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INTRODUCTION 



General introduction : 

The resonant tunnelling effect in semiconductors is known since the pioneering 

work of L.Esaki in 1958 followed by the first experimental demonstration of 

Negative Differentiai Conductance (NDC) effect at liquids Nitrogen. Now, with the 

recent advance in epitaxial growth and modem lithography techniques a wide 

variety of deviees exhibiting such NDC effect are fabticated. With respect to 

conventional NDC deviees including the so called Esaki tunnel diode the major 

advantages stem from quantum resonance effect. Indeed, it is weil known that by 

means of this quantum resonance the transmission probability can rea ch unity with a 

selective character. Basically, the observation of a resonant tunnelling effect needs 

to fabricate a quantum-sized system which can be supplied or probed by a 

tunnelling mechanisms. For this very general view point, the Double Barrier 

Heterostructure (DBH) appears as the generic nana-structure. By using hetero­

junction rather than homo-junction we take advantage of numerous degrees of 

freedom in deviee design. So that band-gap engineering can be carried-out. 

Therefore with the goal to use these quantum deviees in electronic and 

optoelectronic applications, a large variety of relevant figure of merits can be 

optimised depending on the targeted application. For instance, the intrinsic response 

time in direct connection with the life time of carriers within the quantum weil is 

extremely short provided the various bani ers are sufficiently thin. 

The NDC effect which results from a resonant tunnelling deviee gained the 

attention of many functional component designers. The ultra-high speed of resonant 

tunnelling effect is the primary motivation. On the other hand such an effect allows 

them to integrate complex functions into a single functional deviee. Also should be 

added that one can implement a single or a multiple NDC-region deviee or circuit in 

order to realise a multi-functional deviee. 



.. 
11 

On the other hand, the CUITent voltage characteristics can be tailorcd pa1ticularly 

at convenience. In this context, there is an impmtant need for accurate simulation 

tools with the goal to computer aided design of these specifie quantum stmctures. In 

a real deviee, the conduction mechanisms are much more complicated than the 

simple view of tunnelling electron through the quantum leve) of the DBH-. In the 

emitter region there is obviously a spread in the injection energy. As a consequence, 

only some electrons take advantage of resonant tunnelling transfer of charge wh ile 

the others are accumulated close to the heterointetface. Such an accumulation yields 

to the fonnation of an electrostatic potential. This electrostatic quantum weil 

modifies significantly the charge transfer through the injection condition. In other 

words, the injection process involves transitions between to quantum systems. This 

issue will be an important part of the effect investigated in this thesis. On the other 

band, with respect to the ideal picture of a pure coherent process, experiment shows 

dominant impact of disorder and scattering assisted tunnelling effects. However, for 

accounting for such spurious or parasitic effects which tends to smear out the 

relevant NDC phenomena are also of prime concem. This specifie problem will 

concern an important part of the present work. At last, it seems interesting to 

generalise the simulation treatment to three terminal deviees which appeasers a key 

component in digital applications. In that case the genetic stmcture is the dual gate 

FET fabricated on nano-scale. With respect to the issues addressed previously we 

will see the necessity to solve the Boltzmann equation along with the Schroedinger 

equation. Sorne resonant tunnelling features will be demonstrated with the 

counterpart of a very low temperature operation. 

In the first chapter btiefly, we address the general issue of the NDC effect. We 

will discuss the various physical mechanisms responsible for negative differentiai 

conductance in the CUITent voltage characteristics of a two terminal deviee. In this 

introductory chapter we discuss in short the conventional along with resonant 

tunnelling stmctures. To give an overall picture into the other types rather than 

tunnelling transfer effect, the reciprocal transfer as weil as the real space transfer 

effects are outlined. The tunnelling effect through supper-Iattices is also introduced 
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as an analogus to the reciprocal-space transfer one. To go fut1her into the problem 

of realisation of high functionality deviees, we will review some of the most 

promising options by discussing, on one hand, the possibility of direct access into 

the quantum weil by an Omic or Shottk-y contact control and on the other hand, the 
.. 
co-integration of resonant tunnelling structure with active deviees. This includes, 

Resonant Tunnelling Bipolar Transistor (HBRT), Resonant Hot Electron 

Transistor, Inverted base-collector tunnel transistor (Stark effect transistor) and 

Resonant Tunnelling Field Effect Transistor (RTFET). From the other hand, the 

Field induced tunnelling structures along with the solutions combine optical control 

gate are finally discussed. 

In the second chapter, we investigate the effect of two-dimensional injection on 

purely coherent resonant tunneiiing. We shaH discuss the development of a new 

model which defines a two dimensional supply function. Conceming this issue, we 

will start from the notion of local density of states. Special attention will be paid to 

the wave function normalisation and sorne preliminaty results wiii be also discussed 

by introducing the effect of non-parabolicity which influences the effective mass in 

the accumulation zone. Finally, to suppmt the validity of the new fmmalism we wiii 

report a comparison between the simulation results carried out in the present study 

and the experiments. 

In chapter three, we will address the effects of phonon scattering on the current­

voltage characteristics. Our deviee under test wiii be an AlGaAs/GaAs resonant 

tunneiiing diode fabricated and characterised in our group of research. We carried 

out a self consistent solution based on the fact that the broadening in the 

transmission probability is linked to the probability of scatteting. The second issue 

is the inclusion of the phase breaking not only into the transmission probability but 

also into the 20 supply function. Besicles, The interface roughness scattering wiii be 

addressed along with the impact of the space charge on the 1-V curve. To validate 

the new formalism, we experimentaiiy characterised the DBH diode and compare 

the experimental data \Vith the results of the th emy. 



Il 

On the other hand, the cuiTent voltage characteristics can be tailored pmticularly 

at convenience. In this context, there is an impm1ant need for accurate simulation 

tools with the goal to computer aided design of these specifie quantum structures. In 

a real deviee, the conduction mechanisms are much more complicated than the 

simple view of tunnelling electron through the quantum levet of the DBH-. In the 

emitter region there is obviously a spread in the injection energy. As a consequence, 

only some electrons take advantage of resonant tunnelling transfer of charge while 

the others are accumulated close to the heterointerface. Such an accumulation yields 

to the fonnation of an electrostatic potential. This electrostatic quantum well 

modifies significantly the charge transfer through the injection condition. In other 

words, the injection process involves transitions between to quantum systems. This 

issue will be an important part of the effect investigated in this thesis. On the other 

hand, with respect to the ideal picture of a pure coherent process, experiment shows 

dominant impact of disorder and scattering assisted tunnelling effects. However, for 

accounting for such spurious or parasitic effects which tends to smear out the 

relevant NDC phenomena are also of prime concem. This specifie problem will 

concem an important part of the present work. At last, it seems interesting to 

generalise the simulation treatment to three terminal deviees which appeasers a key 

component in digital applications. In that case the generic structure is the dual gate 

FET fabricated on nano-scale. With respect to the issues addressed previously we 

will see the necessity to solve the Boltzmann equation along with the Schroedinger 

equation. Sorne resonant tunnelling features will be demonstrated with the 

counterpart of a very low temperature operation. 

In the first chapter biiefly, we address the general issue of the NDC effect. We 

will discuss the various physical mechanisms responsible for negative differentiai 

conductance in the cunent voltage characteristics of a two tenninal deviee. In this 

introductory chapter we discuss in short the conventional along with resonant 

tunnelling structures. To give an overall picture into the other types rather than 

tunnelling transfer effect, the reciprocal transfer as well as the real space transfer 

effects are outlined. The tunnelling effect through supper-Iattices is also introduced 



Ill 

as an analogus to the reciprocal-space transfer one. To go fmther into the problem 

of realisation of high functionality deviees, we will review some of the most 

promising options by discussing, on one hand, the possibility of direct access into 

the quantum well by an Omic or Shottky contact control and on the other hand, the 
.. 
co-integration of resonant tunnelling structure with active deviees. This includes, 

Resonant Tunnelling Bipolar Transistor (HBRT), Resonant Hot Electron 

Transistor, Inverted base-collector tunnel transistor (Stark effect transistor) and 

Resonant Tunnelling Field Effect Transistor (RTFET). From the other hand, the 

Field induced tunnelling structures along with the solutions combine optical control 

gate are fina11y discussed. 

In the second chapter, we investigate the effect of two-dimensional injection on 

purely coherent resonant tunnelling. We shall discuss the development of a new 

model which defines a two dimensional supply function. Conceming this issue, we 

will start from the notion of local density of states. Special attention will be paid to 

the wave function normalisation and sorne preliminaty results will be also discussed 

by introducing the effect of non-parabolicity which influences the effective mass in 

the accumulation zone. Finally, to suppmt the validity of the new fmmalism we will 

report a comparison between the simulation results carried out in the present study 

and the experiments. 

In chapter three, we will address the effects of phonon scattering on the current­

voltage characteristics. Our deviee under test will be an AlGaAs/GaAs resonant 

tunnelling diode fabricated and characterised in our group of research. We carried 

out a self consistent solution based on the fact that the broadening in the 

transmission probability is linked to the probability of scattering. The second issue 

is the inclusion of the phase breaking not only into the transmission probability but 

also into the 20 supply function. Besicles, The interface roughness scattering will be 

addressed along with the impact of the space charge on the I-V curve. To valida te 

the new formalism, we experimentally characterised the DBH diode and compare 

the expetimental data with the results of the th emy. 
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The lateral structures resulting in an electrostatic induced potential whose space 

variation depends at ]east on two directions will be addressed in chapter four. 

Before investigating the tunnelling transpmt in these lateral structures, a special 

attention will be paid to find out the most realistic potential function, the relevant 

Fenni-level and the injection-mode. 

The analysis will be conducted over by considering : firstly, the petfect 

adaptation of a full two-dimensional hydrodynamic energy model to simulation 

purposes at very low temperatures as weil as in the ambient conditions. The second 

step, will be devoted onto a novel physical picture including both the lateral and the 

vertical confinement effects into the transmission along with the injection 

conditions. On this basis we introduce the necessaty modifications to simulate the 

lateral resonant-tunnelling dual gate MODFET at liquid Helium. This concems the 

validity of shallow Olunic contact for such a structure along with a novel approach 

to model the deep Ohmic contact. Also the degeneracy correction into the 

hydrodynamic energy model will be extensively investigate. Finally, we will 

address the lateral tunnelling process under various assumptions. 



CHAPTER 1 



1. EFFECTS OF NEGATIVE DIFFERENTIAL CONDUCTANCE AND 

TRANSCONDUCT ANCE ................................................................................... 1-1 

1.1 Negative differentiai conductance and high functionality : ...................... 1-1 

1.2 Physical effects based on localisation and tunnelling phenomena : ......... 1-1 

1.2.1 Conventional tunnelling stmctures : ................................................. 1-1 

1.2.2 Resonant tunnelling structures : ....................................................... 1-7 

1.3 Reciprocal spa ce trans fer effect : .......................................................... 1-10 

1.3.1 reciprocal space transfer deviee: ................................................... 1-14 

1.4 Supper-lattices: .................................................................................... 1-16 

1.5 Real spa ce transfer effects : .................................................................. 1-17 

1.6 Possible solutions for structures of transistor type : ............................... 1-20 

1.6.1 Direct accessibility to the quantum we11 : ....................................... 1-20 

1.6.1.1 Ohmic contact control : .......................................................... 1-20 

1.6.1.2 Schottky contact control : ........................................................ 1-24 

1. 6.2 Co-Integration of resonant tunnelling structure with active deviees : 1-25 

1.6.2.1 Resonant Tunnelling Bipolar Transistor (HBRT) : .................. 1-26 

1.6.2.2 Resonant Hot Electron Transistor : .......................................... 1-29 

1.6.2.3 Inverted base-collector tunnel transistor (Stark effect transistor) :1-31 

1.6.2.4 Resonant Tunnelling Field Effect Transistor (RTFET) : .......... 1-34 



1.6.3 Field induced tunnelling structures : .............................................. 1-36 

1.6.4 Solutions combine optical control gate : ........................................ 1-38 

1. 7 references : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41 



1-1 

1. EFFECTS OF ~EGATIVE DIFFERENTIAL CONDllCTAl\CE AND 

TRANSCOl\DllCTA~CE 

1.1 Negative differentiai conductance and high functionality: 

Negative differentiai conductance (NDC) which results from a resonant 

tunnelling effect gained the attention of many functional component designers not 

only as it is an extremely high speed phenomenon but also as it allows them to 

integrate complex functions into a single functional deviee. For example, frequency 

multiplier and four bit parity generator have already been elaborated using a single 

deviee [ 1 ], inverters, OR ga tes and flip-flops have been fabticated using double­

banier GaAs/ AI GaAs resonant tunnelling diodes [2]. It is to be added th at one can 

implement a single or a multiple NDC-region deviee or circuit in order to realise a 

multi-functional deviee, NOR [3]. 

1.2 Physical effects based on localisation and tunnelling phenomena : 

1.2.1 Conventional tunnelling structures : 

The first acknowledged paper on tunnel deviees discussed the tunnel diode, also 

referred to as Esaki diode, and was written [4][5] by L.Esaki in 1958. Basically the 

conventional tunnelling structures depend on the band to band tunnelling 

phenomena. Figure 1.1 shows a schematic energy band diagram of a conventional 

tunnel stmcture in thermal equilibtium. Because of the high doping concentration 

the Fermi-level is located within the allowed bands. The degree of degeneracy 

denoted by V P and V n, is typically a few k8 where k is Boltzmatm' constant and 8 is 

the absolute temperature. The depletion layer width is of the order of 100 Â or less, 

which is relatively narrower th an the conventional p-n junction. 
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Figure 1.1 Energy-hand diagram (la conventionaltunnel diode in thermal 

equilibrium. 

Figure 1.2a shows a typical static current-voltage characteristic of a tunnel diode. 

In the forward bias direction, the CUITent first increases to a maximum value (peak 

current or Ir) at a voltage V P• th en decreases to a minimum value Iv at a voltage V v·· 

For a voltage higher than Vv, the CUITent increases exponentially with the voltage. 

The static characteristic is the result of three current components illustrated in 

Figure 1.2b, band- to-band tunneiling CUITent, excess CUITent, and thennal cunent 

respectively. 
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Figure 1.2 (a) Static mltage-current characteristics of a typicaltunnel diode, (b) 

the static characteristics is analysed into tlu·ee current components. 
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Figure 1.3 Simpl{fied energy-band diagram of com'entionaltunnel diode under 

d~ferent biasing conditions. 
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We first discuss qualitatively the tunnelling processes at low temperature using 

the simplified band structures shown in 

Figure 1.3. Note that the Fenni levels are within the conduction and valence band 

of the semiconductor. Un der equilibrium condition ( 

Figure l.3b) the Fermi leve] is constant across the junction. Above the Fermi 

levet there are no filled states on either side of the junction, and below the Fermi 

levet there are no empty states available on either side of the junction. Hence 

tunnelling currents cannot flow at zero applied voltage. \Vhen a biasing voltage is 

applied, the electrons may tunnel from the valence band to the conduction band, or 

vice versa. The necessary conditions for tutmeiiing are : 

1. occupied energy states exist on the side from which the electron tunnels. 

2. unoccupied enert,ry states exist at the same enert,ry Ievels on the side to 

which the electron can tunnel. 

3. the tunneling potential barrier height is low and the barrier width is narrow 

enough so that there is a finite tunneling probability. 

4. the momentum is conserved in the tunneling process. 

Figure 1.3a shows electron tunneling from the valence band into the conduction 

band when a reversed bias is applied. The coiTesponding bias point is rnarked with a 

dot on the 1-V curve. When a forward bias is applied ( 

Figure 1.3c) there exsits a band of energies for which there are fi lied states on the 

n side facing to unocupied states on the p side hence the electrons can tunnel from 

the n side to the p side. When the forward voltage is fmther increased, there are 

fewer available unoccupied states on the p side ( , 



1-6 

Figure 1.3d). If a voltage is applied in such a way that the bottom of the 

conduction band is exactly opposite to the top of the valence band, the tunneling 

conditions are no more satisfied. Thus at this point the tunneling CUITent can no 

longer flow. With still a further increase in the voltage, the well-known thennal 

current tlows ( 

Figure 1.3e), and drastically will increase with the applied voltage. Tunneling 

routes are shown in this figure by aiTows. 

ln the present work we did not study the Esaki-diodes. Nevertheless in order to 

mack a comparison with resonant tunnelling deviees which will be considered in the 

next section, Figure 1.4 showes the current-voltage characteristic measured at room 

temperature in our Iaboratory (IEMN) for a typical deviee. 

In agreement with the qualitative approach ilustrated above, the deviee 

(comersially under the referebce 1N3857) exhibites a pronaunced NDC effect over 

a qui te wide bias voltage range (in ex cess of 300 rn V). The shoulder-type behaviour 

in the 1-V curve is a result of the well known spurious sel fe biasing effect. We will 

discuss of such parasitic effect in chapter 2. 
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Figure 1.4 roomtemperature measurements of!-V characteristic of the Esaki­

diode comercia!ly referenced under the technical number 1 N38j 7. 

In contraty, the peak volyage is quit low ( 50 rn V ) for the deviee un der test. The 

key figure ofmerit in this cas is clearlly the buge Peak-to Vally cunent ratio (16 :1) 

wich is a result of the interband tunneling mechanism. This is an important 

advantage and now there is an increas effort devoted to Antimonide based material 

systems involving such interband tunneling process. 

In counter patt, conventional Esaki-diod suffers from limited cunent capability 

alongwith vety high capacitance levet. This is explained by the vety high doping 

leveles cloused to the tunnelling banier which results in high RC time constant. 

1.2.2 Resonant tunnelling structures : 
"' 

The modem epitaxial techniques namely MOCVD and MBE, in the present time, 

make it available to build potential bani ers ( classically fm·bidden bands of energies) 
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using material modulation within the range of a few monatomic layers. The charge 

carriers (electrons or ho les), near the corresponding band edge of the injection zone, 

have the ability to tunnel through the barrier. If for example, the structure contains 

only a single barrier, the quantum transmission probability is in the same order of 
-

magnitude of th at of the convention al tunnel diode which is typically 1%. 

GaAs 
GaAs 

GaAs 

Yapplicd ~ 
AI GaAs 

---------------- EFc 

Figure 1. 5 schematic diagram for simple resonanttunnelling stmcture. 

If now one crea tes a potential weil ( classically allowed bands of energies 

confined between two potential barriers, see also Figure 1.5, one observes a 

resonant behaviour in the transmission probability. This is a direct result of the 

quantisation of electron energy in epi taxi al growth direction _(longitudinal direction). 

An example of the transmission probability calculated as a function of longitudinal 

energy is illustrated in Figure 1.6. One observes the selective unity transmission 

probability at the longitudinal resonant energy coiTesponding to the quantum weil 

level. The transmission probability out of these resonant levels takes, 

approximately, the value of the transmission probability of a single barrier with a 

thickness equivalent to the sum of those of the two baniers which constitutes the 

resonant structure. 
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The understanding of the resonant tunnelling phenomena might be achieved in 

the scope of the Fabry-Pérot optical intetferometer model. It consists of two infinite 

parallel semi-reflecting mÜTors with transmission coefficients denoted by t1 and tr 

for the left and right minors respectively while they are separated by a distance L. 

Assuming a monochromatic wave of a Transverse Electric and Magnetic (TEM) 

mode is launched perpendicularly on the left minor for instance, one can easily 

deduce the total power transmission coefficient to be as follows, 

T = 
Eq. 1-1 

In this equation r1 and rr are the réflexion coefficient of the left and right-hand 

sides defined as : 

Eq. 1-2 
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If the cavity ]ength L is an integer mu1tip1es of f..../2, the overa11 transmission 

coefficient (T) in Eq. 1-1 wi11 be unity. This conesponds to in-resonance condition. 

In contrast, for wave lengths for which the factor e-2
jkL = -1, the transmission 

T = t 1tr /2, which is the transmission of an equivalent single bani_er with two 

identical mitTors in series. In this case we say that the cavity is out-of-resonance. It 

is to be mentioned that the reflection coefficient of the semi-reflecting minor 

equa11y with its resulting phase shift e are independent of the incident light 

frequency. In the case of epitaxial potential batTier there is a phase matching 

condition which will be, 

Eq. 1-3 

where el' er (the phase shifts within the barriers) and k wi11 be dependent of the 

electron energy equivalent to the electromagnetic \vave frequency. 

This intra-band resonant phenomena (in the sense that the conduction mechanism 

is unipolar) gives rise to NDC effect. Special attention will be paid to underlying 

mechanisms involved in a real deviee. In shmt, however, let us mention that there 

exists a strong difference between the conduction characteristics of Esaki diode and 

resonant tunne11ing structures marked by the existence of high transmission level at 

resonance which leads to a high current capability. It will be shown that the voltage 

range over which the differentiai conductance is negative, is a consequence of 

complex mechanisms notably two-dimensional injection processes. On the other 

hand current contrast between the in and out of resonant conditions will be effected 

by scatte1ing assisted tunnelling phenomena. As a result the Peak-to-Valley cunent 

ratio is drastically decreased. 

1.3 Reciprocal space transfer effect : 

For this very short and very biief repo11 on charge transfer in K-space, we will 

distinguish bet\veen the bulk effect and the operation of a real deviee. 
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Reciproca1 space transfer effect also named Gunn effect is an intrinsic property. 

The materials exhibiting this effect should have a conduction band characterised by 

a primaty minimum located at the r point in the Brillouin zone (central valley) and 

a number (at ]east one) of satellite valleys at re1ative1y higher energies with respect 

to the bottom of the central va11ey (Figure 1. 7). Un der the influence of high electric 

fields electrons gain enough energy compared to the difference between the central 

and satellite eneri:,ry minima. Subject to different scattering mechanisms, some of 

these electrons could have an average of k value comparable with the k value 

difference between the two valleys. Under this condition these electrons could be 

transfened from the central valley to the satellite one. If the effective mass of the 

satellite valley is relatively higher than that of the central one (which is the case of 

III-IV semiconductor materials), the average electron velocity wi11 be decreased and 

the material will exhibit a negative differentiai mobility region (Figure 1.8) . 

.. 
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Figure 1. 7 band structure diagram a,{ GaAs 

For the illustration pm-poses we plotted in Figure 1.8 the vatiation of average 

electron velocity versus the electric field for the tumery alloy Gao.7AI0.3As at room 

temperature, calculated by Mont-Carlo simulations technique (petfmmed at IEMN). 

Also we assumed that the semi-conductor material is undoped. 

In chapter( 4) we will use su ch data as an input to the hydrodynamic model 

(SIMFET) originaily implemented by [6] and extensively developed by [7][8][9], 

[7]this is after the necessary modifications which will be discussed Iater on in 

chapter( 4 ). 
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From Figure 1.8 one can notice that the threshold critical electric field is around ._ 

5KV/cm. The peak velocity reaches 1.2 107 emis whereas the saturation velocity is 

close to 0.8 107 cm/s. On this bases one can expect th at such negative differentiai 

mobility gives rise to an NDC effect since the cuiTent density depends directly on 

the velocity and the electric field is a direct result of the applied voltage. 

However in real deviees the condition of a unifonn electric field is often not 

satisfied. In this case the space charge effect plays a key role that will be discussed 

in the following section. 
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Figure 1.8/vfont-Carlo simulations of,·elocity-field characteristics ofGaA!As .. 
performed in!E!v!N 
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1.3.1 reciprocal space transfer deviee : 

To get inside the operation of a real deviee let us consider Figure 1.9 taken from 

[ 1 0] where are schematically depicts the deviee active region, the electron density, 

the intemal field as a function of distance along with the CUITent- density as a 

function of electric field. 

~n 
(a) 

(b) 

J 

(c) 

Figure 1.9 formation of an electron dipole layer in a perturbed medium of 

negative re.sistil•ely, after Kroemer [JO] 

If the semiconductor material is biased such that the applied electric field (EA) is 

in the negative differentiai mobility region, the material, initially electrically 

homogeneous, becomes heterogeneous. The migin of this heterogeneity might be 

any field petturbation. For example it might be at the neighbourhood of the 
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electrodes, whcre a region of higher resistance followed direct1y by a regton of 

lower resistance thus fonned, and hence a formation of accumulation-depletion 

region (high field domain) is stmied (Figure 1.9a) and would be developed in an 

attempt to reach CUITent stability condition. The field inside the dipole domain (E2) 

would be great er th an the fields on each si de of it (E1) (Figure 1. 9b ). The two field 

values will tend toward equilibrium levels outside the NDR region where the high 

and low currents are equal (Figure 1. 9c ). The dipole layer maves tlu-ough the active 

region and discharges at the anode. At this instant the field retums to the original 

unifonn distribution, while a new dipole layer is statiing to be fmmed, and the 

process repeats itself. 

lt is to be mentioned that the early-stage space-charge growth is gtven by 

(11-110 ) = (11-110 ) 1=0 exp(tfrR)and hence the maximum growth factor would be 

exp( TfrR) where T is the sample transit time T ~ Lfvs, Lis the sample length, Vs is 

the saturation velocity and TRis the dielectiic relaxation time. For large space charge 

growth (domain mode of operation) this growth factor must be grater than unity th us 

making 110 L z E5 v)qp- ~ I012 cm-2 for GaAs and InP. 

There is another mode of operation, called limited space charge accumulation 

(LSA) mode, in which we drive the whole sample into the NDR region only for a 

very shmt petiod of time dming which no significant charge accumulation can 

occur ; and bence the whole sample length would be in contribution to the deviee 

negative resistance. 

In conclusion we leamed that the Gun structures exhibit a n·ansit time limitation 

analogous with any injection and n·ansit time deviees IMPTT diode for example. As 

a general rule the saturation velocity which is relevant for this transit process is 

relatively lower than the peak velocity. This imposes a limitation on the switching 

time of these deviees. On the conn·my the resonant tunnelling diodes exhibit a hot 

injection effect so that much higher velocity is expected in the adjacent transit layer. 
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1.4 Supperlattices: 

In this section we wi11 give a brief repmt on the mean conduction characteristics 

of semiconductor supperlattices. 

Let us recall th at the achievement of supper-lattice like electron transpott requires 

the fabrication of tightly coup led quantum wells. Under this condition the overlap 

between the envelop wave function leads to the de-localisation of spatial electron 

probability distribution. 

For infinite supper-lattices, energy mini-bands are created house energy positions 

and broadening are directly related. to the transparency of the baniers which 

depends on the geometrical parameters and the semiconductor materials. 

The transport properties under bias are relatively complicated and severa] effects 

were proposed to explain the occuiTence of Negative Differentiai Mobility. For 

instance it can be expected that the application of electric field leads to a transition 

between quasi-mini-band transport characteristics (wave function de-localisation) to 

(\Vannier-Stark) ladder characteristics (wave function localisation). This leads in 

practice to NDC effect observable in the 1-V relationship measured under D.C 

conditions. 

However as for conventional Gunn-diodes, real deviees shows a transit mode 

limitation with notably the formation of a dipole domain travelling through the 

active region. Therefore, from the deviee point of view the operation of supper­

lattices used for instance as oscillators is quite comparable with that of Gun-diodes 

but with an effective drift velocity dependent on the min-band broadening. More 

over because the origin of the negative differentiai mobility is not the same, the 

frequency limitations are different. It is now well known that the relevant time in the 

k-space transfer deviees is the inter-valley scattering time. In contrast, as seen 

above, the characteristic time of supper-lattices involves the transition probability 

between eigen states. 
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Conceming the shape of the 1-V relation, the on set of the characteristic is 

typica11y abrupt where as the decrees in the cunent value in the NDC region is 

relatively graduai. On the other hand due to the spurious self oscillations one 

observes typically self-biasing effect which distmis the current variation versus 

voltage. 

1.5 Real space transfer effects : 

In the previous sections we have briefly discussed the underling mechanisms of 

transfer in k-space. Such transfer which leads to a negative deferential conductance 

effect is often used in the fabrication of transfer electron diode (TED). Recently it 

was proposed that NDC effect can also be achieved in three tenninal 

heterostructures tacking the advantage of transfer in the geometiical space from a 

high mobility towards a low mobility region. 

It is now weil known that the mobility of a semiconductor is directly related to 

the band-gap of the semiconductor material. As an example, let us recall that the 

narrow gap InAs material exhibits one of the fastest drift velocities whereas AISb 

material with wide band-gap shows a poor perfonnance in tem1s of velocity. In 

addition most of the heterostructur transistors have doping modulation. Under this 

condition one can expect a significant decrees in the drift velocity at increasing 

voltages. 

On these bases ail conditions are met to realise a drift velocity modulation which 

is provided by the elecn·on transfer from a natTow gap undoped material towards a 

wide gap highly doped material. 

