a, (1, O)T,,m")} 
m"=-4 

(1.68) 

La partie correspondant à L = 0 est indépendante des angles d'Euler et 

donne lieu à un simple déplacement quadrupolaire induit. Puis, nous retrou­

vons le polynôme de Legendre d'ordre 2, d~~6(e) = P2 (cos 0), qui permet 

d'éliminer la deuxième partie de l'équation 1.68 par une rotation à l'angle 

magique. Enfin, la troisième partie est proportionelle au polynôme de Leg­

endre d'ordre 4, 

(1.69) 

qui ne s'annule pas pour eM = 54.7°. Par conséquent, ce dernier terme, 

dépendant des angles d'Euler a, ,8, conduit à un élargissement du spectre de 

la transition centrale pour un échantillon de poudre. 

Comme les polynômes de Legendre d'ordres 2 et 4 n'ont pas de racine 

commune, il faut faire appel à des expériences plus complexes dans lesquelles 

l'échantillon est en rotation, simultanément ou séquentiellement, à deux an­

gles judicieusement choisis. Ainsi, en 1988, Llor et Virlet à Saclay, ont pro­

posé en même temps que le groupe d'A. Pines à Berkeley, deux expériences, 

DOR (DOuble Rotation) et DAS (Dynamic Angle Spinning), qui permet-
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tent d'éliminer tous les élargissements dus à l'interaction quadrupolaire au 

second-ordre. 

Pour ces deux expériences, il est nécessaire de posséder des sondes spé­

ciales car la double rotation n'est pas facile techniquement. En effet, pour 

le DOR, il faut mettre en rotation un rotor (interne) dans lequel nous met­

tons l'échantillon, à l'intérieur d'un second rotor (externe) lui même tournant 

avec une autre orientation par rapport à B 0 . Les vitesses de rotation sont 

limitées à 8 kHz pour le rotor interne et 1.8 kHz pour le rotor externe, de 

sorte que de nombreuses bandes de rotation viennent encombrer le spectre. 

Les angles d'inclinaison des rotors internes et externes sont ceux annulant 

les polynômes de Legendre d'ordre 2 et 4. Quant au DAS, la rotation se fait 

séquentiellement aux angles el et e2 qui constituent une paire remplissant les 

conditions de l'équation 1.58. La séquence de pulses d'une expérience DAS 

est représentée à la figure 1.8. Elle correspond à une expérience à 2 dimen­

sions pendant laquelle les spins évoluent pendant tl à l'angle el puis pendant 

t2 à l'angle e2. Par corrélation des évolutions pendant t1 et t2, nous acquérons 

un signal d'écho au sommet duquel l'anisotropie quadrupolaire est annulée. 

Cependant, l'aimantation doit être stockée le long du champ statique lors du 

changement d'orientation du rotor. Une telle manoeuvre requiert plusieurs 

dizaines de millisecondes, de sorte que les noyaux relaxant très vite ( < 100 

msec) ne peuvent pas être étudiés avec leDAS. 

Finalement, nous constatons que les méthodes de double rotation (DOR 

et DAS), même si elles permettent théoriquement de se débarrasser des ter­

mes anisotropes de l'interaction quadrupolaire, n'ont pas eu un impact très 

important sur les nombreux chercheurs utilisant la RMN comme moyen d'in­

vestigation. En effet, le challenge technologique qu'il fallait surmonter a prob­

ablement rendu ces deux expériences impossible à utiliser en routine. Le 
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chapitre suivant va nous montrer que l'interaction quadrupolaire au second 

ordre peut quand même être éliminé à condition de ne pas se limiter à un 

moyennage spatial de l'Hamiltonien. 
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Chapter 2 

Averaging with MQMAS 

2.1 Basics of Two Dimensional MQMAS 

2.1.1 Theoretical Consideration of Spin Terms 

Quadrupolar Hamiltonian 

In Chapter one, we deliberately left the spin terms out ofour consideration to 

focus on the theoretical explanation of reorientation methods in solid-state 

NMR. So far, commutators [T2,-m, T2,m] have not been developed and we 

rather introduced the terms f.L in which we included all the expressions that 

were not of concern at that time, especially the spin parts of the quadrupolar 

Hamiltonian. However, the spin commutators can no longer be ignored and 

they must be given explicitly in order to explain the theory of MQMAS. 

Actually, the mathematical tools required to express the spin commu­

tators have been given in Chapter one. Indeed, [T2,-m• T2,m] terms. for 

m = 1, 2 are nothing else but products of spherical tensors that can be 

reduced using the formalism of Eq. 1.50, replacing spatial components by 

spin components. Therefore, we similarly find that the spin products trans-
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form as rank-0 to rank-4 tensors. Then, the symmetry of Clebsch-Gordan 

coefficients (Eq. 1.53) are considered to simplify the expression. The devel­

opment of the commutator T2,-mT2,m - T2,mT2,-m into irreducible spherical 

tensors TL,o (with 0 ~ L ~ 4) clearly shows that sorne components will van­

ish depending on the sign of their Clebsch-Gordan coefficients. We finally 

observe that only L = 1, 3 terms subsist. 

We previously expressed the second-order quadrupolar Hamiltonian into 

the following sum 

(2.1) 

According to Duer,1 E,L values are given in Eqs. 2.2 as functions of rank-1 
- -

and rank-3 irreducible spherical tensors T1,0 and T.1,0 . 

where 

E,o = 1~ [ -3v'IOT3,o + 'Î\,o(3- 4I(I + 1))] 

6 = 110 [ -12v'IOT3,o- T1,o(3- 4I(I + 1))] 

ç4 = 1~ [-34v'Iüf3,o + 3Tl,o(3- 4I(I + 1))] 

T1,0 = fz 

T3,0 = /Foiz[5I;- 3J(J + 1) + 1]. 

Quadrupolar Frequency wg)(m) 

(2.2) 

(2.3) 

Let us consider the second-order quadrupolar frequency wg) ( m) for an energy 

level m: 

(2) C
2 

"" -
Wq (m) = Wo L....t (mlùlm)RL,O· 

L=0,2,4 

(2.4) 
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The (mi~Lim) terms are found proportional to the Cf(m) coefficients that 

are given in Eqs. 2.6. We have chosen the notation used by Frydman et al. 2 

where 

CJ(m) = 2m[I(I + 1)- 3m2] 

Ci(m) = 2m[8I(I + 1)- 12m2
- 3] 

C!(m) = 2m[18J(J + 1)- 34m2
- 5]. 

(2.5) 

(2.6) 

With the help of Wigner matrices, the new spherical tensor components 

ri,o in the PAS (Table 1. 7) come out in the expression of the second-order 

quadrupolar frequency wg)(m). However, it is usual to replace rL,o compo­

nents by {h,o = h,o/(eq)2 so that the quadrupolar frequency WQ of Eq. 1.34 

is apparent in the expression of wg)(m). The angle-dependent terms have 

been grouped into the AL( a, !3) that are given in Eqs. 2.9. 

2 

(2)( ) WQ """' /( ) wQ m = 36 wo ~ CL mAL( a, {3) 
L=0,2,4 

(2.7) 

where 

L 

AL( a, !3) = I: v~:0 (a, {3, O){'h,m' (2.8) 
m'=-L 

Making use of the reduced Wigner matrices, the Euler angle-dependent 

terms take the following form: 
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Ao(a, {3) = Po,o 

A2(a, !3) = P2,o d~~6(f3) + 2 P2,2 d~~6(f3) cos 2a (2.9) 

A4 (a, !3) = P4,o d~~6 (/3) + 2 P4,2 d~~6 (f3) cos 2a + 2 P4,4 di~J (!3) cos 4a 

When a rotation about a single axis is applied to the sample, the equation 

slightly differs: the procedure is identical to the one we used in the first 

chapter and it leads to the emergence of the Legendre polynomials PL(O). 

Therefore, for the case where the time-dependent terms are removed by a high 

spinning speed, the second-order quadrupolar frequency is simply written 

Quadrupolar lnduced Shifts 

Once more, we find the three parts that compose the second-order quadrupo­

lar frequency. The first term which is a-, {3-independent, causes a quadrupo­

lar induced shift (wQ1s) to be added to the actual chemical shift of the 

nucleus. On the other hand, second and third terms yield the anisotropie 

broadening and they will be of great interest for explaining the concept of 

MQMAS. The quadrupolar induced shifts w~~~m can be calculated for the 

central transition (1/2, -1/2) as well as for the general case of a symmetric 

transition (m, -m) using Eq. 2.11. 

2 
QIS ~ WQ [ I I ] 

wm,-m = Po,o
36

wo (m\C0 (m)\m)- (-m\C0 (-m)\- m) (2.11) 

Thus, we find that the additional shift due to the second-order quadrupo­

lar interaction can be written 
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wQIS = 2m w~ (1 + 'r/2) [I(I + 1) - 3m2]. 
m,-m 30 Wo 3 (2.12) 

In the MQMAS experiment, we will excite symmetric triple-quantum 

( m = 3/2) or higher-order transitions and therefore the caculation of w~:!m 

is justified. However, the selection rule that we mentioned in Chapter one, 

clearly stated that only adjacent transitions ( m, m- 1) could be directly ob­

served. Moreover, most standard NMR experiments are concerned with the 

observation of the central transition ( -1/2, 1/2) for which the quadrupolar 

induced shift is 

QIS WQ rJ 2 ( 2) [ 3] w-1/2,1/2 =- 30wo 1 + 3 I(I + 1)- 4 . (2.13) 

A few experiments take advantage of the properties of the quadrupolar 

induced shift which is more important for satellite transitions than for the 

central transition. This is the case of the SATRAS experiment that enables 

the separation of non-equivalent sites by optimizing the acquisition of the 

satellite transitions on a one dimensional MAS spectrum.3 • 4 But, the exci­

tation of satellite transitions remains restricted to sites with moderate WQ 

values and single-quantum excitation of the central transition has been so 

far the first choice in solid-state NMR. 

The effect of the quadrupolar induced shift on the NMR spectrum 1s 

summarized in Fig. 2.1. The central transition is not affected by a first­

order correction whereas the second-arder quadrupolar correction causes the 

central and satellite bands to be shifted. 
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Figure 2.1: Effects of first- and second-orcier quadru polar interactions on 

energy levels (left) and resonances (right). Centerband is not affected by first­

order quadrupolar interactions whereas second-orcier shifts it by a quantity 

w~[f2,+1 12 . This figure corresponds to a single-crystal description. 

Amongst anisotropie terms in Eq. 2.10, only rank-4 remains when the 

sample is spun at the magic angle at sufficient high speed, since rank-2 term 

vanishes and rank-0 term yields an extra frequency shift (QIS) only. There­

fore, Duer et al} and later Frydman2 took advantage of the properties of the 

C{(m) coefficients to propose the ingenious MQMAS experiment contrary to 

their predecessors who focused on spatial degrees of freedom to get rid of 

anisotropie broadening. These coefficients are explicitely related to the spin 

number I of the nucleus and m (or p = 2m) the excited transition. It is worth 

noticing the main advantage of the MQMAS experiment which is to require a 

sample rotation about a single axis: high spinning speeds can be reached (15 

kHz for 4 mm rotors) with standard reliable probes, allowing experiments to 

be performed under extreme conditions (high and low temperatures) for a 

wide selection of nuclei. 
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2.1.2 Theory of MQMAS 

Two dimensional experiments 

The fact that we are unable to directly observe coherence orders but only 

single quantum transitions, constitutes the main drawback in NMR. Never­

theless, several authors had investigated multiple quantum transitions and 

later came to the conclusion that the resolution would be enhanced only in 

particular cases. 6' 7 However, these investigations were mainly based on the­

oretical calculations and these authors concluded that there was not much 

of an experimental future. In the three years preceding the publication of 

Frydman's first MQMAS spectrum, it can be fairly said that researchers un­

derestimated the impact that these "invisible" transitions would have on the 

development of solid-state NMR of quadrupolar nuclei. Unlike them, Fryd­

man made a good use of the potentiality of two dimensional NMR to observe 

these "forbidden" coherences. 

Today, multi-dimensional (2D and 3D) experiments are commonplace in 

liquid state NMR whereas until now only a few techniques (DAS, Nutation, 

Hetcor) in solid state NMR use two-dimensional recordings. Moreover, the 

technical complexity of these techniques and sometimes their lack of resolu­

tion have refrained their development. 

Two-dimensional NMR emerged in 1971 when Jeener proposed the ad­

dition of a second time domain. Three years later, Ernst verified the ex­

perimental feasibility of this great discovery. The simplest two dimensional 

experiment requires at least two pulses as presented in Fig. 2.2. The last 

pulse must be optimized in order to transfer the magnetization in p = -1, 

the only observable transitions. On the contrary, the first pulse can excite 
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Figure 2.2: Basic two-dimensional NMR experiment. 

other coherence orders. Whereas the evolution of single quantum transitions 

is recorded in the time domain t 2 , the evolution of coherences between the 

two pulses is monitored indirectly by a systematic increment of time t 1 . This 

sequence being similar to the Hahn echo sequence,8 we observe an echo sig­

nal that slightly maves at t 2e in the time domain t2 as t1 increases. Figs. 2.5 

represents two examples of an acquired 2D dataset in time domain for spins 

3/2 and 5/2. We can already notice that for short values of t1 the echo 

is truncated on its left side. The dataset in time domain, must be Fourier 

transformed in both dimensions to obtain a two dimensional spectrum in fre­

quency, for which the projection onto the w1 -axis allows the observation of 

the coherences that evolved during t1 . Thus, the basic MQMAS experiment 

proposed by Frydman and later improved by several authors9- 11 consisted in 

exciting triple quantum p = 3 or higher arder p = 5, 7, 9 transitions to fol­

law their evolution during h before converting the magnetization into single 

quantum coherence p = -1. 
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Removing Quadrupolar Anisotropies 

In order to understand how anisotropie rank-4 terms disappear from Eq. 2.10, 

we should look at the signal that is recorded in the t 2 domain. The detected 

signal is of the form 

(2.14) 

where the efficiency of the different pulse transfers (OQ ----+ pQ and 

pQ----+ -1Q) are not taken into account. 

It is worth noticing that we will be now concerned about symmetric tran­

sitions only. We also remind the readers that a coherence order p corresponds 

to the symmetric transition between energy levels (m -+ -m), with its op­

posite coherence order -p being equivalent to the transition ( -m -+ m). 

Consequently, coherence orders p = 2m will now replace m in equations and 

functions that have been previously defined. 

Frequencies wP = Wm.-m are calculated the same way as the quadrupolar 

induced shift in Eq 2.11, this time including both rank-0 and rank-4 terms of 

Eq. 2.10, whereas rank-2 term is left out due to the rotation at the magic angle 

(}M· For the sake of clarity, angular-dependent terms are grouped together 

into the expressions of Bo and B4(a, /3, cos (}M ). vVe obtain the following 

expressions for w_ 1 and wp: 

where 

W-1 = BoCJ ( -1) + B4(a, 8, cos (}M )CI ( -1) 

Wp = B0CJ(p) + B4(a, /3, cos(}M)CI(p) 
(2.15) 
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(2.16) 

After inserting expressions of w_ 1 and wP into Eq. 2.14, we find that the 

only angular dependent term B 4 disappears when the echo t2e is linked to t 1 

by the relation 

(2.17) 

The coefficients R(I,p) are deduced from Eqs. 2.6 and given in Table 2.1 

for each spin number I and permitted coherence order p. Nevertheless, most 

nuclei we investigated in this work have spin numbers 3/2 and 5/2 and we 

limited the excitation to the triple-quantum excitation p = 3. 

Spin I Coherence p C{(p) R(I,p) 

3/2 1 54 1 

3/2 3 -42 -7/9 

5/2 1 144 1 

5/2 3 228 19/12 

5/2 5 -300 -25/12 

Table 2.1: C{ (p) and R(I, p) values as functions of the spin number I and 

the coherence order p. 

The next step is to excite the correct multiple-quantum transition so 

that the signal refocuses in the positive time domain t2 . Of course, this is 

related to the sign of the coefficient R(I, p ). We can observe in Table 2.1 

that this coefficient is positive for every case, except when p = 2I for which 
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it is negative. Therefore, the latter experimental condition (triple-quantum 

excitation on spin 3/2, quintuple-quantum on spin 5/2, etc.) will see the 

signal refocusing for negative time t 2e if the pathway is chosen to be identical 

to the one in Fig. 2.2 (0 -t +p-t -1). Yet, as the sign of R(I,p) changes 

with the sign of p, the symmetrical pathway ( 0 -t -p -t -1) will yield the 

desired echo signal in positive time t2 . 

Frydman 's experiment 

In 1995, Frydman et al., 2 published the first experimental results on MQ­

MAS and thus, proved that second-arder quadrupolar broadening could be 

removed from spectra leading to a substantial improvement of the line nar­

rowing. They monitored the behavior of I = 3/2 and 5/2 spins, under 

MAS conditions, subjected to triple-quantum and single-quantum correla­

tion. The selected coherence transfer pathways were (0 -t -3 -t -1) and 

(0 -t +3 -t -1) for spins I = 3/2 and 5/2, respectively. These pathways 

yield a refocusing of the anisotropies. Isotropie echos (with no quadrupolar 

anisotropy) were detected at times t 2e = R( I, p )t1 . This is illustrated in 

Figs. 2.3 and 2.4. 

It can be noted that, in this first application of MQMAS, the 2D dataset 

in time domain was not Fourier transformed in both dimensions to get a 2D 

plot of the different sites in frequencies. An isotropie MAS spectrum can 

be obtained by Fourier transformation of the free induction decay along an 

axis with the slope of JR(I,p)J-1
. This corresponds to taking the summun 
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Figure 2.3: Coherence order pathway leading to an echo signal in the acqui­
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Figure 2.4: Coherence order pathway leading to an echo signal in the acqui­

sition time domain for 1 = 5/2 
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of the echo signal for which the rank-4 part of the quadrupolar Hamiltonian 

vanishes. 

Figs. 2.5 stem from a triple quantum excitation on I = 3/2 and 5/2 

spins respectively. We clearly see that the echo moves along the axis of slope 

R(I,p)-1. 

The main purpose of the MQMAS experiment was for sure the acquisition 

of a spectrum free of quadrupolar broadening. This has been achieved by 

Frydman and co-authors when they showed these isotropie MAS spectra. 

Since the acquisition follows a 2D mode, one step further was achieved by 

processing the data in a 2D mode, to extract the maximum information 

from the dataset in the time domain. Two-dimensional processing is ali the 

more important that 2D spectra will constitute the basis of our method of 

quantification of MQMAS spectra. 

2.1.3 Acquisition and Processing 

Many books and articles cover the acquisition and processing of two dimen­

sional spectra in NMR. Yet, the most complete work is probably the book 

written by Ernst et al. 12 They extensively explain the different modes of 

acquisition and the processing that follows. As far as the following section is 

concerned, we will describe the States and Hypercomplex methods that we 

used in our experiments, with the view of providing general rules that are 

applicable to other acquisition modes. 

Acquisition 

The datasets that are displayed in the previous section (Figs. 2.5) are un­

likely to produce acceptable spectra after 2D Fourier transformation because 

they lack parts that are essential to remove dispersive components of the 
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final spectrum. Thus, a "good" acquisition procedure is vital to get pure­

absorption spectra. 

Two- and one-dimensional acquisitions are similar as far as the require­

ments are concerned to obtain pure absorption spectra. First, both real and 

imaginary parts of the signal must be recorded in both t2 and t 1 dimensions. 

Indeed, in general the spectrum is out of phase after Fourier transformation 

and additional phase is needed. This does not occur when the excitation is 

exactly on resonance. In two-dimensional techniques, like in one-dimensional 

experiments, a linear combination of the real and imaginary signais yield a 

perfect phasing of the spectrum. In single-pulse experiments, the acquisition 

of real and imaginary parts i~ carried out by a synchronous detection of 2 

signal dephased by 90°. In the dimension t 1 the evolution of the signal can 

not be directly monitored. Thus, the only available way is to influence the 

evolution time by applying a phase-shift to the pulses. This corresponds 

to the method of States13 which stipulates that the imaginary part of a 2D 

signal is obtained by adding a phase 

'1/Jprep = -~ 
2IPI 

(2.18) 

to the phase of the first pulse (preparation pulse). In the case of an 

excitation of coherence orders p = 3, we need to run a second experiment 

with a phase shift of 30° to the first pulse. 

Furthermore, we can observe on the same datasets (Figs.2.5) that for 

short t 1 increments, the echo signal is truncated on its left side. Like for lD 

experiments for which the electronic dead time sometimes hides an important 

part of the FID, the truncation of the echo in 2D acquisition also yields 

distorted spectra. Yet, the missing part of the echo can be retrieved if, in 

addition to the echo signal, we record the evolution in t2 of the anti-echo. 
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The anti-echo is quite simply expressed as the "mirror image" pathway as 

shown in Fig. 2.6. Fig. 2. 7 exhibits the evolution of the echo and antiecho 

signais in time domain as t1 is increased. 

The selection of the echo and anti-echo pathways is governed by different 

rules that are suitable to ail 2D acquisition methods involving as many pulses 

as desired. The theoretical foundation can be found in pages 294-301 of Ernst 

et aP2 

1. Before the first pulse is applied, the system is at equilibrium (p = 0) 

while the coherence order is p = -1 for acquisition, after the last 

pulse. Thus, for a pulse sequence composed of n pulses, we find that 

:L~=l tlpi = -1 (in which !J.pi = Pi+l -Pi) and the phase of one of the 

pulses can be fixed ( often kept equal to zero). 

2. The phase of the receiver '1/Jrec must also be shifted in arder to select 

the desired pathway. If '1/Ji is the phase of the ith pulse, a convenient 

approach is to choose a shift '1/Jrec = - 2:~ 1 llp(t./Ji. 

3. The choice of the number Ni of phases that we will apply to a pulse, 

in order to select a desired pathway, combined with the two previous 

statements, does not ensure that ail other possible pathways will be 

rejected. In fact, other pathways might be selected depending on Ni 

and calculated using Eq. 2.19. 

A (selected) _ A (desired) ± N 
upi - upi n i, (2.19) 

where n = 0, 1, 2, .... 
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Figure 2.5: 2D 3QMAS dataset intime domain for spins 3/2 and 5/2 show­

ing the echo moving along an axis of slope R(J,p)- 1. 23Na and 27Al 3QMAS 

datasets were obtained with sodium sulfate Na2804 (a) and aluminophos­

phate AlP04 - 14 (b), respectively. 
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Figure 2.6: Echo and antiecho pathways for a spin I = 3/2 
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4. The selection of one or severa! pathways is achieved by systematically 

incrementing the phase of each pulse by 

(2.20) 

with ki = 0, 1, ... ,Ni- 1. 

5. Since the pulses must be cycled separately, the total number of phases 

in the sequence is N = N 1 • N2 • ... · Nn. Because of the first rule 

mentioned, one of the values Ni can always be taken equal to 1. 

Let us consider the phase cycle of the two-pulse sequence. The phase 

of the first pulse can be kept null (rule 1) and it is necessary to cycle the 

second pulse in arder to select both the echo and anti-echo pathways. The 

echo and anti-echo signais can be recorded in two separated experiments by 

choosing N2 big enough to select a single pathway. This is the alternative 

echo/anti-echo method. Still, we can make a good use of the third rule 

mentioned before since it appears that the selection of' both echo and anti­

echo pathways occurs for N2 = 2p (N2 = 6, 10, ... for triple-, quintuple-, 

... quantum experiments). The phase of the receiver is deduced from the 

second rule. In the triple-quantum excitation, this receiver phase follows the 

equation 'l/Jrec = -~P2W2 = +4'1/J2 (Wl = 0) for 1 = 5/2,7/2,9/2. The phase 

cycle of a 3QMAS experiment is given in Table 2.2. 

A second experiment should be performed with the following phase cycle 

(Table 2.3) in arder to record the imaginary part in t1 . A shift of 30° ( 1r j2p = 

30° for triple-quantum excitation) is applied to the phase of the first pulse. 

The rest of the acquisition procedure must be adapted to the spectrom­

eter itself (software, hardware). For example, sorne spectrometers only ac­

cept receiver phases of Ü0
, 90°, 180°, 270° forcing the cycles to be adequately 
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Figure 2. 7: 27Al echo and antiecho 2D datasets obtained on a AlP04 - 14. 

'1/Jl 0 

'lj;2 0 60 120 180 240 300 

'lj;rec 0 240 120 0 240 120 

Table 2.2: Phase cycle for excitation of triple-quantum coherences (echo and 

anti-echo pathways) in a two-pulse sequence. 

'lj;l 30 

'lj;2 0 60 120 180 240 300 

'lj;rec 0 240 120 0 240 120 

Table 2.3: Imaginary part in t1 for a triple-quantum excitation. 
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shifted (rule 2). As far as our experiments are concerned, they have been 

obtained on two different spectrometers: ASX400 (Bruker) and CMX400 

( Chemagnetics). Even though these spectrometers differ by the ir environ­

ment, the experiments are performed with similar pulse programs. However, 

the specifie parts (real/imaginary) that we must record, are stored differently. 

Thus, the processing programs had to be adapted to the software available 

on each machine (X winNMR for Bruker and Spinsight for Chemagnetics). 

The next section will be constrained to giving a general procedure to the 

two-dimensional processing of MQMAS datasets. 

Processing 

We have previously observed the important role of the anti-echo pathway. 

In fact, the processing of the 2D dataset consists in the summation of the 

relative contributions of the echo and an ti-echo signais, SE and SA. If the 

pulse sequence is chosen in order to acquire the two signais SE(t1 , t2 ) and 

SA(t1 , t2 ) independently, a Fourier transformation in both dimensions leads 

to two dispersive spectra SE(w1, w2 ) and SA(w1 , w2 ) which must be judiciously 

summed to geta pure absorption 2D spectrum. However, we rather opted for 

a method of acquisition that mixes echo and anti-echo contributions (hyper­

complex method). Thus, for each increment t1 , the signal Sx(t1 , t2 ) observed 

is a linear combination of the two mirror-coherence pathways. The phase cy­

cle in Table 2.3 generates the imaginary signal in t 1 and constitutes a second 

linear combinaison Sy(t1 , t2 ) of the two pathways. 

Consequently, both echo and anti-echo signais can be retrieved according 

to Eqs. 2.21. 
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SE(t1, t2) = Sx(tl, t2)- iSy(tr, t2) 

SA(t1, t2) = Sx(tr, t2) + iSy(t1, t2) 
(2.21) 

Due to the interdependence of t 1 and t 2 , the different sites which appear 

after Fourier transformation, are aligned along an axis of slope R(I, p) -l. 

Thus, a shearing transformation (pages 336-339 in Ernst et al. 12
) may be 

applied in order to bring this axis parallel to the horizontal w2 -axis. The 

shearing can be completed either in the frequency domain (w1, w2 ) or in 

the mixed domain ( t 1 , w2). The latter method which consists in applying 

a t1 -dependent first-order correction has been chosen. Mathematically, we 

multiply the echo and anti-echo signais, after Fourier transformation in t 2 , 

by an exponential dependent on cp(t1,w2 ) = R(I,p)w2 t 1 . 

S~(tiso' w2) = éi>(t!,wz) SE( tl, w2) 

5~ (tiso, W2) = e-ùj>(t1 ,wz) 5 A (tl, W2) 
(2.22) 

Finally, a pure absorption 2D spectrum is obtained by Fourier transform-

ing S~(tiso,w2) and S~(tiso,w2) with respect to tiso and after a last summa­

tion: 

(2.23) 

2D representations are shown in Fig. 2.8 for the different stages of the 

processing for the echo and anti-echo signais. They illustrate the effect of 

shearing and Fourier transformations. The phasing of the 2D spectrum may 

be achieved after the second Fourier transformation. However, it may be 

helpful to phase the w2 -dimension in the mixed domain (t1 , w2 ) by indepen­

dently phasing the first row (t1 = 0) and applying the phase to the rest of 
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the rows. Likewise, all kinds of mathematical treatments ( apodization, zero 

filling, etc.) are recommended on condition that one integra tes the correct 

shear factor R(I,p) to the echo and -R(I,p) to the anti-echo. 

So far, we have given the essential conditions necessary to acquire a pure 

absorption spectrum: the anti-echo pathway should be recorded to restore 

the truncated part of the echo and the method of States yields real and 

imaginary signais for the second dimension. We also presented sorne elements 

of the processing in case the acquisition follows a hypercomplex method. 

The shearing transformation was also tackled taking into account the special 

feature of MQMAS experiment, i.e. the shear factor R(I,p). Renee, this 

section was roughly common to any two-dimensional experiment in liquid­

and solid-state NMR. 

However, these requirements al one do not ens ure that the final 2D spec­

trum will be perfect. Many parameters that exclusively depend on the MQ­

MAS experiment should be optimized in order to increase the S /N ratio as 

well as to improve the quality of the spectrum. The latter point is all the 

more crucial that the method of quantification that we propose in the next 

chapter is based on the 2D spectrum. Consequently, the next section will be 

concerned with the many improvements that MQMAS experiment has gone 

through as well as the optimization of experimental parameters such as pulse 

lengths, radio frequency power, delays between pulses, etc .. 

2.2 Optimization of 2D MQMAS 

2.2.1 Improvements of MQMAS 

The excitation of multiple-quantum transitions had been extensively investi­

gated prior to the discovery of MQMAS. In order to select double-quantum 
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Figure 2.8: Representation of the different steps of the processing of a 2D 

dataset. (a) 2D dataset in time domain; datasets in mixed domain before 

(b) and after ( d) shearing calculation; final 2D spectra in frequency domain 

before (c) and after (e) shearing. 23 Na 3QMAS dataset obtained with a 

mixture of sodium sulfate Na2S04 and sodium oxalate Na2C20 4 . 
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coherence pathways for spin I = 1, Bodenhausen14 used a three-pulse exci­

tation sequence in which the preparation part was composed of two pulses 

(Fig. 2.9). Frydman et al. used the same pulse sequence to excite triple 

quantum transitions in their preliminary work.2 Yet, as the MQMAS tech­

nique immediately proved to be technically simple, most researchers dealing 

with the "state of the art" NMR applied themselves to improving the origi­

nal Frydman's experiments. It has therefore been exemplified that a single 

preparation pulse can create a larger amount of multiple-quantum coher­

ences, thus reducing the sequence to two pulses. 9- 11 Frydman compared the 

two sequences to reach the conclusion that the latter was even more efficient. 

This improvement was followed by many others that we will now describe. 

However, the variety of MQMAS sequences that have emerged in the last 

three years makes it difficult to offer a complete review. Sorne contributions 

will just be cited and we encourage the reader to refer to the corresponding 

articles. 

Drawbacks of the two-pulse sequence 

Let us consider the two-pulse sequence shown in Fig. 2.10 as the basic MQ­

MAS experiment. The processing of 2D datasets requires that both the echo 

and anti-echo be simultaneously or separately recorded. This does not pre­

vent dispersive parts from being present after Fourier transformation if the 

two mirror pathways do not contribute with the same efficiency. Therefore, 

care must be taken to set pulse lengths that identically excite echo and anti­

echo coherence pathways. The preparation pulse is supposed to transfer the 
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Figure 2.9: Three-pulse sequence originally used by Frydman (echo signal 

for spin I > 3/2). The preparation part is composed of two pulses for the 

excitation of the triple-quantum coherences. 6. was chosen to be close to the 

inverse of the quadrupolar frequency 6. ~ 1/vQ. 

magnetization from equilibrium (along B 0 ) to the triple-quantum coherences 

p = ±3. The jumps associated with this transfer are identical in absolute 

terms and equal to l6.pl = 3. Therefore, the first pulse should be optimized 

to create a maximum of triple-quantum coherences, regardless of the rela­

tive proportion of echo and anti-echo coherences. On the other hand, the 

mixing pulse must be set so that the transfer from the triple-quantum coher­

ences to the observable coherence level p = -1 does not favour one pathway 

to the detriment of the symmetrical one. Therein lies the difficulty of the 

method that involves two different jumps 6.p = +2 and 6.p = -4 between 

the coherence levels. To illustrate this, we have compared the total echo and 

antiecho signal intensities for a spin 3/2 as a function of the length of the 

second pulse p2 for two rf fields (Fig. 2.11-a,b)). The 23Na 3QMAS data 

were collected at 105.8 MHz on a Na2S04 sample using phase cycles that 

selected the echo and the antiecho pathways. The length of the first pulse 
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Figure 2.10: Two-pulse triple-quantum MAS sequence. A single pulse 1s 

revealed sufficient for the triple-quantum excitation. 

was previously optimized to excite a maximum amount of triple-quantum 

coherences. The curves clearly show the dependency of triple- to single­

quantum coherence transfer processes on both r 2 and the rf field. Moreover, 

the maximum of efficiency measured on a powder for the echo does not co­

ïncide with the maximum for the antiecho. Therefore, the pulse length r 2 

that corresponds to the crossing point, should be preferred to the maximum 

of the echo in order to decrease the dispersion even if the loss of efficiency in 

the 3Q conversion process might be significant. It has also been proved that 

the position of the crossing point was dependent of the quadrupolar strength 

of the site, especially for spins larger than 3/2, thus making the optimiza­

tion of this pulse impossible when the samples enclose different sites within 

a wide range of CQ. We have observed the same kind of behavior for the 

triple-quantum excitation of spin 5/2 (Fig. 2.11-c,d). Several authors have 

shown that the equalization of efficiencies becomes increasingly difficult for 

higher-order multiple-quantum experiments. 15 
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Figure 2.11: Variation of the efficiency of triple-quantum conversion as a 

function of the pulse length T2 using the two-pulse sequence for spin 3/2 (23Na 

in Na2S04 ) and spin 5/2 (27Al in zeolite Y sample) at two rf fields. Echo and 

antiecho coherence pathways were recording separately using adequate phase 

cycles. 
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Z-Filtering in MQMAS 

The major problem of the 2D MQMAS experiment remains that the second 

pulse should transfer the magnetization for both mirror-coherence pathways 

( ±p) with equal efficiency for each crystallite. For sorne multiple site sam­

pies with similar CQs, the two pulse sequence yields fairly good 2D spectra, 

especially with spins 3/2. But most of the time, dispersive parts arise for 

species with extreme CQs. 
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Figure 2.12: Three-pulse experiment including a z-filter to render mirror 

coherence pathways symmetrical 

An alternative scheme for the two-pulse sequence can be found using an 

additional z-filter. 16 This method was employed in DAS to store the mag­

netization along B 0 while the orientation of the rotor was switched to the 

magic angle for a first-order averaging during acquisition. 17 Brown et al. 18 

have described a complex MQMAS pulse sequence that includes the z-filter 

principle. Later, Amoureux et aJ.l9 adapted the z-filter to the original two­

pulse experiment as shown in Fig. 2.12. The aim of this modification was to 
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make the two mirror-pathways symmetrical after the triple-quantum evolu­

tion. Thus, the second pulse transfers the signal from coherence levels ±p 

to the level p = 0 so that the jump is unique and equal to j6.pl = 3. We 

will see in section 2.2.2 that when using the z-filter approach, the experi­

mental optimization of 7 2 is grandly simplified. Another advantage is that 

the equal contribution of the echo and antiecho pathways (0, ±p, 0, -1) is 

achieved regardless of the spin number and the order of the selected coher­

ences, whatever the pulse length 7 2 . Renee, the choice of 72 is not as critical 

as in the two-pulse sequence since a bad setting will just result in a slightly 

reduced S/N ratio. The main drawback is probably that the efficiency of 

the three-pulse method is slightly lower than in the two-pulse one because of 

the extra z-filter pulse. Nevertheless, we considered that the quality of the 

MQMAS spectra was of higher importance than the small increase intime of 

the data collection. The spectra that we present here have been exclusively 

recorded with this z-filter sequence and readers should refer to section 2.2.2 

which concentrates on its optimization. 

