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INTRODUCTION



General introduction :

The resonant tunnelling effect in semiconductors is known since the pioneering
work of L.Esaki in 1958 followed by the first experimental demonstration of
Negative Differential Conductance (NDC) effect at liquids Nitrogen. Now, with the
recent advance in epitaxial growth and modern lithography techniques a wide
variety of devices exhibiting such NDC effect are fabricated. With respect to
conventional NDC devices including the so called Esaki tunnel diode the major
advantages stem from quantum resonance effect. Indeed, it is well known that by
means of this quantum resonance the transmission probability can reach unity with a
selective character. Basically, the observation of a resonant tunnelling effect needs
to fabricate a quantum-sized system which can be supplied or probed by a
tunnelling mechanisms. For this very general view point, the Double Barrier
Heterostructure (DBH) appears as the generic nano-structure. By using hetero-
Jjunction rather than homo-junction we take advantage of numerous degrees of
freedom in device design. So that band-gap engineering can be carried-out.
Therefore with the goal to use these quantum devices in electronic and
optoelectronic applications, a large variety of relevant figure of merits can be
optimised depending on the targeted application. For instance, the intrinsic response
time in direct connection with the life time of carriers within the quantum well is

extremely short provided the various barriers are sufficiently thin.

The NDC effect which results frofn a resonant tunnelling device gained the
attention of many functional component designers. The ultra-high speed of resonant
tunnelling effect 1s the primary motivation. On the other hand such an effect allows
them to integrate complex functions into a single functional device. Also should be

added that one can implement a single or a multiple NDC-region device or circuit in

order to realise a multi-functional device.
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On the other hand, the current voltage characteristics can be tailored particularly
at convenience. In this context, there is an important need for accurate simulation
tools with the goal to computer aided design of these specific quantum structures. In
a real device, the conduction mechanisms are much more complicated than the
simple view of tunnelling electron through the quantum level of the DBH. In the
emitter region there is obviously a spread in the injection energy. As a consequence,
only some electrons take advantage of resonant tunnelling transfer of charge while
the others are accumulated close to the heterointerface. Such an accumulation yields
to the formation of an electrostatic potential. This electrostatic quantum well
modifies significantly the charge transfer through the injection condition. In other
words, the injection process involves transitions between to quantum systems. This
issue will be an important part of the effect investigated in this thesis. On the other
hand, with respect to the ideal picture of a pure coherent process, experiment shows
dominant impact of disorder and scattering assisted tunnelling effects. However, for
accounting for such spurious or parasitic effects which tends to smear out the
relevant NDC phenomena are also of prime concern. This specific problem will
concern an important part of the present work. At last, it seems interesting to
generalise the simulation treatment to three terminal devices which appeasers a key
component in digital applications. In that case the generic structure is the dual gate
FET fabricated on nano-scale. With respect to the issues addressed previously we
will see the necessity to solve the Boltzmann equation along with the Schroedinger
equation. Some resonant tunnelling features will be demonstrated with the

counterpart of a very low temperature operation.

In the first chapter briefly, we address the general issue of the NDC effect. We
will discuss the various physical mechanisms responsible for negative differential
conductance in the current voltage characteristics of a two terminal device. In this
introductory chapter we discuss in short the conventional along with resonant
tunnelling structures. To give an overall picture into the other types rather than
tunnelling transfer effect, the reciprocal transfer as well as the real space transfer

effects are outlined. The tunnelling effect through supper-lattices is also introduced



i

as an analogus to the reciprocal-space transfer one. To go further into the problem
of realisation of high functionality devices, we will review some of the most
promising options by discussing, on one hand, the possibility of direct access into
the quantum well by an Omic or Shottky contact control and on the other hand, the
éo-integration of resonant tunnelling structure with active devices. This includes,
Resonant Tunnelling Bipolar Transistor (HBRT), Resonant Hot Electron
Transistor, Inverted base-collector tunnel transistor (Stark effect transistor) and
Resonant Tunnelling Field Effect Transistor (RTFET). From the other hand, the
Field induced tunnelling structures along with the solutions combine optical control

gate are finally discussed.

In the second chapter, we investigate the effect of two-dimensional injection on
purely coherent resonant tunnelling. We shall discuss the development of a new
model which defines a two dimensional supply function. Concerning this issue, we
will start from the notion of local density of states. Special attention will be paid to
the wave function normalisation and some preliminary results will be also discussed
by introducing the effect of non-parabolicity which influences the effective mass in
the accumulation zone. Finally, to support the validity of the new formalism we will

report a comparison between the simulation results carried out in the present study

and the experiments.

In chapter three, we will address the effects of phonon scattering on the current-
voltage characteristics. Our device under test will be an AlGaAs/GaAs resonant
tunnelling diode fabricated and characterised in our group of research. We carried
out a self consistent solution based on the fact that the broadening in the
transmission probability is linked to the probability of scattering. The second issue
is the inclusion of the phase breaking not only into the transmission probability but
also into the 2D supply function. Besides, The interface roughness scattering will be
addressed along with the impact of the space charge on the I-V curve. To validate

the new formalism, we experimentally characterised the DBH diode and compare

the experimental data with the results of the theory.
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The lateral structures resulting in an electrostatic induced potential whose space
variation depends at least on two directions will be addressed in chapter four.
Before investigating the tunnelling transport in these lateral structures, a special
attention will be paid to find out the most realistic potential function, the relevant

Fermi-level and the injection-mode.

The analysis will be conducted over by considering : firstly, the perfect
adaptation of a full two-dimensional hydrodynamic energy model to simulation
purposes at very low temperatures as well as in the ambient conditions. The second
step, will be devoted onto a novel physical picture including both the lateral and the
vertical confinement effects into the transmission along with the injection
conditions. On this basis we introduce the necessary modifications to simulate the
lateral resonant-tunnelling dual gate MODFET at liquid Helium. This concerns the
validity of shallow Ohmic contact for such a structure along with a novel approach
to model the deep Ohmic contact. Also the degeneracy correction into the
hydrodynamic energy model will be extensively investigate. Finally, we will

address the lateral tunnelling process under various assumptions.
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1. EFFECTS OF NEGATIVE DIFFERENTIAL CONDUCTANCE AND
TRANSCONDUCTANCE

1.1 Negative differential conductance and high functionality :

Negative differential conductance (NDC) which results from a resonant
tunnelling effect gained the attention of many functional component designers not
only as it is an extremely high speed phenomenon but also as it allows them to
integrate complex functions into a single functional device. For example, frequency
multiplier and four bit parity generator have already been elaborated using a single
device [1], inverters, OR gates and flip-flops have been fabricated using double-
barrier GaAs/AlGaAs resonant tunnelling diodes [2]. It is to be added that one can

implement a single or a multiple NDC-region device or circuit in order to realise a

multi-functional device, NOR [3].

1.2 Physical effects based on localisation and tunnelling phenomena :

1.2.1 Conventional tunnelling structures :

The first acknowledged paper on tunnel devices discussed the tunnel diode, also
referred to as Esaki diode, and was written [4][5] by L.Esaki in 1958. Basically the
conventional tunnelling structures depend on the band to band tunnelling
phenomena. Figure 1.1 shows a schematic energy band diagram of a conventional
tunnel structure in thermal equilibrium. Because of the high doping concentration
the Fermi-level is located within the allowed bands. The degree of degeneracy
denoted by V, and V,, is typically a few k@ where k is Boltzmann’ constant and 0 is
the absolute temperature. The depletion layer width is of the order of 100 A or less,

which is relatively narrower than the conventional p-n junction.



d
+
A
v
o]

Depletion
region

T —p

e
<M=
hv

Figure 1.1 Energy-band diagram of a conventional tunnel diode in thermal

equilibrium.

Figure 1.2a shows a typical static current-voltage characteristic of a tunnel diode.
In the forward bias direction, the current first increases to a maximum value (peak
current or I) at a voltage V., then decreases to a minimum value I, at a voltage V...
For a voltage higher than V,, the current increases exponentially with the voltage.

The static characteristic is the result of three current components illustrated in

Figure 1.2b, band- to-band tunnelling current, excess current, and thermal current

respectively.
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Figure 1.2 (a) Static voltage-current characteristics of a typical tunnel diode, (b)

the siatic characteristics is analysed into three current components.
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Figure 1.3 Simplified energy-band diagram of conventional tunnel diode under

deferent biasing conditions.
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We first discuss qualitatively the tunnelling processes at low temperature using

the simplified band structures shown in

Figure 1.3. Note that the Fermi levels are within the conduction and valence band

of the semiconductor. Under equilibrium condition (

Figure 1.3b) the Fermi level is constant across the junction. Above the Fermi
level there are no filled states on either side of the junction, and below the Fermi
level there are no empty states available on either side of the junction. Hence
tunnelling currents cannot flow at zero applied voltage. When a biasing voltage is
applied, the electrons may tunnel from the valence band to the conduction band, or

vice versa. The necessary conditions for tunnelling are :
1. occupied energy states exist on the side from which the electron tunnels.

2. unoccupied energy states exist at the same energy levels on the side to

which the electron can tunnel.

3. the tunneling potential barrier height is low and the barrier width is narrow

enough so that there is a finite tunneling probability.

4. the momentum is conserved in the tunneling process.

Figure 1.3a shows electron tunneling from the valence band into the conduction

band when a reversed bias is applied. The corresponding bias point is marked with a

dot on the I-V curve. When a forward bias is applied (

Figure 1.3¢) there exsits a band of energies for which there are filled states on the
n side facing to unocupied states on the p side hence the electrons can tunnel from

the n side to the p side. When the forward voltage is further increased, there are

fewer available unoccupied states on the p side (

~
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Figure 1.3d). If a voltage is applied in such a way that the bottom of the
conduction band is exactly opposite to the top of the valence band, the tunneling
conditions are no more satisfied. Thus at this point the tunneling current can no
longer flow. With still a further increase in the voltage, the well-known thermal

current flows (

Figure 1.3e), and drastically will increase with the applied voltage. Tunneling

routes are shown in this figure by arrows.

In the present work we did not study the Esaki-diodes. Nevertheless in order to
mack a comparison with resonant tunnelling devices which will be considered in the
next section, Figure 1.4 showes the current-voltage characteristic measured at room

temperature in our laboratory (IEMN) for a typical device.

In agreement with the qualitative approach ilustrated above, the device
(comersially under the referebce 1N3857) exhibites a pronaunced NDC effect over
a quite wide bias voltage range (in excess of 300 mV). The shoulder-type behaviour
in the I-V curve is a result of the well known spurious selfe biasing effect. We will

discuss of such parasitic effect in chapter 2.
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Figure 1.4 room temperature measurements of I-V characteristic of the Esaki-

diode comercially referenced under the technical number IN3857.

In contrary, the peak volyage is quit low ( 50 mV ) for the device under test. The
key figure of merit in this cas is clearlly the huge Peak-to Vally current ratio (16 :1)
wich is a result of the interband tunneling mechanism. This is an important
advantage and now there is an increas effort devoted to Antimonide based material

systems involving such interband tunneling process.

In counter part, conventional Esaki-diod suffers from limited current capability
alongwith very high capacitance level. This is explained by the very high doping

leveles cloused to the tunnelling barrier which results in high RC time constant.

1.2.2 Resonant tunnelling structures :

-

The modern epitaxial techniques namely MOCVD and MBE, in the present time,

make it available to build potential barriers (classically forbidden bands of energies)
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using material modulation within the range of a few monatomic layers. The charge
carriers (electrons or holes), near the corresponding band edge of the injection zone,
have the ability to tunnel through the barrier. If for example, the structure contains
only a single barrier, the quantum transmission probability is in the same order of

magnitude of that of the conventional tunnel diode which 1s typically 1%.

\

Er. GaAs |
JREREREEPRRr GaAs

AlGaAs

Figure 1.5 schematic diagram for simple resonant tunnelling structure.

If now one creates a potential well (classically allowed bands of energies
confined between two potential barriers, see also Figure 1.5, one observes a
resonant behaviour in the transmission probability. This is a direct result of the
quantisation of electron energy in epitaxial growth direction (longitudinal direction).
An example of the transmission probability calculated as a function of longitudinal
energy is illustrated in Figure 1.6. One observes the selective unity transmission
probability at the longitudinal resonant energy corresponding to the quantum well
level. The transmission probability out of these resonant levels takes,
approximately, the value of the transmission probability of a single barrier with a
thickness equivalent to the sum of those of the two barriers which constitutes the

resonant structure.
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Figure 1.6 typical transmission coefficient.

The understanding of the resonant tunnelling phenomena might be achieved in
the scope of the Fabry-Pérot optical interferometer model. It consists of two infinite
parallel semi-reflecting mirrors with transmission coefficients denoted by t, and t,
for the left and right mirrors respectively while they are separated by a distance L.
Assuming a monochromatic wave of a Transverse Electric and Magnetic (TEM)
mode is launched perpendicularly on the left mirror for instance, one can easily

deduce the total power transmission coefficient to be as follows,

tit, e IkL Eq. 1-1

In this equation r; and r, are the réflexion coefficient of the left and right-hand

sides defined as :

2 -
n=yl-tf , p=41-t2 and k=t Fq. 12

7\‘ -
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If the cavity length L is an integer multiples of A/2, the overall transmission

coefficient (T) in Eq. 1-1 will be unity. This corresponds to in-resonance condition.

2L = _1, the transmission

In contrast, for wave lengths for which the factor e
T =)t /2, which is the transmission of an equivalent single barrier with two
identical mirrors in series. In this case we say that the cavity is out-of-resonance. It
is to be mentioned that the reflection coefficient of the semi-reflecting mirror
equally with its resulting phase shift 8 are independent of the incident light

frequency. In the case of epitaxial potential barrier there is a phase matching

condition which will be,
kL+6,+06,=(n-1n Eq. 1-3

where 9;, 6, ( the phase shifts within the barriers) and k will be dependent of the

electron energy equivalent to the electromagnetic wave frequency.

This intra-band resonant phenomena (in the sense that the conduction mechanism
is unipolar) gives rise to NDC effect. Special attention will be paid to underlying
mechanisms involved in a real device. In short, however, let us mention that there
exists a strong difference between the conduction characteristics of Esaki diode and
resonant tunnelling structures marked by the existence of high transmission level at
resonance which leads to a high current capability. It will be shown that the voltage
range over which the differential conductance is negative, is a consequence of
complex mechanisms notably two-dimensional injection processes. On the other
hand current contrast between the in and out of resonant conditions will be effected
by scattering assisted tunnelling phenomena. As a result the Peak-to-Valley current

ratio 1s drastically decreased.

1.3 Reciprocal space transfer effect :

For this very short and very brief report on charge transfer in K-space, we will

distinguish between the bulk effect and the operation of a real device.
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Reciprocal space transfer effect also named Gunn effect is an intrinsic property.
The materials exhibiting this effect should have a conduction band characterised by
a primary minimum located at the I point in the Brillouin zone (central valley) and
a number (at least one) of satellite valleys at relatively higher energies with respect
to the bottom of the central valley (Figure 1.7). Under the influence of high electric
fields electrons gain enough energy compared to the difference between the central
and satellite energy minima. Subject to different scattering mechanisms, some of
these electrons could have an average of k value comparable with the k value
difference between the two valleys. Under this condition these electrons could be
transferred from the central valley to the satellite one. If the effective mass of the
satellite valley 1s relatively higher than that of the central one (which is the case of
HI-IV semiconductor materials), the average electron velocity will be decreased and

the material will exhibit a negative differential mobility region (Figure 1.8).
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For the illustration purposes we plotted in Figure 1.8 the variation of average
electron velocity versus the electric field for the turmery alloy Gag;Alj3As at room

temperature, calculated by Mont-Carlo simulations technique (performed at IEMN),

Figure 1.7 band structure diagram of GaAs

Also we assumed that the semi-conductor material is undoped.

In chapter(4) we will use such data as an input to the hydrodynamic model
(SIMFET) originally mmplemented by [6] and extensively developed by [7][8][9].

[7]this 1s after the necessary modifications which will be discussed later on in

chapter(4).
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From Figure 1.8 one can notice that the threshold critical electric field is around
5K V/cm. The peak velocity reaches 1.2 107 cm/s whereas the saturation velocity is
close to 0.8 107 cm/s. On this bases one can expect that such negative differential
mobility gives rise to an NDC effect since the current density depends directly on

the velocity and the electric field is a direct result of the applied voltage.

However in real devices the condition of a uniform electric field is often not
satisfied. In this case the space charge effect plays a key role that will be discussed

in the following section.
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Figure 1.8 Mont-Carlo simulations of velocity-field characteristics of GaAlAs
performed in IEMN



1.3.1 reciprocal space transfer device :

To get inside the operation of a real device let us consider Figure 1.9 taken from
[10] where are schematically depicts the device active region, the electron density,
the intemal field as a function of distance along with the current density as a

function of electric field.

An H @

E, (b)

©

E, Ea E,

Figure 1.9 formation of an electron dipole layer in a perturbed medium of

negative resistively, afier Kroemer [10]

If the semiconductor material is biased such that the applied electric field (E,) is
in the negative differential mobility region, the material, initially electrically
homogeneous, becomes heterogeneous. The origin of this heterogeneity might be

any field perturbation. For example it might be at the neighbourhood of the



1-15

electrodes, where a region of higher resistance followed directly by a region of
lower resistance thus formed, and hence a formation of accumulation-depletion
region (high field domain) is started (Figure 1.9a) and would be developed in an
attempt to reach current stability condition. The field inside the dipole domain (E;)
would be greater than the fields on each side of it (E,) (Figure 1.9b). The two field
values will tend toward equilibrium levels outside the NDR region where the high
and low currents are equal (Figure 1.9¢). The dipole layer moves through the active
region and discharges at the anode. At this instant the field returns to the original

uniform distribution, while a new dipole layer is starting to be formed, and the

process repeats itself.

It is to be mentioned that the early-stage space-charge growth is given by

(n—no)=(n—no),=0exp(l/rR)and hence the maximum growth factor would be
exp(T/ rR) where T is the sample transit time 7 ~ L/v,, L is the sample length, v, is

the saturation velocity and ty is the dielectric relaxation time. For large space charge

growth (domain mode of operation) this growth factor must be grater than unity thus

making n,L > e, v,/qu” ~ 102 cn? for GaAs and InP.

There is another mode of operation, called limited space charge accumulation
(LSA) mode, in which we drive the whole sample into the NDR region only for a
very short period of time during which no significant charge accumulation can

occur ; and hence the whole sample length would be in contribution to the device

negative resistance.

In conclusion we learned that the Gun structures exhibit a transit time limitation
analogous with any injection and transit time devices IMPTT diode for example. As
a general rule the saturation velocity which is relevant for this transit process 1s
relatively lower than the peak velocity. This imposes a limitation on the switching
time of these devices. On the contrary the resonant tunnelling diodes exhibit a hot

injection effect so that much higher velocity is expected in the adjacent transit layer.
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1.4 Supperlattices :

In this section we will give a brief report on the mean conduction characteristics

of semiconductor supperlattices.

Let us recall that the achievement of supper-lattice like electron transport requires
the fabrication of tightly coupled quantum wells. Under this condition the overlap
between the envelop wave function leads to the de-localisation of spatial electron

probability distribution.

For infinite supper-lattices, energy mini-bands are created house energy positions
and broadening are directly related to the transparency of the barriers which

depends on the geometrical parameters and the semiconductor matenals.

The transport properties under bias are relatively complicated and several effects
were proposed to explain the occurrence of Negative Differential Mobility. For
instance it can be expected that the application of electric field leads to a transition
between quasi-mini-band transport characteristics (wave function de-localisation) to
(Wannier-Stark) ladder characteristics (wave function localisation). This leads in
practice to NDC effect observable in the I-V relationship measured under D.C

. conditions.

However as for conventional Gunn-diodes, real devices shows a transit mode
limitation with notably the formation of a dipole domain travelling through the
active region. Therefore, from the device point of view the operation of supper-
lattices used for instance as oscillators is quite comparable with that of Gun-diodes
but with an effective drift velocity dependent on the min-band broadening. More
over because the origin of the negative differential mobility is not the same, the
frequency limitations are different. It is now well known that the relevant time in the
k-space transfer devices is the inter-valley scattering time. In contrast, as seen
above, the characteristic time of supper-lattices involves the transition probability

between eigen states.
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Concerning the shape of the I-V relation, ‘the onset of the characteristic is
typically abrupt where as the decrees in the current value in the NDC region is
relatively gradual. On the other hand due to the spurious self oscillations one

observes typically self-biasing effect which distorts the current variation versus

voltage.

1.5 Real space transfer effects :

In the previous sections we have briefly discussed the underling mechanisms of
transfer in k-space. Such transfer which leads to a negative deferential conductance
effect is often used in the fabrication of transfer electron diode (TED). Recently it
was proposed that NDC effect can also be achieved in three terminal
heterostructures tacking the advantage of transfer in the geometrical space from a

high mobility towards a low mobility region.

It is now well known that the mobility of a semiconductor is directly related to
the band-gap of the semiconductor material. As an example, let us recall that the
narrow gap InAs material exhibits one of the fastest drift velocities whereas AlSb
material with wide band-gap shows a poor performance in terms of velocity. In
addition most of the heterostructur transistors have doping modulation. Under this

condition one can expect a significant decrees in the drift velocity at increasing

voltages.

On these bases all conditions are met to realise a drift velocity modulation which

is provided by the electron transfer from a narrow gap undoped material towards a

wide gap highly doped material.

This real space transfer effect necessitates [11]{12][13] that the electrons have to
Jjump over the heterostructure barrier. The required excess energy is provided by the
heating effect which is induced by the electric field. In this mechanism the charged
carriers are conserved within the main current path in the active region. Another
possibility consists in inducing current carriers modulation by collecting some of or

approximately all the electrons from the main current path. There exists several
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configurations of such devices,” all are based on the collection of a current
component using an extra electrode. For instance let us mention the work published
by Luryi. In his work [14] he employs the substrate as an extra collector gate and
call it NEgativ .Resistance Field Effect Transistor (NERFET). Figure 1.10 sketches

the device proposed in [14].
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Figure 1.10 NERFET structure and energy band diagram afier [14].

On the hand one can fined in the literature the same effect but using planer
structures. Concerning this class of devices, one of the most elegant ways for
achieving high performance is to use a Dual-Gate Field Effect Transistor (DGFET).
The advantage of DGFET as compared with conventional FET have been
investigated over the past [15][16] in connection with impedance level at the control

terminals and the stability effect.
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From the point of view of real space transfer effect such dual gate scheme is also
favourable because varying the various voltages applied on the gates permits the
optimisation of the heating effect necessarily required to observe electron transport
in the high ban gap material. In addition it also permits the optimisation of carrier

collection effect depending on the mode of operation.

In order to exemplify these degrees of freedom in device operation, let us
consider the current flow lines and the electronic total kinetic average energy
distribution depicted in Figure 1.11a and Figure 1.11b respectively. This figure
clarify the formation of a high energy domain at the exit of each gate with the
subsequent electron transfer into the wide band-gap highly doped Al3:Gag7As

capping the GaAs undoped narrow band-gap material.
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Figure 1.11 current lines (a) and energy distribution (b) [15],[16].



Also Thomas et all [17][18] have proposed a multiple-layer 2pum dual gate 2um
inter-gate separation field effect real space transfer transistor in which they use the
second gate as a collector to modulate the drain current and hence creating a
negative differential trans-conductance between the drain current and the second
gate voltage. For the application of the real space transfer phenoﬁlena into two

terminal devices See also [19].

1.6 Possible solutions for structures of transistor type :

Two terminal resonant devices with NDC characteristics have several valuable
properties for circuit design (high speed, integrated-capability). Three terminal
devices with controllable NDC characteristics are also attractive for circuit design.
This is because they provide isolation between different circuit stages and allow a
better control of device operation. In the same time NDC property in three terminal

configuration increases the functionality of the device.

In order to fabricate a tunnelling device in a three-terminal configuration, there
exists two main possible solutions. The first one involves creating a direct
accessibility to control the resonant quantum well behaviour by either an Ohmic
contact or a Schottky contact. The second one is the co-integration between a
resonant tunnelling diode and a conventional transistor structure. In the beginning

we shall discuss the first solution and then after the second one.