This real space transfer effect necessitates [11][12][13] that the electrons have to 

jump over the heterostiucture banier. The required excess energy is provided by the 

heating effect which is induced by the elecnic field. In this mechanism the charged 

caiTiers are conserved within the main current path in the active region. Another .. 
possibility consists in inducing CUITent carriers modulation by co11ecting sorne of or 

approximately ali the electrons from the main current path. There exists several 
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configurations of such deviees,- ali are based on the collection of a cunent 

component using an extra electrode. For instance let us mention the work published 

by Lmyi. ln his work [ 14] he employs the substrate as an extra collector gate and 

cali it NEgativ .Resistance Field Effect Transistor (NERFET). Figure 1.10 sketches 

the deviee proposed in [ 14]. 

v. 1~ 

Olalmcl 

~ micro meler 

GaAs 

GaAs undopcd 

Graœd banier Al:..-CiciJ.xAs undopcd 

x= from 0.11 to 0.34 

V substratc 

Figure 1.10 NERFETstmcture and energy band diagram afler [1-1}. 

On the hand one can fined in the literature the same effect but using planer 

structures. Concerning this class of deviees, one of the most elegant ways for 

achieving high perfmmance is to use a Dual-Gate Field Effect Transistor (DGFET). 

The advantage of DGFET as compared \Vith conventional FET have been 

investigated over the past [ 15][ 16] in connection with impedance levet at the control 

tenninals and the stability effect. 
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From the point of view of real spa ce transfer effect su ch dual gate scheme is also 

favourable because vatying the various voltages applied on the gates pennits the 

optimisation of the heating effect necessarily required to observe electron transpmt 

in the high ban gap material. In addition it also petmits the optimisation of canier 

·collection effect depending on the mode of operation. 

In order to exemplify these degrees of freedom m deviee operation, let us 

consider the cun·ent flow lines and the electronic total kinetic average energy 

distribution depicted in Figure 1.11 a and Figure 1.11 b respectively. This figure 

clarify the formation of a high energy domain at the exit of each gate with the 

subsequent electron transfer into the wide band-gap highly doped Alo .. ~Gao.7As 

capping the GaAs undoped nanow band-gap matetial. 
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Figure 1.11 cuJ-rentlines (a) and energy distribution (b) [1 5},[ 16}. 
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Also Thomas et ali [ 17][ 18] have proposed a multiple-layer 2~tm dual gate 2~m 

inter-gate separation field effect real space transfer transistor in which they use the 

second gate as a collector to modulate the drain current and hence creating a 

negative differentiai trans-conductance between the drain CUITent and the second 
-

gate voltage. For the application of the real space transfer phenomena into two 

terminal deviees See also [ 19]. 

1.6 Possible solutions for structures of transistor type : 

Two tenninal resonant deviees with NDC characteiistics have severa! valuable 

properties for circuit design (high speed, integrated-capability). Tluee tetminal 

deviees with controllable NDC characteristics are also attractive for circuit design. 

This is because they provide isolation between different circuit stages and allow a 

better control of deviee operation. In the same time NDC property in three tetminal 

configuration increases the functionality of the deviee. 

In arder to fabiicate a tunnelling deviee in a three-tetminal configuration, there 

exists nvo main possible solutions. The first one involves creating a direct 

accessibility to control the resonant quantum weil behaviour by either an Ohmic 

contact or a Schottk-y contact. The second one is the co-integration between a 

resonant tunnelling diode and a conventional transistor structure. In the beginning 

we shall discuss the first solution and then after the second one. 

1.6.1 Direct accessibility to the quantum weil : 

1.6.1.1 Ohmic contact control : 

In this teclmique [20][21] (Figure 1.12) a shallow Ohmic contact is directly 

deposited onto the quantum well (base layer) to enable a control of the value of 

potential in the quantum weil (this teclmique is also known as potential control 

method). By this means the tunnelling CUITent which may cross the base layer can 

be modulated [22][23]. The limitation of this kind of structure is the relatively high 

base access resistance resulting from the reduced thickness of the base active layer. 
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In fact, it is now we11 known that the pronounced quantum effects at room 

temperature implies the fabrication of nanow quantum wett or/and the use of a vety 

low effective mass weil material, with high conduction band offsets. On the 

contraty the deviees whose operation involves the deposition of a base Ohmic 

éontact such as Heterostructure Bipolar Transistor should have a doping 

concentration leve] which has to be as high as possible along with a sizeable base. 

!As A 
b a rn crs 

collcctor 
contact 

cm ittcr contact 

base 

n+GaAs contact 

n+GaAs cmittcr 

Q 
n +In.2sG a.1sAs base 

nit AIGaAs 

-~-· 

n GaAs collcctor 

Figure 1.12 Sc:hematic diagram showing a typical direct ohmic contact into the 

base layer (afler Haddad et ali. [20}) 

To overcome such trade-off between the observation of quantum effects and the 

achievement of a high accessibility to the base layer, one finds in the literature 

severa} solutions. From the material point of view, sorne authors proposed to take 

the advantage of the very low effective mass exhibited by InAs ma teri al and use it in 

the base layer in association with AISb baiTiers. Although such a solution is a primi 

interesting, it suffers however many difficulties notably the fabtication of high 

quality epi-layers. On the other hand, it was proposed over the past to implement a 

buried base layer. Figure 1.13 depicts a schematic diagram illustrating the bmied 

base layer band structure. 
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Figure 1. 13 schematic diagram of buried base conduction-band structure. 

By using a deep quantum well accommodating a ground leve] below the 
.. 

conduction band edge of the adjacent layer, it is possible to separate the electron 

population responsible of the emitter-collector cun-ent from that which plays the 

role of a reservoir close to the base contact. Unfortunately the tunneliing electrons 

which are injected through the first excited state experience many inter-band 

scatterings which gives rise to unreasonable base leakage cuiTent [24]. 

As a last example, let us mention the work of NTT group [25] which introduces 

the idea of coup led quantum wells as an attempt to reduce the base resistance. The 

key thought of their proposition is to increase the effective base thickness without 

decreasing the quantum resonant effect. 

Practically in ali the schemes based on unipolar structures and from the 

technological point of view we have to successfully fabricate a very shallow Ohmic 

contact. The main motivation is to avoid short circuiting between the base and the 

collecter region. Such a requirement is often difficult to be realised using standard 
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Ohmic contact metalisation (AuGeNi). We will come back on this key issue later on 

in this work. 

In the last paragraphs we emphasised the potential control method elaborated for 

a unipolar structures. It is also possible to realise a direct potential control by the 

deposition of an Ohmic-contact onto the base layer of Heterojunction Bipolar 

Transistor (HBT).Figure 1.14 depicts the Pseudomorphic BiQuaRTT enef!~'Y band 

profile in GaAs/AlGaAs base materials, in equilibrium (a),and under bias to bring 

the emitter electron enerb'Y into resonance with the fourth allowed quantum well 

base state (after [30]). 
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Figure 1.1-1 Pseudomorphic BiQuaRTI energy band predite, in equilibrium (a), 

under bias to bring the emitter electron energy into resonance with the fourth 

alloll'ed quantum weil base state. After [30} 

It appears interesting to mention that the use of a lower band-gap material in the 

base region of BiQuaRTT is also favourable for a short bas transit time. The reasons 

are twofold : first of ail we take benefit of high mobility, secondly hot electrons are 

injected into the base. .. 
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Another embodiment of the BiQuaRTT [26] which made use of superlattices in 

the emitter and collector sides. This provides an effective wider band-gap emitter 

than the GaAs quantum weil. This supperlattice structure has also the advantage of 

hot electron injection. Besides, it increases the emitter injection efficiency by 
. 

compressing the energy distribution of electrons in the emitter and collecter sides 

which is a direct re suit of the fmmation of minibands. 

1.6.1.2 Schottky contact control : 

The second class of deviees which enables the modulation of the tunnelling 

current through the double barrier by means of a third electrode concems the 

Schottky based structures(Figure 1.15). 

D Sclottk:y D AIGaAs 
Gatcl Source Gatc2 

Il ()unie D GaAs 

... 

t--------t ... 

Drain 

Figure 1.15Schematic cross-section of the heterodimensional Schollky-gated 

resonanttunnelling transistor (after Peatman et all.[27}) 

One of the first attempts published in the litera ture makes use of the deposition of 

side Schottky gates in close proximity to a bmied double barrier heterostructure. In 

this case the ftinging field induced by the gate electrodes allows the control of the 
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electron flux flowing from source to drain by field effcct (this technique is also 

known as field effect control method). Some improvements in the implementation of 

the gates was published recently [27] involving a deep etching down to the co11ector 

drain region fo11owed by the disposition of a Schottky metalization. 

A vety good example i11ustrating this technique is the structure proposed by 

Peatman et aiL [27]. In this structure (Figure 1.15) the Schottky gate voltage 

modulates the drain cun·ent by modulating the effective cross-section area of the 

quasi-two dimensional electron accumulation layer (injection layer) which is created 

just above the source-si de batTier un der the influence of the drain-source bias. 

1.6.2 Co-Integration of resonant tunnelling structure with active deviees : 

C o-i11 te g ratio 11 of res lill a 11 t tu 1111 el/in g s tru ctu re .5 w itll a ctil•e d el'ice s 

IIBT+RTS JIET+RTS STARK EFFECT T+RTS FET+RTS 

Figure 1. 16 Family tree illustrating the main co-integration possibilities between 

the resonant tunnel ling structure and active deviees 

In the previous section, we emphasised the fact that it is often difficult to satisfy 

the requirements of both a low resistance Ohmic contact and in the same ti me we11-

resolved quantum effects. To alleviate such a draw back one possible way is to 

separate the quantum structure, namely the double barrier heterostmcture which is 

in a two terminal configuration, from the control ce11 which is in a three tetminal 

scheme. By this means, one can preserve the main interesting feature of quantum 

deviees notably the NDC effect white permitting the modulation of the overa11 

cunent by an extemal voltage. However, it is worth-menti'oning that the main 

disadvantage of this co-integration is that the frequency capabilities is govemed by 
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the transistor part which has conventional transit time limitations. lt is now weil -

known that the sem·ch of a vety high eut-off frequency depends on the gate length 

which has to be on sub-micron scale for pico-second time response. ln this context, 

the fabrication ~teps of such high perfom1ance.tr&nsistQrs requires an adva.nced leve] 
of technology m order to matcf1 the capabtlittes ot both parts. _practtcally, the 

transistor part and the quantum structure have to be compatible in terms of intrinsic 

response time and current densities which govems the RC time constant. 

1.6.2.1 Resonant Tunnelling Bipolar Transistor (HBRT): 

It is known that the key parameters to be optimised in the bipolar transistor are 

the base resistance and the base transit time. The fonner might be decreased by 

increasing the base doping level. Consequently undesirable increase in the base­

emitter parasitic current results, which in tum might be avoided by introducing a 

larger band gap material as an emitter region. This creates in the valence band a 

higher barrier reducing the hole base parasitic CUITent. Whereas in the conduction 

band the emitter-base hetero-junction exhibit on each side an accumulation and a 

depletion zones with a spike-shaped conduction edge. This decreases the 

macroscopic thickness of the base-emitter depletion width as compared with th at of 

the conventional homogeneous p-n junction. 

By introducing a wider band gap material for fonning the resonant tunnelling 

structure in the emitter region, sorne of the above improvements could be fmther 

enhanced, but more impmtantly it gives the deviee the unique feature of negative 

differentiai conductance. 

On the other hand, beside the room temperature operation possibility, the main 

application advantages of this co-integration can be summarised in the followings : 

However, the fact that the flow of a high bas-emitter parasitic CUITent degradates 

the deviee performance is not always true. Indeed, it can be shown [29] that a 

relatively high base-emitter voltage ~ 1.0 V is needed to drive the deviee into the in­

resonance operating mode. Under this condition, the base current is relatively high, 
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hence reducing the cuiTent gam reduction beyond resonance. This causes an 

appreciable increase in the collector cunent PVR in the common-emitter transistor 

configuration under constant base CUITent bias. A IP~ '/~ of 74 :1 is measured in the 

transistor operation mode whereas a IP~ '1~1 of 17 :1 is measured in the double barrier 

operation mode for the same transistor of [29]. 

For having an overview of various solutions repmied in the literature, 

Figure 1.17 depicts a comparison ofband structures [30] between the different RTBT's 

and the Bipolar Quantum Resonant-Tunnelling Transistor (BiQuaRTT) ofReed et al. [22]. 

In Figure 1.17 the top two and center structures are GaAs/ AI GaAs materials whereas in 

the lower half of the figure, the deviees were fabricated in the InAIAs/lnGaAs system 

lattice-matched to InP. 

Let us recall however that the BiQuaRTT depicted in the center of Figure 1.17 belongs 

to the direct access heterostructure family shortly discussed in section 1.6.1. 

Finally one can conclude tha:t the RTBT or BiQuaRTT transistor design needs the 

optimisation of a large number of parameters. \Vhich offers a large degree of 

flexibility in the deviee design. In counterpat1, such an optimisation using band gap 

engineering is a rather difficult task. 
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Figure 1.17 d{fferent band profiles of RTBTs il/ustrating a comparison bef11'een the 

different RTBTs and the Bipolar Quantum Resonant-Trmnelling Transistor (BiQuaRTT) of 

Reed et al. [22}. After {30} 
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1.6.2.2 Resonant Hot Elect.-on Transistor : 

A Resonant hot electron transistor (RHET) is an emitter-base-collector uni-polar 

vertical structure co-integrated in the emitter with a resonant tunnelling diode. The 

RHET uses a resonant tunnelling double batTier as a hot canier injecter as shown in 

Figure 1.18. It is to be mentioned that the conventional hot electron transistor uses a 

Fowler-Nordheim tunnelling banier as a canier injecter [28]. 

E 

InGaAs ~ lnAIAs(4.4 nm) 

b1CiaAs(3.8 rnn) J B 1 
.... 

ltlCiaAs 

1 c 1 
Ir(A!Ga}As 

ltlCiaAs 

InP substrate 

Fi gu re 1.18 Schematic cross section of InGaAs based RH ET 

ajier Yokoyama et a/1.[31}[32} 

As the resonant tunnelling patt injects a monoenergetic hot electron bearn, the 

RHET is more suitable for investigating the physics of hot electron transpmt. The 

key design criteria in optimising the injection energy of hot electrons are : (i) the 

injected electrons energy has to be adjusted on one hand for avoiding any inter­

valley scattering leading to drastic mobility degradation and on the other hand to 

sum10unt the collecter batTier. (ii) to conserve the monenergetic feature of the hot 

injected electrons, the deviee has to be operated under low temperature conditions. 

For avoiding the phonon scatterings in the base layer. ., 
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In fact, it was demonstrated [2.9] that the enerbry difference betvveen the r and L­

points in the collector baiTier is the allowed energy window through which the 

injected electrons could be collected into the collector side of the deviee without 

degradation of transport characteristics. 

lt is wmth noting th at the optimisation of this energy window is a tric ky task. In 

fact there is a trade-off between the collector cuiTent capability which is enhanced 

by decreasing the collector baiTier and the base-collector current which becomes 

higher. On the other hand, there exists a stringent requirement from the technology 

side indeed the collector epilayer. It should be low-doped thick layer to decrease the 

base-collector capacitance. Under this condition the growth of a mismatched 

epi layer is problematic. 

One of the solutions to alleviate such drawbacks is the elaboration of structure 

fabricated from lnP-based material system rather than from the conventional GaAs 

based system. lmamura and co-workers [31] have th us fabricated a RHET using 

InGaAsfln(AIGa)As as a new ma teri al based system. The r and L-points of the new 

material is linearly dependent on the Al percentage which makes the design task 

easier and more flexible (from the point of view of conduction band edge profile). 

In addition, the new matexial has a wider f-L-points separation of about 0.53 eV as 

compared with 0.31 eV for GaAs material (see also Figure 1.7).The wider r-L­

points separation in the collector banier permits to relatively increase the collector 

barrier and hence reducing the base-collector leakage cun·ent. Finally the CUITent 

gain can be improved. In addition, the wide separation between r and L-points at 

the base-collector interface reduces the scattering probability into the upper satellite 

valley. 

So fare we discussed the conditions of ballistic transpmt in the base region and 

the avoidance of inter-valley scattering. With respect to the double batTier transport 

properties, the use of InA.IAs as the banier matexial, which is a direct-gap 

semiconductor, reduces the indirect valley tunnelling effects thus decreasing the 

excess valley cuiTent (for further study on the excess current in double barrier see 
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also [33]). On the other hand, the InAIAs batTier has a smaller effective mass as 

compared with the effective mass of AIGaAs banier. Consequently a higher 

tunnelling CUITent densities can be achieved, with simultaneously a higher PTV ratio 

and a sh011er switching time due to the decrease in the charging time of the 

tunnelling capacitance. 

ln summary, thanks to the ballistic transp011 over the active region, RHET's 

exhibit a high speed operation. In counterpat1, the key limitation conceming the low 

temperature operation requirement is still a very important constraint. 

1.6.2.3 Inverted base-collector tunnel transistor (Stark effect transistor) : 

ln the previous sections we show how it is difficult to satisfy the trade-off 

between the base ]eakage CUITent which causes a degradation in the deviee 

performance and the realisation of a good accessibility to the base layer. One of the 

elegant solutions which was proposed in reference [34], is to interchange the 

relative positions of the base and collector from the conventional emitter-base­

collector sequence (Figure 1.19). 

Worth noting that the large collector-base barrier shown in Figure 1. 19 

necessitates the application of a relatively high base voltages (~ 4V), to permit an 

effective change in the potential conditions within the invetted collector quantum 

weil. 
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Figure 1.19 Schematic diagram of a cross section of the proposed negatil'e 

resistance Stark effecttransistor, the conduction band profile is also illustrated. 

The advantage of this type of structure is the relatively large collector-base 

barrier which suppresses the base current to a vety large extend. Not to mention that 

the relatively high invetted-base voltages implies the condition of low temperature 

operation. This is to prevent the base thermal cunent leakage from the collector to 

the base. 

The design parameters are summatised as follows [34] : 

• the barriers and the quantum-weU are lightly doped. 

• the AlxGa1.xAs banier is not too thick to drop ali the base-emitter voltage. 

• the deviee geometiy is such that the collector contact does not completely 

shield the emitter from the invetted-base. 
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From the fabrication view point however, the technological difficulty of real ising 

a very shallow Ohmic contact is no more existing. This is because the wide low 

doping collector-base banier avoids the shmt circuit between the base and the 

collector electrodes. 

Subject to the above design conditions, the electric fields produced by applying a 

voltage to the base can modulate the positions of the resonant levels in the quantum 

weJl and thus the base voltage can control the emitter-collector tunneJling current. 

Although the se deviee were analysed in the context of GaAs/ AlxGa1-xAs 

heterojunction technology, other semiconductors could be used. 
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1.6.2.4 Resonant Tunnelling Field Effect Transistor (RTFET): 

Another example is the co-integration of resonant structure with FET transistor 

[35]. This co-integration can be made by the series connection of two discrete 

deviees namely a two tem1inal resonant tunnel diode and a commercial FET 

transistor. Obviously the monolithic integration pennits to reduce the geometrie 

dimensions, the parasitic elements and increases the deviee perfonnance in tenns of 

AC and noise characteristics. These are essential needs for high-speed applications. 

In the structure of [35], the resonant tunnelling canier injector is directly integrated 

with the source electrode see also Figure 1.20. 

n-GaAs chatmcl 

S. 1. GaAs substratc 

Figure 1.20 Schematic diagram of cross section ofresonanttunnelling MESFET 

One of the key issue in the RTFET operation is related to the energy relaxation 

mechanisms of electrons before experiencing a tunnelling effect. we have to stress 

on the fact that hot electron effects occurs within the transistor channel. Under this 

condition it is important to cool the electron population in order to avoid any high 

temperature tunnelling effects which are known to degradate the overall deviee 

perfom1ance. To this aim, various solutions exist including the use of a large drain-
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gate interdistance, the growth of a high doped epi layer, or the implementation of the 

DBH in the source si de of the deviee. Cl earl y, an optimisation effort is needed with 

here again, some trade-off between the overall deviee response time and the 

complexity in the fabrication. 

Wmth noting that there is no restriction on the room operation of the deviee 

stmcture illustrated in Figure 1.20. 

To achieve an efficient voltage swing on the resonant tunnelling part, the channel 

resistance under the gate should be smaller than the effective resistance over the 

double banier. This means that the FET patt should be operated in the high 

conductance Iinear regime. Gradually, as the gate bias is increased, the required 

drain voltage which gives the resonant condition is increased. At the earlier reverse 

gate voltages the channel resistance is almost petfectly linear and hence the overall 

1-V characteristic is identically shifted to a higher drain potential due to the increase 

in the voltage drop across the channel. On the other hand in the later reverse bias 

voltages where the effect of FET -channel non-linearity is highly pronounced, the I­

V shift is associated with a decrease in both the peak cunent and the PVR. Finally 

at large reverse gate voltages near the pinch-off the channel resistance absorbs 

practically the whole drain voltage and the resonant part is in out-of-resonance 

condition. 

Although this type of deviees is introduced in the context of GaAs/AlGaAs in 

Figure 1.20, it could be implemented in other materials. Therefor, it may be 

advantageous to use InGaAs material \Vhich has better transpm1 properties notably a 

higher electron mobility. 

•' 
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1.6.3 Field induced tunnelling structures : 

The field induced resonant tunnelling structures depends on the idea of creating 

field effect induced quantum wells using lateral Schottky nana-contacts. Khalid 

Ismail, Dimitri A. Antoniadis and Herny 1. Smith had fabricated many types of field 

effect tunnelling structures [36], the lateral-surface superlattice deviees (LSSL) [36], 

the multiple parallel quantum wires (MPQW) [36] and the planar resonant 

tunne11ing field effect transistor (PRESTFET) [36]. Figure 1.21 shows a schematic 

design of each type of deviees. It is to be mentioned that the idea of a PRESTFET 

was firstly suggested and implemented by Chou et al. [3 7]. 

The planar version of quantum structures can avoid most of the shmtcomings of 

the vertical deviees discussed above notably ; the achievement of a good contact to 

the nano-epi-1ayers while avoiding the short-circuiting between them. Not to 

mention that the planar structures are more promising to circuit integration. The key 

limitation at the present ti me is the requirement of a very low temperature operation. 

As the inter-gate separation is relatively large (technology limited to ~50 nm) then 

the associated induced quantum potentials are wide. This leads to relatively nanow 

energy separations between the conesponding resonant levels. 

It is clear that thermal effect will play an impmtant role conceming this planner 

deviees. First of ali, any increase in the operating temperature will tends to smear 

out the quantum levet ladder. Second, non coherent transmission mechanisms will 

strongly influence the conduction properties. At Iast, thennally activated processes 

will occur degrading the resonant features. 
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(c) top view of dual-gate PRESTFET 

Figure 1. 21 (J .f) shows schcmatic design of each f)JJe fabJ:icated by Kkaled 

lsmail et ali a.fter Kkaled Jsmail et ali [36} 
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If one now tries to alleviate these drawbacks by employing ultra nanow gate 

separations, one faces the problem of the fringing effects. Indeed the overlap of the 

potential induced by each gate finger tends to decrease the difference between the 

maxima and the minima in the overa11 potential profile. In addition the resonant 

states are pushed up to higher energy and become non accessible. Basica11y they 

may exist different solutions using either an optimised doping profile and/or a 

buried gate technolob'Y but nevettheless it appears that room temperature operation 

is a very challenging issue and its research field is steel opened. 

1.6.4 Solutions combining optical control gate : 

To increase the functional capability of the resonant tunnelling diode, another 

option rather than adding an electrode is the optical control. This is mainly achieved 

through the use of inter-band light absorption in the neighbourhood of the double 

barrier. When electron-hole pairs are generated for a deviee under illumination, the 

electrons are instantaneously swept out from the depletion region. The latter is 

designed to absorb most of the incident optical power. In contrast, the holes are 

accumulated near the hetero-interface batTier [38][39]. lt is noticed that a steady 

state condition will be reached for an equilibrium balance between the electron-hole 

generation rate and the ho le escape current. The key rote of the accumulated ho les is 

to modify the intemal field. As a consequence, the conduction band profile along 

with the resonant states are modified by the extemal light. 

Figure 1.22 shows the advantage of resonant tunnelling photo-detector over the 

conventional one as regards the input/output conversion ratio. This figure illustrates 

the relative shift between the two operating points (Pl, P2) on the load-line atising 

from the optically controlled shi ft of the V -1 characteristics. 
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(a) voltage (b) voltage 

Figure 1.22 schematic diagram illustraling a comparison between the 

conventiona/ photo-detector (a) and the NDR one (b). 

1. 7 Conclusion : 

We have discussed m this first chapter the vanous physical mechanisms 

responsible for negative differentiai conductance in the current voltage 

characteristics of a two terminal deviee. This concems maitùy the inter-band 

tunnelling and the intra-band resonant tunnelling structures, the k-space and real 

space deviees and sorne generalisations to supperlatices. 

Som fundamental concepts have been introduced conceming the deviee stmcture, 

the inherent physics, the cmTent voltage characteristics and in sorne cases the 

intrinsic response time. In the following chapter we will tray to improve our 

understanding about NDC deviees by focusing our attention on resonant tunnelling 

structures. This will concem the two dimensional injection effects (chapter 2) and 

incoherent transmission effects (chapter 3). •' 



1-40 

As regards the tluee tenninal deviees, we haYe reviewed some of the most 

promising options by discussing, on one hand, the possibility of direct access into 

the quantum weil by an Omic or Shottky contact control and on the other hand, the 

co-integration of resonant tunnelling structure with active deviees. On this area, 

more specifie studies will be petfonned with special attention paid to the field 

induced resonant tunnelling structures ( chapter 4 ). 
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2. EFFECT OF T\\'0 Dll\JENSIONAL INJECTION ON PURELY 

COHERENT RESONANT TUNNELLING : 

2.1 Introduction: 

2-1 

In a real double barrier heterostructure (DBH) deviee the injection region exhibits a 

modulation of doping concentration. This is to satisfy the trade-off between a low 

resistance access region and a high quality heterostmcture. As a consequence, the 

cladding layer of most of the earlier deviees have relatively low doping 

(Nd~ I016 cm-3
) along with undoped spacers [1][2]. In this condition, when the deviee 

is un der bias, an accumulation zone (Figure 2.1 a) is formed in front of the DBH. This 

accumulation layer strongly modifies the injection condition. This conclusion is widely 

recognised in the literature [3]. Notably, it was established that the picture of a three 

dimensional injection is no-longer val id, and that the resonant condition stems from the 

anti-crossing between the quantum levels attached, from one side, to the accumulation 

layer and, from the other side, to the quantum weil itself[4][5][6][7]. 

In addition, the two dimensional injection character is enhanced by means of a 

heterostructure quantum weil which is buried prior to the DBH [8][9]. Such an idea is 

illustrated in Figure 2.1 b with buried wells cladding the DBH. 

We have to emphasise that this effect is intrinsic and does not concem the loss of 

coherence resulting from the different scattering mechanisms. 

From the point of view of the I-V propetties, and in the scope of the 2D injection 

effect, there would be sorne expected modifications in resonant voltage conditions. 

This is conceming a steep decrease in the tunnelling current would be occurred when 

the resonant state of the quantum weil is shifted just below the quantum state of the 

accumulation layer. 

•' 
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(a) 

(b) 

Figure 2.1 schematic band profile of DBH und er bias with the formation of 
accumulation layer (a), and ll'ith the buried weil c/adding layers (b). 
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However experimentally, the transition between the on-resonant and the off­

resonant states, is not found so sharp. ln the earlier studies, this was often explained as 

an effect of the relatively low doped cladding layers which contribute to the overa11 

voltage drop across the deviee. 

· Recently, due to the progress in the modern epitaxial growth technology, along with 

the motivation to increase the peak current density, it was proposed to sandwich the 

DBH in-between highly doped regions, let us say (Nd~ I0 18 cm-3
). 

Surprisingly, although the effect of the low doped cladding layer is suppressed, the 

deviee fabricated using this idea, exhibited a relatively wide voltage range over which 

the NDC effect can be seen. 

In this chapter, we shall try to address this issue which is of a key impmtance in the 

understanding of resonant tunnelling deviees. As an example, this voltage range 

determines the impedance levet and the output power when the deviee is used as an 

oscillator. Also for the digital applications, this voltage range is of prime importance 

when a steep transition is often preferable. 

To deal with this issue, we will distinguish between two different aspects : First, the 

effect of scattering assisted phenomena which tend to sustain a finite transmission 

probability in the out-of-resonance condition, which is studied in the next chapter. 

Second, the coupling between the accumulation quantum weil and the DBH quantum 

we11, which is investigated in details in this chapter. 

To suppmt this separation of the two effects, we shall assume a very low 

temperature operation ( 4.2 K). 