Alternative Pulse Sequences 

Taking advantage of the evolution (1990's) of the 2D DAS technique,20 alter­

native pulse sequences have been proposed for MQMAS. 10' 18, 21 Yet, among 

these severa! variations, we have decided to focus on a few of them that we 

think may have a greater impact on the NMR community. 

It has previously been shown that the truncation of the echo signal for 

short t 1 leads to dispersive parts on the 2D spectrum, in the frequency do­

main. At that time, we got around the problem by acquiring an amplitude­

modulated signal where the mirror-coherence pathway (an ti echo) provided 

the missing part of the echo. However, the acquisition of the whole echo 
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even for short t1 would keep us from selecting both pathways. The sequence 

shown in Fig. 2.13 includes an additional delay T, followed by a selective 

1r-pulse, that shifts the echo signal in the positive time domain t 2 . Conse­

quently, even when the delay t1 is minimum, the echo is not truncated on 

its left side provided that T is of sufficient length ( typically half the width of 

the echo). Afterwards, the echo moves forward in t 2 as t 1 increases. Massiot 

et al. 10 gave the possible phase cycles for the shifted-echo sequence and for 

spins 3/2 and 5/2. Real and imaginary parts in t 1 can be accessed using 

the method of States. In this class of experiments where only one pathway 

is selected at a time, the signal is said to be phase-modulated. It must be 

pointed out that provided an adequate phase cycle, the whole antiecho may 

be separa tel y recorded in the time domain t 2 . However, this shifted antiecho 

experiment requires a longer delay T since the antiecho moves backward in 

t2 . A shifted-echo experiment will therefore generally be preferred to gain a 

better S /N ratio. 

~t2~ 

p 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 

; ; i i \/ ~ ~ ~ t ~ /(( -~ ~ ; ~ : ~ ~ ~ ~ :1 
Figure 2.13: Three-pulse shifted-echo sequence for I = 3/2 

Using the equations that allow for the hypercomplex acquisition mode, 
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both echo and antiecho pathways can still be selected simultaneously to ob­

tain an amplitude-modulated whole-echo signal. In such a case, the evolution 

in t2 stems from a linear combination of the two pathways that can be re­

trieved during the processing as explained in section 2.1.3. The acquisition 

of the antiecho may appear useless since the whole-echo is present in the 

acquisition domain. However, the main purpose is here to increase the S/N 

ratio. Grandinetti et al. 20 measured the S/N ratio of 2D DAS NMR spectra 

obtained with various DAS pulse sequences. They noticed that the hypercom­

plex shifted-echo approach could provide up to a factor of ../2 enhancement 

in sensitivity over the phase-modulated shifted-echo method. Thus, Massiot 

et al. adapted this acquisition mode to the triple-quantum excitation in their 

paper, 10 in which pulse sequences are given. Of course, relaxation phenom­

ena may be significant during the delays T since they must be set long enough 

to allow for the acquisition of the whole antiecho. 

Up to now, no comparison of these different acquisition procedures has 

been made for MQMAS. Thus, it is difficult to recommend one over the 

others. Sorne of the methods grandly improve the quality of the spectra but 

generally require one or more additional pulses that reduce the S/N ratio 

through relaxation. As far as we are concerned, we think that the z-filter 

approach is essential for the reasons that were listed earlier. Furthermore, 

we also opted for an amplitude-modulated (hypercomplex) acquisition. 

Split-t1 Experiments 

With previous methods, the observation of an isotropie dimension is easily 

obtained when a mathematical calculation (shearing) is performed during the 

processing of a spectrum. Yet, Brown et al. 22 suggested that this transfor­

mation could lead to distorted lineshapes. Thus, they designed an ingenious 
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MQMAS sequence that took into account the shearing ratio R(I,p) during 

the acquisition rendering the mathematical shearing process useless. Fig. 2.14 

shows this pulse sequence as well as the coherence transfer pathway diagram 

for the acquisition of a split-t1 experiment (spin 3/2). The t 1-period is 

split into triple- and single-quantum evolution periods in the ratio of R( I, p). 

This allows for the refocusing of the quadrupolar anisotropy to always occur 

at t2 = 0 even for long t1 -delays. Therefore, Fourier transformations in both 

dimensions yield 2D spectra for which the different sites are spread out along 

the F2-axis without the need for a shearing. The theoretical evidence can 

be found in Brown et al. 18 

Q______j__h_ _jT1~ 

p 
3 
2 
1 
0 

-1 
-2 
-3 

Figure 2.14: Pulse sequence for the split-t1 3QMAS experiment 

Apart from reducing hypothetic line distortions that may arise from the 

shearing process, this method which is referred to as the split-t1 method, 

increases the overall sensitivity of the MQMAS experiment ( compared to a 

shifted-echo experiment). Indeed, since the echo do es not move forward in 

t2-domain, the length of the acquisition period, and thus the introduction of 
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noise, can be set to a minimum. Furthermore, the optimization of the S/N ra­

tio during processing is simplified in comparison to simple shifted-echo meth­

ods as weighting functions can be t 1 -independent. Other implementations 

have been proposed by the same authors (amplitude-modulated z-filtered 

split-t1 ) and further details may be found in the references previously cited. 

Rotor Synchronization 

The study of triple-quantum excitations upon other anisotropie interactions 

( especially CSA) reveals that the effects are magnified by a factor of 3 and 

result in an increase of the number of spinning sidebands in the F1 dimension. 

Though, no additional spinning sidebands arise in the MAS dimension F2 . 

Although several authors analyzed spinning sidebands and extracted im­

portant information about the nature and size of the interactions,23
-

25 the 

presence of spinning sidebands is generally bothersome for two reasons. First 

of all, it causes the spreading of the signal intensity of the centerbands over 

spinning sidebands and thus decreases the S /N ratio. Secondly, it increases 

the risk of overlapping between the bands of different origins. Consequently, 

the centerband lineshape is distorted and multiple acquisition of 2D datasets 

may be necessary at different spinning speeds to avoid a misinterpretation 

of the results (see 3QMAS spectra of sillimanite in Massiot26 ). In this case, 

the acquisition time may be substantially increased. 

Massiot proposed a method of rotor-synchronization which offered as 

main advantage the reduction of the experimental time by a factor of about 

5.26 The principle is to set the spectral window SW1 of the second dimension 

equal to the spinning speed so that sidebands are folded back onto the cen­

terband. Of course, the speed must be high enough to include all the sites 

on the spectrum. Our standard 4mm probe allows for rotor speeds up to 
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15 kHz which revealed to be the minimum for rotor-synchronized 3QMAS 

spectra of zeolite samples, on a 400 MHz spectrometer. The other advan­

tage of this technique is that the rotor-synchronized spectrum can be seen 

as an approximation of the infinite-spinning-rate acquisition with a gain of 

sensitivity for the centerbands. Our quantification based on simulations was 

therefore rendered much easier since no spinning sidebands had to be taken 

into account in the calculation. 

Experimentally, the increment ~t1 is deduced from Eq. 2.24 and values 

are typically in the order of 70j.1sec. 

(2.24) 

where Wr stands for the rotor spinning speed. 

We have just given the main contributions that led to a significant im­

provement of the MQMAS experiment. We had to make a selection amongst 

the numerous articles that were published, keeping in rrtind that our goal was 

to get the best MQMAS spectrum possible (pure absorption, optimized S/N 

ratio, etc.) in aim of a subsequent quantification. 

Other modifications of the MQMAS sequence would have deserved aspe­

cial attention.27- 29 The original aspects of these works are mainly found in 

the number of pulses that are used in the sequences and the phase cycles 

that follow. Yet, we made no mention of the experimental conditions that 

should go with these sequences and only took notice that the excitation and 

conversion processes were more effective with strong rf fields, whatever the 

pulse sequence that we have presented so far. The next section will be de­

voted to the optimization of the experimental parameters that should al ways 

precede the acquisition of the 2D MQMAS spectrum itself. 
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2.2.2 Determination of Experimental Parameters 

We willlimit our explanations to the method that we finally used for acquir­

ing 3QMAS spectra. Indeed, we found the amplitude-modulated MQMAS 

experiment, in association with an additional z-filter pulse, to be the best 

compromise between quality of the spectrum and sensitivity. Moreover, its 

implementation as well as the determination of its optimum parameters prove 

to be much easier than for most of the techniques previously cited. 

phase cycle considerations 

Let us recall that the two first pulses must be as powerful as possible to excite 

with a good efficiency multiple-quantum transitions whereas the third pulse 

is a selective gao pulse that prevents other transitions (multiple-quantum and 

satellite) from transferring into the observable quantum level, when possible 

(see Fig. 2.12). Echo and antiecho pathways are selected simultaneously using 

the method of States and they are retrieved during processing. This keeps 

the number of phases applied to either the first pulse or the second pulse, 

to a minimum of N1 = 6 for 3Q excitation (N1 = 2p for p=5, 7,g quantum 

excitations, see rule 3 on page 73). The z-filter pulse needs also to be phase 

cycled to avoid contributions from non-desired pathways. We have performed 

a 3QMAS experiment on a sample of aluminophosphate AlP04 - 14, using a 

6-phase cycle (N1 = 6) for triple-quantum selection but without cycling the 

z-filter pulse (N2 = 1) (Fig. 2.16-b). The spectrum should be compared to 

the one (Fig. 2.16-a) we obtained with the same sample and under the same 

experimental conditions except that a 4-phase cycle was applied to the last 

pulse (N2 = 4). This result clearly demonstrates that a selective gao pulse 

can not single handedly get rid of parasitic signais. In this case, the use of a 

cycling seems essential. 
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Figs. 2.15 exhibit the different pathways that may contribute to the ac­

quisition signal when the number N2 of phases is respectively 1, 2 and 4 for 

a spin 5/2. For the sake of simplifying the figures, we did not consider jumps 

!:ip greater than five. When N2 was set to the minimum (N2 = 1), none of 

the coherence arder pathways are removed by phase cycling. Therefore, even 

if pulse lengths are set for a triple-quantum excitation, other coherences are 

present on the spectrum. As N2 is increased, sorne pathways totally disap­

pear, reducing the risk of distorted lineshapes. Theoretically, the number of 

phases should be chosen such that it fulfills the Eq. 2.25 to make sure that 

only the central transition is transferred. 

(2.25) 

For spins 3/2, N2 = 4 ensures that only the desired pathways (solid lines) 

are selected. For spins 5/2, even if a minimum of 6 phases is theoretically 

required, we obtained identical 2D spectra for 2 and 4 phases (not shown). 

This tends to prove that when each pulse is correctly optimized, the number 

N2 can be reduced, especially if the z-filter time is long enough (1 or 2 rotor 

cycles). As far as our sequence is concerned, we opted for a 24 phase cycle 

with N1 = 6 and N2 = 4 as given in table 2.4. 

Pulse Length Optimization 

The previous section emphasized the fact that pulse length optimization is 

much more critical than the choice of the phase cycle. Therefore, care should 

be taken at this stage of the experiment if one wants to obtain a nice MQMAS 

spectrum. To optimize the pulse lengths, one can adopt either a theoretical 
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Figure 2.15: Selected pathways in a z-filter sequence as a function of the 

number N2 of phases applied to the third pulse, for a spin 5/2. N1 : number 

of phases for the first or second hard pulse. N2 number of phases for the 

third pulse (selective 90°). 
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Figure 2.16: 27Al3QMAS spectra of AlP04 - 14 acquired with N2=4 (a) and 

N2 = 1 (b). 
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'1/Jl 0 

'I/J2 0 60 120 180 240 300 

c/J3 0 

90 

180 

270 

'1/Jrec 0 240 120 0 240 120 

90 330 210 90 330 210 

180 60 300 180 60 300 

270 150 30 270 150 30 

Table 2.4: Phase cycle for the excitation of tnple-quantum coherences (echo 

and anti-echo) in a three-pulse z-filter sequence. Phases may need to be 

shifted to set receiver phases to a multiple of 90°. 
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or an experimental approach. They both lead to fairly good 2D datasets. 

Both of these approaches will now be reviewed. 

Sorne authors have calculated the optimum experimental conditions for 

MQMAS limiting their investigations to the original two-pulse sequence. 15
• 

30 

Later, Amoureux et al. fully described the MQMAS technique, showing the 

advantages of z-filter sequence especially for higher-order multiple-quantum 

excitations.31 They explained that the triple-quantum excitation pulse is 

identical for both two- and three-pulse sequences (c.a., 240° for 3/2, 180° 

for 5/2) whereas the conversion pulse is slightly different. Table 2.5 gives the 

optimal (}1 and ()2 fiip angles for a triple-quantum excitation of spins 3/2 and 

5/2 using our three-pulse sequence. Flip angles are directly functions of the 

rf amplitude Wrf and pulse lengths 7 1 and 7 2 . The theoretical efficiencies of 

excitation and conversion processes are also included in the table. As men­

tioned by several authors, the conversion (3Q to OQ) is an inefficient process 

that limits the sensitivity of the MQMAS experiment. 

1 pulse () Eff 

3/2 1 240 1.5 

2 80 0.3 

5/2 1 180 1.5 

2 55 0.3 

Table 2.5: Optimum flip-angles and corresponding relative efficiencies (Eff) 

for WQ/Wrf = 1.25. Eff=1 corresponds to the central transition signal ob­

served with a perfectly selective 90° pulse. 

The optimization of the third pulse requires special attention as it was 

previously said that it should be a selective 90° pulse. The power of the 
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third pulse must be low in order to selectively transfer the signal from OQ 

states to the observable -1Q. Indeed, a strong power may transfer other 

coherences that are not fully averaged out by phase cycling as well as single­

quantum transitions different from the central one. On the other hand, if 

the rf amplitude is not big enough, the excitation may be uneven and lead 

to distortions. Therefore, we consider that the rf field should be equal to the 

spectral area to assure at least a good transfer. For instance, for 27Al nuclei, 

the sites are spread over a range of about 100 ppm which suggests the use of 

a rf power bigger than 10kHz. 

Even if these theoretical flip angles yield fairly good 2D acquisitions, 

we think that the optimization of pulse lengths should always be checked 

experimentally. Indeed, the estimation of the rf power is sometimes imprecise 

rendering the theoretical setting inaccurate. The experimental optimization 

enables us to avoid making any assumption on this parameter. Moreover, 

the calculation of the optimized pulse lengths is performed using square rf 

· pulses whereas real pulses are strongly affected by the inhomogeneity of the 

rf field and by rising and falling times which are all the more important that 

the rf power is high. 

First, the maximum rf power which is about 150 kHz for most standard 

4mm probes, must be used for the excitation and the conversion pulses. As 

far as our experiments were concerned, they were performed with a probe 

specially developed by Bruker for the MQMAS technique. We could obtain rf 

fields of up to 350 kHz that yield much higher sensitivity. At this frequency, 

the hard pulses are not rectangular pulses anymore as they must be very short 

(around 0.3JLsec for T2 ) for an optimized transfer. Moreover, we noticed that 

an arcing effect occurred for an Wr f > 300 kHz which would have resulted in 

an inhomogeneous MQMAS excitation. Therefore, for most experiments, we 
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opted for a slightly weaker rf field ( 250 kHz < Wr f < 300 kHz). 

Second, our experimental optimization takes advantage of the fact that 

the signal is eosine-amplitude modulated in t 1 , for the z-filter MQMAS ex­

periment. The consequence of this is that the first row of the 2D dataset, for 

which the evolution time t1 is null, is equivalent to the lD MAS spectrum 

since there is no signal dephasing resulting from the 3Q-evolution. There­

fore, the determination of the optimal parameters can be performed using 

the phase cycle of the 2D multiple-quantum MAS experiment, but without 

incrementing the time t1. 

A rough estimate of the rf power may be useful to determine the ap­

proximate values of T1 and T2 from the theoretical calculation (Table 2.5). 

Indeed, such set of values can be a good starting point for the experimental 

optimization. Finally, each parame ter ( T1, Tz and T3 ) can be independently 

incremented while the others are fixed and the optimum value coïncides with 

the one that leads to the maximum of amplitude for the first row signal. 

Figs. 2.17 shows the result of such experimental optimization for T 1 and 

Tz using the z-filter sequence and two rf amplitudes (for T2 only). A few 

observations should be made from these figures. The most important pointis 

undoubtedly that the optimum values for any rf field are easily deduced from 

the curves. Then, we notice that the first top corresponds to the maximum 

of efficiency such that pulses are kept as short as possible. Finally, we have 

the experimental evidence that high rf power yields better S/N ratio. 

Optimization of time delays 

Using the z-filter pulse sequence, the optimization of the pulse lengths is 

not as critical as in the two-pulse sequence. However, a bad setting would 

result in a poor S/N ratio, yielding much longer experimental durations. 

@ u 
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Figure 2.17: Experimental optimization of the pulse lengths r 1 and r 2 us­

ing the z-filter sequence. The curves were obtained by integration of the 

tetrahedral 27Al resonance in a zeolite Y sample. The optimization of the 

second pulse r 2 was performed at two rf power to show the influence of this 

parameter. 
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Other parameters, e.g. pulse delays that are present in the z-filter sequence, 

should also be taken into in the optimization procedure. 

First, the delay between two acquisitions should be chosen such that 

the spins are brought back to the equilibrium. In single-pulse experiments, 

we generally check the relaxation delay that spread over a wide range of 

time depending on the nucleus. In the case of the multiple-quantum MAS 

experiment, we observed that for certain nuclei, the relaxation time was 

longer than in the single-pulse MAS experiment. A too short delay would 

not only further decrease the S /N ratio but the intensity for such sites would 

be underestimated. To gain good results for our quantification procedure, 

we needed to redu ce to a minimum the experimental constraints ( especially 

relaxation). Consequently, we have always checked this delay using the same 

procedure than for the pulse length optimization. This sometimes led us to 

use relaxation times that were 10 times longer than in the MAS experiment, 

significantly increasing the experimental duration but multiplying the S/N 

ratio by a factor of about 4, for the same number of scans. 

In contrast to the delay t1 which depends on the type of experiment 

that one wants to perform (rotor-synchronization or not) rather than on a 

specifie optimization, the time between the second and third pulses must be 

carefully chosen. Indeed, even though the second pulse is supposed to transfer 

the magnetization along the static field, sorne transverse magnetization may 

still be present leading to parasitic signais. Therefore, the delay should be 

long enough to ensure that this transverse magnetization disappears through 

relaxation. We think that a few hundred of J-lSec is sufficient to prevent 

other coherence orders from appearing on the spectrum. Sorne authors32 

have recommended the use of a multiple of 27r /wr in arder to keep a good 

phase for the sidebands along F1 when t1-rotor synchronization is not used. 
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In this section, we have dealt with several aspects of how to optimize MQ­

MAS experiments. The most important steps to take into account have been 

presented with an emphasis on those that we used in the experimental section 

(Chapter 4). Furthermore, a procedure for the experimental optimization of 

MQMAS was given for the z-filter MQMAS sequence. It is obvious from 

the few 3QMAS spectra th at have been shown so far, th at this technique 

provides an incomparable facility to know the number of crystallographically 

non-equivalent sites present in a sample. The ease with which spectra are 

ohtained put MQMAS far beyond other high-resolution second-order aver­

aging techniques (DOR, DAS). The next section has been written with the 

aim to demonstrate that MQMAS technique is far more than another high­

resolution experiment. 

2.3 Further on with MQMAS 

Chapter 1 explained that the Larmor frequency, and thus the position of a 

lineshape on the spectrum, is linked to the magnitude of the static magnetic 

field. Renee, the use of frequency units makes the comparison of spectra 

difficult when they are acquired at different fields. Consequently, it is bet­

ter to manipulate lD and 2D spectra in normalized units (ppm). We will 

therefore explain how MQMAS spectra should be scaled especially after a 

shearing transformation. If the determination of the number of sites is the 

main purpose of M QMAS, further information ( quadru polar parameters) cau 

be deduced from a 2D spectrum on condition that the second dimension is 

properly scaled. The quantification of MQMAS spectra is also based on a 

correct scaling. 

Sever al au thors have already taken advantage of the incomparable versabil-
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ity of NMR to introduce new techniques that use the potential of MQMAS 

for high-resolution. As we have contributed to these developments, we will 

give an overview of what has been achieved so far as well as an insight into 

the future of MQMAS. AU these new pulse sequences can be divided in two 

parts: a multiple-quantum excitation leading to a high-resolved dimension 

and another spin manipulation (CP, REDOR, etc.) that provides an addi­

tional information. 

2.3.1 Scaling spectra 

before shearing 

It has been shown that the projection of a 2D p-quantum MAS spectrum 

before shearing onto the vertical axis refiect the evolution of the p-Q co­

herence orders. Consequently, the shift w1 on the second dimension, of the 

centre of gravity of a line is magnified in comparison with the shift w2 on 

the MAS dimension. w2 and w1 are functions of the actual chemical shift of 

the site 8cs and of a quadrupolar induced shift wq1s(P) that differs on both 

dimensions (Eqs. 2.26 and 2.27). 

(2.26) 

w1 = -pwo8cs + wQis (p) (2.27) 

wQIS ( -1) and wQIS (p) are given in Eq. 2.28 which is deduced from Eq. 2.11 

after substituting p to m. 

(2.28) 
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As we said earlier, it is common to introduce the Larmor frequency in 

orcier to remove the static field dependency. In single-pulse experiments as 

well as in the MAS dimension of MQMAS experiments, the shift c5 expressed 

in ppm is simply 

(2.29) 

In such a case, the shift c52 (ppm) is composed of two terms: the actual 

chemical shift c5cs and the quadrupolar induced shift c5Q1s( -1). The latter 

is in inverse proportion to w5 favouring the use of strong static fields to 

decrease the difference between the position of the center of gravity of the 

band and the actual chemical shift c5cs. Unlike c5QIS however, c5cs should 

be independent of the experimental features (magnitude of the static field, 

single- or multiple-quantum excitations, etc.) as it allows the sites to be 

classified regardless of the strength of their quadrupolar interactions. 

Considering Eq. 2.27, it cornes out that the virtual Larmor frequency 

along the MQ dimension, must also be magnified by a factor of -p such that 

the shifts c51 and c52 remain the sum of the same isotropie chemical shift c5cs 

and a quadrupolar induced shift c5QIS that differs on both dimensions. Shifts 

are given in ppm, in Eqs. 2.30 and 2.31 for MAS and MQMAS dimensions, 

respecti vely. 

3 ( fJ2) __.,__[ 4_J (_J_+_l:__) --3~] . 106 
62 = c5cs- 10 C~ 1 + -

3 
- 2 
[4J(2J- l)wo] 

[4J(J + 1)- 3p2] . lOG 

[4J(2J -l)w0]
2 

(2.30) 

(2.31) 
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after shearing 

Ernst et al. 12 explicitely give the effect of the shearing upon the scaling of 2D 

spectra. They write (pp. 337-339) that the shearing transformation shifts 

the peaks that henceforth appear at frequency :.Jiso following Eq. 2.32 (after 

shearing, the vertical axis will now be referred to as the isotropie axis). 

(2.32) 

By replacing w1 and w2 in the previous equation by their respective math­

ematical expression (Eqs. 2.26, 2.27), we find that the isotropie frequency in 

the sheared dimension can be written 

(
JRJ- p) { 3 2 ( T/

2
) [41(! + 1)- 3p

2
]} 

Wiso= JRJ+1 Wo 6"cs+17CQ 1+3 [41(2I-1)wo]2 . (2.33) 

Again this time, a virtual Larmor frequency (JRI- p)wo/(IRI + 1) should 

be defined to scale the isotropie axis. In such a case, the shift bisa takes the 

following form, when expressed in ppm: 

(2.34) 

The use of normalized scales in association with the definition of new 

Larmor frequencies is grandly justified if we compare the previous equations 

giving the chemical shifts in ppm onto the three axes. Let us consider the 

case of a site for which the quadrupolar interaction is null ( CQ = 0). The 

quadrupolar induced shift terms should be removed from the equations so 

that only the isotropie chemical shift des remains. Therefore, a projection 

of the peak onto any of the three axes (62 , 61 , bisa) would allow to determine 
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directly this value. However, the quadrupolar interaction is never negligible 

and an additional calculation is necessary to deduce quadrupolar parameters 

from MQMAS spectra. The next section is devoted to this purpose and 

should help understand 2D spectra. 

Whereas the previous scaling has been adopted as a standard by most 

researchers, it reveals inaccurate when spinning-sidebands along the second 

dimension are examined. We remind that if the spectral window is large in 

the MQMAS dimension, many sidebands arise partly due to the fact that 

most interactions are magnified by a factor of p. According to the rules 

that we imposed for the scaling and before any shearing transformation is 

applied, spinning sidebands are separated by Wr along w1 and w2 . But, after 

shearing, Eq. 2. 32 leads to a frequency spacing in Hertz of w;so = Wr / ( 1 R 1 + 1) 

between spinning sidebands along the isotropie dimension. In order to keep a 

sideband spacing of Wr after shearing, the scaling of the isotropie axis should 

follow the Eq. 2.35. 

(2.35) 

Nevertheless, this alternative convention does not alter relations when 

expressed in ppm if the virtual Larmor frequency along bisa is (IRI - p)w0 . 

Only expressions given previously in Hertz along the isotropie axis must be 

multiplied by a factor (1 + IRI). 

2.3.2 Determination of Quadrupolar Parameters 

The previous scaling remains unecessary if the use of the MQMAS experiment 

was only motivated by the determination of the number of nonequivalent 

sites. Indeed, the isotropie projection of the 2D MQMAS spectrum should 
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help understand the often ambiguous ID MAS spectrum. But, the scaling of 

the isotropie dimension of an MQMAS spectrum gives access to additional 

information such as the quadrupolar parameters (CQ) or the actual chemical 

shift (bcs) that refl.ect the local environment of the nucleus. 

According to Eqs. 2.30 and 2.34, we find that the shifts on both dimen­

sions differ by their quadrupolar induced shifts b"QIS and 6~[8 on <52 and Jiso 

axes, respectively. In fact, both quadrupolar induced shifts are proportional 

following Eq. 2.36. 

(2.36) 

Therefore, a QIS axis can be added on the 2D spectrum to scale the 

magnitude of the quadrupolar interaction. The slope of the QIS axis is sim ply 

equal to the coefficient -10/17 which correlates the quadrupolar induced 

shifts on both dimensions. The interesting information that follows Eq. 2.36 

is that the coefficient is independent on the spin number I as well as the 

coherence arder p such that there is a single definition of the QIS axis for all 

kinds of MQMAS experiments.31 A CS axis should also be defined in arder 

to determine the actual chemical shift of a site. The slope of the CS axis is 

deduced from the comparison of Eqs. 2.30 and 2.34 and is equal to 1. As 

shown in Fig. 2.18-a, the CS axis can be scaled to obtain approximate values 

for the actual chemical shifts of the different sites by a projection parallel to 

the QIS axis, of the center of gravity of each band. Of course, the QIS axis 

may also be scaled but we will see that the magnitude of the quadrupolar 

interaction is better determined providing a subsequent calculation. 

The experimental determination of the real chemical shifts is illustrated 

on Fig. 2.18 where the CS and QIS axes have been drawn. This 3QMAS 

spectrum was obtained with an aluminophosphate AlP04 - 14. We observe 
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Figure 2.18: Sheared 3QMAS (a) and CP 3QMAS (b) spectra of AlP04 - 11. 
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on the QIS axis that site Al2 experiences a stronger quadrupolar interaction 

than site Al5 whereas chemical shifts 6cs are found around -10 ppm and 30 

ppm for Al2 and Al5 , respectively. 

Making use of the definitions of 62 and 6iso (Eqs. 2.37), one can ob tain 

mathematical expressions for 6cs and 6QIS (Eqs. 2.38). Thus, the projection 

of the center of gravity of a line onto the sheared MQMAS and MAS axes 

leads to 6cs and 6Q1s, hence avoiding the addition of the CS and QIS axes. 

{ 

6cs = 17<5i•~il0.5z 

6QIS = g(62- 6iso) 

(2.37) 

(2.38) 

We have seen that 6Q1s was a function of the spin number I, as weil as 

the quadrupolar parameters CQ and T/Q (Eq. 2.30). Therefore, the calculation 

of these two parameters is impossible from the single determination of 6QIS· 

Indeed, a more detailed analysis of the lineshape is necessary to reach such 

information. Nevertheless, the quadrupolar parameters can be grouped into 

a single expression denoted PQ (sometimes denoted SOQE, Second-Order 

Quadrupolar Effects) which also describes the magnitude of the quadrupolar 

interaction. This new parameter will be written 

The quadrupolar induced shift can be rewritten 

3 p~ 1 6 
6QIS = -- ·- ·- · 10 

10 w5 K 

(2.39) 

(2.40) 
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where 

[4!(2!- 1)]
2 

K=-=------~ 
4I(I + 1)- 3 

Table 2.6 summarizes the values of K for different spin numbers I. The 

PQ parameter can finally be calculated from the graphie determination of 

5iso and 52 using Eq. 2.41, which is completely independent of p. 

P.Q = ~ · J17ü · K · (5· - 52 ) 9000 lSO 

I 3/2 5/2 7/2 9/2 

K 12 50 588/5 216 

Table 2.6: K values as a function of the spin number I. 

(2.41) 

The determination of PQ for each site is with no doubt the first step 

towards the understanding of the local surrounding of the nucleus. Using 

MQMAS experiments, the calculation of this parameter is straightforward 

and requires the acquisition of a single 2D spectrum whereas previous high­

resolution methods such as DOR required the acquisition of several spectra 

at different static fields in order to change the magnitude of the quadrupolar 

induced shifts. This constitutes a major drawback of the DOR. experiment 

upon the MQMAS experiment, in addition to the technical challenge of the 

double rotation that was discussed in Chapter 1. 

2.3.3 Combination With Other Spin Manipulations 

The first year that followed the discovery of MQMAS, most researchers' aim 

was to increase the efficiency of the multiple-quantum coherence excitation 
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as well as to obtain pure-phase 2D spectra. Then, they imagined how the 

technical simplicity of the experiment could be associated with the versatility 

of NMR to propose new methods in arder to gain an additional structural in­

formation. An important group of NMR techniques uses spin manipulations 

to retrieve the dipolar information that is eliminated by the magic-angle rota­

tion. Therefore, for the last two years, we focused on the possible association 

of multiple-quantum excitations with cross-polarization (CP) and rotational 

echo double resonance (REDOR) spin manipulations. 

Cross-Polarized 3QMAS Experiments 

The cross-polarization (CP) has been first investigated by Hartmann et al.33 

and further studied by Vega34 under magic-angle spinning. The basic CP 

sequence includes a delay (contact time) during which the magnetization is 

transferred from an NMR sensitive spin I (high 'Y) to a less sensitive spin S. 

It was initially employed to increase the sensitivity of the NMR excitation of 

carbon through a cross-polarization with protons. By comparing MAS and 

CP-MAS spectra, one can also get sorne information on the environment of 

the non-abundant nucleus. Pruski et al., 35 and Fernandez et aJ.36 have made 

the most of the latter feature to add a CP sequence to the initial MQMAS 

sequence. The schematic diagrams of the pulse sequences and the coher­

ence transfer pathways that were used by Fernandez are shawn in Fig. 2.19. 

The main difference between MQMAS and CP-MQMAS experiments is in 

the preparation period: in the first step of the experiment, magnetic spin 

polarization is transferred from 1 H nuclei to the single-quantum coherence 

of the 27Al nuclei using a CP pulse sequence. Then, the classical z-filter 

MQMAS sequence is added before acquisition in a two-dimensional mode. 

Note that the authors opted for a separation of the CP and the MQMAS se-
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quences instead of the excitation of the triple-quantum coherences via cross­

polarization. Thus, an additional z-filter pulse precedes the triple-quantum 

coherence excitation. 

'H l C; 1 DECOUPLING 

'lj;z 7.);3 

p 27Al 

c 
3 0 
2 h 
1 e 
0 r 

-1 e 
-2 n 
-3 c 

e 

Figure 2.19: Pulse sequence used in the CP 3QMAS experiment 

In arder to illustrate the capability of the CP-MQMAS sequence to achieve 

a complete discrimination between hydrated and non-hydrated 27Al sites, we 

presents the 27Al 3QMAS (Fig. 2.18-a) and 27Al CP 3QMAS (Fig. 2.18-b) 

spectra of a fully hydrated AlP04 - 11 aluminophosphate. We have repro­

duced the two isotropie projections in Fig. 2.20 for a better understanding 

of the results. Clearly, this technique provides a more direct evidence of the 

interaction of various aluminium sites with water. It is obvious that the Al2 

resonance exhibits the strongest CP intensity while the Al5 resonance is ab­

sent. These observations are consistent with the previous 27Al DOR NMR 
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and X-ray diffraction data of Peeters et al.37 and the CP DOR results of 

Wu et al., which also suggested that A/2 and A/5 sites are the most and the 

least susceptible to hydration, respectively. Furthermore, the CP-MQMAS 

technique shows that among the remaining tetrahedral sites, A/4 interacts 

with water more strongly than Ah and Ah. These results are in agreement 

with the cristallographical structure of the aluminophosphate as explained 

in Fernandez et al. 's paper. 36 

Even though the CP-MQMAS technique suffers from a lack of efficiency, 

the authors proved with this first experiment, that it was possible to use 

the high-resolution of MQMAS in combination with another spin manipu­

lation to reach additional structural information. Nevertheless, the strong 

quantitative uncertainties that go with a CP transfer between spin 1/2 and 

quadrupolar nuclei limit the experiment to providing only a qualitative re­

suit. Therefore, Fernandez et al. have introduced a new MQ-REDOR ex­

periment that gives new insights into the measure of connectivities between 

quadrupolar and spin-1/2 nuclei. 