1.6.1 Direct accessibility to the quantum well :

1.6.1.1 Ohmic contact control :

In this technique [20][{21] (Figure 1.12) a shallow Ohmic contact is directly
deposited onto the quantum well (base layer) to enable a control of the value of
potential in the quantum well (this technique is also known as potential control
method). By this means the tunnelling current which may cross the base layer can
be modulated [22][23]. The limitation of this kind of structure is the relatively high

base access resistance resulting from the reduced thickness of the base active layer.
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In fact, it is now well known that the pronounced quantum effects at room
temperature implies the fabrication of narrow quantum well or/and the use of a very
low effective mass well material, with high conduction band offsets. On the
contrary the devices whose operation involves the deposition of a base Ohmic
contact such as Heterostructure Bipolar Transistor should have a doping

concentration level which has to be as high as possible along with a sizeable base.

cmitter contact

basc
n+GaAs contact
AlAs

barriers —

n"GaAs cmitter

R
n In2sGa.7sAs base

collector
contact

nit AlGaAs

n*G aAs collector

Figure 1.12 Schematic diagram showing a typical direct ohmic contact into the

base layer (afier Haddad et all. [20])

To overcome such trade-off between the observation of quantum effects and the
achievement of a high accessibility to the base layer, one finds in the literature
several solutions. From the material point of view, some authors proposed to take
the advantage of the very low effective mass exhibited by InAs material and use it in
the base layer in association with AISb barriers. Although such a solution is a priori
interesting, it suffers however many difficulties notably the fabrication of high
quality epi-layers. On the other hand, it was proposed over the past to implement a

buried base layer. Figure 1.13 depicts a schematic diagram illustrating the buried

o~

base layer band structure.



GaSh InAs GaSb

Figure 1.13 schematic diagram of buried base conduction-band structure.

By using a deep quantum well accommodating a ground level below the
conduction band edge of the adjacent layer, it is possible to separate the electron
population responsible of the emitter-collector current from that which plays the
role of a reservoir close to the base contact. Unfortunately the tunnelling electrons
which are injected through the first excited state experience many inter-band

scatterings which gives rise to unreasonable base leakage current [24].

As a last example, let us mention the work of NTT group [25] which introduces
the idea of coupled quantum wells as an attempt to reduce the base resistance. The
key thought of their proposition is to increase the effective base thickness without

decreasing the quantum resonant effect.

Practically in all the schemes based on unipolar structures and from the
technological point of view we have to successfully fabricate a very shallow Ohmic
contact. The main motivation is to avoid short circuiting between the base and the

collector region. Such a requirement is often difficult to be realised using standard
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Ohmic contact metalisation (AuGeNi). We will come back on this key issue later on

n this work.

In the last paragraphs we emphasised the potential control method elaborated for
a unipolar structures. It is also possible to realise a direct potential control by the
deposition of an Ohmic-contact onto the base layer of Heterojunction Bipolar
Transistor (HBT).Figure 1.14 depicts the Pseudomorphic BiQuaRTT energy band
profile in GaAs/AlGaAs base materials, in equilibrium (a),and under bias to bring
the emitter electron energy into resonance with the fourth allowed quantum well

base state (after [30]).

1.0}k
05|
0.0 -
S -~
2 % o5l
> N
2 B
] 3
4 w 40}
w g
0.5
1.0
1.5 1 1 1 ]
0 &0 100 150 [+] 50 100 150
POSITION trn) POSITION thm)
(ol )]

Figure 1.14 Pseudomorphic BiQuaRTT encrgy band profile, in equilibrium (a),
under bias 10 bring the emitter electron energy into resonance with the fourth

allowed quantum well base state. After [30]

It appears interesting to mention that the use of a lower band-gap material in the
base region of BiQuaRTT is also favourable for a short bas transit time. The reasons
are twofold : first of all we take benefit of high mobility, secondly hot electrons are

L4

injected into the base.
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Another embodiment of the BiQuaRTT [26] which made use of superlattices in
the emitter and collector sides. This provides an effective wider band-gap emitter
than the GaAs quantum well. This supperlattice structure has also the advantage of
hot electron injection. Besides, it increases the emitter injection efficiency by
compressing the energy distribution of electrons in the emitter and collector sides

which is a direct result of the formation of minibands.

1.6.1.2 Schettky contact control :

The second class of devices which enables the modulation of the tunnelling
current through the double barrier by means of a third electrode concerns the

Schottky based structures(Figure 1.15).

Gatel Source Gate2

P11

Drain

N

Figure 1.15Schematic cross-section of the heterodimensional Schottky-gated

resonant tunnelling transistor (after Peatman et all. [27])

One of the first attempts published in the literature makes use of the deposition of
side Schottky gates in close proximity to a buried double barrier heterostructure. In

this case the fringing field induced by the gate electrodes allows the control of the
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electron flux flowing from source to drain by field effect (this technique 1s also
known as field effect control method). Some improvements in the implementation of
the gates was published recently [27] involving a deep etching down to the collector

drain region followed by the disposition of a Schottky metalization.

A very good example illustrating this technique is the structure proposed by
Peatman et all. [27]. In this structure (Figure 1.15) the Schottky gate voltage
modulates the drain current by modulating the effective cross-section area of the
quasi-two dimensional electron accumulation layer (injection layer) which is created

Just above the source-side barrier under the influence of the drain-source bias.

1.6.2 Co-Integration of resonant tunnelling structure with active devices :

Co-integration of resonant tunnelling structures with active devices

I | | I

HBT+RTS HET+RTS STARK EFFECT T+RTS FET+RTS

Figure 1.16 Family tree illustrating the main co-integration possibilities benveen

the resonant tunnelling structure and active devices

In the previous section, we emphasised the fact that it is often difficult to satisfy
the requirements of both a low resistance Ohmic contact and in the same time well-
resolved quantum effects. To alleviate such a draw back one possible way is to
separate the quantum structure, namely the double barrier heterostructure which is
in a two terminal configuration, from the control cell which is in a three terminal
scheme. By this means, one can preserve the main interesting feature of quantum
devices notably the NDC effect while permitting the modulation of the overall
current by an external voltage. However, it is worth-mentioning that the main

disadvantage of this co-integration is that the frequency capabilities is governed by
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the transistor part which has conventional transit time limitations. It is now well~
known that the search of a very high cut-off frequency depends on the gate length
which has to be on sub-micron scale for pico-second time response. In this context,

the fabrication steps of such high ]perfomance- ansist?r% requires an advanced level
of technology in order to match the capabilities of both parts. Practically, the

transistor part and the quantum structure have to be compatible in terms of intrinsic

response time and current densities which governs the RC time constant.

1.6.2.1 Resonant Tunnelling Bipolar Transistor (HBRT) :

It is known that the key parameters to be optimised in the bipolar transistor are
the base resistance and the base transit time. The former might be decreased by
increasing the base doping level. Consequently undesirable mcrease in the base-
emitter parasitic current results, which in turn might be avoided by introducing a
larger band gap material as an emitter region. This creates in the valence band a
higher barrier reducing the hole base parasitic current. Whereas in the conduction
band the emitter-base hetero-junction exhibit on each side an accumulation and a
depletion zones with a spike-shaped conduction edge. This decreases the
macroscopic thickness of the base-emitter depletion width as compared with that of

the conventional homogeneous p-n junction.

By introducing a wider band gap material for forming the resonant tunnelling
structure in the emitter region, some of the above improvements could be further
enhanced, but more importantly it gives the device the unique feature of negative

differential conductance.

On the other hand, beside the room temperature operation possibility, the main

application advantages of this co-integration can be summarised in the followings :

However, the fact that the flow of a high bas-emitter parasitic current degradates
the device performance is not always true. Indeed, it can be shown [29] that a
relatively high base-emitter voltage ~10 V' 1s needed to drive the device into the in-

resonance operating mode. Under this condition, the base current is relatively high,
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hence reducing the current gain reduction beyond resonance. This causes an
appreciable increase in the collector current PVR in the common-emitter transistor
configuration under constant base current bias. A |P}/ of 74 :1 is measured in the
transistor operation mode whereas a |?1'’R| of 17 :1 is measured in the double barrier

operation mode for the same transistor of [29].
For having an overview of various solutions reported in the literature,

Figure 1.17 depicts a comparison of band structures [30] between the different RTBT’s

and the Bipolar Quantum Resonant-Tunnelling Transistor (BiQuaRTT) of Reed et al. [22].

In Figure 1.17 the top two and center structures are GaAs/AlGaAs materials whereas in

the lower half of the figure, the devices were fabricated in the InAlAs/InGaAs system

lattice-matched to InP.

Let us recall however that the BiQuaRTT depicted in the center of Figure 1.17 belongs

to the direct access heterostructure family shortly discussed in section 1.6.1.

Finally one can conclude that the RTBT or BiQuaRTT transistor design needs the
optimisation of a large number of parameters. Which offers a large degree of

flexibility in the device design. In counterpart, such an optimisation using band gap

engineering is a rather difficult task.
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1.6.2.2 Resonant Hot Electron Transistor :

A Resonant hot electron transistor (RHET) is an emitter-base-collector uni-polar
vertical structure co-integrated in the emitter with a resonant tunnelling diode. The
RHET uses a resonant tunnelling double barrier as a hot carrier injector as shown in
Figure 1.18. It is to be mentioned that the conventional hot electron transistor uses a

Fowler-Nordheim tunnelling barrier as a carrier injector [28].

IGaAs InAIAs(4.4 nm)

InGaAs(3.8 nm)

InGaAs

c I AlGa)As

InGaAs

InP substrate

Figure 1.18 Schematic cross section of InGaAs based RHET
afier Yokoyama et all.[31][32]

As the resonant tunnelling part injects a monoenergetic hot electron beam, the
RHET is more suitable for investigating the physics of hot electron transport. The
key design criteria in optimising the injection energy of hot electrons are : (i) the
injected electrons energy has to be adjusted on one hand for avoiding any inter-
valley scattering leading to drastic mobility degradation and on the other hand to
surmount the collector barrier. (ii) to conserve the monenergetic feature of the hot
injected electrons, the device has to be operated under low temperature conditions.

For avoiding the phonon scatterings in the base layer. -~



In fact, it was demonstrated [29] that the energy difference between the " and L-
points in the collector barrier is the allowed energy window through which the
injected electrons could be collected into the collector side of the device without

degradation of transport characteristics.

It is worth noting that the optimisation of this energy window is a tricky task. In
fact there is a trade-off between the collector current capability which is enhanced
by decreasing the collector barrier and the base-collector current which becomes
higher. On the other hand, there exists a stringent requirement from the technology
side indeed the collector epilayer. It should be low-doped thick layer to decrease the
base-collector capacitance. Under this condition the growth of a mismatched

epilayer is problematic.

One of the solutions to alleviate such drawbacks is the elaboration of structure
fabricated from InP-based material system rather than from the conventional GaAs
based system. Imamura and co-workers [31] have thus fabricated a RHET using
InGaAs/In(AlGa)As as a new material based system. The I' and L-points of the new
material is linearly dependent on the Al percentage which makes the design task
easier and more flexible (from the point of view of conduction band edge profile).
In addition, the new material has a wider I'-L-points separation of about 0.53 eV as
compared with 0.31 eV for GaAs material (see also Figure 1.7).The wider I'-L-
points separation in the collector barrier permits to relatively increase the collector
barrier and hence reducing the base-collector leakage current. Finally the current
gain can be improved. In addition, the wide separation between I' and L-points at
the base-collector interface reduces the scattering probability into the upper satellite

valley.

So fare we discussed the conditions of ballistic.transpon in the base region and
the avoidance of inter-valley scattering. With respect to the double barrier transport
properties, the use of InAlAs as the barrier material, which is a direct-gap
semiconductor, reduces the indirect valley tunnelling effects thus decreasing the

excess valley current (for further study on the excess current in double barrier see



also [33]). On the other hand, the InAlAs barrier has a smaller effective mass as
compared with the effective mass of AlGaAs barrier. Consequently a higher
tunnelling current densities can be achieved, with simultaneously a higher PTV ratio

and a shorter switching time due to the decrease in the charging time of the

tunnelling capacitance.

In summary, thanks to the ballistic transport over the active region, RHET’s
exhibit a high speed operation. In counterpart, the key limitation concerning the low

temperature operation requirement is still a very important constraint.

1.6.2.3 Inverted base-collector tunnel transistor (Stark effect transistor) :

In the previous sections we show how it is difficult to satisfy the trade-off
between the base leakage current which causes a degradation in the device
performance and the realisation of a good accessibility to the base layer. One of the
elegant solutions which was proposed in reference [34], is to interchange the

relative positions of the base and collector from the conventional emitter-base-

collector sequence (Figure 1.19).

Worth noting that the large collector-base barrier shown in Figure 1.19

necessitates the application of a relatively high base voltages (~4V), to permit an

effective change in the potential conditions within the inverted collector quantum

well.
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Figure 1.19 Schematic diagram of a cross section of the proposed negative

resistance Stark effect transistor, the conduction band profile is also illustrated.

The advantage of this type of structure is the relatively large collector-base
barrier which suppresses the base current to a very large extend. Not to mention that
the relatively high inverted-base voltages implies the condition of low temperature
operation. This is to prevent the base thermal current leakage from the collector to

the base.
The design parameters are summarised as follows [34] :
e the barriers and the quantum-well are lightly doped.
o the AlGa,  As barrier is not too thick to drop all the base-emitter voltage.

o the device geometry is such that the collector contact does not completely

shield the emitter from the inverted-base.



From the fabrication view point however, the technological difficulty of realising
a very shallow Ohmic contact is no more existing. This is because the wide fow

doping collector-base barrier avoids the short circuit between the base and the

collector electrodes.

Subject to the above design conditions, the electric fields produced by applying a
voltage to the base can modulate the positions of the resonant levels in the quantum
well and thus the base voltage can control the emitter-collector tunnelling current.
Although these device were analysed in the context of GaAs/AlLGa, . As

heterojunction technology, other semiconductors could be used.



1.6.2.4 Resonant Tunnelling Field Effect Transistor (RTFET) :

Another example is the co-integration of resonant structure with FET transistor
[35]. This co-integration can be made by the series connection of two discrete
devices namely a two terminal resonant tunnel diode and a commercial FET
transistor. Obviously the monolithic integration permits to reduce the geometric
dimensions, the parasitic elements and increases the device performance in terms of
AC and noise characteristics. These are essential needs for high-speed applications.
In the structure of [35], the resonant tunnelling carrier injector is directly integrated

with the source electrode see also Figure 1.20.
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Figure 1.20 Schematic diagram of cross section of resonant tunnelling MESFET

One of the key issue in the RTFET operation is related to the energy relaxation
mechanisms of electrons before experiencing a tunnelling effect. we have to stress
on the fact that hot electron effects occurs within the transistor channel. Under this
condition it is important to cool the electron population in order to avoid any high
temperature tunnelling effects which are known to degradate the overall device

performance. To this aim, various solutions exist including the use of a large drain-



gate interdistance, the growth of a high doped epilayer, or the implementation of the
DBH in the source side of the device. Clearly, an optimisation effort is needed with
here again, some trade-off between the overall device response time and the

complexity in the fabrication.

Worth noting that there is no restriction on the room operation of the device

structure illustrated in Figure 1.20.

To achieve an efficient voltage swing on the resonant tunnelling part, the channel
resistance under the gate should be smaller than the effective resistance over the
double barrier. This means that the FET part should be operated in the high
conductance linear regime. Gradually, as the gate bias is increased, the required
drain voltage which gives the resonant condition is increased. At the earlier reverse
gate voltages the channel resistance is almost perfectly linear and hence the overall
I-V characteristic is identically shifted to a higher drain potential due to the increase
in the voltage drop across the channel. On the other hand in the later reverse bias
voltages where the effect of FET-channel non-linearity is highly pronounced, the I-
V shift is associated with a decrease in both the peak current and the PVR. Finally
at large reverse gate voltages near the pinch-off the channel resistance absorbs

practically the whole drain voltage and the resonant part is in out-of-resonance

condition.

Although this type of devices is introduced in the context of GaAs/AlGaAs in
Figure 1.20, it could be implemented in other materials. Therefor, it may be

advantageous to use InGaAs material which has better transport properties notably a

higher electron mobility.

o’
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1.6.3 Field induced tunnelling structures :

The field induced resonant tunnelling structures depends on the idea of creating
field effect induced quantum wells using lateral Schottky nano-contacts. Khalid
Ismail, Dimitri A. Antoniadis and Henry 1. Smith had fabricated many types of field
effect tunnelling structures [36], the lateral-surface superlattice devices (LSSL) [36],
the multiple parallel quantum wires (MPQW) [36] and the planar resonant
tunnelling field effect transistor (PRESTFET) [36]. Figure 1.21 shows a schematic
design of each type of devices. It is to be mentioned that the idea of a PRESTFET

was firstly suggested and implemented by Chou et al. [37].

The planar version of quantum structures can avoid most of the shortcomings of
the vertical devices discussed above notably ; the achievement of a good contact to
the nano-epi-layers while avoiding the short-circuiting between them. Not to
mention that the planar structures are more promising to circuit integration. The key
limitation at the present time is the requirement of a very low temperature operation.
As the inter-gate separation is relatively large (technology limited to ~ 50 nm ) then
the associated induced quantum potentials are wide. This leads to relatively narrow

energy separations between the corresponding resonant levels.

It is clear that thermal effect will play an important role concerning this planner
devices. First of all, any increase in the operating temperature will tends to smear
out the quantum level ladder. Second, non coherent transmission mechanisms will
strongly influence the conduction properties. At last, thermally activated processes

will occur degrading the resonant features.
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Figure 1.21 (14) shows schematic design of each type fabricated by Kkaled
Ismail et all afier Kkaled Ismail et all [36]



1-38

If one now tries to alleviate these drawbacks by employing ultra narrow gate
separations, one faces the problem of the fringing effects. Indeed the overlap of the
potential induced by each gate finger tends to decrease the difference between the
maxima and the minima in the overall potential profile. In addition the resonant
states are pushed up to higher energy and become non accessible. Basically they
may exist different solutions using either an optimised doping profile and/or a
buried gate technology but nevertheless it appears that room temperature operation

is a very challenging issue and its research field is steel opened.

1.6.4 Solutions combining optical control gate :

To increase the functional capability of the resonant tunnelling diode, another
option rather than adding an electrode is the optical control. This 1s mainly achieved
through the use of inter-band light absorption in the neighbourhood of the double
barrier. When electron-hole pairs are generated for a device under illumination, the
electrons are instantaneously swept out from the depletion region. The latter is
designed to absorb most of the incident optical power. In contrast, the holes are
accumulated near the hetero-interface barrier [38][39]. It is noticed that a steady
state condition will be reached for an equilibrium balance between the electron-hole
generation rate and the hole escape current. The key role of the accumulated holes 1s
to modify the internal field. As a consequence, the conduction band profile along

with the resonant states are modified by the external light.

Figure 1.22 shows the advantage of resonant tunnelling photo-detector over the
conventional one as regards the input/output conversion ratio. This figure illustrates
the relative shift between the two operating points (P1, P2) on the load-line arising

from the optically controlled shift of the V-I characteristics.
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current

current
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Figure 1.22 schematic diagram illustrating a comparison benhveen the

conventional photo-detector (a) and the NDR one (b).

1.7 Conclusion :

We have discussed in this first chapter the various physical mechanisms
responsible for negative differential conductance in the current voltage
characteristics of a two terminal device. This concerns mainly the inter-band
tunnelling and the intra-band resonant tunnelling structures, the k-space and real

space devices and some generalisations to supperlatices.

Som fundamental concepts have been introduced concerning the device structure,
the inherent physics, the current voltage characteristics and in some cases the
intrinsic response time. In the following chapter we will tray to improve our
understanding about NDC devices by focusing our attention on resonant tunnelling

structures. This will concern the two dimensional injection effects (chapter 2) and

e

incoherent transmission effects (chapter 3).
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As regards the three terminal devices, we have reviewed some of the most
promising options by discussing, on one hand, the possibility of direct access into
the quantum well by an Omic or Shottky contact control and on the other hand, the
co-integration of resonant tunnelling structure with active devices. On this area,
more specific studies will be performed with special attention paid to the field

induced resonant tunnelling structures (chapter 4).



1-41

1.8 references:

(1

(2]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

Capasso et al, Quantum functional devices: resonant tunnelling transistors,
circuits with reduced complexity, and multiple-valued logic, IEEE Transactions

on Electron Devices, Vol.36, No.10,2065 (1989).

A. Sellai, M.S.Raven, D.P.Steenson, J.M.Chamberlain, M.Henini, and
O.H.Hughes, Double-barrier resonant tunnelling diode three-state logic,

Electronics Letters, January 1990, Vol.26 No.1.

Yokoyama N., Resonant Tunnelling Hot Electron Transistor (RHET) :potential
and application. Bstract of the 18™ Conference on solid state devices and

materials, Tokyo, p. 347-350, 1986.

L.Esaki, New Phenomenon in Narrow Germanium p-n Junctions, Phys.Rev.,109,
603 (1958).

L Esaki, Discovery of the Tunnel Diode, IEEE Trans. Electron Devices, ED-23,
644 (1976)

Ebrahim Saadoun, M.Sc. theses , Cairo University 1983.

T. Shawki, G Salmer and O.L.El-Sayed, MODFET 2D hydrodynamic energy
modeling : optimization of subquarter-micron-gate structures, IEEE Trans.

Electron Devices, Vol. ED-37, p.21-30,1990.

Tarek Ahmad Shawki, thése de doctorat, Université des Sciences et

Technologies de Lille, 1990.

Khaled Mahmoud Sherif thése de doctorat, Université des Sciences et

Technologies de Lille, 1994.

H. Kroemer, Negative Conductance in Semiconductors,' IEEE Spectrum, 5, 47
(1968).



1-42

[11]

[12]

[14]

[15]-

[16]

[17]

(18]

[19]

[20]

K. Hess, Real space transfer : Generalised approach to transport in confined

geometry, Solid-State Electron., vol. 31, p319, 1988.

R.Sakamoto, K. Akai, and M. Inoue, Real-space transfer and hot-electron
transport properties in III-V semiconductor heterostructures, 1IEEE Trans.

Electron Devices, vol. 36, p2344, Oct. 1989.

J. Lasker, A. A. Ketterson, J. N. Baillageon, T. Brock, 1. Adesida, K. Y. Cheng,
and J. Kolodzey, Gate-controlled negative differential resistance in drain current
characteristics of AlGaAs/InGaAs/GaAs pseudomorphic MODFET’s, Electron
Device Lett. Vol. 10, p528, Dec.1989.

A. Kastalsky, S. Luryi, A.C. Gossard and R. Hendel, A field-effect transistor
with z negative differential resistance., IEEE electron device letters, VOL.

EDL.5, No.2, February 1984.

Adel Refky Mikhail, Performance analyses of dual gate modulation doped field

effect transistor, Master degree thesis, Cairo University, 1993.

Khaled Sherif, Adel Refky, Tarek Shawki, Osman El-Sayed and Georges
Salmer., two-dimensional Hydrodynamic Simulation of Sub-micrometer Dual

Gate MODFETSs. Solid-State Electronics Vol.38 No4,pp. 917-929, 1995.

Thomas E., Koscica and Jian H. Zhao, Field effect real space transfer transistor,

IEEE Electron Device Lett. Vol. 16, May 1995.

Thomas E., Koscica and Jian H. Zhao, Frequency doubling in GaAs/AlGaAs
field effect transitor using real space transfer, IEEE Electron Device Lett. Vol
16, Dec. 1995.

Jan-Shing Su, Wei-Chou Hsu, Yu-Shyan Lin, Wei Lin, Chang-Luen Wu, A
novel InAlAs/InGaAs two-terminal real-space transfer diode, IEEE Electror:

Device Lett. Vol. 17, Feb. 1996.

S. Mohan, P. Mazumder, R. K. Mains, J. P. Sun, and J. I. Haddad, Ultrafasi
Piplined Adders Using RTTs, Electronics Letters vol. 27 No.10 May 1991.



[21]

[22]

[25]

[26]

[27]

[28)

[29]

1-43

G. 1. Haddad, R. K. Mains, U. K. Reddy, and J. R. East, A proposed narrow

band-gap base transitor structure, Superlattices and Microstructures, 5,(3),p.
437, 1989.

Reed M. A, Frensley W. R, Matyi R. J., Randall J. N, Seabaugh A.C,
Realisation of a three terminal resonant tunnelling devices : the Bipolar Quantum

Resonant Tunnelling Transistor. Appl. Phys. Letters, 54 (11), p.1034-1989.

Shulman J. N., Waldner M., Analysis of second level resonant tunnelling diodes

and transistors. Journ. of Appl. Phys., 63(8),p.2859-1988.

D. Lippens, P. Mounaix, H. Leroux, O. Vanbésien, V. Sadaune and E. Barbier,
Buried-quantum well resonant tunnelling transistor in the Al.Ga,./InGa, As

material system. Int. Workshop on Quantum Effect Physics, Luxor, 1992.