The frrst step in the analysis will be to show that a purely coherent 30/30 approach 

is not appropriate to describe the injection properties in a real deviee. On this basis we 

sha11 discuss the development of a new model which defi nes a two dimensional supply 

function. One of the main problems encountered, is related to .the openness of the 

quantum system. Conceming this issue, we will start from the notion of local density 
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-of states previously introduced by Lassning un der flat band condition [ 1 0] which will 

be generalised in the present work. 

Special attention will be paid to the wave function nonnalisation and sorne 

preliminary results will be also discussed by introducing the effect of non-parabolicity 

which influences the effective mass in the accumulation zone. 

Finally, to support the validity of the new fom1alism we will report a comparison 

between the simulation results canied out in the present study and the experiments 

conducted by the NTT group [Il]. 

2.2 3D/3D purely coherent approach: 

2.2.1 Current equation: 

It is weil known that the probability tunnelling CUITent can be calculated by the 

following equation [12]: 

Eq. 2-1 

where: 

• J is the probability tunnelling current density from the emitter (side 1) to the collector 

(side 2) and q is the electron charge 

• Px fm• is the x-component velocity defined as the x-component momentum divided 

by the effective mass in the x-direction which is taken as the propagation direction. 

• g(e, pJ is the density of states in the momentum range Px to (px+ 8px) and 

energy range dr. to ( f. +dr.), whereas Ji is the Fermi-Dirac probability density 

function of occupancy at si de 1. As a consequence the product g( &, pJ fi dPxds is the 

number of electrons in the momentum and energy infinitesimal-windows defined 

above. 
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• T(êx) is the tunnelling probability of transmission from side ( 1) to side (2). 

It is to be mentioned th at the factor (1- .fj) is introduced to the probability cunent 

equation to account for the probability of finding an empty state in the other si de. The 

introduction of this probability of vacancy can be interpreted as that, a complete 

reflection would be occuned if electron tunnels directly to an occupied state. The 

validity of the last statement will be discussed la ter on in this chapter. 

After the change of variable (dex =Px/nt dl~) into Eq. 2-1 we get: 

00 00 

J = qf f g(E,Px)fJT(Ex)(1- .fl)dExdE 
Eq. 2-2 

0 Ex 

2.2.2 Density of states : 

The density of states necessarily required to calculate the probability CUITent density 

is defined as the subset of states having total energy from dr. to ( f. +dr.) and x-

màmentum from Px to (px+ 8px) per unit spatial volume per unit total energy per 

unit x-momentum (local density of states) [12] 

Assuming that we take the weil known three dimensional (30) density of states in 

momentum space (Eq. 2-3) and multiply it by the total volume of momentum space 

( 4 1t p 3 1 3 ), we get the total number of states enclosed by a sphere of radius p 

(Eq. 2-4). The constant-momentum sphere is illustrated in Figure 2.2. By taking the 

first derivative with respect to & we get the weil k-nown 30 aerial density of states in 

the unbounded system (Eq. 2-5). 

Eq. 2-3 

1 [4 3/ J n1 = ( ~ -1t(2mf.)l2 
21tfl)-' 3 

Eq. 2--1 
•' 
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Eq. 2-j 

Our problem is different, sin ce we want only a subset of those states corresponding 

to a momentum from Px to (Px+ apx). Thus instead ofmultiplying by the spherical 

momentum volume of constant ener6'Y sphere we multiply by the volume of spherical 

slice which lies between two constant planes, Px and (px + ap x) in the momentum 

space as illustrated in Figure 2.2. 

~ <.8Px 
1 1 

Figure 2.2 constant energy sphere in the momentum space 

Thus the required number of states (&1) is calculated as follows : 

Eq. 2-6 

derivating with respect to the total enerb'Y gives, 

è 11n(s,px) 2rr.m 
= ~ Ôpx 

(2rr.nY 

Eq. 2-7 
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which is the total-energy density of states having momentum from Px to 

(Px+ ap ... ). Th us further dividing by a px we get the total-enerbry and x-momentum 

density of states (Eq. 2-8) which is constant in dependent of neither the energy nor the 

momentum. 

Eq. 2-8 

We find out that the same result can be obtained by dirivating the total number of 

states (Eq. 2-4) with respect to the energy (Eq. 2-9), and then with respect to the 

momentum (Eq. 2-1 0), not to mention to di vide by two to take into account the 

momentum either in the positive or in the negative direction. 

Eq. 2-9 

1 d (d111) 2nm 
2 dp dr. = (27tfz)3 

Eq. 2-10 

from Eq. 2-8 and Eq. 2-10 it is noticed that the local density of states in a 3D zone 

is independent of energy and of position. 

2.2.3 3D/3D supply function: 

In the literature, a supply function is usually defined in such a way that the 

tunnelling CUITent density can be evaluated from the integration of the product of this 

supply function times the quantum tunnelling probability with respect to the energy. 

Referring to Eq. 2-2 and taking into account that we must subtract the reverse 

tutmelling current from si de (2) to si de ( 1) we get the net CUITent density : 

00 00 

J =qg f T(E :c) dE x f fi (1- f2)- 12 (1- fi) dE 
Eq. 2-11 

0 &x 

consequently the supply function (SF) is defined by the following integral : 
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OC· 

SF = K 13 T f f1 ( 1 - f2 ) - f2 (1 - .fd dE 

l:"q. 2-12 

using simple algebra, it can be shown that SF is written as, 

Eq. 2-13 

This equation referred as the supply function, vanishes at equilibtium condition 

(E /1 = E /2). 

2.3 comparison between the purely coherent 3D/3D and 2D/3D approaches: 

We will discuss of a compatison between 30 injection and 20 injection taking 

Figure 2.3 as an illustration. In this figure, and by focusing our attention on the emitter 

zone, we can define three specifie regions : first a highly degenerate 3D-layer, then a 

bump resulting from the doping modulation and at Iast, the accumulation layer. The 

bump results from the diffusion mechanism due to the doping gradient and in the same 

time, from the blocking process of the OBH. Struting from this conduction edge 

profile, several energy domains and tunnelling paths can be defined with respect to the 

quantum Ievel in the accumulation layer ( Eacc). Bellow Eacc and assuming a pm·ely 

coherent tunnelling is sustained, the feeding of the accumulation layer is provided by 

path (a), consequently, through the bump. It is clear that such a probability of supply is 

extremely weak. On the other hand, when the injection energy matches the quantum 

level Eacc , a fini te probability can be found ( pa th b ). Pa th c desctibes the case in 

which the injection energy is just above the bump height. For the Iater, the electrons 

have the possibility to expetience sorne relaxation mechanisms permitting extra 

feeding via the extended states. At this stage, we have the choice between two different 

approaches. The first one corresponds to a current calculations from emitter 30 region 

on the Ieft hand side to the collector 30 region on the right hand side of the deviee. 

Under this approach, the deviee is taking as a \vhole, including both the bump and the 

OBH. We use Eq. 2-11 with the supply function described by Eq. 2-13 for a 
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transmission directly through and over the bump. For the calculation of the peak 

current, despite the crud assumption of this approach, we often take advantage of a 

relatively efficient tunnelling supply. This stems from the fact that Eacc , at the peak 

voltage, is usually located close up to the edge height of the bump. In contrast, su ch an 

analysis fails to conectly describe the off-resonance condition, with notably a peak-ta­

valley ratio highly over estimated. 

The second approach consists to assume an injection mechanism starting from the 

accumulation layer. In this region, we have previously noticed the existence of quasi­

bound states and also extended states. We will assume a local thermal equilibrium in 

this zone. This assumption pennits us to include the different relaxation mechanisms 

without considering them in details in this zone. 

Cl) 

li= 
0 .... 
c.. 
Cl) 
0) 

"'0 
Cl) 

"C 
c 
cu 
.0 

3D 2D 

Ef ----------------

3D 

distance 

Figure 2.3 the pure/y coherent 3D/3D approach compared with 2D/3D approach. 
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In addition, the quantum states in the accumulation layer corresponds to a 

confinement situation which is intennediate between tme bounded states and extended 

states, under this condition, it is expected that the dispersion relation in the growth 

direction (noted x in the following) is deviated from the parabolic behaviour. This 

influences the effective mass within this region. With respect to tllis issue, we will ny 

to investigate this effect by a renonnalisation of the effective mass which is found to 

be smaller than the 30-bulk value. However, let us mention that, it is often 

problematic to define a local effective mass evetywhere within the structure in 

particular when the electron energy is below the conduction band edge and hence 

within the forbidden gap. In the previous 30/30 analyses, it is often assumed that, the 

conduction band effective mass govems any charge transfer. With such assumption, 

the value of the renormalised effective mass has a negligible influence on the current 

value and notably the valley current. This is not the case if the 20/30 approach is 

applied. 

2.4 Quasi-2D local density of states : 

In the introduction of this chapter, we have showed the limitations of a purely 

coherent 30/30 approach. This concems the voltage range which is found broader in 

the experiment for NOC effect and the valley current which is under estimated. This 

motivates the need of a more realistic physically based refined model for which Jess 

discrepancy could be found between the predicted results and the experimental data. 

To achieve this goal, it is believed that, an almost exact value of the local density of 

states in the accumulation layer has to be defined. On the other hand the 30/30 supply 

function model (Eq. 2-13) and its physical interpretation has to be re-examined (later 

on in this chapter) and replaced by a 20/30 supply function. 

First of ali we shall start by the model proposed by Lassning et. Al [ 1 0]. In this 

model, the local density of states was assumed directly proportional to the quantum 

probability of existence. 
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2.4.1 Lassning model Il 01 : 

In an atternpt to study the influence of structural parameters on the purely coherent 

electron life time in a quasi-bound state, R.Lassning and W.Boxleitner had used the 

semi-opened structure depicted in Figure 2.4. 

20 zone 30 zone 

Figure 2 . .J schematic for the mode/ stmcture used for the 

tunnelling study ofLassning et. Ail [JO}. 

The main assumption of the analysis published in reference [ 1 0] is the ~se of a flat 

potential profile. As a consequence, a sinusoïdal wave function is the solution of the 

Schrodinger wave equation in the propagation zones. Also the attenuation of the wave 

function within the banier can be described by means of a very simple exponential 

dependence. On the other band, the amplitude of the wave function in the 3D zone was 

chosen to be constant independent neither of energy nor of position. At last, let us 



2-12 

mention that only the relative values were considered, which were sufficient to derive 

the quasi-bound state life time, but failed to address the CUITent voltage issue. The 

local density of states in their model were then defined as usual to be directly 

proportional to the probability of existence spatially averaged in the quasi-20 region. 

2.4.2 Analytical calculation of local density of states using zero field 

approximation : 

Worth noting that based on the WKB approximation, the wave function could be 

analytically written in the regions of classically allowed energy bands as, 

IJI(X)= ~ sin{ [f k(x) dx] + 0} 
k(x) 

whereas in the regions of classically forbidden energy bands as, 

where: 

Eq. 2-1-1 

Eq. 2-15 

•A1 & A2 could be assumed for a first order approximation as constants in 

each region. 

• rn· is the electron effective mass, Ex is the energy in the propagation direction and 

1i is the Blanck's constant. 

In a practical deviee, we face the problem of accounting for the variation of the 

potential profile relatively far from the equilibrium at the resonance condition. For the 

sake of simplicity we weil assume that only the propagation k(x) and attenuation a( x) 
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exhibit a spatial dependence through Ex, the enerbry in the growth direction, in the 

sinusoïdal and exponential tenns. lt is believed that, keeping a constant amplitude does 

not modify too much the resonance condition. Such an assumption simplifies 

drastically the analytical procedure. 

LAYER MATERIAL DOPING (cm-3 ) THICKNESS (NM) 

F ABRICATED, FABRICATED, 

SIMULATED SIMULATED 

cap GaAs 1*1019 1*1018 50,50 
' 

upper electrode GaAs 5 * 1017 5 * 1017 270,50 
' 

upper spacer GaAs n.i.d., n.i.d. 1.4, 1.4 

upper barrier AI As n.i.d., n.i.d. 4.0, 4.0 

weil GaAs n.i.d., n.i.d. 6.0, 6.0 

lower barrier Al As n.i.d., n.i.d. 4.0, 4.0 

lower spacer GaAs n.i.d., n.i.d. 5.0, 5.0 

lower electrode GaAs 5*1017 5*1017 300,50 
' 

substrate GaAs n+ 1*1018 --,50 
' 

Table 2-1 table(J) double barrier growth structure {1 1} 

of the resonant tunnelling deviee used as a tes ting vehicle in this chapt er. 

Table 2-1 illustrates the structural parameters of the resonant tunnelling diode 

which was fabricated by T. Waho et al [Il] and which is used as the test vehicle 

throughout the study in this chapter. On the other band, Figure 2.5 depicts the 

conduction band profile of this stmcture, which is calculated using the Thomas-Fermi 

approximation [ 13]. From the potential profile and for energy values conesponding to 
·' 

path a (see Figure 2.3) six changes between the allowed and forbidden regions have to 

be defined conceming the continuity of the wave function and its first derivative. This 
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results in twelve analytical equations with t\velve unknowns. While elaborating this 

analytical approach, the unity amplitude of the sinusoïdal wave function 

approximation is chosen to nonnalise the wave function in both the emitter and the 

collector 3D-zones. In addition, the phase is left as a floating unknown variable to be 

determined by the analytical solution at each energy levet. 

Using this analytical procedure, the variation of the wave function versus distance 

can be calculated for each value of Ex, resulting in a wave function spectroscopy of the 

microstructure.· 

It is important to state that we find out two phase values satisfying the unity 

nonnalisation condition in both the emitter and collector 3D-regions. 

Figure 2.5 shows a plot of these two solutions for an applied voltage of 0.3 Volt. 

\Vhen the energy is close to resonance condition within the accumulation layer (a). In 

(b) the energy is close to the resonance within the quantum well of the DBH. In (c) we 

plotted the solution at the DBH resonant energy. 
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Figure 2.5 analytical wave Junction for zero-field approximation and unity amplitude 
in both emitter and collector (a) at quasi-resonance energy in the accumulation zone, 

(b). at the neighbourhood of the quasi-resonance energy in the quantum-wei/, ©at 
quasi-resonance energy in the quantum-wei/ 

For illustrating the calculations of density of states we pay a special attention to the 

bias condition corresponding to Eacc lying at an higher energy than E0 • Let us recall that 

in a 3D/3D approach it is nonnally believed that the current is tumed off because of 

the anti-crossing between Eacc and E0 • 

The resulting local density of states as a function of energy in the quantum-well is 

depicted in Figure 2.6a. 

We use for plotting this local density of states a nmmalisation procedure which will 

be explained here after. The key feature in this figure, is plotted in logarithmic scale, is 

the high degree of selectivity observed at the resonance of the density of states which 

is found here around 25 meV. This is a characteristic of a high degree of quantum 
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resonant confinement. On the other hand, Figure 2.6b dcpicts the analytical solution of 

the local density of states as a function of energy in the accumulation zone. In this 

figure, conesponding to the same applied voltage, two features are now seen at the 

previous energy value of25 meV and at 40 meV with a very weak resonant structure. 

This is an miginal result which is to our knowledge not mentioned previously in the 

literature. lndeed, although we investigate the eigenfunctions in the accumulation 

layer, we find a resonant structure characteristic of the quantum well levet E0 • In the 

following we will speak about an effect of signature due to the coupling between the 

accumulation and the central we11 of the DBH. This peak is sharp and weil defined. 

From the point of view of cutTent propetties it is impmtant to note th at the existence of 

that local density of states, not predicted in a simple analysis, pennits one to consider 

an extra energy level of injection. The second weak confined peak reveals the own 

resonance of the accumulation zone. Quantitatively, the fonner resonant structure 

(quantum well signature) exhibits peak values quite comparable t the level reached in 

the extended states conesponding to a 3D-local density of states. 

The analytical approach used above relies on quite crude assumption. Nevertheless, 

sorne novel trends have been found in the understanding of resonant tunnelling through 

DBH. At this stage, it seems interesting to re-examine the validity of this highly 

approximated analytical approach and also to establish in what extent the notion of 

local density of states can be generalised. 

To achieve this goal, one has to study the equivalence between 2D & 3D density of 

states which could be detived from the above calculated local density of states. 
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2.4.3 Equivalence between 20 & 3D density of states: 

lt is now well known [14][15] that the 20 volume density of states calculated for a 

layer of equal thick'Tiess to th at of an infinite depth quantum weil compared to the 3D 

volume density of states of an unbounded system, are equal for ali energy eigen-values 

(Ëu) (Figure 2.7). In particular, this result was pointed out by Dingle [14][15] and in 

the following we will speak about the Dingle equality. 

18 

-~ 16 
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ï: 
Q) 
ca 6 
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ë 2 > 
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,~~unded'· 
~stem - ~ 

~20. fi 'ty '""' /) · mm• ~ 
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600 
energy (meV) 

800 1000 1200 

Figure 2. 7 comparison between volume density of states in both unbounded system and 
2D infinity quantum weil afler Dingle [ 1-1} 

Let us rewrite Eq. 2-10 which summarises the mathematical definition of the local 

density of states with respect to the momentum-free conventional density of states 

denoted by the capitalletter G. 

1 d 
g=--G 

2 dp .. ' 
Eq. 2-16 
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Integrating Eq. 2-16 and multiplying the result by a factor of two to take into account 

the momentum in both negative and positive directions we get, 

G = 2 I g dp = .J2;;f }. dr. 
Eq. 2-17 

where 

•g is the local density of states. 

• p = ~ 28 1 nt is the quantity of motion. 

Substituting by the local density of states in the 30-unbounded system Eq. 2-8 into 

Eq. 2-17 we get the weil known expression for G30 : 

• • 

I 2mn ~ J de 2mn ~ c 
G3D = 2 Kw dp = i v2m . c = 2. i .v2m .ve 

(2;rfl )- "'6 (2;rfl )-

Eq. 2-18 

Starting from this definition of the local density of states, it is possible to apply it 

within the OBH quantum weil and within the accumulation layer respectively. 

Figure 2.8 shows the variation of density of states in the quantum weil noted in capital 

G versus energy. 

First one can note the practically perfect step like behaviour of the 20 density of 

states calculated for the present structure with respect to the complete bound situation. 

This is a direct consequence of the high degree of confinement previously noted in the 

above section (see Figure 2.6a). under this condition, the Oingle equality is verified, 

\\'hich is a good check for the model. 

Figure 2.8 shows the density of states calculated in the accumulation layer. The 

normalised local density of states ( glg_m) plotted here, exhibits a peak around 40 me V 

and a signature around 25 meV. Also shown, is the variation of (GaccfG20) calculated 

by integrating g with respect to the momentum averaged over the accumulation zone. 

At last, for comparison we plotted the equivalent (G3o/G20). 
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For both later tenns, we define Lace which can be interpreted as the width of the 

accumulation layer calculated at the enert,"')' E=E0 • The salient feature in this figure, is 

the loss of the step like characteristic on one hand, and the large discrepancy benveen 

the nonnalised values of G30 and Gace· This is a direct consequence of the open ness of 
-

the system which in the present case, is intennediate between a highly confined system 

and extended states. 

At this stage of a very simple analytical approach, it is interesting to fmther 

investi gate the discrepancy between the density of states in the accumulation layer and 

its corresponding 3D-density of states. We thus developed a more realistic model 

avoiding in particular the zero field assumption. 

2.5 Exact mo del of the local density of states : 

Let us recall that physically the local density of states is not only the measure of 

fmding an electron in a given energy state and in a given position, but also we have to 

select from the whole k-distribution the states having the current direction. This means 

that it is not correct to solely consider the local density of states as a function of the 

probability of existence. Obviously this probability of existence reveals potential 

carrier accumulation, the best example is the case of a strict bounded state, but does 

not describe how are distributed the k-vectors in specifie location. Therefore, a first 

conclusion is that, it is imperative to go further beyond the definition of Lassning. This 

is to account for both features related to the carrier density and to the k-vector. Clearly 

we have thus to start from the current definition which leads to the basic idea of this 

work. 

The idea of defining a local density of states g is to assume that an electron stream 

is able to activate and probe the local density of states. Also in other words, this means 

that g depends not only of the probability of existence which can be related to a canier 

density, but also of the momentum f1 k(x) and hence of the velocity. 

Now, we try to prove that the local density of states (g) is defined to be linearly 

proportional to the maximal1y al1owed current density. The later, locally could cross 
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the material in the enert,ry and momentum ranges considered (cUmaJ. The above new 

definition can be directly deduced as follows: The differentiai CUITent density (dJ) is 

statistically described by the following equation [ 12], 

Eq. 2-19 

using the substitution of variables, (Px/m*)·dpx =de x, we get, 

Eq. 2-20 

To obtain the maximally allowed differentiai cunent density, the Fermi-Dirac 

distribution function f(e) is replaced by unity and hence one gets, 

Eq. 2-21 

The question is how to quantum mechanically activate ail the allowed local density 

of states in a real open system as considered in this study. The probability cwTent 

(cUmax) is quantum mechanicaliy defined by the following equation [12]. 

Eq. 2-22 

where C1 is constant, "P• stands for the conjugate complex of the wave function "P, 

and k(x,ex) is the propagation coefficient along the growth direction (x) and at the 

energy (Ex). 
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From Eq. 2-21 and Eq. 2-22 the local density of states can be written as, 

Eq. 2-23 

Wmth-noting that, because the quantum system is open, ail the conduction states are 

equally-likely activated by injecting a forward and an equal backward quantum 

mechanical probability current. Under this condition the local density of states is 

calculated using the following equation : 

Eq. 2-2-1 

which is equivalent to, 

Eq. 2-25 

where (FA) stands for a forward activation and (BA) for a bad."Ward activation. 

Recalling the 30 local density of states Eq. 2-8 and applying Eq. 2-24 or Eq. 2-25 

in the 30 zones (collector or emitter region),.the normalisation constant (C2) can be 

directly calculated 

In order to illustrate the difference afforded by the new definition, we compare in 

Figure 2.10 the space variation of the local density of states first defined as 

proportional to the quantum probability of existence, which is the wide spread 

conventional definition and the results calculated using Eq. 2-24 or Eq. 2-25. For the 

former the plot of 1 '!' 2 1/30 exhibits a well defined maxima at location away from the 

first heterointerface. This is explained by the bias condition as seen later close to the 

peak CUITent voltage which is quite low (0.2 V). Under this condition Eacc is very close 

to the bump height leading to a probability of existence which is not maximised in the 

central region of the accumulation zone. One can speak about a strong repelling effect 

at the heterostructure bani er for this specifie case of very low one si de bounded state. 

Within the OBH quantum weil, we identify a peak whereas in the emitter and 
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collector regions small ripples can be seen as a consequence of the built-in of a 

standing wave pattem. In addition a close view of the amplitudes in these adjacent 

regions reveals amplitude difference. 

Tuming now to the variation versus distance of g(x), by noticing the calculated 

values using the new definition and then normalised with respect to g30. one can find 

that most of the drawbacks pointed out above can be alleviated. First of ali, one can 

see that the local density of states is now pushed in close proximity to the emitter 

heterointerface along with rather constant value within the quantum weil and also 

constant value equal to one in the emitter and the collector regions. 

The first feature is a direct consequence of the k-contribution. In fact, in the 

accumulation layer the electrons experience very efficient round-trips which induce a 

strong local or more exactly regional currents. However, in this bouncing back and 

fmth motion, the net current in the direction of bias is relatively small. In terms of the 

life time in the quantum state, the electrons spend a relatively long time as compared 

with the escape tunnelling rime. Hence, there is an accumulation of local current which 

reflects the confinement of the carrier on one band by the emitter barrier and on the 

other hand by the electrostatic bump. The same situation is encountered within the 

DBH quantum weil. Again an accumulation in the local density of states is noted. 

However in that case the local density of states g(x) is found quite uniform over space. 

This result, a p1iori in contrast with the general view of the local density of states 

which should exhibit a peak within the quantum weiL This points out the fact that a 

Jack of carriers is compensated by high magnitude of k(x) vector. This compensation 

effect is quite equivalent to the one observed in the simulation of deviees where the 

current conservation pennits to explain an increase in the average velocity in the 

regions of low carrier concentration density. This conservation principle is not 

satisfied over the hole structure because, as mentioned before, we have to distinguish 

between the regional bouncing current and the net current. The later is measurable in 

the 3D unbounded regions as expected with a constant value. The last remark with 
1 

respect to the normalisation issue is of major concern. Figure 2.10b is a zooming view 

of the DBH region at the resonant energy in the quantum well. Conceming the 
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existence probability, we have considered the fmward (solid line) and the backward 

(dashed line) excitation respectively. Also shown is the nonnalised local density of 

states (glg_m). ln summaty, the use of the new definition has the following 

consequences: first, the density of accumulation in the front of the DBH is now 

centred within the accumulation layer with non negligible value- at the heterointetface. 

Second, a quasi unifonn density of states is obtained in the central quantum well and at 

Iast a nonnalisation procedure can be perfonned from the sunounding regions. 

Conceming the later issue, it is often thought that the unity probability normalisation 

condition of 1 '1' 2
1 defined for a close system can be used for an open system. This 

restricts the application of such a rule to the resonant energy for which most of the 

wave function is welllocalised. In contrast, under non resonant condition the openness 

of the system plays a key rote and the reference to the out si de regions is mandatory. 

Generally speaking, we are facing the normalisation issue whenever we have an open 

system and the example of the accumulation layer is patti cul arly representative of that 

question. It is worth mentioning that, even in the zero field analytical calculations out 

liried in section 2.4.2 the cunent probability is intrinsically used. Indeed, assuming 

only constant regional amplitude is equivalent to multiplying the amplitude of 

1 '1' 2 1 a. al 1/k(x) by the wave vector k(x). 

Last, let us mention that Lassning's model is a vety special case of the general 

definition proposed here, in the sense that assuming the k(x) vector is constant ali over 

the structure suppresses the k-dependence. 
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Figure 2.10 d{ffèrence betll'een the local density of states dejined as proportiona/to 
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Let us now considcr the energy dependence of the local density of states which are 

described for the quantum well region and for the accumulation zone in Figure 2.11 (a) 

and (b) respectively. For the fmmer, the difference between the previous analytical 

results show in Figure 2.6a are negligible. In contrast, in the accumulation layer we 

find out the same trends but with a much more refined evaluation especially close to 

the resonance related to the quantum well. It can be surprising that at first glanee the 

resonance attached to Eacc is much broadened than that of Er-weil, this is a direct 

consequence of enerb'Y positioning of Eacc at the frontier between tightly bound system 

and highly extended state. In terms of life time inversely proportional to the 

broadening, we obtain a very shmt dwelling time for Eacc whereas the residence time is 

long for the signature and for the DBH quantum we11 itself. Such a very short life time 

can be interpreted or explained by very efficient escaping processes over the bump. It 

remains now to reconstruct the conventional momentum-less density of states versus 

energy and to compare it with the equivalent G30 multiplied by Lace· This comparison 

is done in Figure 2.12. The main conclusions drawn from the analytical analysis are 

still verified for the DBH quantum well and the accumulation layer but with a real 

improvement in terms of quantitative behaviour specially for the later. Now, we are 

sure that the discrepancy between the G30 and G20 is not a re suit in the accuracy of the 

theoretical approach but is a direct consequence of the openness of the system. 

In more details regarding the local density of states depicted in Figure 2.11 in the 

quantum-well and in the accumulation zone, one can notice the well-defined signature 

of Ee-wcll detected in the accumulation zone. 

On the other hand, we also fi nd out that the Dingle [ 14 ][ 15] equality can be verified 

by integrating the numerically calculated local density of states in the quantum we11 

with respect to the regional average momentum, not to mention to multiply by a factor 

of two to account for positive and negative momentum. Although, this equality is weil 

verified in the quantum weil, a disagreement is seen in the accumulation zone. See 

also. Figure 2.12. 
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Comparing Figure 2.8 and Figure 2.12a we find that the zero-field analytical 

approximation might be a good approximation in the quantum-welJ region. On the 

contrary, as regards the local density of states in the accumulation zone, one notice a 

remarkable big difference between Figure 2.9 and Figure 2.12b. This means that it 

could not be accepted to approximate the local density of states in the accumulation 

zone by the zero-field analytical approximation. 

Although the discrepancy between the accumulation zone density of states and its 

equivalent 3D one is dramatica11y decreased when the exact definition is elaborated, 

the Dingle equality [14][15] is still not satisfied in this region. In fact the quasi-bound 

states in the accumulation zone are not sufficiently confined as those in the quantum 

weil, which causes the (k-E) relationship to be considerably non-parabolic in the 

accumulation zone. This necessitates the re-nmmalisation of the effective mass in the 

accumulation zone. It is to be repmted that in our model, the effective mass is re­

normalised to achieve the Dingle equality [14][15] in the accumulation zone. The 

resulting re-normalised effective mass is found to be in the order of 64 % of the 3D 

effeètive mass. 