Multiple-Quantum REDOR Nl\1R 

The REDOR technique38 has been implemented to reintroduce the dipolar 

interaction that is averaged out by the fast magic angle spinning. The conven­

tional experiment is composed of an echo sequence for the observed nucleus S 

while a series of 1r-pulses spaced by an integer number of half-rotor periods, 

is applied to the other studied nucleus I. The number of 1r-pulses is regu­

larly incremented in a set of experiments in order to increase the dephasing 

due to the dipolar interaction. The dephasing resulting from the application 

of the 1r-pulses is proportional to the dipolar interaction such that the in­

tensity of the resonance is reduced. The comparison of the spectra obtained 
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Figure 2.20: 3QMAS and CP-3QMAS isotropie projections obtained with 

the AlP04 - 11 alurninophosphate. 
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Figure 2.21: 3QMAS and 3Q-REDOR isotropie projections obtained with 

the AlP04 - 14 aluminophosphate. 
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with and without the dephasing pulses allows for a qualitative analysis of the 

connecti vi ti es. 

Fernandez et al. 39 have recently added a REDOR sequence to the z-filter 

sequence in order to take advantage of the high-resolution provided by the 

latter. They described an MQ-REDOR experiment of which the diagram is 

given in Fig. 2.22. The first part of the experiment consists in exciting triple­

quantum coherences using two strong rf pulses. Then, according to adequate 

phase cycling, the z-filter pulse transfers the magnetization of spins S into 

single-quantum transitions during which the dephasing 1r-pulses are applied 

to the spin-1/2 I. REDOR curves can be measured for various 27Al species 

by comparing intensities on 2D spectra acquired with and without 1r-pulses 

on I and for different values of n, the number of rotor periods. Additional 

experimental features such as rf powers, phase cycles, etc. can be found in 

the paper previously cited. 

The 27Al MQ-REDOR experiment is demonstrated on a sample of alu­

minophosphate AlP04 - 14 which encloses five nonequivalent 27Al sites, one 

of them resulting from the presence of an impurity.40 As for the AlP04 - CHA 

aluminophosphate that was used in Fernandez' experiment, water molecules 

were present in the sample, suggesting the study of 1 H-27Al spin pairs. Two 

2D spectra (not shown) were recording using the sequence of Fig. 2.22 with a 

number of rotor periods equal to 6. One experiment was performed with the 

maximum of power available on 1 H spins while the 1r-pulses were removed 

to acquire a second spectrum used as a reference. The isotropie projections 

of sheared 3QMAS and 3Q-REDOR spectra are shown in Fig. 2.21. The 

advantage of the MQ-REDOR technique is that it provides direct evidence 
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Figure 2.22: Pulse sequence used in the 3Q-REDOR experiment 

of the proximity of 1 H and 27Al. The projections were scaled in reference to 

species Al2 for which the REDOR effect is minimum. We clearly see that 

the REDOR dephasing is more important for Al5 species suggesting that 

water molecules preferably interact with octahedral sites. Other tetrahedral 

species can also be classified as far as their predisposition to hydration is 

concerned. Fernandez et al. have gone further in their analysis by MQ­

REDOR technique as they measured complete REDOR curves for three 27Al 

sites in AlP04 - CHA and they compared the results with calculated curves 

to estimate di polar couplings and distances 27Al-1 H. 

The aim of the present section was to show the flexibility of the MQMAS 

experiment that is evident in the CP MQMAS and MQ-REDOR implemen­

tations. Experimental information will be better found in the various articles 

given in the bibliography. With the achievement of a high-resolved dimen-
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sion, sorne researchers have also involved other spin manipulations such as 

heteronuclear correlation experiments. 41 No doubt that the future of new ex­

periments in solid-state NMR of quadrupolar nuclei is now strongly linked 

to the MQMAS technique. 

2.4 Conclusion 

This chapter has shown that NMR is a powerful technique in the sense that 

one can "play" on both the spatial and spin parts of the Hamiltonian in order 

to remove and/or reintroduce the contribution of certain interactions. For 

example, Chapter one showed that second-order quadrupolar broadenings 

can not be averaged out by the only action of sample reorientations. There­

fore, the MQMAS experiment combines the magic angle spinning feature 

with the excitation of multiple-quantum transitions. We have shown that 

one can obtain an isotropie projection, i.e. with no quadrupolar broadening, 

using a two-dimensional acquisition mode. Among the different MQMAS 

pulse sequences that have been proposed for the last three years, the z-filter 

approach is, in our opinion, the best way to get a pure absorption spectrum 

with an optimised S /N ratio. The experimental procedure (optimisation, 

acquisition and processing) was also fully described. 

Then, we focussed on the information that is provided by an MQMAS 

spectrum. In addition to the determination of the number of non-equivalent 

sites, important parameters characterising the local environment of the nu­

cleus, can be easily calculated. Finally, the flexibility of this new experiment 

makes it possible to develop new experiments involving the MQMAS sequence 

and other spin manipulations. 

Nevertheless, no mention was made of a possible quantification of these 
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2D MQMAS spectra even though it is very important in numerous applica­

tions. Indeed, chemists are often interested in obtaining an estimation of the 

relative population of the sites. Therefore, the next chapter will deal with 

the problem of quantification in NMR, especially in MQMAS experiments. 
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2.5 L'expérience MQMAS (résumé) 

2 .5.1 Bases Théoriques du MQMAS 

Développement des termes de spins 

Dans le chapitre précédent, nous nous sommes limités au développement 

des termes spatiaux de l'Hamiltonien quadrupolaire. Il apparaît que le moyen­

nage spatial de l'interaction au second ordre requiert une double rotation qui 

reste aujourd'hui encore, difficile techniquement. A ce moment là, les commu­

tateurs [T2,-m, T2,m] faisant intervenir les opérateurs de spins T2,-m, étaient 

volontairement laissés de côté et nous avons préféré les regrouper dans les 

termes ÇL. Par conséquent, il nous faut maintenant écrire ces composantes 

explicitement afin de montrer l'efficacité du MQMAS à éliminer les élargisse­

ments quadrupolaires. 

En utilisant le même formalisme qu'au premier chapitre, le commutateur 

de spin [T2,-m, T2,m] peut être réduit en une somme de tenseurs sphériques 

irréductibles TL,o (0 ~ L ~ 4). En fonction du signe des coefficients de 

Clebsch-Gordan, certaines composantes disparaissent de sorte que seuls les 

termes de rang 1 et de rang 3 subsistent (cf. Eqs. 2.2). La fréquence quadrupo­

laire wg) ( m) pour un niveau d'énergie m est proportionnelle aux coefficients 

Cf(m) donnés par les équations 2.6. Enfin, avec l'aide des matrices de Wigner, 

nous pouvons écrire la fréquence quadrupolaire au second ordre pour chaque 

crystallite, lorsque l'échantillon est soumis à une rotation autour d'un axe 

faisant un angle () avec B 0 , 

w2 

wg)(m) = 36 ~0 [AoCJ(m) + A2(a, /3)C~(m)P2 (cos()) + 

A4(o:, !3)Cl (m)P4(cos ()) J. 
(2.42) 
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Les termes dépendant de l'orientation des crystallites sont regroupés dans 

les AL(o:,,B) (cf. Eqs. 2.9) alors que P2 (cosB) et P4 (cosB) sont les polynômes 

de Legendre d'ordre 2 et 4, définis dans le premier chapitre. Nous retrouvons 

bien sûr les 3 parties qui découlent du calcul au second ordre de l'Hamiltonien 

quadrupolaire. Le 1er terme est indépendant des angles a et ,B et donne lieu 

à un déplacement induit WQIS qui dépend de la transition (m, -m) que l'on 

considère (Eq. 2.43). 

wQIS =- 2mw~ (1 + 'TJ2) [1(1 + 1)- 3m2] 
m,-m 30 Wo 3 (2.43) 

Dans l'expérience MQMAS, nous exciterons des transitions symmétriques 

telles que les transitions triple-quanta (m = 3/2) alors que nous observerons 

toujours les transitions à simple-quanta (m = -1/2). Les différents déplace­

ments induits seront utiles pour déterminer les paramètres quadrupolaires, 

bcs et PQ (cf. 2.5.3). 

La technique MQMAS fait appel aux expériences à 2 dimensions qui sont 

très courantes en RMN des liquides mais encore rares à l'état solide (DAS, 

HETCOR, ... ). De façon concise, une expérience 2D est composée de deux 

périodes d'évolution des spins, et de pulses (minimum de 2) qui vont exciter 

certaines transitions et finalement transférer (mixing period, cf. Fig. 2.2) le 

signal dans la cohérence p = -1 pour l'observation. L'expérience MQMAS 

consiste donc à faire évoluer les cohérences 3Q (p = ±3) pendant un temps 

t 1 en appliquant un champ rf le plus important possible. Après cette période 

d'évolution, un deuxième pulse permet l'acquisition d'un signal d'écho au 

sommet duquel toute l'anisotropie quadrupolaire est annulée. En effet, la 

corrélation des évolutions pendant t 1 et t 2 des cohérences triple-quanta et 

simple-quanta, permet d'éliminer le troisième terme de l'équation 2.42. Si 

l'expérience se fait en plus à l'angle magique (}M = 54.7°, alors le deuxième 
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terme de cette même équation est tout simplement éliminé. Afin d'obtenir un 

spectre 2D, en fréquence, il faut acquérir un signal d'écho en incrémentant 

régulièrement le temps t 1 d'évolution des cohérences triple-quanta. Après 

une double transformée de Fourier, nous obtenons un spectre sur lequel la 

position des différents sites dépend de leur déplacement chimique flcs et 

de leur constante quadrupolaire CQ. Comme l'évolution du signal d'écho 

dépend du rapport R(I, p) = -CI (p) /CI( -1), les bandes de résonance des 

sites cristallographiques s'étendent le long d'un axe de même pente R(I, p) 

propre à chaque spin et à chaque expérience multi-quanta. Par conséquent, 

il est souhaitable d'effectuer un "shearing" du spectre afin que les bandes 

de résonances soient parallèles à l'axe horizontal. Ainsi, une projection elu 

spectre 2D sur l'axe vertical bisa donne un spectre isotrope, débarrassé des 

élargissements quadrupolaire. 

Acquisition 

L'acquisition d'un spectre à 2 dimensions, suit des règles bien précises 

qui s'appliquent aussi bien en RMN des liquides qu'à l'état solide. La sec­

tion 2.1.3 traite des différents éléments essentiels à l'obtention d'un spectre 

2D parfaitement phasé (spectre d'absorption pure). Dans ce résumé, nous ne 

donnerons que les étapes les plus importantes qui permettent cette acquisi­

tion. 

Nous avons vu que l'expérience à 2 dimensions comprenait au moins 2 

pulses pour former, dans le domaine d'acquisition t2 , un signal d'écho. Néan­

moins, pour les faibles valeurs de ft, l'echo est tronqué et la transformée 

de Fourier du seul signal d'écho donne un spectre 2D impossible à phaser 

et comportant des parties dispersives. Par conséquent, le signal cl'antiécho 

doit aussi être enregistré afin d'obtenir un spectre d'absorption pure. Les 
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signaux d'écho et d'antiécho sont obtenus en sélectionnant simultanément 

ou séquentiellement les 2 chemins de cohérence symmétriques p = ±3 pen­

dant la période t1 (pour une expérience 3QMAS). La figure 2.6 représente 

les chemins de cohérence conduisant aux signaux d'écho et d'antiécho, pour 

un spin I = 3/2. Il est important de préciser que pour un spin I = 5/2, 

l'écho correspond à la cohérence p = +3. Ces conditions dépendent du signe 

de R(I,p) et de règle générale, le signal d'écho est obtenu grâce au chemin 

( 0 -----+ +p -----+ -1) sauf lorsque p = 2I. En sélectionnant séquentiellement 

l'écho et l'antiécho, nous observons une évolution des signaux présentées sur 

la figure 2.7. 

La sélection des différents chemins de cohérence se fait généralement en 

jouant sur la phase des différents pulses ainsi que la phase du récepteur. Les 

règles de sélection sont données page 73. Il est intéressant de s'attarder sur 

la règle 3 qui stipule que selon le nombre de phases Ni appliquées au pulse, 

les signaux provenant d'autres chemins de cohérence peuvent s'ajouter au 

chemin de cohérence choisi. Cela veut dire que pour une expérience à 3-

quanta, un choix de Ni= 6 phases différentes pour l'un des deux pulses afin 

de sélectionner simultanément l'écho et l'antiécho. 

Par ailleurs, l'acquisition des composantes réelle et imaginaire est indis­

pensable pour pouvoir phaser le spectre 2D dans la deuxième dimension. 

Cependant, le déphasage entre parties réelle et imaginaire n'est pas égal à 90° 

comme pour l'observation des transitions simple quanta. Ainsi, pour obtenir 

la partie imaginaire dans une expérience à 3-quanta, il nous faut enregistrer 

un deuxième set de données en utilisant la même séquence de pulse mais avec 

une phase de 30° ( 1r /2p avec p = 3) appliquée au 1er pulse. Les phases des 

pulses sont données dans les tables 2.2 et 2.3. 
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Processing 

La manipulation des données enregistrées est fonction de la méthode d'ac­

quisition qui a été choisie. En ce qui nous concerne, nous avons opté pour 

une acquisition simultanée des signaux d'écho et d'antiécho de sorte que 

pour chaque incrément t 1 , nous obtenons 2 parties Sx(t1, t2 ) (partie réelle) 

et Sy(t1, t 2 ) (partie imaginaire) qui sont une combinaison linéaire de l'écho 

et de l'antiécho. Les équations 2.44 permettent de calculer les signaux d'écho 

Ss(h, t2) et d'antiécho SA(t1, t2) à partir de Sx(t1, t2) et Sy(t1, t2). 

SE(t1, t2) = Sx(tl, t2)- iSy(t1, t2) 

SA(tl, t2) = Sx(tl, t2) + iSy(t1, t2) 
(2.44) 

Nous avons aussi vu l'intérêt du shearing pour obtenir un spectre isotrope 

par projection sur l'axe vertical. Cette transformation peut se faire après une 

double transformée de Fourier de SE(t1, t 2 ) et SA(t1, t 2 ). Cependant, nous 

avons préféré manipuler les données après la première transformée de Fourier 

en t2 en multipliant SE(t1, t2) et SA(t1, t2) par une exponentielle dépendant 

de cfy(t1,w2) = R(I,p)w2t1. 

S~(tiso, w2) = é/>(t1 ,w2 ) Ss(h, w2) 

s~ (tiso, W2) = e-i<j>(tl ,w2) sA ( t1, W2) 
(2.45) 

Enfin, le spectre 2D d'absorption pure est obtenu par tranformé de Fourier 

en tiso de S~(tiSOl w2) et s~ (tiso, w2) et en additionant les 2 signaux (Eq. 2.46). 

(2.46) 

Les étapes du processing sont résumés sur la figure 2.8. 
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2.5.2 Optimisation de la Séquence z-filtering MQMAS 

Séquence z-filtering MQMAS 

La séquence de pulses qui a été présentée jusqu'à maintenant, comprend 

2 pulses, l'un pour exciter les cohérences 3-quanta et l'autre pour transférer 

la magnétisation vers les transitions observables. Les chemins de cohérence 

(0---+ +3---+ -1) et (0---+ -3---+ -1) sont sélectionnés simultanément 

par cyclage de phase. Cependant, il est facile de s'apercevoir que ces deux 

chemins ne sont pas parfaitement symmétriques et ne vont donc pas con­

tribuer au signal d'acquisition avec la même intensité (cf. 2.10). De plus, 

l'optimisation d'une telle séquence est difficile et le résultat est souvent mé­

diocre (parties dispersives sur le spectre final). 

Amoureux et aU9 ont donc proposé d'ajouter un troisième pulse à la 

séquence précédente afin de rendre parfaitement symmétrique l'évolution des 

cohérences +3Q et -3Q. La séquence z-filter est présentée à la figure 2.12. Le 

deuxième pulse (maximum de puissance) transfert la lllùgnétisation le long du 

champ statique (OQ) au lieu de directement acquérir le signal ( -1Q). Même 

si l'efficacité de la séquence z-filter est un peu inférieur à celle d'une séquence 

à 2 pulses, la qualité du spectre final est nettement améliorée puisque les 

parties dispersives disparaissent complètement. En plus, la détermination 

des paramètres expérimentaux (longueurs des pulses, temps de relaxation, 

... ) en est grandement simplifiée (cf. 2.2.2). 

D'autres séquences de pulses sont développées dans la section 2.2.1 et 

présentent toutes certains avantages. Il est préférable de se reporter aux ar­

ticles traitant de ces nombreuses améliorations. 
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Synchronisation du rotor en t1 

Lors de la publication des premiers spectres 2D MQMAS, il est apparu que 

le nombre de bandes de rotation était bien souvent plus grand le long de l'axe 

isotrope que le long de l'axe anisotrope (MAS). Certains spectres présentaient 

tellement de bandes de rotation, d'intensité importante, qu'il devenait difficile 

de les différencier de la bande principale. En effet, l'intensité de la résonance 

principale diminue d'autant plus qu'il y a de bandes de rotation. De plus, la 

multiplication de résonances (principales ou dues à la rotation) augmente le 

risque de recouvrement des raies et complique l'analyse du spectre. 

Massiot a récemment proposé une méthode de synchronisation du rotor 

en t1 qui permet de complètement éliminer les bandes de rotation dans la 

dimension isotrope. Le principal avantage de la synchronisation est que le 

temps d'expérience est réduit à peu près d'un facteur 5. Le principe est tout 

simplement de fixer la fenêtre spectrale dans la seconde dimension égale à la 

vitesse de rotation du rotor (~t1 = 2Jr/wr)· Il est essentiel que la vitesse de 

rotation du rotor soit la plus grande possible afin de contenir tous les sites 

cristallographiques dans la fenêtre spectrale en w1. Dans ce cas, les bandes 

de rotation se replient sur la résonance principale ce qui augmente aussi son 

rapport S /N. 

En ce qui concerne les spectres présentés dans cette thèse, nous les avons 

obtenu avec la synchronisation du rotor. Cette méthode a aussi grandement 

simplifié la quantification des spectres puisqu'il n'était pas nécessaire de pren­

dre en compte les bandes de rotation dans le calcul numérique. 

Détermination des paramètres expérimentaux 

L'optimisation des paramètres expérimentaux est essentielle pour obtenir 

un spectre MQMAS sans partie dispersive et avec le meilleur rapport S/N. 
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Nous rappelons que nous avons opté pour une séquence à 3 pulse, avec un 

z-filter pour symmétriser les chemins de cohérence. Les paramètres suivants 

sont les plus importants à optimiser. 

Cyclage de phase Dans notre expérience MQMAS, le cyclage de phase 

doit être choisi de façon à ne pas conserver des chemins de cohérence 

supplémentaires qui amèneraient des signaux parasites sur le spectre 

final. Il doit aussi rester le plus court possible afin de ne pas augmenter 

inutilement le temps de l'expérience. La sélection des cohérences 3Q se 

fait en appliquant 6 phases au second pulse. Le troisième pulse, quant à 

lui doit éviter de transférer des cohérences parasites qui seraient dues à 

un mauvais ajustement des longueurs des pulses. Dans la section 2.2.2, 

nous avons étudié les différents chemins de cohérence parasites qui 

peuvent apparaître à l'acquisition pour différents cyclages du dernier 

pulse (N2 = 1, 2, 4) (cf. Fig. 2.15). Expérimentalement, nous observons 

(cf. 2.16) un spectre distordu lorsque N 2 = 1 alors que pour N 2 2 2 

le spectre est "propre". Pour nos expériences, nous avons choisi N 2 = 4 

pour assurer une bonne sélection des chemins de cohérence. 

Longueur des pulses L'optimisation des longueurs de pulse nous est ap­

parue bien plus cruciale que le choix du cyclage de phase. Les longueurs 

de pulse, notamment celui de création des cohérences OQ -+ 3Q et 

celui de conversion 3Q -+ OQ, dépendent fortement du champ rf 

disponible . Par conséquent, nous avons décidé de toujours optimiser 

expérimentalement ce paramètre. Pour cela, nous utilisons la séquence 

de pulse z-filter mais en ne faisant que l'acquisition de la première 

rangée (spectre lD) pour laquelle le temps d'évolution des cohérences 

3Q est nul (t1 = 0). Puis, la longueur de chaque pulse est indépen­

damment incrémentée afin de déterminer la valeur qui donnera le max-
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imum de signal sur le spectre. Expérimentalement, nous retrouvons 

les valeurs théoriques (Table 2.5) calculées grâce au programme PUL­

SAR (cf. chapitre 3 pour plus d'information sur PULSAR). Les courbes 

d'optimisation pour r 1 et r 2 sont présentés à la figure 2.17. 

Temps de relaxation Le temps nécessaire pour que la magnétisation retrouve 

sa position d'équilibre le long de B 0 après une séquence d'impulsion 

doit être déterminé précisément pour différentes raisons : rapport S/N, 

quantification, temps d'expérience, etc. Nous avons remarqué que le 

temps de relaxation des spins était parfois bien plus grand dans l'ex­

périence MQMAS que dans les expériences à une impulsion (lD MAS). 

Par conséquent, ce paramètre a toujours été vérifié après l'optimisa­

tion des longueurs de pulse afin de ne pas fausser la quantification des 

spectres. 

2.5.3 Avantages du MQMAS 

Nous venons de voir que l'interaction quadrupolaire au second ordre pou­

vait être complètement éliminée par excitation des cohérences à multi-quanta 

et acquisition d'un spectre à 2 dimensions. La dimension isotrope du spectre 

MQMAS permet de séparer les différents sites cristallographiques. Dans cette 

partie, nous avons aussi démontré qu'un spectre MQMAS fournit d'autres 

informations sur l'environnement des noyaux. En effet, non seulement les 

paramètres quadrupolaires (PQ et &cs) sont déterminés directement par pro­

jection sur le spectre 2D, mais la flexibilité de cette nouvelle technique rend 

possible des combinaisons du MQMAS avec d'autres manipulations de spins 

(CP, REDOR). 
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Determination des paramètres Ocs et PQ 

La comparaison des spectres RMN obtenus à différents champs statiques 

n'est possible que si l'on définit la position d'une résonance en parties par 

million (ppm). Il en est de même pour les expériences à 2 dimensions. Le 

"scaling" des spectres MQMAS est discuté dans la section 2.3.1, avant et 

après shearing. 

L'étude de l'interaction quadrupolaire au second ordre a montré que la po­

sition du centre de gravité d'une résonance était la somme d'un déplacement 

chimique Ocs et d'un déplacement quadrupolaire induit OQIS· Si le déplace­

ment chimique est le même dans les 2 dimensions du spectre MQMAS, les 

déplacements quadrupolaires induits ne sont pas égaux mais proportionels 

(Eq. 2.47). 

(2.47) 

Ces relations nous amènent à définir 2 axes sur le spectre MQMAS : 

les axes CS et QIS de pentes respectives, 1 et -10/17. A condition d'é­

tallonner les axes CS et QIS, nous pouvons donc, par projection du centre 

de gravité d'une résonance sur un des axes, parallèlement à l'autre, déter­

miner approximativement les valeurs de Ocs et PQ = cQJ1 + TJ~/3. De plus, 

comme le coefficient reliant les déplacements quadrupolaires induits sur les 

axes anisotrope 02 et isotrope Oiso est indépendant du nombre de spin I et de 

la cohérence excitée p, cette définition des axes CS et QIS reste vraie quelque 

soit le noyau étudié et l'expérience MQMAS exécutée. 

Nous insistons sur le fait qu'il est impossible de séparer les contributions 

de la constante quadrupolaire CQ et du paramètre d'assymétrie 'T/Q d'après 

la seule position des raies de résonances sur les spectres MQMAS. En ef-
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fet, la détermination du paramètre TJQ requiert l'analyse par simulation de 

l'enveloppe du spectre MAS. Ceci explique l'introduction d'une nouvelle con­

stante PQ, qui globalement décrit les effets quadrupolaires au second ordre. 

La valeur de PQ peut aussi être obtenue par projection sur les axes c52 et bisa 

ce qui évite de devoir étalonner l'axe QIS (cf. Eq. 2.41). 

La détermination du paramètre PQ est un premier pas vers l'analyse de 

l'environnement local du noyau. L'acquisition d'un seul spectre 2D MQMAS 

permet de connaître cette valeur alors qu'il fallait plusieurs expériences DOR 

à différents champs statiques pour obtenir la même information. Ceci con­

stitue sans aucun doute un avantage certain du MQMAS sur les méthodes 

de double rotation. 

Combinaison avec d'autres manipulations de spins (CP et REDOR) 

Même si la plupart des chercheurs se sont d'abord penchés sur le problème 

de l'efficacité du MQMAS et sur les possibles améliorations des spectres (rap­

port S/N, dispersion, etc.), certains d'entre eux se sont vite rendu compte 

que cette méthode était suffisamment flexible pour être associé à d'autres 

manipulations de spins. Le but de telles combinaisons est de tirer profit de 

la haute résolution fourni par le MQMAS. 

Notre groupe à Lille, en collaboration avec le Prof. M. Pruski à Ames, 

USA, a développé les 2 techniques CP-MQMAS et MQ-REDOR pour les 

noyaux quadrupolaires. Le principe, communs à ces 2 nouvelles méthodes, 

est d'ajouter la séquence z-filter MQMAS avant (REDOR) ou après (CP) 

une autre manipulation de spin. Les figures 2.19 et 2.22 sont respectivement 

les séquences de pulses utilisées dans nos expériences de CP-3QMAS et 3Q­

REDOR. Nous présentons aussi, dans la section 2.3.3, les résultats obtenus 

avec 2 échantillons aluminophosphates (AlP04 - 11 et AlP04 - 14). Le but 
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était de mettre en évidence les noyaux 27Al qui sont à proximité des protons 

1 H. Les projections isotropes des spectres MQMAS "classiques" et des nou­

velles expériences sont comparées sur les figures 2.20 et 2.21. Les effets sont 

très importants et sont en accord avec la structure des matériaux. 

La méthode MQ-REDOR est très prometteuse comme en témoigne les 

premiers articles qui la décrivent. En effet, en réintroduisant le couplage 

dipolaire, il est maintenant possible d'obtenir les distances entre noyaux. Fer­

nandez et al. ont associé un calcul théorique afin de déterminer les distances 

27Al-1 H dans l'aluminophosphate AlP04 - CHA. 

Nous avons présenté dans ce chapitre, la technique MQMAS en insistant 

sur l'acquisition et le processing d'un spectre. Les quelques exemples qui sont 

fournis attestent de la puissance de cette technique, comparée aux expériences 

de double rotation (DOR et DAS). Cependant, il n'a pas encore été fait 

mention de la quantification des spectres 2D MQMAS. Par conséquent, le 

chapitre suivant concerne les problèmes de quantifiçation des spectres en 

RMN et la méthode que nous avons développée pour corriger les intensités 

relatives des differents sites. 
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Chapter 3 

Quantification of MQMAS 

spectra 

3.1 Problem of Quantitative NMR 

3.1.1 Quantification of MAS spectra 

Solid state NMR is an uncomparable technique useful to probe the local 

environment in single crystals as weil as in powder samples. Nevertheless, 

the separation of crystallographically non-equivalent sites does not provide 

much information unless it is followed of a quantification of the spectra. Even 

though the quantification of spectra is rather straightforward for nuclei with 

a spin 1 = 1/2, the extraction of quantitative information has always been 

a major topic of discussion in solid-state NMR of quadrupolar nuclei. 1 This 

problem is still sometimes present, even for the common lD MAS experiment. 

Thus, sorne care must be taken during the acquisition of the spectra aud 

additional tools, such as a program of simulation, are essential to obtain 

quantitative results. 
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In the first chapter, we have shawn that the multiple possible orientations 

of crystallites yield an anisotropie broadening of the resonance. This also 

means that the crystallites experience different quadrupolar effects depending 

on the orientation of their PASs with respect to the static magnetic field. 

Consequently, the pulse conditions (rf power and pulse lengths) must be 

chosen in arder to try to identically excite all crystallites regardless of their 

orientation. In the case of a rf power which is strong ("hard" pulse) compared 

to the quadrupolar interaction, the evolution of the spin system is principally 

the result of the rf field. Such excitation is said to be nonselective. However, 

quadrupolar effects can rarely be neglected as they are often in the range 

of a few MHz ( compared to rf fields of a few hundred of kHz). Th us, most 

of the time, a nonselective excitation becomes impossible for substance with 

a non-cubic symmetry. In fact, the amplitude of the exciting pulse is often 

much smaller than the strength of the quadrupolar interaction such that the 

excitation becomes selective (1lQ » 1lrf ). As a consequence, pulses will 

populate certain transitions, giving the central transition preference to the 

detriment of the satellite transitions in powder samples. 

The behavior of the crystallites can be predicted using computational 

methods. 2 A representation of the intensity of the central transition observed 

in static single crystals, is obtained versus the pulse length r 1 of the excit­

ing pulse (Fig. 3.1). In such a computation, the second-arder interaction 

is numerically introduced. Furthermore, it is seen that the intensity of the 

central transition is strongly dependent on the quadrupolar interaction WQ. 

It must be recalled that WQ depends on the quadrupole frequency wQ and on 

the crystallite orientation (a, {3) with respect to B 0 (Eq. 1.35). Therefore, in 

powder sam pl es ( crystallites have many different orientations), pulse lengths 

must be chosen to be within the linear part (short pulses) of the curves for 
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Figure 3.1: Amplitude of the central transition for spin 3/2 for a single 

crystallite, as a function of the pulse length r 1 , for a rf field of Vr f = 50 

kHz, taking into account the second-order quadrupolar interaction (v0 = 100 

MHz). The calcula ti on was performed in static conditions (cf. Eqs. 1.34 

and 1.35). 

which the intensities are independent of the quadrupolar interaction WQ (cf. 

Fig. 3.2). This region is inverse proportional to the rf field suggesting that 

a better selective excitation, identical for ali crystallites is reached at low rf 

power. On the other hand, a too low rf field may not be sufficient to irradiate 

the whole central transition on a powder sample, suggesting that the choice of 

the rf power should be the result of a compromise. It has been demonstrated 

that the optimal rf value is approximately the central transition linewidth 

divided by I + 1/2.2 

The conclusion of the previous paragraph is that quantitative MAS spec­

tra can be obtained if both rf power and pulse lengths are judiciously chosen. 

Still, a straightforward quantification of the spectra might be uncertain as 

lineshapes are various, parameter-dependent and not predicted by commer-
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Figure 3.2: Amplitude of the central transition for spin 3/2 for a powder as 

a function of the pulse length T1 , for a rf field of Vr f = 50 kHz, taking into 

account the second-order quadrupolar interaction (v0 = 100 MHz). 

cial fitting packages when several different interactions are present in the 

sample under observation. Thus, a specifie fitting program (QUASAR) has 

been developed by Profs. Amoureux and Fernandez to fit static and MAS 

powder spectra using a least-square method. QUASAR has already proven its 

reliability and capability to solve structural problems. 3• 
4 The main character­

istics of the program are that it is able to combine the effects of J couplings, 

dipolar, CSA and quadrupolar interactions with different PAS orientations, 

in a single fit, taking into account all relevant parameters such as the spinning 

speed Wr, the assymetry parameters T/Q and TJa, the quadrupolar constants 

CQ, the chemical shift parameters, bcs and ~a, the dipolar constants, the J 

couplings as well as the relative proportion of up to five non-equivalent sites, 

simultaneously. However, the problem remains in that the fitting of MAS 

spectra with no a priori knowledge of certain parameters strongly increases 
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the inaccuracy of the result. Indeed, QUASAR needs a first set of parameters 

in order to initiate the calculation. 

Considering the MAS projection of AlP04 - 11, shown in Fig. 2.18, it 

is obvious that the 27Al tetrahedral region (~ 40ppm) is strongly subject to 

overlapping rendering the determination of the number of sites ambiguous. 

Th us, a subsequent fi.tting of the spectrum is likely to yield inaccurate results 

as too many parameters are uncertain. This example puts forth the limits 

of the MAS technique alone in the characterization of crystallographically 

non-equivalent sites in powder samples. 

3.1.2 Using MQMAS and MAS Spectra 

The main advantage of MQMAS upon the classical MAS experiment is that 

an additional high-resolved dimension removes the ambiguity of the number 

of sites. Thus, the MQMAS technique could completely replace the lD MAS 

experiment if one can geta precise quantification of the 2D spectrum. Unfor­

tunately, it has been proven5- 7 that the excitation of the multiple-quantum 

coherences was not uniform for the different sites, rendering a straightforward 

quantification impossible. Indeed, unlike MAS for which a correct experimen­

tal parameter setting (short selective pulse) yields a quantitative spectrum, 

long excitation pulses are necessary to get an efficient multiple-quantum ex­

citation, increasing at the same time the dependency on the crystallite orien­

tation. The efficiency of the multiple-quantum excitation can be monitored 

as a function of the quadrupolar constant CQ (or PQ)· This dependency can 

be very important as shown in Figs. 3.3 which result from a numerical cal­

culation using the program PULSAR. 8 The characteristics of this package, 

developed by Prof. Amoureux, will be explained in section 3.3.1. A 2 MHz 

difference in the PQ parameter corresponds to a relative intensity reduced 
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by a factor of about two (region [1-3 MHz] for Vrf = 50 kHz). We can also 

notice that the region where the efficiency of the multiple-quantum excita­

tion reaches a maximum, gets sharper and sharper as the rf field decreases, 

confirming that the strongest rf field available should be used. Consequently, 

MQMAS and MAS experiments are rendered complementary to obtain en­

hanced resolution and quantitative results, respectively. 