T. Waho, K. Maezawa and T. Mizutani, Resonant Tunneling in a Novel

Coupled-Quantum-Well Base Transistor: Jpn. J. Appl. Phys. 30 (12A) p.
L2018-1991. '

M. A. Reed, W. R. Frensley, R. J. Matyi, J. N. Randall, and A. C. Seabaugh,
Appl. Phys. Lett., 54, 1034 1989.

W. C. B. Peatman, E. R. Brown, M. J. Rooks, P. Maki, W. J. Grimm and J.
Shur, Novel resonant tunneling transistor with high transconductance at room

temperature, IEEE Electron Device Letters vol. 15, (7) July 1994.

Heiblum, M., Solid State Electron. 24, 343-366, 1981,

Alan C. Seabaugh, Edward A. Beam, Albert H. Taddiken, John N.Randall and
Yung-Chung Kao, Co-integration of resonant tunneling and double

heterojunction bipolar transistors on InP, IEEE Electron Device Letters, Vol.4

No.10, October 1993.

o’



1-44

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. C. Seabaugh, W. R. Frensley, Y. C. Kao, J. N. Randall, and M. A. Reed
,Quantum-Well Resonant-Tunnelling Transistors, (invited), 1EEE/Cornell
Conference on Advanced Concepts in High Speed Semiconductor Devices and

Circuits, Cornell University Ithaca, New York, August 7-9, 1989.

Imamura, K., S. Muto, H. Ohnishi, T. Fujii, and N. Yokoyama, Program of 45"

Annual Device Research Conference, Santa Barbara, 1987.

Yokoyama N., IMAMURA K., MUTO S., HIYAMIZU S. and NISHI H, A
new functional Resonant Tunnelling Hot Electron Transistor RHET. Jap. Jour of

Appl. Phys., Vol.24, No.1, p. L853,1985.

Hiroyuki Fukuyama, Takao Waho and Takashi Mizutani, Current-voltage
characteristics of GaAs/AlAs double-barrier resonant tunnelling diodes with a Si-

planner-doped barrier, J. Appl.Phys.79(3), p1801, February 1996.

A.R. Bonnefoi, D.H. Chow, and T.C. McGill, inverted base-collector tunnel
transistor, Appl. Phys. Lett. 47(8), October 1985.

A. R. Bonnefoi, T. C. McGill, and R. D. Burnham, Resonant Tunneling
Transistors with Controllable Negative Differential Resistances, IEEE Electron

Device Letters, Vol. EDL-6, No. 12, December 1985.

Khalid Ismail Ph.D these, Massachusetts Institute of Technology (MIT), May
1989.

S. Y. Chou, J. S. Harris, Jr.,, and R. F. W. Pease, Appl. Phys. Lett. 52, 1982
(1988).

HSLiY.W.Chen, KLWang, DSPan, LPChen, and JMLiu,
J.Vac.Sci. Technol B 12, 1269 (1994).

C.R H.White, M.S Skolnick, L.Eaves, M.L Leadbeater, M.Henini, O.H Hughes,
G.Hill, and M. A Pate, Phys.Rev.B 45,6721 (1992).



CHAPTER 2



2. EFFECT OF TWO DIMENSIONAL INJECTION ON PURELY COHERENT

RESONANT TUNNELLING ..ottt 2-1
2. 1 INrodUCION T .oiiiiiiiiiieeeeeee et st 2-1

2.2 3D/3D purely coherent approach @ ...........ccoooiiiiiiiiiii 2-4
2.2.1 Current €QUALION & ...ccuviiviiieiieeeeieeeeeeeeeeeeereeeaeeeeraeeseesebeeseeesaeesamseesanes 2-4

2.2.2 Density Of STALES ©....ocvveieiiiieiiieiieeie ettt e eae et e se e e sraeeaeeeeens 2-5

2.2.3 3D/3D supply function @............coviiviiiiiciireee e 2-7

2.4.2 Analytical calculation of local density of states using zero field

APPIOXIMALION S ..vvviiiiiiieeeeieeeeeeeerettteeeeseseseeeeeaesassereseeassnseeesssseaeessesssnsesosasnes 2-12

2.4.3 Equivalence between 2D & 3D density of states @ .......ccoovnieiiiinnne. 2-19
2.5 Exact model of the local density of States : ........ccccecerviviniineeneniinieienne 2-22
2.6 Supply function model @..........cooovmiiiiiiiiiiceieeeeeee e 2-32
2.7 Comparison t0 eXPErIMENT I .......ccouiiiiiieeerieeiarerieeerreeesneesneeansaesseeeasassnens 2-35
2.8 CONCIUSION f.uiiiiiiiicece et 2-40
2.9 RefEIENCES ..eieiiiiieie e 2-42

o



2-1

2. EFFECT OF TWO DIMENSIONAL INJECTION ON PURELY
COHERENT RESONANT TUNNELLING :

2.1 Introduction :

In a real double barrier heterostructure (DBH) device the injection region exhibits a
modulation of doping concentration. This is to satisfy the trade-off between a low
resistance access region and a high quality heterostructure. As a consequence, the

cladding layer of most of the earlier devices have relatively low doping
(N, ~10"®cm™) along with undoped spacers [1][2]. In this condition, when the device

is under bias, an accumulation zone (Figure 2.1a) is formed in front of the DBH. This
accumulation layer strongly modifies the injection condition. This conclusion is widely
recognised in the literature [3]. Notably, it was established that the picture of a three
dimensional injection is no-longer valid, and that the resonant condition stems from the
anti-crossing between the quantum levels attached, from one side, to the accumulation

layer and, from the other side, to the quantum well itself [4][5][6]{7].

In addition, the two dimensional injection character is enhanced by means of a
heterostructure quantum well which is buried prior to the DBH [8][9]. Such an idea is
illustrated in Figure 2.1b with buried wells cladding the DBH.

We have to emphasise that this effect is intrinsic and does not concern the loss of

coherence resulting from the different scattering mechanisms.

From the point of view of the I-V properties, and in the scope of the 2D injection
effect, there would be some expected modifications in resonant voltage conditions.
This is concerning a steep decrease in the tunnelling current would be occurred when

the resonant state of the quantum well is shifted just below the quantum state of the

accumulation layer.

!
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(a)

(b)

Figure 2.1 schematic band profile of DBH under bias with the formation of
accumulation layer (a), and with the buried well cladding layers (b).
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However experimentally, the transition between the on-resonant and the off-
resonant states, is not found so sharp. In the earlier studies, this was often explained as

an effect of the relatively low doped cladding layers which contribute to the overall

voltage drop across the device.

“Recently, due to the progress in the modern epitaxial growth technology, along with

the motivation to increase the peak current density, it was proposed to sandwich the

DBH in-between highly doped regions , let us say (N, ~10'%cm™).

Surprisingly, although the effect of the low doped cladding layer is suppressed, the

device fabricated using this idea, exhibited a relatively wide voltage range over which
the NDC effect can be seen.

In this chapter, we shall try to address this issue which is of a key importance in the
understanding of resonant tunnelling devices. As an example, this voltage range
determines the impedance level and the output power when the device is used as an
oscillator. Also for the digital applications, this voltage range is of prime importance

when a steep transition is often preferable.

To deal with this issue, we will distinguish between two different aspects : First, the
effect of scattering assisted phenomena which tend to sustain a finite transmission
probability in the out-of-resonance condition, which is studied in the next chapter.
Second, the coupling between the accumulation quantum well and the DBH quantum

well, which is investigated in details in this chapter.

To support this separation of the two effects, we shall assume a very low

temperature operation (4.2 K).

The first step in the analysis will be to show that a purely coherent 3D/3D approach
is not appropriate to describe the injection properties in a real device. On this basis we
shall discuss the development of a new model which defines a two dimensional supply
function. One of the main problems encountered, is related to the openness of the

quantum system. Concerning this issue, we will start from the notion of local density
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-of states previously introduced by Lassning under flat band condition [10] which will

be generalised in the present work.

Special attention will be paid to the wave function normalisation and some
preliminary results will be also discussed by introducing the effect of non-parabolicity

which influences the effective mass in the accumulation zone.

Finally, to support the validity of the new formalism we will report a comparison
between the simulation results carried out in the present study and the experiments

conducted by the NTT group [11].

2.2 3D/3D purely coherent approach :

2.2.1 Current equation :

It is well known that the probability tunnelling current can be calculated by the
following equation [12]:
© Px
J= q(f) f —8(&, PN T(e, )= fy)dP,de

P, m

Eq. 2-1

where :

e ] is the probability tunnelling current density from the emitter (side 1) to the collector

(side 2) and q is the electron charge

e D, / m’ is the x-component velocity defined as the x-component momentum divided

by the effective mass in the x-direction which is taken as the propagation direction.

o g(& py is the density of states in the momentum range p_ to (p, +0p,) and
energy range d¢ to (€+ dg), whereas f; is the Fermi-Dirac probability density

function of occupancy at side 1. As a consequence the product g(& p,) f; dP.de is the
number of electrons in the momentum and energy infinitesimal-windows defined

above.



» 1(g,) is the tunnelling probability of transmission from side (1) to side (2).

It is to be mentioned that the factor (/- f3) is introduced to the probability current
equation to account for the probability of finding an empty state in the other side. The
introduction of this probability of vacancy can be interpreted as that, a complete
reflection would be occurred if electron tunnels directly to an occupied state. The

validity of the last statement will be discussed later on in this chapter.
After the change of variable (de, = P,/m" dP,) into Eq. 2-1 we get :

o o [:([ 2-2
J=q| [ e, POATE - fy)de de

0 ¢,

2.2.2 Density of states :

The density of states necessarily required to calculate the probability current density
is defined as the subset of states having total energy from de to (€+dg) and x-
momentum from p, to (p, +Jp,) per unit spatial volume per unit total energy per

unit x-momentum (local density of states) [12]

Assuming that we take the well known three dimensional (3D) density of states in

momentum space (Eq. 2-3) and multiply it by the total volume of momentum space

(4np3/3), we get the total number of states enclosed by a sphere of radius p

(Eq. 2-4). The constant-momentum sphere is illustrated in Figure 2.2. By taking the

first derivative with respect to £ we get the well known 3D aerial density of states in

the unbounded system (Eq. 2-5).

1 Eq. 2-3
G=— 7
(2mh)
3/ Eq. 2-4
;= ! 3 |:— 71(21718)"2:\ 1
(2mn)* L3 -
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on 1 3 Lg. 2-5
L <2m(2m) 2E 1

ce  (2mh)

Our problem is different, since we want only a subset of those states corresponding
to a momentum from p, to (p, + Op, ). Thus instead of multiplying by the spherical
momentum volume of constant energy sphere we multiply by the volume of spherical
slice which lies between two constant planes, p, and (p, + Op, )in the momentum

space as illustrated in Figure 2.2.

v

Figure 2.2 constant energy sphere in the momentum space

Thus the required number of states (An) is calculated as follows :
An(E,p,)= Qnh) > T@2me - pf) 3p, Eq. 2-6

derivating with respect to the total energy gives,

¢ An(e,p,)  2mum 5 Eq. 2-7

& (@)

Px
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which is the total-energy density of states having momentum from p, to

(p. +0Op,). Thus further dividing by Opy we get the total-energy and x-momentum

density of states (Eq. 2-8) which is constant independent of neither the energy nor the

momentum.

2w Eq. 2-8
83D (270‘1)3
We find out that the same result can be obtained by dirivating the total number of
states (Eq. 2-4) with respect to the energy (Eq. 2-9), and then with respect to the
momentum (Eq. 2-10), not to mention to divide by two to take into account the

momentum either in the positive or in the negative direction.

dn,  4mm 4mum Egq. 2-9
D T e =
d Gy ey’
li(f’_n_,) _ 2mm Eq. 2-10
2dp\de/ (2an)°

from Eq. 2-8 and Eq. 2-10 it is noticed that the local density of states in a 3D zone

is independent of energy and of position.

2.2.3 3D/3D supply function :

In the literature, a supply function is usually defined in such a way that the
tunnelling current density can be evaluated from the integration of the product of this

supply function times the quantum tunnelling probability with respect to the energy.

Referring to Eq. 2-2 and taking into account that we must subtract the reverse

tunnelling current from side (2) to side (1) we get the net current density :

© . ) Eq 2-11
J=qg|Te) de, [ A= fr)- fa- fi) de
0

€y

consequently the supply function (SF) is defined by the following integral :



© lq. 2-12
SF =Kyl [ A= f)- (0= 1) de
£y
using simple algebra, it can be shown that SF 1s written as,
T+exp[l+ (e —€, )/ kT] Lq. 2-13
SF=1In : -
T+exp[l+(e sy —€,)/ kT

This equation referred as the supply function, vanishes at equilibrium condition

(€1 =¢€12).

2.3 comparison between the purely coherent 3D/3D and 2D/3D approaches :

We will discuss of a comparison between 3D injection and 2D injection taking
Figure 2.3 as an illustration. In this figure, and by focusing our attention on the emitter
zone, we can define three specific regions : first a highly degenerate 3D-layer, then a
bump resulting from the doping modulation and at last, the accumulation layer. The
bump results from the diffusion mechanism due to the doping gradient and in the same
time, from the blocking process of the DBH. Starting from this conduction edge
profile, several energy domains and tunnelling paths can be defined with respect to the
quantum level in the accumulation layer (€,). Bellow €, and assuming a purely
coherent tunnelling is sustained, the feeding of the accumulation layer is provided by
path (a), consequently, through the bump. It is clear that such a probability of supply is
extremely weak. On the other hand, when the injection energy matches the quantum
level €, , a finite probability can be found ( path b). Path ¢ describes the case in
which the injection energy is just above the bump height. For the later, the electrons
have the possibility to experience some relaxation mechanisms permitting extra
feeding via the extended states. At this stage, we have the choice between two different
approaches. The first one corresponds to a current calculations from emitter 3D region
on the left hand side to the collector 3D region on the right hand side of the device.
Under this approach, the device is taking as a whole, including both the bump and the

DBH. We use Eq. 2-11 with the supply function described by Eq. 2-13 for a
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transmission directly through and over the bump. For the calculation of the peak
current, despite the crud assumption of this approach, we often take advantage of a
relatively efficient tunnelling supply. This stems from the fact that €, , at the peak
voltage, is usually located close up to the edge height of the bump. In contrast, such an

analysis fails to correctly describe the off-resonance condition, with notably a peak-to-

valley ratio highly over estimated.

The second approach consists to assume an injection mechanism starting from the
accumulation layer. In this region, we have previously noticed the existence of quasi-
bound states and also extended states. We will assume a local thermal equilibrium in
this zone. This assumption permits us to include the different relaxation mechanisms

without considering them in details in this zone.

A N\

© 3D 2D

5 N

> Ey T

7y [ S,

3 © > NN
T

=t

«©

L

\ 3D
\

>

distance

Figure 2.3 the purely coherent 3D/3D approach compared with 2D-3D approach.
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In addition, the quantum states in the accumulation layer corresponds to a
confinement situation which is intermediate between true bounded states and extended
states, under this condition, it is expected that the dispersion relation in the growth
direction (noted x in the following) is deviated from the parabolic behaviour. This
influences the effective mass within this region. With respect to this issue, we will try
to investigate this effect by a renormalisation of the effective mass which is found to
be smaller than the 3D-bulk value. However, let us mention that, it is often
problematic to define a local effective mass everywhere within the structure in
particular when the electron energy is below the conduction band edge and hence
within the forbidden gap. In the previous 3D/3D analyses, it is often assumed that, the
conduction band effective mass governs any charge transfer. With such assumption,
the value of the renormalised effective mass has a negligible influence on the current
value and notably the valley current. This is not the case if the 2D/3D approach is

applied.

2.4 Quasi-2D local density of states :

In the introduction of this chapter, we have showed the limitations of a purely
coherent 3D/3D approach. This concerns the voltage range which is found broader in
the experiment for NDC effect and the valley current which is under estimated. This
motivates the need of a more realistic physically based refined model for which less
discrepancy could be found between the predicted results and the experimental data.
To achieve this goal, it is believed that, an almost exact value of the local density of
states in the accumulation layer has to be defined. On the other hand the 3D/3D supply
function model (Eq. 2-13) and its physical interpretation has to be re-examined (later
on in this chapter) and replaced by a 2D/3D supply function.

First of all we shall start by the model proposed by Lassning et. Al [10]. In this
model, the local density of states was assumed directly proportional to the quantum

probability of existence.



2.4.1 Lassning model [10] :

In an attempt to study the influence of structural parameters on the purely coherent
electron life time in a quasi-bound state, R.Lassning and W.Boxleitner had used the

semi-opened structure depicted in Figure 2.4.

2D zone 3D zone

\__,/,

Figure 2.4 schematic for the model structure used for the

tunnelling study of Lassning et. All [10].

The main assumption of the analysis published in reference [10] is the use of a flat
potential profile. As a consequence, a sinusoidal wave function is the solution of the
Schrodinger wave equation in the propagation zones. Also the attenuation of the wave
function within the barrier can be described by means of a very simple exponential
dependence. On the other hand, the amplitude of the wave function in the 3D zone was

chosen to be constant independent neither of energy nor of position. At last, let us
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mention that only the relative values were considered, which were sufficient to derive
the quasi-bound state life time, but failed to address the current voltage issue. The
local density of states in their model were then defined as usual to be directly

proportional to the probability of existence spatially averaged in the quasi-2D region.
2.4.2 Analytical calculation of local density of states using zero field
approximation :

Worth noting that based on the WKB approximation, the wave function could be

analytically written in the regions of classically allowed energy bands as,

y [I ] Eq. 2-14
v(x)= sin{ k(x) dx] + }
VA(x)

whereas in the regions of classically forbidden energy bands as,

1 Egq. 2-15

v(x)= {Al exp[—f o(x) dx] + A, exp[f a(x) dx] }
o(x)

where :

eA; & A, could be assumed for a first order approximation as constants in

each region.

o k(x)= \/2’77‘5):(*’) / B

ea(x) = \/2m‘[v -&.(x)]/ 1’

e m’ is the electron effective mass, &, is the energy in the propagation direction and

h is the Blanck’s constant.

In a practical device, we face the problem of accounting for the variation of the
potential profile relatively far from the equilibrium at the resonance condition. For the

sake of simplicity we well assume that only the propagation k(x) and attenuation a/(x)

Beaces .
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exhibit a spatial dependence through ¢, the energy in the growth direction, in the
sinusoidal and exponential terms. It is believed that, keeping a constant amplitude does

not modify too much the resonance condition. Such an assumption simplifies

drastically the analytical procedure.

LAYER | MATERIAL DOPING (cnr™?) THICKNESS (NM)

FABRICATED FABRICATED,

SIMUL ATED’ SIMULATED
cap GaAs 1*1019, 1*10'8 50, 50
upper electrode GaAs 5%10!7 ,5* 10"7 270, 50
upper spacer GaAs nid, nid. 14,14
upper barrier AlAs nid., nid. 40,40
well GaAs n.id., nid. 6.0,6.0
lower barrier AlAs nid, nid. 40,4.0
lower spaéer GaAs nid, nid. 50,50
lower electrode GaAs 5%10'7, 5%10"7 300, 50
substrate GaAs n*. 1%10'8 -, 50

Table 2-1 table(1) double barrier growth structure [11]

of the resonant tunnelling device used as a testing vehicle in this chapter.

Table 2-1 illustrates the structural parameters of the resonant tunnelling diode
which was fabricated by T. Waho et al [11] and which is used as the test vehicle
throughout the study in this chapter. On the other hand, Figure 2.5 depicts the
conduction band profile of this structure, which is calculated using the Thomas-Fermi
approximation [13]. From the potential profile and for energy values corresponding to
path a (see Figure 2.3) six changes between the allowed and forb.i'dden regions have to

be defined concerning the continuity of the wave function and its first derivative. This
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results in twelve analytical equations with twelve unknowns. While elaborating this
analytical approach, the unity amplitude of the sinusoidal wave function
approximation is chosen to normalise the wave function in both the emitter and the
collector 3D-zones. In addition, the phase is left as a floating unknown variable to be

determined by the analytical solution at each energy level.

Using this analytical procedure, the variation of the wave function versus distance
can be calculated for each value of g, resulting in a wave function spectroscopy of the

microstructure.:

It is important to state that we find out two phase values satisfying the unity

normalisation condition in both the emitter and collector 3D-regions.

Figure 2.5 shows a plot of these two solutions for an applied voltage of 0.3 Volt.
When the energy is close to resonance condition within the accumulation layer (a). In
(b) the energy is close to the resonance within the quantum well of the DBH. In (c) we

plotted the solution at the DBH resonant energy.
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Figure 2.5 analytical wave function for zero-field approximation and unity amplitude
in both emitter and collector (a) at quasi-resonance energy in the accumulation zone,
(b). at the neighbourhood of the quasi-resonance energy in the quantum-well, © at
quasi-resonance energy in the quantum-well

For illustrating the calculations of density of states we pay a special attention to the
bias condition corresponding to g, lying at an higher energy than ¢,. Let us recall that
in a 3D/3D approach it is normally believed that the current is tummed off because of

the anti-crossing between g, and g,

The resulting local density of states as a function of energy in the quantum-well is

depicted in Figure 2.6a.

We use for plotting this local density of states a normalisation procedure which will
be explained here after. The key feature in this figure, is plotted in logarithmic scale, is
the high degree of selectivity observed at the resonance of the density of states which

is found here around 25 meV. This is a characteristic of a high degree of quantum
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resonant confinement. On the other hand, Figure 2.6b depicts the analytical solution of
the local density of states as a function of energy in the accumulation zone. In this
figure, corresponding to the same applied voltage, two features are now seen at the

previous energy value of 25 meV and at 40 meV with a very weak resonant structure.

" This is an original result which is to our knowledge not mentioned previously in the
literature. Indeed, although we investigate the eigenfunctions in the accumulation
layer, we find a resonant structure characteristic of the quantum well level €,. In the
following we will speak about an effect of signature due to the coupling betweep the
accumulation and the central well of the DBH. This peak is sharp and well defined.
From the point of view of current properties it is important to note that the existence of
that local density of states, not predicted in a simple analysis, permits one to consider
an extra energy level of injection. The second weak confined peak reveals the own
resonance of the accumulation zone. Quantitatively, the former resonant structure
( quantum well signature) exhibits peak values quite comparable t the level reached in

the extended states corresponding to a 3D-local density of states.

The analytical approach used above relies on quite crude assumption. Nevertheless,
some novel trends have been found in the understanding of resonant tunnelling through
DBH. At this stage, it seems interesting to re-examine the validity of this highly
approximated analytical approach and also to establish in what extent the notion of

local density of states can be generalised.

To achieve this goal, one has to study the equivalence between 2D & 3D density of

states which could be derived from the above calculated local density of states.
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2.4.3 Equivalence between 2D & 3D density of states :

It 1s now well known [14][15] that the 2D volume density of states calculated for a
layer of equal thickness to that of an infinite depth quantum well compared to the 3D
volume density of states of an unbounded system, are equal for all energy eigen-values
(€n) (Figure 2.7). In particular, this result was pointed out by Dingle [14][15] and in

the following we will speak about the Dingle equality.
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Figure 2.7 comparison between volume density of states in both unbounded system and
2D infinity quantum well afier Dingle [14]

Let us rewrite Eq. 2-10 which summarises the mathematical definition of the local
density of states with respect to the momentum-free conventional density of states

denoted by the capital letter G.

1d Eq. 2-16
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Integrating Eq. 2-16 and multiplying the result by a factor of two to take into account
g g rq piying Y

the momentum in both negative and positive directions we get,

g Eq. 2-17
G=2J.g dp:x,/ZmIT/—; de g

where
g is the local density of states.

ep=v2&/ m’" is the quantity of motion.

Substituting by the local density of states in the 3D-unbounded system Eq. 2-8 into

Eq. 2-17 we get the well known expression for Gsp :

2am’ v ( de 2am’ . Eq. 2-18
Gip=2 dp = ———=2m . =2 N2m \/;
3D ng /3 (27h)’ I Je

' (27r7‘1)3

Starting from this definition of the local density of states, it is possible to apply it
within the DBH quantum well and within the accumulation layer respectively.
Figure 2.8 shows the variation of density of states in the quantum well noted in capital

G versus energy.

First one can note the practically perfect step like behaviour of the 2D density of
states calculated for the present structure with respect to the complete bound situation.
This is a direct consequence of the high degree of confinement previously noted in the
above section (see Figure 2.6a). under this condition, the Dingle equality is verified,

which is a good check for the model.