Before considering the supply function we would like to comment on the starting 

energy point of G30 whose variation could alleviate the discrepancy aforementioned. 

lndeed, basically to calculate the momentum-Iess density of states requires to integrate 

g with respect to the average regional momentum with the reference to the same 

starting energy ê 0 for both g_m and g. confidence in this procedure can be found 

subsequently wh en Gace *Lace is matching the conventional G2D = m * 1 1t tz 2 . 
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2.6 Supply function modcl : 

As regards the supply function (SF), let us recall the weil known definition 

proposed in Eq. 2-12, and systematica11y appt ied here in the case of 20/3 D injection. 

co 

SF = KsT J ge,.fe(l- fc)-gc,.fc(l- fe) de 
Eq. 2-26 

&x 

Denoting ger and ger to be the relative local density of states on both si des of the 

double barrier resonant structure. 

After expansion of the integrand one gets, 

SF=gerCex)In{ 1 +exp[ 1+(efe -ex)/ kT J} 
-gcrCex)In{ 1 +exp[ 1+(ejc-ex)lkT J} 

00 

- KsT J fcfe(gcr- ger )de 
Ex 

Eq. 2-27 

Out of resonance, it is impmtant to note that the local density of states in the 

injection region (&:r) is small as compared to th at in the collecter region (&:r = 1 ). This 

gives a negative supply function resulting a negative current value which is not 

physical. On the contrary, in the energy ranges where the cross resonance occurs an 

overestimated highly current values might be calculated, depending on the degree of 

confinement of the injection zone. 

In our opinion the unphysical character of the negative and over estimated currents 

stems from the fact that we considered an electron stream between two subsystems of 

different density of states ( different dimensionality ). This not will be the case when 

&:rand &:rare equal and in that case the product of fe(l-fc) and vice versa are justified. 

In the present work investigating different dimensionality system, this is not the case 

and we have to re-examine the definition of the supply function. The underlying ide a is 
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to assume that the magnitude of cuiTent flow will be limited either by the number of 

occupied states on one side or the unoccupied states on the other side, depending on 

the comparison between both. Physically, this limitation concept is based on the 

saturation limit of the degree of occupation. Therefore, when the number of injected 

electrons is greater than the available states, one can thought that the electrons 

undergoes a compete reflection. ln that case, the number of occupied states will govern 

the current. In contrast, the number of injected electrons will be the key figure for 

controlling the magnitude of current when the available states on the other side is not 

the limiting factor. Mathematically, we can summarised the above arguments by the 

following equations. 

rf) 

SF(ex) = JoSFcc(e)-ùSFcc(e) 
Eq. 2-28 

where: 

Eq. 2-29 

Figure 2.13(a) shows the supply function plotted in logarithmic scale using the 

analytical solution of local density of states reported in Figure 2.5 for a bias voltage of 

300 rn V. As seen latter, this corresponds to a bias point above the peak voltage in the 

I-V characteristics. Figure 2.13(b) depicts the results obtained from the numerically 

calculated density of states shown in Figure 2.1 O. For the latter, the re-normalised 

effective mass was introduced. Both curves exhibit the same trends with a well peaked 

feature reflecting the signature effect as discussed previously. At this stage, the 

derivation of current density-voltage characteristics is straightforward and is discussed 

in a next section along with a comparison with experimental data . 
.. , 
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Figure 2.13 supply function calculated using Eq. 2-28 and Eq. 2-29 where if is 
calculated (a) using the analytical solution of local density of states depicted in 
Figure 2. 6 and (b) the numerically calculated local density of states depicted in 
.Figure 2.11. ft is to be mentioned that the numerically local density of states is 

calculated using the re-normalised effective mass. 
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2. 7 Comparison to ex periment : 

In this section we compare the simulation data (solid line) of the cunent-voltage 

characteristics calculated at 4K under various assumptions with the experimental 

results ( dashed li ne) recently published in [ 11]. Overa11, the agreement is good 

(Figure 2. 14), notably conceming the shoulder type behaviour in the negative 

differentiai resistance region. Also, the peak cunent density along with the voltage 

range over which NDC effect is observed fit quite weil. As expected, the peak to 

valley ratio cannot be described in magnitude according to our model which is based 

on the assumption of a pure ballistic motion of electrons. ln addition the r and X 

valley transfer has been ignored in the present work which can explain an excess 

valley CUITent experimentally observed in the out of resonance region due to leakage 

cunents via the X tunnelling path. At this stage it remains a major issue to discuss 

conceming the fact that this distortion of 1-V curve observed experimentally results 

from either an intrinsic effect or an extrinsic one. 

Schematically, severa} distmtion-related phenomena can be distinguished for 

resonant tunnelling deviees. Therefore, it was demonstrated over the past that trapping 

of carriers within the quantum weil of a DBH can explain an hysteresis effect 

[16][1 7][18][19]. 

Indeed, at increasing bias voltage one can expect that a large amount of electrons 

are trapped within the weil shifting by a space charge effect the bias voltage to a higher 

value. In contrast, under decreasing voltage condition, this space charge effect is of 

minor concem and voltage is pushed clown to a lower value. Moreover, this effect is 

magnified by the asymmetry of the structure [18]. 

In our case, this phenomena should not play a significant role because the cunent 

magnitude and hence the trapping charge is low. Besicles, the asynunetiy in the 

potential profile is solely induce by the applied voltage. 
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2-37 

A more general issue which applies to NDC deviees concems the occunence of self 

oscillations which are spontaneously developed due to the NDC effect. These 

oscillations distort the cunent-voltage characteristics which often exhibits a plateau­

like or shoulder-like variation. Graphically, this can be simply understood assuming a 

single frequency and /or harmonie self oscillations. In Figure 2.15 we plot in dashed 

line a typical intrinsic 1-V characteristics. In the same figure, the relevant distmted 1-V 

curve which will be measured at each OC bias voltage (Vo) is also reported in solid 

li ne. 

~ 
E -

300 r-------------------------------------------------------, 
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ë 150 
Q) 

t: 
:;, 
u 
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50 

0 ~~--~~----L------L------L-----~------~----~--~ 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 

Voltage (Volt) 

Figure 2.15 a typica/ intrinsic 1-V characteristics (dashed li ne) and the relevant 
distorted 1-V curve (solid fine). 

We now assume that an oscillating voltage contribution is superimposed over V o. 

resulting from a spurious self oscillation. In this case, we will measure, under statistic 

condition, the average cunent value. Simple considerations on the influence of the bias 

point shows that this time averaged cunent is lower when the bias voltage is below the 

mid bias point and vice-versa. Qualitatively, the cunent variation against voltage 

shmvs a shoulder-type distorted fonn. It is clear that in real sfevices the parasitic 

oscillations can be non-hannonic and/or multi-frequency. One can find in the literature 
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severa] papers addressing this issue [20][2 1 ][22]. More interestingly in practice, is the 

oscillation condition which define the threshold limit between a stable and an unstable 

operation [19][24][25]. These stability criteria were established a long time ago, 

notably by the Bell-laboratmy research staff. They working at that time on injection 

and transit time deviees. One of the most simple analysis is based on the derivation of 

a lumped equivalent circuit (Figure 2.16) which consists of two intrinsic elements 

namely the NDR (Ri) and the diode capacitance (Cd) and two extrinsic elements. For 

the latter, this consists in a series resistance (Rs) and a reactive inductance (Ls). The 

extrinsic elements depicts the influence of the interconnecting section. 

E T cd id Rd 

id l 
vd 

Figure 2.16 lumped element equivalent circuit of a RTD.[ 19]. 
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Based on this equivalent circuit, the criteria of stability can be read, 

Eq. 2-30 

Eq. 2-31 

This means that the way we are perfmming the measurements is critical about the 

achievement of a stable or unstable I-V characteristic notably through the influence of 

Ls. In addition, it can be seen that the second tenu of Eq. 2-30 scales as the inverse of 

the deviee area. In practice, this motiva tes the development of very sm ali area deviees 

vehemently discussed in the comment of G. Sollner [23]. 

Also the resistance level (Rl) can be used for satisfying the stability criteria. This 

explains why the I-V curve is found stable for a bias voltage close to the valley voltage 

due to an increase in the diode resistance level. In our case, the current flow through 

the deviee is quite low (~120 A/cm2 over 20x20 ).lm2
) and hence the corresponding 

value Ro is sufficiently high for satisfying the stability condition. Moreover, this high 

impedance condition prevents us to face the problem of voltage drops in the 

measurement set-up ( mainly due to the tip-shaped probes). Indeed, when a high 

current is flowing through the deviee there exists a proportional discrepancy between 

the test voltage and the voltage applied to the intrinsic diode. As a last argument about 

the non implication of parasitic oscillations for the present tested deviee, let us recall 

the wide range for NDC, surptising at first glanee, discussed in details in the 

introduction of this chapter. For further readings see also [26][27][28]. 

In conclusion, it is believed that the signature effect extensively studied here is the 

underlying phenomenon responsible of the shoulder type characteristics of this deviee. 

The fact that the conduction is sustained with a quite constant level is a direct 

consequence of the supply function. In order to illustrate this issue, the supply function 

is plotted for various bias voltages in Figure 2.17. One can note that the signature level 

is practically constant. , ' 
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Figure 2. 17 supply function plotted for d(fferent bias voltages. 

2.8 Conclusion : 

In this chapter, we have addressed the general problem of charge transfer between 

two systems of different dimensionality. This was applied to the tunnelling transition 

between the accumulation layer and the collecter region through the resonant path 

afforded by a double barrier heterostructure (DBH). V·le found by this means new 

effects, here referred to as signature effect, resulting from the coupling between the 

quantum well and the injection zone. In shmt, beyond the bias point for anti-crossing 

of quantum states attached to the accumulation and quantum well regions respectively 

the tail of the wave function is sufficiently high to in duce a fini te density of states. 

T o our knowledge this is the first time th at a such result is mentioned with a 

ru·amatic consequence on the conduction mechanisms under out-of-resonance 

conditions. In arder to investigate this effect, a new tunnelling madel was proposed 

based first on the derivation of the local density of states and second on the definition 

of a novel supply function which permits us describing how the available states are 



2-41 

populated without using rate equations. It is also found that the electron effective mass 

has to be re-nonnalised in the accumulation layer. 

On this basis, the current-voltage characteristics have been calculated in details 

under various assumptions and shows a very broad voltage range for NDC effect with 

a plateau-like shape in a very good agreement with experimental data. It is believed 

that, this better understanding of the notions of both the local density of states and the 

supply function is not Iimited to the DBH-related phenomena but also could be 

generalised to the case of open quantum system. 
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3. THEORETICAL DESCRIPTION OF SCATTERING EFFECTS ON 

THE HETEROSTRUCTURE DOUBLE BARRIER RESONANT 

TUNNELLING 

3.1 Introduction : 

In the previous chapter we studied extensively a DBH structure with highly doped 

cladding layer. As a consequence, the energy range of injected electrons is broad due 

to the high degeneracy levet. In counterpatt, it appears quite problematic to investigate 

fine scattering-assisted tunnelling transitions which are believed to be one of the key 

parasitic mechanisms controlling the valley current. 

In this chapter, we will address the effects of phonon scattering on the current­

voltage characteristics. Our test vehicle will be an AIGaAs/GaAs resonant tunnelling 

diode fabricated and characterised in our group of research [ 1]. 

The main advantage of the structure under consideration is the fact that the doping 

concentration is low ( ~ 1016 cm-3
). This yields a well-defined enerh'Y injection under 

rather low temperature measurements (77 K). In the following, we will take advantage 

of these properties to assess the validity of the theoretical description of phonon 

scattering effects. 

3.2 Epitaxial material : 

Table 3-1 displays the structural parameters of the resonant tunnelling diode which 

was fabricated and tested in [ 1]. The DBH consists in three-layered structure involving 

AIGaAs barriers with an Aluminium content Jess than 30 o/o in such a way that the 

inter-valley ( r- X) scattering can be avoided. Besides, the barrier height (0.3 eV). As 

seen later this fact minimises the contribution of interface scattering mechanisms. On 

each side the extended cladding layer is doped to 2 x 1016 cm-3
• They are followed by 

" highly doped emitter and collector regions. The Fermi-level in these adjacent cladding 

layer which is a key figure of operation as seen in the introduction, depends 



3-2 

significantly on temperature. However, at 77 K the Fenni-level is at the degeneracy 

limit. In conjunction with a low temperature characterisation the resulting natTow 

injection enerhry window is very favourable to discriminate between ballistic and 

scattering assisted-tunnelling contiibutions. The fabrication details can be found in 

reference [ 1]. 

Layer dimension (Â) doping (en{~) material 

emitter 500 n+ GaAs 

cladding 500 2x 10 16 GaAs 

first barrier 50 2x10 16 AJGaAs 

quantum weil 50 2x1016 GaAs 

second Barrie 50 2x10 16 AI GaAs 

cl ad ding 500 2x1016 GaAs 

collecter 500 n+ GaAs 

Table 3-1 : the epi-layer structure o.( resonant tunnelling diode.fabricated in our group 
ofresearch by P. Mounaix et al [1}, 

Briefly, the epitaxy was grown by means of Solid Source Molecular Bearn Epita:>.:y 

SSMBE syste~ at a constant temperature of 600 °C starting from a GaAs semi­

insulating substrate without growth interruption. For the fabrication of the test samples 

we used a mesa-etched technology in a quasi-planar configuration. Conventional 

teclmology was used for that purpose with AuGeNi metalisation for the Ohmic 

contacts and I'·H-I 4 OH -based etchants for defining the active zone laterally. The 

samples were contacted by means of very fine gold wires, diced and subsequently 

mounted into a law-temperature fixture. The I-V measurements were canied out at 

liquid Nitrogen temperature by means of a conventional cryostat. 



3-3 

3.3 Contcxt and main assumptions : 

The earlier studies devoted to the influence mechanisms of scattering-assisted 

tunnelling were published a decade ago. They recognised that inelastic scattering was 

responsible of a Joss of coherence in the resonant tunnelling process. Recently, the 

work of F. Chevoir and B. Vinter [2][3] was a key contribution in this field by 

introducing the various types of scattering which can occur between two tightly­

coupled quantum wells. Notably, the influence of phonon-assisted processes was 

clearly identified in reference [4], starting from a very basic situation involving two 

square quantum-wells. By investigating the coupling probability when the relevant 

eigenstates are separated by an energy in the vicinity of the characteristic phonon 

energy (n ro ), they showed a possible improvement in the well-coupling probability. 

Our aim here is to investigate this kind of transpmt mechanism in a real deviee. We 

have seen previously that a similar 2D- transfer of charge is also encountered when we 

focus our attention on the 2D injection zone and the DBH. This means that we have 

only to consider the wave function coherence within these zones. It is obvious that in 

the contact and cladding layers far from the heterojunction there is no mean to preserve 

a coherent transport due to the very long distance. The straightforward consequence is 

that the emitter as weil as the collector regions are regionally in quasi-equilibrium. 

Ideally a microscopie approach such as that canied out by means of Monte-Carlo 

procedure could take ail the scattering effects into account. It is now weil known that 

such a numerical method based on free flight and scattering events with a random trials 

of their occunence is very powerful to have a physical insight into the transpmt 

properties of low but not quantum sized dimensional deviees. In particular the non­

stationary dynamic effects such as velocity overshoot or quasiballistic transpmt. To 

our knowledge, there is now an increasing effort to develop theoretically a quantum 

Monte-Carlo approach based notably on the Bohm trajectories [5][6]. In this approach 

the Hamiltonian eigenstates have been shown to be non suitable and hence time-, 

dependent wavepackets are required [7]. 
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These kinds of models are now able to describe the transpmt propetties after an 

injection of hot electron through a DBH injector. The next step is to introduce the 

scattering mechanisms in the adjacent layer as weB as in the quantum region. 

ln our work we choose an intennediate approach which consists to detennine the _ 

frequency of collision of various types of scatterings. This is catTied out similarly as 

that in Monte-Carlo simulations. This is the first step and in section 3.4 we review the 

possible types of scattering mechanisms. 
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3.4 Possible types of scattering mecbanisms : 

Scattering mechanisms can be subdivided into two main categories namely bulk 

scattering mechanisms and interface scattering mechanisms. There exists another 
.. 

classification based on the resulting-in energy exchange, elastic scattering mechanism 

results in no enert:,ry exchange unlike the inelastic scattering mechanism in which the 

electron may gain or lose a ce1tain amount of enerbry. 

3.4.1 Bulk scattering mechanisms : 

In the following we will consider that the scattering events are non-correlated. This 

assumption of statistically independence pennits us to consider each interaction 

separately. Let us recall that this assumption is also used in the Monte-Carlo 

simulations where no memory effect is the considered. Another issue which can be 

discussed is the validity of a bulk rates for short dimension deviees. Analogous 

situation is encountered between the study of transport properties in a bulk or a real 

shmt dimension deviee. In the fonner one electron can be studied during a long rime 

whereas an ensemble Monte-Carlo code has to be used in the second case. This means 

that, by ergodicity principle there is equivalence between the two approaches. 

3.4.1.1 Phonon scattering (lattice vibrations): 

The physical picture of phonon scatte1ing m crystalline lattice is depicted in 

Appendix(A) by means of the well-known spring approach. First considered in a 

monatomic lattice extended to a second step by considering diatomic crystals. On this 

basis the scattering rate for acoustic phonon is calculated in details taking the 

compression and tension motion of atoms into account. Here, we show that this 

acoustic phonon rate can be derived by another way which can be summarised in the 

following equation [8]. 

• Eq. 3-1 
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where, 

• s(i,k') is the probability density of scattering from state k to state k' 

.. v 
• -~ denotes the density of states in the momentum spa ce. 

Sn· 

• the factor 2n reflects the symmetry of the scattering relative to the momentum. 

It can be shown that the probability density can be written : 

s( k, f' ) = 
2
n7t Ba ( k, f' ) Na o ( 1 k 1-1 k' 1 ) 

Eq. 3-2 

where, 

Eq. 3-3 

\Vith S and p the speed of sound and the specifie density of the semiconductor 

material respectively and Na is the Bose- Einstein distribution function. 

Eq. 3-4 
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substituting from Eq. 3-2, Eq. 3-3 and Eq. 3-4 into Eq. 3-1 we get, 

Eq. 3-5 

Eq. 3-5 is similar to the scattering rate equation derived in Appendix(A). Eq. 3-1 

can be applied to any other type of scattering mechanism notably for calculating the 

scattering rate by optical modes (8]. 

3.4.1.1.1 Lattice scattering by optical modes : 

Applying the same procedure (Eq. 3-1) outlined above we get for the lattice 

scattering by optical mode[8), 

ô [ 8 ( k' ) - 8 ( k ) - f1ro] Eq. 3-6 

where, 

Eq. 3-7 

E~ and Es are the relative dielectric constants, for the infinity limit and the zero 

limit frequencies respectively and E 0 is the dielectric constant of free space. 

Eq. 3-8 

Substituting from Eq. 3-6, Eq. 3-7 and Eq. 3-8 into Eq. 3-1 we get, 

Eq. 3-9 

In reference [9) by referring to the well-known data of GaAs Eq. 3-9 becomes 
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{ 
N <::::> absorption 

V
0

::::::6x1011 0 

2N 
0 

+ 1 <::::> emission 

Eq. 3-10 

j 
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3.4.1.2 Scattering by ionised impu.-ities : 

Scattering by the ionised impurities is a result of the Coulomb field Figure 3.1 

illustrates an electron ofvelocity v approaching the ionised charge (+Ze) . 

• 0 •••• --+- ......... ,....~ ................... . 
1 -' 
1 
1 

d 1 
1 
1 

. . . 
' ' 8 Z.e+ '. 

Impurity ion 

Figure 3.1 simple mode! for scalfering hy ionised impurity. 

We will neglect the electron deviation while approaching the positive ion and hence 

one can assume that the smallest separation to be the distance ( d). The maximum 

attraction force is 

Eq. 3-11 

where a ..Lis the perpendicular acceleration. 

The interaction time might be approximated by ( djv) with v the initial tangential 

velocity, so the perpendicular velocity component might be given by 

'") 

d ze-
V.l=a.l-= * 

V 47!: E 111 V d 

Eq. 3-12 

if(V..L ~v) then the deflection angel is 45°. Also if the magnitude of the attraction is 

high enough so that ( V..L ~v) a collision is said to be taken place. This is equivalent to 

say that, 
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Eq. 3-13 

We say then that the collision cross section is ( 1r d 2 
). By denoting (N) the volume 

.. c 

density of ionised impurities, the average scattering rate is given by 

Eq. 3-l.J 

By further assuming that the statistical average of product equal the statistical 

product of averages and also that the source of electron energy is only thetmal, then by 

simple algebraic manipulation one find, 

N Ze 4 

v = 
1 6 1t E 2 ( m • ) 112 ( 3 k T ) 312 

Eq. 3-15 

Eq. 3-15 states that the ionised impurity scattering rate is most effective at low 

temperatures provided that N is sufficiently high. 
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3.4.2 Interface scattcring mcchanisms : 

3.4.2.1 Interface roughness scattering: 

Inte1face roughness scattering will be treated in our mode] as a factor independently 

affecting the transmission probability of each banier. Therefore its overall effect in a 

double bmTier structure is described by replacing the transmission probability of a 

perfectly smooth bani er by that of an equivalent rough one. So our goal in this section 

will be to calculate the effect of smface roughness on a single barrier structure. 

The interface roughness is usually mode lied as a statistical distribution of tenaces of 

monatomic layer thickness ~- The probability density which govems the statistical 

distribution of their size is usually chosen to be of Gaussian type. 

Following Leo and MacDonald [15] the interface roughness scattering potential is 

described [ 16] as, 

Eq. 3-16 

where, the kronecker symbol was used for addressing the interface location at Zï and 

ri the lateral position of the tenace with respect to the coordinate r.L and Vb is the 

potential height at the barrier. Zi and ri. are illustrated in Figure 3.2 and cr is the 

average tenace width. 

~ rough interface 

z-axis , 

Figure 3.2 illustration of axis notation 
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Eq. 3-16 states that as the distance between the tenace centre and the position of 

electron incidence is increased the effect of scattering potential decreases 

exponentially with a characteristic decay length equal to twice the ten·ace average area. 

If we now consider an ensemble of terraces mutually uncorrelated in position and 

width, it can be shown th at the ensemble average interaction is [ 1 6], 

Eq. 3-17 

Dr is the interface surface density of terraces and ( Qe = K j_ - K .L ), where K j_ and 

K .L are the initial and final transverse momentum (parallel to the interface). 

If one assumes that (A=2a) and (Dr= 4/;rA2 = 1/A2
) i.e the average 

separation between terraces is equal to average terrace width we get, [3][16] 

Eq. 3-18 

The angular integration with respect to 8 yields, 

Eq. 3-19 

where Io is the modified Bessel function of the first type of order zero. By applying 

the analysis described in details [3] we finally obtain the capture probability rate per 

unit overlap integral as, 

( 
2 2J ( 2 2J . ~ ""' IR 2 2 2 K A K A 2m cK .L cW =V 1t A exp--- 1 ----

b 2 o 2 1i2 kz 

Eq. 3-20 

By knowing that the overlap integral or the fonn factor in [3] is, 

Eq. 3-21 
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where Çk- (z;) and Ç,"\1,(z;) are the envel ope wave functions at the intetface ( =;) 

which cotTespond to the initial and final states (k z, k,w ). The fonn factor described by 

Eq. 3-21 is the indication of the quantum probability of finding the electron in the 

neighbourhood (L\IR) of the intetface. 

Then to get the capture probability rate we must multiply Eq. 3-20 with Eq. 3-21. 

Let us now discuss the condition in which Vinter et al [3] derived the fonn factor. First 

they assume flat conduction band condition in the emitter region. Second they assumed 

that ali the scattered electrons will be collected only in the well resonant level (the 

final state is al ways k,"\1,) which is not our case. 

The fonn factor includes infonnation about transmission and reflection 

probabilities. This is in the sense that when the reflection probability is maximised 

(unity value) the transmission probability is minimised (zero value) and the transmitted 

wave will be destructively interfere with the reflected one so Çk~ (z;) will be 

minimised (zero value). In the other extreme case when the transmission probability is 

unity the electrons (quantum mechanically) do not feel the existence of the interface 

and hence the interface scattering is minimised. The last case is excluded in the 

analysis of Vinter et al [3] because they study the scattering only in the valley CUITent 

range. 

Besides a flat conduction band profile is used to calculate these envelope wave 

functions. In addition, the nonnalisation condition of the wave function in the analysis 

of [3] is not discussed. 

In our case of a single barrier ali the states on the other side are available and the 

stmcture is an open structure. Then the most plausible way to cany almost the same 

information which is canied out by the introduction of the fonn factor is just replacing 

Eq. 3-21 by 

, 
Eq. 3-22 
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The fonn factor as described by Eq. 3-22 has the advantage that it includes the back 

scattering effect and hence the cuiTent (R+ T= 1) is conserved. 

Integration of Eq. 3-20 is petfonned as follows : 

-
Eq. 3-23 

where 

Eq. 3-2-1 

using the change of variables 

Kl.2 ~ 1 ' )'') 
x= -

2 
, dx = 2Kl.A-dKl. , dK = (x) 1

-
l. 2AJ2 

Eq. 3-25 

by algebraic manipulations we get, 

ç:2 JI ~ .., l'" "" -v~~,.t.. (-"~"' +21.- +21.)_'_ dl. .:.. =2A r., 

Eq. 3-26 

0 

perfonning the above integral numerically we get, 

Eq. 3-27 

and hence the total transmission can be written as, 

Eq. 3-28 

where W 1
R is the transmission via interface roughness, Tc and Re are the 

transmission and reflection coefficient respectively and ~IR is the effective interface 

thickness. 
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3.5 Transmission coefficient: 

Starting from the WKB approximation and apply it for a very approximated 

structure as shown in Figure 3.3 one can get an analytical expression describing the 

transmission probability [14]. 

.. ~ -
VL !""""- ......-

VR 
.. 

... ~ ... ~ .. ~ ~ 

EL 
... r ... ,. Ew 

... ,. ER 

.,.r.,. ,. 

Lw 

Figure 3.3 simpl{fied energy band diagram of double barrier structure 

where 

-ltLIIrRI exp[i(kwLw -XLt-XRt)]
2 

1 - 1 rL Il rR 1 exp (i2 ô) 

Eq. 3-29 

Lw, LR and LL are the thickness of the weil and of the two barri ers with the 

subscript L and R standing for Ieft and right. 

We also define according to a specifie regiOn the attenuation coefficient 

(a; i = L , R) and the propagation one ( k 1 j = L , R) with the following 
, 

expressiOns. 



3-16 

Hq. 3-30 

Eq. 3-31 

-
The coefficients denoted t and r describe the transmission and reflection coefficients 

on the left hand side and right hand side respectively. Their modulus can be expressed 

as follows, 

Eq. 3-32 

Eq. 3-33 

In these relations 9 coefficient has been introduced expressed as, 

Eq. 3-3-1 

Eq. 3-35 

At last the phase terms x and ~ respectively can be written as a function of 

e ' a and the thickness as follows, 

Eq. 3-36 

Eq. 3-37 

2~ = 2K,r4r- (XL1- XL2)- (XRI + XR2) Eq. 3-38 

In the above treatment the wave function m each regiOn IS assumed to be an 

exponential function with constant amplitude. This means that (A 1 .Jk) for 

propagation regions or (A 1 ra) for attenuation regions were assumed to be 

independent of position within the con-esponding region, which is an approximation 
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only valid for the flat or nearly flat conduction band structure (zero field 

approximation). 

In addition, the above treatment would not be val id anymore if the x-energy value is 

near the conduction band edge such that 1 k(x) 1 k'(x)2 l.or 1 a( x) 1 a'(x)2
1 is greater 

than unity which is the limit of validity of WKB approximation [17]. In other words, 

this model appears too simplified to give a realistic insight into the deviee physics and 

this fact motivates us to derive a more exact calculations. 

3.5.1 Calculation of transmission coefficient : 

Our goal is to overcome the key limitation of the flat conduction band 

approximation. It is now well-known that the Airy function is the exact solution in that 

case [ 18]. ln the same ti me however it could be useful to conserve the simplicity of the 

exponential approximation of the WKB method. For this purpose the Airy function 

(exact solution [ 18]) is analysed by the product of two exponential fun etions one 

having a real exponent (attenuation responsible) and the other an 1magmary one 

(propagation responsible ). Therefore we will name this method as the 

Airy-Exponential Exact Solution (AEES) which will be one of the novel features of 

our model. 