Let us describe the logical procedure that we should follow to analyse 

MQMAS and MAS spectra. Of course, the first and straightforward infor­

mation that is deduced from the 2D dataset is the number of non-equivalent 

sites enclosed in the sample. In addition to that, we have seen in Chapter 2 

that approximate values of Pq and bcs could be determined by projections 

onto CS, i'i2 and bisa axes. These parameters may sometimes be sufficient to 

initiate lineshape-pattern fitting of the MAS spectrum. However, one should 

take more advantage of the 2D spectrum by extracting for each site, the 

slice for t 1 -rotor-synehronized experiment or the summation along bisa of all 

slices (center band and spinning sidebands). Th en, each slice must be fitted 

separately (using a program such as QUASAR) in order to geta set of precise 

values for bcs, CQ and rJQ (instead of PQ) for each site. These values can then 

be used as a starting point for the fit of the MAS spectrum. At this point, the 

relative proportion of the different sites constitutes the only unknown param­

eter. This method reveals to be very precise with well-crystallised samples, 

as a preliminary analysis of the MQMAS lineshapes and it has the capacity 

to considerably reduce the uncertainty of the MAS simulation. 

As an example, we refer to the quantification of the 27Al sites m the 

aluminophosphate AlP04 - 11. An overlapping of the resonances makes 

the tetrahedral region featureless (cf. Fig. 2.18). For the AlP04 - 11, it 

is obvious that the MQMAS spectrum provides additional valuable infor-
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Figure 3.3: Efficiency of the 3QMAS z-filter experiment versus the 

quadrupolar constant CQ for three rf fields. 



144 Quantification of MQMAS spectra 

mation emphasizing the complementarity of MAS and MQMAS techniques. 

Indeed, five different 27Al sites are clearly separated on the 2D dataset, four 

of which are located in the tetrahedral region. Moreover, since aluminophos­

phates are generally well crystallised samples, lineshape patterns are typical 

of quadrupolar nuclei and can be separately analysed from the 2D dataset. 

Fig. 3.4 shows the centerslice of each site in AlP04 - 11. From the fit of each 

slice, we obtained the parameters presented in Table 3.1. These values were 

used for the simulation of the MAS spectrum in order to get an estimation of 

the relative concentration of the different sites. We found that the five non­

equivalent sites were in the expected ratio of 1:1:1:1:1, within an accuray of 

5%. We will see later that in the case of amorphous or vitreous samples, 

broad resonances are observed even on the isotropie projection, rendering 

difficult the determination of the 'fJQ values from a fit of the centerslice (cf. 

section 3.1.4). 

27Al site Ah Al2 Al3 Al4 Al5 

% 1 1 1 1 1 

Ocs (ppm) 43.9 -9.0 47.6 43.5 35.8 

CQ (MHz) 2.9 4.0 2.0 2.1 3.0 

'fJQ 0.37 0.64 0.71 0.60 0.81 

Table 3.1: Parameters obtained by fitting the slices deduced from the 3QMAS 

of AlP04 - 11. 

3.1.3 Using Isotropie MQMAS projection 

Even though the relative intensities of the resonances on the MQMAS spec­

trum do not reflect the real population of the different sites (see the isotropie 



3.1 Problem of Quantitative NMR 145 

60 40 -20 -40 

Figure 3.4: Individual lD MAS lineshapes for the 5 sites in AIP04 - 11, 

obtained by extraction of each centerslice from the 2D 3QMAS spectrum 

shown in Fig. 2.18. 
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projection for AlP04 - 11), a quantitative information can still be obtained 

in specifie cases. Indeed, we have shown in the previous section that the 

efficiency of the multiple-quantum excitation could be calculated versus the 

quadrupolar constant (see curves in Figs.3.3). Consequently, the intensities 

obtained by a fit of the isotropie spectrum ( using gaussian and lorentzian 

fun etions) can be corrected if each site is located on the curve, by using their 

PQ quadrupolar constant previously deduced. 

We have applied this method for AlP04 - 11. Approximate values of PQ 

were obtained by adequate projections on the 2D spectrum. Then, we have 

fitted the isotropie projection using mainly gaussian functions. Finally, using 

the curve for a rf field of 250 kHz, we calculated and corrected the intensities 

obtained by the previous fit. Again, the five non-equivalent sites were in the 

expected ratio of 1 : 1 : 1 : 1 : 1 within an accuracy of 7%. 

3.1.4 Distribution of Nucleus Surroundings 

The three methods that have just been presented, enable the quantification 

of non-equivalent sites and give a quantitative information with a relatively 

high precision. They are based on NMR results obtained using MAS and/ or 

MQMAS experiments. However, it must be noted that we have illustrated 

the different methods of quantification using aluminophosphates which are 

generally well-organised samples. In fact, those structures exhibit typical 

quadrupolar MAS lineshape patterns such that the presence of various sin­

gularities makes the determination of quadrupolar parameters, especially 'TJQ, 

easier. On the other hand, the previous methods lead to quantitative results 

which become all the more uncertain as the crystallinity ratio is low. In­

deed, many samples that are of great interest for chemists, industrials, etc., 

are not perfectly crystallised in the sense that a crystallographic site is not 
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represented by an unique set of quadrupolar parameters (bcs, CQ and TJQ)· 

Thus. we are now going to see how this special feature sometimes affects both 

MAS and MQMAS spectra. 

First, let us consider a perfectly crystallised sample which gives a nice 

quadrupolar pattern, represented by a unique set of parameters bcs, CQ and 

TJQ· Slight changes of the bond lengths and/or bond angles from one site to 

another, directly influence these three values which will now be distributed 

over a certain range. The consequence is that the lineshape of the total lD 

MAS spedmm is composed of an infinite number of individual spectra for 

which the set of parameters slightly differs. In the case of a distribution 

of chemical shift, each band corresponds to a different bcs whereas other 

parameters, especially CQ and TJQ, are constant. Therefore, all individual 

spectra have a different position of the center of gravity and contribute with 

their own intensity to the final MAS spectrum even if their linewidths are 

identical (see MAS projection on Fig. 3.5). The horizontal projection in 

Fig. 3.6 is a schematic representation of the influence of a distribution of 

quadrupolar constant on the MAS spectrum. The variation of quadrupolar 

constants makes it so that each resonance is shifted by a different bQIS and 

has a different broadening. Hence, the sum of these numerous bands gives the 

final MAS spectrum (solid line) from which the envelope is clearly smoothed. 

This explains why MAS spectra of non-crystalline or amorphous samples 

loose their singularities which are so characteristic of quadrupolar nuclei. Of 

course, a computing analysis of the lineshape using QUASAR is doomed 

to failure as such a program can not easily take into account the different 

distributions. 

If we now consider a 2D MQMAS spectrum, we realise that the line­

shape representing a crystallographic site is broadened in both dimensions. 
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In fact, it is composed of an infinite number of narrow bands differing by 

one of the parameters ( CQ or 6cs) and shifted in both dimensions. For a 

distribution of chemical shifts, the bands keep the same pattern, defined by 

CQ and TJQ, but they move along a line which is parallel to the CS axis (see 

the schematic representation in Fig. 3.5). On the other hand, if the distribu­

tion is of quadrupolar constants, the bands are of various widths ( depending 

on CQ) and are spread out along the QIS axis (cf. Fig. 3.6). Experimen­

tally, we often observe a distribution of chemical shifts and quadrupolar 

constants together such that each slice which composes the 2D lineshape is 

itself featureless, preventing its detailed analysis. Like the MAS spectrum, 

the isotropie projection of the MQMAS spectrum is broadened by the dis­

tributions. One can notice that this broadening is irregular, rendering the 

isotropie bands assymetric, especially for a pure distribution of quadrupolar 

constant (cf. Fig. 3.6). Moreover, the assymetry of the isotropie dimension 

can sometimes lead to a false analysis if one interprets the shoulder as an 

additional site. Therefore, the fitting of this projection using gaussian and 

lorentzian functions is much more difficult suggesting that a quantification 

of the populations using the curves in Fig. 3.3 should be avoided. 

Various NMR methods have been presented to quanti(y the relative pro­

portions of different sites in powder samples. They usually give correct re­

sults when the structure is highly crystallised. The problem of quantitative 

information mainly arises when the crystallinity of the sample is poor which 

is often the case in zeolite samples, for example. 2D lineshapes, isotropie 

projection as well as the MAS spectrum are broadened preventing the use 

of any of the previous cited methods. Nevertheless, an MQMAS spectrum 

undoubtly provides an additional information that must be judiciously ma­

nipulated in order to have access to the quantification. In the next section, 
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Figure 3.5: Schematic representation of a gaussian distribution of isotropie 

chemical shift bcs-
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Figure 3.6: Schematic representation of a gaussian distribution of quadrupo­

lar constant CQ. 
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we describe a calculation based on a regularization method, which leads to 

the quantification of the MQMAS spectra in badly-crystallised or amorphous 

systems. 

3.2 Basics of Regularization Method 

3.2.1 General 

The method that we have developed has been initiated by the calculations 

that Zwanziger introduced for the quantification of two-dimensional DAS 

spectra. 9 We basically applied the theoretical basics of Zwanziger's work to 

the specifie case of the MQMAS experiment. For the sake of clarity, we will 

try to keep as much as possible the notation that he used. 

Previously, we showed that the broadened lineshape in an NMR spectrum 

of disordered materials (MAS or MQMAS) could be seen as a sum of an 

infinite number of bands, each one defined by an unique set of chemical shift, 

quadrupolar constant and assymetry parameter. Therefore, the intensity of 

the experimentallineshape I(w) is described by the following integral. 

I(w) = J I0 (w; R) IT(R) dR (3.1) 

The function I(w) stands for the experimental NMR lineshape broadened 

by a distribution of parameters Ra, Rrh · · · = R. I 0 (w; R) represents the 

calculated NMR lineshape for a given set of parameters Ra, Rf3· The density 

of probability of a site to have parameter Ra in the range Ra + dRm R(J 

in the range R8 + dR13 , etc., will be denoted IT(R). The latter function is 

also the mathematical form of the distribution that we will later calculate 

using the regularization method. In order to simplify our study, we will 
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consider that samples are only subject to a distribution of chemical shift bcs 

and second-arder quadrupolar parameter PQ, thus reducing the number of 

integrated parameters to 2. In fact, the variations ofthe assymetry parameter 

are included through those of PQ. The limits of integration extand over the 

physical range of each parameter, i.e., bcs = [-oo; +oo] and PQ = [ 0; +oo]. 

Considering the lD MAS experiment, the previous equation would sim ply 

be rewritten as 

(3.2) 

Eq. 3.2 shows that it is difficult to obtain an approximate of the distribu­

tion of PQ and bcs using a single lD MAS spectrum. Indeed, the effects of 

the distributions are not clearly separated but rather added up to give this 

featureless MAS lineshape. 

On the other hand, the CS and QIS axes have been introduced in chapter 

2 to help with thP, interpretation of the 2D MQMAS spectrum. Thus, it is 

possible to separate both chemical shift and quadrupolar constant distribu­

tions taking advantage of the additional dimension on the MQMAS spectra. 

For each slice at an isotropie location bisa, we write the equation 

(3.3) 

in which the biso-dependency is highlighted. Eqs. 3.4 and 2.34 allow bisa 

to be substituted by bcs in Eq. 3.3. 

(3.4) 
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Moreover, this constraint (Eq. 3.4) allows Eq. 3.3 to be reduced to a set of 

ID integral equations by introducing the Dirac function .6.. Indeed, for each 

bisa verifying Eq. 3.4, Eq. 3.3 is written such that the experimental intensity 

becomes 

l
+oo r+oo 

I(b2,biso) = -oo dbcs Jo Io(b2;bcs,PQ) .6.[6iso- (6cs -106QJs/17)] 

· IT(bcs, PQ) dPQ . 

(3.5) 

Finally, after removing the Dirac function, we obtain the following equa­

tion, which is in a form that can easily be handled numerically using the 

formalism of Fredhlom equations. 

(3.6) 

3.2. 2 N umerical Approach 

Eq. 3.6 has the form of Fredhlom equations of the first kind which are fully 

described in the Numerical Recipes. 10 For each value of bisa, the function of 

distribution IT(bcs, PQ), also called the kernel can be evaluated versus the 

quadrupolar constant PQ. By using the relation described in Eq. 3.4, we 

obtain a particular curve on the two-dimensional representation of PQ versus 

bc5 . Then, for different values of bisa' weighted by the corresponding exper­

imental amplitude, we can retrieve the complete 2D distribution IT(bcs, PQ) 

by the union of the different curves. Yet, this Fredholm equation has still to 

be transformed into a forrn that can be further handled numerically, i.e., the 

integral must be replaced by a discrete sum over a range of PQ values. Since 

a limited set of P~s must be chosen to limit the computational time, one 
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could approximately determine the most probable range of this parameter, 

using the 2D dataset, and finally decide that the function will be evaluated 

at N equally spaced values of Pbs. In such a case, weighting coefficients Wi 

in Eq. 3.7 are equal whatever the PQ considered. 

N 

!(82, 8iso) ~ L wi Io(62; b~s' Pb) IT(8~s, Pb) (3.7) 
i=l 

However, both the weighting coefficients and the location of the abscis­

sas PQ at which the function is to be evaluated, can be better determined 

using a quadrature scheme. As Zwanziger did, we found that the Gaussian 

quadrature, especially the Gauss-Legendre one, was the most adapted to our 

integration formula (cf. pp.l44-146 in Numerial Recipes10 ). Thus, using the 

gauleg subroutine and giving the lower and upper limits of integration for 

the quadrupolar parameter PQ, we obtain a set of N values PQ, typically 

N = 32, and their corresponding weights Wi. 

For a given biso, the approximation in Eq. 3.7 is consequently carried out 

for N values of PQ and for M values of 62 . This leads to a system of lvJlinear 

equations with N unknowns. The same equation can thus be written in a 

convenient matrix form 

K · I1 = I. (3.8) 

For the sake of clarity, Eq. 3.8 is also given in its developped form. 
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x 

W1 Io(6J; 6b5 , P~) W2 Io(6J; 6b5 , P~) 

W1 Io(6~; 6b5 , P~) W2 Io(6~; 6b5 , P~) 

TI(6b5 , P~) 

TI(6b5 , P~) 

I(oJ,oiso) 

!(6~, Oiso) 

with 

WN Io(6J; 6~5 , Pt) 

W N Io(6~; 0~5 , Pt) 
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(3.9) 

(3.10) 

There are two ways of solving Eq. 3.9. The straightforward and easiest 

method would be to guess a distribution TI that would be used to weight 

the ideal NMR response 10 . The result would then be compared with the 

experimental data. The deviations between experimental and ideal calculated 

data could help improve the "guessed" distribution. Finally, by subsequent 

iterations, one may optimize the agreement. Even though this method is 

mathematically simple, it requires sorne initial guess for the distribution. The 

alternative and more complicated strategy is obviously to get the distribution 

without any assumption on its form. This method is the one that we chose 

even if it involves the inversion of the Fredholm equation which is not simple 

mathematically. 

The different elements which compose the last equation should be consid­

ered in details. Both TI and I are column matrices with N and Ai elements, 
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respectively, while the kernel K is represented by a rectangular matrix of 

dimension M x N. In our case, the number of points M at which the powder 

spectrum J(b~) is to be evaluated, is much bigger than the PQ values such 

that the matrix K is said singular, i.e., it has many more rows than columns. 

This also means that a degeneracy occurs due to the fact that we find our­

selves with more linear equations than unknowns. Consequently, without any 

special care, the inversion of Eq. 3.9 would give a widly oscillating, instead of 

a smooth, positive and bounded solution II. A first approach to this problem 

is found in the Singular Value Decomposition (SVD). The main characteristic 

of the method is to decompose the kernel K in such a way that the resulting 

matrices do not diverge to infinite by the effect of the inversion. 

SVD is based on a theorem of linear algebra: An M x N matrix, whose 

number of rows M is grea ter than or equal to its number of columns N, can 

be written as a product of an M x N column-orthogonal matrix U, an N x N 

diagonal matrix W and the transpose of an N x N orthogonal matrix V. 

The next equation gives a schematic decomposition of the kernel K. 

K u vr 

(3.11) 

The matrices U and V are orthogonal in the sense that ur· U = vr ·V = 

1. 
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At this moment, the inversion of Eq. 3.8 can be carried out in order to 

determine the vector II(6b8 , Pb) representing the distribution. Obviously, 

the orthogonal property of matrices U and V, as weil as the diagonal char­

acteristics of W, make it much easier to calculate the solution II which is 

deduced from Eq. 3.12. 

II v 1 

(3.12) 

Two algorithms (svdcmp and svdksb) are propos~:d in the Numerical 

Recipes to solve Eq. 3.8. The role of the subroutine svdcmp is to construct 

the three matrices resulting from the decomposition of the input K matrix 

whereas svdksb takes U, V and W as an input and computes the solution 

II according to Eq. 3.12. This procedure is supposed to solve the problem of 

degeneracy and should give a bounded and non-oscillating vector II. 

Even though the previous method is generally sufficient to overcome the 

degeneracy resulting from the presence of an overdetermined set of linear 

equations, we found the regularisation method (cf. Chapter 18 in N umerical 

Recipes) to be better adapted to the numerical solution of Fredholm equa­

tions. Nevertheless, we will later see that the previous SVD can in fact be 

combined with the regularization method to solve the inverse problem. 
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3.2.3 Linear Regularization Method 

Our main purpose is still to solve the equation K ·II = 1 or, in other terms, 

to minimise the residual /'\, given by Eq. 3.13. 

(3.13) 

When K, is minimized, the agreement between the madel K and the exper­

imental data 1 is very good. On the other hand, the solution becomes simul­

taneously extremely unstable and oscillating. In the regularization method, 

we do not minimize the residual K, but the sum of K, with an additional term 

g, the regularizing operator, that works as a constraint (Eq. 3.14). The role 

of g is to smooth and stabilize the desired solution II to the slight detriment 

of the agreement between madel and data. In Eq. 3.14, À is a constant that 

gives more or less weight to the constraint g. The choice of À is crucial as it 

corresponds to a compromise between getting a correct solution and getting a 

system that is non-oscillating. Indeed, if À is too small, the solution is widly 

oscillating whereas a big À gives more importance to the "smoothing" term 

g, which introduces an artificial broadening of the distribution surroundings. 

In fact, À can easily be optimized to be set to a value of 5% which is almost 

independent of the experimental data. 

minimize: x=/'\,+ Àg (3.14) 

The choice of the smoothing term f2 is also of great importance. The 

first or higher derivatives of the function II(bcs, PQ) with respect to b"cs 

and PQ are generally chosen to provide the smoothing effect. As far as 

we are concerned, we found the first derivative to be the best choice as it 
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corresponds to our a priori belief that the solution II(6"cs, PQ) is continuous 

and non-oscillating. Thus, the regularizing function can be written as 

N-1 

f2 ex L [II(6"~8 , Pb)- II(6~§, Pb+1)] 2
. (3.15) 

i=l 

{} can be rewritten in a matrix form as 

f2 =II· (Lr · L) ·II= II· H ·II. (3.16) 

where L is the (N- 1) x N first difference matrix 

-1 1 0 0 0 0 0 0 

0 -1 1 0 0 0 0 0 

L= (3.17) 

0 0 0 0 0 -1 1 0 

0 0 0 0 0 0 -1 1 

and therefore H is the N x N matrix 

1 -1 0 0 0 0 0 0 

-1 2 -1 0 0 0 0 0 

0 -1 2 -1 0 0 0 0 

H = LT. L = (3.18) 

0 0 0 0 -1 2 -1 0 

0 0 0 0 0 -1 2 -1 

0 0 0 0 0 0 -1 1 

The main purpose now consists in minimising the sum x given in Eq. 3.19. 
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X= (K ·II- 1) 2 +>.(II· H ·II) (3.19) 

Solving our problem requires sorne additional mathematical manipula­

tions in order to reduce the previous equation to a linear set of normal equa­

tions such that the unknown vector II is isolated. Eq. 3.19 can be rewritten 

in a developed form as 

M N 
2 

N N 

x= L (L: Kjiiii- Ij) + >. L L IIkHk1II1. (3.20) 
j=l i=l k=l !=1 

where indexes i, j, k, l stand for row and column numbers in the different 

matrices previously defined. 

The minimization of x requires the derivative of Eq. 3.20 with respect to 

the parameters IIi = II(b"h5 , Pb) (i = 1, ... , N) to be annuled. Such calcula­

tian yields Eq. 3.21. 

(3.21) 

with n = 1, ... , N. 

By interchanging the order of the summation, we can write Eq. 3.21 as 

(3.22) 

Such transformations are explained in 9 15.4 of the Numerical Recipes. 

Eq. 3.22 becomes much more friendly and convenient when written in a vector 

notation as 



3.3 Quantification using Regularisation Method 161 

(KT . K + >.H) . l1 = KT . 1. (3.23) 

Let us now consider each term in this equation. The sum into brackets 

is equivalent to a single N x N matrix A while the product KT · 1 gives an 

N component vector B. Consequently, Eq. 3.23 is rewritten in a very simple 

formas 

A ·IT =B. (3.24) 

First, it is worth noticing the ressemblance with Eq. 3.8 except that 

Eq. 3.24 only involves square matrices whereas we previously had to deal 

with singular matrices that required a special Singular Value Decomposition. 

Here, the regularization got rid of this problem to provide a stable system 

of N equations for N unknowns. Different approaches are possible to solve 

the last equation, amongst them the LU decomposition, which is presented 

in § 2.3 of the Numerical Recipes. However, we used the SVD procedure as 

it can be applied to problems involving both singular and square matrices. 

Moreover, it appeared that SVD yielded more stable solutions than the LU 

decomposition. 

3.3 Quantification using Regularisation Method 

3.3.1 Description of REGULAR 

In the previous section, the mathematical foundations of the regularization 

method have been exposed with a particular focus on the MQMAS case. We 

obtained Eq. 3.24, which resolved the problem of degeneracy as Ais now a 
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square matrix. The main matrices have also been given. Let us recall that 

the vector 1 corresponds to one row of the experimental 2D spectrum, the 

matrix H is chosen to be the first derivative as expressed in Eq. 3.18, À is a 

constant and II the function of distribution that we want to calculate. Yet, 

the elements of the matrix K (Eq. 3.9) have still to be clearly defined. Thus, 

as K contains the simulated part through the matrix elements 10 (6~; P~), 

we need a program able to predict both the shape and the intensity of the 

resonance which depend on several parameters, especially the quadrupolar 

strength PQ. The next two sections will be dedicated to the presentation and 

description of the program PULSAR that we used. We will also broach the 

problem of initiating the regularisation. 

PULSAR 

In order to get a function of distribution II with corrected relative intensities 

of the different sites, we must be able to simulate powder lineshapes taking 

into account most relevant experimental parameters that are introduced in 

the pulse sequence, as well as the parameters which concern the nucleus 

itself. PULSAR has been built by Prof. Amoureux. 8 Its primary function 

is to predict the NMR response resulting from any pulse sequence applied 

on quadrupolar and spin -1/2 nuclei in powder samples. Sin ce PULSAR is 

based on the complete calculation of the density matrix, we will now shortly 

introduce this concept. 

The use of the density matrix makes it much easier to follow the evo­

lution of the spin system during and after one or several pulse excitations. 

The evolution of the density matrix p(t) = lw(t))(w(t)l where w(t) is the 

state vector deduced from the schrodinger's equation, is monitored by the 

Liouville-Von Neumann's equation 
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dp(t) = _j_ [H( ) J 
dt fi t 'p ' (3.25) 

where H(t) is the total Hamiltonian matrix which describes the spin sys­

tem at time t. The solution p(t) = U(t) p(O) u-1(t) of such differentiai 

equation is calculated recursively using its initial value p(O) at t = O. U(t) 

is commonly called the propagator matrix. For an isolated nucleus with a 

spin number 1, the density matrix is composed of (21 + 1)2 Pnm elements 

(complex numbers) which correspond to (n- m)-quantum level coherences 

which were introduced in previous chapters. Fig. 3.7 shows both the density 

mat rix for spin 5/2 and the correspondence between energy levels m, n and 

coherence orders p. 

Referring to PULSAR, Prof. Amoureux considered separately periods 

where rf pulses are applied and periods of free precession present within 

the pulse sequence. During the excitation, the Average Hamiltonian Theory 

is used for the reasons given in Chapter 1. This means that the pulse is 

truncated into short delays l1T during which the Hamiltonian is considered 

time-independent (cf. Fig. 3.8). Under the effect of a rf field during a delay 

l1T, the Hamiltonian matrix is no longer diagonal in the Zeeman basis. In 

our case, the truncation also called the "leap-frog" method grandly simplifies 

the diagonalisation of the matrix H which is necessary to keep the secular 

part of the Hamiltonian. Successive iterations lead to the determination of 

ali the elements in the density matrix at time T. 
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Figure 3.7: Density matrix for a spin 1 = 5/2. Diagonal elements (plain 

dots) correspond to the Zeeman transitions. Plain squares represent the 

syn:metrical triple-quantum coherences (±3/2 f-----7 =f3/2) which are excited 

in the MQMAS experiment. 

At the end of a pulse excitation and during a delay t that separates 2 

pulses, the Hamiltonian is represented by a diagonal matrix. Therefore, the 

amplitude of each coherence ( calculated from the real and imaginary parts 

of Pnm) in the density matrix is unchanged after t. However, the phase of 

a coherence Pnm changes with a frequency proportional to the gap between 

the two Zeeman energy levels n and m. It must be noted that PULSAR 

does not take into account relaxation phenomena due to molecular motions 

or flip-flop terms. 

Applying this procedure as many times as there are pulses and delays in 
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b.r b.r b.r ... 

0 T 

Figure 3.8: So-called "leap-frog" method: the Hamiltonian is considered to 

be independent during each short delay ~r. 

the sequence, we obtain, just prior acquisition, a completely defined density 

matrix. Then, two approaches are possible for the calculation of the acquired 

signal: the calculation can either be performed in time or in frequency do­

main. In the time domain, each point of the FID must be calculated. Such 

an approach requires as many spatial powder averagings as points in the 

FID. The powder spectrum is obtained after a Fourier transform of the FID. 

On the other hand, the second approach (in frequency domain) takes full 

advantage of the information provided by the density matrix. Indeed, for 

a crystallite the intensity of the resonances (central and satellite on es) is 

just given by the modulus of the off-diagonal matrix elements (plain dots 

in Fig. 3.9). The frequency at which the resonance will appear is further­

more given by the gap between successive Zeeman energy levels (arrows in 

Fig. 3.9). Finally, a powder averaging is performed in the frequency domain 

to give the lineshape pattern. The FID is also obtained by an inverse Fourier 

transform of the spectrum. Of course, the second method is the one used in 

PULSAR as it is much less time consuming. 
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Figure 3.9: Representation of the density matrix for a spin I = 5/2. Off­

diagonal complex elements (plain dots) correspond to the acquired signal 

(single-quantum transition). Real and imaginary values yield the intensity 

of the central and satellite transitions for one crystallite orientation. The 

difference calculated between Zeeman energy levels (diagonal elements) pro­

vides the position of each resonance. 
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Let us now enumera te the different features of PULSAR. 2 First, cal­

culations for static samples and rotating samples about one (MAS, VAS, 

MQMAS) or two axes (DOR, DAS) can be achieved taking into account 

all interactions (inhomogeneous dipolar, J scalar coupling, CSA and first­

and second-order quadrupolar interactions) during both delays and pulses. 

Only "flip-flop" dipolar terms and relaxation phenomena are neglected. Any 

multiple-pulse sequence involving one or several nuclei can be simulated ren­

dering the program attractive for the development of double and triple res­

onance experiments (CP-MAS, REDOR, etc.) 

Choice of Parameters in REG ULAR 

It is crucial to properly select severa} parameters if a realistic and stable 

solution is to be determined. First, the experimental dataset that will be 

used later on to create the vector 1, must be read through a graphie interface. 

This way, the spectral windows can be adjusted manually so that the portion 

of the spectrum to be quantified can be selected (the tetrahedral region only, 

for example). Sometimes, the spectral window in c52 must be reduced as it is 

often taken too wide compared to the region where the resonances appear. 

Furthermore, one must make sure that the size of the chosen sub-dataset is 

sufficient compared to the size of the desired solution. In concret terms, we 

found that for an experimental dataset of 256 x 128, the number N of PQ 

values should not exceed 48. Indeed, when we increased N we observed a 

deterioration of the stability in the solution and consequently, we obtained a 

deterioration of the quality of the solution. Therefore, a medium resolution 

(N = 32 or 48) was preferred in order to preserve the stability. Note that 

it is important not to have intense signais close to the limits of the selected 
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sub-dataset. This would result in strong oscillations of the solution. 

The second step concerns the simulation of a set of 1D spectra for N 

different values of PQ, taking into account the most relevant experimental 

parameters used in PULSAR. As explained in the previous section, the values 

of PQ as well as the weighting coefficients are calculated using a quadrature 

scheme (subroutine gauleg). Nevertheless, one should take advantage of the 

fact that an average PQ value can be directly read from the 2D spectra for 

each site. This averaged value will be useful to select a proper range for this 

parameter. Fig. 3.10 shows the 1D spectra that were calculated by PULSAR 

for different PQ values given by gauleg. For the sake of clarity, we only 

presented 10 of the spectra instead of 32 or 48. It must be pointed out that 

since PULSAR predicted the intensity of the lineshape for each PQ value, 

we could expect the relative proportion of the different sites to be corrected 

after inversion of the experimental dataset. 

For the regularisation, we only considered the distribution of the chem­

ical shift and the quadrupolar constant, deliberately ignoring the asymme­

try parameter 7JQ· In fact, we replaced the quadrupolar constant CQ by 

the second-order quadrupolar effect PQ, which contains both CQ- and 7]Q­

dependencies. Nevertheless, this approximation was unlikely to alter con­

siderably the quantification. Indeed, Figs. 3.3 show that the difference in 

efficiency of the 3QMAS experiment for 7JQ = 0 and 7JQ = 1 does not exceed 

15%, whatever the rf field. Consequently, it can be considered that a sim­

ulation of the 1D spectra using PULSAR, taking an average value for 7JQ, 

will minimize the error. In our studies, the distribution was such that the 

quadrupolar pattern could not reveal a particular value of 7JQ. Therefore, 

we used an average value of 7JQ = 0.6 and we estimated the error of the 

quantification to be inferior to 10%. 
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Figure 3.10: 1D spectra generated by PULSAR, using the 3QMAS z-filter 

pulse sequence, and its particular experimental specifications. The spinning 

speed was taken equal to 15 kHz for the calculation. 
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Finally, PULSAR needs experimental parameters for the simulation. They 

are summarised in Table 3.2. The values are given for the 27Al MQMAS ex­

periments that we have performed in our studies. 

spin number 5/2 

p-quantum ±3 

rf power ~250kHz 

pulse lengths T1 = 2.2JLsec 

(1st and 2nd pulses) T2 = 0.65JLsec 

Larmor frequency w0 104.26 MHz 

Rotor speed Wr 14.925 kHz 

Table 3.2: Most relevant experimental parameters that are introduced in the 

PULSAR calculation. 

3.3.2 Application to the Quantification of 27Al and 17 0 

MQMAS spectra 

Quantification of 27Al sites in AlP04 - 11 

The aim of this application on the AlP04 - 11 was initially to verify the 

accuracy of the calculation using REGULAR. Therefore, we chose an alu­

minophosphate sample, for which the distribution of the 27Al environment is 

not very strong. Moreover, the relative proportion of the five 27Al sites was 

well known, following the results published by previous studies and those 

obtained with the methods of quantification presented in section 3.1. The 

figure 3.11 is the canonical representation obtained by inversion of the 2D 

27Al 3QMAS spectrum of AlP04 - 11. 
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Figure 3.11: Calculated quantification of the 27Al 3QMAS spectrum of 

AlP04 - 11 using the program REGULAR. 

First, we notice that the five sites are retrieved. They appear at the posi­

tion PQ and bcs. which corresponds to the values we previously determined 

by projection onto the 62 , bisa axes of the 2D 3QMAS spectrum. The fact 

that the quadrupolar parameters PQ and the chemical shifts bcs experienced 

by the different sites, are spread over a wide range of values renders a sat­

isfying representation. Indeed, the spots on Fig. 3.11 barely overlap. The 

main purpose of the inversion of the MQMAS spectrum using the regulari­

sation is still to obtain an accurate quantification of the crystallographically 

non-equivalent sites. For the aluminophosphate AlP04 - 11, REGULAR de­

termines that the 5 sites are indeed in the same ratio of 1:1:1:1:1 within an 

precision of 5%. In fact, the intensity of the site Al3 is slightly underesti­

mated compared to the four other sites which are in the same proportion. 

Finally, we observed that the spots on the canonical representation have a 

minimum width on both dimensions even when applied to well-crystallised 
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samples like the AlP04 - 11. So far, we have not been able to go under 

0.5 MHz and 2 ppm for the widths of the spots on the PQ and Ocs axes, 

respectively. This is due to the mathematical inversion which introduces a 

broadening. Nevertheless, as the crystallinity rate goes clown, this effect is 

lost in the broadening resulting from the distribution of surroundings. 

Quantification of 17 0 sites in zeolite ZSM - 5 

La ter, we a pp lied the regularisation method to the determination of the 

relative proportions of the different 170 sites in a zeolite ZSM - 5. The 

quantitative results using REGULAR, are complementary to the work that 

was published in collaboration with the group in Leipzig (Prof. D. Freude) Y 

The 17 0 3QMAS spectrum of the zeolite has been acquired on a very high 

magnetic field of 17.6 T (Bruker DMX 750) at a Larmor frequency of 101.7 

MHz. The sample was spun at 17.5 kHz. The rf field of the two hard pulses 

(z-filter sequence) was set to 100kHz using a 170 water sample and pulse 

lengths were experimentally adjusted for maximum signal to 3.4p,s and 1.2p,s 

for the first and second pulse, respectively. The z-filter pulse (third pulse) 

was a selective 90° pulse of length equal to 50p,s. 