Figure 2.8 shows the density of states calculated in the accumulation layer. The
normalised local density of states ( g/gip) plotted here, exhibits a peak around 40 meV
and a signature around 25 meV. Also shown, is the variation of (G,./Gp) calculated
by integrating g with respect to the momentum averaged over the accumulation zone.

At last, for comparison we plotted the equivalent (Gsp/Gyp).
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For both later terms, we define L, which can be interpreted as the width of the
accumulation layer calculated at the energy €=¢,. The salient feature in this figure, is
the loss of the step like characteristic on one hand, and the large discrepancy between
the normalised values of Gip and G,... This is a direct consequence of the openness of
the system which in the present case, is intermediate between a hi—ghly confined system

and extended states.

At this stage of a very simple analytical approach, it is interesting to further
investigate the discrepancy between the density of states in the accumulation layer and
its corresponding 3D-density of states. We thus developed a more realistic model

avoiding in particular the zero field assumption.

2.5 Exact model of the local density of states :

Let us recall that physically the local density of states is not only the measure of
finding an electron in a given energy state and in a given position, but also we have to
select from the whole k-distribution the states having the current direction. This means
that it is not correct to solely consider the local density of states as a function of the
probability of existence. Obviously this probability of existence reveals potential
carrier accumulation, the best example is the case of a strict bounded state, but does
not describe how are distributed the k-vectors in specific location. Therefore, a first
conclusion is that, it is imperative to go further beyond the definition of Lassning. This
is to account for both features related to the carrier density and to the k-vector. Clearly
we have thus to start from the current definition which leads to the basic idea of this

work.

The idea of defining a local density of states g is to assume that an electron stream
is able to activate and probe the local density of states. Also in other words, this means
that g depends not only of the probability of existence which can be related to a carrier

density, but also of the momentum # k(x) and hence of the velocity.

Now, we try to prove that the local density of states (g) is defined to be linearly

proportional to the maximally allowed current density. The later, locally could cross
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the material in the energy and momentum ranges considered (dJ..«). The above new

definition can be directly deduced as follows : The differential current density (dJ) is

statistically described by the following equation [12],
d3 = 2(p, /m")g(p, ) (e)dp,de kq. 2-19
using the substitution of variables, (p N /m*)-dpx =de ., we get,
dl = Zg(sx)f(s)dexde Eq. 2-20

To obtain the maximally allowed differential current density, the Fermi-Dirac

distribution function f(g) is replaced by unity and hence one gets,

g = 20, )deyde Eq. 2-21

The question is how to quantum mechanically activate all the allowed local density
of states in a real open system as considered in this study. The probability current

(dJimax) is quantum mechanically defined by the following equation [12].

¢,

2

dJ

max

)6’w(x &) )W(x £:)

—y(x,e e

Eq. 2-22

where C, is constant, ¥ stands for the conjugate complex of the wave function ¥,

and k(x,g,) is the propagation coefficient along the growth direction (x) and at the

energy (&y).



From Eq. 2-21 and Eq. 2-22 the local density of states can be written as,

g(x,£,)=Cak(x,6,) |w(x,6,) kg 223
Worth-noting that, because the quantum system is open, all the conduction states are

equally-likely activated by injecting a forward and an equal backward quantum

mechanical probability current. Under this condition the local density of states is

calculated using the following equation :

>

g(x,8,) = Cok(x, ¢, )(}‘P(x, e, +| W5, )‘;) Eq. 2-24

which is equivalent to,

& &
< <

g(x,&,) = Crk(x,¢, )(I‘P(x,ex)lzm + \P(x,ex)I;) Eq. 2-25

where (FA) stands for a forward activation and (BA) for a backward activation.

Recalling the 3D local density of states Eq. 2-8 and applying Eq. 2-24 or Eq. 2-25
in the 3D zones (collector or emitter region),.the normalisation constant (Cy) can be

directly calculated

In order to illustrate the difference afforded by the new definition, we compare in
Figure 2.10 the space variation of the local density of states first defined as
proportional to the quantum probability of existence, which is the wide spread

conventional definition and the results calculated using Eq. 2-24 or Eq. 2-25. For the
former the plot of I ‘P2| /30 exhibits a well defined maxima at location away from the

first heterointerface. This is explained by the bias condition as seen later close to the
peak current voltage which is quite low (0.2 V). Under this condition g, is very close
to the bump height leading to a probability of existence which is not maximised in the
central region of the accumulation zone. One can speak about a strong repelling effect
at the heterostructure barrier for this specific case of very low one side bounded state.

Within the DBH quantum well, we identify a peak whereas in the emitter and



2-25

collector regions small ripples can be seen as a consequence of the built-in of a
standing wave pattern. In addition a close view of the amplitudes in these adjacent

regions reveals amplitude difference.

Turning now to the variation versus distance of g(x), by noticing the calculated
values using the new definition and then normalised with respect to g;p one can find
that most of the drawbacks pointed out above can be alleviated. First of all, one can
see that the local density of states is now pushed in close proximity to the emitter
heterointerface along with rather constant value within the quantum well and also

constant value equal to one in the emitter and the collector regions.

The first feature is a direct consequence of the k-contribution. In fact, in the
accumulation layer the electrons experience very efficient round-trips which induce a
strong local or more exactly regional currents. However, in this bouncing back and
forth motion, the net current in the direction of bias is relatively small. In terms of the
life time in the quantum state, the electrons spend a relatively long time as compared
with the escape tunnelling time. Hence, there is an accumulation of local current which
reflects the conﬁnemeﬁt of the carrier on one hand by the emitter barrier and on the
other hand by the electrostatic bump. The same situation is encountered within the
DBH quantum well. Again an accumulation in the local density of states is noted.
However in that case the local density of states g(x) is found quite uniform over space.
This result, a priori in contrast with the general view of the local density of states
which should exhibit a peak within the quantum well. This points out the fact that a
lack of carriers is compensated by high magnitude of k(x) vector. This compensation
effect is quite equivalent to the one observed in the simulation of devices where the
current conservation permits to explain an increase in the average velocity in the
regions of low carrier concentration density. This conservation principle is not
satisfied over the hole structure because, as mentioned before, we have to distinguish
between the regional bouncing current and the net current. The later is measurable in
the 3D unbounded regions as expected with a constant value. The last remark with
respect to the normalisation issue is of major concern. Figure 2. 10b is a zooming view

of the DBH region at the resonant energy in the quantum well. Concerning the
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existence probability, we have considered the forward (solid line) and the backward
(dasﬁed line) excitation respectively. Also shown is the normalised local density of
states (g/gsp). In summary, the use of the new definition has the following
consequences : first, the density of accumulation in the front of the DBH is now
centred within the accumulation layer with non negligible value at the heterointerface.
Second, a quasi uniform density of states is obtained in the central quantum well and at
last a normalisation procedure can be performed from the surrounding regions.

Concerning the later issue, it is often thought that the unity probability normalisation
condition of \‘{ﬁ' defined for a close system can be used for an open system. This

restricts the application of such a rule to the resonant energy for which most of the
wave function is well localised. In contrast, under non resonant condition the openness
of the system plays a key role and the reference to the out side regions is mandatory.
Generally speaking, we are facing the normalisation issue whenever we have an open
system and the example of the accumulation layer is particularly representative of that
question. It is worth mentioning that, even in the zero field analytical calculations out
lined in section 2.4.2 the current probability is intrinsically used. Indeed, assuming

only constant regional amplitude is equivalent to multiplying the amplitude of

I ‘Pz’ o 1/k(x) by the wave vector k(x).

Last, let us mention that Lassning’s model is a very special case of the general
definition proposed here, in the sense that assuming the k(x) vector is constant all over

the structure suppresses the k-dependence.
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Let us now consider the energy dependence of the local density of states which are
described for the quantum well region and for the accumulation zone in Figure 2.11 (a)
and (b) respéctively. For the former, the difference between the previous analytical
results show in Figure 2.6a are negligible. In contrast, in the accumulation layer we
find out the same trends but with a much more refined evaluation especially close to
the resonance related to the quantum well. It can be surprising that at first glance the
resonance attached to e, is much broadened than that of €., this is a direct
consequence of energy positioning of €, at the frontier between tightly bound system
and highly extended state. In terms of life time inversely proportional to the
broadening, we obtain a very short dwelling time for €, whereas the residence time is
long for the signature and for the DBH quantum well itself. Such a very short life time
can be interpreted or explained by very efficient escaping processes over the bump. It
remains now to reconstruct the conventional momentum-less density of states versus
energy and to compare it with the equivalent G;p multiplied by L,.. This comparison
is done in Figure 2.12. The main conclusions drawn from the analytical analysis are
still verified for the DBH quantum well and the accumulation layer but with a real
improvement in terms of quantitative behaviour specially for the later. Now, we are
sure that the discrepancy between the G;p and G;p is not a result in the accuracy of the

theoretical approach but is a direct consequence of the openness of the system.

In more details regarding the local density of states depicted in Figure 2.11 in the
quantum-well and in the accumulation zone, one can notice the well-defined signature

of e..we detected in the accumulation zone.

On the other hand, we also find out that the Dingle [14][15] equality can be verified
by integrating the numerically calculated local density of states in the quantum well
with respect to the regional average momentum, not to mention to multiply by a factor
of two to account for positive and negative momentum. Although, this equality is well
verified in the quantum well, a disagreement is seen in the accumulation zone. See

also. Figure 2.12.
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Comparing Figure 2.8 and Figure 2.12a we find that the zero-field analytical
approximation might be a good approximation in the quantum-well region. On the
contrary, as regards the local density of states in the accumulation zone, one notice a
remarkable big difference between Figure 2.9 and Figure 2.12b. This means that it
could not be accepted to approximate the local density of states in the accumulation

zone by the zero-field analytical approximation.

Although the discrepancy between the accumulation zone density of states and its
€quivalent 3D one is dramatically decreased when the exact definition is elaborated,
the Dingle equality [14][15] is still not satisfied in this region. In fact the quasi-bound

States in the accumulation zone are not sufficiently confined as those in the quantum

well, which causes the (k-€) relationship to be considerably non-parabolic in the
accumulation zone. This necessitates the re-normalisation of the effective mass in the
accumulation zone. It is to be reported that in our model, the effective mass is re-
Normalised to achieve the Dingle equality [14][15] in the accumulation zone. The
resulting re-normalised effective mass is found to be in the order of 64 % of the 3D

effective mass.

Before considering the supply function we would like to comment on the starting
€nergy point of G;p whose variation could alleviate the discrepancy aforementioned.
Indeed, basically to calculate the momentum-less density of states requires to integrate
g with respect to the average regional momentum with the reference to the same

starting energy ¢, for both gip and g. confidence in this procedure can be found

Subsequently when G,o.*Lac is matching the conventional G, p=m | Th?.
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2.6 Supply function model :

As regards the supply function (SF), let us recall the well known definition

proposed in Eq. 2-12, and systematically applied here in the case of 2D/3D injection.
© Eq. 2-26
SF=KgT [ gefe(= f)= 8o fe(1- fo) de

Ex

Denoting g, and g. to be the relative local density of states on both sides of the

double barrier resonant structure.

After expansion of the integrand one gets,

SF=g. (e )Iny 1 +exp[ 1+(ep —€,)/ kT ]
fe

-gcr(sx)ln{ 1 +expl 1+(ep —€,)/ kT ]}

< Eq. 2-27
_KBTIfcfe(gcr _ger)d8

€x

Out of resonance, it is important to note that the local density of states in the
injection region (g.) is small as compared to that in the collector region (g, = 1). This
gives a negative supply function resulting a negative current value which is not
physical. On the contrary, in the energy ranges where the cross resonance occurs an
overestimated highly current values might be calculated, depending on the degree of

confinement of the injection zone.

In our opinion the unphysical character of the negative and over estimated currents
stems from the fact that we considered an electron stream between two subsystems of
different density of states ( different dimensionality ). This not will be the case when
g.: and g, are equal and in that case the product of f,(1-f;) and vice versa are justified.
In the present work investigating different dimensionality system, this is not the case

and we have to re-examine the definition of the supply function. The underlying idea is
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to assume that the magnitude of current flow will be limited either by the number of
occupied states on one side or the unoccupied states on the other side, depending on
the comparison between both. Physically, this limitation concept is based on the
saturation limit of the degree of occupation. Therefore, when the number of injected
electrons is greater than the available states, one can thought that the electrons
undergoes a compete reflection. In that case, the number of occupied states will govern
the current. In contrast, the number of injected electrons will be the key figure for
controlling the magnitude of current when the available states on the other side is not
the limiting factor. Mathematically, we can summarised the above arguments by the

following equations.

» Eq 2-28
SF(ey) = [8SF,.(e) ~ 8SF.. () ‘

Ex
where :

- Eq. 2-29
8SF,, = {gefeﬁs o gefesg(l1- /)

g(1-f)se o gofezg.(1- 1)

Figure 2.13(a) shows the supply function plotted in logarithmic scale using thé
analytical solution of local density of states reported in Figure 2.5 for a bias voltage of
300 mV. As seen latter, this corresponds to a bias point above the peak voltage in the
-V characteristics. Figure 2.13(b) depicts the results obtained from the numerically
calculated density of states shown in Figure 2.10. For the latter, the re-normalised
effective mass was introduced. Both curves exhibit the same trends with a well peaked
feature reflecting the signature effect as discussed previously. At this stage, the
derivation of current density-voltage characteristics is straightforward and is discussed

in a next section along with a comparison with experimental data,

.
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Figure 2.13 supply function calculated using Eq. 2-28 and Eq. 2-29 where it is

calculated (a) using the analytical solution of local density of states depicted in

Figure 2.6 and (b) the numerically calculated local density of states depicted in

Figure 2.11. It is 10 be mentioned that the numerically local density of states is
calculated using the re-normalised effective mass.
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2.7 Comparison to experiment :

In this section we compare the simulation data (solid line) of the current-voltage
characteristics calculated at 4K under various assumptions with the experimental
results (dashed line) recently published in [11]. Overall, the agreement is good
(Fvigure 2.14), notably concerning the shoulder type behaviour in the negative
differential resistance region. Also, the peak current density along with the voltage
Tange over which NDC effect is observed fit quite well. As expected, the peak to
valley ratio cannot be described in magnitude according to our model which is based
on the assumption of a pure ballistic motion of electrons. In addition the T and X
valley transfer has been ignored in the present work which can explain an excess
valley current experimentally observed in the out of resonance region due to leakage
currents via the X tunnelling path. At this stage it remains a major issue to discuss
concerning the fact that this distortion of I-V curve observed experimentally results

from either an intrinsic effect or an extrinsic one.

Schematically, several distortion-related phenomena can be distinguished for
Tesonant tunnelling devices. Therefore, it was demonstrated over the past that trapping
of carriers within the quantum well of a DBH can explain an hysteresis effect

[16][171[18][19].

Indeed, at increasing bias voltage one can expect that a large amount of electrons
are trapped within the well shifting by a space charge effect the bias voltage to a higher
value. In contrast, under decreasing voltage condition, this space charge effect is of

minor concern and voltage is pushed down to a lower value. Moreover, this effect is

magnified by the asymmetry of the structure [18].

In our case, this phenomena should not play a significant role because the current
magnitude and hence the trapping charge is low. Besides, the asymmetry in the

Potential profile is solely induce by the applied voltage.
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A more general issue which applies to NDC devices concerns the occurrence of self
oscillations which are spontaneously developed due to the NDC effect. These
oscillations distort the current-voltage characteristics which often exhibits a plateau-
like or shoulder-like variation. Graphically, this can be simply understood assuming a
single frequency and /or harmonic self oscillations. In Figure 2.15 we plot in dashed
line a typical intrinsic I-V characteristics. In the same figure, the relevant distorted I-V

curve which will be measured at each DC bias voltage (V,) is also reported in solid

line.
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Figure 2.15 a typical intrinsic I-V characteristics (dashed line) and the relevant
distorted I-V curve (solid line).

We now assume that an oscillating voltage contribution is superimposed over V,,
resulting from a spurious self oscillation. In this case, we will measure, under statistic
condition, the average current value. Simple considerations on the influence of the bias
point shows that this time averaged current is lower when the bias voltage is below the
mid bias point and vice-versa. Qualitatively, the current variation against voltage
shows a shoulder-type distorted form. It is clear that in real devices the parasitic

oscillations can be non-harmonic and/or multi-frequency. One can find in the literature
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several papers addressing this issue [20][21][22]. More interestingly in practice, is the
oscillation condition which define the threshold limit between a stable and an unstable
operation [19][24][25]. These stability criteria were established a long time ago,
notably by the Bell-laboratory research staff. They working at that time on injection
and transit time devices. One of the most simple analysis is based on the derivation of
a lumped equivalent circuit (Figure 2.16) which consists of two intrinsic elements
namely the NDR (Ry) and the diode capacitance (Cy) and two extrinsic elements. For
the latter, this consists in a series resistance (R;) and a reactive inductance (L,). The

extrinsic elements depicts the influence of the interconnecting section.

E Ca| ol Rq
ld
Vd

Figure 2.16 lumped element equivalent circuit of a RTD. [19].



Based on this equivalent circuit, the criteria of stability can be read,

L, <Cy R, |R,| Eq. 2-30

Ry < |Ry| Eq. 2-31

This means that the way we are perfomiing the measurements is critical about the
achievement of a stable or unstable I-V characteristic notably through the influence of
L,. In addition, it can be seen that the second term of Eq. 2-30 scales as the inverse of
the device area. In practice, this motivates the development of very small area devices

vehemently discussed in the comment of G. Sollner [23].

Also the resistance level (Rg) can be used for satisfying the stability criteria. This
explains why the I-V curve is found stable for a bias voltage close to the valley voltage
due to an increase in the diode resistance level. In our case, the current flow through
the device is quite low (=120 A/cm? over 20x20 pm?) and hence the corresponding
value Ry is sufficiently high for satisfying the stability condition. Moreover, this high
impedance condition prevénts us to face the problem of voltage drops in the
measurement set-up ( mainly due to the tip-shaped probes). Indeed, when a high
current is flowing through the device there exists a proportional discrepancy between
the test voltage and the voltage applied to the intrinsic diode. As a last argument about
the non implication of parasitic oscillations for the present tested device, let us recall
the wide range for NDC, surprising at first glance, discussed in details in the

introduction of this chapter. For further readings see also [26][27][28].

In conclusion, it is believed that the signature effect extensively studied here is the

underlying phenomenon responsible of the shoulder type characteristics of this device.

The fact that the conduction is sustained with a quite constant level is a direct
consequence of the supply function. In order to illustrate this issue, the supply function
is plotted for various bias voltages in Figure 2.17. One can note that the signature level

Ao 8

IS practically constant.
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Figure 2.17 supply function plotted for different bias voltages.
2.8 Conclusion :

In this chapter, we have addressed the general problem of charge transfer between
two systems of different dimensionality. This was applied to the tunnelling transition
between the accumulation layer and the collector region through the resonant path
afforded by a double barrier heterostructure (DBH). We found by this means new
effects, here referred to as signature effect, resulting from the coupling between the
quantum well and the injection zone. In short, beyond the bias point for anti-crossing
of quantum states attached to the accumulation and quantum well regions respectively

the tail of the wave function is sufficiently high to induce a finite density of states.

To our knowledge this is the first time that a such result is mentioned with a
dramatic consequence on the conduction mechanisms under out-of-resonance
conditions. In order to investigate this effect, a new tunnelling model was proposed
based first on the derivation of the local density of states and second on the definition

of a novel supply function which permits us describing how the available states are
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Populated without using rate equations. It is also found that the electron effective mass

has to be re-normalised in the accumulation layer.

On this basis, the current-voltage characteristics have been calculated in details
under various assumptions and shows a very broad voltage range for NDC effect with
a blateau-like shape in a very good agreement with experimental data. It is believed
that, this better understanding of the notions of both the local density of states and the
supply function is not limited to the DBH-related phenomena but also could be

generalised to the case of open quantum system.
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3. THEORETICAL DESCRIPTION OF SCATTERING EFFECTS ON
THE HETEROSTRUCTURE DOUBLE BARRIER RESONANT
TUNNELLING

3.1 Introduction:

In the previous chapter we studied extensively a DBH structure with highly doped
cladding layer. As a consequence, the energy range of injected electrons is broad due
to the high degeneracy level. In counterpart, it appears quite problematic to investigate
fine scattering-assisted tunnelling transitions which are believed to be one of the key

parasitic mechanisms controlling the valley current.

In this chapter, we will address the effects of phonon scattering on the current-
voltage characteristics. Our test vehicle will be an AlGaAs/GaAs resonant tunnelling

diode fabricated and characterised in our group of research [1].

The main advantage of the structure under consideration is the fact that the doping

concentration is low (x10'®em™). This yields a well-defined energy injection under
rather low temperature measurements (77 K). In the following, we will take advantage

of these properties to assess the validity of the theoretical description of phonon

scattering effects.

3.2 Epitaxial material :

Table 3-1 displays the structural parameters of the resonant tunnelling diode which
was fabricated and tested in [1]. The DBH consists in three-layered structure involving
AlGaAs barriers with an Aluminium content less than 30 % in such a way that the
inter-valley (I - X') scattering can be avoided. Besides, the barrier height (0.3 eV). As

seen later this fact minimises the contribution of interface scattering mechanisms. On
each side the extended cladding layer is doped to 2 x 10'® em™ . They are followed by

highly doped emitter and collector regions. The Fermi-level in these adja‘éent cladding

layer which is a key figure of operation as seen in the introduction, depends



(U3 ]
"
S

significantly on temperature. However, at 77 K the Fermi-level is at the degeneracy
limit. In conjunction with a low temperature characterisation the resulting narrow
injection energy window is very favourable to discriminate between ballistic and
scattering assisted-tunnelling contributions. The fabrication details can be found in

reference [1]

Layer . dimension (A) doping (cm™) material
emitter 500 n+ GaAs
cladding 500 2x10' GaAs

first barrier 50 2x10' AlGaAs
quantum well 50 2x10' GaAs

second Barrie 50 2x10'¢ AlGaAs
cladding 500 2x10' GaAs
collector 500 n+ GaAs

Table 3-1 : the epi-layer structure of resonant tunnelling diode fabricated in our group
of research by P. Mounaix et al [1],

Briefly, the epitaxy was grown by means of Solid Source Molecular Beam Epitaxy

SSMBE system at a constant temperature of 600 °C starting from a GaAs semi-
insulating substrate without growth interruption. For the fabrication of the test samples
we used a mesa-etched technology in a quasi-planar configuration. Conventional
“technology was used for that purpose with AuGeNi metalisation for the Ohmic
contacts and NH,OH -based etchants for defining the active zone laterally. The
samples were contacted by means of very fine gold wires, diced and subsequently
mounted into a low-temperature fixture. The I-V measurements were carried out at

liquid Nitrogen temperature by means of a conventional cryostat.



3.3 Context and main assumptions :

The earlier studies devoted to the influence mechanisms of scattering-assisted
tunnelling were published a decade ago. They recognised that inelastic scattering was
responsible of a loss of coherence in the resonant tunnelling process. Recently, the
work of F. Chevoir and B. Vinter [2][3] was a key contribution in this field by
introducing the various types of scattering which can occur between two tightly-
coupled quantum wells, Notably, the influence of phonon-assisted processes was
clearly identified in reference [4], starting from a very basic situation involving two
square quantum-wells. By investigating the coupling probability when the relevant
eigenstates are separated by an energy in the vicinity of the characteristic phonon

energy (h @ ), they showed a possible improvement in the well-coupling probability.

Our aim here is to investigate this kind of transport mechanism in a real device. We
have seen previously that a similar 2D- transfer of charge is also encountered when we
focus our attention on the 2D injection zone and the DBH. This means that we have
only to consider the wave function coherence within these zones. It is obvious that in
the contact and cladding layers far from the heterojunction there is no mean to preserve
a coherent transport due to the very long distance. The straightforward consequence is

that the emitter as well as the collector regions are regionally in quasi-equilibrium.

Ideally a microscopic approach such as that carried out by means of Monte-Carlo
procedure could take all the scattering effects into account. It is now well known that
such a numerical method based on free flight and scattering events with a random trials
of their occurrence is very powerful to have a physical insight into the transport
properties of low but not quantum sized dimensional devices. In particular the non-
stationary dynamic effects such as velocity overshoot or quasiballistic transport. To
our knowledge, there is now an increasing effort to develop theoretically a quantum
Monte-Carlo approach based notably on the Bohm trajectories [5]{6]. In this approach
the Hamiltonian eigenstates have been shown to be non suitable and hence time-

dependent wavepackets are required [7].
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These kinds of models are now able to describe the transport properties after an
injection of hot electron through a DBH injector. The next step is to introduce the

scattering mechanisms in the adjacent layer as well as in the quantum region.