Eq. 3-39 

where 

[ ..,]J/3[ ] Ç(x) = 2m 1 (eFt1t E0(x)- Ex 

E0 (x) is the conduction band profile 

Fis the electrostatic field. 
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by simple algebraic manipulations we can get, 

A-A~+ B-W 
a= 1 1 ~ 1 .Ç' 

A~ +R-:-
1 1 

h"q. 3--10 

Eq. 3--11 

In order to i11ustrate the difference between the WKB approximation and the AEES 

method we plotted in Figure 3.4 the propagation factor P and the attenuation factor a 

versus enerh'Y for a single batTier heterostructure under a constant electric field. The 

reference of energy is taken in the emitter region. 

1=77 

- - - Wr:B opprox,ma1.,0n 
-- .A.iry-E,l•C•n-::-r.tiol 

0 100 200 300 400 500 
enerqy (meV) 

Figure 3.4 propagation factor (PJ and attenuation.factor (a) calculated.for the resonant 
double barrier structure of Table 3-1. 

In the above figure, far from the bani er height (220 me V) the WKB approximation 

fits quite well the Airy solution. ln contrast, at energies near the barrier height the 

\VJ-:..8 approximation does not.seem realistic with a breaking point at 220 meV. 
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The AEES method is not restricted to a single batTier and can be applièd without 

difficulty to DBH structures white maintaining a constant electric field over the active 

quantum-region. The transmission probability calculated for the resonant double 

baiTier whose epilayer sequence is listed in Table 3-1 is displayed in Figure 3.5. The 

bias voltage applied is close to the threshold voltage for NDC effect as seen by the 

energy position of the grou nd state close to the emitter band edge. 

0~,---.-----------------.-------------./-==~---=-==~---

-5-, 

-10-
ï 
j / 

1 

-. 

/ 

scottering coeffecient = 0 
T=77 k 

-15~.~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 100 200 300 400 500 
erergy (meY) 

Figure 3.5 transmission prohahilityfor the resonalll double barrier of Table 3-1 
ca/culated using AEES method 

The transmission curve in the above figure was calculated at 77K without scattering 

and will be used here after for deriving the pm·ely coherent quantum transmission 

probability. 

In case of when using WKB approximation the mode] will fail to describe the 

enhanced resonant transmission through the first excited state which strongly influence ., 
the out of resonance Ievel. The present AEES method does not require to consider a 
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constant electric field any where in the structure but could be generalised using piece­

wise constant field approximation. 

3.5.2 Scattering effects on transmission probability : 

We leamed in section 3.4.2 that the smface roughness-related scattering depends 

strongly of the banier height and also of the parameter ~. For the sample under test 

the barrier height is relatively Jow besicles it is believed that smface quality is quite 

good in view of the high perfonnance electiical characteristics. Therefore in a first 

stage we will focus our intention about phonon scattering effect and more patticularly 

on longitudinal optical mode (see appendix A). 

PhysicaiJy, it can be understood that the life time of an electt·on within the quantum­

well is a key parameter in the Joss of coherence. This conclusion was early recognised 

by saying that the probability of finding an electron in a coherent state within a 

quantum-well of thickens Lw is reduced exponentially with an attenuation coefficient 

related to the scattering coefficient with the factor exp(- 2rLw) 

A.D.Stone & P.A.Lee have intt·oduced this idea for the first rime [19] assuming y as 

an adjustable parameter to be detennined to get agreement with experiment. Later on 

Yasuhito Zohta et al [12][13][14] have extended the theo:ry assuming y= 1121 f 

where /1 is the electron mean free path in the bulk matetial. 

In this model, to kinds of transmission probabilities are introduced, refereed as 

coherent (Tc) and incoherent ( T;) n·ansmission probabilities. Moreover, to conserve a 

unity probability we have to introduce an attenuation coefficient denoted her Ar 

which physicaiJy describes the incoherent part in the tunnelling process. 
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The coherent quantum transmission probability {1~) and the coherent reflection 

probability ( R") have the following expressions: [ 13]: 

-!tt !!tR 1 exp(-y!_Jr) exp[i(kL- XLl- XL2 )] 
2 

1~ = 
1- 1 rL Il rR 1 exp( -2yl,w) exp(i2~) 

R = c 
1 rL 1 - 1 rR 1 exp( -2yLw) exp(i2~) 
1- 1 rL Il rR 1 exp( -2yLw) exp(i2~) 

From them we can deduce the attenuation coefficient Ar: 

by simple algebra Ar reads: 

2 

TL 1-l rR 1
2 

exp( -4yLw) - TLTR exp( -2yLw) 
Ar = _ __._ ________ _..__ _____ --=---

11 -1 rL Il rR 1 exp( -2yLw) exp(i2~) 12 

Eq. 3-42 

Eq. 3-43 

Eq. 3-4./ 

Eq. 3-./5 

Now we have to derive the incoherent part of the transmission probability. Over the 

past our group, dealing with this issue proposed to assume that an electron after 

loosing its coherence escapes from the quantum-well prorata to the elementary 

transmission of the left and right bani ers [Il]. Mathematically, the incoherent 

transmissions from left to right and vice versa read, 

Eq. 3-./6 

Eq. 3-./7 

It seems interesting to discuss here the validity of the above assumption which can 

appear at first glanee relatively erode. In fact, it is believed that an eleçtron which has 

just experienced an inelastic scatteting loose the memory of resonant effect (phase­

breaking). It could tiy to reconstiuct a new phase memory but this implies severa] back 
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and fot1h bouncing motion within the quantum-weil. In reality, it is believed that the 

escape time is too shm1 to satisfy this condition. As a consequence, the electron 

expetiences a very simple escaping process through a single banier heterostructure. 

Finally, the overall transmission (total) is the summation of coherent and incoherent 

contributions. 

T TOT.·IL = 7~ + T; Eq. 3--18 

Before using the above equation we are now discussing the energy conservation 

issue. This discussion is motivated by the large discrepancy obtained between the peak 

cunent calculated by means of the original model ofYasuhito Zohta et al [12][13][14] 

and the experiment (one order of magnitude). Moreover, the LO phonon peak has not 

any significant value on the 1-V simulated results. \\'hile reviewing the assumptions 

made in references [12][13][14], it appears that the transverse energy was assumed to 

be equal zero which is not realistic. In fact, it was early recognised [2][3][4] that an 

elastic scattering in confined system, with thus the separation between the longitudinal 

and transverse energies, can be considered as an inelastic event in the direction of 

propagation. To take this fact into account we will assume, in a next section, that the 

probability of finding a scattered electron is unifmmly distributed over an energy 

window 1iro · optical phonon energy. The unifonnly distributed probability density 

function is centred above (absorption event) or below (emission event) the injected 

electron energy level. 

On the other hand, the authors of references [12][13][14] introduced a scattering 

factor exp(- 2)'i.rr) which compares the scattering ti me to a transit ti me (simple 

crossing) within the quantum-weil. This contradicts the fact that the electron occupies 

the quantum-weil for a finite time suffering from multiple reflections. It is sure that we 

have to compare the ensemble averaged free-flight time within the quantum-structure 

to the resonant levellife time. 
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Wm1h noting that the effect of considering the multiple reflections increases the 

probability of scattering and hence appreciable decrease in the peak cunent could be 

observed. V..'e are now interesting to derive the life time under scattering condition. 

3.5.2.1 Life time under scattering condition : 

The basic idea is to take into account the number of fini te reflections by considering 

a factor such that y= a Yo where Yo denotes the bulk value of y and a is the number of 

finite reflections. 

Th us multiplying Yo by the number of fini te reflections a su ch th at, 

y= a Yo Eq. 3-./9 

which is exactly equivalent to replacing Lw in the analysis of Zohta et al [ 13] by, 

Knowing that, 

L,1feclive = a Lw 

v 
a= 'ter-

Lw 

On the other hand, it is weil known that the life time 'ter is given by, 

fl 

'ter= f(a) 

Eq. 3-50 

Eq. 3-51 

Eq. 3-52 

where r is the fu11 enerhry width at half maximum (FWHM) of the total transmission 

coefficient. 

In this work Eq. 3-51 and Eq. 3-52 are self consistently solved by numetical 

techniques. However, to give a physical insight, an approximate analytical expression 

for the solution could be derived as follows : 
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For natTOW quantum weil structures, having 'li_, 'li? and 2ayJ,w much Jess than unity, 

an analytical expression for F(a) could be described by, 

r1 +Tu n,, 
f(a)= ' -+ 2t1vay 0 2 r,. 

Eq. 3-53 

The first tenn describes the coherent contribution whereas the second introduces the 

additiona] broadening resulting from scattering processes. 

solving Eq. 3-51, Eq. 3-52 and Eq. 3-53 together we get, 

Eq. 3-5-1 

which is a second order algebraic equation in a and is one of the most significant 

contributions of the new model. 

It is worth mentioning that Eq. 3-54 has to be applied separately for each 

(absorption or emission) mechanism. This is because each interaction process has a 

different Yo value and hence a different life time. 

In practice it is found that the difference between the analytical and the numerical 

one is minor at low temperatures under relatively strong confinement condition. 

However, the transmission probabilities which are displayed in Figure 3.6 associated 

with each scattering process are derived using numerical approach. 

In Figure 3.6 the coherent (solid line) and the incoherent (dashed line) transmissions 

were plotted in logarithmic scale for the the Lü phonon emission process (Figure 3.6a) 

and Lü phonon absorption scattering (Figure 3.6b). For the fmmer, it is seen that near 

the ground energy level the incoherent transmission is enhanced with respect to the 

coherent one. \Ve have to stress that the scatteting process here is particularly efficient 

such that electron suffering a phonon emission take advantage of a resonant tunnelling 

effect through the quantum weil resonant level. In contrast, the phonon absorption is of 

mmor concem. 
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At this stage, it remains two imp011ant issues to be discussed namely the injection 

condition investigated in section 3.6 and at last the space charge effect which will be 

studied in section 3.7. 

Figure 3.6 depicts the different transmission probabilities associated with each 

scatteting process. 

lt can be shown th at exp(- 2cry 0 Lw) =exp(- "t 1:,. 1 r1 ) where T1 is the average ti me 

between two successive scatterings and 'ter is the electron life time. 

• 

1 

l' 
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(a) scattering due fo L-0 phonon emission 
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(b) scattering due to L-0 phonon absorption 
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Figure 3. 6 the transmission probability calculated using the AEES method (a) for the 
emission process (b) for the absmption process. 
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3.6 Scattering effect on injection conditions : 

The effect of scattering on injection conditions could be summarised in nvo key 

points. First is to create a new set of local density of states (starting from the coherent 

one) which will be denoted as the incoherent local density of states. Second is to 

occupy these incoherent states by the appropriate probability of occupancy. 

To describe the above mentioned incoherent density of states the following 

assumptions shall be adopted : 

From a previous discussion we have shawn that the phase memory of the scattered 

electron would be Iost just after scattering and th en the scattered electron try to recover 

a new phase memmy in a finite transient time. In arder to provide a time scale, it is 

reasonable to assume that this finite built-up time is much longer than the so called 

simple tunnelling rime. 

Also, we will assume that an incoherent local density of states can be derived from 

the pm·ely coherent one by taking the 3 D-carachter of interaction nam ely the sharing of 

the quantum energy f1ro between the longitudinal and the transverse directions into 

accow1t. 

To achieve that, the original coherent local density of states are maximally activated 

by assuming a unity probability of occupancy. In addition, as the scattering process 

occurs in the time domain in a completely random manner, the probability of scattering 

is assumed to be unifonnly distributed over a range of energy equal to the Lü phonon 

enert,ry ( f1ro op). Tims the scattered electrons will be distributed over the energy range 

( 1i (j) op ) as described by the following equation, 

., 
i. 
1 

J. 

1 
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r.x+fK•lop 

11/()(a/ ( f., ~ '211~ x ) = 

J g( f., ~2ni::,). dÇ ... <::::> pho11011. emi.\xÙJ/7 

r.x 
t1ro op 

l:x 
Eq. 3-55 

. J g(r., ~2JnÇ). d:, ... <::::> phonon ah.•;oi]Jiion 
flro • 

op l:x-ft.•lop 

If a Fetmi-Dirac statistic is applied for Eq. 3-55, the original Fermi (E~ro) level 

previously calculated for coherent electrons is not convenient for incoherent electrons, 

and a new quasi-Fermi level should be applied. The most plausible quasi-Fermi level 

to be used is described by the following equation, 

{ 
E JO - tlCJ) op ... <::::> pho11o11 ... emission 

E = . J E JO + f1ro op ... <::::> phonon.abSOTJJI/017 

Eq. 3-56 

The density of electrons calculated in Eq. 3-55 is the incoherent local density of 

states calculated for unity probability of occupancy. Therefore, we have to weight the 

local electron concentration by a Fermi-Dirac statistics in which the quasi Fermi-level 

of Eq. 3-56 is applied. 

It is worth-noting that the density of states calculated using Eq. 3-55 has to be 

devided by two to get only the positive x-momentum component (see also chapter 2). 

In the above analysis the originally coherent local density of states are totally 

transfmmed into incoherent local density of states. This means that implicitly we 

assume a unity probability of scatteiing. 

In order to find the vatious weighting terms, it is necessary to use agam the 

comparison between the life time of electrons within the active zone (te, ta) with 

respect to the characteristic ti me of scattering processes ( Te, Ta ) which are directly 

derived from the scattering rate (Te= Ifve, Ta= 1fva ). Now, let us suppose that we 

have na and ne electrons involved in the absorption and emission processes 

respectively per unit time. 
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Those, affected by the absmvtion process could be derived according to the 

following relation : 

Eq. 3-57 

In contrast, in case of avoidance we obtain, 

;_ = na exp(- Ta 1 Ta) 
a 

Eq. 3-58 

Therefore, ta govems the weighting balance and one can check that wh en ta tends 

towards infinity ali the involved electrons are scattered whereas the coherence is 

preserved when ta tends towards zero. From the above equation, the variable na can 

be eliminated and we get, 

1 exp(- 'ta 1 Ta) Eq. 3-59 

Ta- = Ta [ 1 - exp(- 'ta 1 Ta)] 

Similarly for the emission process, 

-/:- = ne[1- exp(- 'te 1 Te)] 
e 

Eq. 3-60 

1 exp(- 'te 1 Te) Eq. 3-61 

Te- = Te [ 1 - exp(- 'te 1 Te)] 

From Ta, ra-, Te and re- we deduce the vanous weighting coefficients denoted 

pa+, pa-, pe+ and pe-. The subscripts and superscripts refening to absorption (a), 

emission (e), collision(+) and avoidance (-). 

l' 
1 

1! 
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Eq. 3-62 

p e = { 1 / r: } + { 1 / ~- } + { 1 / ~ } + { 1 / ~; ) 

+ (tiTe) 

p e = ( 1 / Te ) + ( 1 / Te- } + ( 1 / Ta ) + ( 1 1 Ta-} 

Eq. 3-63 

- (11 ~-) 
pa = ( 1 1 1"e ) + ( 1 1 ~- ) + ( 1 1 Ta ) + ( 1 1 Ta- ) 

Eq. 3-6./ 

Eq. 3-65 

Using the supply function model described in chapter 2 and the weighted local 

density of states discussed above, one can calculate the COITesponding supply 

functions. In Figure 3. 7 we plotted the purely coherent local density of states (a) 

calculated using the model discussed in detail in chapter 2 along with the associated 

momentum-less density of states (b ). Also are depicted the coherent and incoherent 

supply functions with respect to the emission and absorption processes in Figure 3.8 

and Figure 3.9. 

Finally the tunnelling current is calculated according to following equation, 

J=L f sFLR rLR - sFRL TRL + SF r dE 
i i i i c c x 

Eq. 3-66 

a.e 

where the suffix i stands for incoherent and the suffix c for coherent. The 

summation is performed for both the absorption (a) and the emission (e) processes. 

Before reporting the numerical results calculated in the framework of the mode] 

discussed in details above, let us now consider the space charge effect. 
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Figure 3. 7 (a) the pure/y coherent local density (?{states calculated using the mode! 
discussed in the previous chapt er, (b) the momentum-less density of states calculated 
by the integration of the abo1•e local density of states w. r. t the average momentum in 

the accumulation zone and a comparison with the equil•alent ~-D one. 
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3. 7 Spa ce charge effect : 

The theoretical treatment of the space charge effect within a quantum stmcture is a 

tricky task. Idea11y, a full quantum approach such as that used in Wigner Distribution 

Function (WDF) has to be petfonned. The reason are twofold, the first stems from the 

ability of such a theoretical approach to describe the conduction phenomena as a real 

transpm1 process. Indeed, in quantum theory the difficulty of accounting for scattering 

is often alleviated by elaborating a perturbation approach on the basis of a pure 

coherent process. The WDF approach does not suffer from this limitation. In 

counterpart, it appears quite difficult to implement such a method for a deviee taken as 

a who le. In fact, such a method is very ti me consuming and the physics of phenomena 

is sometimes hidden by the complexity of the numerical treatment. 

In the present work, in order to give a physical insight into the effect of the trapped 

charge we will made a crude assumption which permits us to derive a relationship 

between the trapped electrons and the cunent tenns contribution including the 

scattering effect. We will show that, despite this approximation sorne of the main 

consequences of space charge effect notably the shift in the threshold voltage will be 

achieved. 

It is also important to note that transpm1 in resonant tunnelling structures with large 

spacers (which is our case) is space charge Iimited [16]. That is cunent and space 

charge are strongly coup led [ 16]. 

3.7.1 Calculation of the trapped charge: 

Assuming that the electrons transfer after tunnelling, in the real space of the 

collector region with the ballistic speed v (x,ex) = ~2m* IEx(x) in the x-direction 

where &x (x) is the longitudinal energy at the position x. 
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From the definition of the CUITent density we have, 

( ) 
_ dJx{x,Ex) 

dn X,Ex - ( ) 
qv X,Ex 

Eq. 3-67 

where dJ x{ x, Ex) is the x-component of the incrementai current density. 

The basic idea of the spa ce charge madel is to Iink the density of charge trapped in 

the weil and consequently to introduce subsequent conduction band bending solved 

self-consistently with the local current. Previously, special attention was paid to derive 

forward and backward current contributions in the region where the electrons are 

bouncing back and forth between the confining barriers. In contrast, it is reasonable to 

assume that there is no wave function reflection in the collector region because there is 

no material discontinuity at this zone. For instance, such an assumption of a 

progressive wave is made to solve the Schroedenger equation using Runge-Kutta 

method [20]. The obvious linking between the region where a standing wave pattern is 

observed and those which can suppmt a progressive wave is the current conservation. 

Our primary goal is to calculate quantitatively the density of trapped charge which 

is subsequently introduced to Poisson's equation solver. We have the shape of this 

charge by means of the wave function, it remains to evalua te a normalisation constant 

which is the key issue. For this purpose we proceed by the following method: 

3. 7 .1.1 \\'ave function normalisation to the current density: 

Anywhere in the collector region the conservation of probability current density can 

be written as, 

Eq. 3-68 

where C (Ex) corresponds to the probability cuiTent increment independent of x­

position, K(x, Ex) is the wave vector, '1'2 (Ex) is propmtional to the electron density 

and A2(Ex) is the coefficient of normalisation. 
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On the other hand, a quite general fonnula pennits one to calculate the current 

intensity at Ex from the corresponding transmission and supply function. Therefore, for 

a given temperature e and bias condition Jlc we have, 

Eq. 3-69 

where the other symbols have their usual meaning. 

If the effect of scattering on the space charge trapped in the quantum well could be 

neglected then, from Eq. 3-67 and Eq. 3-69 we get, 

Eq. 3-70 

Since the product K(x,Ex) \ 'P;(x,Ex) j is constant everywhere in the colJector 

region, It is arbitrary calculated at the collector electrode to be simply the propagation 

constant Kc(Ex)=~2m*(Ex +Vc)/ 1i2 at the colJector electrode where the wave 

function is arbitrary chosen such that \11 2 (xcollecron Ex)= 1. 

Referring to Eq. 3-67 and the quantum definition of the probability density current 

dJ (x, &.J we get, 

K(x,Ex}A 2 (Ex) 1 'P2(x,Ex)! 

qv(x,E .. J 
Eq. 3-71 

Let us consider now a quantum region sandwiched between tvvo heterointerfaces. 

Constmctive and desnuctive intetference between the fmward and backward 

propagating waves will take place and the cenn·al issue is now whether such phase 

related phenomena affect the local elecn·on disn·ibution function. MathematicalJy, this 

means we have to distinguish between the modulus of the wave function as a who le or 

separately. 
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In the fonner we thus get, 

Eq. 3-72 

where as in the latter we get, 

Eq. 3-73 

where the suffi x (f) and (b) denote the fonvard and bacl"V.'ard propagation. 

The Iater (Eq. 3-73) stems from the fact that Eq. 3-68 is defined only for the regions 

of no-eddy cunents or in other words in the zones of no-wave fun crion reflections [ 17] 

(collector region). 

In the follmving we are comparing systematically the t\vo assumptions discussed 

above namely the role played by interference effect in the built-up of the trapped 

charge. Figure 3.1 0, is a plot of the space charge profile with and without interference 

effect calculated at a temperature 77 K. It can be seen that the main difference cornes 

from the spatial profile. Accounting for phase intetference effect, the maximum 

density ( n = 1. 7 x 1017 cm -.3) is located approximately in the middle of the well 

reflecting the presence probability. Suppressing the phase interference effect leads to a 

rather constant charge profile. Figure 3.11 permits us to investigate the effect of 

biasing potential in the vicinity of the threshold voltage for NDC effect here between 

0.4 and slightly above 0.5 Volts. In terms of caiTier concentration it can be seen that 

the discrepancy are relatively low. Moreover, as expected the carrier density increases 

versus bias voltage. This is a direct consequence of the increase in the CUITent density 

which is the origin of the supply. 
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Figure 3. 10 depicts the space charge profile with phase intelference effect and 
lt'ithout phase intelference e.ffect (T= 77 K). 

mid-weil carrier density evolution with biosing voltage 
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Figure 3. 11 depicts the space charge e1•olution with applying potentiall1'ith phase 
inte!.ference e.ffect and without phase intel.ference e.ffect {T= 77K) 
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Beyond the differences pointed-out in Figure 3.10 and Figure 3.11 the fact of 

considering the phase interference or not is still an open question. 

3.8 1-V results and comparison with ex periment : 

In this section, we are now reporting the results according to various degree of 

assumptions. Figure 3.11 depicts the calculated and measured 1-V charactetistics wh en 

the coherence breaking is included with (dashed) and without (solid) space charge 

effect. As a matter of illustration, Figure 3.13 shows the measured I-V curve with a 

compressed voltage scale to give a clear view of the LO replica. The first remark 

concerns the relatively good agreement between the measured and the calculated peak 

current densities with a value typically of 500 Ncm2
• On the other hand, it can be seen 

that the phonon replica shown about a 0.65 Volts is also well described theoretically. It 

is seen. that the agreement benveen threshold voltage Vpeak is only achieved provided 

the space charge effect is included. In counterpart, for the both situations, it seems that 

a broadening of the resonant current curve is slightly under estimated. At last, a kink 

effect is apparent at low voltages ( ~ 0.35 V) both for the experimental and theoretical 

curves. 

Figure 3.14 shows the various contributions to the calculated total current plotted in 

sol id line. The first current anomal y at ( ~ 0.4 V) reflects the current contribution 

resulting from the cross-energy between a very weak resonance in the quasi-continuum 

and the quantum-weB resonant energy ( E rw ). This feeding mechanism is reproduced 

owing to the new definition of both the local density of states and the supply function. 

The later is weil defined over ali the states namely the strictly confined and highly 

delocalised states. 

Also in Figure 3.14, it can be seen that the incoherent absorption plotted in long­

dashed line is not of sufficient magnitude to be responsible of this conduction 

anomaly. As a general rule, its influence is of second order. This is not the case of the 

incoherent emission which is responsible of bump in the current density noted at 

( ~ 0.65 V). Finaiiy, considering the coherent component, it is seen that this 
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contribution dominates the peak current whereas in CUITent valley regwn, its 

contribution is of min or concem but is not zero. Obviously, the description of the peak 

to valley CUITent ration is now much more realistic as compared with a fully coherent 

approach. 

It remains to exp lain how a cl oser agreement could be achieved if the space charge 

effects are included. To this aim Figure 3.15 is a close-up of the voltage range of 

interest. Ot:te can note that the general trends by taking space charge into account is to 

shift the peak voltage to a higher value. Indeed, by accumulating a non-negligible 

charge density within the weil, we subsequently introduce an electric field gradient 

which minimises the voltage drop over the quantum region. As a consequence, it needs 

more voltage to satisfy the threshold condition. Moreover, this shift is more impmtant 

when no phase effect is introduced due to the higher sheet carrier density 

(see Figure 3.11). Nevertheless, it seems hazardous to select one of the two schemes 

on the basis of experimental agreement. The temperature of 77 K was chosen for 

illustrating mainly the phonon-replica. 
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Figure 3.12 depicts both the measured and the simulated I-V characteristics 
calculated according to the ahove discussed mode/. 
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Figure 3.1-1 depicts the different current componcnts (with space-charge effect at 77K) 
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With the atm to investigate the temperature dependence it seems interesting to 

ca1cu1ate the 1-V characteristics un der various approximation degrees at 300 K. The 

results are shown in Figure 3.16 and Figure 3.17. As expected, and in agreement with 

experiment we observed a dramatic degradation in the peak to va11ey ration with the 

disappearance of the phonon-rep1ica. Othetwise, we obsetved the same ki nd of t1·ends 

with perhaps a 1itt1e-bit disagreement conceming the peak voltage. for the plots of 

space charge effect (with and without phase intetference) the cutves in the negative 

differentiai conductance region were not plotted for sake of clarity but they follow the 

sa me evolution of the sol id li ne in the considering figure. 
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Figure 3.16 de piets the space charge evolution with applying polentialwith phase 
inteJference e.!Ject and without phase inteJference e.ffect(T=300K) 
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Figure 3.17 depicts the ejfect of space charge on the 1-V characteristics at 300K. 

3.9 Systematic study ·with temperature : 

Before comparing simu]ated and measured data, let us briefly consider the 

experimenta] conditions. In contrast to the measurements performed so]e]y at liquid 

Nitrogen temperature by dipping the samples, systematic measurements versus 

temperature requires to mount the deviee onto a test fixture cooled down in a cryostat. 

In Figure 3.18 we plotted in solid lines the peak and valley currents as a function of 

temperature. Initially, the peak to valley current ratio is about 10 : 1. At increasing 

temperature, this ratio degradates gradually to reach about 3 : 1 at room temperature. 

These de data compare favourab]y to the best resu]ts achieved so far with similar 

GaAs/Al0_3Gao.1As DBH's. In further details, it can be shown that the va1ley current 

increases fo1lowing approximately a linear relationship as a result of increasing 

scattering probability with temperature. In contrast, the peak current exR.ibits a quasi­

exponential decrease. 
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Figure 3.19 depicts the evolution of the peak and valley currents with temperature 

The simulated data are plotted in a dashed tines. Overall, a good agreement is 

achieved. It is important to state that the above calculation are perfmmed without 

conceming the space charge effect and the effective mass re-normalisation. We 

previously leamed that the main effect of space charge concems the relevant peak 

voltagë without significant modification in the current contrast. To our knowledge, this 

is the first time that the peak to valley CUITent ratio is described satisfactmily over a 

rather broad temperature range. 

Another issue in connection with temperature studies, concems the use of the 

second derivative of the 1-V relationship. We address this issue in the next section. 
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3.10 Second derivative of the 1-V relation : 

One of the main drawbacks of characterisation technique based on the measurement 

of the 1-V characteristics stems from the fact that there is no direct infonnation about 

the quantum transmission probability. Let us recall that the total cuiTent implies an 

integration over enert,ry of the supply function times the transmissivity. Recently, a 

very elegant way to overcome su ch a limitation was proposed by Sakaki [21]. The 

basic idea was to use the second derivative of the CUITent with respect to the voltage at 

the onset of resonance process. Moreover, if the temperature is sufficiently low in 

order to minimise the thennal tail of the supply function, the authors of [21] have 

shown that sorne indications of the degree of broadening of transmission can be 

estimated. Previously, we have discussed about the relation between scattering 

probability and the broadening in transmission. ldeally, the characterisation should be 

conducted at liquid Helium temperature ( 4.2 K). In the present work, unfortunately, it 

was not possible to cool down the sample at so low temperatures. Nevertheless, it 

seems to us interesting to use the same approach based on the second derivative to 

have a first insight into the importance of the incoherent process. 

The results of this study are summarised in Figure 3.20 and Figure 3.21. For the 

fonner we compare the bias dependence of the second derivative of CUITent density 

with respect to voltage at 77 K (Figure 3.20 a) and at 300 K (Figure 3.20b) for the 

measured (dashed line) and calculated (solid line) data. The general trends are almost 

described. The main discrepancy stems from a voltage shi ft between 30 and 50 rn V. 