The 17 0 MAS spectrum of ZSM- 5 (Fig 3.12) exhibits a featureless wide 

resonance (:::::::: 30ppm) that do es not provide mu ch information on the 17 0 

environments. This broad line may be due to either a strong distribution 

( CQ and/ or Ocs) of the 17 0 environment or to the presence of several 17 0 

sites, the resonance of which would strongly overlap. On the other hand, the 

3QMAS spectrum shown in Fig. 3.13, completely removes such an ambiguity 

as it clearly separa tes two 17 0 sites, which were attributed to Si - 0 - Si 

and Si- 0- Al environments (cf. Amoureux et al.U). Moreover, we observe 

that not only are the two resonances barely distributed along the CS and QIS 
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Figure 3.12: 170 3QMAS slices (bottom), experimental 170 MAS spectrum 

(middle) and simulated 170 MAS spectrum using QUASAR (top) of the 

zeolite ZSM - 5. 
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Figure 3.13: 2D 170 3QMAS spectrum and its isotropie projection for the 

zeolite ZSM - 5. 
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axes but also that the lineshapes exhibit singularities, which are typical of 

quadrupolar nuclei. Therefore, a separate simulation of each site is possible 

in order to deduce both quadrupolar and chemical shift parameters. It is 

pointed out that the asymmetry parameter fJQ can be determined with high 

precision. This simulation provides a set of parameters for each environment, 

as summarised in Table 3.3. These values have been used to evaluate the 

relative proportion of the two sites by fitting of the MAS spectrum. We 

found that the Si- 0- Si and Si- 0- Al sites were in a ratio of 80/20. 

3QMAS slices as well as the MAS simulated spectrum are compared to the 

experimental MAS spectrum in Fig. 3.12. 

1 
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Figure 3.14: Canonical representation of the distribution resulting from the 

inversion of the 170 3QMAS spectrum (Fig. 3.13). Quantitative results 

are compared with those obtained by the QUASAR simulation (MAS and 

3QMAS slices) in Table 3.3. 

The inversion of the 3QMAS spectrum is presented in Fig. 3.14. All exper­

imental parameters have been introduced in the calculation of the 1D spectra 
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site Si- 0- Si Si- 0- Al 

QUASAR co ne. 80% 20% 

6cs 40 ppm 30 ppm 

Cq 5.3 MHz 3.5 MHz 

T/Q 0.12 0.29 

Pq 5.31 MHz 3.6 MHz 

REGULAR co ne. 82% 18% 

6cs 40 ppm 29 ppm 

Cq 

T/Q 

Pq 5.25 MHz 3.75 MHz 

Table 3.3: Comparison of quantitative results obtained with QUASAR 

( 3QMAS slices and MAS simulations) and with REG ULAR (inversion of 

2D 3QMAS spectrum). 
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(PULSAR). Since the two sites possess a similar asymmetry parameter (0.12 

and 0.29), we fixed this constant to a mean value of 0.2. As previously ex­

plained, the choice of T}Q is not critical and other values have been tried, 

giving a quantitative result, within 10% of accuracy. Table 3.3 also presents 

the 6cs, PQ parameters as well as the relative proportion of Si - 0 - Si and 

Si- 0- Al sites which were deduced from Fig. 3.14. Quantitative results 

are in good agreement with the QUASAR simulation of the MAS spectrum. 

3.4 Conclusion 

Even though the MQMAS experiment is a real improvement in solid state 

NMR due to its efficiency in separating the non-equivalent sites, one must 

admit that the extraction of a quantitative result is not straightforward. 

Of course, the resolution provided by the MQMAS spectrum can be com­

plementary to the quantitative MAS spectrum. However, such procedure 

becomes imprecise when the samples are not well-crystallised, because of 

the strong broadening that follows the distribution of quadrupolar constant 

and/ or chemical shift. 

The method of quantification that we described in this chapter is based 

on the calculation of the NMR response, using the software PULSAR. The 

final program, called REGULAR, takes full advantage of the information 

included in the 2D MQMAS spectrum to quantify the distribution of nucleus 

surroundings in badly-crystallised or amorphous samples. We obtain a 2D 

dataset giving the quadrupolar constant versus the chemical shift, in which 

each site is represented with its correct relative intensity. 

So far, we have verified that this new program is able to quantify with 

accuracy 27Al and 17 0 nuclei in an aluminophosphate and a zeolite, respec-
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tively. Therefore, the last chapter will give the possible applications of both 

the MQMAS experiment and its quantification to solve different structural 

problems. 
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3.5 Quantification des spectres MQMAS (ré­

sumé) 

3.5.1 Quantification en RMN 

Les 2 chapitres précédents nous prouvent que le problème de l'élargisse­

ment des bandes de résonance en RMN des noyaux quadrupolaires n'est 

pas insurmontable. Le MQMAS est aujourd'hui la technique de choix pour 

obtenir une haute résolution et différencier les sites cristallographiquement 

différents. Néanmoins, pour que la RMN soit un outil d'investigation com­

plet, il faudrait pouvoir déduire une information sur la population relative 

des sites présents sur le spectre. Cette section présente les quelques méthodes 

disponibles pour quantifier les spectres en RMN. Enfin, nous donnerons les 

limites de ces méthodes lorsque les échantillons étudiés sont sujet à une forte 

distribution d'environnement. 

Spectre MAS 

La quantification des spectres MAS obtenus sur des noyaux quadrupo­

laires n'est pas simple puisqu'elle n'est possible que si l'acquisition a été 

effectuée selon certains critères. De plus, l'utilisation d'un programme de 

simulation (QUASAR) capable de prédire l'allure d'une résonance à partir 

des paramètres quadrupolaires est indispensable. 

Nous avons vu dans le premier chapitre que l'élargissement anisotropique 

d'une résonance était du aux multiples orientations possibles des cristallites. 

En fait, pour un site donné, chaque cristallite possède une force quadrupolaire 

qui dépend de l'orientation de son PAS par rapport au champ statique. Par 

conséquent. les conditions J'excitation (longueur de pulse, champ rf) doivent 
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être judicieusement choisies pour ne pas favoriser certaines orientations du 

PAS par rapport à d'autres. Ainsi, en utilisant un fort champ rf ("hard pulse"), 

l'excitation est non sélective et tous les cristallites sont excités uniformément, 

rendant possible la quantification du spectre. Cependant, comme l'amplitude 

de l'interaction quadrupolaire est bien souvent grande par rapport au champ 

rf disponible, les conditions d'excitation sont sélectives, favorisant certaines 

transitions (transition centrale) au détriment d'autres transitions (satellites). 

Lorsque l'on observe l'intensité de la transition centrale en fonction de 

la durée d'impulsion T1 , pour plusieurs valeurs de l'interaction quadrupolaire 

(cf. Fig. 3.2), nous remarquons que la partie commune aux différentes coubes 

correspond aux faibles valeurs de T1 ( < lJ.Lsec). Par conséquent, le choix du 

champ rf et de la longueur de l'impulsion est le résultat d'un compromis : le 

champ rf doit être le plus faible possible afin d'être le plus sélectif possible 

mais une valeur trop faible pourrait se révéler insuffisante pour exciter en­

tièrement la transition centrale. Il a ainsi été démontré que la valeur optimale 

du champ rf est à peu près égale à la largeur de la transition centrale divisée 

parI+ 1/2.2 

Une fois le spectre MAS obtenu, il faut pouvoir simuler les bandes de 

résonance provenant des différents sites en utilisant un programme qui tien­

dra compte des nombreux paramètres qui influent directement sur l'allure du 

spectre. En ce qui nous concerne, nous utilisons QUASAR qui est capable 

d'extraire les paramètres représentatifs des 4 interactions les plus impor­

tantes (couplage J, couplage dipolaire, CSA et quadrupolaire) par "fit ting'' 

du spectre MAS. Cependant, QUASAR étant basé sur une méthode des 

moindres carrés, l'incertitude sur un très grand nombre de paramètres réduit 

considérablement les chances d'obtenir un solution unique. De plus, les re­

couvrements des résonances compliquent le spectre. L'analyse avec QUASAR 
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devient alors difficile puisque l'on ne connaît même pas le nombre exact de 

sites, paramètre qui est essentiel pour initier la simulation. 

Grâce au MQMAS et au MAS 

Le principal avantage du MQMAS par rapport au MAS est qu'il permet 

de déterminer facilement le nombre de sites cristallographiques. Néanmoins, 

le spectre MQMAS n'est pas quantitatif. Les courbes 3.3 sont le résultat 

du calcul de l'efficacité de l'expérience MQMAS en fonction de la constante 

quadrupolaire CQ et pour 3 champs rf. ~lême si ces courbes confirment le 

fait que l'utilisation d'un champ rf le plus élevé possible fournit un meilleur 

rapport S/N, elles montrent surtout que l'intensité d'une résonance sur un 

spectre MQMAS varie considérablement en fonction de son environnement. 

La méthode de quantification qui apparaît donc est de déterminer le nombre 

de sites grâce au spectre MQMAS et d'introduire cette information dans 

QUASAR pour fitter le spectre MAS. 

Cependant, l'analyse du spectre MQMAS permet de réduire encore plus 

le nombre de paramètres à faire varier dans la simulation du spectre MAS. 

D'abord, nous avons vu dans le chapitre 2 que les valeurs de PQ et bcs 

pouvaient être calculées par simple projection sur les axes CS. J2 et bisa· Il 

est même possible parfois d'extraire la bande centrale de chaque site sur le 

spectre MQMAS et de la simuler avec QUASAR afin d'obtenir des valeurs 

précises pour les 3 paramètres suivants Jcs, CQ et TJQ· Finalement, dans ce 

cas très favorable, tous les paramètres qui définissent l'allure d'une résonance 

sont connus et servent de point de départ à la simulation du spectre MAS, de 

sorte qu'il ne reste plus qu'à faire varier la propotion relative des différents 

sites. 
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Projection isotrope MQMAS 

La dernière méthode de quantification des spectres RMN consiste à es­

sayer de corriger les intensités relatives déduites de la projection isotrope sur 

le spectre MQMAS. En effet, grâce aux programmes de calcul qui ont été 

développés dans notre laboratoire, notamment PULSAR,8 il est possible de 

prédire la réponse d'un cristallite à une excitation donnée. Par exemple, les 

courbes 3.3 ont été calculé par PULSAR. Elles permettent de corriger les 

intensités relatives déduites du fit de la projection isotrope, à condition de 

connaître la constante quadrupolaire CQ (ou approximativement le PQ) de 

chaque site et par conséquent la position du site sur la courbe calculée pour 

le champ rf expérimental.. Cette valeur de PQ est donc extraite du spectre 

MQMAS par simple projection sur les axes (cf. 2.3.2). 

Dans la partie en anglais, traitant des problèmes de quantification en 

RMN, (cf. section 3.1) vous trouverez le résultat obtenu sur l'AlP04 - 11 

pour chaque méthode précedemment citée. Pour un tel échantillon bien cristallisé, 

la proportion relative d,"s 5 sites 27Al est obtenue avec une bonne précision 

( < 10%). 

Problèmes liés à la distribution d'environnement 

Nous allons expliquer dans cette section pourquoi les 3 méthodes préce­

dentes donnent des résultats moyens, parfois complètement érronés, lorsque 

l'échantillon étudié est amorphe ou présente une distribution d'environnement. 

De façon générale, une distribution d'environnement a pour effet d'élargir 

les résonances, que ce soit sur le spectre MAS ou sur le spectre MQMAS. 12 En 

effet, une légère variation de l'environnement pour un site donné va conduire 

à une légère variation des paramètres quadrupolaires ( CQ et 6cs) définisant ce 

site. Ainsi, un site cristallin n'est plus représenté par un bande de résonance 
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dont l'enveloppe dépend d'une seule valeur de CQ et la position du centre 

de gravité d'une seule valeur de Ocs- Le spectre MAS (tout comme le spec­

tre MQMAS) est alors composé d'un nombre infini de spectre MAS dont les 

paramètres CQ et Ocs varient légèrement les uns par rapport aux autres. L'al­

lure du spectre MQMAS lors d'une distribution de déplacement chimique Ocs 

est représentée schématiquement sur la figure 3.5. Nous observons un élar­

gissement des projections MAS et isotropes, rendant difficile leur simulation. 

La figure 3.6 représente une distribution gaussienne de constante quadrupo­

laire CQ. Nous remarquons l'allure dissymétrique de la projection isotrope 

qui rend encore plus incertaine la quantification par fitting de ce spectre 

(troisième méthode). Enfin, les méthodes précédentes sont toutes basées sur 

l'hypothèse que chaque résonance est relié à une seule valeur de CQ et/ou Ocs 

ce qui n'est pas le cas lorsqu'il y a une distribution d'environnement. Il n'est 

donc pas réaliste de vouloir déterminer une information quantitative précise 

à partir des projections MAS ou MQMAS. La section suivante présente le 

calcul de quantification que nous avons développé et qui permet de déduire 

du spectre 2D la proportion relative des sites cristallographiques. 

3.5.2 Méthode de Régularisation 

Nous venons de voir que l'intensité d'une résonance sur un spectre MQ­

MAS, pour un échantillon désordonné, pouvait être considérée comme la 

somme d'un nombre infini de résonances dont l'un des paramètres CQ ou Ocs 

(ou les deux) varie légèrement. Mathématiquement, l'intensité d'une réso­

nance I(w) s'écrit comme l'intégrale sur ces deux paramètres d'une fonction 

I 0 (w; R) multipliée par la fonction de distribution IT(R) (Eq. 3.26). 
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I(w) = J I0 (w; R) II(R) dR (3.26) 

R représente les paramètres de distribution les plus significatifs ( CQ et 

6cs dans notre cas). I 0 (w; R) est le spectre calculé pour une certaine valeur 

de CQ et 6cs- Enfin, II(R) est la fonction de distribution que nous voulons 

calculer et qui permettra de représenter les intensités corrigées des sites sur 

un diagramme PQ en fonction de Jcs-

Après de légères manipulations (cf. paragraphe 3.2.1) et en tenant compte 

des spécificités de l'expérience MQMAS (axes 62 , 6iso, 6Q1s, etc.), l'intensité 

d'une résonance sur le spectre expérimental, peut s'écrire, pour chaque valeur 

(3.27) 

L'équation précédente est de la forme des équations de Fredholm telles 

qu'elles sont définies dans le Numerical Recipes. 10 Le calcul de la fonction de 

distribution se fait en 2 étapes : pour une valeur de Jiso, le noyau II(R) est 

évalué pour un nombre N de valeurs de PQ (N ~ 32 ou 48). Cela correspond 

à une courbe de niveau sur la représentation 2D de la fonction de distribu­

tion. En répétant le calcul pour plusieurs valeurs de 6iso, donc de 608 , nous 

obtenons les courbes de niveaux qui, une fois reliées donneront la représen-

tation 2D de la fonction II(R). Le calcul numérique de II(R) nécessite le 

remplacement de l'intégrale par une somme discrète sur les N valeurs de PQ 

(Eq. 3.28). 

N 

J(J2, Jiso) ~ L wi Io(t52; 6~s' Pb) II(6~s' Pb) (3.28) 
i=l 
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Les coefficients Wi permettent de donner plus de poids à certaines valeurs 

de PQ. Dans notre cas, nous avons considérer que la distribution était gaussi­

enne et les coefficients ont été calculé grâce à l'algorithme gauleg basé sur la 

quadrature de Gauss-Legendre. La dernière équation s'écrit alors sous forme 

matricielle K ·Il= 1 (cf. Eq. 3.9). 

Il existe 2 méthodes pour calculer la fonction Il(R). La première consiste 

à choisir une fonction Il(R) et de calculer le spectre 2D MQMAS. La com­

paraison des spectres calculés et expérimentaux permet alors de savoir si l'hy­

pothèse faite au départ sur la fonction est correcte. Par itération successive, 

nous pouvons espérer améliorer l'accord entre l'expérience et la simulation. 

La deuxième méthode que nous avons utilisée, consiste à inverser le spectre 

pour obtenir la fonction de distribution, sans faire d'hypothèse de départ sur 

sa forme. 

L'inversion d'une telle équation n'est pas simple mathématiquement. En 

effet, la matrice K, de dimension Mx N est une matrice singulière ( Jl.1 » N). 

Ainsi, l'inversion d'un tel système d'équations, sans précaution, a de grande 

chance de fournir une solution instable. Nous avons donc opté pour une méth­

ode de régularisation. Généralement, l'accord entre l'expérience 1 et le modèle 

K se fait en minimisant le reste K, = K · Il - 1. Dans la régularisation, nous 

ne minimisons pas K, mais la somme x= K,+ÀQ. Le rôle du terme supplémen­

taire Q est de lisser et stabiliser la solution Il(R) déduite de l'inversion. Nous 

avons choisi de prendre Q égale à la dérivée première de Il(R) par rapport 

aux paramètres de distribution CQ et Ses (la matrice H de dimension N x N 

(cf. Eq. 3.18) décrit la dérivée première). À est un coefficient qui doit être 

ajusté "à la main" et qui permet de plus ou moins lisser la fonction. Il est 

bien entendu que le lissage se fait au détriment de l'accord entre le modèle 

et l'expérience de sorte qu'un compromis doit être trouvé pour À. 
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Le reste x à minimiser s'écrit alors, 

(3.29) 

et les différentes matrices qui composent cette équation sont données ex­

plicitement dans la partie en anglais. 

Finalement, la minimisation revient à annuler la dérivée de x par rapport 

aux paramètres IIi= II(c5h8 , Pb) (i = 1, ... , N) (cf. page 160). Après quelques 

transformations, nous ramenons le problème au système matricielle 

A· II= B, (3.30) 

qui a l'avantage de ne contenir que des matrices carrés puisque A et B 

sont toutes deux de dimension N x N. Les définitions de A et B sont déduites 

de l'équation 3.23. Le calcul de la fonction II par inversion de l'équation 3.30 

est réalisé simplement en utilisant l'une des 2 décompositions proposées dans 

le Numerical Recipes (décomposition LU ou SVD). Nous avons essayé les 2 

algorithmes pour en déduire que la méthode SVD donnait une solution plus 

stable. 

3.5.3 Régularisation appliquée aux spectres MQMAS 

La plupart des éléments qui composent l'équation 3.23 ont été précédem­

ment défini. Cependant, il reste encore à calculer les éléments J0 (c5~; Pb) de la 

matrice K. Pour cela. nous avons besoin d'un programme de simulation ca­

pable de prédire l'allure et l'intensité d'une bande de résonance en fonction 

des paramètres expérimentaux et des paramètres du noyau. Nous présen­

terons dans un premier temps les caractéristiques du programme PULSAR, 
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développé par le Prof. Amoureux. Puis, les paramètres essentiels permettant 

d'initier le calcul de quantification des spectres MQMAS seront brièvement 

passés en revue. 

PULSAR 

La simulation des spectres lD 10 (62; Pb) est une partie très importante 

de la quantification. En effet, comme l'intensité des résonances dépend de 

l'environnement du noyau, de la séquence d'impulsions utilisée, de nombreux 

paramètres doivent être introduits dans le calcul pour espérer obtenir un 

résultat précis. Le programme PULSAR, basé sur le calcul complet de la 

matrice densité, remplit ces conditions. La réponse d'un spin (noyaux 1/2 

ou quadrupolaire) dans un échantillon de poudre, tournant autour d'un ou 

deux axes (VAS, MAS, MQMAS, DOR, DAS) peut être simulée en tenant 

compte de toutes les interactions (couplage scalaire J, inhomogénéité dipo­

laire, CSA, et interaction quadrupolaire aux 1er et 2nd ordres) pendant les 

pulses et les delais. Toutes les séquences dt. pulses faisant intervenir un ou 

plusieurs noyaux peuvent être simulées ce qui rend le programme particulière­

ment attrayant pour le développement des expériences de double et de triple 

résonance (CP-MAS, REDOR). 

L'opérateur d'évolution de la matrice densité p(t) est déduit de l'équation 

différentielle Eq. 3.25 de façon récursive à partir de sa valeur initiale. Dans la 

section 3.3.1, nous donnons les correspondances entre les cohérences à simple 

et à multiple quanta et les éléments de la matrice densité (cf. Fig. 3. 7). Pour 

le calcul de l'opérateur densité dans PULSAR, Prof. Amoureux a considéré 

séparément les périodes pendant lesquelles les pulses sont appliqués et les 

périodes de précession libre présentes dans la séquence de pulses. Ainsi, pen­

dant les excitations radio-fréquence, la théorie de l'Hamiltonien moyen est 
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utilisée : les pulses sont tronqués en petits incréments I::J.r pendant lesquels 

l'Hamiltonien est considéré indépendant du temps. Le problème revient alors 

à diagonaliser l'Hamiltonien après chaque !::J.r afin de ne garder que sa par­

tie séculaire. Par incrément successif, nous déterminons les éléments de la 

matrice densité à la fin de chaque pulse. Pendant les délais, les cohérences 

subissent un déphasage dont la vitesse correspond à l'écart entre les niveaux 

d'énergie Zeeman. Les autres phénomènes, tels que la relaxation et la diffu­

sion de spin réversible (termes de flip-flop) ne sont pas pris en compte par 

PULSAR. Cette procédure s'applique autant de fois qu'il y a de pulses et de 

délais dans la séquence. 

Enfin, l'acquisition se fait dans le domaine fréquentiel en utilisant toute 

l'information que contient la matrice densité : la fréquence de résonance d'un 

cristallite correspond à l'écart en les niveaux d'énergie Zeeman alors que son 

amplitude est donnée par le module des éléments complexes à simple quanta 

(p = -1 sur la figure 3.9). Enfin, une moyenne de poudre, effectuée dans le 

domaine fréquentiel, nous fournit le spectre simulé. 

Principaux paramètres de REGULAR 

Il est évident que la quantification par inversion des spectres MQMAS 

n'est pas simple et direct. Certaines précautions sont nécessaires lors du choix 

des paramètres initiaux. 

Dans le programme que nous avons développé (REGULAR), une interface 

graphique permet de sélectionner manuellement sur le spectre MQMAS, une 

fenêtre spectrale. Pour chaque valeur de Oiso• nous créons alors un vector 1. 

Nous avons remarqué que le nombre de points expérimentaux devait être 

suffisamment grand par rapport au nombre N de valeurs de PQ. En effet, 

une valeur de N trop importante (> 48) rend la solution instable. De plus, 
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la présence de résonances intenses en bordure de fenêtre spectrale conduit, 

suite à l'inversion, aussi à une solution oscillante. 

La deuxième étape consiste à simuler les spectres 1D à l'aide de PULSAR 

pour les N valeurs de PQ fournies par la quadrature de Gauss-Legendre. En 

calculant approximativement la force de l'interaction quadrupolaire (PQ) par 

projection sur le spectre MQMAS (cf. Chapitre 2), il est possible de définir 

un domaine de valeurs de PQ afin de ne pas calculer des spectres 1D inutiles 

pour l'inversion. La figure 3.10 montre quelques-uns des spectres simulés par 

PULSAR. Enfin, les paramètres expérimentaux dont PULSAR se sert sont 

résumés dans la table 3.2. 

Dans la section 3.3.2, nous présentons deux exemples de quantification de 

sites 27Al et 170 à partir des spectres 3QMAS d'échantillons microporeux. 

Dans un premier temps, nous avons étudié l'échantillon d'AlP04 - 11 

puisque la proportion relative des différents sites nous était connue et per­

mettait donc de vérifier l'exactitude de nos calculs. L'inversion par régular­

isation conduit à la représentation canonique (cf. Fig. 3.11) de la fonction 

de distribution II(b"cs, PQ)- Les 5 sites 27Al de l'AlP04 - 11 y apparaissent 

à la position attendue correspondante aux valeurs approximatives de PQ et 

bcs calculées par projection sur le spectre 2D. L'information la plus intéres­

sante est néanmoins que la proportion relative des sites est dans le rapport 

1 :1 :1 :1 :1 avec une précision inférieure à 5% dans ce cas là. 

Nous avons aussi appliqué la méthode de quantification par inversion du 

spectre 3QMAS à l'étude des sites 170 dans une zéolite ZSM- 5. Le spectre 

MAS (Fig. 3.12) ne permet pas de différencier les différents environnements 

cristallographiques à cause du recouvrement des résonances. Par contre, le 

spectre 3QMAS montre sans aucun doute possible, qu'il existe 2 sites 170 at­

tribuées aux environneements Si- 0- Si et Si- 0- Al.[REF] Dans un pre-
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mier temps, la quantification a été faite à partir des informations provenant 

des spectres MAS et MQMAS. Nous avons simulé séparément chacune des 

tranches du spectre 3QMAS afin de déterminer les paramètres quadrupo­

laires (CQ, rJQ) et le déplacement chimique 6cs- Ces valeurs ont ensuite été 

introduites dans la simulation du spectre MAS. La concentration relative des 

2 sites 17 0 était alors le seul paramètre à faire varier et QUASAR a trouvé un 

rapport de 80/20 pour respectivement les sites Si- 0- Si et Si- 0 - Al. 

Les différents spectres experimentaux sont présentés aux figures 3.12 et 3.13 

ainsi que la simulation obtenue avec QUASAR. 

L'inversion du spectre 3QMAS est représentée sous forme canonique par 

la figure 3.14. Tous les paramètres expérimentaux, citée dans la section 3.3.2 

ont servi à simuler les spectres individuels avec PULSAR. Comme les 2 sites 

ont un paramètre d'assymétrie très proche (0.12 et 0.29), nous avons choisi 

une valeur moyenne de 0.2. Le tableau 3.3 permet de comparer les résul­

tats obtenus avec les méthodes (QUASAR et REGULAR). Comme pour 

l'AlP04 - 11, les proportions relatives des 2 sites sont très proches puisque 

l'incertitude est inférieur à 5%. 

Ce chapitre présente une nouvelle méthode de quantification des spectres 

MQMAS. Par inversion du spectre 2D, nous obtenons une représentation 

canonique ( PQ versus 6cs) sur laquelle les intensités des différents sites sont 

corrigées en fonction des paramètres expérimentaux et propres au noyau. Le 

dernier chapitre concerne les applications du MQMAS et de la quantification 

à l'étude structurale de matériaux microporeux. 
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Chapitre 4 

Quelques Applications du 

MQMAS 

4.1 Etude structurale d'amphiboles 

Triple-quantum 27Al and 23Na MAS NMR study of amphiboles 

publié dans J. Chem. Soc., Faraday Trans. 

Les résultats qui ont été publiés dans cet article, constituent une partie 

du travail que j'ai effectué lors de mes séjours dans l'équipe du Dr. Klinowski, 

au départment de chimie de l'université de Cambridge, UK. 

La structure des amphiboles, composées d'octaèdres et de tétraèdres est 

représentée à la figure 1 de l'article. Notre étude est axée sur l'environnement 

des sites 27Al présents dans les tétraèdres. Dans le cas de l'Edenite, le spec­

tre M QMAS a révélé la présence de deux environnements tetraédriques dif­

férents, qui ont été attribués aux sites Q3 et Q2
, dans un rapport de con­

centration de 9 pour 1 (cf. Fig. 3). Les constantes quadrupolaires, PQ, cal­

culées à partir du spectre, sont plus grandes que dans les zéolithes, qui elles 

ne sont composées que des sites Q4
. L'absence de molécules d'eau dans les 
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amphiboles contribue aussi à l'augmentation du PQ. Bien que les données 

cristallographiques (longueurs et angles de liaisons avec les premiers voisins) 

montrent sans ambiguïté que l'environnement du site Q3 est plus symétrique 

que celui du site Q2
, les valeurs de PQ (PQ(Q3

) > PQ(Q2
)) laissent penser 

le contraire. Cependant, les amphiboles étant des matériaux compacts, l'in­

fluence des seconds et troisièmes voisins n'est pas à négliger et explique ce 

résultat. 

En ce qui concerne la Pargasite, l'expérience MQMAS n'a pas pu mettre 

en évidence la présence des deux sites tétraèdriques (cf. Fig. 4) alors que 

l'étude par RMN du 29Si (MAS) avait montré indirectement la présence d'27Al 

dans les tétraèdres Q2
. Néanmoins, la forme de la résonance est asymétrique 

dans la dimension isotrope. Il est donc fort probable que les sites Q3 et 

Q2 aient des valeurs similaires de déplacements chimiques et de constantes 

quadrupolaires conduisant à un recouvrement des résonances même dans la 

dimension isotrope. 

Dans une deuxième étude, l'expérience MQMAS a confirmé la présence 

des deux cations M(4) et A dans un rapport 2 :1 (cf. Fig. 6-a). Les con­

stantes déduites du spectre 2D ont permet de simuler le spectre MAS avec 

le programme QUASAR. Le site M(4) est facilement identifié comme celui 

subissant la plus forte interaction quadrupolaire, due à un environnement 

composé d'une part des octaèdres et d'autre part des chaînes de tétraèdres. 

Par contre, l'environnement du site A est bien plus symétrique. Le spectre 

MQMAS à 200°C (cf. Fig 6-b) montre clairement que la transition de phase 

affecte principalement le site A. La mobilité des cations 23 Na dans la cavité A 

expliquerait alors la faible intensité de la résonance sur le spectre MQMAS. 



Triple-quantum 27 Al and 23Na MAS NMR study of amphiboles 

Laurent Delevoye,"·< Shuangxi Liu," Mark D. Welch," Christian Fernandez,< Jean-Paul 
Amoureux< and Jacek Klinowski"*t 
a Department ofChemistry, University of Cambridge, Lensfield Raad, Cambridge, UK CB2 JEW 
b Department of Minera/ogy, The Natural History Museum, Cromwell Raad, London, 
UK SW7 5BD 
c Laboratoire de Dynamique et Structure des Matériaux Moléculaires, CNRS URA 801, 
Université des Sciences et Technologies de Lille, F-59830 Villeneuve d'Ascq, France 

Triple-quantum magic-angle spinning (MAS) enhances the resolution of 27 Al and 23Na NMR spectra of amphiboles, although 
the structural complexity of these compact materials can limit the efficiency of the method in comparison with its performance 
with molecular sieves. Two aluminium environments are resolved in fluor-edenite, unequivocally demonstrating the presence of 
sorne long-range Si-Al disorder. 23Na multi-quantum (MQ)-MAS of hydro-sodian-magnesiocummingtonite (HSMC) at two 
temperatures demonstrates that a phase transition affects mainly site A. MQ-MAS allows the direct determination of the number 
of distinct sites with their quadrupolar parameters and isotropie chemical shifts. The technique is very useful for the simulation of 
MAS spectra. 

Amphiboles, hydrous double-chain silicates related to micas, 
exert a major influence upon the H20 budgets and the 
residence and behaviour of protons in the Earth's crust and 
upper mantle. They are, therefore, of considerable interest to 
earth scientists in unravelling the sources of deep waters for 
partial melting, magma production and, ultimately, surface 
volcanism. The stability and behaviour of amphiboles are 
affected by cation order/disorder and structural phase tran­
sitions. Configurational entropy associated with the former 
can affect the thermal stability of an amphibole by hundreds 
of degrees. 1 We focus upon the characterization of Al-Si ord­
ering on tetrahedral sites and the study of a displacive phase 
transition involving a mobile 'excess' proton in amphiboles, 
both relevant to upper-mantle processes. 

The amphibole structure (Fig. 1) consists of a strongly 
bonded unit comprising a ribbon of octahedrally coordinated 
cations sandwiched between two double-chains of tetrahedral 
sites, giving the characteristic 'I-beam' or 'double-anvil' 
feature. I-beam units are interconnected by seven- to eight­
coordinate cations [the M(4) sites] on the flanks of the 
I-beams to create a chequer-board motif. Groups of four 
1-beams surround a large channel site which can be empty or 
occupied by Na+ or K +. The chemistry of the flanking M(4) 
sites and channel sites largely defines the three major types of 
amphibole: Mg2 + /Fe2 + = orthorhombic, Ca2 +/Na+ Ca2 + = 
calcic/calcic-sodic and Na+, Li+ = alkali amphiboles. 

The 'Q" notation' is often adopted for the description of 
building units in silicates. 2 In this notation, Q stands for a 
tetrahedral atom bonded to four oxygen atoms forming a 
tetrahedron. The superscript n indicates the connectivity, i.e. 
the number of other Q units attached to the unit in question 
and the central T-atom is written in bold. Q4 stands for three­
dimensionally cross-linked T(OT)4 units, Q3 for T(OTh units 
and Q2 for T(OTh units. The double-chain comprises two 
types of tetrahedral sites, T(1) and T(2), corresponding to Q 3 

and Q2 sites. These sites may be filled by Si or a mixture of Al 
and Si up to 25% Al. X-Ray diffraction provides indirect evi­
dence (average bond lengths) for very strong ordering of Al at 
T(1) relative to T(2).3.4 However, a recent 29 Si MAS NMR 
study of amphiboles synthesized at high temperatures (900-

t E-mail: jkl8@cam.ac.uk 

1100 oq indicates that there is significant disordering (up to 
45% long-range disorder) of Al over T(l) and T(2) sites. 5 

NMR can provide information about two aspects of Si-Al 
ordering on tetrahedral sites in amphiboles: (i) short-range 
ordering due to local next-nearest neighbour (NNN) Si-Al 
clusters; and (ii) long-range ordering of Si and Al between T(1) 
and T(2) sites. As the Loewenstein rule is obeyed in amphi­
boles,6 ali 141AI have Si NNNs. Hence, in the 27AI MQ-MAS 
experiment we are simply looking at AI(Si2) and Al(Si3) NNN 
groupings, i.e. long-range ordering. In this case, 27 Al 
MQ-MAS is complementary to 29Si MAS NMR in that it 
allows long-range effects to be treated separately from short­
range effects. The extent of long-range order can, in principle, 
be quantified directly by 27 Al MQ-MAS and then used with 
29Si MAS NMR results (which contain information on long­
and short-range order) to obtain a complete picture of the 
Si-Al ordering. 27AI MQ-MAS and 29Si MAS NMR are 
thus a powerful combination. 

The two very different Q3 and Q 2 tetrahedral sites of the 
amphibole structure pro vide an opportunity to a pp! y 2 7 Al 
MQ-MAS and obtain a direct measurement of tetrahedral-site 
populations, and bence determine the long-range ordering 
behaviour. Similarly, 23Na MQ-MAS can be used to establish 
which of the two Na sites, the channel site (A) or the M(4) site, 
in the amphibole structure influences the displacive phase 
transition involving proton mobilisation. 