In our work we choose an intermediate approach which consists to determine the .
frequency of collision of various types of scatterings. This is carried out similarly as
that in Monte-Carlo simulations. This is the first step and in section 3.4 we review the

possible types of scattering mechanisms.
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3.4 Possible types of scattering mechanisms :

Scattering mechanisms can be subdivided into two main categories namely bulk
scattering mechanisms and interface scattering mechanisms. There exists another
classification based on the resulting-in energy exchange, elastic scattering mechanism
results in no energy exchange unlike the inelastic scattering mechanism in which the

electron may gain or lose a certain amount of energy.

3.4.1 Bulk scattering mechanisms :

In the following we will consider that the scattering events are non-correlated. This
assumption of statistically independence permits us to consider each interaction
separately. Let us recall that this assumption is also used in the Monte-Carlo
simulations where no memory effect is the considered. Another issue which can be
discussed is the validity of a bulk rates for short dimension devices. Analogous
situation is encountered between the study of transport properties in a bulk or a real
short dimension device. In the former one electron can be studied during a long time
whereas an ensemble Monte-Carlo code has to be used in the second case. This means

that, by ergodicity principle there is equivalence between the two approaches.

3.4.1.1 Phonon scattering (lattice vibrations):

The physical picture of phonon scattering in crystalline lattice is depicted in
Appendix(A) by means of the well-known spring approach. First considered in a
monatomic lattice extended to a second step by considering diatomic crystals. On this
basis the scattering rate for acoustic phonon is calculated in details taking the
compression and tension motion of atoms into account. Here, we show that this

acoustic phonon rate can be derived by another way which can be summarised in the

following equation [8].

- Eq 3-1
v(k) = 1

. 4
i 2 | [s(l?,li-')k'2 dk'] sinf dp
87’ 5
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where,

e s(k,k') is the probability density of scattering from state k to state &

- denotes the density of states in the momentum space.
T

e the factor 2n reflects the symmetry of the scattering relative to the momentum.

It can be shown that the probability density can be written :

s(l?,l?')=277t Ba(l?,l}")Nas(m_i,;'i) Eq. 3-2
where,
i i heE? e Eq. 3-3
Bo(kk)=2 3 |k~ k|

With S and p the speed of sound and the specific density of the semiconductor

material respectively and N, is the Bose- Einstein distribution function.

1 - kg6 Eq. 3-4
[snu_;ﬂ} " Sn|k-F]
exp | ————— | -1

.Na=

k50
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~ substituting from Eq. 3-2, Eq. 3-3 and Eq. 3-4 into Eq. 3-1 we get,

N2 ke 224) Eq. 3-5
TP $2npt

v

Eq. 3-5 is similar to the scattering rate equation derived in Appendix(A). Eq. 3-1
can be applied to any other type of scattering mechanism notably for calculating the

scattering rate by optical modes [8].

3.4.1.1.1 Lattice scattering by optical modes :

Applying the same procedure (Eq. 3-1) outlined above we get for the lattice
scattering by optical mode[8],

, N, 8[e (k)2 (k)-ho] Lq. 3-6
- - 2n - -
SCRK) =25 Bo(F.K)
(No+1) 8[e (k)= (k)+ho]
where,
I 2ng°he 11 Egq. 3-7
B, (K, k)= —="L _,2(————)
ane,|k-F| \e=o Es

€, and €, are the relative dielectric constants, for the infinity limit and the zero

limit frequencies respectively and €, is the dielectric constant of free space.

1 Eq. 3-8
exp(h(o ,"'kbe) -1

N, (0,0)=

Substituting from Eq. 3-6, Eq. 3-7 and Eq. 3-8 into Eq. 3-1 we get,

L, (L_Lj_l_ Ve +vezhol [N, Eq. 3-9
RNDY dne,\&5 & Je ‘\/_-,/gir;@] N, +1

In reference [9] by referring to the well-known data of GaAs Eq. 3-9 becomes



I

v, = 6.\'10]2{

N
2N, +1 < emission

o < absorption

Eq. 3-10
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3.4.1.2 Scattering by ionised impurities :

Scattering by the ionised impurities is a result of the Coulomb field Figure 3.1

illustrates an electron of velocity v approaching the ionised charge (+Ze).

L]
Impurity ion !

Figure 3.1 simple model for scattering by ionised impurity.

We will neglect the electron deviation while approaching the positive ion and hence

one can assume that the smallest separation to be the distance (d). The maximum
attraction force is

. Zet Eq. 3-11
Fpax=ma = —————

dr ¢ d*

where a is the perpendicular acceleration.

The interaction time might be approximated by (d/v) with v the initial tangential
velocity, so the perpendicular velocity component might be given by

i d Ze?
Vi =aL;

Eq. 3-12
N dne mvd

if (V, ~v) then the deflection angel is 45°. Also if the magnitude of the attraction is

high enough so that (¥, = v) a collision is said to be taken place. This is equivalent to
say that,
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de(.‘—‘———,—z'
4ne m v

‘We say then that the collision cross section is (7 df ). By denoting (N) the volume

density of ionised impurities, the average scattering rate is given by
v=(x d2N) Fg. 3-14

By further assuming that the statistical average of product equal the statistical
product of averages and also that the source of electron energy is only thermal, then by

simple algebraic manipulation one find,

N Ze? Eq. 3-15
161 €2(m )/ (3kT )/

Eq. 3-15 states that the ionised impurity scattering rate is most effective at low

temperatures provided that N is sufficiently high.



3.4.2 Interface scattering mechanisms :

3.4.2.1 Interface roughness scattering :

Interface roughness scattering will be treated in our model as a factor independently
affecting the transmission probability of each barrier. Therefore its overall effect in a
double barrier structure is described by replacing the transmission probability of a
perfectly smooth barrier by that of an equivalent rough one. So our goal in this section

will be to calculate the effect of surface roughness on a single barner structure.

The interface roughness 1s usually modelled as a statistical distribution of terraces of

monatomic layer thickness A. The probability density which governs the statistical

distribution of their size is usually chosen to be of Gaussian type.

Following Leo and MacDonald [15] the interface roughness scattering potential is
described [16] as,

o 2 Eq. 3-16
y IR VbS(z - z,-)exp{— -(r'z—r;)—]
c

where, the kronecker symbol was used for addressing the interface location at z; and

1; the lateral position of the terrace with respect to the coordinate r; and Vj is the

potential height at the barrier. Z; and r;. are illustrated in Figure 3.2 and o is the .

average terrace width.

rough interface

—

.r]-r
7\

Z;

Z-axis v

>
>

Figure 3.2 illustration of axis notation
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Eq. 3-16 states that as the distance between the terrace centre and the position of
electron incidence is increased the effect of scattering potential decreases

exponentially with a characteristic decay length equal to twice the terrace average area.

If we now consider an ensemble of terraces mutually uncorrelated in position and

width, it can be shown that the ensemble average interaction is [16],
MR V1,247t2D70‘4 exp(—Qgcz) Eq. 3-17

Dr is the interface surface density of terraces and (Qy =K} - K ), where K| and

K, are the initial and final transverse momentum (parallel to the interface).

If one assumes that (A=20) and (Dy = 4/7rA2 -’_:]/Az) i.e the average

separation between terraces is equal to average terrace width we get, [3][16]

A q
MR = VbznA2 exp( 9% J

The angular integration with respect to 6 yields,

MR - Vbznzl‘\z exp(— )Io(
2 2
where I, is the modified Bessel function of the first type of order zero. By applying

the analysis described in details [3] we finally obtain the capture probability rate per

unit overlap integral as,

KZAz) [K%\z) 2m" &K | Eq. 3-20
[]

AR _ 172242 _
ch VbnAexp( > 7 w2 K,

By knowing that the overlap integral or the form factor in [3] is,

FR = &g ‘Ck_. (z;) ‘2’ Ere(z) [ Eq. 3-21
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where £;_(z;) and ¢, (z;) are the envelope wave functions at the interface (:z;)

which correspond to the initial and final states (4,4, ). The form factor described by

Eq. 3-21 is the indication of the quantum probability of finding the electron in the

neighbourhood (Ajr) of the interface.

Then to get the capture probability rate we must multiply Eq. 3-20 with Eq. 3-21.
Let us now discuss the condition in which Vinter et al [3] derived the form factor. First
they assume flat conduction band condition in the emitter region. Second they assumed
that all the scattered electrons will be collected only in the well resonant level (the

final state is alwaysk,,, ) which is not our case.

The form factor includes information about transmission and reflection
probabilities. This is in the sense that when the reflection probability is maximised
(unity value) the transmission probability is minimised (zero value) and the transmitted

wave will be destructively interfere with the reflected one so &, (z;) will be

minimised (zero value). In the other extreme case when the transmission probability is
unity the electrons (quantum mechanically) do not feel the existence of the interface
and hence the interface scattering is minimised. The last case is excluded in the

analysis of Vinter et al [3] because they study the scattering only in the valley current

range.

Besides a flat conduction band profile is used to calculate these envelope wave
functions. In addition, the normalisation condition of the wave function in the analysis

of [3] is not discussed.

In our case of a single barrier all the states on the other side are available and the
structure is an open structure. Then the most plausible way to carry almost the same

information which is carried out by the introduction of the form factor is just replacing
Eq. 3-21 by

L4

FIR = A3g T(e,) Re ) Eq. 3-22
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The form factor as described by Eq. 3-22 has the advantage that it includes the back

scattering effect and hence the current (R+7'=1) i1s conserved.

Integration of Eq. 3-20 is performed as follows :

oW = y2r A2 —2":' Ky ke 323
h= k,
where
2 K2A2 K2A2 Lq. 3-24
L= I exp(— )] o(
) 2 2

using the change of variables

x=% , de=2K A*dK, , dK = 2/\1\6 )" kg 3-2
by algebraic manipulations we get,
g2 j (-3 +222 +20) 2 a ba 326
2A 5
performing the above integral numerically we get,
wiR = 1278 V2r2A zr’l’;. % ’;/2 Eq. 3-27
and hence the total transmission can be written as,
T =T, +WRA R T.R, =T, 0+ WR R, A ) Eq. 3-28

where WR is the transmission via interface roughness, 7. and R, are the
transmission and reflection coefficient respectively and A is the effective interface

thickness.
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3.5 Transmission coefficient:

Starting from the WKB approximation and apply it for a very approximated
structure as shown in Figure 3.3 one can get an analytical expression describing the

transmission probability [14].

Vi T 7'
Vr
A =
EoL l
Ew
A 4 ER
| Yy
T
LL| Lw Lk

Figure 3.3 simplified energy band diagram of double barrier structure

T = — ] lrr] explithy Ly - x4 —Xm)]l2 Eq. 3-29

‘ l—lrLHrR|exp(i2A) |

where

Ly, Lpand L; are the thickness of the well and of the two barriers with the

subscript L and R standing for left and right.

We also define according to a specific region the attenuation coefficient

(a; i=L, R) and the propagation one (k;, j=L, R) with the following

.

expressions.
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ap =2, - B I ag = 2m(Vg - Ex) /1 l-q. 3-30

K, =\2mE, 112, Kp=+2mEp 1, Ky = 2mbEy | 1 Lq. 3-31

The coefficients denoted t and r describe the transmission and reflection coefficients _
on the left hand side and right hand side respectively. Their modulus can be expressed

as follows,

- i2cos(g,) sin(Gy,) | [Kyy Eq. 3-32
L 7 cos(6y, + By )sinh(ay Ly ) +isin(fy, + 8oy ) cosh(ay Ly )|\ K,
i2cos(Gp ) sin(Gr) ‘ Kp Lq. 3-33

Ip =
R Icos(&,R + Qo) sinh(apLg) +isin(Gr + BOR)cosh(aRLR)} Ky
In these relations 6 coefficient has been introduced expressed as,
HIL = tan—] (aL / KL) s 90L = tan—] (aL /Ku,‘) Eq 3-34

Or =tan"(ag/Ky) , G =tan" (ag/Kg) Eq. 3-35

At last the phase terms x and A respectively can be written as a function of

6, aand the fhickness as follows,
tan y;, = tan(6) + Gy )coth(ay L, ), tan y; 5 = tan(fy — 6, )coth(a; L) Eq. 3-36
tan yg, = tan(Gjg + Gpg)coth(agrLy), tan yr, = tan(fr — Gpg)coth(ar Ly) Eq. 3-37
2A = 2Ky Ly = (epy = 212) — (X1 + XR2) Eq. 3-38

In the above treatinent the wave function in each region is assumed to be an

exponential function with constant amplitude. This means that (A/ N ) for
propagation regions or (4/ya) for attenuation regions were assumed to be

independent of position within the corresponding region, which is an approximation
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only valid for the flat or nearly flat conduction band structure (zero field

approximation).

In addition, the above treatment would not be valid anymore if the x-energy value is
near the conduction band edge such that k(x)/k’(x)z\.or \a(x)/a'(x)z‘ is greater

than unity which is the limit of validity of WKB approximation [17]. In other words,
this model appears too simplified to give a realistic insight into the device physics and

this fact motivates us to derive a more exact calculations.

3.5.1 Calculation of transmission coefficient ;

Our goal is to overcome the key limitation of the flat conduction band
approximation. It is now well-known that the Airy function is the exact solution in that
case [18]. In the same time however it could be useful to conserve the simplicity of the
exponential approximation of the WKB method. For this purpose the Airy function
(exact solution [18]) is analysed by the product of two exponential functions one
having a real exponent (attenuation responsible) and the other an imaginary one
(propagation responsible). Therefore we will name this method as the

Airy-Exponential Exact Solution (AEES) which will be one of the novel features of

our model.
e~ *XeP) - Blrx)]+ id [¢(x)] Eq. 3-39
where
&x) = [2m/ ePny?] e e, ]

g4(x) 1s the conduction band profile

F 1s the electrostatic field.



3-18

by simple algebraic manipulations we can get,

_ A;Aj + BB} c lgq. 3-40
AP+ B
g Bidi= 4B Eq. 3-41

g
A,.2 + B,2 :

In order to illustrate the difference between the WKB approximation and the AEES
method we plotted in Figure 3.4 the propagation factor § and the attenuation factor o
versus energy for a single barrier heterostructure under a constant electric field. The

reference of energy is taken in the emitter region.

o]
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o 1N
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e
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Figure 3.4 propagation factor () and attenuation factor (a) calculated for the resonant
double barrier structure of Table 3-1.

In the above figure, far from the barrier height (220 meV) the WKB approximation
fits quite well the Airy solution. In contrast, at energies near the barrier height the

WKB approximation does not seem realistic with a breaking point at 220 meV.
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The AEES method is not restricted to a single barrier and can be applied without
difficulty to DBH structures while maintaining a constant electric field over the active
quantum-region. The transmission probability calculated for the resonant double
barrier whose epilayer sequence is listed in Table 3-1 is displayed in Figure 3.5. The
bias voltz;ge applied is close to the threshold voltage for NDC effect as seen by the

energy position of the ground state close to the emitter band edge.
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Figure 3.5 transmission probability for the resonant double barrier of Table 3-1
calculated using AEES method.

The transmission curve in the above figure was calculated at 77K without scattering
and will be used here after for deriving the purely coherent quantum transmission

probability.

In case of when using WKB approximation the model will fail to describe the
enhanced resonant transmission through the first excited state which strongly influence

the out of resonance level. The present AEES method does not require to consider a
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constant electric field any where in the structure but could be generalised using piece-

wise constant field approximation.

3.5.2 Scattering effects on transmission probability :

We learned in section 3.4.2 that the surface roughness-related scattering deper;ds
strongly of the barrier height and also of the parameter A. For the sample under test
the barrier height is relatively low besides it is believed that surface quality is quite
good in view of the high performance electrical characteristics. Therefore in a first
stage we will focus our intention about phonon scattering effect and more particularly

on Jongitudinal optical mode (see appendix A).

Physically, it can be understood that the life time of an electron within the quantum-
well is a key parameter in the loss of coherence. This conclusion was early recognised
by saying that the probability of finding an electron in a coherent state within a

quantum-well of thickens Ly is reduced exponentially with an attenuation coefficient

related to the scattering coefficient with the factor exp(— 2 yL,,»)

A.D.Stone & P.A Lee have introduced this idea for the first time [19] assuming vy as

an adjustable parameter to be determined to get agreement with experiment. Later on

Yasuhito Zohta et al [12][13][14] have extended the theory assuming y =1/ 2],

where I, is the electron mean free path in the bulk matenal.

In this model, to kinds of transmission probabilities are introduced, refereed as

coherent (7..) and incoherent (7;) transmission probabilities. Moreover, to conserve a
unity probability we have to introduce an attenuation coefficient denoted her 4;

which physically describes the incoherent part in the tunnelling process.



The coherent quantum transmission probability (7.) and the coherent reflection

probability (R, ) have the following expressions : [13]:

. 2 Eq. 3-42
| 2h e | exptoyli) expltL - x 1 - x12)) 1
¢ 1- |rL HrR l exp(—2yLy ) exp(i2A)
~ °q. 3-43
R - \rL \ - !rR l exp(-2vLy- ) exp(i2A) Lq.3
L 1= || rr | exp(=2vLy ) exp(i2a)
From them we can deduce the attenuation coefficient 4y :
AT=1-(T.+R_) Eq. 3-44
by simple algebra A7 reads :
2 s
p Iy [ 1-|rg |" exp(-4yLy ) ]‘ T Tg exp(-2yLy) Eq. 3-45
T =

|1-1r, || rr | exp(-21Ly) exp(i2a) |’

Now we have to derive the incoherent part of the transmission probability. Over the
past our group, dealing with this issue proposed to assume that an electron after
loosing its coherence escapes from the quantum-well prorata to the elementary

transmission of the left and right barriers [11]. Mathematically, the incoherent

transmissions from left to right and vice versa read,

T, Eqg. 3-46
TL +TR
T Eq. 3-47
TR =ty " 1
’ L +1p

It seems interesting to discuss here the validity of the above assumption which can
appear at first glance relatively crude. In fact, it is believed that an elegtron which has
Just experienced an inelastic scattering loose the memory of resonant effect (phase-

breaking). It could try to reconstruct a new phase memory but this implies several back
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and forth bouncing motion within the quantum-well. In reality, it is believed that the
escape time is too short to satisfy this condition. As a consequence, the electron

experiences a very simple escaping process through a single barrier heterostructure.

Finally, the overall transmission (total) is the summation of coherent and incoherent

contributions.
TTOT:IL = 75 + T,' 11([ 3-48

Before using the above equation we are now discussing the energy conservation
1ssue. This discussion is motivated by the large discrepancy obtained between the peak
current calculated by means of the original model of Yasuhito Zohta et al [12][13][14]
and the experiment (one order of magnitude). Moreover, the LO phonon peak has not
any significant value on the I-V simulated results. While reviewing the assumptions
made in references [12][13][14], it appears that the transverse energy was assumed to
be equal zero which is not realistic. In fact, it was early recognised [2][3][4] that an
elastic scattering in confined system, with thus the separation between the longitudinal
and transverse energies, can be considered as an inelastic event in the direction of
propagation. To take this fact into account we will assume, in a next section, that the
probability of finding a scattered electron is uniformly distributed over an energy
window he optical phonon energy. The uniformly distributed probability density
function is centred above (absorption event) or below (emission event) the injected

electron energy level.

On the other hand, the authors of references [12][13][14] introduced a scattering
factor exp(—- 27L,,v) which compares the scattering time to a transit time (simple
crossing) within the quantum-well. This contradicts the fact that the electron occupies
the quantum-well for a finite time suffering from multiple reflections. It is sure that we

have to compare the ensemble averaged free-flight time within the quantum-structure

to the resonant level life time.
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Worth noting that the effect of considering the multiple reflections increases the
probability of scattering and hence appreciable decrease in the peak current could be

observed. We are now interesting to derive the life time under scattering condition.

3.5.2.1 Life time under scattering condition :

The basic idea is to take into account the number of finite reflections by considering

a factor such that y = a y, where y, denotes the bulk value of y and a is the number of

finite reflections.
Thus multiplying y, by the number of finite reflections a such that,

r=ay, Eq. 3-49

which is exactly equivalent to replacing Ly in the analysis of Zohta et al [13] by,

Lq[/izclive =a LW Eq 3-50
Knowing that,
v Eq. 3-51
a= Tg LW

On the other hand, it is well known that the life time t,, is given by,

__h Eq. 3-52
" T'(a)

Ter

where I is the full energy width at half maximum (FWHM) of the total transmission

coefficient.

In this work Eq. 3-51 and Eq. 3-52 are self consistently solved by numerical

techniques. However, to give a physical insight, an approximate analytical expression

for the solution could be derived as follows ;
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For narrow quantum well structures, having 73, 7% and 2ay,L;- much less than unity,
an analytical expression for /{a) could be described by,
I +Tg Ny q. 3-53

—+ 2hvay,

The first term describes the coherent contribution whereas the second introduces the

additional broadening resulting from scattering processes.
solving Eq. 3-51, Eq. 3-52 and Eq. 3-53 together we get,

7, + T Eq. 3-54
az (Z'YOL".')"f‘a(_L‘Z_ﬂ‘)—l:O 9

which is a second order algebraic equation in a and is one of the most significant

contributions of the new model.

It is worth mentioning that Eq. 3-54 has to be applied separately for each
(absorption or emission) mechanism. This is because each interaction process has a

different % value and hence a different life time.

In practice it is found that the difference between the analytical and the numerical
one is minor at low temperatures under relatively strong confinement condition.
However, the transmission probabilities which are displayed in Figure 3.6 associated

with each scattering process are derived using numerical approach.

In Figure 3.6 the coherent (solid line) and the incoherent (dashed line) transmissions
were plotted in logarithmic scale for the the LO phonon emission process (Figure 3.6a)
and LO phonon absorption scattering (Figure 3.6b). For the former, it is seen that near
the ground energy level the incoherent transmission is enhanced with respect to the
coherent one. We have to stress that the scattering process here is particularly efficient
such that electron suffering a phonon emission take advantage of a resonant tunnelling
effect through the quantum well resonant level. In contrast, the phonon absorption is of

minor concemn,



3-25

At this stage, it remains two important issues to be discussed namely the injection
condition investigated in section 3.6 and at last the space charge effect which will be

studied in section 3.7.

Figure 3.6 depicts the different transmission probabilities associated with each

scattering process.

It can be shown that exp(— 2ayo[,,,-)= exp(— T/ T f) where 7} 1s the average time

between two successive scatterings and T, is the electron life time.

e mga
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Figure 3.6 the transmission probability calculated using the AEES method (a) for the
emission process (b) for the absorption process.



3.6 Scattering effect on injection conditions :

The effect of scattering on injection conditions could be summarised in two key
points. First is to create a new set of local density of states (starting from the coherent
one) which will be denoted as the incoherent local density of states. Second is to

occupy these incoherent states by the appropriate probability of occupancy.

To describe the above mentioned incoherent density of states the following

assumptions shall be adopted :

From a previous discussion we have shown that the phase memory of the scattered
electron would be lost just after scattering and then the scattered electron try to recover
a new phase memory in a finite transient time. In order to provide a time scale, it is
reasonable to assume that this finite built-up timé is much longer than the so called

sfmp]e tunnelling time.

Also, we will assume that an incoherent local density of states can be derived from
the purely coherent one by taking the 3D-carachter of interaction namely the sharing of
the quantum energy %o between the longitudinal and the transverse directions into

account,

To achieve that, the original coherent local density of states are maximally activated

by assuming a unity probability of occupancy. In addition, as the scattering process

occurs in the time domain in a completely random manner, the probability of scattering
is assumed to be uniformly distributed over a range of energy equal to the LO phonon

energy (%o ,, ). Thus the scattered electrons will be distributed over the energy range

(ho,,) as described by the following equation,




€y +hm(

»
™ J &8,y 2n).dL,...<=> phonon emission
op €y
n €, 27, )= -
local (€54 207 ;) N Lgq. 3-55
1 i .
PV I g(e, J2mk).dC...<> phonon.absorption
L P gt op -

If a Fermi-Dirac statistic is applied for Eq. 3-55, the original Fermi (Ep) level
previously calculated for coherent electrons is not convenient for incoherent electrons,
and a new quasi-Fermi level should be applied. The most plausible quasi-Fermi level

to be used is described by the following equation,

E 0= ho op < phonon...emission Eg. 3-56
E,= "
fT\E 10 1 hO op...<> phonon.absorption

The density of electrons calculated in Eq. 3-55 is the incoherent local density of
states calculated for unity probability of occupancy. Therefore, we have to weight the
local electron concentration by a Fermi-Dirac statistics in which the quasi Fermi-level

of Eq. 3-56 is applied.