The magnitude fits quite well for the first extrema whereas the error is within 30% for 

the third anomaly. We have to stress that this is the first part of the curves typically 

below 350 mY which is interesting on the basis of the arguments outlined before. 
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Figure 3.21 (a) measured transmission width determined by the seconq derivatil'e 
method [21 }, (b) is derivedfrom our simulation results. 
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The variation of d 2 J 1 dV 2 with a sign change results directly from the bump 

pointed out in the 1-V curves at the on set of the conduction which is attributed to the 

transition between the state of quasi-continuum and the 20 injection. At -room 

temperature the same behaviour is achieved with an evolution which is somewhat Jess 

pronounced. It is certain that Sakaki ana1ysis under this temperature condition is no 

longer va1id. Therefore, we plotted in Figure 3.21 a zoom-in to the bias range between 

200 and 340 m V at liquid Nitrogen temperature. 

The Full \Vidth at Half Maximum (F\VHM) with respect to bias voltage taken as the 

independent variable is 40mV. It remains to correlate this voltage broadening to the 

energy one. A simple rule, conceming bare DBH's with symmetiic barriers, is to 

assume that a shi ft in the voltage drop across the stiucture results in one-half the shi ft 

in quantum energy level (in electron volts). From this scaling rule the FWHM with 

respect to energy (FWHME) 20 meV. This experimental broadening can be compared 

to the value calculated from theoretical transmission. In order to illustrate this issue, 

two cases have been considered, (i) coherent transmission component in an overall 

process involving phonon emission and (ii) incoherent transmission component in 

phonon absorption process. Both curves exhibits a similar broadening with the same 

order of magnitude ( 10 me V). The measured and the ca1culated data differ of sol ely a 

factor of two which is very encouraging in view of assumptions made both in theory 

and experiment. 
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3.11 Conclusion : 

In this chapter, we have studied the scattering assisted tunnelling. The effect of 

scattering is included not only in the transmission probability but also into the injection 

conditions through a novel probabilistic model. ln connection to the new fmmalism 

described in details in chapter 2, we have succeeded for the first time to define four 

probability rates associated with each possible scattering assisted supply condition. 

The associated phonon energy is partitioned equally-likely between transverse and 

longitudinal energies. The scattering effect is assumed to causes a pmtial Joss in the 

wave function coherence. The transmission probability is self-consistently solved 

along with the equation defining the finite life time in the weiL The later time reflects 

the finite reflections characteristic time required to construct the resonant wave 

function in the quantum weil. 

In addition, the transmission probability is calculated using a new method we called 

AEES based on Airy function solutions. This is done to achieve both the required 

accuracy and generality while preserving the simplicity of the exponential method. 

The above model, is systematically applied to simulate the resonant tunnelling diode 

fabricated in our group of research and which characterised in the present work as a 

function of temperature. The compruison between the simulated results and the 

measured data are surprisingly in a very good agreement. This good agreement is also 

shown to be sustained for a broad range of operating temperature conditions. 
1 

Using the above novel model, we have described successfully the main anomalies in 

the I-V characteristics notably, the onset-bump, the main resonant current and the post­

resonant phonon replica. The first reflects an injection condition corresponds to an 

intermediate state between the extended 3D and the confined 2D-injection conditions. 
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4. Study on tunnelling transport m lateral field-effect-induced quantum 

wells: 

4.1 Introduction: 

In the previous chapters we have discussed the tunnelling phenomena in vertical 

heterostmctures, investigating the two dimensional injection effects along with the 

scattering assisted tunnelling. Ail the previous analysis are based on the solution of 

Schroedinger equation in one dimension. The character of uni-dimensionality of the 

solution stems from the assumption of neglecting the fringing effects. The later 

petmits the suppression of the spatial dependence of the potential function in the 

transverse direction with respect to current direction. On the contraty, the lateral 

stmctures, results in an electrostatic induced potential whose space variation 

depends at least on two directions. For example, the planar resonant-tunnelling 

field-effect transistor (PRESTFET) [1][2][3][4] results in X and Y dependence. On 

the other hand, for a grid-gate lateral surface super lattice (Gtid-Gate LSSL) [1][5], 

accounting for X, Y and Z dependence is necessary. 

First of ali, bef ore investigating the tunnelling transport in the se lateral stmctures, 

a special attention has been paid to find out the most realistic potential function, the 

relevant Fermi-level and the injection-mode. Also, it is important to mention that the 

PRESTFET fabricated by K. lsmail and co-workers [1] will be the test vehicle 

through out the study of this chapter. 

This test stmcture is a dual nano-gate stmcture in such a way that a resonant 

tunnelling transport can be demonstrated. Beyond the description of the 

2D character, the novelty of the study, presented here, stems from accounting for 

the quantum transport effect. Indeed, localisation effect in MODFET's, yielding a 

discretisation of energy levels, was early recognised [6][7]. 
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This effeet eould be taken into aeeount in the present work but this is not our 

main goal. In the present work the lateral quantum-sized and tunnelling effeet are 

more speeially addressed. 

4.2 Notes on deviee design and operating conditions: 

We now introduee the typieal parameters or'the epi-layer from whieh the deviee has 

been fabrieated. On the other band, we diseuss of various deviee guide li nes along with 

operating conditions. First of ali, it is worth mentioning that the opera ting temperature 

for observing quantum lateral effeet bas to be low. In most cases, the measurement 

were perfonned at liquid Helium but further cooling the deviee could be useful. The 

reason is quite simple. In faet, in conn·ast to heterostiueture potentials, the eleetrostatic 

indueed potential exhibits a quite opened parabolic-like shape. From the technological 

side, this can be understood by the difficulty to fabricate dual gates on the nano-meter 

scale also in close proximity. Accordingly, the quantum levels COITesponding to the 

quantisation in the lateral direction are closer in energy and it is imperative to decrease 

the operating temperature to discriminate them. . 

On the other hand, any additional scattering effect tends to smear-out the expected 

resonant feature. V..1 e mentioned in chapter 3 that the ionised impurity scattering 

dominates the mobility of carriers at very low temperature. Also, by using modulation 

doping concept in heterostiuctures, further improvements in the asymptotic mobility at 

low temperature can be achieved. 

In brief, the modulation doping is aehieved by the gro~th of a doped wide bandgap 

material over the top of an undoped nanow bandgap material. Figure 4.1 shows 

sehematically the grO\vth sequence of a typical MODFET in the GaAs based system. 

The difference in electron affinity, associated with the two materials, results in a 

conduction band discontinuity at the heterointerface. Due to doping gradient, the 

electrons diffuse from the wide to the nanow bandgap material. This diffusion process 

gives ri se to a strong space charge effect resulting from the fmmation of a dipole. The 

resulting induced electrostatic force counterbalance the diffusion process and an 
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equilibrium is reached. The latter is characterised by a constant Fenni-level across the 

heterointerface. 

The separation of the diffused electrons from their parent donors minimises the 

ionised donor scattering mechanism on one hand, and creates as seen previously, a 

strong electrostatic field nonnal to the heterointetface on the other hand. This field, 

results in conduction band bending fonning a quasi-triangular potential weil. The 

diffused electrons whose location is displayed in dashed tine in Figure 4.1 are 

consequently confined in close proximity to the heterointerface in the form of a quasi 

two-dimensional electron gas (2DEG). 

The minimisation of scattering mechanisms maximises the electron mobility along 

with the quantum coherence in the active region. In addition, a further enhancement in 

the 2DEG transport properties is achieved by fmther separating the supplying- and the 

current carrying-layers by a wide bandgap undoped spacer layer. 

Finally, the epitaxial sequence is completed by the growth of a highly-doped 

capping layer for subsequent Ohmic contact deposition. 

Concerning the choice of a material system, ideally an undoped very narrow gap 

such as InAs should be selected with AlSb forming the wide band gap. However, the 

epitaxial quality of heterointetface is also of major concern. Therefore, most of 

successful repmts that have been so far obtained, make use of AIGaAs/GaAs 

compounds. The rules of optimisation of Aluminium concentration at such low 

temperatures are out of the scope of this study. Nevertheless, let us recall that owing to 

DX-centres in connection with the cross over of r-and X- valley, samples with x 

ranging between 0.25 and 0.3 have to be grown. With respect to the thickness and the 

doping of the highly doped GaAlAs layers there exists numero us degrees of freedom. 
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Figure -1.1 schematic cross-section of the resonanttunnelling dual-gate MODFET 
fahricated and characterised in [ 1 J (a.fter [ 1]) 

ll1e aluminium percentage is between O. 25 and O. 3 %. 
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In the following, we repmt on the PRESFET fabricated in [ 1] with the following 

design data namely : 

• 42 nm-thick Alo.25--{).JG3o.7S--{).7As doped to 1018 cm-3
• 

• 7.5 nm-thick Alo.25-{).3Ga.o.75-{).7As spacer layer. 

• 1.5 J..tm-thick GaAs undoped layer. 

The lateral scale is detennined by the gate length, here 60 mn for both gates. Also 

for the inter-gate separation the same dimension is kept. We would like to mention 

that, despite the advance in high resolution electron beam lithography, no fmther break 

through bas been obtained with respect to the shrinking of the gate width. This means 

that in the present status of technology it seems di ffi cult to overcome the need of low 

temperature operation. At last, the source drain separation was fixed to 20 J..lm. 

consequently much wider than the active region dimensions. 

For the Deviee Under Test (DUT), AlxGa1_xAs and GaAs are used as the wide­

bandgap and narrow-bandgap materials respectively. The doping levet is optimised to 

1018 cm-3
• The optimisation criteria are based on the maximum doping level for which 

the gate leakage tutmelling current and traps in the AIGa.As could not affect the deviee 

performance at 4.2 K to a very large extent. 

4.3 Notes on deviee characterisation : 

The cross-section of DUT is shown in Figure 4.1. Let us summarise hereafter the 

experimental I-V characteristics which will support the validity of the theoretical 

analysis perfmmed in this chapter. 

At room temperature, the deviee was just at the limit of a nonnally on condition. 

lndeed, only 50 rn V is needed for setting on the conduction. The positive voltage 

swing on the gates was limited to 0.6 V by the Schottk-y-contact current.,leakage. The 

room temperature transconductance was around 150 mS/mm. At 4.2 K the deviee 

threshold voltage for conduction onset was shifted up to 0.15 V, and the peak 
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transconductance was increased to 350 mS/mm. There was no persistent 

photoconductivity observed, and hence the deviee can be tuned by changing the optical 

intensity of a red Light Emitting Diode (LED). The authors measured the source-drain 

current IJJs, as a function of gate bias VGs with both gates connected together. The 
-

measurements of resonant tunnelling features (Figure 4.2) were petfonned at 4.2 K in 

the dark at a drain-source bias VDS of0.2 rn V. 

10 
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0.1 

8= 4.2 K 
Vvj.ç = 0.2 n1'.r 

~ , 
~ 

0.15 
'(;sl'rl 

0.1 0.12 

Figure ./. 2 drain-source cwTent as a.function o.f gate bias, a.fter { J} . 

0.2 

(the inset is a zoom-in for the .first resona111 peak). Bath gales are connected together. 

No gate leakage current was detected down to the measurement li mit ( 10 pA). In 

Figure 4.2, a clear stmcture was observed below threshold (- 0.15 V). Tl1ree resonant 

peaks were superimposed over the exponential characteristic subtlu·eshold regime 

( displayed schematically in dashed guide li ne). On the other hand, increasing the drain 
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bias V vs resulted in [ 1] a graduai smearing of peaks and valley s. At Vns = 5 m V no 

resonant structures were observed. This first conclusion is an indication about the 

quantum level separation. Let us recall that we can discriminate between two 

tunnelling paths via the various quantum levels provided that the injection enerhry 

window is Jess than energy offsets between two successive levels. On this criteria, this 

me ans that at 5m V two quantum levels can be simultaneously involved with the 

subsequent smear out of resonant tunnelling feature. With respect to operating 

temperature issue, this criterion also determines the temperature robustness of 

phenomenon by comparing the energy of 5me V to k 8 8 . 

In addition, the deviee with constant bias condition conesponding to the onset of the 

second resonant peak (V as = 0.12 V and V DS = 0.2 m V) was exposed to the Iight 

emission of a LED. The authors have found almost quite similar resonant tunneiiing 

stmctures which are displayed in Figure 4.3 with the plot of drain-source cunent 

controlled by the bias LED cunent. 

4 

1 

0 2 4 

e = 4.2 K 
VGs= 0.12 V 
'bs= 0.2 mV 

6 8 
ILED [rn~.\) , 

Figure -1.3 drain-source current as a fimction of LED current after [ 1}. 
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After this outline of key experimental results let us introduce a brief review on the 

major modeiiing techniques applied to Field-Effect Transistors.(FET's) by pointing out 

the main assumptions. 

First, we discuss the analytical modeiiing of MODFET's and the resulting charge 

control law, maximum 2DEG concentration and threshold voltage, ... On this bases we 

investigate the validity of those analytical approaches for nana-structure. Then we 

focus our attention to numerical techniques, namely Mont-Carlo, hydrodynamic, 

quantum mechanical and hybrid methods. Finaiiy, we describe the major physical and 

numerical features of our mode!. 

4.4 Review of FET's modelling techniques : 

Both, analytical and numerical models can be devided into two classes namely 

classical or quantum mechanical approaches. On the other hand, subdivision can be 

established with respect to the fact that the transpmt properties are treated at the 

microscopie or macroscopic leve!. At Iast, there is some distinction which stems from 

the non stationary effects notablylocal or energy models. In this context, numerous 

theoretical approaches can be found in the literature which are briefly discussed below. 

4.4.1 Brief re'\·iew of analytical modelling techniques : 

Analytical models are closed form expressions for the transistor DC and smaii 

signal parameters. A physical based analytical model is very useful to get a first insight 

into the deviee behaviour. Unfortunately, it often requires to make quite erode 

assumptions which limits their validity for quantum-sized structures. Starting from the 

conventional field effect control princip le (details in section 4.4.1.1) we wiii discuss of 

its application to heterostructure FET's. 
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4.4.1.1 Analytical models for conventional FET's : 

The first analytical mode] was proposed by Schockley [9] by introducing the 

graduai channel approximation and by assuming complete depletion. Fm1hennore, it 

was assumed that the depletion width is detennined uni-dimensionally. It is clear that 

this assumption is no longer valid for very short gates where fringing field, not to 

mention non-stationary electron dynamics and non-isothennal transpm1, cannot be 

neglected. 

Later on, the origin of the drain current saturation was clearly established with the 

works of Statz et al. [ 1 0] and Gre ben and Ghandi [Il] by involving the carrier velocity 

saturation at the drain si de of the gate. 

Shur [12] introduced the Negative Differentiai Mobility (NDM) effect by assuming 

the fmmation of a high field dipole domain at the gate output region. 

From the above introduction on the conventional FEI analytical modelling, one can 

summarises the most common assumptions as follows : 

• the transport parameters are instantaneously dependent of the local electric field 

(local models). 

• the diffusion current is neglected (drift models ). 

• the substrate current is neglected. 

• the graduai channel approximation is most frequently assumed. 

• the zone under the gate are assumed to be completely depleted. 

• the velocity-field (v-F) relation is often approximated by piece-linear model. 

It can be concluded that the analytical models techniques are not able to describe 

the sub-micrometer gate and a-fortiori the nano-gate deviee behaviour where the non­

stationary electron dynamics and the non-isothennal transpm1 dominates the deviee 

performance. 
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As regards the heterostructure FET's, the analytical models are besides, usually 

based on the triangular-well approximation. ln that case, the basic principle can be 

understood but often these models failed to quantitatively predict the relevant features. 

· In addition, back injection, unintentional doping, screening effect are always 

neglected. 

4.4.1.2 Analytical models for heterostructure FET's : 

a. Charge control equation : 

Figure 4.4 shows typical heterostructure FET (HFET) with the conduction band 

variation un der the gate. Solving Poisson' s equation in both si des of the heterointetface 

taking into account the continuity of the n01mal displacement vector, we get the 

following charge-control law [ 13 ], 

. where, 

115 = q: (vp-i<t>i+Vgs+\ôEc\-\EJn\) 

VP = qNd (d-e) 2 isthepinch-offpotential. 
2E 

vgs is the applied voltage. 

<1> is the built-in potential. 

Mc is the conduction bend offset. 

Other parameters are defined in Figure 4.4. 

Eq . .J-1 

Eq . .J-2 
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Figure 4. 4 schematic diagram of A10DFET conduction band prC?file 
along H'ith the electric field. 

b. 1\'laximum 2DEG: 

The maximum 2DEG concentration is obtained for the gate-Jess heterostructure 

when the gate is too far from the heterointerface to affect the 2DEG. 
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This is given by [14], 

F;q . ./-3 

Where, 

Nd is the doping concentration of the highly-doped ma teri al. 

E Jo is the equilibrium Fermi levet in the highly-doped material. 

e is the spacer thickness. 

It clear that e influences drastically the carrier density with subsequent impact on 

transpm1 properties. 

4.4.1.3 Classical versus quantum mechanical models : 

a. Classical models : 

In classical models, the Fermi-Ievel is related to the 2DEG concentration through 

either, Fermi-Dirac : 

If" [ ( )] E fn- Ee y 
n s = J Ne Fi/2 . k 9 dy 

0 B o 

Eq . ./-./ 

or Boltzmann statistics : 

Jr [ ( )] Efn- Ee y 
115 = J Ne exp k 

9 
dy 

0 B o 

Eq . .J-5 

where Ne is the 3D effective density of states and W is the effective quantum weil 

width and the integration is over space in the growth direction (}l). 
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b. Quantum mechanical models : 

In these models, the Fenni-Dirac statistics are weighted by the existence probability 

resulting from the solution of the time-independent Schroedinger's equation, this gives, 

w • [ ( )] 
cn m k 8 E 11 - E; ., 

115 = L J 1
; 

0 In 1 +exp ~ 
8 

1 't'(y) ~-dy 
i=l 0 1th B o 

Eq . .f-6 

Where for the triangular weil approximation, E; and \}'i(y) are given by, 

h- . "'3 . ( 
., )1;'3 

E;= 
2
m. [3qF5 rt(I+3/4)12]-' ;T=0,1,2 ... 

Eq . .f-7 

( •)- [ 2m*qF5 ( _E; )] 'P. l -A. y F 
1 • 1 h2 q s 

Eq . .f-8 

where A; is the Airy function and Fs is the electric field at the heterointerface. 

In both classical and quantum mechanical models, numerical techniques are 

required to get a self-consistent solution for the 2DEG concentration. This numerical 

approach shows that the ( n s - E 111 ) relation can be expressed analyticaiiy by the 

foiiowing linear relation, 

Eq . .f-9 

Where ôE 1 denotes a constant value. 
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Substituting into Eq. 4-3 gives the maximum 2DEG, 

where 

Ea 
e =e+-

! q 

F.q. -1-10 

Eq. -1-11 

By comparing Eq. 4-3 and Eq. 4-10, it can be seen that the physical meaning of ( e1) 

is an effective spacer thickness. ln fa ct the factor ( E a 1 q) accounts for the shi ft of the 

effective centre of 2DEG charge from the heterointerface. This effective centre of 

2DEG charge depends on the miginal used model i.e classical or quantum mechanical 

model. 

4.4.1.4 Charge control threshold : 

This is the minimum voltage value for a gate effect onset. In other. words, for gate 

·voltages higher than threshold voltage, the 2DEG is no longer controlled by the gate 

potential. This can be obtained by equating Eq. 4-1 and Eq. 4-3.to give, 

Eq. 4-12 

where (BB) denotes the band bending and is defined as, 

BB = 1 Mc 1-l E Jo 1-1 E fnl Eq. 4-13 

The above equations, address the electrostatic issue, assuming either semi-classical 

Boltzmann/Fermi-Dirac statistics or quantum-mechanical occupancy. In other words, 

the charge control and the relevant threshold voltage are now well understood 

including the effect of doping, spacer thickness and gate voltage. 
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In contrast, the lateral motion of electrons is treatcd under ve1y simplified 

assomptions and to overcome such drawbacks. it is often interesting to make use of 

numerical modelling techniques. On the other hand, more accurate predictions about 

sheet canier density can be derived by self consistently solving the Schroedinger's and 

Poisson 's equations with realistic potential profile. 

4.4.2 Numerical modelling techniques : 

Numerical models are usually classified into three main categories, notably, the 

microscopie quantum approach, the Mont-Carlo technique (MC) and the 

hydrodynamic models. The microscopie quantum approach is an ab-initia modelling 

technique which consider the electron dynamics on the atomic scale. It is evident that 

such basic approach requires computing resources which are too important for 

parametric studies of a real deviee. 

One can conclude that the microscopie quantum approach simulates the microscopie 

motion of electrons associated with their wave function propagation, under ballistic 

conditions along with the microscopie petturbation effects of different scattering 

mechanisms. ln this quantum approach the most exact potential function created by the 

different a toms of the lattice has to be taken into account. This is why this technique is 

essen ti ally devoted onto the study of ma teri al properties rather than deviee structures. 

In this context, a so-called Mont-Carlo (MC) method is often perforrned by keeping 

the microscopie character of the simulation. In brief, the band structure of the 

semiconductor of concern is calculated using notably tight bending or pseudo-potential 

techniques. The output data are the dispersion relationships in the Brillouin zone. 

Subsequently, one can madel the motion of electrons under bath the deterrninistic 

effect of the applied electric field and the stochastic effect of different scattering 

mechanisms. These methods are expensive from the stand point of computational time 

and need very powerful computers. This is particularly true for describing transport 
, 

phenomena which involve electron motion in the whole Brillouin zone. The most 

representative situation is the impact ionisation process which requires to take into 
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account ali the high enerhry sites for pennitting the electron getting the ionisation 

thresho1d energy. 

Otherwise, different degrees of approximations have been proposed for a11eviating 

the physical comp1exity along with the computational effort. In the previous discussion 

we spoke about a homogeneous materia1. Cettain1y, the description of a heterojunction 

white conceming the microscopie treatment is fmther a challenging issue. So far, the 

heterojunction is often treated by neglecting the different material mutual-effects. 

On the other hand, the effective mass approximation is often assumed along with in 

some cases a non-parabolicity situation by some fitting parameter. Nevertheless, MC 

method can be considered as the most exact madel able to intrinsically describes the 

hot electron effect such as velocity overshoot, quasi-ballistic motion .... On the other 

hand, by using this particle method, it is possible to predict ali the key parameters of 

an electron gas subject to any field force. Therefore, the variation of mobility, the 

diffusion coefficient and bath the energy and momentum relaxation times can be 

calculated as a function of electron energy. 

Such a knowledge, is detem1inant in the scope of hydrodynamic energy models 

which are briefly discussed here after. The introduction of hydrodynamic treatment in 

the sense that the electron gas is considered as a continuum of electron streams is 

motivated by decreasing the computation effort. On the other hand, the numerical 

random fluctuations of the results due to the probabilistic nature of microscopie studies 

are avoided. 

Reiser [15], K. Yamaguchi [16], and J. Bames [17] developed numerical local 

hydrodynamic models for FET's where the electron motion is govemed by 

hydrodynamic conservation equations in which the mobility and diffusion coefficients 

are assumed to be instantaneous fun etions of local electric field. 
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B1otekjaer [ 18] assumed the relaxation times, mobility and effective mass to be 

instantaneous functions of the average electronic kinetic energy. He derived a set of 

transp011 equations including energy conservation for two valley semiconductors based 

on Boltzmann transp011 equation (BTE). 

Shur was one of the first who proposed the use of MC steady state simulations to 

get the energy-dependent transp011 parameters required to solve the hydrodynamic 

conservation equations. This was believed to give the same degree of precision as MC 

simulations but without the inherent numerical noise of MC techniques. 

These numerical procedures were applied either in bulk situation or for um­

dimensional deviee structures. In order to treat the two dimensional character, several 

au thors have introduced various level of approximations. Notably, A. Cappy [ 19] with 

quasi-two-dimensional approach and Cook and J. Fery. The later [20] suggested to 

solve the continuity equation in tvvo dimensional whereas the ener!:,')' equation was 

considered one dimension. 

In the present work, we are going to base our analysis on the model originally 

developed by Ibrahim. This model published in reference [21] is a full 2D 

hydrodynamic energy approach with self-consistent treatment of continuity, energy 

conservation and Poisson's equation. As stated before the non-stationary effect cornes 

from the energy dependent parameters derived from steady state MC simulations. 

S. El-Azhary [22] and K. Ismail [23] exhaustively used the same model in MESFET 

analysis and simulations. T. Shawki [24][25][26] extended the model to HFET's 

modelling and simulations. K. Sherif [27] used the same model for MODFET 

simulation at cryogenie temperatures. Vle have extended the code to study the deviee 

perfonnance of dual-gate MODFET's [28][29]. 
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4.5 Model description : 

We shall discuss the frame work of the model adopted here and th en we introduce 

. the necessary modifications for including the quantum tunnelling effects. 

Particle, momentum and energy conservation equations are obtained by taking the 

first three moments in k-space of Boltzmann Transpmt Equation (BTE) : 

èf _ qF (à!) 
--;::-+V. V r(f) + -

1 
·V K. (j) = --=;-

Of 1 of c 

Eq. -1-1-1 

This procedure leads to the following conservation equations for each valley of a 

multi-valley semiconductor denoted with the index i : 

• conservation of partiel es, n; 

Eq. -1-15 

• conservation of momentum, P; = (Px;, Py;, Pz;) 

Eq. -1-16 

• conservation of total kinetic energy, W; 

Eq. -1-17 

The te1m V r .(Q;) accounts for the outward heat flow rate by thetmal conduction. 

For Maxwellian or any other symmetric distiibution function the heat flow Q; being 

an odd moment of order three vanishes. 

The terms, Vr.(n; vj), Vr.(Pxi.v;) and V, .. (11~.v;) represent the rate ofdecrease of 

11;, Px; and W; due to the outward flux i.e by convection. 
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è (11 k 8 8 ·) f . 
The tenns, q n;F.c and - ~ 1 represents the rate o mcrease of momentum 

. OX 

due to the electrostatic force and the electronic pressure gradient respectively. 

The tetm q n/J ;· F represent the power gained by electrons from electric field, and 

"Vr.(nl8 8;v;) represents the power lost by electrons in the fonn of electronic gas 

expansion (decrease in electronic gas pressure). 

Finally the collision terms, (
8
:';) , (

8 :xi) 
( t ct c c 

(a w.) and ~ represent the rate of 
ct c 

change of n;, Px; and W; due to different scattering mechanisms. Assuming full 

isotropy and the scattering rate to be dependent only on the average kinetic energy per 

electron 

W; 3 1 *-2 
w. = - = - kne. +- m- v 

1 11· 2 1 2 1 i 
1 

Eq . .J-18 

we get [18], 

Eq . .J-19 

( ~-J ·- ·-u P. - n .m. v. - n .m. v . 
__ 1 = 1 1 1 +o+ 1 1 1 

èt c -r,ij(w;) 'tp;(w;) 

Eq. 4-20 

Eq . .J-21 

.... 

where w
0 

= ~k880 is the lattice energy. It is worth mentioning that despite the fact 

that there is sorne exchange of patti cl es behveen the valleys i and j, the net effect for 

the incoming momentum point of view is zero. The later statement is based on the 

assumption that the effect of scattering on the incoming momentum ..is completely 

randomised. This explains the zero term in Eq. 4-20. 

,. 
·' 
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The above conservation equations are too complicated to be of any practical use. 

The difficulty mainly arises from the fact that one bas to solve those equations in each 

valley separately then coupling the results by the collision tenns. The solution is to 

find an equivalent single valley electron gas model. 

4.5.1 The equivalent single valley electron gas model : 

Such an equivalent single valley treatment cao be achieved by taking the weighted 

average of the properties of the constituting electron gases. 

This is done for extrinsic semiconductors with shallow donors and no traps white 

considering th at the momentum relaxation ti me is one order of magnitude less than that 

of the energy. Also assuming that the statistical average of product is equal to the 

product of statistical averages, the following equivalent single electron gas 

conservation equations can be written [21 ][26] : 

Eq. 4-22 

- ( k8 9) nv=nJ..lF-Il\lr nq 
Eq. -1-23 

Eq. 4-2-1 

where now the energy conservation equation is written for the total (drift +thennal) 

average electron energy. 

The se conservation equations in addition to Poisson' s equation represents the basic 

hydrodynamic energy model characterising electron transport in non-degenerate, multi­

valley semiconductors and subjected to the above mentioned assumptions. 
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4.5.2 Simulation of different types of boundarics : 

In this section, we discuss the different types of boundaries and the relevant 

boundaty conditions. First, we shatl describe in shmt the conventional procedures to 

simulate the various boundaties which are used by most of the authors. Second we 

shall investigate the vatidity of them and on this basis we introduce sorne 

modifications. 