We have studied amphiboles which are geologically impor­
tant synthetic analogues of upper mantle minerais with 
sufficiently weil constrained compositions to be suitable 
for 27AI MQ-MAS NMR. We have examined three samples: 
(a) two pargasites, both with a formula 
NaCa2 Mg4 Al(Si6AI 2)022(0H)z, synthesized at 1 kbar and 
930 and 1080 oc; (b) fluor-edenite, NaCa2 Mg5(Si7AI)Ü22 F 2 , 

synthesized at 2 kbar and 1040 oc. These compositions, which 
except for their tetrahedral chemistries are very similar, allow 
us to see if the tetrahedral Al : Si ratio also affects long-range 
ordering of Al and Si over T(1) and T(2), in addition to 
the temperature effects. For the 23Na MQ-MAS study, 
the amphibole is hydro-sodian-magnesiocummingtonite, 
Na(Na2)Mg5Si 80n(OH)z(OH) (HSMC), in which there are 
two Na at M(4) and one in the channel site. The excess proton 
is believed to be bonded to the two 0(4) oxygens associated 
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Fig. 1 The amphibole structure. (a) A view down the z axis parallel 
to the direction of the double chains (black tetrahedra) showing the 
characteristic 1-beam units in which the ribbons of octahedral sites 
(white polyhedra) are sandwiched between a pair of double chains. 
The M(4) sites flanking the 1-beams are shown as black circles. The 
channel cations (A-sites) are shown as white circles. Five 1-beam units 
are shown. The (020) mirror plane bisects the double chain, the octa­
hedral ribbon and the A-site cation. (b) (lOO) view of the tetrahedral 
double chain distinguishing the T(l) (Q3) and T(2) (Q2) sites. 

with the eight-fold M(4) site. For details of the phase tran­
sition in this amphibole see ref. 7 and the 29Si and 23Na MAS 
NMR study. 8 

The anisotropie part of the quadrupolar interaction is given 
by 

(1) 

where p is the order of the multiquantum coherence, a and fJ 
are the Euler angles corresponding to the orientation of each 
crystallite in the powder with respect to the rotor axis, I is the 
spin quantum number, (} is the angle of the spinner axis with 
respect to the strong static magnetic field and v0 is the Larmor 
frequency of the nucleus and C 0 and '1 are the quadrupolar 
constant and asymmetry parameter, respectively. The 
orientation-dependent terms B2 and 8 4 are responsible for the 
broadening.9 P 2 and P 4 are the second- and fourth-order Leg-
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endre polynomials: 

PiB)=3cos
2
8-1 

2 

While MAS cancels out the polynomial P 2 , and so elimi­
nates the first term in eqn. (1), P 4 remains. As a result, the last 
term in eqn. (1) leads to a broadening of the spectrallines. In 
double rotation (DOR)10

•
11 and dynamic-angle spinning 

(DAS)12
·
13 the sample is spun at two angles simultaneously or 

sequentially. Unfortunately, both methods suffer from draw­
backs. In DAS the minimum time required for changing the 
angle of the spinner axis is usually longer than the relaxation 
time of the nucleus. 

Under MAS at a sufficiently high spinning speed, CSA, 
dipolar and the second term P2 in eqn. (1) are removed. For a 
powdered sample, the frequency of a p-quantum transition in 
a crystallite is therefore 

v= -pvcs + v0 (J, p) + A4(I, p)B4 (1J, a, {J)P4 (854. 74) (2) 

The isotropie chemical shift Vcs and the quadrupole-induced 
shift v0 do not broaden the !ines but specify the position of 
their centre of gravity. It is the third term in eqn. (2) which is 
responsible for the broadening of the !ines. 

lt was recently demonstrated14
-

16 that the use of the MQ 
transitions p eliminates the last term in eqn. (2). If p-quantum 
transitions are excited and the signal evolves during time t 1 , a 
second pulse con verts the signal to a ( -1)-quantum tran­
sition, the only transition observable by NMR. An echo 
occurs at 

A4(I, p) 
t2 =- A4(I, -1) tl (3) 

When condition (3) is satisfied, the quadrupolar interaction 
in eqn. (2) is averaged out. The use of the pulse sequence 
ena bles a two-dimensional representation of the spectra. Th us 
a regular increment of t1, the evolution time, provides a 
second dimension ('the p-quantum dimension'), free of quad­
rupolar interactions. Consequently, the position of each line in 
both dimensions is the sum of the isotropie chemical and 
quadrupole-induced shifts. The !ines are aligned along the 
anisotropie axis, the slope of which corresponds to the ratio 
A4(/, p)/ A4(/, -1). 

The two-dimensional spectra can be processed further. The 
most interesting operation is the shearing transformation 
which aligns the anisotropie axis and the different !ines with 
the F 2 axis. Th us, a vertical projection of the spectrum onto 
the F 1 axis provides a one-dimensional spectrum in which 
each site is represented by a narrow line (a few ppm), free of 
any quadrupolar broadening. 

Although the principle of MQ-MAS is simple, the optimal 
conditions, especially pulse lengths, are difficult to establish. 
The method has been refined in order to facilitate the acquisi­
tion of MQ-MAS spectra. 17

-
20 MQ-MAS is being used 

increasingly for the study of quadrupolar nuclei e7Al, 85Rb, 
23Na, 11 B and 93Nb). 

Experimental 
MAS and MQ-MAS NMR spectra were recorded using a 
Chemagnetics CMX-400 spectrometer operating at 104.2 
MHz for 27 Al and 105.8 MHz for 23Na and a commercial 
MAS probehead with zirconia rotors 4 mm in diameter driven 
by nitrogen gas. The maximum available radiofrequency field 
strength of ca. 125 kHz was used in ali experiments in order to 
increase the efficiency of MQ excitation. A short pulse of 0.35 
J.lS was used for the MAS experiments with a recycle delay of 
0.5 s. The pulse sequence for MQ-MAS experiments was corn-



posed of three pulses: the third (Z-filtering) pulse is used to 
equalize the two coherence pathways. 21 The three pulses have 
been experimentally optimized and their respective durations 
were 4.7, 1.3 and 8 JlS for 27 Al (/ ~ 5/2) and 5.4, 2.0 and 8 JlS 

for 23Na (1 = 3/2). The spectrum of edenite was acquired with 
48 scans per increment and a recycle delay of 25 s. 160 
increments were necessary in t 1 to avoid the truncation of the 
signal. For the other spectra, rotor synchronization was used 
in order to eliminate spinning sidebands22 and the interval 
between the two first pulses was regularly incremented by 
90.992 JlS (corresponding to MAS rate of 10.99 kHz). Under 
these conditions, 50 increments in t 1 were sufficient. The 
MQ-MAS spectrum of pargasite required 192 scans per 
increment with 12 s pulse delay. 23Na MQ-MAS spectra at 
room temperature and at 200 oc were accumulated with 192 
scans per increment and 5 s pulse delay. 27 Al and 23 Na line 
positions are given in ppm from external Al(H 20)6 

3 + and 1 M 

aqueous solution of Na CI, respective! y. 

Results and Discussion 

Al-Si long-range ordering in edenite and pargasite 

The structures of edenite and pargasite are very similar. 27 Al 
MAS NMR resolves two six-coordinate sites in pargasite (Fig. 
2). However, although the lineshapes in the four-coordinate 
region in the spectra of both minerais, particularly edenite, are 
clearly asymmetric, the two four-coordinate Al environments 
are not weil resolved. 

The 27 Al MQ-MAS spectrum of edenite (Fig. 3) shows !ines 
from two crystallographically distinct aluminium sites, Q 2 and 
Q 3

. However, as the position along the F 2 axis of spinning 
sidebands on each side of the central !ines does not enable us 
to assign them to the individual sites, we ,ave used an iso­
tropie projection of the spectrum taking into account the spin­
oing rate (top of Fig. 3). The efficiency of MQ excitation for a 
given site is not the same for ali crystallites. The sidebands 
correspond to the Q 3 site only, showing that the quadrupolar 
interactions for sites Q3 and Q2 are very different. The quad­
rupolar parameters and the isotropie chemical shifts have 
been calculated directly from the spectrum (Table 1). The pres­
ence of spinning sidebands only for the Q3 sites is probably 
due to the stronger quadrupolar interaction on these sites in 
comparison with the Q 2 sites. The origin of the spinning side­
bands in the F 1 dimension of the MQ-MAS spectra has been 
examined in detail. 23 The MQ-MAS spectrum and its iso-
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Fig. 2 27 Al MAS NMR speetra of (a) edenite and (b) pargasite 
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Fig. 3 27 Al MQ-MAS NMR speetrum of edenite and its isotropie 
projection. ssb denotes spinning sidebands. 

tropic projection show that the populations of the two sites 
are not the same, in agreement with X-ray diffraction studies 
[mean T(l)-0 and T(2)-0 bond Iengths] which clearly 
show that aluminium is preferentially located on the Q3 sites. 
Note that, even if quantitative analysis of MQ-MAS spectra 
would underestimate the population of sites subjected to 
strong quadrupolar interactions, in our case this would 
mainly affect the intensity of the line from the Q3 site. The 
values of the second-order quadrupolar effect defined as 

( 

~2)112 
So =Co 1 + 3 

indicate that the environment of the Q 3 site is more asym­
metric than that of the Q 2 site, while the crystallographic data 
for bond lengths and angles3

·
24 indicate that the environment 

of the Q 3 site is more symmetric with respect to the first­
nearest neighbours. However, in compact silicates longer­
distance environment (second- and third-nearest neighbours) 
must be taken into account to explain this result. 

Fig. 4 shows that 27 Al MQ-MAS does not resolve the two 
tetrahedral environments in pargasite, although indirect evi­
dence from 19Si MAS NMR on the same sample shows 
unequivocally that there is significant Al at T(2). 5 While the 
lineshape is asymmetric, the isotropie projection (not shown) 
does not have a shoulder which could be attributed to the Q 2 

site. However, the intensity of the line along the F 2 axis is 
significantly lower in the spectrum of the pargasite than in the 
MAS and MQ-MAS spectra of edenite. The calculated value 
of S0 (Table 1) reveals that the Q3 site in pargasite does not 

Table 1 Seeond-order quadrupolar effeet S0 , and the isotropie 
ehemieal shift, Ôcs, ealeulated from the MQ-MAS speetra 

mineral site S0/MHz Ô cs 

edenite Q2 3.0 76 
Q3 5.9 77 

pargasite Q3 4.0 77 
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Fig. 4 27 Al MQ-MAS NMR spectrum of pargasite 

experience the same quadrupolar interaction as in edenite. 
Therefore, the isotropie chemical shifts and the quadrupolar 
constants for sites Q 2 and Q 3 in pargasite are very similar. It 
follows that the different lineshapes in the MAS spectra of 
edenite and pargasite (Fig. 2) are not caused by the different 
populations of aluminium sites, but by different quadrupole 
interactions on the Q 3 site. This is a consequence of a different 
environment of the Q3 site which reduces the strength of the 
quadrupolar interaction (and greatly complicates NMR 
measurements). The six-coordinate region of the MQ-MAS 
spectrum of pargasite does not pro vide more information than 
the MAS spectrum, but does confirm the presence of two dif­
ferent sites. 

MQ-MAS enables different crystallographic sites to be 
separated according to their isotropie chemical shifts and 
quadrupolar parameters. Studies of aluminosilicate and alu­
minophosphate molecular sieves have demonstrated that the 
technique is useful for the separation of different aluminium 
environments. However, tetrahedral sites in these materials 
are ali Q 4 and the structure is composed of channels and cavi­
ties, which limits the strength of the quadrupolar interac.'ions. 
Moreover, molecular sieves readily adsorb water. As a re~ult, 
the quadrupolar constants for such materials are in the 1-5 
MHz range. Amphiboles are more complex compact materials 
which do not contain water, the presence of which often 
decreases the quadrupolar interaction. In the extreme case of 
two sites with large quadrupolar constants and similar iso­
tropie chemical shifts, MQ-MAS is able to distinguish both 
environments in edenite, even though the resolution of 
MQ-MAS spectra suffers when these values become very 
close. Thus, despite the failure to reveal clearly the two tetra­
hedral sites in pargasite, the experiment provides much more 
structural information than the conventional MAS spectra. A 
simulation of the latter spectra using QUASAR, a home-made 
program, did not provide a conclusive result, mainly because 
of the overlap of the two resonances which obscures the spe­
cifie lineshapes of quadrupolar nuclei. We conclude that quan­
titative information on the tetrahedral sites in edenite cannot 
be obtained by MAS alone. However, such information can be 
obtained by using MQ-MAS in tandem with spectral simula­
tion, which allows the isotropie chemical shift to be mapped 
versus the SQ. The simulation takes into account parameters 
such as the strength of the radiofrequency field, pulse length 
etc. in order to correct for different efficiency of three­
quantum excitation in different crystallites. The calculation 
will be fully explained in another article and it is not in the 
scope of this paper to develop its theoretical parts. As a result. 
a quantitative analysis of the spectra is possible. if not 
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straightforward. The simulation leads to a Q 2 : Q 3 population 
ratio of 1 : 9, and confirms the quadrupolar parameters and 
the isotropie chemical shifts in Table 1. 

Monitoring phase transition in HSMC by 23Na MQ-MAS 

HSMC contains sodium located in two distinct sites, M(4) and 
A, in the 2 : 1 population ratio. The 23Na MAS spectrum of 
HSMC [Fig. S(a)] is a typical quadrupolar pattern. Simula­
tion of this spectrum requires the use of at !east two species 
and leads to the parameters given in Table 2. However, the 
calculation cannot be accurate unless the exact number of 
sites is known. The isotropie dimension of MQ-MAS spectra 
makes this possible. The two 23Na sites in HSMC are clearly 
resolved in Fig. 6(a). The third resonance corresponds to an 
NaCI impurity and has a small quadrupolar interaction, 
which leads to an overestimation of its intensity. Quadrupolar 
parameters deduced from spectrum must be compared with 
the parameters obtained by simulation. We can easily identify 
the site with the larges! quadrupolar interaction as M(4). 
Looking at the structure of amphiboles, the environment of 
M(4) is influenced by the octahedral sites on one side and by 
the double chains on the other side. On the other hand, the A 
site is in a large cavity, symmetric with respect to the mirror 
(020) plane. Moreover, even though the intensities of the !ines 
must be considered carefully, their comparison on the iso­
tropie projection removes the ambiguity. 

Sinct ~he MAS spectrum exhibits a major change at ca. 
180 oc, indicating a phase transition, we have repeated the 
experiment at 200 T. Even at such high temperature, the 
23 Na nuclei remain in the sites M(4) and A, respectively, in the 

(a) 

50 0 -50 -100 
8 

Fig. 5 23 Na MAS NMR spectra of HSMC (a) at room temperature 
and (b) at 200 'C 

Table 2 Quadrupolar parameters obtained by iterative fitting of the 
MAS spectra of HSMC at room temperature (rt) and at 200oC using 
the QUASAR program 

temperature 
site /'C population Des C0jMHz , 
M(4) rt 2 9.3 3.9 0.49 

A rt 1 5.5 2.9 0.26 
M(4) 200 2 7.7 3.8 0.46 

A 200 1 12.3 3.2 0.7 
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Fig. 6 23Na MQ-MAS NMR spectra of HSMC (a) at room tem­
perature and (b) 200ac 

same population ratio. The difference observed in the MAS 
spectra is, therefore, caused by the changed environment of 
each species. The MQ-MAS spectrum is shown in Fig. 6(b). 
While the lineshape of the resonance from site M(4) is basi­
cally the same at 200 oc, species A is now barely detecta ble. 
This result is in agreement with the parameters deduced from 
the simulation of the MAS spectra (Table 2). Only the param­
eters of the A cation change significantly between the two 
temperatures. This means that site M(4) does not change 
much during the phase transition, whereas the environment of 
the A site is different. It has been shown that the efficiency of 
MQ-MAS depends on both the quadrupolar constant and the 
asymmetry parameter. 1 7 This could explain the low intensity 
of the resonance for site A. Nevertheless, selective efficiency 
cannot fully account for this decrease in intensity since the 
quadrupolar interactions and the asymmetry parameters for 
the two sites are similar. Neither can it explain the differences 
in the MAS spectra. Na can occupy severa! possible sub-sites 
within the large A-cavity,6

·
25

·
26 which constitute local 

potential minima. The multinuclear (1H, 23Na and 29Si) study 
of the monoclinic-triclinic phase transitiOn in HSMC8 

showed that the excess proton is in sorne way 'mobile' 

during the phase transition and that its motion couples to Na 
motion in the A-site. Their 23Na MAS NMR spectra show 
clear changes in the behaviour of the A-site peak, while the 
Na at M(4) changes little throughout the phase transition. The 
absence of the A-site peak in the 200 'C MQ-MAS spectrum 
may therefore reflect Na motion (positional disordering) in the 
A-site cavity. 

We conclude that triple-quantum MAS complements MAS 
in the study of amphiboles. Two tetrahedral aluminium sites 
are clearly resolved in edenite, although the method fails when 
dealing with sites with similar quadrupolar parameters. Long­
range Si-Al disorder exists in fluor-edenite. MQ-MAS also 
enables the separation of two sodium sites in amphiboles. 
These results are a first step towards the simulation of MAS 
spectra. 
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200 Quelques Applications du MQMAS 

4.2 Caractérisation des sites 27Al dans une levyne 

2D multiple-quantum 27Al NMR and 29Si NMR 

characterization of levyne 

submitted in Colloids and Surfaces 

Les résultats présentés dans cette article ont été obtenus dans notre lab­

oratoire à Lille, à partir d'échantillons provenant du laboratoire du Prof. 

B'Nagy à Namur, Belgique. 

Le but de ce travail était d'étudier l'effet d'une calcination sur la distri­

bution des atomes d'27Al dans la levyne. La structure de cette zéolithe est 

composée de deux sites tétraédriques 36T 1 et 18T 2 cristallographiquement 

distincts. La RMN du silicium (29Si MAS NMR) ne fournit pas d'informa­

tions quantitatives sur les sites 27Al. Par contre, les expériences MQMAS 

que nous avons effectuées sur les deux échantillons de levyne ("as-made" et 

calciné) ainsi que la quantification des spectres (REGULAR) nous permet­

tent de statuer sur le caractère aléatoire ou non de la distribution des sites 

27Al. En comparant les résultats obtenus par RMN MQMAS de l'27Al avant 

et après calcination, nous avons aussi démontré que le processus chimique 

affectait de façon préférentielle le site T 1 . 

Pour l'échantillon avant calcination ("as-made"), l'expérience MQMAS 

met en évidence les deux sites Al1 at Al2 (cf. Fig. 3). La quantification du 

spectre 2D avec REGULAR (cf. Fig. 4) confirme la proportion relative 2 :1 

pour respectivement les sites Al1 et Al2 . Ceci est donc la preuve que la distri­

bution des atomes d'27Al sur les sites tétraédriques T 1 et T 2 est complètement 

aléatoire. Pour la levyne calcinée, un troisième site tétraédrique Al3 apparaît 

sur le spectre MQMAS (cf. Fig. 5), en plus de l' 27Al octaédrique déjà ap­

parent sur le spectre MAS (cf. Fig. 1-B). Ce site supplémentaire possède un 
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effet quadrupolaire au second ordre PQ plus important que les autres sites 

tétraédriques Al1 at Al2 et pourrait être le résultat d'une déformation du té­

traèdre. L'analyse quantitative des deux échantillons de levyne est résumée 

dans la Table II. La population relative des sites Al2 reste constante pendant 

le processus de calcination, tendant à prouver que le troisième site aluminium 

et le site octaédrique proviennent d'un changement de l'environnement des 

sites Al1 . De plus, les sites Al1 et Ah ne diffèrent que par leur valeur de PQ 

et ont pratiquement le même déplacement chimique bc5 . 
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Combined lD and 2D multiple-quantum 27Al NMR results together with 29Si NMR data provide 
interesting information on the siting of Al in levyne zeolite. It is clearly shown that the distribution 
of Al is random in the structure, as the relative intensity of the two tetrahedral species is equal to 2. 
This corresponds to the ratio of T1 over T2, which are crystallographically different tetrahedral sites. 
The dealumination which occurs during calcination appears to be specifie. Only the tetrahedral Al 
atoms on sites T1 are transformed into deformed tetrahedral species and extraframework octahedral 
species, while the Al atoms on sites T2 remain unchanged. 

INTRODUCTION 

Until recently, characterization of zeolites by high res­
olution solid state nuclear magnetic resonance (NMR) 
was restricted to magic angle spinning (MAS) experi­
ments. Nevertheless, in the study of quadrupolar nuclei, 
line broadening arising from second-order quadrupolar 
effect was sufficient to prevent the chemist from getting 
further useful information about the number of sites and 
distribution of the quadrupolar nucleus in the zeolite lat­
tice. 

In the nineties, new techniques have been settled and 
perfected to lower or void the importance of this second­
orcier quadrupolar effect: double rotation [1,2] (DOR) 
and dynamic angle spinning [3] (DAS) turn out to be 
very useful, even though they rely on technologically so­
phisticated hardware and are restricted in their applica­
tion. The bidimensional multiquantum MAS (MQMAS) 
method, first proposed by Frydman and Harwood [4], 
requires no more than a widespread MAS probehead. 1t 
therefore appears as the method of choice since it can pro­
vide, in addition to the impressively resolved spectrum, 
further information on the quadrupolar interaction: the 
27Al isotropie shift. quadrupolar coupling constant CQ 
and the asymmetry parameter 1JQ. 

Naturallevyne-type zeolites have the general composi­
tion Ca3(AllsSi36ÜIOs)50H20. The unit cell has a trigo­
nal symmetry and all 54 T atoms (Si or Al) are in tetra­
hedral sites [5]. They are characterized by a bidimen­
sionallattice made of a sequence of single six-membered 
rings, and by rather small size pores (4.8À x3.6À). De­
spite their first synthesis in 1969 [6] and their use in in­
dustrial catalysis for the transformation of methanol to 
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low molecular weight olefins [7], not much is yet known 
about the aluminum sites in the structure. 29 Si MAS 
NMR revealed the presence of two crystallographically 
non-equivalent sites, T 1 and T 2 but no information on 
the distribution of the aluminum could be obtained from 
29Si and 27Al MAS NMR spectra [8,9]. 

In this paper, we report the study of the 27 Al nu­
cleus in two levyne samples using two-dimensional triple­
quantum (3QMAS) NMR. 

EXPERIMENTAL 

The global composition of the initial gel was 
4Na20- 2Kz0- 6MeQI- Alz03- 30Si02 - 500H2 0 
where MeQ=methylquinuclidinium ion. The reaetion 
gel was prepared by mixing 30% NaOH aqueous solu­
tion (pellets EPR, Carlo Erba), MeQI, Al(OH)3 (dry gel, 
Pfaltz and Bauer), distilled water and Si02 (fumed silica, 
Serva). MeQI was prepared by mixing quinuclidine (1-
azabicyclo-[2,2,2]octane, Aldrich) and iodomethane. The 
reaction mixture was heated at 150°C under autogeneous 
pressure in static conditions for programmed times, us­
ing modified Morey type autoclaves (8cm3) [10]. The 
calcination of the sample was carried out in air, heating 
the sample from 30°C to 700°C at a rate of 10°C/minute 
under a 15 ml/minute air flow. 

The 1D NMR spectra were recorded either on a Bruker 
MSL-400 or a Bruker CXP-200 spectrometer. For 29Si 
(39.7 MHz), a 6.0 J-LS (() = rr/2) pulse was used with a 
repetition time of 6.0 s. For 27Al (104.3 MHz), a 1.0 /LS 

( () = 1r /12) was used with a repetition time of 0.2 s. 



The 3QMAS experiments at 9.4 T were performed on 
a Bruker ASX-400 using a recently developed 4 mm l\IQ­
MAS probehead (Bruker) spinning at 15 kHz, with a ra­
diofrequency field Vr 1 estimated at ca.280 kHz. The pulse 
sequence was composed of three pulses corresponding to 
the Z-filter MQMAS method (11], which yields pure ab­
sorption spectra. The pulse lengths were experimentally 
adjusted to 1.75 J.LS, 0.6 J.LS (vrt= 280kHz) and 8 J.LS (vrt= 
10kHz), respectively. The recycle delay was the same as 
for ID 27Al MAS experiments. The delay t 1 between 
the first and second pulse was regularly incremented by 
67 J.LS, according to the method of rotor synchronisation 
(12]. This allows to remove spinning sidebands which 
generally appear along the isotropie axis, and to reduce 
significantly the acquisition time. 576 and 2304 scans per 
increment were used for the as-made and calcined levyne 
samples, respectively. 

QUANTITATIVE ANALYSIS OF MQMAS 
SPECTRA 

The MQMAS method has been previously described 
(4,13-15]. We may recall that in addition to the to­
tal elimination of the second-order quadrupolar interac­
tions, this technique yields a separation of the differ­
ent species by both their isotropie chemical shift 8c 5 

and their second-order quadrupolar interaction PQ = 
CQ · (1 + r,Z /3) 112 . Nevertheless, it remains difficult 
to deduce a quantitative information from the MQMAS 
spectra as the efficiency for the excitation of multiple 
quantum transitions strongly depends on the quadrupo­
lar coupling constant of each species (15]. lndeed, it is 
shown that the intensity detected in MQMAS, for sites 
experiencing very weak and very strong quadrupolar in­
teractions is likely to be underestimated whereas for sites 
with similar quadrupolar parameters, the direct compar­
ison of the isotropie projection may give a good approxi­
mation of their relative population. However, using PUL­
SAR (16], a home-made simulation software which calcu­
lates the response of a nucleus to a series of pulses, taking 
into account both the quadrupolar parameter and the 
experimental radio-frequency field, one can predict the 
actual spectral intensity for each site. Thus, a method 
to quantify the experimental MQMAS spectra is to com­
pare the experiment with these theoretical calculations. 
This is easy to perform when each site is well character­
ized by a pure quadrupolar lineshape and thus a unique 
set of parameters (PQ, 8cs)- But in the case of a dis­
tribution of parameters, such a comparison becomes ex­
tremely difficult and inaccurate, and it is advantageous 
to use the method recently developed by Zwanziger (17] 
for the analysis of DAS spectra. A detailed description 
of the inverse theory and regularization methods used 
for this analysis and their effective application to MQ­
MAS is outside the scope of this paper. 1t will be pub-
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lished elsewhere. This method has already been applied 
with success to provide a precise knowledge of the relative 
population of five sites in a well-crystallized AlP04 - 11 
aluminophosphate (18]. 
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FIG. 1. MAS 27Al NMR spectra of the as-made levyne sam­
pie (A) and of the calcined sample at 700°C (B). 

RESULTS AND DISCUSSION 

The Si/ Al ratio of the as-synthesized sample is close to 
15, the ratio of the initial geL This equality means that 
the incorporation of the aluminum into the levyne struc­
ture is quite effective (8,10]. Indeed, the 27Al MAS NMR 
spectrum of the as-made sample clearly shows that only 
one NMR line at 53.8 ppm is detected, which is character­
istic of tetrahedral coordination (Figure 1-A). During the 
calcination at 700°C, sorne of the framework tetrahedral 
aluminum leaves the structure and this extraframework 
aluminum becomes octahedral at ca. 0 ppm (Figure 1-B). 

Previous 13 C NMR measurements of the occluded 
MeQ+ ions have shown that they are incorporated intact 
in the levyne channels (8]. However, the thermal anal­
ysis of the precursor samples still containing the MeQ+ 
ions has demonstrated that two different MeQ+ ions were 
present in the channels (10]. The ones which are decom­
posed at lower temperature (460 °C) neutralize sorne of 



the SiO- defect groups (2.7 ju.c.) while the ones decom­
posed at higher temperature (590°C) neutralize the nega­
tive charges linked to the presence of the tetrahedral alu­
minum in the structure, the (SiOAl)- groups (3.4/u.c.). 

SIOH + SI(IAI)n + SU2AI)n 

Si{OHh + SI(2AI)n + SI{2AI)n 

-80 -88 -96 -104 -Ill -120 -128 

(ppm) 

-lW -118 -96 -104 -112 ·110 -128 

(ppmJ 

FIG. 2. MAS 29 Si NMR spectra of the as-made levyne ~am­
ple (A) and of the calcined sample at 700°C (B). 

The high resolution solid-state 29 Si NMR spectra of 
the as-made and calcined levyne samples are shown in 
Figure 2. As the levyne structure contains two crystal­
lographically different tetrahedral sites, 36 T 1 and 18 T 2 

sites [5], care has to be taken in interpreting the NMR 
spectra. The relative intensities of the various !ines of 
both the as-made and the calcined samples are reported 
in Table I. The NMR line at -115 ppm is assigned to 
Si(OAl) configuration of the T 2 sites [8,9]. The other 
NMR lines are tentatively assigned as follows. The - 108 
ppm line could stem from Si(1Al) configuration on T 2 
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sites and Si(OAl) configuration of T 1 sites. The -103 
ppm line could correspond to the sum of Si(2Al)T2 and 
Si(1Al)n configurations. Finally, the -97 ppm line could 
stem from the sum of Si(3Al)T2 and Si(2Al)n configu­
rations [8]. However, this hypothesis cannat lead to a 
quantitative interpretation of the NMR spectra. 
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FIG. 3. 27Al 3Q-MAS NMR spectrum of the as-made 
levyne sample. 

The discrepancy very probably stems from the pres­
ence of a high amount of defect groups= SiOM (M=Na, 
K, H and/or MeQ). It can be seen from Figure 2 that the 
intensity of the -103 ppm line decreases during calcina­
tion and that the intensity of the -97 ppm line is dras­
tically reduced. It is rather well known that the former 
could include the = SiOM defect groups, while the latter 
includes either = Si(OM)2 or = Si(OAl :=)(OM) defect 
groups [19]. The relative intensities of the NMR lines 
can certainly not be compared directly because the num­
ber of NMR lines is different in the as-made and calcined 
samples. 
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FIG. 4. Result of the inversion for the as-made levyne sam-
pie. 

The presence of two crystallographically different sites 
raises interesting questions concerning the siting of alu­
minum on the T 1 and T 2 sites. Is the aluminum dis­
tribution random or specifie [20,21] ? Is the dealumina­
tion random or specifie? The high resolution 27Al NMR 
spectra gives valuable information and helps in answering 



the above-stated questions. The 27Al MAS NMR spectra 
(Figure 1) already suggests the presence of two differ­
ent tetrahedral aluminum atoms in the structure; but 
in order to better characterize the levyne samples, 2D 
multiple-quantum 27Al NMR experiments have been car­
ried out. lndeed, it has already been shown that the 
use of three-quantum transitions greatly increases the 
resolution. The 3QMAS 27Al NMR spectra of the as­
made and calcined samples are shown in Figures 3 and 
5, respectively. The 3QMAS NMR spectrum of the as­
made sample clearly shows two different species at 6 = 62 
ppm (Air) and 6 =56 ppm (Al2 ) (Figure 3 and Table II). 
Moreover, the relative intensities of the two !ines are re­
spectively 2:1, suggesting that the aluminum distribution 
is random in the structure. Indeed, this ratio corresponds 
to the ratio of the crystallographically different tetrahe­
dral sites in the levyne structure, TI/T2 =2. The attri­
bution of the two different tetrahedral aluminum species 
is bence obvious. The 62 ppm line (Ail) characterizes 
the tetrahedral atoms on sites T r, while the 56 ppm line 
( Al2 ) stems from the tetrahedral Al a toms on sites T 2 • 

The determined quadrupolar coupling constants Po be­
ing similar (1.9 MHz and 2.7 MHz respectively), the rel­
ative intensities on the isotropie projection are regarded 
as correct. This assumption is confirmed by the compu­
tation of the 3QMAS spectrum (Figure 4), which gives 
an accurate result for the relative populations (Table II). 
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FIG. 5. 27AI 3Q-MAS NMR spectrum of the calcined sam­

pie at 700°C. 

During calcination, a small amount of extraframework 
octahedral aluminum species (0 site) appears around 4 
ppm (Figure 6). In addition, a new tetrahedral species 
(Al3) is also detected at 6 = 64 ppm (Figure 5), which 
could be due to deformed tetrahedral aluminum atoms. 
The Po of the Ah species is much larger than for the 
other two tetrahedral sites and is equal to 4.8 MHz. 

The quantative analysis of the 3QMAS spectrum (Fig­
ure 6) yields a better understanding of the dealumination 
process. Table II reports ali the data for the three tetra­
hedral species at 57, 62 and 64 ppm, respectively, and 
the octahedral species at around 4 ppm. As the relative 
population of Al2 remains constant throughout calcina-

4 

tion, it seems clear that the third tetrahedral species Al3 
and the octahedral species which appear during calcina­
tion are generated from the Ah species. Moreover, Air 
and Al3 species have close isotropie chemical shifts and 
only differ in their PQ. This is every indication that the 
Air atoms, which occupy the Tr site in the structure, 
undergo a distorsion to yield the Ah species. Renee, 
one can conclude that the tetrahedral Al atoms on sites 
Tr at 62 ppm (Ail) are partially transformed into de­
formed tetrahedral species at 64 ppm ( Al3 ). On the other 
hand, the 4% octahedral species formed during calcina­
tion seem to stem also from Ah species. These results 
strongly suggest that the dealumination occurring during 
calcination is highly specifie, involving only the crystallo­
graphic tetrahedral T r sites. A more systematic work on 
the dealumination will be carried out in order to check 
the specifie dealumination from the T 1 sites. This repre­
sents a very interesting result and its importance could 
be checked in catalytic reactions. Specifie dealumination 
could also be suggested from the framework of offretite 
using the changes in the 27Al MAS NMR and the 29Si 
MAS NMR spectra during dealumination. 

0 

2 

80 60 40 20 0 

Ùcs(ppm) 
FIG. 6. Result of the inversion for the calcined sample at 

700°C. 

CONCLUSION 

We have shown that the 27Al NMR studies of levyne 
type zeolites can be improved using the 3QMAS NMR 
experiment. The technique appears to be complemen­
tary to 29Si MAS NMR experiments as it totally removes 
the ambiguity on the distribution of Al on the crystal­
lographically different sites. Quantitative analysis of the 
MQMAS spectra has been performed using an appro­
priate method of spectral inversion and has allowed the 
determination of the relative populations of the differ­
ent species. lt is concluded that the distribution of Al 
is random in the as-made sample. The dealumination 
yielding octahedral aluminum species seems to affect only 
the Air species, which occupy the T 1 sites. ln addition, 
sorne of the original tetrahedral Al a toms on site T r are 



transformed into deformed tetrahedral species and to ex­
traframework octahedral species. 
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TABLE 1. 29 Si MAS NMR data of the as-made and calcined levyne samples at 700°C. 

Sample 
As-made 
Calcined 

o(ppm) 
-98.4 
-96.1 

TABLE II. 

I(%) 
11 
6 

o(ppm) 
-103.1 
-102.8 

I(%) 
25 
27 

8(ppm) 
-108.3 
-109.0 

I(%) 
43 
46 

o(ppm) 
-114.9 
-115.6 

27Al 3QMAS NMR data of the as-made and caleined levyne samples at 700°C. 