It is worth-noting that the density of states calculated using Eq. 3-55 has to be

devided by two to get only the positive x-momentum component (see also chapter 2).

In the above analysis the originally coherent local density of states are totally
transformed into incoherent local density of states. This means that implicitly we

assume a unity probability of scattering.

In order to find the various weighting terms, it is necessary to use again the

comparison between the life time of electrons within the active zone (t,, t,) with
respect to the characteristic time of scattering processes (7,, 7,) which are directly
derived from the scattering rate (7, =1/v,, T, =1/v, ). Now, let us suppose that we
have n, and n, electrons involved in the absorption and emission processes

respectively per unit time.
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Those, affected by the absorption process could be derived according to the
following relation :

lLq. 3-57
TL=”"[1 —exp(—T(, / 7;,)] g5

.o a
In contrast, in case of avoidance we obtain,

% =n, exp(— T,/ 7:,)

a

Eq. 3-58

Therefore, t, governs the weighting balance and one can check that when 7, tends

towards infinity all the involved electrons are scattered whereas the coherence is

preserved when t, tends towards zero. From the above equation, the variable », can

be eliminated and we get,

1 exp(-T, /T,) Eq. 3-59
I; T, :1 - exp(— T,/ Ta)]

Similarly for the emission process,

1 Eq. 3-60
T n‘,[I - exp(— T,/ Te)] 1

e

1 exp(-T./T,) Eq. 3-61

I, Ti-exp(-T,/T,)]

From 7,,7,,7, and 7, we deduce the various weighting coefficients denoted

PP, P and ;. The subscripts and superscripts referring to absorption (a),

emission (e), collision (+) and avoidance (-).




N (1777) Eq. 3-62
Pe m )+ ()« () )+ (1 17)

. (/1,) Eq. 3-63
P )+ () (m)+ (/)

o 1/7;‘) Lq. 3-64
AN ARNTS

. (1/1,) Eq. 3-65
ba AR SEGAR N

Using the supply function model described in chapter 2 and the weighted local
density of states discussed above, one can calculate the corresponding supply
functions. In Figure 3.7 we plotted the purely coherent local density of states (a)
calculated using the model discussed in detail in chapter 2 along with the associated
momentum-less density of states (b). Also are depicted the coherent and incoherent
supply functions with respect to the emission and absorption processes in Figure 3.8

and Figure 3.9.

Finally the tunnelling current is calculated according to following equation,

J=Y [ SFIRTIR _SpRUTR yF T, de, Eq. 3-66

a.e

where the suffix 1 stands for incoherent and the suffix ¢ for coherent. The

summation is performed for both the absorption (a) and the emission (e) processes.

Before reporting the numerical results calculated in the framework of the model

discussed in details above, let us now consider the space charge effect.



(a) Local density of states in the accumulation region
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Figure 3.7 (a) the purely coherent local density of states calculated using the model
discussed in the previous chapter, (b) the momentum-less density of states calculated [
by the integration of the above local density of states w.r.1 the average momentum in :

the accumulation zone and a comparison with the equivalent 3-D one. .'
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Figure 3.8 depicts the coherent supply function calculated using the model discussed
above for both absorption and emission processes.
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Figure 3.9 depicts the incoherent supply function calculated using the model discussed
above for both absorption and emission processes.
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3.7 Space charge effect :

The theoretical treatment of the space charge effect within a quantum structure is a
tricky task. Ideally, a full quantum approach such as that used in Wigner Distribution
Function“(WDF) has to be performed. The reason are twofold, the first stems from the
ability of such a theoretical approach to describe the conduction phenomena as a real
transport process. Indeed, in quantum theory the difficulty of accounting for scattering
is often alleviated by elaborating a perturbation approach on the basis of a pure
coherent process. The WDF approach does not suffer from this limitation. In
counterpart, it appears quite difficult to implement such a method for a device taken as
a whole. In fact, such a method is very time consuming and the physics of phenomena

is sometimes hidden by the complexity of the numerical treatment.

In the present work, in order to give a physical insight into the effect of the trapped
charge we will made a crude assumption which permits us to derive a relationship
between the trapped electrons and the current terms contribution including the
scattering effect. We will show that, despite this approximation some of the main

consequences of space charge effect notably the shift in the threshold voltage will be

achieved.

It is also important to note that transport in resonant tunnelling structures with large

spacers (which is our case) is space charge limited [16]. That is current and space -

charge are strongly coupled [16].

3.7.1 Calculation of the trapped charge:

Assuming that the electrons transfer after tunnelling, in the real space of the

collector region with the ballistic speed v (x,e,)=+2m*/€,(x) in the x-direction

where £, (x) is the longitudinal energy at the position x.



From the definition of the current density we have,

dJ o(x.e) Eq. 3-67

dn(x,sx) = . (x,sx)

where dJ (x,sx) is the x-component of the incremental current density.

The basic idea of the space charge model is to link the density of charge trapped in
the well and consequently to introduce subsequent conduction band bending solved
self-consistently with the local current. Previously, special attention was paid to derive
forward and backward current contributions in the region where the electrons are
bouncing back and forth between the confining barriers. In contrast, it is reasonable to
assume that there is no wave function reflection in the collector region because there is
no material discontinuity at this zone. For instance, such an assumption of a
progressive wave is made to solve the Schroedenger equation using Runge-Kutta
method [20]. The obvious linking between the region where a standing wave pattern is

observed and those which can support a progressive wave is the current conservation.

Our primary goal is to calculate quantitatively the density of trapped charge which
is subsequently introduced to Poisson’s equation solver. We have the shape of this
charge by means of the wave function, it remains to evaluate a normalisation constant

which is the key issue. For this purpose we proceed by the following method :

3.7.1.1 Wave function normalisation to the current density:

Anywhere in the collector region the conservation of probability current density can

be written as,
K (x,8,) ] 4%(e.) ¥ (x.es) |= C (e4) Eq. 3-68

where C (g,) corresponds to the probability current increment independent of x-
position, K(x,s,)is the wave vector, ¥2(g, ) is proportional to the electron density

and 4°(g,) is the coefficient of normalisation.
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On the other hand, a quite general formula permits one to calculate the current
intensity at €, from the corresponding transmission and supply function. Therefore, for
a given temperature 6 and bias condition ¥, we have,

_gm*K 46

. ) Eq. 3-69
C(I/c,sx)-—;r—zhj;—T(Vc,s_,)F(Lc,ex)dsx 1

where the other symbols have their usual meaning,

If the effect of scattering on the space charge trapped in the quantum well could be

neglected then, from Eq. 3-67 and Eq. 3-69 we get,

o) Tt 270

i T(SX)F(sx)dex/K(x,ex)

Wz(x,sx)

Since the product K(x,ex) \ ‘}’f(x,ax)

is constant everywhere in the collector

region, It is arbitrary calculated at the collector electrode to be simply the propagation

constant Kc(ax):\/zm*(ax +VC)/ n? at the collector electrode where the wave

function is arbitrary chosen such that 2 (X, jeior €)= 1-

Referring to Eq. 3-67 and the quantum definition of the probability density current
dJ(x, &) we get,

K(x,ax)Az(ex) ‘Pz(x,sx) £q. 3-71

qgv (x,sx)

dn (x, sx) =

Let us consider now a quantum region sandwiched between two heterointerfaces.
Constructive and destructive interference between the forward and backward
propagating waves will take place and the central issue is now whether such phase
related phenomena affect the local electron distribution function. Mathematically, this
means we have to distinguish between the modulus of the wave function as a whole or

separately.
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In the former we thus get,

:‘\y (x,sx)f v (x,sx)b‘z Lq. 3-72

| \1/2(x,8x)

where as in the latter we get,

2 Eq. 3-73

lqﬂ(x,sx) =‘ ¥ (x,sx)flz +l ¥ (x,ax)b‘

where the suffix (f) and (b) denote the forward and backward propagation.

The later (Eq. 3-73) stems from the fact that Eq. 3-68 is defined only for the regions
of no-eddy currents or in other words in the zones of no-wave function reflections [17]

(collector region).

In the following we are comparing systematically the two assumptions discussed
above namely the role played by interference effect in the built-up of the trapped
charge. Figure 3.10, is a plot of the space charge profile with and without interference
effect calculated at a temperature 77 K. It can be seen that the main difference comes

from the spatial profile. Accounting for phase interference effect, the maximum

density (n=17x 107 cm™) is located approximately in the middle of the well
reflecting the presence probability. Suppressing the phase interference effect leads to a
rather constant charge profile. Figure 3.11 permits us to investigate the effect of
biasing potential in the vicinity of the threshold voltage for NDC effect here between
0.4 and slightly above 0.5 Volts. In terms of carrier concentration it can be seen that
the discrepancy are relatively low. Moreover, as expected the carrier density increases
versus bias voltage. This is a direct consequence of the increase in the current density

which is the origin of the supply.
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Beyond the differences pointed-out in Figure 3.10 and Figure 3.11 the fact of

considering the phase interference or not is still an open question.

3.8 I-V results and comparison with experiment :

In this section, we are now reporting the results according to various degree of
assumptions. Figure 3.11 depicts the calculated and measured I-V characteristics when
the coherence breaking is included with (dashed) and without (solid) space charge
effect. As a matter of illustration, Figure 3.13 shows the measured I-V curve with a
compressed voltage scale to give a clear view of the LO replica. The first remark
concemns the relatively good agreement between the measured and the calculated peak
current densities with a value typically of 500 A/em?. On the other hand, it can be seen
that the phonon replica shown about a 0.65 Volts is also well described theoretically. It
is seen that the agreement between threshold voltage V.. is only achieved provided
the space charge effect is included. In counterpart, for the both situations, it seems that
a broadening of the resonant current curve is slightly under estimated. At last, a kink
effect is apparent at low voltages (=035 V') both for the experimental and theoretical

curves.

Figure 3.14 shows the various contributions to the calculated total current plotted in
solid line. The first current anomaly at (=04 V') reflects the current contribution
resulting from the cross-energy between a very weak resonance in the quasi-continuum
and the quantum-well resonant energy (¢,, ). This feeding mechanism is reproduced
owing to the new definition of both the local density of states and the supply function.
The later is well defined over all the states namely the strictly confined and highly

delocalised states.

Also in Figure 3.14, it can be seen that the incoherent absorption plotted in long-
dashed line is not of sufficient magnitude to be responsible of this conduction
anomaly. As a general rule, its influence is of second order. This is not the case of the
incoherent emission which is responsible of bump in the current density noted at

(= 0651). Finally, considering the coherent component, it is seen that this
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contribution dominates the peak current whereas in current valley region, its
contribution is of minor concern but is not zero. Obviously, the description of the peak

to valley current ration is now much more realistic as compared with a fully coherent

approach.

It remains to explain how a closer agreement could be achieved if the space charge
effects are included. To this aim Figure 3.15 is a close-up of the voltage range of
interest. One can note that the general trends by taking space charge into account is to
shift the peak voltage to a higher value. Indeed, by accumulating a non-negligible
charge density within the well, we subsequently introduce an electric field gradient
which minimises the voltage drop over the quantum region. As a consequence, it needs
more voltage to satisfy the threshold condition. Moreover, this shift is more important
when no phase effect is introduced due to the higher sheet carrier density
(see Figure 3.11). Nevertheless, it seems hazardous to select one of the two schemes
on the basis of experimental agreement. The temperature of 77 K was chosen for

illustrating mainly the phonon-replica.
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With the aim to investigate the temperature dependence it seems interesting to
calculate the I-V characteristics under various approximation degrees at 300 K. The
results are shown in Figure 3.16 and Figure 3.17. As expected, and in agreement with
~ experiment we observed a dramatic degradation in the peak to valley ration with the
disappearance of the phonon-replica. Otherwise, we observed the same kind of trends
with perhaps a little-bit disagreement concerning the peak voltage. for the plots of
space charge effect (with and without phase intelferenée) the curves in the negative
differential conductance region were not plotted for sake of clarity but they follow the

same evolution of the solid line in the considering figure.

mid—well carrier density evolution with biasing voltage (T=300K)
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Figure 3.16 depicts the space charge evolution with applying potential with phase
interference effect and without phase interference effect(T=300K)
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Figure 3.17 depicts the effect of space charge on the I-V characteristics at 300K.

3.9 Systematic study with temperature :

Before comparing simulated and measured data, let us briefly consider the
experimental conditions. In contrast to the measurements performed solely at liquid
Nitrogen temperature by dipping the samples, systematic measurements versus
temperature requires to mount the device onto a test fixture cooled down in a cryostat.
In Figure 3.18 we plotted in solid lines the peak and valley currents as a function of
temperature. Initially, the peak to valley current ratio is about 10 : 1. At increasing
temperature, this ratio degradates gradually to reach about 3 : 1 at room temperature.
These dc data compare favourably to the best results achieved so far with similar
GaAs/Aly3GaysAs DBH’s. In further details, it can be shown that the valley current
increases following approximately a linear relationship as a result of increasing

scattering probability with temperature. In contrast, the peak current exhibits a quasi-

exponential decrease.



500

4 —
] i)
] solid line (measurements)
- +* ‘? i -
400 3 ' dashed line (simulations)
~~ 5 *. N
o~ ] -
4 - T~ ~
< ] “\\“\A N
<7903 I—
< 1 Peqy W s T ———
~ . CU"‘en, === )
T 2007
o ]
— -
- 3
- 7 7
@) 1 nt e
100‘: Laley curre R
E /——' > -
3 ot
0 3 YTy T T T T T T T T T T T T T T T T T T T T T
50 100 15 200 25 300 350

Temperature (K)

Figure 3.19 depicts the evolution of the peak and valley currents with temperature

The simulated data are plotted in a dashed lines. Overall, a good agreement ts
achieved. It is important to state that the above calculation are performed without
concerning the space charge effect and the effective mass re-normalisation. We
previously learned that the main effect of space charge concerns the relevant peak
voltage without significant modification in the current contrast. To our knowledge, this
is the first time that the peak to valley current ratio 1s described satisfactorily over a

rather broad temperature range.

Another issue in connection with temperature studies, concerns the use of the

second derivative of the I-V relationship. We address this issue in the next section.



3.10 Second derivative of the I-V relation :

One of the main drawbacks of characterisation technique based on the measurement
of the I-V characteristics stems from the fact that there is no direct information about
the quantdm transmission probability. Let us recall that the total current implies an
integration over energy of the supply function times the transmissivity. Recently, a
very elegant way to overcome such a limitation was proposed by Sakaki [21]. The
basic idea was to use the second derivative of the current with respect to the voltage at
the onset of resonance process. Moreover, if the temperature is sufficiently low in
order to minimise the thermal tail of the supply function, the authors of [21] have
shown that some indications of the degree of broadening of transmission can be
estimated. Previously, we have discussed about the relation between scattering
probability and the broadening in transmission. Ideally, the characterisation should be
conducted at liquid Helium temperature (4.2 K). In the present work, unfortunately, it
was not possible to cool down the sample at so low temperatures. Nevertheless, it
seems to us interesting to use the same approach based on the second derivative to

have a first insight into the importance of the incoherent process.

The results of this study are summarised in Figure 3.20 and Figure 3.21. For the
former we compare the bias dependence of the second derivative of current density
with respect to voltage at 77 K (Figure 3.20 a) and at 300 K (Figure 3.20b) for the
measured (dashed line) and calculated (solid line) data. The general trends are almost
described. The main discrepancy stems from a voltage shift between 30 and 50 mV.
The magnitude fits quite well for the first extrema whereas the error is within 30% for
the third anomaly. We have to stress that this is the first part of the curves typically

below 350 mV which is interesting on the basis of the arguments outlined before.
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Figure 3.21 (a) measured transmission width determined by the second derivative
method [21], (b) is derived from our simulation resulls.



The variation of 42J/dV? with a sign change results directly from the bump
pointed out in the I-V curves at the onset of the conduction which is attributed to the
transition between the state of quasi-continuum and the 2D injection. At room
temperature the same behaviour is achieved with an evolution which is somewhat less
pronounced. It is certain that Sakaki analysis under this temperature condition is no
longer valid. Therefore, we plotted in Figure 3.21 a zoom-in to the bias range between

200 and 340 mV at liquid Nitrogen temperature.

The Full Width at Half Maximum (FWHM) with respect to bias voltage taken as the
independent variable is 40mV. It remains to correlate this voltage broadening to the
energy one. A simple rule, concerning bare DBH’s with symmetric barriers, is to
assume that a shift in the voltage drop across the structure results in one-half the shift
in Quantum energy level (in electron volts). From this scaling rule the FWHM with
respect to energy (FWHMg) 20 meV. This experimental broadening can be compared
to the value calculated from theoretical transmission. In order to illustrate this issue,
two cases have been considered, (i) coherent transmission component in an overall
process involving phonon emission and (ii) incoherent transmission component in
phonon absorption process. Both curves exhibits a similar broadening with the same
order of magnitude (10 meV). The measured and the calculated data differ of solely a
factor of two which is very encouraging in view of assumptions made both in theory

and experiment.



3.11 Conclusion:

In this chapter, we have studied the scattering assisted tunnelling. The effect of
scattering is included not only in the transmission probability but also into the injection
conditions through a novel probabilistic model. In connection to the new formalism
described in details in chapter 2, we have succeeded for the first time to define four
probability rates associated with each possible scattering assisted supply condition.
The associated phonon energy is partitioned equally-likely between transverse and
longitudinal energies. The scattering effect is assumed to causes a partial loss in the
wave function coherence. The transmission probability is self-consistently solved
along with the equation defining the finite life time in the well. The later time reflects
the finite reflections characteristic time required to construct the resonant wave

function in the quantum well.

In addition, the transmission probability is calculated using a new method we called
AEES based on Airy function solutions. This is done to achieve both the required

accuracy and generality while preserving the simplicity of the exponential method.

The above model, is systematically applied to simulate the resonant tunnelling diode
fabricated in our group of research and which characterised in the present work as a
function of temperature. The comparison between the simulated results and the
measured data are surprisingly in a very good agreement. This good agreement is also

shown to be sustained for a broad range of operating temperature conditions.

/

Using the above novel model, we have described successfully the main anomalies in
the I-V characteristics notably, the onset-bump, the main resonant current and the post-
resonant phonon replica. The first reflects an injection condition corresponds to an

intermediate state between the extended 3D and the confined 2D-injection conditions.
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4. Study on tunnelling transport in lateral field-effect-induced quantum

wells :

4.1 Introduction :

In the previous chapters we have discussed the tunnelling phenomena in vertical
heterostructures, investigating the two dimensional injection effects along with the
scattering assisted tunnelling. All the previous analysis are based on the solution of
Schroedinger equation in one dimension. The character of uni-dimensionality of the
solution stems from the assumption of neglecting the fringing effects. The later
permits the suppression of the spatial dependence of the potential function in the
transverse direction with respect to current direction. On the contrary, the lateral
structures, results in an electrostatic induced potential whose space variation
depends at least on two directions. For example, the planar resonant-tunnelling
field-effect transistor (PRESTFET) [1][2]{3][4] results in X and Y dependence. On
the other hand, for a grid-gate lateral surface super lattice (Grid-Gate LSSL) [1][5],

accounting for X, Y and Z dependence is necessary.

First of all, before investigating the tunnelling transport in these lateral structures,
a special attention has been paid to find out the most realistic potential function, the
relevant Fermi-level and the injection-mode. Also, it is important to mention that the
PRESTFET fabricated by K. Ismail and co-workers [1] will be the test vehicle
through out the study of this chapter.

This test structure is a dual nano-gate structure in such a way that a resonant
tunnelling transport can be demonstrated. Beyond the description of the
2D character, the novelty of the study, presented here, stems from accounting for
the quantum transport effect. Indeed, localisation effect in MODFET’s, yielding a

discretisation of energy levels, was early recognised [6][7].



This effect could be taken into account in the present work but this is not our
main goal. In the present work the /areral quantum-sized and tunnelling effect are

more specially addressed.

4.2 Notes on device design and operating conditions :

We now introduce the typical parameters of the epi-layer from which the device has
been fabricated. On the other hand, we discuss of various device guide lines along with
operating conditions. First of all, it is worth mentioning that the operating temperature
for observing quantum lateral effect has to be low. In most cases, the measurement
were performed at liquid Helium but further cooling the device could be useful. The
reason is quite simple. In fact, in contrast to heterostructure potentials, the electrostatic
induced potential exhibits a quite opened parabolic-like shape. From the technological
side, this can be understood by the difficulty to fabricate dual gates on the nano-meter
scale also in close proximity. Accordingly, the quantum levels corresponding to the
quantisation in the lateral direction are closer in energy and it is imperative to decrease

the operating temperature to discriminate them.

On the other hand, any additional scattering effect tends to smear-out the expected
resonant feature. We mentioned in chapter 3 that the ionised impurity scattering
dominates the mobility of carriers at very low temperature. Also, by using modulation
doping concept in heterostructures, further improvements in the asymptotic mobility at

low temperature can be achieved.

In brief, the modulation doping is achieved by the growth of a doped wide bandgap
material over the top of an undoped narrow bandgap material. Figure 4.1 shows
schematically the growth sequence of a typical MODFET in the GaAs based system.
The difference in electron affinity, associated with the two materials, results in a
conduction band discontinuity at the heterointerface. Due to doping gradient, the
electrons diffuse from the wide to the narrow bandgap material. This diffusion process
gives rise to a strong space charge effect resulting from the formation of a dipole. The

resulting induced electrostatic force counterbalance the diffusion process and an
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equilibrium is reached. The latter is characterised by a constant Fermi-level across the

heterointerface.

The separation of the diffused electrons from their parent donors minimises the
ionised donor scattering mechanism on one hand, and creates as seen previously, a
strong electrostatic field normal to the heterointerface on the other hand. This field,
results in conduction band bending forming a quasi-triangular potential well. The
diffused electrons whose location is displayed in dashed line in Figure 4.1 are
consequently confined in close proximity to the heterointerface in the form of a quasi

two-dimensional electron gas (2DEG).

The minimisation of scattering mechanisms maximises the electron mobility along
with the quantum coherence in the active region. In addition, a further enhancement in
the 2DEG transport properties is achieved by further separating the supplying- and the

current carrying-layers by a wide bandgap undoped spacer layer.

Finally, the epitaxial sequence is completed by the growth of a highly-doped

capping layer for subsequent Ohmic contact deposition.

Concerning the choice of a material system, ideally an undoped very narrow gap
such as InAs should be selected with AlSb forming the wide band gap. However, the
epitaxial quality of heterointerface is also of major concern. Therefore, most of
successful reports that have been so far obtained, make use of AlGaAs/GaAs
compounds. The rules of optimisation of Aluminium concentration at such low
temperatures are out of the scope of this study. Nevertheless, let us recall that owing to
DX-centres in connection with the cross over of I' —and X -valley, samples with x
ranging between 0.25 and 0.3 have to be grown. With respect to the thickness and the

doping of the highly doped GaAlAs layers there exists numerous degrees of freedom.
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Figure 4.1 schematic cross-section of the resonant tunnelling dual-gate MODFET
fabricated and characterised in [1] (after [1])
The aluminium percentage is between 0.25 and 0.3 %.



4-5

In the following, we report on the PRESFET fabricated in [1] with the following

design data namely :
o 42 nm-thick Al 25-03Gag 75-07As doped to 10" cm™,
e 75 n;n-thick A10,25-§,3Ga(),75~0,7As spacer layer.
e 1.5 um-thick GaAs undoped layer.

The lateral scale is determined by the gate length, here 60 nm for both gates. Also
for the inter-gate separation the same dimension is kept. We would like to mention
that, despite the advance in high resolution electron beam lithography, no further break
through has been obtained with respect to the shrinking of the gate width. This means
that in the present status of technology it seems difficult to overcome the need of low
temperature operation. At last, the source drain separation was fixed to 20 pm.

consequently much wider than the active region dimensions.

For the Device Under Test (DUT), Al,Ga,.xAs and GaAs are used as the wide-
bandgap and narrow-bandgap materials respectively. The doping level is optixrﬁsed to
10" cm™. The optimisation criteria are based on the maximum doping level for which
the gate leakage tunnelling current and traps in the AlGaAs could not affect the device

performance at 4.2 K to a very large extent.