4.5.2.1 Simulation of the gate rectifying junction : 

The gate rectifying junction is modelled by introducing a value potential 

(V8 = Ygcxtcmallyapplicd- <P), in Poisson's equation (cD= 0.8 Volt). As regards the 

continuity equation, one of the following boundary conditions bas to be used : 

• setting the nonnal component of the conduction cunent intentionally to zero. This is 

only valid for the usually used biasing conditions where the gate conduction current 

should be zero. Un der this condition the charge on the gate ( n 
8

) is detennined from 

the solution of the following patticle equation ; 

Eq . ./-25 

which yields : 

Eq . ./-26 

It is found that this boundary condition yields w1physically a low gate conduction 

CUITent. This CUITent is due to the numerical noise which is amplified by numerical 

differentiation and exponentiation. 

" 
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• the second boundary condition is based on the knowledge relevant to the Femli­

Ievel. Given that the gate zone is practicaiiy non-degenerate the Boltzmann 

approximation holds and hence : 

Eq. -1-27 

Using the above boundaty condition, it can be shown that ng is much smaller than 

the doping Ievel. In counterpart, very high free canier gradient might be a source of 

numerical instabilities if this technique is applied on a coarse mesh size. However, the 

usage of the above equation results in a more stable convergence and much smaller 

numerical difference between the source and drain cunents. 

At cryogenie temperatures ( 4.2 K), both of the t\vo boundary conditions re suit in a 

gate charge n8 practically equal to zero and both coutd be used without any preference. 

This implies a very small time step to preserve the stability of the program which 

increases the computational effort needed to achieve the convergence. 

4.5.3 Source and drain shallow Ohmic contacts : 

The source and drain shallow contacts are introduced to Poisson's equation solver 

as equi-potential surfaces with a fixed potential, zero for source contact and Vds for the 

drain one. As there is neither accumulation nor depletion (n = Nd) across the biased 

Ohmic contacts then, a fixed level of mobile-charge carriers (n) is int:roduced. This 

level of charge on the contacts is dependent on the donor ionisation probability which 

is highly dependent on the temperature. 

In addition, the energy of electrons at the two contacts are set to the Iattice energy. 

Also, it is important to notice that usually there exists enough separation between the 

nem·est gate and the drain, so that the electrons are thennallised when they reach the 

drain contact. 

Usually the above boundary conditions are systematically applied in case of deep 

Olunic contacts which shall be discussed in the following. 
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- 4.5.4 Elcctrodc-frce surfaces : 

Sin ce the boundaries of the region un der study are separated enough from the active 

region, Neumann boundary conditions are usually applied : 

ên on 
no diffusion => ---- 0 êx-èy-

av av 
no drift => - =-= 0 

êx ry 

Œ œ 
no energy dissipation => ----0 êx-èy-

a a 
where -;::- for lateral surfaces and -;- for the vettical ones. 

cy ex 

4.5.5 Simulation of heterojunction : 

Eq. -1-28 

Eq. -1-29 

Eq. -1-30 

lt is weil known that the energy gain or Joss across the interface of a heterojunction 

can be described by means of a quasi-field. The magnitude of this field depends 

strongly of the expected finite distance over which the transition from one material to 

another is achieved. It is clear that for high conduction band offsets and rather perfect 

0 

intetface over a distance of one atomic layer ( ~ 5 A), the magnitude of this field 

becomes so high that this procedure is questionable. Nevertheless, over so short 

distance the net effect is the change between potential and kinetic energies across the 

heterointerface. ln practice, this equivalent field is added to the electrostatic field, 

solution of Poisson' s equation. 



4-24 

4.6 Solution of Poisson's equation : 

Poisson's equation is directly solved usmg the Matrix Double Sweep (MDS) 

rnethod [21]. The rnethod is applied un der a variable mesh size condition. The MDS 

rnethod is the LU factorisation technique applied to five diagonal systems_ [30]. 

Although it is a direct and accurate method, it prohibits the use of adaptive rnesh 

refinernent techniques due to the unacceptable code slow down so that a suitable rnesh 

should be chosen from the first beginning of tirne iterations. The sarne method is used 

in the previous chapters but in one-dimensional form. 

4. 7 Solution of the energy equation : 

The energy equation is usually solved as follows : 

Taking W 0 as the energy reference, the energy in Eq. 4-24 yields, 

èe _ _ - 1 _ e 
-::;---+v. V,.(e) = q v.F-- V r.(n k8e v)--­
o t n tc(e) 

In fini te differences Eq. 4-3 1 reads, 

èe;.i o 1 2 3 ~ ---- = b; ,. f.l)·· + b; ,. f.; J"+l + b; ,. f.;_,·-1 + b;_,. f.;+I.j" + b;_,. f.i-lj" + h; ,. 0 t . . . . - . - - . 

Eq. 4-31 

Eq. 4-32 

Eq. 4-32 can be written for ail rnesh points (ij) in one single vectorial equation, 

---CE - --=Be+h 
èt 

Eq. 4-33 

\Vhere B is a five diagonal rnatrix that does not depend explicitly on the energy 

vector ( Ë ). The vector ( h ) which is the source tenn in the ab ove vector equation, 

represents the energy generation/dissipation terms, 

Eq. 4-34 
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In the energy conservation equation (Eq. 4-32), the general expression for the 

elements of B are given by, 

1 -1 
h;.J = !::,x. si v x i.J+I/'2 

J 

., +1 
b-:-. = --s1 v .. 11 ., 

I • .J /::,x . X I • .J- -
.1 

3 -1 
b; ;· = -s3 V vi+l/2 ;· • !::,.y; . • 

4 + 1 
b; ;· = -s3 v "i-1/2 ;· , ~Y; " , 

Eq. -1-35 

Eq. -1-36 

Eq. -1-37 

Eq. -1-38 

Eq. -1-39 

The ( sk, k = 1, 2, 3 & 4) are introduced to the above formalism through the tenn 

v.V,.(~) in Eq. 4-31, which is originally a patt of the enerbry convection term 

Vr.(W.v)=Vr.(n~ .v) in the non-simplified form ofthe enerbry equation (Eq. 4-17). 

If one consider the temporal energy variation due to the energy convection only one 

can write, 

-èËI = V r . ( E. V ) = ~ . V r . ( V ) + V . V r ( ~ ) 
è t conYection 

Eq. -1--10 

A general issue concerning the discretisation scheme stems from the fact that the 

relevant convection tenns depends of scalar as weil as vectmial quantities. In practice, 

ali vectorial variables are defined at midway points between scalar-quantities mesh­

points. This means that a careful strategy must be followed when one needs to evaluate , 
v.Vr(~) at the (i,j) mesh point. The upstrean1 method is chosen for its simplicity and 

above ali for the stability it creates with rime evolution. 
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Based on the upstream method the energy at the mesh point (i,j+ 1/2 ), ( E ii+l/:!) is 

defined by, 

1 + sgn( v x i,J+I/2) 1- sgn( v.'l'i.J+I/ 2 ) 
Ei,j+l/2 = Ei.j 2 + Ei,j+l 2 

1 + sgn(vyi+I/2,J) l- sgn(vyi+l/2_1) 
Ei+l2,j = E;,j 2 + êi+l,j 2 

where, 

At last, 

1- sgn(v x i.f+l/2) 
SI= 

2 

1 + sgn(v xi,f-1/2) 
s2 = 

2 

1- sgn(vyi+lll,f) 
s3 = - 2 

1 + sgn( v y i-l/ 2,1) 
s4 = 

2 

Eq. -1--11 

Eq. -1--12 

Eq. -1--13 

Eq. -1--1-1 

Eq. 4-45 

Eq. 4--16 

Eq. 4--17 
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4. 7.1 The source term of the energy equation : 

The energy equation betv.,een two successive iterations k and k+ 1 can be written as, 

~E· · ~E- · ~E- · k+l k ( Jk~k+l 
_ _..::1.}'- = __ 1._} + ~ __ 1._} 

~~ ~~ ~~ 

where in the above equation, 

and, 

k 
~E·. 
__ 1._1 =A?. 
~ 1 1.) 

ah;_,. a e;_,. ah;_,. .. 1 --· --· ~(=--· ~E~~ 
è f.. . è t è f.. . 1

"1 
1,) 1.) 

Simple algebraic manipulations leads to, 

( 
1 èh- . ) 4 k+1 1·1 0 0 c -k ~E·. -----b .. =A-.+" b .. ~E 

1,J M ôt 1,J 1,J L..J 1,J 

c=1 

Eq . .f-./8 

Eq . .f-./9 

Eq . .f-50 

Eq . .f-51 

Eq. -1-52 

1 ') ~ 4 ô h;.; . 
Where, ( bf.j, h;,j, h;_;, b;~.i' h;._; & ~) are serm-updated and A~1 is calculated 

1,) 

directly using the analytical fmm of the eneq,ry equation with semi-updated values. 

The physical effect of the term 
ah .. 

1.} 

è f. .. 
1.) 

in Eq. 4-52 is that it accelerates/decelerates 

1 
the temporal variation of energy. This is simply as it sums over the tenu in the 

~1 
., 

same equation. 
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() h;.; 
Now we are addressing the evaluation of the tenn 

èE- ·. 
1.) 

Given that, 

By simple algebra Eq. 4-53 yields, 

hence, 

èh-. _,_,) 

èf. 

h-. = 1.) 

= 2-- vtl v . -=- - __ ,.... 0 ... ,, n -(
v ) èV v

2 è" "'~' 
Il ' r (E ll2 èE - ~ vr.V 

Eq. -1-53 

Eq. -1-5-1 

Eq. -1-55 

., 
v- è Il 

A first order approximation 1s carried out by neglecting, and the drift 
l..l2 èf. 

. èV h component rn -::::- t us, 
œ 

~ h;; = (2 v- v(, v r) . a:dif 
cE Il œ 

Eq. -1-56 

which is the formulation usually used in the simulation of Field-Effect deviees, by 

taking into account the relaxation effects into account. Finally Eq. 4-52 is solved using 

successive over relaxation method. In most cases, the numerical stability is even 

achieved using a relaxation parameter equal one. 
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4.8 Solution of the continuity equation : 

Let us recall the simplified fonn of the continuity equation (Eq. 4-22), 

Eq. -1-57 

Using finite difference, the above equation reads, 

ô 17iJ 0 1 2 3 4 --;;( = a;,J 11;1 + a;,J ni,J+I + ai.J 11;,J-I + a;,J ni+Lf + aij ";-I,J 

Eq. -1-58 

where, 

Eq. -1-59 

Eq. 4-60 

") +1 
a-:-.= --s.., v .. 11.., 

1.) /lx, - XI,.J- -
j 

Eq. 4-61 

Eq. 4-62 

4 + 1 
a; j. = -s,v\'i-I/2 j. , ~Y; . . , 

Eq. -1-63 

The upstream method is also used and hence, 

1 + sgn(v xLJ+l/2) 1- sgn(v x i.J+l/2 ) 
11;:-i+l/2 = 17i."i " + 11;:-i+l " 

Eq. -1-6-1 

_ 1 + sgn( v y i+l/2,1 ) 1 - sgn( v Y i+li2,J ) 
11 i+/2.} - 11 i,j 2 + 11 i+l,j 2 

Eq. 4-65 



4-30 

At last, 

1 +sgn(v_d.i+l/2) 
SI= . 

2 

1- sgn(v.d.;-l/2) 
s2 = . 

2 

1+sgn(vyi+112.f) 
s -3- 2 

1-sgn(vyi-t/2,1 ) 
s4 = 

2 

Eq. -1-66 

Eq. -1-67 

Eq. -1-68 

Eq. -1-69 

Finally Eq. 4-58 is also solved using successive over relaxation. ln most cases, the 

code converges with a relaxation parameter equal to 1.2. 
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4.9 Hydrodynamic model, results and discussions : 

Before addressing the core issues of quantum deviees, it seerns interesting to 

illustrate the capability of the nurnerical code described above. Prirnarily, this is done 

to give a physical insight into the 2-D character. 

For this purpose, we sirnulated a MODFET deviee having the structural parameters 

depicted in Figure 4.5. With respect to the test vehicle discussed previously, here the 

highly doped wide gap thickness is sluunk to 20 nm for a gate inter-distance of 40 nrn. 

Also, the simulations are conducted at roorn temperature to alleviate, in a first 

approach, the problerns in connection \Vith vety low temperature simulations. 

The steady state results of this simulations canied out at zero gate and drain bias are 

displayed in Figure 4.6 a and b. In practice, \\'e statted from the non equilibrium 

charge distribution n (x,y)=Nd(x,y) at zero time step with zero energy anywhere. 

Source 
(Ohmic) 

Gate1 (Schottky) Gate2 (Schottky) 
· 60nm 60nm 

il 40nm 1 ~===-- 1 40nm 1 -=:=:;:::;::::: 1 

Drain 
(Ohmic) 

60nm r---
n=lx1018 cm3 

AlxGaAs, X=0.25-0.3 
2~ 

1 3nm spaccr 1J. Ec=0.23-0.3cV 

HETJ ~~·~---------------------------------------------~~-i 

GaAs 

n=lxi016 cm3 

70nm~------------------------------------------------~ 

0 300nm 

Figure -1.5 structural parameters and dimensions of the simulated ft10DFET deviee 
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704-----------------------------------------~ 
0 

Figure -1.6 (a) equilibrium distribution o.fpotential contours 
for the deviee described in Figure 4.5 

1~1 

.......... 

300 

r--
'-....... ·-· ..... 

·. -----

70~--------------------------------------~ 
0 

Figure -1.6 (b) equilibrium distribution of charge contours 
for the de1•ice described in Figure 4.5 

300 



4-33 

It can be seen that the built-in potential of 0.8 Volts depletes the active region at the 

heterointerface beneath and between the two gates. This illustrate a situation where 

there exists a parabolic like quantum-weil in the channel between the two gates but in 

the situation considered, it is empty despite the relatively high operating temperature. 

Otherwise, it can be noticed that the potential contours are highly symmetric with high 

fringing effect for this structure on nano meter scale as expected. 

Togo further in the analysis, it could be useful to investigate now the impmtance of 

the degeneracy effect on the resulting potential and Fermi-leve} distributions. For the 

latter we used alternatively both Boltzmann and Fermi-Dirac statistics. 

Figure 4. 7 depicts the x-variation of potential in the channel in close proximity to 

the heterojunction in the low-gap matetial, the Fermi-level in this figure is calculated 

using Boltzmann statistics (a) and Fermi-Dirac statistics (b). A constant Fermi-leve} is 

achieved using Boltzmann statistics (a) whereas a variation in Er is obtained with 

Fermi-Dirac statistics (b). Let us recall that the choice between Boltzmann and Fenni­

Dirac statistics depends on the doping level in bulk material. In contra~t, in 

heterojunction the carrier concentration always reaches high values such that the 

Fermi-levet is pushed in the conduction band. 

In order to fix sorne magnitudes relative to the degeneracy issue while including 

both the carrier concentration and temperature effect, let us recall the weil known 

degeneracy limit [31] : 

Eq . .J-70 
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In fact, the above inequality (Eq. 4-70) is based on the definition of the so called 

degeneracy factor y d. The last is defined for the first time in reference [32] to be the 

ratio between the average electronic energy calculated with Boltzmann statistics 

(3/2 k8 8) and the average enerh'Y calculated using Fenni-Dirac statistics for the same 

temperature and electron concentration. This definition can be described 

mathematically as, 

Eq . .J-71 

where .hp. and .f1/2 are the Fenni integrais of orders 3/2 and 1/2 respectively. It is 

worth mentioning that the inequality of Eq. 4-70 insures that y d = 1, under this 

condition the Boltzmatm statistics are valid. 
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Figure -1. 7 (a) lateral potential profile in the channel just after the heterojunction, 
the Fermi leve! is calculated using Bolt=mann statistics. 
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Figure -1. 7 (b) lateral potential profile in the channel just a.fter the heterojunction, 

the Fermi leve! is calculated using Fermi-Dirac statistics. 
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Tuming now to the vertical variations (y-direction) plotted under both statistics in 

Figure 4.8, it can be seen that the Fenni-level exhibits sorne discontinuity particularly 

using a Fermi-Dirac statistics. 

From the Boltzmann statistics it was checked out that the slight discontinuity 

( ~ 8.3 meV) is invariant versus the lateral position (x-direction). Consequently, the 

discontinuity is independent of the ratio between the charge concentration at both si des 

of the heterojunction. In contrast, for the Fenni-Dirac statistics the more pronounced 

discontinuity is a varying function of lateral position. Besides, the Fenni-level in (b) is 

not constant in both the wide-band gap and narrow band-gap materials. Indeed, the 

above mentioned conservation equations are not valid for the applications that having 

effective mass discontinuities. 

To verify this effective mass dependence issue we plot in Figure 4.9 the vertical 

potential disnibution associated with the calculation of Fermi-level for both the light 

and heavy effective masses. It is clear that the Fenni-level has a constant value 

independent of the value of the effec~ive mass. 

We are now discussing the inclusion of the degeneracy criteria in the conservation 

equations discussed above, then after we shall investigate the effect of effective mass 

discontinuity at the heterointerface on the continuation of the Fermi-level. We will 

start by the model proposed by Azoff in reference [32] which will be denoted hereafter 

by Azoff model. 
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Figure 4.8 (a) vertical potel11ial profile in the regionunder the source electrode, 
the Fermi leve! is calculated using Bolt::mann statistics. 
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Figure -1.8 (h) vertical potential prc?file in the region under the source electrode, 
the Fermi leve! is calculated using Fermi-Dirac statistics , 
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Figure 4. 9 vertical potential profile in the regionunder the source electrode, 
the Fermi leve! is calculated using Bolt:man statisticsfor bath heavy and light masses. 

4.10 Azoff degeneracy mo del : 

The basic idea of this model is to replace the thermal energy ( 3/2 k Be) which is the 

average energy calculated at thermal equilibrium in Boltzman statistics distribution 

(Eq. 4-72) by the average energy calculated by means of Fermi-Dirac statistics. 

00 

J G3D exp( e JB - e 1 k Be) e de 

3/2 k Be= ....:::.0---------
~ 

J G3D exp(e JB- e 1 kBe) de 
0 

Eq. 4-72 

It can be shown that the relevant results can be expressed as a function of k Be by 

introducing a correction factor y d (Eq. 4-73) (see also Eq. 4-71). 



'Y.! 

f G3D fl/2 E dE 
-..;c..o ___ _ 

00 

f G:.vfi/2 dr. 
0 
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l~q . .f-73 

This me ans th at the total energy (drift +thetmal) in the above conservation equations 

is mathematically described in this approach by the following equation, 

Eq . .f-7.f 

In other words, this is equivalent to replacing the electronic temperature 9 by an 

effective temperature (y d 9) in the above conservation equations. 

In order to investi gate the validity of the weil established E. M. Azoff model [32] 

(Eq. 4-74) also used by many others ([26], [31]), we applied Eq. 4-74 for simulating 

the same deviee described in Figure 4.5. The two dimensional steady state potential 

contours along with carrier concentration distributions are depicted in Figure 4.1 O. 

The main difference in Figure 4.10 and Figure 4.6 is a spreading in carrier 20 

patterns in the populated regions at the heterojunction. On the other hand, it can be 

seen that the potential contours are quantitatively modified with notably a significant 

decrease in the vertical field (y-direction) in the channel. This moderates the 

conduction band bending effect resulting in a less confinement. 
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Figure 4.10 (a) equilibrium distribution (?f potential co111ours 
for the deviee described in Figure 4.5 with Eq. 4-74. 
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Figure 4.10 (b) equilibrium distribution of charge comours 
for the del•ice described in Figure 4.5 with Eq. 4-74. 
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Let us now investi gate the impact of Azoff conection (Eq. 4-74) on the Fenni-level 

profile. Starting first with the problem conceming the lateral profile, Figure 4.11 is a 

plot of the Fermi-leve} (Er) profile from the source to the drain in the channel in close 

proximity to the heterojunction. This profile shows unphysical space dependence. On 

this basis, it seems interesting to investigate the variation of Er at various depths in the 

vicinity of the heterojunction. Three cases are considered in Figure 4.12, where a, b 

and c situations corresponds to locations on the channel, very close to the 

heterojunction and in the spacer layer respectively. \Vhereas the space dependence is 

slight for a-case, big differences are detected for b- and c-case. Hence, it can be seen 

that Azoff model failed to achieve a perfect flat Fermi-level along the x-direction. 
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lateral distance (!lm) 

Figure -1.11 lateral potemial profile in the channel in close proximity the heterojunction, 
the Fermi leve! is calculated using Fermi-Dirac statistics 
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Figure 4.12 lateral Fermi-leve/ prc~file at d([ferent depths, (a) in the channel, (b) in the 
channel close to heterojunction, (c) in the spacer layer. Fermi leve! is calculated using 

Fermi-Dirac statistics 

Also it can be noticed that, fhe discontinuity of Fenni-level (the difference between 

a-case and c-case) does not maintain a constant value in the x-direction. In contrast at 

the region under the gates where the electron concentrations are low enough to apply 

Boltzman statistics, this discontinuity is kept constant equal the same value depicted in 

Figure 4.9 ( ~ 8.3 meV). 

Now, we will investigate the degeneracy effect in the vertical or growth direction 

(y-direction). For this pm-pose the vertical potential profile along with the Fetmi-level 

are depicted in Figure 4.13. From this figure, one can also notice the discontinuity in 

the Fetmi-level profile at the heterojunction. Now the discontinuity is not only a 

function of the effective mass jump but is also a function of the degree of the abrupt 

change in the electron concentration. This gives rise to an additional complication to 

the inte1face problem that has to be solved to achieve a flat Fenni-level profile. 
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Figure -1.13 vertical potential pJ"(!fi le in the region und er the source, 
the Fermi lel'e! is calculated using Fermi-Dirac statistics 
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0.07 

At last, to give an overall picture of the Fetmi-level distribution in the cross section 

of the deviee, the 20-contoures (labelled in meV) of the Fermi-levet are depicted in 

Figure 4.14. 

70~------------------------------------------~ 
0 • 300 

Figure -1.14 Fermi-lewl contours !abe lied in me J: 
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One can deduce that the Fenni-Jevel contours (Figure 4.14) follow the charge 

contours depicted in Figure 4. 1 Ob. 

Now we are proposing an original mode1 that able to give a flat profile based on a 

physical picture of thermal energy. 

4.11 Novel degeneracy model: 

In Azoff model, the average energy defined mathematically by Eq. 4-73 is 

considered totally as a them1al energy. However, it is quite physical to assume that the 

random motion of electrons at a finite temperature involve a transition between 

occupied and empty states [33]. In other words, it is necessary to include the degree of 

occupancy of states. Under this basis one can expect an effective threshold level of 

energy for the onset of a pmticle thennal motion. In the following we will denote this 

threshold as the degenerate potential. 

Mathematically, the thermal enert,ry (3/2 kse) can be calculated in the framework of 

the Fermi-Dirac statistics as follows, 

~ 

J G3Df1/'2( 1- fi/'2) EdE 

Eq . .J-75 

3/2 k se= ....::.o __ oo _____ _ 

J G:.D .f1;"2 dr. 
0 

where the term ( 1 - J~,·2 ) is introduced for desctibing the available empty states 

needed for the thermal agitation. The above formula is quite general. \Vhen there is a 

full occupancy (j112 = 1) below the degenerate potential the contribution in the integral 

vanishes. This enert,ry term can be considered as a potential energy. Its average value 

reads, 

vd-aYarage = 3/2 ks e (y d -1 ) Eq . .J-76 
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Now, we have to derive this degenerate potential considered as a corTection factor. 

For this purpose we will consider the limit of zero temperature. In that case the step­

like Fenni-Dirac profile gives a straightforward relation between the maximum 

threshold value and the average degenerate potential. This results in a factor of two 

such that, 

Vd-max. = 2 X 3/2 k B 9 (y d -1 ) Eq. -1-77 

At last, to treat the maximum degenerate potential (Eq. 4-77) with an analogous way 

to that of the thennal part of energy in the conservation equations, we have to di vide 

Eq. 4-77 by the factor ( 3/2 ). This results in the degeneracy additional potential to be, 

Eq. -1-78 

Finally, it can be shown numerically that, 

Vd=Efi -Efi 
(Fermi-Dirac) (Bot:mann) 

Eq. -1-79 

It is wmth mentioning th at the effect of the above degeneracy correction is included 

in Eq. 4-23 and Eq. 4-24 by including an additional electric field defined by the spatial 

gradient of Vd depicted in Eq. 4-78 or Eq. 4-79.The above fonnalism is systematically 

applied to the same structure described in Figure 4.5 and the two dimensional 

simulation steady state results are shown in Figure 4.15. From Figure 4.15 (a) one can . 

deduce that the potential contours under the gate are shifted downwards with respect to 

th ose plotted both in Figure 4.6 and Figure 4.1 O. Although the channel is still 

practically depleted (see Figme 4.15 b) the deviee exhibits a less gate control on the 

2DEG with respect to the above simulations of Figure 4.6 and Figure 4.10. For the 

illustration purpose, we showed in Figure 4.10 (c) the two dimensional contour 

representation of the degenerate potential Vd. The correlation between the charge 

distribution and vd is quite clear. 

, 
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Figure -1.15 (a) steady stafe equi-potentiallines resultingfromthe new generale mode/. 
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Figure 4.15 (b) steady state charge contours resultingjromthe new degenerateformalism. 
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Figure -1.15 (c) the degenerate potential contours (V,J in me V 
associated with the abo1·e shown charge contours 
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On the other hand, to illustrate the advantage of the new fonnalism over Azoff 

model discussed in section 4.1 0, we plotted the lateral potential distribution along with 

the Fenni-level profile in the channel just under the heterojunction in Figure 4.16. the 

degenerate potential vd are also illustrated. 

0.25 

0.20 

0.15 

.:!:::! g 0.10 

0.00 

-0.05 
0.00 

-~-...-)OOOI))OOo»»>»»»>»»>»»>>»»»>»»»>»>»>»»»>)OC)))))O))Oo))»)Oo))O(>)))))): 

0.05 0.10 0.15 0.20 
lateral distance (!lm) 

0.25 0.30 

" 

Figure -1.16 the lateral pote111ial distribution along with the Fermi-leve/ profile and the 
degenera te potential vd in the channel just under the heterojunction 
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The flat Fenni-level in the above figure is remarkable as compared to the space 

variation obtained by me ans of the mode] of Azoff illustrated previously in Figure 4.11 

and Figure 4.12. Also plotted is the degenerate potential Vd along the lateral axis. 

Nevet1he1ess, in the growth direction there still subsists a slight jump in the Fermi­

levet profile at the heterointetface. This is illustrated in Figure 4.17. At first glanee, the 

discontinuity in the Fenni-level in this figure ( ~ 10 meJl) is identical to th at obtained in 

section 4.9 (Figure 4.8 and Figure 4.9). Therefor the last important issue to discuss is 

the continuity of Fermi-level across the heterojunction considered in the next section. 
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Figure ./. 17 the vertical pote111ial distribution along with the Fermi-le,•el prc!file and the 
degenerate potential Vd in the regionzmder the source 
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4.12 Fermi-lcvel continuity across a hcterointcrface: 

From the above discussion one can conclude that the Fenni-level discontinuity is 

function of two variables. The first one is the discontinuity of the effective mass at 

both si des of the heterojunction (see also Figure 4.8, Figure 4.9 and Figure 4.17). The 

second is the electronic temperature at the interface between the two semiconductors 

(see Figure 4.11 and Figure 4.12). Taking advantage of the independence of this 

discontinuity on the charge concentration, we will deduce the necessary conection 

based on the Boltzman statistics dish·ibution for sake of simplicity. 

Eq . .J-80 

where, 

Eq . .J-81 

By simple algebra we can prove that the additional potential Vadd required to 

eliminate the Fenni-level discontinuity reads, 

Eq . .J-82 

where e1 and 92 are the electron temperatures on each side of the heterojunction. 

We introduce a difference in the temperature so that this model can be generalised 

to the model of Azoff discussed in section 4.1 O. Let us recall th at in this model an 

effective temperature (y d e) is introduced. In the present case of isothem1al analysis 

the second tenn vanishes. Given m~ =.0836, m; =.067 and e = 292 K one can calculate 

8.364 meV as the discontinuity additional potential. At last we include an additional 

potential gradient across the heterointerface in Eq. 4-23, the results are represented in 

Figure 4.18. Both the lateral and the vertical Femü-level profiles are.,now flat with a 

full analysis based on Fetmi-Dirac statistics. For completeness we also plotted the two 

dimensional contours ofboth the potential and the charge density in Figure 4.19. 