I(%) 
21 
21 

Tetrahedral region Octahedral region 
Ah Ab Ab 

Sample 8cs Pq I 8cs Pq I 8cs Pq I 8cs 
(ppm) (MHz) (%) (ppm) (MHz) (%) (ppm) (MHz) (%) (ppm) 

As-made 62 2.7 69 56 1.9 31 
Calcined 62 2.6 53 57 1.8 31 
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Anisotropie Chemical Shielding, M-Site Ordering, and 

Characterization of Extraframework Cations in ETS-10 Studied 

through MAS/MQ-MAS NMR and Molecular Modeling 

Techniques 

published in J. Am. Chem. Soc. 

L'ETS-10 est un matériau de la famille des titanosilicates microporeux 

dont la structure de base est essentiellement composée de tétraèdres Si04 et 

d'octaèdres Ti06 . Les figures 4.1 et 4.2 sont des représentations structurales 

de l'ETS-10, dans deux directions perpendiculaires. 

Cet article écrit en collaboration avec nos collègues de Pune, India, est 

le résultat d'expériences réalisées à Lille et en Inde. Pour ce qui est du tra­

vail que j'ai effectuée avec le Prof. Ganapathy, lors de sa visite dans notre 

laboratoire, il concerne l'application de la technique MQMAS à l'étude des 

sites cationiques 23 Na dans l'ETS-10 (purement silicium) et dans l'ETAS-10 

(aluminium substitué : Si/ Al = 62, 42, 22). 

Dans l'ETS-10, les atomes de titanium (Ti) forment des chaînes dans 

deux directions perpendiculaires (cf. Figs. 4.1 et 4.2). Dans l'ETS-10 et dans 

l'ETAS-10, le rôle des cations 23 Na est de contrebalancer les charges néga­

tives apportées par les atomes de titanium. Une étude préalable (REAP­

DOR et Biosym) 1 avait permis de déterminer les positions des atomes de 

23 Na dans l'ETS-10. L'expérience MQMAS devait alors confirmer les résul­

tats précédemment obtenus. 

La figure 10 de l'article montre que la technique MAS est incapable de 

séparer les différents sites. Nous remarquons simplement un élargissement des 

1 S. GANAPATHY AND S. VEGA, J. Am. Chem. Soc. 120 (1998), pp. 1078-1079 
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e Ti 

o Na 

Quelques Applications du MQMAS 

Si(3Si, !Ti) 

FIG. 4.1: Représentation schématique de la structure de l'ETS-10. Les atomes 

de titanium forment des chaînes dans deux directions perpendiculaires. Une 

simulation moléculaire (Biosym) a permis de déterminer les positions des 

atomes de sodium en minimisant l'énergie totale de la structure. Les résultats 

obtenus sont en accord avec le calcul des distances inter-atomiques 29 Si23 Na 

déduite d'une expérience REAPDOR. 
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e Ti 

o Na 

209 

A,B,C,D 

FIG. 4.2: Autre représentation de la structure de l'ETS-10 obtenue par rota­

tion de la figure 4.1, d'un angle de 90° autour de l'axe vertical. Les chaînes 

de titanium qui étaient dans le plan sur la figure précédente, sont main­

tenant perpendiculaires à ce même plan, et vice-versa. Cette figure montre 

que les atomes de 23 Na, qui paraissaient appartenir aux larges pores (12-

membered rings) sur la figure 4.1, sont en fait logés dans les plus petits pores 

(7-membered rings). 
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résonances lorsque le rapport Si/ Al diminue. Par contre, le spectre MQMAS 

(cf. Fig. 11 de l'article) montre la présence dans la structure de l'ETS-10, de 

3 environnements différents pour le sodium. L'un des atomes de sodium (III) 

possède une constante quadrupolaire plus importante que les deux autres 

atomes (I) et (II). D'ailleurs, ces 2 derniers environnements ne diffèrent que 

légèrement par leur déplacement chimique bcs- La figure 12 représente les 

projections isotropes des spectres MQMAS obtenus à partir des échantillons 

de ETS-10 et ETAS-10 (3 valeurs de rapport Si/ Al). Nous observons un 

élargissement et un recouvrement des résonances, surtout dans la région des 

sites (1) et (II). La distortion de la résonance le long de l'axe CS (sites 1 et 

II) suggère l'existence d'une distribution de déplacement chimique bcs-

L'étude de la structure de l'ETS-10 met en evidence la présence de 3 sites 

titanium nonéquivalents dont 2 ont un environnement similaire. L'expérience 

MQMAS faîte sur le sodium confirme donc la présence de 23 Na aux côtés des 

atomes de titanium puisque 2 des sites 23Na ont pratiquement les mêmes 

constantes quadrupolaires et déplacements chimiques. Ce résultat est une 

autre preuve que les atomes de sodium ont pour rôle de compenser les charges 

négatives des atomes de titanium. Nous remarquons aussi que même si 2 

atomes de 23 Na sont nécessaires pour contrebalancer la charge apportée par 1 

atome de titanium, nous n'obtenons que 3 résonances sur le spectre MQMAS 

et non 6 signaux correspondant à 6 environnements différents pour le sodium. 

Ceci est probablement dû à la position symétrique par rapport au titanium, 

des 2 atomes de sodium (cf. la position des atomes 23 Na par rapport aux 

titaniums sur les Figs. 4.1 et 4.2). 

Enfin, nous avons quantifié les proportions relatives des différents sites 

23 Na en appliquant le calcul REGULAR au spectre 3QMAS de l'ETS-10. 

Comme les sites titanium sont dans un rapport de 1 :1 :1, pour les 3 envi-
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ronnements possibles, nous devrions retrouver le même rapport pour les sites 

23 Na, tout au moins une valeur de 2 :1 pour respectivement les sites (I,II) 

et (III). Sur la projection isotrope, 1 'intensité de la résonance correspondant 

au site (III) est probablement sous-estimée et le fit de cette projection ne 

conduit à la concentration de 2 pour 1 par rapport à la résonance des sites 

(I,II). En effet, nous avons vu que l'expérience MQMAS était très sensible à 

la force de l'interaction quadrupolaire. L'intensité de la résonance, correspon­

dant au site (III), fortement quadrupolaire, doit être corrigée. Le résultat de 

la quantification des sites 23 Na dans l'ETS-10, est représenté par la figure 13 

de l'article. La proportion relative 2 :1 des sites (I,II) et (III) a été déterminée 

précisément avec REGULAR. Nous pouvons remarquer que le calcul n'a pas 

su différencier les sites (I) et (II) qui était d'ailleurs à peine discernable sur 

le spectre 2D. 
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Abstract: The local structural characteristics of Si and Ti sites in ETS-10 as derived from a combination of 
high-resolution magic angle spinning (MAS) NMR spectroscopie and molecular modeling studies are reported. 
Pure and highly crystalline ETS-10 and aluminum-substituted ETS-10 (ETAS-10), devoid of impurity ETS-4 
phase, were synthesized and fully studied by MAS and multiple-quantum magic angle spinning (MQ-MAS) 
NMR. More accurate assignments of the experimental! y observed 29Si resonances to the crystallographically 
nonequivalent Si sites are made, and a correlation with T-site geometry is established. 29Si slow MAS NMR 
is shown to be a very general and powerful methodology to unequivocally establish heteroatom substitution 
in the zeolite lattice, and this was used to probe the local symmetry and chemical shielding at different Si sites 
in ETS-1 0 and ET AS-1 O. 29Si and 27 Al MAS NMR spectral analysis of ET AS-1 0 is used to confrrm that the 
aluminum substitution occurs only in Si[4Si,OTi] silicon sites. This, in tum, was used to generale cluster 
models for computer graphies techniques. The electronic structure of such cluster models and the calculated 
aluminum substitution energy values pinpoint the topographicallocation of aluminum in ET AS-! O. The acidity 
of ETAS-10 is predicted on the basis of the quantum chemical cluster mode! calculations. The frrst application 
of MQ-MAS NMR to study cation environments in molecular sieves is also reported and is used in the present 
study to investi gate the local structural characteristics of sodium cations in ETS-10 and ET À.S-10. 

Introduction 

An industrially significant discovery is the titanosilicate (TS-
1) with MFI framework structure, 1 which is constructed of linked 
Si04 tetrahedra and Ti04 tetrahedra. Though it is widely 
accepted that Ti is in a distorted tetrahedral coordination. there 
are differences of opinion regarding the extent of distort10n. It 
has been pointed out by On Trong et aJ.2 that the distortion is 
so high that the Ti ions cannot be considered anymore as part 
of the framework. However, Bellusi and Fattore3 argued that 
the distortion is minimal and hence titanium can be assumed to 
be in the framework. The dispute has not been solved because 
the concentration of the titanium is too low (Siffi = 30) to be 
characterized by any bulk analytical techniques and the coor­
dination around Ti is so labile that it depends on the experi­
mental conditions. 

ETS-1 0 is a prominent member of a microporous titanosilicate 
family whose basic structural characteristics comprise comer­
sharing Si04 tetrahedra and Ti06 octahedra linked through 
bridging oxygens. Although it has been just recently discovered, 
there have been a large number of studies4- 40 due to its 
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termed A and 8. 17·24 It is titanium-rich (Siffi = 5) and is also 
the first microporous material wherein the location and coor­
dination of metal atom, namely titanium, has been established 

from crystallographic and r!'!lated techniques. 17·24 For a better 
utilization of newer materials (such as ETS-1 0) for molecular 
sieving and catalytic applications, it is essential to devise 
efficient and simple synthesis procedures and understand the 
structural features such as T-site ordering, as weil as evaluate 
its electronic properties and acidity characteristics. Our paper 
focuses on the above aspects of ETS-1 0 through magic angle 
spinning (MAS) NMR, multiple-quantum magic angle spinning 
(MQ-MAS) NMR, and molecular modeling studies. 

From the MAS NMR point of view, contrary to aluminosili­
cates,41 the titanosilicate framework does not lead to dipolar 
broadening of the silicon !ines since titanium can be considered 
to be magnetically dilute (47Ti, 49'fi; n = 7.28, 5.51%). Thus, 
the 29Si MAS NMR spectra can be obtained at high magnetic 
fields (ca. 7 T) with increased resolution even for a very low 
value of Siffi, and additionally, they are readily amenable for . 
a slow MAS spectral analysis to characterize the anisotropie 
chemical shielding and local symmetry at the various silicon 
sites. As shown in this paper, this approach is very general 
and therefore is useful in resolving disputes regarding hetero­
atom substitutions in the frarneworks of microporous materials. 
Further, the recently discovered"2 MQ-MAS NMR techniques 
offer new opportunities to probe the sodium cation environment 
through 23Na 3Q MAS and the alurninum substitution through 
27 Al 3Q and 5Q MAS NMR. 

V{e reported recently an efficient synthesis procedure for 
getting crystalline ETS-10 devoid ofETS-4 impmity.31 We now 
report the structural and electronic characteristics of ETS-1 0 
derived from high-resolution MAS NMR spectroscopy and 
molecular modeling techniques. ETS-1 0 is known to exist in 
two polymorphie forms A and B as reported by Anderson et 
al. 17·24 Ali our simulations, modeling, and the interpretation of 
the MAS NMR results are based on the crystal structure of 
polymorph B. The 80 silicon atoms in the unit cell of ETS-10 
fall either into Il types of Si sites in polymorph B or into 20 
types of Si sites in the case of polymorph A. Thus our 
interpretation of results for polymorph B is applicable to 
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polymorph A also, since the correspondence of the Si sites 
between the two polymorphs is known. 17·24 The as-synthesized 
ETS-10 is highly crystalline and has exceptional phase purity 
as observed from an enhanced signal multiplicity in 29Si MAS 
experiments. Details of T -site ordering, cation site characteriza­
tion, the framework substitution, and the favorable location of 
aluminum substitutions and acidity of ET AS-1 0 are reported 
here. 

Experimental Section 

Synthesis. Different methods of preparation of ETS-1 0 have been 
reported in the literature based on the titanium compounds used as the 
source of titanium. We recently reported a method for rapidly 
synthesizing ETS-10 in a highly crystalline and pure fonn.31 The 
hydrothennal synthesis of ETS-10 using Ti CI. was carried out with a 
gel of the following molar composition: 

In a typical synthesis, a solution of 9.3 g of NaOH in 40 g of distilled 
water was added to a vigorously stirred solution of 52.5 g of sodium 
silicate (28.6% Si02, 8.82% Na20, 62.58% H20) and 40 g of distilled 
water. This was followed by the dropwise addition of 32.75 g of a 
TiC4 solution (25.42 wt % TiC4, 25.92 wt % HCI, 48.60 wt % H20) 
to this mixture (colorless gel) with rapid stirring. KF·2H20 (7.8 g) 
was next added to the above gel (pH = 11.2 ± 0.1) and the mixture 
stirred weil. The mixture was theo transferred to a stirred stainless 
steel autoclave (Parr Instruments, U.S.) and the crystallization carried 
out at 473 K with a •. stirrer speed of 300 rpm for 16 h. After 
crystallization, the products were filtered and washed with deionized 
water until the pH of the filtrate was 10.7- 10.8. It was dried at 373 
K for 8-10 h. In earlier procedures, where TiCh was the source of 
titanium, 17•19•24- 27•33- 35 ETS-4 or ETS-10 needed to be used as seed. 
Further, the crystallization time was long (many days) and the product 
invariably coritained ETS-4 impurity. 

ETAS-1 0 was 'synthesized using the same starting materials as ETS-
10 except that a certain amount of sodium aluminate was added to the 
gel to get the desired Si/Al ratio in the product, the synthesis conditions 
being the same as above. Three samples with Si/Al ratios 62, 42, and 
22 were synthesized. 

MAS/MQ-MAS NMR Spectroscopy. MAS NMR spectra were 
recorded on a Bruker MSL-300 Fourier transfonn (Fr) NMR spec­
trometer at ambient probe temperature (298 K). 29Si NMR spectra were 
recorded at 59.621 MHz, while 27AI NMR spectra were recorded at 
78.206 MHz. The spinning speed was controlled to within ±5Hz using 
a Bruker pneumatic speed controller. The magnetic field was carefully 
shimmed on the 1 H resonance sample of spinning TMS, which was 
subsequent! y used as external reference for 29Si. The magic angle was 
precisely set using KBr and maximizing the rotational echo intensities 
of the satellite transitions of 79Br. Free induction decays were 
accumulated in a 18-kHz spectral window using a 45° flip angle, 3-flS 

pulse, and 4-s relaxation delay. Typically, 8000-12 000 transients were 
accumulated before they were remotely processed on a SiliconGraphics 
lndigo2 workstation using the Bruker UXNMR software package.43 

MQ-MAS NMR experiments were perfonned on a Bruker ASX-
400 Fr-NMR spectrometer equipped with a specially made MAS 
probehead capable of high-speed spinning (up to 15 kHz) and radio 
frequency field (rf) generation (up to 350kHz). A three-pulse sequence, 
which incorporates a zero-quantum filter, was used. This pulse scheme 
ens ures optimum selection of the mirror echo and an ti-echo coherence 
transfer pathways to give pure absorption mode line shapes in the final 
two-dimensional (2D) SQ-MQ correlation plot. The first pulse was 
individually optimized for the 3Q (23Na and 27 Al) experiments to obtain 
the best efficiency for the multiple-quantum (±3Q) coherence creation. 
In a similar way. the second pulse, which transfers these two 
symmetrical coherences into ZQ coherence, was also optimized. The 
further conversion to ( -1 Q) single-quantum coherence of the observed 

(43) UXNMR, Acquisition and Processing of NMR Data; Bruker: 
Karlsruhe, Gerrnany, 1991. 
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(- 1/z, +1/z) central transition was achieved using a soft 90° pulse of 
duration 9 ps. The phase cycling was designed to select on! y the desired 
pathway (0)- (± 3)- (0)- (-1 ). Rotor synchronization (v,= 14.925 
kHz) along t1 was used to eliminate intense sidebands appearing along 
the MQ dimension. Typical accl!mulation involved 2048 (t2) x 128 
(t1) values for 23Na and 27Al 3Q experiments. For each lt step, the 
number of scans was typically 240 and 2400 for 3Q MAS on 23Na and 
27Al, respectively. A 20 Fourier transform with respect to ft and t2 

leads to pure absorption mode 20 spectra. 
Computer Simulations of Slow M(\S Spectra. The computer 

simulations of slow MAS spectra were carried out using the time 
domain rotational echo analysis of Maricq and Waugh.44 For the 
simulations, the experimental! y identified silicon resonances in distinct 
environments were considered together with their site occupancies. 

The overall time domain response of the observed 29Si magnetization 
is adequately described by summing the chemical shielding experienced 
by silico~ nuclei located at distinct crystallographic positions. However, 
for the slow MAS experiments, the spectral resolution is sufficient to 
distinguish only three distinctly different silicon environments (Si~. Siu, 
and Sim) in the case of ETS-10 and four (above three and the silicon 
environment with an aluminum neighbor) in the case of ET AS-10. 
Further distinction within each of these based on crystallographic 
nonequivalence could not be made from slow MAS spectra due to 
instrumental and signal-to-noise considerations. However, this is found 
to be sufficient for the complete sideband analysis to be made for these 
silicon environments and these form the basis for our further discussion. 

We consider that only the anisotropie chemical shielding interaction 
contributes to the sideband intensities. This allows us to write, for 
free induction decay of a spinning solid, 

G(t) = .2, exp(iw0ëit) .2, exp{iw0o J:ç(t') dt'} (1) 
a,{J,y 

where 

Ç(t') = cl cos w,r +SI sin w,t + c2 cos 2w,t + s2 +sin 2w,t 

The detailed definition of the modulation coefficients C1, S~o C2, and 
52 may be found in ref 44. Ott. 022. and 033 are the principal elements 
of the chemical shielding tensor defined in the principal axis system 
and the summation "t' is over 1-, II-, ill-type silicons. The sideband 
intensities are govemed by the anisotropy (o) and asymmetry (7]) of 
the chemical shielding, and these are determined from the analysis of 
the slow MAS spectra. It may be noted that the conventional 
assignment of chemical shielding tensors, namely a 11 s 022 s OJJ, has 
been used and the asymmetry parameter 1J has a value between -1 
and + !, the extreme values corresponding to axially symmetric tensors. 
Here, the Euler angles (a, {J. and y) define the orientation of the 
chemical shielding tensor of the ith silicon species in the MAS rotor 

frame which in tum is oriented at an angle coÇ 1(11.J3) with respect 
to the main magnetic field. 

A powder averaging was done in the three-dimensional Cartesian 
space defined by the Euler angles (a, {J, and y), and using eq 1. the 
rotational echo was calculated by evaluating the integral over one rotor 
period (0-2nlw,) for a series of equally spaced lime intervals with the 
spacing chosen to give an adequate spectral width. The rotational echo 
was replicated over a 230-ms period to give the resultant free induction 
decay. This was subsequently convoluted with an exponential line 
broadening function before Fourier transformation to give the slow 
MAS spectra. The simulations were carried out on a persona! computer 
using a program written in Fortran. 

(44) Maricq, M. M.; Waugh, J. S. J. Chem. Phys. 1979, 70,3300-3316. 
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Figure 1. Computer graphies view of ETS-1 0 framework projected 
down the c axis showing the framework of Si and Ti atoms. The 
oxygens, lying approximately in the middle of the M atoms (where M 
= Si or Ti), are not labeled. For the numbering and connectivity of the 
M sites, please refer to Table l. Atoms 1, 4, 6. and 7 occur in altemate 
layers below 10, 2, 5, and 5, respectively. 

Table 1. . Geometrie Data of the Polymorph B of ETS-10 
Structure 

site M-0 distance• M -0-:M angJeb 
(M) (Â) (deg) connectivity" 

Tit 1.887 145.990 Sis. Sis. Si9, Si9, Th. Th 
Th 1.887 144.687 Sh. Sb. Sb. Sb, Tb. Ti3 
Tb 1.883 145.340 Sis. Si6. Tit. S4. Th. Sh 
Si1 1.575 149.700 S4. S4. Sb. Sb 
Sh 1.577 142.820 Si6. Si9, Si10, Th 
Sh 1.577 142.652 Sb. Sis. Si10, Th 
S4 1.577 144.352 Sis. Sis, Sit. Tb 
Sis 1.577 143.447 Si4, Si9, Si10, Tit 
SÏ6 1.580 143.147 Si2, Si10. Sb. Tb 
Sh 1.580 142.507 Si3, Sit. SÏ6, Th 
Sis 1.577 145.140 Sb. Si4, Si tt. Tb 
Si9 1.577 143.762 Si1. Sis. Siu, Tit 
Si10 1.577 150.772 Si1. Si3, Sis. Si6 
Si tt ' 1.580 152.190 Sis. Sis. Si9, Si9 

• The M-O distances are the average of six Ti-0 distances for Ti06 
octahedra and the average of four Si-0 distances for Si04 tetrahedra. 
b The M-0-M angles are the average of six Ti-0-M (where M = 
Ti or Si) angles for the Ti06 octahedra and the average of four Si-
0-M (where M =Ti or Si) angles for Si04 tetrahedra. c Neighboring 
M sites connected through bridging oxygen. 

Molecular Modeling. The computer graphies (CG) visualization 
of ETS-1 0, the cluster mode! generation, and the semiempirical quantum 
chemical calculations were performed on a SiliconGraphics lndigo2 
workstation using the Insight II software package4s supplied by Biosym 
Technologies Inc. (U.S.). The ETS-10 lattice was modeled from the 
crystal structure reported by Anderson et a1. 17•24 for the polymorph B. 
The unit cell of ETS-10 has a stoichiometry of [M960 2osP2- (where M 
= Si or Ti), or precisely [(Si02)80(Ti03)16],32- where the Si/Ti ratio is 
5. 

A CG view of the ETS-10 framework showing the various Si and 
Ti sites is given in Figure l. There are Il distinct Si sites and three 
distinct Ti sites in the crystal structure of ETS-10 (polymorph B). Ali 
of the Ti sites are octahedrally coordinated, where two oxygen atoms 
are bridging to adjacent Ti sites and the remaining four oxygen atoms 
are bridging to Si sites. Ail of the Si sites are tetrahedrally coordinated, 
and there are basically two types of silicons; there are silicons [Si­
(4Si)]. where ali the four oxygen atoms are bridging to adjacent Si 
sites, and silicons [Si(3Si,l Ti)], where three ox ygen atoms are bridging 
to adjacent Si sites and the remaining oxygen atom bridging to adjacent 
Ti sites. The average M-O distances and M-0-M angles (where M 
= Si or Ti), calculated from the reported crystal structure, are given in 
Table !. Semiempirical quantum chemical calculations using standard 
MNDO procedure were carried out on cluster models representing the 
Si sites in ETS-10 to understand the electronic structure, preferred 
locations for Al substitution, and resulting acidity. 

(45) lnsight Il user Guide, Version 2.3.5; Biosym Technologies: San 
Diego, CA, 1994. 
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Figure 2. X-ray diffraction patterns obtained on (a) ETS-10 and (b) 
ETAS-10 synthesized as outlined in the text. The narrow reflections 
are readily indexed to the known structure of the highly crystalline 
ETS-10 phase, while the small broad feature is attributable to a possible 
stacking disorder in the structure. 

Results and Discussion 

The identification of the crystalline phase of the material and 
its exceptional phase purity were verified by XRD (Rigak:u, 
Model D-max III). The diffraction pattern, shown in Figure 2 
(as-synthesized), exhibits both broad and sharp reflections, as 
noted by Anderson et al.,24•33 indicating that the material is 
highly crystalline exhibiting disorder. The XRD patterns in the 
range 20 = 4-40° could be indexed to the ETS-10 struc­
ture, 17•25•33 - 35 .39 and the absence of impurity peaks shows that 
a highly crystalline ETS-10 and ETAS-10, devoid of the ETS-4 
phase, has been synthesized. The diminished intensity of the 
peak:s in the low-20 region is attributable to occluded water. 

29Si MAS NMR Spectra of ETS-10. The 29Si MAS NMR 
spectrum of ETS-1 0, referenced to tetramethylsilane, is shown 
in Figure 3a (here, a resolution enhancement using a suitable 
window function was carried out by apodizing the time domain 
NMR data with the UXNMR software package to enhance the 
spectral resolution). There is a noticeable absence of signal in 
the region around 90.0 ppm which confirms the absence of 
ETS-4 impurity and also the absence of silicon environment 
corresponding to [SiOH, Si(OHh] or the defect sites. Thus, 
the NMR results show that the synthesized material exhibits 
exceptional phase purity with the absence of defect sites. 

The spectrum in Figure 3a shows three types of distinct silicon 
environments. The resonances (o) due to the titanium-rich [Q4-
(3Si,1Ti)] (-94 to -95 ppm; -96 to -97 ppm) and silicious 
[Q4( 4Si,OTi); -103 to -104 ppm] environments are readily 
identified and marked as 1, II, and III, respectively, for further 
discussion. The observed spectrum could be deconvoluted into 
seven resonances as shown in Figure 3b, whose chemical shifts 
and peak areas can be measured accurately for quantitative 
analysis. The results are given in Table 2. 

The approximate ratio of the intensity of the signais of 1, II, 
and III sites is 4:4:2, which is in correspondence with the earlier 
reportsY·24 In ETS- 10, among the Il crystallographically 
distinct Si sites, Si~o Si 10, and Si 11 are of the type III, namely 
Si(4Si,OTi). Sh and Si 11 have half-occupancy compared to the 
full occupancy of Si 1o. Each of the two signais of equal intensity 
of type III Si sites can be assigned to Si 1 + Si11 and Si 10 or 
vice versa. This distinction within type III Si sites was not 
reported earlier probably due to poor spectral resolution. 17·24 
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Figure 3. (a) Resolution-enhanced 29Si MAS NMR spectrum of ETS-
10 showing the distinct resonances corresponding to Si(4Si,OTi) and 
two types of Si(3Si,!Ti), environments. (b) Simulation of spectrum 
(a) using a Gaussian funttion. 

However, we could clearly distinguish two silicon resonances 
at -103.6 and -103.9 ppm (Figure 3a) with almost 1:1 intensity. 
The exact assignment of these resonances to the silicon sites 
could not be made because of the large deviation in M-0-M 
angles (see later). 

The signais due to type 1 and II Si sites have been classified 
into four distinct types, namely A, B, C, and D, by Anderson 
et al. 17•24 This classification was based on their location in a 
12-ring or 7 -jng. However, an inspection of the structure shows 
that ali Si sites have locations common to 12- and 7 -rings. From 
the CG analysis of the topography of these silicon sites, we 
observe that there are two types of silicons, with respect to their 
coordination to titanium; Sh, S4, Si6, and Si8 are coordinated 
to Th, whereas Sh, Si5, Sh, and Si9 silicons are coordinated to 
either Ti 1 or Th. Two distinct sodium ions, which balance the 
two negative charges on titanium, with different quadrupole 
tensors have been reported.24 This points to possible occurrence 
of two different types of exchangeable cations corresponding 
to (Ti1 or Th) and (TÏJ) and suggests that type 1 and II 
[Si(3Si, 1 Ti)] sites could be classified on the basis of the titanium 
coordinated to it. However, our NMR results on ET AS-1 0 and 
molecular modeling rule out this possibility. This is discussed 
below. 

27AI and 29Si MAS NMR of ETAS-10. The 27AI MAS 
NMR spectrum of ET AS-1 0, synthesized in a typical Si/ Al ratio 
of 42, is shown in Figure 4a. Tetrahedral framework incorpora­
tion of Al is borne out in Figure 4a by a very intense resonance 
at= 57.3 ppm. The presence of a weak signal at the octahedral 
Al position ("-'0 ppm) is more clearly visible in the 27AI MQ­
MAS study and is attributable to occluded aluminum oxide in 
the pores. 

The 29Si MAS NMR spectrum of ETAS-10 (Si/Al= 42) is 
shown in Figure 4b. While type 1, II, and III environments 
noticed in ETS-10 are seen to be retained in ET AS- 10, additional 
resonances at -90.2 and -92.0 ppm appear. The Joss of 
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Table 2. 29Si Peak Positions and Relative lntensities of ETS-1 0 and ET AS-10 

sample 

ETS-10 

ETAS-10; Si/Al= 42 

property 

peak positionsb 
·· relative intensity'" 

peak positions 
relative intensity 

type 1 

-94.1, -94.5, -94.7 
3.9 ( 1.7: 1.3:0.9) 
-93.9 
3.0 

type Il 

-96.1,-96.6 
4.1 (1.8:2.3) 
-96.0 
3.6 

-103.6, -103.9 
2.0 (1:1) 
-103.5 
1.4 

additional peaks" 

A 

-90.2 
1.7 

B 

-92.0 
0.3 

a Due to Si[2Si,1Ti,IAI] corresponding to Al substitution at Si (see text). b Peak positions (O) are given in ppm with reference to TMS. c Values 
in parentheses denote integrated intensities of peaks resolved in each type. 
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Figure 4. (a) 27AI MAS NMR spectrum of ETAS-10 (Si/Al= 42). 
(b) 29Si MAS NMR spectrum of ETAS-10 (Si/Al = 42). (c) Decon­
voluted 29Si MAS NMR spectrum of ETAS-10 (Si/Al = 42). 

resolution due to peak broadening of the silicon resonances is 
observed in Figure 4b, compared to that in Figure 3, due to the 
incorporation of Al in the frarnework. The increased broadening 
is attributable to second nearest neighbor effects through the 
dipolar interactions between the spin- 1/ 2 

29Si nucleus and the 
spin-5/ 2 

27 Al nucleus, not eliminated in MAS experiments due 
to nonvanishing electric field gradients at the aluminum sites.46 

This is especially aggrevated at our 7.1-T field of operation. 
Deconvolution assuming a Gaussian-type peak function were 
performed with UXNMR software package. The deconvoluted 
spectrum was simulated, and the chemical shift values as weil 
as the peak areas of these signais were calculated for quantitative 
analysis (Table 2). 

It is known that Al substitution in various zeolite structures 
gives rise to a deshielding of ~4.00 ppm for each Si substituted 

(46) Naito, A.; Ganapathy, S.; McDowell, C.A. J. Magn. Reson. 1982, 
48, 367-381. 

by AI.41 This would imply that the new resonances in ET AS­
JO samples arise from lattice substitution corresponding to an 
environment where Si coordinates to a titanium and aluminum. 
That this occurs in the neighborhood of type I and II sites would 
imply a preferential substitution of Al at the siliceous 
Si[4Si,OTi] environments and hence an Al-Ti avoidance,27•33 

as clearly indicated in our studies. Among the two new peaks, 
the resonance at -90.2 ppm is more intense and arises from a 
preferential substitution of Al at the completely silicious site 
which is adjacent to site I. We rule out the possibility that this 
peak is due to EJS-4 impurity as we find that the peak intensity 
increases with increasing Al substitution and, further, the XRD 
data shows an absence of the impurity of ETS-4 phase. 
Similarly, the less intense peak at -92.0 ppm is due to Al 
substitution adjacent to site II. Quantum chemical calculations 
pinpoint the topographicallocation of the preferred silicon site 
for Al substitution and allow us to make further T -site 
assignments,of I and II in ETS-10. 

29Si Slow MAS NMR and Disruption of Local Symmetry. 
A striking feature of the 29Si MAS spectrum of ETS-1 0 is the 
revelation of an intense and characteristic sideband pattern when 
the sample was spun at much slow er speeds, namely ~ 385 and 
700 Hz. Typical spectra at these two spinning speeds are 
presented in Figure 5, parts a and b, respectively. This is in 
contrast to the spectrum taken at moderate spinning speeds (2.5-
3.5 kHz, Figure 3) where the presence of spinning sidebands 
can be hardly noticed. The sideband pattern of signais of 
silicons of type I and II are quite similar, whereas type III is 
nearly sideband free, showing that the anisotropie chemical 
shielding at the siliceous and titanium-rich environments are 
markedly different. 

The sideband intensities for the resonance at -103.9 ppm 
fall off very rapidly; a near-isotropy for the chemical shielding 
is readily discemed for the set of two resonances which were 
identified as Sh + Si11 and Si 10. Our observations of very near 
isotropie nature of chemical shielding therefore reaffirm the 
earlier contention17•24 that the set of resonances occurring in 
the -103.6 to -103.9 ppm range arises purely from siliceous 
environments devoid of any Si-0-Ti linkage, as only a central 
silicon connected tetrahedrally to four other Iattice silicons can 
present a nearly perfect Td symmetry for the chemical shielding. 
These are further supported from computer simulations of the 
slow MAS spectra shown in Figure 5c,d. A silicon in an 
isolated perfect tetrahedral environment of four more silicons 
has a Td symmetry, and the chemical shielding tensor is 
spherically symmetric; the shielding anisotropy therefore van­
ishes by definition. The observation of the near-isotropy for 
chemical shielding reinforces our view that, while the tetrahedral 
arrangement of the siliceous environment is preserved, the slight 
distortions in the T-site geometry cause the tensor to slightly 
deviate from being isotropie, thus causing a slight anisotropy, 
albeit small, to be introduced. This is precisely the reason an 
empirical correlation of the T-site geometrical parameter, such 
as, for example, the T-0-T angle, with 29Si chemical shifts 
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Figure S. 29Si slow MAS NMR experimental spectra of ETS-1 0, when 
the sample was spun at (a) 385Hz and (b) 700Hz. The corresponding 
computer-simulated spectra c and d are also shown above the 
experimental spectra. The additional splitting in sideband profile in 
spectrum a, especially for the type I and II resonances, is due to 
somewhat inferior spinner stability (±25 Hz) and is partly accounted 
for in the simulation. An exponential line broadening of 60 Hz was 
used in the simulations. 

have been found.47 In other words, the anisotropie shielding at 
each distinct Si site in the siliceous environment varies in a 
manner that is purely dictated by the extent of deviation from 
an ideal tetrahedral symrnetry and has a direct bearing on the 
shielding tensor. This, in tum, causes the isotropie shift to 
change as weil, thus giving rise to multiplicity of silicon 
resonances in the MAS spectra of highly siliceous zeolites.48.49 
Thus, the precise correspondence between structure and elec­
tronic shielding emerges as a consequence of bond geometry 
distortions in an ordered zeolite framework obeying a particular 
space group symmetry. 