4.3 Notes on device characterisation :

The cross-section of DUT is shown in Figure 4.1. Let us summarise hereafter the
experimental I-V characteristics which will support the validity of the theoretical

analysis performed in this chapter.

At room temperature, the device was just at the limit of a normally on condition.
Indeed, only 50 mV is needed for setting on the conduction. The positive voltage
swing on the gates was limited to 0.6 V by the Schottky-contact current leakage. The
room temperature transconductance was around 150 mS/mm. At 4.2 K the device

threshold voltage for conduction onset was shifted up to 0.15 V, and the peak
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transconductance was increased to 350 mS/mm. There was no persistent
photoconductivity observed, and hence the device can be tuned by changing the optical
intensity of a red Light Emitting Diode (LED). The authors measured the source-drain
- current I, as a function of gate bias Vs with both gates connected together. The
measurements of resonant tunnelling features (Figure 4.2) were performed at 42K in

the dark at a drain-source bias Vpg of 0.2 mV.

10 p9=42K
VDS = (0.2 mV

0 1 . 0.12
0.1 0.15 0.2
Vo[V

Figure 4.2 drain-source current as a function of gate bias, after [1] .
(the inset is a zoom-in for the first resonant peak). Both gates are connected together.

No gate leakage current was detected down to the measurement limit (10 pA). In
Figure 4.2, a clear structure was observed below threshold ( ~ 0.15 V). Three resonant
peaks were superimposed over the exponential characteristic subthreshold regime

(displayed schematically in dashed guide line). On the other hand, increasing the drain
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bias Vps resulted in [1] a gradual smearing of peaks and valleys. At Vs =5 mV no
resonant structures were observed. This first conclusion is an indication about the
quantum level separation. Let us recall that we can discriminate between two
tunnelling paths via the various quantum levels provided that the injection energy
window is ']ess than energy offsets between two successive levels. On this criteria, this
means that at SmV two quantum levels can be simultaneously involved with the
subsequent smear out of resonant tunnelling feature. With respect to operating
temperature issue, this criterion also determines the temperature robustness of

phenomenon by comparing the energy of SmeV to kz6.

In addition, the device with constant bias condition corresponding to the onset of the
second resonant peak (Vgg =012V and Vpg =02ml”) was exposed to the light
emission of a LED. The authors have found almost quite similar resonant tunnelling
structures which are displayed in Figure 4.3 with the plot of drain-source current

controlled by the bias LED current.

0=42K
Ves=0.12 'V
Vpe= 0.2 mV

o 2 4 6 8

Irgp [MmA] -

Figure 4.3 drain-source current as a function of LED current after [1].
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After this outline of key experimental results let us introduce a brief review on the
major modelling techniques applied to Field-Effect Transistors.(FET’s) by pointing out

the main assumptions.

First, we discuss the analytical modelling of MODFET’s and the resulting charge
control law, maximum 2DEG concentration and threshold voltage, ... On this bases we
investigate the validity of those analytical approaches for nano-structure. Then we
focus our attention to numerical techniques, namely Mont-Carlo, hydrodynamic,
quantum mechanical and hybrid methods. Finally, we describe the major physical and

numerical features of our model.

4.4 Review of FET’s modelling techniques :

Both, analytical and numerical models can be devided into two classes namely
classical or quantum mechanical approaches. On the other hand, subdivision can be
established with respect to the fact that the transport properties are treated at the
microscopic or macroscopic level. At last, there is some distinction which stems from
the non stationary effects notably local or energy models. In this context, numerous

theoretical approaches can be found in the literature which are briefly discussed below.

4.4.1 Brief review of analytical modelling techniques :

Analytical models are closed form expressions for the transistor DC and small
signal parameters. A physical based analytical model is very useful to get a first insight
into the device behaviour. Unfortunately, it often requires to make quite crude
assumptions which limits their validity for quantum-sized structures. Starting from the
conventional field effect control principle (details in section 4.4.1.1) we will discuss of

its application to heterostructure FET’s.
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4.4.1.1 Analytical models for conventional FET’s :

The first analytical model was proposed by Schockley [9] by introducing the
gradual channel approximation and by assuming complete depletion. Furthermore, it
was assumed that the depletion width is determined uni-dimensionally. It is clear that
this assumption is no longer valid for very short gates where fringing field, not to

mention non-stationary electron dynamics and non-isothermal transport, cannot be

neglected.

Later on, the origin of the drain current saturation was clearly established with the
works of Statz et al. [10] and Greben and Ghandi [11] by involving the carrier velocity

saturation at the drain side of the gate.

Shur [12] introduced the Negative Differential Mobility (NDM) effect by assuming
the formation of a high field dipole domain at the gate output region.

From the above introduction on the conventional FET analytical modelling, one can

summarises the most common assumptions as follows :

e the transport parameters are instantaneously dependent of the local electric field

(local models).
o the diffusion current is neglected (drift models).
o the substrate current is neglected.
o the gradual channel approximation is most frequently assumed.
o the zone under the gate are assumed to be completely depleted.

o the velocity-field (v-F) relation is often approximated by piece-linear model.

It can be concluded that the analytical models techniques are not able to describe
the sub-micrometer gate and a-fortiori the nano-gate device behaviour where the non-

stationary electron dynamics and the non-isothermal transport dominates the device

performance.
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As regards the heterostructure FET’s, the analytical models are besides, usually
based on the triangular-well approximation. In that case, the basic principle can be
understood but often these models failed to quantitatively predict the relevant features.
In addition, back injection, unintentional doping, screening effect are always

neglected.

4.4.1.2 Analytical models for heterostructure FET’s :

a. Charge control equation :

Figure 4.4 shows typical heterostructure FET (HFET) with the conduction band
variation under the gate. Solving Poisson’s equation in both sides of the heterointerface
taking into account the continuity of the normal displacement vector, we get the

following charge-control law [13],

€ , Eq. 4-1
ns=;l—3(I/p—l(D|+Vgs+‘AEcl—‘Ef”‘) 9
where,
([Nd 2. . . E(] 4-2
V= e (d - )~ is the pinch-off potential.

Vs 1s the applied voltage.
® is the built-in potential.
AE, is the conduction bend offset.

Other parameters are defined in Figure 4.4.
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Figure 4.4 schematic diagram of MODFET conduction band pr of le
along with the electric field.

b. Maximum 2DEG :

The maximum 2DEG concentration is obtained for the gate-less heterostructure

when the gate is too far from the heterointerface to affect the 2DEG.
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This is given by [14],

2N
= 2 (|- £

Iq. 4-3

_lEﬁ,,)z +N3 e? - Nye

Where,

N, is the doping concentration of the highly-doped material.
E, is the equilibrium Fermi level in the highly-doped material.
e is the spacer thickness.

It clear that e influences drastically the carrier density with subsequent impact on

transport properties.
4.4.1.3 Classical versus quantum mechanical models :
a. Classical models :

" In classical models, the Fermi-level is related to the 2DEG concentration through

either, Fermi-Dirac :

W .
E., -E (y) Eq. 44
M c
ng=|N.F,|———\ady
e |2
or Boltzmann statistics :
" 5
E;-Ey Eq. 4-5
ng = INC exp [f_ke_f_(f_)} dy
0 B%Yo

where N, is the 3D effective density of states and W is the effective quantum well

width and the integration is over space in the growth direction (y).



b. Quantum mechanical models :

In these models, the Fermi-Dirac statistics are weighted by the existence probability

resulting from the solution of the time-independent Schroedinger’s equation, this gives,

» W« Eq. 4-6
m kBeo (Ef" - E,) 2 q.
= —==In| 1+ —— | [ |W(y) | d
n, z} { e n { oxp (~o ) | [ YOI [
Where for the triangular well approximation, E; and ¥i(y) are given by,
( n2 ]l/a Eq. 4-7
E =|— 3qgF, n(i+3/4)/2|% ;i=0,12..
=57 [3afa(ivya)2]
* Eq. 4-8
2m gF, E; 1
lpr(«"')zA{ 2 : (}"?Fs)}

where 4; is the Airy function and Fj is the electric field at the heterointerface.

In both classical and quantum mechanical models, numerical techniques are
required to get a self-consistent solution for the 2DEG concentration. This numerical

approach shows that the (n, - E ) relation can be expressed analytically by the

following linear relation,

Eg =ang +3E,, 15x10'! > ng 2 sx10" em™2 Eq. 4-9

Where &F Vi denotes a constant value.
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Substituting into Eq. 4-3 gives the maximum 2DEG,

R IN, € lIq. 4-10
n‘,_\/ " (|A/| |E,, ]51f|) NGt - Nye
where
ca . Eq. 4-11
el =¢+—

By comparing Eq. 4-3 and Eq. 4-10, 1t can be seen that the physical meaning of (e,;)

is an effective spacer thickness. In fact the factor (ea/ ¢) accounts for the shift of the

effective centre of 2DEG charge from the heterointerface. This effective centre of
2DEG charge depends on the original used model i.e classical or quantum mechanical

model.

4.4.1.4 Charge control threshold :

This is the minimum voltage value for a gate effect onset. In other words, for gate

'voltages higher than threshold voltage, the 2DEG is no longer controlled by the gate

potential. This can be obtained by equating Eq. 4-1 and Eq. 4-3.to give,

2 Eq. 4-12
,N d? N, e*
qN 4 —\/BB+q d€
2¢e 2¢e

where (BB) denotes the band bending and is defined as,

glh_lq)] lE/b

BB=|AE|-|E,

_‘ E f"| Eq. 4-13

The above equations, address the electrostatic issue, assuming either semi-classical
Boltzmann/Fermi-Dirac statistics or quantum-mechanical occupancy. In other words,
the charge control and the relevant threshold voltage are now well understood

including the effect of doping, spacer thickness and gate voltage.
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In contrast, the lateral motion of electrons is treated under very simplified
assumptions and to overcome such drawbacks, it is often interesting to make use of
numerical modelling techniques. On the other hand, more accurate predictions about
sheet carrier density can be derived by self consistently solving the Schroedinger’s and

Poisson’s equations with realistic potential profile.

4.4.2 Numerical modelling techniques :

Numerical models are usually classified into three main categories, notably, the
microscopic quantum approach, the Mont-Carlo technique (MC) and the
hydrodynamic models. The microscopic quantum approach is an ab-initio modelling
technique which consider the electron dynamics on the atomic scale. It is evident that

such basic approach requires computing resources which are too important for

parametric studies of a real device.

One can conclude that the microscopic quantum approach simulates the microscopic
motion of electrons associated with their wave function propagation, under ballistic
conditions along with the microscopic perturbation effects of different scattering
mechanisms. In this quantum approach the most exact potential function created by the
different atoms of the lattice has to be taken into account. This is why this technique is

essentially devoted onto the study of material properties rather than device structures.

In this context, a so-called Mont-Carlo (MC) method is often performed by keeping
the microscopic character of the simulation. In brief, the band structure of the
semiconductor of concern is calculated using notably tight bending or pseudo-potential
techniques. The output data are the dispersion relationships in the Brillouin zone.
Subsequently, one can model the motion of electrons under both the deterministic
effect of the applied electric field and the stochastic effect of different scattering
mechanisms.' These methods are expensive from the stand point of computational time
and need very powerful computers. This is particularly true for describing transport
phenomena which involve electron motion in the whole Brillouin zone. The most

representative situation is the impact ionisation process which requires to take into
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account all the high energy sites for permitting the electron getting the ionisation

threshold energy.

Otherwise, different degrees of approximations have been proposed for alleviating
the physical complexity along with the computational effort. In the previous discussion
we spoke about a homogeneous material. Certainly, the description of a heterojunction
while concerning the microscopic treatment is further a challenging issue. So far, the

heterojunction is often treated by neglecting the different material mutual-effects.

On the other hand, the effective mass approximation is often assumed along with in
some cases a non-parabolicity situation by some fitting parameter. Nevertheless, MC
method can be considered as the most exact model able to intrinsically describes the
hot electron effect such as velocity overshoot, quasi-ballistic motion .... On the other
hand, by using this particle method, it 1s possible to predict all the key parameters of
an electron gas subject to any field force. Therefore, the variation of mobility, the
diffusion coefficient and both the energy and momentum relaxation times can be

calculated as a function of electron energy.

Such a knowledge, is determinant in the scope of hydrodynamic energy models
which are briefly discussed here after. The introduction of hydrodynamic treatment in
the sense that the electron gas is considered as a continuum of electron streams is
motivated by decreasing the computation effort. On the other hand, the numerical
random fluctuations of the results due to the probabilistic nature of microscopic studies

are avoided.

Reiser [15], K. Yamaguchi [16], and J. Bames [17] developed numerical local
hydrodynamic models for FET’s where the electron motion is governed by
hydrodynamic conservation equations in which the mobility and diffusion coefficients

are assumed to be instantaneous functions of local electric field.
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Blotekjaer [18] assumed the relaxation times, mobility and effective mass to be
instantaneous functions of the average electronic kinetic energy. He derived a set of
transport equations including energy conservation for two valley semiconductors based

on Boltzmann transport equation (BTE).

Shur was one of the first who proposed the use of MC steady state simulations to
get the energy-dependent transport parameters required to solve the hydrodynamic
conservation equations. This was believed to give the same degree of precision as MC

simulations but without the inherent numerical noise of MC techniques.

These numerical procedures were applied either in bulk situation or for uni-
dimensional device structures. In order to treat the two dimensional character, several
authors have introduced various level of approximations. Notably, A. Cappy [19] with
quasi-two-dimensional approach and Cook and J. Fery. The later [20] suggested to

solve the continuity equation in two dimensional whereas the energy equation was

considered one dimension.

In the present work, we are going to base our analysis on the model originally
developed by Ibrahim. This model published in reference [21] is a full 2D
hydrodynamic energy approach with self-consistent treatment of continuity, energy
conservation and Poisson’s equation. As stated before the non-stationary effect comes

from the energy dependent parameters derived from steady state MC simulations.

S. El-Azhary [22] and K. Ismail [23] exhaustively used the same model in MESFET
analysis and simulations. T. Shawki [24][25][26] extended the model to HFET’s
modelling and simulations. K. Sherif [27] used the same model for MODFET
simulation at cryogenic temperatures. We have extended the code to study the device

performance of dual-gate MODFET s [28][29].
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4.5 Model description :

We shall discuss the frame work of the model adopted here and then we introduce

_ the necessary modifications for including the quantum tunnelling effects.

Particle, momentum and energy conservation equations are obtained by taking the

first three moments in k-space of Boltzmann Transport Equation (BTE) :

I Eq 4-14
Y ovin+Lven=(Z) !
c1

4

This procedure leads to the following conservation equations for each valley of a

multi-valley semiconductor denoted with the index i :

e conservation of particles, »;

on, on; Eq. 4-15
’ =(«—') —-V,.(n; ;) 1
c ot

(4

e conservation of momentum, P (P> Pyis Pyi)

P, (CP, - O (nkyB,) Eq. 4-16
F=(G) -woras0- 20
e conservation of total kinetic energy, W,
c W, c W, Eq. 4-17
06" :(Cﬁ") SV, (W.5,)-V, .0k 05, +0.) + qnv, F 1
> c

c

The term V, .(Q,) accounts for the outward heat flow rate by thermal conduction.

For Maxwellian or any other symmetric distribution function the heat flow O, being

an odd moment of order three vanishes.

The terms, V,.(1; v;), V,.(P;.v;) and V,. (W,.v,) represent the rate of decrease of

n;, P,; and W, due to the outward flux i.e by convection.

IE)
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C(nkyB,;)

The terms, ¢ n;/°, and — o

represents the rate of increase of momentum
due to the electrostatic force and the electronic pressure gradient respectively.
The term ¢ n,v,;. I represent the power gained by electrons from electric field, and

V,.(n;kg 8,;V,;) represents the power lost by electrons in the form of electronic gas

expansion (decrease in electronic gas pressure).

. . . on; cP, oW,
Finally the collision terms, ( ,)”’) , ( ,\"') and (E—;—'—) represent the rate of
ct/, ct/, cr/,

change of n;, P,; and W; due to different scattering mechanisms. Assuming full

isotropy and the scattering rate to be dependent only on the average kinetic energy per

electron
3 * Eq. 4-18
L LV
w; = o ZkBe' + v
we get [18],
(5 "f) il ") Eq. 4-19
0t ¢ Tny (wi) Toji (wj )
(6’ -.iJ - ’7,~'77:\7,~ to4 - n,m:ii,. Eq. 4-20
2 = 0
ct T (W;) (%)
(6 ”/,) - ”I'")l' N "_]"Vj. - II,(W,— - “10) Eq 4_21
et/ t(w) T, ) T, (w;)

3 . . . .. .
where w, = —2—1(390 is the lattice energy. It is worth mentioning that despite the fact

that there is some exchange of particles between the valleys i and j, the net effect for
the incoming momentum point of view is zero. The later statement is based on the
assumption that the effect of scattering on the incoming momentum J4s completely

randomised. This explains the zero term in Eq. 4-20.
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The above conservation equations are too complicated to be of any practical use.
The difficulty mainly arises from the fact that one has to solve those equations in each
valley separately then coupling the results by the collision terms. The solution is to

find an equivalent single valley electron gas model.

4.5.1 The equivalent single valley electron gas model :

Such an equivalent single valley treatment can be achieved by taking the weighted

average of the properties of the constituting electron gases.

This is done for extrinsic semiconductors with shallow donors and no traps while
considering that the momentum relaxation time is one order of magnitude less than that
of the energy. Also assuming that the statistical average of product is equal to the
product of statistical averages, the following equivalent single electron gas
conservation equations can be written [21][26] :

0 Eq. 4-
(i—’t’-i-V,.(n\"f):O g-4-22
C

- kgb Eq. 4-23
nV:nuF—uV,(n—I-;—) 7

(8 - wo) E(] 4-24

T.(8)

5 o
£ IV (£)=qV.F—=V,.(nkgd ¥)-
clt n

where now the energy conservation equation is written for the total (drift +thermal)

average electron eneray.

These conservation equations in addition to Poisson’s equation represents the basic
hydrodynamic energy model characterising electron transport in non-degenerate, multi-

valley semiconductors and subjected to the above mentioned assumptions.
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4.5.2 Simulation of different types of boundaries :

In this section, we discuss the different types of boundaries and the relevant
boundary conditions. First, we shall describe in short the conventional procedures to
simulate the various boundaries which are used by most of the authors. Second we
shall investigate the validity of them and on this basis we introduce some

modifications.

4.5.2.1 Simulation of the gate rectifying junction :

The gate rectifying junction is modelled by introducing a value potential
(Vg = Vg exemally applica = ), in Poisson’s equation (@ = 0.8 Volt). As regards the

continuity equation, one of the following boundary conditions has to be used :

¢ setting the normal component of the conduction current intentionally to zero. This is
only valid for the usually used biasing conditions where the gate conduction current

should be zero. Under this condition the charge on the gate (n,) is determined from

the solution of the following particle equation ;

0 Eq. 4-25
Jo = p\inng - —8;()7ng9 / q)} =0
which yields :
qF, Eq. 4-26
Ng =Ng_j XP —m.Ay

It is found that this boundary condition yields unphysically a low gate conduction

current. This current is due to the numerical noise which is amplified by numerical

differentiation and exponentiation.



o the second boundary condition is based on the knowledge relevant to the Fermi-
level. Given that the gate zone is practically non-degenerate the Boltzmann

approximation holds and hence :
ng = N, exp (g, 1 kyb) Eq. 4-27

Using the above boundary condition, it can be shown that n, is much smaller than
the doping level. In counterpart, very high free carrier gradient might be a source of
numerical instabilities if this technique is applied on a coarse mesh size. However, the
usage of the above equation results in a more stable convergence and much smaller

numerical difference between the source and drain currents.

At cryogenic temperatures (4.2 K), both of the two boundary conditions result in a
gate charge n, practically equal to zero and both could be used without any preference.
This implies a very small time step to preserve the stability of the program which

increases the computational effort needed to achieve the convergence.

4.5.3 Source and drain shallow Ohmic contacts :

The source and drain shallow contacts are introduced to Poisson’s equation solver
as equi-potential surfaces with a fixed potential, zero for source contact and Vy, for the
drain one. As there is neither accumulation nor depletion (n = N,) across the biased
Ohmic contacts then, a fixed level of mobile-charge carriers (») is introduced. This
level of charge on the contacts is dependent on the donor ionisation probability which

1s highly dependent on the temperature.

In addition, the energy of electrons at the two contacts are set to the lattice energy.
Also, it is important to notice that usually there exists enough separation between the
nearest gate and the drain, so that the electrons are thermallised when they reach the

drain contact.

Usually the above boundary conditions are systematically applied in case of deep

Ohmic contacts which shall be discussed in the following.



- 4.5.4 Electrode-free surfaces :

Since the boundaries of the region under study are separated enough from the active

region, Neumann boundary conditions are usually applied :

cno on Fq. 4-28

no diffusion => —=—=0
iffu o oy
: ¢V oV Eq. 4-29
nodnft > —=—= !
x oy
N e (& Eq, 4-30
no energy dissipation = > = 5 =

-

¢ 0 )
where — for lateral surfaces and -~ for the vertical ones.
Ty ox

4.5.5 Simulation of heterojunction :

It is well known that the energy gain or loss across the interface of a heterojunction
can be described by means of a quasi-field. The magnitude of this field depends
strongly of the expected finite distance over which the transition from one matenal to

another is achieved. It is clear that for high conduction band offsets and rather perfect

interface over a distance of one atomic layer (=5 X), the magnitude of this field
becomes so high that this procedure is questionable. Nevertheless, over so short
distance the net effect is the change between potential and kinetic energies across the
heterointerface. In practice, this equivalent field is added to the electrostatic field,

solution of Poisson’s equation.
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4.6 Solution of Poisson’s equation :

Poisson’s equation is directly solved using the Matrix Double Sweep (MDS)
method [21]. The method is applied under a vanable mesh size condition. The MDS
~ method is the LU factorisation technique applied to five diagonal systems [30].
Although it is a direct and accurate method, it prohibits the use of adaptive mesh
refinement techniques due to the unacceptable éode slow down so that a suitable mesh
should be chosen from the first beginning of time iterations. The same method is used

in the previous chapters but in one-dimensional form.

4.7 Solution of the energy equation :

The energy equation is usually solved as follows :

Taking w, as the energy reference, the energy in Eq. 4-24 yields,

N =1 _ € Eq. 4-31
%—+\7V,.(s)=qv.F-—;V,-("kBe v)- 4
c

T (¢)

In finite differences Eq. 4-31 reads,

-

ceg

-

if Eq. 4-32

_ 10 1 2 3 3
=b) ey +b &t € 1+ i b ey

Eq. 4-32 can be written for all mesh points (ij) in one single vectorial equation,

(53}
™|

t=B_8.+/jl. Eq. 4-33

[9)]

Where B is a five diagonal matrix that does not depend explicitly on the energy

vector (§). The vector (/) which is the source term in the above vector equation,

represents the energy generation/dissipation terms,

- 1 -
gV F, =V, (1ks0 ) Eq. +-34
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In the energy conservation equation (Eq. 4-32), the general expression for the

elements of B are given by,

-1

b{’j = ( )+
° T E. .
R Lq. 4-35
1
_(Slvx ij+1/2 =52V i.j—l/’.’) + Ay (SSV)' i+1/2.5 =S4V i—l/2.j)
g >
. -1 - Lq. 4-36
ij L0l Yxij+1/2
Ax;
B2 +1 Eq. 4-37
T =——S V...
ij .0 Yxij-1/2
m.i
3 -1 Lq. 4-38
bi,j = Fs.? Vyi+l/2,j
4 +1 Eq. 4-39
bi,j = E‘% Vyi-1/2,f

The (s;, k=1, 2, 3 & 4) are introduced to the above formalism through the term
v.V,.(g) in Eq. 4-31, which is originally a part of the energy convection term
V,. W)=V, (ne .V ) in the non-simplified form of the energy equation (Eq. 4-17).