..J.i 
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Figure 4.18 (a) the lateral potemial distribution along with the Fermi-leve/ pn~file in the 
channel justunder the heterojunction 
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Figure -1.19 (a) steady state equi-potentiallines resultingfrom the new generale mode!. 
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Figure 4.19 (h) steady state charge comours resulting from the new degenerate forma li sm 
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4.13 l\1odel application at low temperature (-1.2 K): 

From the previous sections, we are now able to simulate degeneracy along with 

heterojunction deviees while conserving the validity of the Fenni-Dirac statistics. At 

this stage, it remains to study the limitations of applying the hydrodynamic model 

discussed above under very low temperature conditions. This wil1 concem two key 

points : (i) the usua11y used initial condition, (ii) the validity of shallow Ohmic 

contacts for the source and drain. Also we shall discuss the scaled solution of the 

above conservation equations. 

The first problem we are facing by assuming a low temperature operation concems 

the usua11y used initial conditions : 

n(x,y) = N d(x,y) and E(x,y) = 0 Eq . .f-83 

This gives rise to numerical instabilities due to the relatively high value of the 

mobility at 4.2 K. This motivates us to apply a scaled solution for the above 

conservation equations. The basic idea is to slow down the instantaneous motion of 

mobile carriers by means of a scale clown factor M. Ali the key relevant figures in the 

consen,ation equations are affected by this factor notably the mobility and energy 

relaxation time. The conservation equations now reads, 

en -
-, +Vr.(nv)=O ct 

Eq. 4-8-1 

Eq . .f-85 

Eq . .f-86 

\\llere, 

• M is a dimensional-less temporal scale factor sma11er than unity. 
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' • t = t x Af, is a slowed down time with respect to the real ti me t. 

• ali the other symbols have their conventional meanings. 

At last, the output data are expressed by suppressing the scale factor. 

The above idea is systematically used for simulating the deviee desctibed previously 

in Figure 4.5 at 4.2 K. The resulting channel potential profile along with the Fermi­

levet are depicted in Figure 4.20. The free mobile carrier concentration in the inter­

gate zone is so low that it is impossible to define the relevant Fetmi-energy. In 

addition, one can note a slight offset between the left and right hand si des of the figure 

despite the fact that the deviee is unbiased. This reflects the drawback resulting from 

the initial conditions stated in Eq. 4-83. In fact, the built-in gate potential (0.8 V) is 

seen by this initial charge distribution as an abmpt voltage step. In the beginning of the 

time iterations, this voltage step depletes the inter-gate zone, finally the electrostatic 

barriers are formed before the charges reoccupy the inter-gate region. As the 

temperature is very low ( 4.2 K) the thermally activated cunent is not able to sum10unt 

the formerly genenited baniers. 
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Figure 4.20 potential profile in the channel along with the Fermi-leve!. 
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From the other hand, the vertical potential profile along with the Fermi-leve] in the 

region under the drain shallow Ohmic contact are depicted in Figure 4.21. In this 

figure, one can note that, although the temperature is very low to minimise any 

discontinuity in the Fenni-level across the heterointetface (see also Eq. 4-82), the later 

level exhibits a non-acceptable discontinuity at the heterojunction. The reason is also 

that, the heterojunction barrier is created before the Fenni-level reaches its attempted 

flat profile. At this instant, the thermally activated carrier concentration is not 

sufficient to recover this unwanted discontinuity. This means that the shallow Ohmic 

contact in this specifie situation is not able to access the 2DEG conduction channel. 

The solution is to simulate (as in the fabricated deviee of reference [ 1]) the deep 

Ohmic contact. 

As a matter of illustration, the two dimensional contours of both, the potential and 

the carrier concentration are displayed in Figure 4.22. 
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Figure 4.21 vertical potemial pn?file along with Fermi-leve! in the region under the source. 
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Figure -1.22 (a) steady state contours ofpotential. 
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Figure -1.22 (b) steady state contours of charge demity. 
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4.14 Simulation of a deep Ohmic contact: 

Previous1y, we have conventiona11y considered a sha11ow Ohmic contact. However, 

under very ]ow temperature conditions, it appears extreme1y difficult to contact by this 

means the 20-gas. Indeed, the potentia] batTier at the heterointetface oppose very 

efficiently to the electron conduction with no means to take advantage of thennal or 

tunnelling assisted charge transfer. 

In reality, the assumption of a shallow Ohmic contact is questionable in the 

GaAs/ Al GaAs techno]ogy which makes use of annealing process for alloying the 

metal-semiconductor interface. Such a thennal treatrnent induces inter-diffusion of 

Gold and Gallium. A deep Ohmic contact is thus fonned (Figure 4.23). In that 

particular case, it seems difficult to distinguish between the wide and the narrow band­

gap materials. In addition it is unreasonab]e to assume that the matetial charactetistics 

will be preserved in the vicinity of contact region with such a them1al treatrnent. On 

this basis, it is acceptable to assume that there exists a finite transition layer between 

. the metal characteristics and semiconductor properties. 

On the other hand, the way in which the structural properties of this transition layer 

are varying in the contact growth direction could be simulated by means of any 

monotonie function. Moreover, we assumed that the thickness of this transition layer is 

much less than the distance between the active zone and the Ohmic contact itself. 
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Figure 4.23 schematic diagram illustrating the vertical transition =ones associatedwith the 
vertical Ohmic contacts. 

171e dashed /ines represents the boundaries (!f the simulated region. 

Let us recall that in the test vehicle considered in the present work, the Ohmic 

contact are located very far from the active zone. Bence it seems useless to include the 

whole structure in the simulation code. A first method to reduce the simulated zone is 

to bring artificially closer the Ohmic contact and the active region. However, it is 

worth noting that the transition region has to be conserved in order to avoid any 

artefact between the contact region and the heterojunction. Therefore a second 

approach is to simply model the boundaries between the active zone and the 

equilibrium zone as it is illustrated by means of dashed lines in Figure 4.23. 

In this situation, we assumed that a vertically constant Fermi-level exists at the 

vertical boundaries of the active zone rather than a constant equi-potential value. On 

the other hand the unifmm constant charge distribution is replaced by the charge 

distribution associated with this constant Fermi-level. In the present work this 

equilibrium distribution was obtained using Thomas-Fem1i approximation, but it can 

be calculated using any other distribution function statistics. 
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4.15 Notes on the ther·mal part in the energy equation: 

Let us recall the energy equation and rewrite it whi1e separating the thenna1 and the 

drift energies as follows, 

-
E = E 111 + Edr({t Eq. -1-87 

Eq. -1-88 

by simple algebra we get, 

Eq. -1-89 

where F,w, is the net deriving force (drift - diffusion) reads, 

Eq . ./-90 

Thus Eq. 4-89 can be separated into two equations as follows : 

""(e ) (e - w ) 
c '" - n ( ) = -K n V (-) - '" o "" +V. v r Erh so r. V ( ) 

ct tc e 

Eq. 4-91 

Eq. -1-92 

\Vhere now Eq. 4-91 is wtitten only for the thennal energy and Eq. 4-92 for the drift 

one. This means that the thermal energy directly derived from the Monte-Carlo data is 

not sufficient to calculate the thetmal pa1t of the electron energy. This is because the 

thermal energy of Mont-Carlo data is sol ely the part of thermal energy associated with 

the drift one. On the other hand, the remainder of the thetmal energy, resulting from 

any local decrease or increase in electronic pressure K 8 8 V r. (v), is not included in 

Monte-Carlo data. In contrast, one can calculate this thennal energy remainder by 
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means of Eq. 4-92. Not to mention that the term Ku9 V r.(v) with a uniform average 

velocity in Monte-Carlo simulations vanishes. 

This helps us to conectly describe the thetmal cooling problem and the time 

analysis of the simulations, not to mention the effect of the calculated them1al energy 

(drift associated + pressure associated) on the counterbalance between the drift and 

diffusion forces. The conection outlined above could be theoretically applied to a 

strong cooling process between room temperature and liquid Helium temperature. Such 

a procedure is directly linked to the general issue of feeding [34] the central inter-gate 

parabolic-like quantum-weil 

Previously, we have shown that the electron density within this region is practically 

zero at low temperature with no me ans to supply this region by means of tunnelling or 

thermal supplying processes. However, such a situation of complete depletion seems 

questionable with a strong influence of initial condition and/or the bias histmy. Now, 

when we use Thomas-Fermi approximation as the initial condition we obtained the 

results displayed in Figure 4.22. In the following we will statt from this potential 

distribution which seems more realistic to address the nature of quantum transport. 
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Figure 4.24 lateral channel potellfial pn~flle along with the Fermi-energy. 
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As a general rule, we believe that the Thomas-Fenni approximation has to be used 

as the initial condition in simulation processes specially at low temperatures. 

4.16 Leburton's model: 

ln this section, we will investigate the model proposed by Leburton et al. [35]. In 

this model the adiabatic approximation is assun1ed to be valid. Under this condition the 

authors decoupled the 20-dependence of Schroedinger equation into vertically and 

laterally solutions. The vertical one gives the ground energy position in the quasi­

triangular quantum weil. The lateral one gives the infonnation about the lateral 

transmission probability. To investigate the validity of such an approximation, we 

calculated the potential along with the charge concentration firstly under the 

assumption of full donor ionisation. Figure 4.25 depicts the two dimensional 

distribution of both the potential and the charge concentration for the deviee un der test 

considered before. From this figure one can detect that the deviee of a 50 nm-thick 

wide-band-gap semiconductor, doped 1018 cm-3
, is nonnally-on under the assumption 

of full ionisation which contradicts the experimental data. Such a disagreement can be 

overcame either by assuming first a shrinking in the doped epilayer thickness or by 

revisiting the assumption of full ionisation. 

Let us consider now these assumptions respectively with firstly the simulations of a 

20 nm-thick wide-band-gap layer. This results in the potential and charge distributions 

depicted in Figure 4.26. 
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Figure 4.25 (a) potellfial contours in case of full ionised donors of 1018 cnf3 in the 
wide band gap material of about 50 nm-thick. 
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Figure 4.25 (b) charge contours in case of full ionised donors of 1018 cm·3 in the 
11ide band gap material of about 50 nm-thick. , 
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Figure -1.26 (a) pote111ial contours in case of full ionised donors of 1018 cnf3 in the 
wide band gap material of about 20 mnthick 
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Figure -1.26 (b) charge contours in case of full ionised donors of 1018 cm·3 in the 
wide band gap material c!f about 20 11111 thick 
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-
In Figure 4.26 one can note the fmmation of a confined charge in the inter-gate 

region between completely depleted zones under the t\\'0 gates. Figure 4.27 illustrates 

the potential profile in the 2DEG channel just under the heterointetface. In this figure, 

the extensions of Fenni-level un der the gates are plotted in dashed lin es. Indeed, in the 

channel under the gates, the Fenni-level is not detem1Ïned because the charge 

concentration in these zones is practically zero. Also it can be seen that the inter-gate 

zone is isolated from the adjacent zones. Nevertheless, we assume that the Fermi-level 

is constant everywhere. 
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Figure -1.27 lateral channel potential profile detectedfrom the 
two dimensional distribution of Figure -1.26 (a). 
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To calculate the ground state of the quasi-tiiangular quantum weil at 

heterointerface, one can either restrict the calculation to this quantum weil itself or 

take ali the vertical diminution into account. 
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In the fonner, we assumed a closed system with an infinite batTier height at the 

heterointerface. In the latter, the simulated domain of the closed system was defined 

with an infinity ban·ier height at the lateral free surface. As expected, an enlargement 

.. in the simulated domain results in a decrease in the enerb'Y position of the ground state. 

Figure 4.28 iilustrates the ground state calculated using the n.vo methods. 
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Figure 4.28 ground leve/ pu?file calculated using d?fferell1methods. 

0.30 

Also depicted in Figure 4.29(a) are the family of lateral profile of ground state 

(based on the vertical dimension taking as a who le) for various gate voltages. In this 

figure (b) the con·esponding transmission probabilities are also shown. Also plotted is 

the Fermi-level (E1) position in order to investigate the crossover condition between Er 

and the resonant peaks. 
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Figure -/.29 (a) lateral profile of heteroillferface grou nd leve/ for various gate voltages. 
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At Vg1 = Vg2 = 0.1 Volt, six resonant peaks are clearly apparent in the energy 

window from Er ( ~ 50 me V ) up to the barrier height ( ~ 100 me V ). Wh en the gate bias 

is increased to 0.2 Volt only one sharp resonant peak can be detected. The resonant 

features in the 1-V characteristics are the reflect of the crossover between the resonant 
-

peaks and Er. On this basis it can be seen from Figure 4.29(b) th at only the nearest 

quantum level with respect to Er satisfy this condition. From the CUITent-voltage 

charactetistic point of view this means that only one peak should be measured in 

contradiction with the experiment. Nevettheless, it seems interesting to quantitatively 

calculate this resonant tunnelling contribution with the following procedure. As a first 

remark, it is important to distinguish between the lateral 20 injection described by the 

lateral 20 supply function (Eq. 4-93 [35]) and the vertical 20 injection discussed in 

the previous chapters. 

Eq. 4-93 

where now v(E) is the lateral velocity in function oflateral energy E and ali the other 

variables have their usual meaning. Vds is equal 0.2 mV. The I-V characteristics, we 

calculated, is plotted in logarithmic scale in Figure 4.30. As expected the tunnelling 

current peak value is very low in agreement with experiment due to the wide 

electrostatic tunnelling barriers. 

The fact that the resonant states of the transmission probability disappeared before 

reaching the crossing point with Fenni-level is due to the tapered shape of the 

electrostatic baniers (see also Figure 4.29). Although the calculated current value is 

acceptable as compared with experiment in [1] ( 1 nA), the broadening of the calculated 

current peak is extremely under estimated. In addition, the number of peaks in the 

deviee under test was three whereas only one peak was calculated at this stage of 

work. At Iast, the peak voltage is also highly over estimated with respect to the 

expetiment. 
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Figure 4.30 I-V characteristics resultingjromthe integration with re.\pect to energy of the 
transmission probabilities ~f Figure 4.29 (b) times the lateral injection supplyfunction. 

In an attempt to get a closer agreement with experiment Lebmton et al. [35] 

proposed a purely phenomenological approach, which takes the interface disorders into 

account. A Fermi-like distribution profile was assumed with an interface disorder 

potential which reads, 

2 
----~----------------~-1 

(
aoo[Vmax(y)- v·(x,y)]J 

1 +exp .r r 
f max (y)-~ min (y) 

Eq. 4-9-1 

Where a DO is a fitting parameter. (in the analysis of [35] a DO is chosen to be 15). 

The main goal of introducing of interface disorders was to sharpen the shape of the 

barrier. ln· our case, we tried to introduce an equivalent effect by means of different 

magnitudes namely 1018 cm·3 and 1.5 1018 cm·3 respectively. 

• 
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The main difference between Lebut1on 's cotTection and our approach is th at we 

introduce a disorder on the charge levet whereas Lebm1on et al. tailored the potential 

by means of a disorder potential. Nevet1heless, it seems that the assumption of non 

petfect heterointerface in the present status of technology is the earlier idea to be 

invoked. In the following, however, we sha11 prove that this has a second arder effect. 

It is wot1h noting that the graduai intetface-energy discontinuity is fonnerly 

assumed in our madel. The ionisation probability of these interface donor-states are 

described by a Fermi-Dirac like distribution described in Eq. 4-95. 

+ N; 
Nionised = l 2 ( ) + exp ê f - ê ion 

Eq . ./-95 

Where N; is the maximum intetface disorder states, N~nised is the effectively 

ionised intetface disorder states and E ion is the ionisation energy. 

The iso-potential patterns are shawn in Figure 4.31(a) for N0=1018 cm·3 and 

Figure 4.3l(b) for N0 =1.5 x 1018 cm-3
• 

Comparing the two cases represented in this figure, one can deduce that the effect of 

interface disorders is to increase the effective gate bias voltage as seen by the 2DEG in 

the conduction channel. This can be directly pointed out by noticing the 0.4 V voltage 

contour in the above figure. For seek of clarit)', we plotted in Figure 4.32 the potential 

profile for different interface disorder states concentrations. The general trends of the 

latera11y varying potential profile are similar to that displayed in Figure 4.29(a). 

This means that the introduction of vatious intetface charge concentrations has .... 

avera Il the same effect of vatying the gate bias voltages. Un der the same scope, let us 

recail th at experimenta11y the au thors of reference [ 1] obtained the same current profile 

under optical control conditions (see Figure 4.3). 
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Figure 4.31 (a) potential collfour representation when the inte1jace density of disorder states 
are No= 1018 cm·-' 
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Figure 4.31 {b) potential contour representation when the inte1jace density of disorder states 
are No= 1.5 1018 cnf3 
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Figure -1.32 lateral potential- profile for d([ferent inte1jace disorder conditions. 

In conclusion, the impact of introducing additional sheet charge concentration or 

resulting potential modifies only the barrier height but failed to sharpen the potential 

profile. Therefore, it seems that such an approach is too phenomenological and it was 

decided to test other work assumption while conserving the real deviee topological 

dimensions. 

In contrast to the previous section, we will investigate the effect of including a 

pattial. ionisation probability while maintaining the original vertical dimensions of the 

measured deviee. At vety low temperature ( 4.2 K) it is expected that the don ors will be 

parti ally ionised. Also the optical control measurements in [1] suppmt this assumption. 

The optimisation eriterion is that the deviee should be at the onset of conduction at 

gate bias of 0.1 V [1]. To met this condition, 13 %of the donors are assumed to be 

effectively ionised. Besides the inter-gate distance was slightly increased up to 77 nm 

rather than 60 nm which was the nominal inter-gate distance of the deviee 

experimentally characterised. It is believed that this difference in geometry is within 

the technological tolerance. 
'-
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The resulting potentia1 profiles, displayed for various bias conditions are depicted in 

Figure 4.33. Let us reca11 that previously in Figure 4.29(a) only the electrostatic banier 

height is influenced by the gate bias. In contrast, here, not only the banier height but 

also the depth of the electrostatic quantum-weB is decreased with the gate potentia1. 

The consequences are directly detected when we compare the family of transmission 

plotted in Figure 4.29(b) with Figure 4.33(b ). The former demon strates th at only one 

resonant transmission peak crosses the injection Fenni-level whereas in Figure 4.33(b) 

three peaks satisfy the cross-over condition. 

However, these studies illustrate clearly the trade off between the trends of 

experimental data versus the bias control and the quantitative agreement notably for 

the cun·ent magnitude, the inherent broadening and the voltage peak positions. In 

particular, the present numerical experiment, we succeed to represent the voltage 

positions but loose the feature of good agreement in current peak values. Also, the 

broadening of the measured current peak is extremely under estimated in both 

theoretical approaches. Before ending this discussion, it seems interesting to consider 

further improvements in theory on the basis of wh at we learned through out this thesis. 

There exist two important issues to be discussed, notably, the voltage broadening of 

cunent peaks and the peak cunent value as compared with experiment. 
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Figure -1.33 lateral profile of channel potential.for various bias conditions. 
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Figure 4.3-1 I-V characteristicsfor the.first resona111 peak. 

In our opinion, one of the kemel issues is that we described the resonant tmmelling 

process in a two-dimensional potential function using simply the one dimensional 

tunnelling lateral model. This is in strong contradiction with the simple view of CUITent 

lines normal to the equipotentials which exhibit a pronounced 2D real space character. 

In the following, we are discussing the expected impact and proposing original tracks 

for modelling a real two dimensional real space tunnelling process. 

4.17 Proposai for 2D tùnnelling rnodel : 

Let us redraw a schematic diagram dividing the deviee cross-section into classically 

allowed propagation regions and classically forbidden baiTier zones. This is shown in 

Figure 4.35, where the hatched areas represent the propagation regions white the clean 

areas cotTespond to the depleted ones. 
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Figure -1.35 schematic diagram illustrating the classically allowed regions (hatched area) and 
the classically.forhidden =ones (white area). 

Let us now investigate the source injection zone. Indeed, the vettical confinement is 

much more pronounced as compared with the lateral one. This gives rise to the vertical 

ballistic velocity to be much higher than the lateral one. This gives rise to a vettical 

'normal-injection analogous to the 20 injection extensively studied in the previous 

chapters. The result is an appreciable increase in the injection efficiency with respect 

to the lateral one described above by Eq. 4-93. It remains to discuss the most probable 

tunnelling path. In fact, intuitively, an electron will chose to cross the 20 real space 

barrier at tracks where the path integral attenuation is minimised. This is the first 

guide-line from the quantum transport probability point of view. Indeed, the direct 

lateral tunnelling path which is used ail over the analysis before is not the one which 

minimises the attenuation experienced by the tunnelling electrons. This in tum, will 

consequently increase the transmissivity of each electrostatic two-dimensional barrier 

and hence the overall transmission probability. The electron real space trajectories are 

schematically i11ustrated in Figure 4.36 along with the genetic electron motion in the 

classically allowed regions \\'ith a very efficient vettical injection. 



4-75 

---=">~=--=~ 

· .... ---·-

Figure .J. 36 schematic diagram illustrating the electron trajectories both in the propagation 
and the tunnelling regions (hatched aria). 

In partial conclusion, it is expected that both the improvement in the quantum 

transmission probability and in the injection efficiency would permit to have a better 

agreement in current peak values. 

Finally, we are expecting that the global current peak values will approach the 

experimental data to a very large extent. 

With respect to the shape and broadening of the current peaks, let us now discuss 

schematically the resulting transmission probability. Figure 4.37 is a schematic plot of 

the expected transmission probabilities. ln fact, we have various resonant paths in the 

inter-gate quantum weil which give rise to different degrees of freedom for the 

cotTesponding resonant energy. This results in a family of transmission probabilities 

rather than unambiguously defined single-path transmissions. ln other words, the 

single-path highly peaked single transmission probability should be replaced by a 

multi-path transmission probability resulting in an envelop transmission function 

(dashed line in Figure 4.37). The relevant peak current profile is now following the 

envel op shape of the transmission probability which could give rise t~ a more realistic 

peak cun·ent profile, in an attempted agreement with experimental data. 
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Figure -1.37 schematic diagram illustrating the possible resonate transmission peaks resulting 
.fromtheflexihility achiel•ed hy d[[(erent paths in the inter-gate region 

4.18 Conclusion: 

In this last chapter, the lateral induced 20 real space resonant tunnelling 

electrostatic induced potential function is investigated. This was done under the scope 

of hydrodynamic energy model. The latter is subjected into three novel key 

modifications : firstly, the modelling of a deep Ohmic contact, the second is the 

additional thennal part of the enerhry equation which influences the counterbalance 
.. 

between the electric field and diffusion force. The last important modification 

concems the introduction of the degeneracy effect into the non-degenerate 

hydrodynamic energy model. The scaled time domain analysis is investigated and used 

to alleviate the numerical instability. The latter was provoked by the high mobility 

value along with the pronounced increase in the electron concentration as calculated 

under high degeneracy conditions. 
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The tunnelling process was extensively investigated under the adiabatic assumption 

made by Lebution and co-workers. Finally we have shown that such an assumption is 

not able to describe quantitatively ail the relevant features of the tunnelling process in 

the 20 real space potential. 

As a last conclusion, we have shown that it is not entirely correct to describe the 

resonant tunnelling process in a two dimensional potential function using simply the 

one dimensional lateral tunnelling model. Sorne guide-tines were discussed for 

accounting for two dimensional tunnelling mechanisms. In patticular a strong 

unbalance between the lateral and transverse velocities was recognised with the 

associated benefit of pronounced vettical injection. On the other hand we proposed to 

consider a multi-path tunnelling mechanisms rather than a weil defined resonant 

tunnelling condition. The direct expected consequences are a broadening of the 

transmission probability spread now across a transmission window. The net effect 

should be an enhancement in the current peak value along with a voltage broadening in 

the voltage dependence current relation in cl oser agreement with expeiiment. 
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General conclusion : 

The common denominator of the studies repo11ed in this work is the resonant 

tunnelling effect. This effect can be observed under the condition of charge transfer 

by tunnelling and localisation by means of crystalline and/or electrostatic potential 

baiTiers. With respect to the general context out lined in chapter one, two kinds of 

structures in two tetminal and three terminal configuration respectively have been 

considered. To summarise the main conclusion we have drown through out this 

thesis, let us recall that it was found that the injection process plays an unexpected 

role in the negative differentiai conductance voltage dependence. The impact of 

such a finding is beyond the sole framework of double barrier heterostructure and 

was generalised to the open quantum systems. On the other hand, the scattering 

assisted effect was systematically integrated in order to successfully describe the 

cuiTent contrast. At last, from the transport properties point of view, we succeeded 

to combine a classical description of transport propet1ies based on a hydrodynamic 

approach with a quantum resonant tunnelling transport properties based on what _we 

have leamed about resonant tunnelling through out this thesis. 

In chapter two, we have addressed the general problem of charge transfer 

between two systems of different dimensionality. This was applied to the tunneiling 

transition between the accumulation layer and the collector region through the 

resonant path afforded by a Double Barrier Heterostructure (DBH). We found by 

this means novel effects, in this work refeiTed to as signature effect, resulting from 

the coupling between the quantum weil and the injection zone. In short, beyond the 

bias point for anti-crossing of quantum states attached to the accumulation and 

quantum weil regions respectively the tait of the wave function is sufficiently high 

to induce a finite density of states. To our knowledge this is the first ti me that a such 

result is mentioned with a dramatic consequence on the conduction mechanisms 

under out-of-resonance conditions. 
, 
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On the basis of local dcnsity -of states calculations, the CUITent-voltage 

characteristics have been calculated in details under various assumptions and shows 

a very broad voltage range for NDC effect with a plateau-like shape in a vety good 

agreement with experimental data. It is believed that with the recent advances in 

epitaxial growth allowing in fact to grow extremely thin and highly doped epi­

layers, such a general forn1alism could find a vety general application. The recent 

charactetisation in our group of high CUITent detivability DBH with high doped 

cladding layer shows I-V relationship with the same shoulder type behaviour 

predicted in this work for the first time to our knowledge. 

In chapter three, we have studied the scattering assisted tunnelling. The effect of 

scattering is included not only in the transmission probability but also into the 

injection conditions through a novel probabilistic model. In connection to the new 

fmmalism described in details in chapter two, we have succeeded to define four 

probability rates associated with each possible scattering assisted supply condition. 

The transmission probability is self-consistently solved along with the equation 

defining the finite Iife time in the weiL In addition, the transmission probability is 

calculated using a new method we called AEES based on Aity function solutions. 

The above model, is systematically applied to simulate the resonant tunnelling 

diode fabricated in our group of re se arch and which was characterised in the present 

work as a function of temperature. The comparison between the simulated results 

and the measured data are surprisingly in a very good agreement. This good 

agreement is also shown to be sustained for a broad range of operating temperature 

conditions. Using the above novel model, we have described successfully the main 

anomalies in the 1-V characteristics notably, the onset-bump, the main resonant 

current and the post-resonant phonon replica. 
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In chapter four, the 2D electrostatic induced potential function is investigated. 

This was done under the scope of hydrodynamic energy model. Conceming this 

specifie feature three novel modifications were proposed (i) the modelling of a deep 

Ohmic contact, (ii) introduction of the additional thennal pmt of the energy 

equation which influences the counterbalance between the electric field and 

diffusion force, (iii) the last impottant modification concerns the introduction of the 

degeneracy effect. ln order to alleviate the numerical instability the scaled time 

domain analysis is investigated and convergence was satisfactory reached. 

Starting from the 2D potential pattern, the tunnelling process was extensively 

investigated un der the assomption of separation of variables. Such a model is able to 

describe the main features of the measured cun·ent-voltage characteristics notably 

the three anomalies due to resonant tunnelling through the camel-shape electrostatic 

potential. It is believed that such a basic study of quantum effect will find 

application in context of nano-devices. To mention a few, one can expect that at 

ultra shmt gate length the conventional MOSFET will face the problem of a 

quantum behaviour superimposed or dominant with respect to the conventional field 

effect control scheme. Based on tunnelling and temporary localisation effect, we 

thought that the deviees designed for single electron electronics could also be 

addressed by means of the numerical code carried out in the present work. 

As a last conclusion, we have shown that it is not acceptable to describe the 

resonant tunnelling process in a two dimensional potential function using simply the 

one dimensional lateral tunnelling model. A novel two dimensional tunnelling 

model depends on the vertical 2D injection regime is proposed. It is also shown that 

this regime is analogues to that discussed in both chapters one and two for vertical 

heterostructural deviees. It is expected that by using the new 2D physical approach 

we can get a better agreement with the experimental data not only with respect to 

the CUITent peak values but also as regards the voltage broadening of the resonant 

current peaks. 