The intense spinning sidebands for the silicon resonances at 
~-94.5 and -96.5 ppm !end themselves for an immediate 
analysis. Computer simulations of the slow MAS spectra 
(Figure 5c,d; sec also Table 3) show that the silicon environment 
is characterized by an anisotropie chemical shi el ding tensor with 
the principal elements Ott and 022 being equal in magnitude 
and a33 distinct. The chemical shielding at 1 and II is therefore 
axially symmetric, and unmistakably, there is a transformation 
from a near-Td symmetry to C3v symmetry. A Si environment 
which has three silicons and one titanium as bridged neighbors 
would make this symmetry transformation possible. Our 
observations therefore conclusively show that Si[3Si,!Ti] type 
si li cons occur in ETS-1 0 and further confirm earlier assignment 
of the silicon signais at -94.6 and -96.6 ppm to these type of 
silicons. On the basis of symmetry considerations, the 3-fold 
rotational axis of symmetry will be along the Si-Ti vector. An 
inspection of the X-ray-determined structure of ETS-1 0 shows 
the presence of a chain of -Ti-0-Ti- which connects ali of 

(47) Ramdas, S.; Klinowski, J. Nature 1984, 308, 521-523. 
(48) Radeglia, R.; Engelhardt, G Chem. Phys. Lett. 1985, /l4, 28-30. 
(49) Fyfe, C. A.; Grondey, H.; Feng, Y.; Kokotailo, T. J. Am. Chem. 

Soc. 1990, //2, 8812-8820. 

1. Am. Chem. Soc., Vol. 120, No. 19, /99R 4757 

Table 3. Anisotropie 29Si Chemical Shielding Parameters" for 
ETS-10 and ETAS-10 

sample type. al lb anh aJl cl' àh r/ 
ETS-IOc 1 79.8 79.8 124.5 94.7 44.7 1.0 

II 8L8 81.8 126.5 96.7 44.7 1.0 
III 94.0 108.1 109.0 103.7 15.0 -0.9 

ETAS-IQd 1 79.5 79.5 125.0 94.7 45.5 1.0 
II 81.5 81.5 127.0 96.7 45.5 1.0 
III 94.0 108.2 109.0 103.4 15.0 -0.9 
A,B 75.5 76.5 121.0 90.8 45.5 1.0 

a Values in ppm with respect to TMS. Positive values (in a scale) 
denote increasing shielding. I, II, III, and (A, B) refer to the silicon 
environments as discussed in the text. b For definition see text. c From 
700-Hz slow MAS computer simulations. d From 645-Hz slow MAS 
computer simulation. 
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Figure 6. 29Si slow MAS spectrum (A) of ETAS-10 (Si/Al = 62) 
when the sample was spun at 645 Hz. (B) corresponding computer­
simulated spectrum. An exponential line broadening of 260 Hz was 
used in the simulations. 

the titanium octahedra. From the connectivity between Si04 
tetrahedra and Ti06 octahedra, the orientation of the unique C3v 

axis of the chemical shielding tensor of Si[3Si, !Ti] is perpen­
dicular to the long -Ti-0-Ti- chains. 

The analysis of the slow MAS spectra of ET AS-! 0 (Si/ Al = 
42) was carried out as before, and these results are also collected 
in Table 3. The corresponding spectral simulations are shown 
in Figure 6. For this simulation, four distinct Si environments 
shawn in Figure 4b were considered (1, II, III, and A). The 
peak B is not resolved under low spinning because of incrcased 
broadening. Three of them correspond to Si sites belonging to 
types 1, Il, and III, as in the parent ETS- JO structure, while the 
fourth one, belongs to Si[2Si,!Ti,IAI]. Despite the small 
differences in the simulated intensities obtained, the spectra 
could be simulated using the anisotropy and asymmetry 
parameters fou nd for ETS-1 O. The che mi cal shielding tensors 
for Si sites of types 1, II, and III are completely preserved in 
the ET AS-10 structure, th us ensuring identical or near-identical 
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Figure 7. Computer simulations of 29Si slow MAS spectra at a representative spinning speed of 400Hz to show the correspondence between the 
change in local symmetry due to heteroatom (M) substitution and the 29Si chemical shielding (A) Si(4Si,OM); (B) Si(3Si, lM); (C) Si(2Si,2M); (D) 
Si(l Si,3M); (E) Si(0Si,4M). The Gaussian broadened static spectra are also shown side by side. Spectral simulations were carried out using b = 
15 ppm (B. C. and D). A downfield isotropie shift of 5 ppm for every M substitution has been considered in the simulations. 

T-site geometries for these sites in the structures of Al­
substituted materials. The additional sideband pattern noticed 
for the Si[2Si, 1 Ti, 1 Al] environment also fits to an axial tensor. 
lt is probable that Al substitutes the Si site isomorphously 
without disturbing the Td coordination of the T site. However, 
the geometry varies in such a way that the heteroatom 
substitution causes the net isotropie shift to change by as much 
as 5 ppm. and yet, this environment possesses a overall C3,. 

symmetry for the electronic shielding. considering the presence 
of one neighboring Ti site. 

Our approach has general utility in resolving disputes in ali 
zeolite lattices where heteroatoms are isomorphously substituted 
in place of Si. The stepwise substitution by a heteroatom (M) 
would transform the local symmetry in the order Td (OM) -
C3,, (lM)- C2" (2M)- C3" (3M)- Td (4M) as the extent of 
substitution increases. As an aid to this generalization of the 
slow MAS approach for isomorphic heteroatom substitutions, 
we show in Figure 7 the computer simulated slow MAS and 

static 29Si spectra for generic representations of lattice substitu­
tion by none [Q4(4Si,OM)](A), one [Q4(3Si,lM)](B), two [Q4-

(2Si,2M)](C), three [Q4(1Si,3M)](D), and four [Q4(0Si,4M)](E) 
heteroatoms (M), and these serve to indicate that indeed the 
change in local symmetry has a great influence on the 29Si 
chemical shielding which can be conveniently monitored at high 
superconducting magnetic fields. 

Molecular Modeling Studies. MNDO (modified neglect of 
differentiai overlap) calculations were performed to compute 
the energies of substitution of a single aluminum atom in place 
of silicon in the ETS-1 0 framework leading to ET AS-1 O. The 
preferred site of aluminum substitution and its consequences 
on the acidic properties of ET AS-1 0 are also studied. The 
geometry of a typical cluster mode! representing the crystal­
lographic site Si 10 is shown in Figure 8. Similar elus ter models 
are derived for the other sites in ETS-10 from the reported 
crystal structure of polymorph B. A cluster containing one 
tetrahedral group, namely Si(OH)4 (denoted as monomer), is 
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Figure 8. Computer graphies picture of the cluster mode! chosen to 
study the electronic property of Si10 site. Hydrogens marked as squares 
represent neighboring Ti sites, while hydrogens marked as circles 
represent neighboring Si sites. 

considered for studying the electronic properties. The terminal 
oxygen atoms of Si04 group are bonded to hydrogen atoms to 
maintain the electrical neutrality of the cluster. The positions 
of these terminal hydrogen atoms are located at the nearest­
neighbor M-site (where M = Si or Ti) locations. 

A larger pentamer cluster mode! was generated to study the 
aluminum substitution process. The pentamer cluster mode! 
{Si04[Si(0Hh]4} represents a Si04 group which shares the 
corners with four adjacent Si04 groups through bridging oxygen 
atoms. Such pentameric cluster models were generated for the 
Si sites of type III, namely Si 1, Si 10, and Si 11 , since our MAS 
NMR studies conclusively showed that these are the sites where 
Al substitution occurs. The process of substitution of aluminum 
in ETS-1 0 lattice is considered as follows: 

Si04[Si(OH)3]4 + [Al(OH)4r-

AI04[Si(OH)3] 4 - + Si(OH)4 (2) 

The substitution energy (SE) of aluminum for silicon in the 
above process is calculated from their total energies (TE) 
according to the equation 

SE= TEproducts- TEreactants (3) 

The acidity is studied by compensating the negative charge 
in the AI04[Si(0Hh]4- elus ter by adding a hydrogen to the 
bridging oxygen between Al and Si. Although there are four 
possible bridging oxygens, the hydrogen is attached to the 
bridging oxygen which is facing the large 12-member ring of 
the ETS-1 0 !attlee. The binding energy of the proton (BEH) is 
calculated by considering the following process: 

and the following relation: 
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Figure 9. Assignment of crystallographically nonequivalent Si sites 
based on their chemical shift correlation with the M-0-M angles 
derived from X-ray structure of ETS-10. 

Table 4. Energetics Derived from Quantum Chemical Calculations 
for Various Cluster Models Representing the Sites Sir, Si 10, and Si11 

cluster 
site cluster model 

1 Si(OH)4 
10 Si(OH)4 
Il Si(OH)4 
1 [AI(OH)4)-

10 [AI(OH)4)-
Il [AI(OH)4)-
1 Si04(Si(OH)J)4 

10 Si04[Si(OH)J)4 
Il Si04[Si(0Hh]4 
1 AI04[Si(OH)J)4-

10 AI04[Si(OH)J)4-
Il AI04[Si(OH)J)4-

total energy 
(eV) 

-3816.80 
-3815.22 
-3813.56 
-3562.40 
-3560.86 
-3559.23 
-5724.73 
-5724.45 
-5724.20 
-5682.55 
-5682.85 
-5681.94 

relative 
aluminum 

substitution 
energy (eV) 

-0.15 
-0.69 

0.00 

relative 
proton 
binding 

energy (eV) 

-0.31 
0.00 

-0.69 

The cluster site, the cluster mode! and total energy of the 
clusters are given in Table 4. The substitution energy evaluated 
according to eq 3 for process 2 at the three possible sites are 
also given in Table 4. The substitution energy of alurninum at 
the Si10 site is the most favorable and hence preferential 
substitution at Si 10 is expected. When Si 10 is substituted by 
alurninum, the silicons adjacent to Siw, which are Si2, Si3, Sis, 
and SÎl;, are expected to undergo a downfield shift by 4 ppm, 
as is indeed observed. With this, the resonances of type li 
silicons could be assigned to Si4, Sb, Si8, and Si9. 

In earlier reports,47 - 49 it has been shown that there is a linear 
correlation between the NMR chemical shifts and the Si-site 
geometry, namely the average Si-0-Si angle. We derived 
the Si-0-Si angle for ali the Il sites from the structural report 
and then plotted against the experimental chemical shift. 
However, when more than one peak could not be deconvoluted, 
the average Si-0-Si angles were considered. Our assignment 
is further testified from the plot of chemical shift versus 
M-0-M angle as shown in Figure 9, which shows almost a 
linear variation. 

The slight deviations noticed in T-site correlation are thought 
to arise from the influence of other geometrical parameters such 
as M-O distances, 0-M-0 angles, and 0-M-0-M dihedral 
angles. It may also be noted that the signais for the eight silicons 
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Figure 10. 105.8-MHz 23Na MAS spectra of ETS-10 (a) and ETAS-
10, Si/Al= 62 (b), 42 (c), and 22 (d). 

of type I and type II lie in rather restricted chemical shift range 
-94.1 to -96.6 ppm. Further enhancement in chemica1 shift 
dispersion may become noticeab1e at very high magnetic fields. 

The cations compensating the anionic framework charge due 
to a1uminum substitution can be protons and they impart 
Bronsted acidity. The binding strength of protons to the oxygcn 
atoms bridging silicon and aluminum is an indication of acid 
strength. We have evaluated the acidity of protons bonded to 
different oxygen sites, by calculating the proton binding energy 
according to eq 5. It is observed that the site where most facile 
substitution of aluminum occurs, namely Si 10, creates the 
stronger acidity. As predicted by the proton binding energy, 
the proton is weakly bound, when Al substitutes Si 10 (Table 4 ). 

23Na and 27Al MQ-MAS NMR. Recently, a new 20 MQ­
MAS experiment on quadrupolar nuclei was proposed by 
Frydman and Harwood42 and further developed by Fernandez 
and Amoureux50.5 1 Since this rnethod completely averages out 
anisotropie interactions, such as dipolar and chemical shieldings, 
as weil as second-order quadrupolar broadening, it gives new 
access for studying half-integer quadrupolar nuclei, such as the 
sodium cations and the alurninum sites in molecular sieves. ln 
this experiment, an isotropie spectrum of the quadrupolar 
nucleus can be obtained from 20 correlation of 3Q (or 5Q in 
27 Al) and 1 Q transitions. Separation of contributions from 
quadrupole interactions and chemical shieldings is readily 
achieved, and one can get valuable information about the 
distribution of CS of nonequivalent sites and further of the 
electric field gradients at these sites. Our application of this 
method to ETS-1 0 and ET AS-1 0 is also the first attempt to 
characterize the cation environment in molecular sieves by MQ­
MASNMR. 

In ETS-1 0 and ET AS-! 0, sodium cations part! y counter­
balance the negative framework charge due to octahedrally 
coordinated titanium. Simple 23Na MAS spectra of ETS-1 0 and 
ET AS-! 0, shown in Figure 10, are featureless, and no informa­
tion can be discerned about the cation environments. Ail spectra 
display single asymmetric !ines devoid of quadrupolar features. 
Although the second-order quadrupole broadening of the 
observed ( - 1/ 2, +1/ 2) central transition is less severe at the high­
field (9.4-T) operation, no clue about the cation site distribution 

(50) Femandez, C.; Amoureux, J. P. Chem. Phys. Lett. 1995,242,449-
454. 

(51) Femandez, C.; Amoureux, J. P. Solid State Nue/. Magn. Reson. 1996, 
5, 315. 
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Figure Il. 105.8-MHz 23Na 3Q MAS spectrum showing the resolution 
of cation sites in ETS-1 O. The labels (1), (Il) and (III) correspond to 
the different sodium environments as discussed in the text. 
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Figure 12. Isotropie projection of 23Na 3Q MAS spectra of ETS-10 
(a) and ETAS-10, Si/Al = 62 (b), 42 (c), and 22 (d). These spectra 
were obtained by a projection of the sheared 20 data sets as mentioned 
in the text. 

is available from those spectra. In ET AS-! 0 sam pies, there is 
an increasing broadening with increasing aluminum substitution 
(Figure IO,b-d). 

3Q-MAS correlation experiments were performed on ETS-
1 0 and ET AS-1 0 using a three-pulse sequence as discussed in 
the Experimental Section. The result is shawn in Figure Il as 
a 20 contour plot for the 3Q-MAS experiment conducted on 
ETS-1 O. A shear transformation du ring 20 Fourier transform 
has been used to align the anisotropie (A) direction parallel to 
the ch horizontal axis, so that a projection parallel to this axis 
gives rise to the isotropie (Oiso) dimension and yields a high­
resolution spectrum of sodium without second-arder quadrupole 
broadening. The isotropie spectra so obtained on ETS-1 0 and 
ETAS-10 are compared in Figure 12. Severa! important aspects 
of MQ-MAS results are discussed below. 

We recognize distinct sodium environments from the results 
presented in Figures Il and 12. A careful inspection of the 
isotropie spectrum (Figures Il and 12a) reveals three non­
equivalent sodium sites in the structure of ETS-1 O. One of the se 
sites is well-resolved, whereas two other sites have considerable 
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3Q spectral overlap. The three sites are marked (1), (Il), and 
(III) in the figure. A recourse to ETS-10 structure shows that 
the asymmetric unit contains three crystallographically non­
equivalent titaniums, of which Ti 1 and Th are similar due to 
the silicon and titanium connectivities to their immediate 
neighbors, while site Tb is distinct (see also connectivity Table 
1 ). This is also noticed in the 29Si MAS NMR spectrum, as 
discussed earlier. The charge-balancing role of the sodium 
cations at these distinct titanium sites is clearly borne out from 
our 3Q-MAS studies. Although for complete charge balancing 
we require two sodiums for each nonequivalent titanium, the 
observation of only three sodium sites from 3Q-MAS experi­
ments suggests that sodium cations probably occupy symmetry­
related positions so that the two sodiums on each titanium 
become pairwise equivalent. Indeed, such a picture emerges 
from cation modeling of sodium positions in ETS-10.52 It is 
noticed that sodium ions coordinate to titanium atoms in such 
a way that they are located on either side of titanium and form 
a chain of sodium atoms that run almost parallel with Ti -0-
Ti chains, the sodiums residing in the small pores built from 
7-member rings. It is essentially sodium-rich, and the presence 
of potassium ions at low concentration is not likely to alter our 
conclusions about sodium environments derived from MQ-MAS 
NMR studies. 

The expected 2:1 relative intensity of site (1, Il) to site (III) 
is not readily apparent in the isotropie spectra of Figures 11 
and 12. 1t is realized that sites (1, Il) and (III) experience 
quadrupo1ar interaction of different magnitude. In the MQ­
MAS experiment, sites with different quadrupo1ar interactions 
are not excited to the same extent for the generation of multiple­
quantum coherences with the same efficiency. In particular, 
site (III), which experiences a much stronger quadrupolar 
interaction, develops weaker coherence compared to that for 
(1, II). However, by the knowledge of the rf field, especially 
of the multiple-quantum creation and conversion pulses, and 
also by the first estimate of Cq of each line, it is possible to 
stimulate the pulse response of the sites to a given experimental 
condition. The numerical method which involves the computa­
tion of the density matrix evolution under the rf power and 
spinning speed used in the experiment is fully described in ref 
53. The result of this calculation is shown in Figure 13. The 
relative intensity found by this method is in remarkably good 
agreement with the expected 2:1 sodium site population. 

The sodium sites are further characterized by Cq and bcs, 
which are the quadrupole interaction and isotropie chemical shi ft 
parameters, respectively. Mter shearing, the chemical shi ft axis 
is located with a slope of 1, white the QIS direction has a slope 
of -10/17. It is readily seen from Figure 11 th at the two 
contours associated with (III) and (1, Il) are displaced with 
respect to both of these axes so that they are characterized by 
different sets of quadrupolar and chemical shift parameters. An 
analysis of the 2D data gives an estimate of Cq and bcs. which 
are 0.9 MHz, -7 ppm and 1.65 MHz, -2.5 ppm for sites (1, Il) 
and (III), respectively. 

We show in Figure 12b-d the 23Na 3Q MAS isotropie 
projection spectra for ETAS-10 with increasing aluminum 
substitution. These spectra are devoid of the second-order 
broadening and reveal distinct sodium sites whose peak maxima 
occur at the sum of the isotropie chemical shift and the 
quadrupo1e triple-quantum-induced shift.54 When compared 
with the result obtained on ETS-10 (Figure 12a), it is clear that 

(52) Yang, X.; Blosser, P. W. Zeolites 1996, 17, 237-243. 
(53) Zwanziger, J. W. Solid State Nue/. Magn. Reson. 1994,3, 219. 
(54) Medek, A.; Harwood: J. S.; Frydman, L. J. Am. Chem. Soc. 1995, 

117, 12779-12787. 
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Figure 13. Quantification of the experimentally determined sodium 
sites (1, II) and (III) in ETS-10. This is obtained by a computer 
simulation of the actual response on the experimentally observed 20 
data matrix to give the indicated population numbers as weil as the 
quadrupole (Cq) and chemical shift (Ocs) parameters. 
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Figure 14. 1 04.3-MHz 27 Al 3Q MAS spectrum of ET AS-1 0 (Si/ Al = 
22). The intense contour is due to tetrahedral framework aluminum. 

the sodium environments are intact in the aluminum-substituted 
materials, except for the additional broadening. This broadening 
is seen to increase with increasing aluminum content, and the 
distinction of (I) and (II) type environments is quickly lost. It 
may also be noted that the site (III) position is unchanged. The 
29Si MAS NMR results discussed earlier show that the frame­
work structure of the aluminum-substituted material conforms 
to parent ETS- 10 structure. In addition, the present 3Q MAS 
observations in ETAS-10 show that the cation environment is 
unchanged as weil. Taken together, our studies !end credence 
to the view that the overall structure of ET AS-1 0 is the same 
as that of ETS-1 0 and that the heteroatom substitution occurs 
isomorphically. We believe that the observed broadening arises 
mainly from a distribution of isotropie chemical shifts and is 
only slightly due to a distribution caused by quadrupolar effects, 
since the 2D contour plots show distorted patterns with ridges 
that extend along the diagonal of slope 1. 

In an effort to characterize the tetrahedrally substituted 
aluminum sites by MQ-MAS NMR, we have performed the 3Q 
MAS experiments for the 1 = 5/ 2 aluminum nuclei in ETAS-10 
with different Si/Al. The triple-quantum-single-quantum cor-
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relation is shown as a 20 contour plot in Figure 14 for Si/ Al = 
22. Oespite the low Al loading, presence of octahedral 
aluminum is clearly visible in the 20 plot. Similar spectral 
features were noticed in other samples with increasing Si/Al. 
A feature of the 3Q MAS result is that the isotropie projection 
spectrum gives a much sharper resonance for the tetrahedral 
site at 65 ppm along the isotropie dimension, suggesting that a 
highly crystalline material has been synthesized. Within the 
resolution afforded by 3Q MAS, we however do not get any 
clue about the presence of nonequivalent tetrahedral aluminum 
sites. It is probable that the aluminum substitution occurs 
preferentially at the silicious environments, in the manner that 
molecular modeling studies show. 

Conclusions 

In this paper, we have presented a detailed analysis of the 
MAS NMR of highly pure ETS-10 and ETAS-10 molecular 
sieves which were synthesized without the use of any ETS-4 
seeds. The 29Si MAS NMR spectra at 7.1-T field display 
superior resolution and allow individual T sites to be recognized. 
A combination of NMR and molecular modeling is shown to 

Ganapathy et al. 

be a very powerful approach for the exact location of Al 
substitution and the Bronsted acidic sites and the assignment 
of different tetrahedral silicon sites. The strategy involves 
isomorphic substitution of silicon by Al in ETS-10 lattice and 
Al substitution energy calculations by quantum. chemical 
methods. We have also addressed the question of heteroatom 
lattice substitution in molecular sieves by slow MAS NMR. We 
show that this approach is very effective in establishing 
isomorphic substitution in molecular sieves through changes in 
chemical shielding tensor brought by transformation of local 
symmetry. This has been demonstrated in ETS-10 and ETAS-
10. The power of the MQ-MAS NMR technique to determine 
the cationic sites occupied by sodium in ETS-10 and ETAS-10 
is demonstrated. 

Supporting Information A vailable: Tables of Si -0 and 
Ti-0 distances and Si-0-Si and Si-0-Ti angles in ETS-
1 0 (2 pages, print/POF). See any current masthead page for 
ordering information and Web access instructions. 

JA9727140 



Conclusion 

General considerations on the MQMAS experiment 

The recently developed MQMAS experiment allows all anisotropie inter­

actions that occur in solid-state NMR to be averaged out, this includes first­

and second-order quadrupolar interactions. A development of the quadrupo­

lar Hamiltonian was necessary to explain the foundations of the method 

presently used. Moreover, the procedure for acquiring and processing an MQ­

MAS spectrum in a two dimensional way required special care. For the last 

three years, the improvements that we made to the MQMAS experiment 

were directed towards the aim of getting (1) a pure absorption 2D spectrum 

and (2) a higher efficiency of the multiple-quantum excitation. 

Amongst the different variations of the MQMAS experiment which have 

arised, we put the emphasis on the need of including a z-filter in the se­

quence. Meanwhile, numerical calculations and experimental optimisations 

converged to provide the optimal conditions of the multiple-quantum exci­

tation. These enhancements of the Frydman's original MQMAS experiment 

made it possible to acquire high-resolved spectra of quadrupolar nuclei, the 

quality of which was satisfactory for a subsequent quantification. 

Today, we have gotten to the point where the basic MQMAS sequence 

cau be efficiently used as a routine and should not need further improvement. 

Nevertheless, a better efficiency of the multiple-quantum transfers is still 



224 Conclusion 

possible if additional developments of the equipment (stronger rf field, higher 

spinning speed) are undertaken. 

Quantification by inversion 

In a subsequent step, we have shawn that the excitation of the multiple­

quantum coherences is uneven such that a straightforward quantification of 

the 2D spectrum is almost impossible. The methods using MAS and MQMAS 

spectra failed to provide an accurate quantitative result, especially when the 

materials are badly-crystallised. Therefore, the main part of the present work 

was to precisely determine the relative concentration of each site by inversion 

of the MQMAS spectrum. The calculation that was introduced leads to a 

canonical representation of the different sites taking advantage of the fact 

that the position of a band on the 2D dataset is fully determined by the 

Pq and 6cs parameters. If a correction of the intensities using a powerful 

simulation program, is included during the inversion, we obtain a canonical 

representation for which the relative proportion of the unequivalent sites is 

close to what it is in reality. 

Our method of inversion provided a precise determination (within 10% 

accuracy) of the proportion of 27Al, 170 and 23Na sites in several microporous 

materials. This quantification, combined with the capability of the MQMAS 

experiment to separate crystallographically non equivalent sites, has revealed 

to be an unequalled technique for investigating the present materials. Indeed, 

29Si MAS experiments as well as previous X-Ray diffraction studies had failed 

to give such precise information. 

We also observed that there was a minimum width for the spots appear­

ing on the canonical representation, even for very well-crystallised samples. 

However. this broadening resulting from the inversion is less critical when it is 



225 

applied to badly-crystallised or amorphous samples for which this calculation 

is designed. 

Future of MQMAS-based experiments 

The MQMAS technique has revealed its full potential to the NMR com­

munity. Thanks to its ease of use, numerous chemical studies now integrate 

this experiment as a routine. Indeed, an MQMAS spectrum can be acquired 

without any technological sophisticated equipment, unlike DOR and DAS 

experiments. The other great advantage of the MQMAS is also that the ba­

sic sequence is pretty flexible and additional spin manipulations can easily be 

added before, after or during the multiple-quantum evolution. After finding 

a way to get rid of all the anisotropie broadenings, we can imagine further 

spin manipulations which will independently reintroduce each interaction 

for a subsequent and separate analysis. The CP-MQMAS and MQ-REDOR 

sequences presented here are preliminary to a new class of experiments in 

solid-state NMR of quadrupolar nuclei. Today, the preference is given to the 

MQ-REDOR sequences as it allows the inter-nuclear distances to be deter­

mined through the reintroduction of the dipolar interaction. No doubt that 

other spin and spatial manipulations will be associated in the future to pro­

vide complementary structural information on powder samples. 
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Appendix 

Flow Chart of REGULAR 
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Subroutine gauleg 

•======================================== 
subroutine gauleg(x1,x2,x,w,n) 
•======================================== 
integer n 
real x1,x2,x(n),w(n) 
double precision eps 
parameter (eps=3.d-14) 
! Given the lower and upper limits of integration xi and x2, 

and given n, this routine returns arrays x(i:n) and w(i:n) 
of length n, containing the abscissas and weights of the 
Gaussian Legendre n-point quadrature formula. 

integer i,j,m 
double precision p1,p2,p3,pp,xl,xm,z,z1 
m=(n+i)/2 
xm=0.5dû*(x2+x1) 
xl=0.5dû*(x2-x1) 
do i=1 ,rn 

z=cos(3.141592654dO*(i-.25dO)/(n+.5d0)) 
1 continue 
p1=1.0d0 
p2=0.0d0 
do j=i,n 

p3=p2 
p2=p1 
p1=((2.dû*j-1.dû)*z*p2-(j-1.dû)*p3)/j 

end do 
pp=n*(z*p1-p2)/(z*z-1.d0) 
zi=z 
z=z1-p1/pp 

if (abs(z-zi).gt.EPS) goto 1 
x(i)=xm-xl*z 
x(n+1-i)=xm+xl*z 
w(i)=2.dû*xl/((1.d0-z*z)*pp*pp) 
w(n+1-i)=w(i) 

end do 
return 
end 
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Subroutine svdcmp 

!======================================== 
subroutine svdcmp(a,m,n,mp,np,w,v) 
!======================================== 
integer m,mp,n,np,NMAX 
real a(mp,np),v(np,np),w(np) 
parameter (NMAX=500) 

Appendix 

! Given a matrix a(1:m,1:n), with physical dimensions mp by np, 
this routine computes its singular value decomposition, 
A=U.W.VT. The matrix U replaces a on output. The diagonal 
matrix of singular values W is output as a vector w(i:n). 
The matrix V (not the transpose VT) is output as v(1:n,1:n). 

integer i,its,j,jj,k,l,nm 
real anorm,c,f,g,h,s,scale,x,y,z,rv1(NMAX),pythag 

g=O.O 
scale=O.O 
anorm=O.O 
do i=i,n 

l=i+1 
rvi(i)=scale*g 
g=O.O 
s=O.O 
scale=O.O 
if (i.le.m) then 

do k=i,m 
scale=scale+abs(a(k,i)) 

end do 
if (scale.ne.O.O) then 

do k=i,m 
a(k,i)=a(k,i)/scale 
s=s+a(k,i)*a(k,i) 

end do 
f=a(i,i) 
g=-sign(sqrt(s),f) 
h=f*g-s 
a(i,i)=f-g 
do j=l,n 

s=O.O 
do k=i ,rn 

s=s+a(k,i)*a(k,j) 
end do 
f=s/h 



do k=i,m 
a(k,j)=a(k,j)+f*a(k,i) 

end do 
end do 
do k=i,m 

a(k,i)=scale*a(k,i) 
end do 

end if 
end if 
w(i)=scale*g 
g=O.O 
s=O.O 
scale=O.O 
if ((i.le.m).and.(i.ne.n)) then 

do k=l,n 
scale=scale+abs(a(i,k)) 

end do 
if (scale.ne.O.O) then 

do k=l,n 
a(i,k)=a(i,k)/scale 
s=s+a(i,k)*a(i,k) 

end do 
f=a(i,l) 
g=-sign(sqrt(s),f) 
h=f*g-s 
a(i,l)=f-g 
do k=l,n 

rvi(k)=a(i ,k) /h 
end do 
do j=l,m 

s=O.O 
do k=l,n 

s=s+a(j,k)*a(i,k) 
end do 
do k=l,n 

a(j,k)=a(j,k)+s*rv1(k) 
end do 

end do 
do k=l,n 

a(i,k)=scale*a(i,k) 
end do 

end if 
end if 
anorm=max(anorm,(abs(w(i))+abs(rv1(i)))) 

end do 
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do i=n,i,-1 
if (i.lt.n) then 

if (g.ne.O.O) then 
do j=l,n 

v(j,i)=(a(i,j)/a(i,l))/g 
end do 
do j=l,n 

s=O.O 
do k=l,n 

s=s+a(i,k)*v(k,j) 
end do 
do k=l,n 

v(k,j)=v(k,j)+s*v(k,i) 
end do 

end do 
end if 
do j=l,n 

v(i,j)=O.O 
v(j,i)=O.O 

end do 
end if 
v(i,i)=1.0 
g=rv1(i) 
l=i 

end do 
do i=min(m,n),l,-1 

l=i+1 
g=w(i) 
do j=l,n 

a(i,j)=O.O 
end do 
if (g.ne.O.O) then 

g=1.0/g 
do j=l,n 

s=O.O 
do k=l,m 

s=s+a(k,i)*a(k,j) 
end do J 

f=(s/a(i,i))*g 
do k=i,m 

a(k,j)=a(k,j)+f*a(k,i) 
end do 

end do 
do j=i,m 
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a(j, i) =a(j, i) *g 
end do 

el se 
do j=i,m 

a(j,i)=O.O 
end do 

end if 
a(i,i)=a(i,i)+1.0 

end do 
do k=n,1,-1 

do its=1,30 
do l=k,1,-1 

nm=l-1 
if (abs((abs(rv1(l))+anorm)-anorm).lt.1.E-15) goto 2 
if (abs((abs(w(nm))+anorm)-anorm).lt.1.E-15) goto 1 

end do 
1 c=O.O 
s=1.0 
do i=l,k 

f=s*rv1(i) 
rv1(i)=c*rv1(i) 
if ((abs(abs(f)+anorm)-anorm) .lt.1.E-15) goto 2 
g=w(i) 
h=pythag(f,g) 
w(i)=h 
h=1. 0/h 
c=(g*h) 
s=-(f*h) 
do j=1,m 

y=a(j ,nm) 
z=a(j, i) 
a(j,nm)=(y*c)+(z*s) 
a(j,i)=-(y*s)+(z*c) 

end do 
end do 
2 z=w(k) 
if (l.eq.k) then 

if (z.lt.O.O) then 
w(k)=-z 
do j=1,n 

v(j,k)=-v(j,k) 
end do 

end if 
goto 3 

end if 
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if (its.eq.30) write(*,*) 'no convergence in svdcmp' 
x=w(l) 
nm=k-1 
y=w(nm) 
g=rvl(nm) 
h=rvl(k) 
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y) 
g=pythag (f, 1. 0) 
f=((x-z)*(x+Z)+h*((y/(f+sign(g,f)))-h))/x 
c=1.0 
s=1.0 
do j=l,nm 

i=j+1 
g=rv1Ci) 
y=w(i) 
h=s*g 
g=c*g 
z=pythag (f, h) 
rv1(j)=z 
c=f/z 
s=h/z 
f=(x*c)+(g*s) 
g=-(x*s)+(g*c) 
h=y*s 
y=y*c 
do jj=1,n 

x=v(jj,j) 
z=v(jj, i) 
v(jj,j)=(x*c)+(z*s) 
v(jj,i)=-(x*s)+(z*c) 

end do 
z=pythag(f,h) 
w(j)=z 
if(z.ne.O.O) then 

z=1. 0/z 
c=f*z 
s=h*z 

end if 
f= (c*g)+(s*y) 
x=-(s*g)+(c*y) 
do jj=1 ,rn 

y=a(jj ,j) 
z=a(jJ, i) 
a(jj,j)= (y*c)+(z*s) 
a(jj,i)=-(y*s)+(z*c) 



end do 
end do 
rv1 (1)=0 .0 
rv1(k)=f 
w(k)=x 

end do 
3 continue 

end do 
return 
end 

Subroutine svdksb 

•============================================ 
subroutine svdksb(u,w,v,m,n,mp,np,b,x) 
!============================================ 
integer m,mp,n,np,NMAX 
real b(mp),u(mp,np),v(np,np),w(np),x(np) 
parameter (NMAX=500) 

235 

! Solves A.X=B for a vector X, where A is specified by the 
arrays u, w, v as returned by the svdcmp. rn and n are the 
logical dimensions of a, and will be equal for square 
matrices. mp and np are the physical dimensions of a. b(1:m) 
is the input right-hand side. x(1:n) is the output solution 
vector. No input quantities are destroyed, so the routine 
may be called sequentially with different b's. 

integer i,j ,jj 
real s,tmp(NMAX) 
do j=1 ,n 

s=O. 
if (w(j).ne.O.) then 

do i=1,m 
s=s+u(i,j)*b(i) 

end do 
s=s/w(j) 

end if 
tmp(j)=s 

end do 
do j=1,n 

s=O. 
do jj=1 ,n 
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s=s+v(j,jj)*tmp(jj) 
end do 
x(j)=s 

end do 
return 
end 
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