If one consider the temporal energy variation due to the energy convection only one

can write,

_az Eq. 4-40
ce SV, (£9)=8.V, (V)+7¥.V, (&) 7

ct convection

A general issue concerning the discretisation scheme stems from the fact that the
relevant convection terms depends of scalar as well as vectorial quantities. In practice,
all vectorial variables are defined at midway points between scalar-quantities mesh-
points. This means that a careful strategy must be followed when one ne'eds to evaluate

V.V,(e) at the (i,j) mesh point. The upstream method is chosen for its simplicity and

above all for the stability it creates with time evolution.
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Based on the upstream method the energy at the mesh point (1,j+1/2), (€ 4y/2) is

defined by,
1+ Sgn(vx i,j+l/2) 1- Sgn(v.\' i.j+1/2) E(]. 4-41
€ j+112 =& > T & j+1 5
1+sgn(v yi4172,5) T=sgn(v, 4172 ) Lq. 4-42
€ivn,j = Eiy 5 T €41y 5
where,
) {+1<:>vx_>_0 Eq. 4-43
sgn(v,) =
x -lov, <0
At last,
1-sgn(vy; j41/2) Eq. 4-44
§ =
! 2
_ 1+sgn(v,; j-172) Lq. 4-45
S = 2
_I=sen(vyih72,5) Lq. 4-46
53 = >
1+sgn(vy;_1/2,) Lq. 4-47
S$4 =

2
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4.7.1 The source term of the energy equation :

The energy equation between two successive iterations k and k+1 can be written as,

: i k—k+1 Lq. 4-48
A sf"‘;l A sf‘j Ag;; g
Al At At
where in the above equation,
A 8{",- Eq. 4-49
2= A2
At "
ko k+l Eq. 4-50
A Aei; —boAsk+l+Zb A* +8h_.cs LI A !
At B Ge;; Ot
and,
ah. ; 68,;., Afe 6h,._j Ak Eq. 4-51
Ce;; Ct oe;;
Simple algebraic manipulations leads to,
Eq. 4-52

ka1 ] ] 6h"~f 0 0 : c azk
c=

-~

ch,

EP L) are semi-updated and A? ; is calculated
Eij ’ .

b'_’

ij '1> ij>

Where, (b7 b, b &

directly using the analytical form of the energy equation with semi-updated values.

-

oh,; . . .
The physical effect of the term P L in Eq. 4-52 is that it accelerates/decelerates
. “ ’-J

the temporal variation of energy. This is simply as it sums over the term — in the

same equation.
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: ch,
Now we are addressing the evaluation of the term 3 L
€
) P oq. 4-5
Given that, hiy =4 9.F ==V, (n kg0 ) by 4-33
By simple algebra Eq. 4-53 yields,
v oo Eq. 4-54
hij = o Vi VoV, Vi =kg8lq
hence,
Ch; y W 2 5V Eq. 4-35
o (21-—V,,,v,) & _von OVg g t
ce ce p- Ce oe

2
. . . . . - q
A first order approximation is carried out by neglecting, VTE—u and the drift
pu- Cce

~—

. cv
component in — thus,
ce

6 171 v Eﬁd, 6 I/r E . 4-56
- ! = (21 - ’I/IVI’) - f - -~ th V V q
Cc¢ H ce cEt

which is the formulation usually used in the simulation of Field-Effect devices, by
taking into account the relaxation effects into account. Finally Eq. 4-52 is solved using
successive over relaxation method. In most cases, the numerical stability is even

achieved using a relaxation parameter equal one.



4.8 Solution of the continuity equation :

Let us recall the simplified form of the continuity equation (Eq. 4-22),

3 Eq. 4-57
v, (n7)=0 1
ot

Using finite difference, the above equation reads,

oy, +d v a? v g Eq. 4-58
a’ - ’-»] n{'i a’] I1,~’j+1 a".j "i,}._] ai’j ”i+19j. CIU "I'_Lj

0 1 ( 1 Eq. 4-39
i ;= \S1Vaxi 4172 =2V s '—1/")+—(~"*V i+1/2.5 = 54V pi-1/2 )
J xi, j+1/2 xi, j=1/2 3Y vi+l/2.j vi-1/2.j
ij ij
1 -1 Eq 4-60
Aij =y SiVxij+1/2
J xi.j+1/2
Ax;
2 +1 ~ Eq. 4-61
A ;= SaVaij-1/2
J
3 -1 E(] 4-62
a; ;= _Ay~ S3Vyi+l/2,j
!
4+l Eq. 4-63
ai ;= 7 S53Vyi-12,5
s Ayl LA )
€ upstream m 1 used and hence,
The upstr ethod is also used and h
1+ Sgn(vxi,j+1/2) 1- Sgn(vx i,j+1/2) Eq. 4-64
Mie1/2 = Mg 3 R p3
L+sgn(v i/, 5) 1=sgn(vy4,5) Eq. 4-65

Higp j=nij R
J J > J >



At last,

1+sgn(v i h12) Eq. 4-66
.S'] = 5
o 1= SgN(V e j-1/2) Eq. 4-67
52 = 2

T+sgn(v,i41/2.5) Eq. 4-68
3= 5

1-sgn(vy;1/2,5) Eq. 4-69
54 = 2

Finally Eq. 4-58 is also solved using successive over relaxation. In most cases, the

code converges with a relaxation parameter equal to 1.2.



4.9 Hydrodynamic model, results and discussions :

Before addressing the core issues of quantum devices, it seems interesting to
illustrate the capability of the numerical code described above. Primarily, this is done

to give a physical insight into the 2-D character.

For this purpose, we simulated a MODFET device having the structural parameters
depicted in Figure 4.5. With respect to the test vehicle discussed previously, here the
highly doped wide gap thickness is shrunk to 20 nm for a gate inter-distance of 40 nm.
Also, the simulations are conducted at room temperature to alleviate, in a first

approach, the problems in connection with very low temperature simulations.

The steady state results of this simulations carried out at zero gate and drain bias are
displayed in Figure 4.6 a and b. In practice, we started from the non equilibrium

charge distribution » (x, y)= N, (x,y) at zero time step with zero energy anywhere.

Source Gatey (Schottky) Gate (Schottky) Drain
(Ohmic) ~ 60nm 60nm (Ohmic)
0 7 40nm ————7 40nm ——_—) 60nm
20—‘,;1, n=1x1018 cni3
3nm spaccr AlxGaAs, x=0.25~0.3 AEC=0.23~O.3CV
HETJ . A
GaAs
n=1x1010 cni3
70nm
0 300nm

Figure 4.5 structural parameters and dimensions of the simulated MODFET device
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It can be seen that the built-in potential of 0.8 Volts depletes the active region at the
heterointerface beneath and between the two gates. This illustrate a situation where
there exists a parabolic like quantum-well in the channel between the two gates but in
the situation considered, it is empty despite the relatively high operating temperature.
Otherwisé, it can be noticed that the potential contours are highly symmetric with high

fringing effect for this structure on nano meter scale as expected.

To go further in the analysis, it could be useful to investigate now the importance of
the degeneracy effect on the resulting potential and Fermi-level distributions. For the

latter we used alternatively both Boltzmann and Fermi-Dirac statistics.

Figure 4.7 depicts the x-variation of potential in the channel in close proximity to
the heterojunction in the low-gap material, the Fermi-level in this figure is calculated
using Boltzmann statistics (a) and Fermi-Dirac statistics (b). A constant Fermi-level is
achieved using Boltzmann statistics (a) whereas a variation in E; is obtained with
Fermi-Dirac statistics (b). Let us recall that the choice between Boltzmann and Fermi-
Dirac statistics depends on the doping level in bulk matenial. In contrast, in
heterojunction the carrier concentration always reaches high values such that the

Fermi-level is pushed in the conduction band.

In order to fix some magnitudes relative to the degeneracy issue while including

both the carrier concentration and temperature effect, let us recall the well known

degeneracy limit [31] :

n /(k39)3 2 <1020 ¢em3. e 32 Eq. +-70



In fact, the above inequality (Eq. 4-70) is based on the definition of the so called
degeneracy factor y,. The last is defined for the first time in reference [32] to be the
ratio between the average electronic energy calculated with Boltzmann statistics

(3/2 k50) and the average energy calculated using Fermi-Dirac statistics for the same

temperature and electron concentration. This definition can be described

mathematically as,

S32 (", k 139) Eq. 4-71

Y= Fia(mksz0)

where f;,and f, are the Fermi integrals of orders 3/2 and 1/2 respectively. It is

worth mentioning that the inequality of Eq. 4-70 insures that y,; =1, under this

condition the Boltzmann statistics are valid.
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Figure 4.7 (a) lateral potential profile in the channel just after the heterojunction,
the Fermi level is calculated using Bolizmann statistics.
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Figure 4.7 (b) lateral potential profile in the channel just after the heterojunction,
the Fermi level is calculated using Fermi-Dirac statistics.



Tuming now to the vertical variations (y-direction) plotted under both statistics in
Figure 4.8, it can be seen that the Fermi-level exhibits some discontinuity particularly

using a Fermi-Dirac statistics.

From the Boltzmann statistics it was checked out that the slight discontinuity
(=8.3 meV) is invariant versus the lateral position (x-direction). Consequently, the
discontinuity is independent of the ratio between the charge concentration at both sides
of the heterojunction. In contrast, for the Fermi-Dirac statistics the more pronounced
discontinuity is a varying function of lateral position. Besides, the Fermi-level in (b) is
not constant in both the wide-band gap and narrow band-gap materials. Indeed, the
above mentioned conservation equations are not valid for the applications that having

effective mass discontinuities.

To venfy this effective mass dependence issue we plot in Figure 4.9 the vertical
potential distribution associated with the calculation of Fermi-level for both the light
and heavy effective masses. It is clear that the Fermi-level has a constant value

independent of the value of the effective mass.

We are now discussing the inclusion of the degeneracy criteria in the conservation
equations discussed above, then after we shall investigate the effect of effective mass
discontinuity at the heterointerface on the continuation of the Fermi-level. We will
start by the model proposed by Azoff in reference [32] which will be denoted hereafter
by Azoff model.



0.

0.15

Volts

20

0.10

0.05

0.00 W

1 /]

0.06 0.07

-0.0

5 1
0 0.01 0.02 0.03 0.04 0.05
vertical distance (um)

Figure 4.8 (a) vertical potential profile in the region under the source electrode,
the Fermi level is calculated using Boltzmann statistics.
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Figure 4.8 (b) vertical potential profile in the region under the source electrode,
the Fermi level is calculated using Fermi-Dirac statistics
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Figure 4.9 vertical potential profile in the region under the source electrode,
the Fermi level is calculated using Boltzman siatistics for both heavy and light masses.

" 4.10 Azoff degeneracy model :

The basic idea of this model is to rép]ace the thermal energy (3/2 kz0) which is the

average energy calculated at thermal equilibrium in Boltzman statistics distribution

(Eq. 4-72) by the average energy calculated by means of Fermi-Dirac statistics.

Eq. 4-72
Gap exp(ejB -g/ kBO) e de

§ j@+—8

3/2](36:

Gsp exp(e s -&/ kpb) de

O ——y

It can be shown that the relevant results can be expressed as a function of ;6 by

introducing a correction factor y; (Eq. 4-73) (see also Eq. 4-71).



Gsp fi2 € dE
3/2 kBY de

Gsp fip de

Il
S ey 8§ |O = 8

This means that the total energy (drift +thermal) in the above conservation equations

is mathematically described in this approach by the following equation,

1 « 5 3 E(] +4-74
e=—m v +—kgy 0

5 > BYd
In other words, this is equivalent to replacing the electronic temperature 8 by an

effective temperature (y ; 8) in the above conservation equations.

In order to investigate the validity of the well established E. M. Azoff model [32]
(Eq. 4-74) also used by many others ([26], [31]), we applied Eq. 4-74 for simulating
the same device described in Figure 4.5. The two dimensional steady state potential

contours along with carrier concentration distributions are depicted in Figure 4.10.

The main difference in Figure 4.10 and Figure 4.6 is a spreading in carrier 2D
patterns in the populated regions at the heterojunction. On the other hand, it can be
seen that the potential contours are quantitatively modified with notably a significant
decrease in the vertical field (y-direction) in the channel. This moderates the -

conduction band bending effect resulting in a less confinement.
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Figure 4.10 (a) equilibrium distribution of potential contours

Jor the device described in Figure 4.5 with Eq. 4-74.

Figure 4.10 (b) equilibrium distribution of charge contours
for the device described in Figure 4.5 with Eq. 4-74.
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Let us now investigate the impact of Azoff correction (Eq. 4-74) on the Fermi-level
profile. Starting first with the problem concerning the lateral profile, Figure 4.11 is a
plot of the Fermi-level (E() profile from the source to the drain in the channel in close
proximity to the heterojunction. This profile shows unphysical space dependence. On
this basié, it seems intefesting to investigate the variation of E; at various depths in the
vicinity of the heterojunction. Three cases are considered in Figure 4.12, where a, b
and ¢ situations corresponds to locations on the channel, very close to the
heterojunction and in the spacer layer respectively. Whereas the space dependence is
slight for a-case, big differences are detected for b- and c-case. Hence, it can be seen

that Azoff model failed to achieve a perfect flat Fermi-level along the x-direction.

0.25

0.20

0.15

0.00
-0.05 L 1 ' . 1 ]
0.00 0.05 0.10 0.15 0.20 0.25 0.30

lateral distance (um)

Figure 4.11 lateral potential profile in the channel in close proximity the heterojunction,
the Fermi level is calculated using Fermi-Dirac statistics
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Figure 4.12 lateral Fermi-level profile at different depths, (a) in the channel,(b) in the
channel close to heterojunction,(c) in the spacer layer. Fermi level is calculated using
Fermi-Dirac statistics

Also it can be noticed that, the discontinuity of Fermi-level (the difference between
a-case and c-case) does not maintain a constant value in the x-direction. In contrast at
the region under the gates where the electron concentrations are low enough to apply
Boltzman statistics, this discontinuity is kept constant equal the same value depicted in

Figure 4.9 (= 83 meV).

Now, we will investigate the degeneracy effect in the vertical or growth direction
(y-direction). For this purpose the vertical potential profile along with the Fermi-level
are depicted in Figure 4.13. From this figure, one can also notice the discontinuity in
the Fermi-level profile at the heterojunction. Now the discontinuity is not only a
function of the effective mass jump but is also a function of the degree of the abrupt
change in the electron concentration. This gives rise to an additional complication to

the interface problem that has to be solved to achieve a flat Fermi-level profile.
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Figure 4.13 vertical potential profile in the region under the source,
the Fermi level is calculated using Fermi-Dirac statistics

At last, to give an overall picture of the Fermi-level distribution in the cross section
of the device, the 2D-contoures (labelled in meV) of the Fermi-level are depicted in

Figure 4.14.
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Figure 4.14 Fermi-level contours labelled in mel”.
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One can deduce that the Fermi-level contours (Figure 4.14) follow the charge

contours depicted in Figure 4.10b.

Now we are proposing an original model that able to give a flat profile based on a

physical picture of thermal energy.

4.11 Novel degeneracy model :

In Azoff model, the average energy defined mathematically by Eq. 4-73 is
considered totally as a thermal energy. However, 1t is quite physical to assume that the
random motion of electrons at a finite temperature involve a transition between
occupied and empty states [33]. In other words, it is necessary to include the degree of
occupancy of states. Under this basis one can expect an effective threshold level of
energy for the onset of a particle thermal motion. In the following we will denote this

threshold as the degenerate potential.

Mathematically, the thermal energy (3/2 k36 ) can be calculated in the framework of
the Fermi-Dirac statistics as follows,
Eq. 4-75

]SG:;D f12( 1- f]/g) € de
3/2kg0 ="

Gsp fra de

O t—— §

where the term (1- f}) is introduced for describing the available empty states

needed for the thermal agitation. The above formula is quite general. When there is a

full occupancy ( fi» =1) below the degenerate potential the contribution in the integral

vanishes. This energy term can be considered as a potential energy. Its average value

reads,

Vd—a\'arage =3/2 kB 6 (Yd -1 ) Eq. 4-76
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Now, we have to derive this degenerate potential considered as a correction factor.
For this purpose we will consider the limit of zero temperature. In that case the step-
like Fermi-Dirac profile gives a straightforward relation between the maximum
threshold value and the average degenerate potential. This results in a factor of two

such that,
Vd—max. =2x 3/2 kB 0 (vg-1) Eq. 4-77

At last, to treat the maximum degenerate potential (Eq. 4-77) with an analogous way
to that of the thermal part of energy in the conservation equations, we have to divide

Eq. 4-77 by the factor (3/2). This results in the degeneracy additional potential to be,
Vi=2kgO(vy-1) Eq. 4-78
Finally, it can be shown numerically that,

Vd =€ E(] 4-79

Hirermi-Diraey ~/Negotemann)

It is worth mentioning that the effect of the above degeneracy correction is included
in Eq. 4-23 and Eq. 4-24 by including an additional electric field defined by the spatial
gradient of V; depicted in Eq. 4-78 or Eq. 4-79.The above formalism is systematically
applied to the same structure described in Figure 4.5 and the two dimensional
simulation steady state results are shown in Figure 4.15. From Figure 4.15 (a) one can .
deduce that the potential contours under the gate are shifted downwards with respect to
those plotted both in Figure 4.6 and Figure 4.10. Although the channel is still
practically depleted (see Figure 4.15 b) the device exhibits a less gate control on the
2DEG with respect to the above simulations of Figure 4.6 and Figure 4.10. For the
illustration purpose, we showed in Figure 4.10 (c) the two dimensional contour
representation of the degenerate potential V,; The correlation between the charge

distribution and ¥ is quite clear.
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Figure 4.15 (a) steady state equi-potential lines resulting from the new generate model.
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Figure 4.15 (b) steady state charge contours resulting from the new degencrate formalism.
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Figure 4.15 (c) the degenerate potential contours (Vy) in meV’
associated with the above shown charge contours

On the other hand, to illustrate the advantage of the new formalism over Azoff
model discussed in section 4.10, we plotted the lateral potential distribution along with
the Fermi-level profile in the channel just under the heterojunction in Figure 4.16. the

degenerate potential V; are also illustrated.
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Figure 4.16 the lateral potential distribution along with the Fermi-level profile and the
degenerate potential V4 in the channel just under the heterojunction
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The flat Fermi-level in the above figure is remarkable as compared to the space
variation obtained by means of the model of Azoff illustrated previously in Figure 4.11

and Figure 4.12. Also plotted is the degenerate potential V; along the lateral axis.

Nevertheless, in the growth direction there still subsists a slight jump in the Fermi-
level profile at the heterointerface. This is illustrated in Figure 4.17. At first glance, the
discontinuity in the Fermi-level in this figure (=10 me}”) is identical to that obtained in
section 4.9 (Figure 4.8 and Figure 4.9). Therefor the last important issue to discuss is

the continuity of Fermi-level across the heterojunction considered in the next section.

0.20

~x~x_x-a<~x—x-x.x)‘

-0.05 L L L L . .
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
vertical distance (um)

Figure 4.17 the vertical potential distribution along with the Fermi-level profile and the
degenerate potential Vg in the region under the source
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4.12 Fermi-level continuity across a heterointerface :

From the above discussion one can conclude that the Fermi-level discontinuity is
function of two variables. The first one is the discontinuity of the effective mass at
both sides of the heterojunction (see also Figure 4.8, Figure 4.9 and Figure 4.17). The
second is the electronic temperature at the interface between the two semiconductors
(see Figure 4.11 and Figure 4.12). Taking advantage of the independence of this
discontinuity on the charge concentration, we will deduce the necessary correction

based on the Boltzman statistics distribution for sake of simplicity.
n=N_exp(e, —€./kzb) Lq. 4-80

where,

NC=2 o]

(27{ m*kg 6) Eq. 4-81
h-

By simple algebra we can prove that the additional potential V4 required to

eliminate the Fermi-level discontinuity reads,

} P —‘ ! ¢ Lq. 4-82
3 3 +

hty

where 8, and 8, are the electron temperatures on each side of the heterojunction.

We introduce a difference in the temperature so that this model can be generalised
to the model of Azoff discussed in section 4.10. Let us recall that in this model an

effective temperature (y, 8) is introduced. In the present case of isothermal analysis

the second term vanishes. Given m, =.0836, m,=.067 and 6 =292 K one can calculate
8.364 meV as the discontinuity additional potential. At last we include an additional
potential gradient across the heterointerface in Eq. 4-23, the results are represented in
Figure 4.18. Both the lateral and the vertical Fermi-level profiles are ,now flat with a
full analysis based on Fermi-Dirac statistics. For completeness we also plotted the two

dimensional contours of both the potential and the charge density in Figure 4.19.
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Figure 4.18 (a) the lateral potential distribution along with the Fermi-level profile in the
chaimel just under the heterojunction
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Figure 4.18 (b) the vertical potential distribution along with the Fermi-level profile and the
degenerate potential V4 in the region under the source '
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Figure 4.19 (a) steady state equi-potential lines resulting from the new generate model.
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Figure 4.19 (b) steady state charge contours resulting from the new degenerate formalism



4.13 Model application at low temperature (4.2 K) :

From the previous sections, we are now able to simulate degeneracy along with
heterojunction devices while conserving the validity of the Fermi-Dirac statistics. At
" this stage, it remains to study the limitations of applying the hydrodynamic model
discussed above under very low temperature conditions. This will concern two key
points : (i) the usually used initial condition, (i1) the validity of shallow Ohmic
contacts for the source and drain. Also we shall discuss the scaled solution of the

above conservation equations.

The first problem we are facing by assuming a low temperature operation concerns

the usually used initial conditions :
n(x,y)=N,(x,y)and e(x, y)=0 Eq. 4-83

This gives rise to numerical instabilities due to the relatively high value of the
mobility at 4.2 K. This motivates us to apply a scaled solution for the above
conservation equations. The basic idea is to slow down the instantaneous motion of
mobile carriers by means of a scale down factor M. All the key relevant figures in the
conservation equations are affected by this factor notably the mobility and energy
relaxation time. The conservation equations now reads,

% - Eq. 4-84
%+V,.(nv)=0 1
ct

- K g0 Eq. 4-85
nv=nMupF-MuV _|n p
e . (e-w,) Eq. 4-86
-+v.V =qVv.F-—=V,_  (nKgbv)- ———=
Py +v.V, (e)=qvVv . (nKgov) t ()] M
Where,

e M is a dimensional-less temporal scale factor smaller than unity.



o1 =1 x M,isaslowed down time with respect to the real time .
e all the other symbols have their conventional meanings.
At last, the output data are expressed by suppressing the scale factor.

The above idea is systematically used for simulating the device described previously
in Figure 4.5 at 4.2 K. The resulting channel potential profile along with the Fermi-
level are depicted in Figure 4.20. The free mobile carrier concentration in the inter-
gate zone is so low that it is impossible to define the relevant Fermi-energy. In
addition, one can note a slight offset between the left and right hand sides of the figure
despite the fact that the device is unbiased. This reflects the drawback resulting from
the initial conditions stated in Eq. 4-83. In fact, the built-in gate potential (0.8 V) is
seen by this initial charge distribution as an abrupt voltage step. In the beginning of the
time iterations, this voltage step depletes the inter-gate zone, finally the electrostatic
barriers are formed before the charges reoccupy the inter-gate region. As the
temperature is very low (4.2 K) the thermally activated current is not able to surmount

the formerly generated barriers.
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Figure 4.20 potential profile in the channel along with the Fermi-level.



4-54

From the other hand, the vertical potential profile along with the Fermi-level in the
region under the drain shallow Ohmic contact are depicted in Figure 4.21. In this
figure, one can note that, although the temperature is very low to minimise any
- discontinuity in the Fermi-level across the heterointerface (see also Eq. 4-82), the later
level exhibits a non-acceptable discontinuity at the heterojunction. The reason is also
that, the heterojunction barrier is created before the Fermi-level reaches its attempted
flat profile. At this instant, the thermally activated carrier concentration is not
sufficient to recover this unwanted discontinuity. This means that the shallow Ohmic
contact in this specific situation is not able to access the 2DEG conduction channel.
The solution 1s to simulate (as in the fabricated device of reference [1]) the deep

Ohmic contact.

As a matter of illustration, the two dimensional contours of both, the potential and

the carrier concentration are displayed in Figure 4.22.
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Figure 4.21 vertical potential profile along with Fermi-level in the region under the source.
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Figure 4.22 (a) steady state contours of potential.

70

0 300

Figure 4.22 (b) steady state contours of charge density.
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4.14 Simulation of a deep Ohmic contact :

Previously, we have conventionally considered a shallow Ohmic contact. However,
under very low temperature conditions, it appears extremely difficult to contact by this
means the 2D-gas. Indeed, the potential barrier at the heterointerface oppose very
efficiently to the electron conduction with no means to take advantage of thermal or

tunnelling assisted charge transfer.

In reality, the assumption of a shallow Ohmic contact is questionable in the
GaAs/AlGaAs technology which makes use of annealing process for alloying the
metal-semiconductor interface. Such a thermal treatment induces inter-diffusion of
Gold and Gallium. A deep Ohmic contact is thus formed (Figure 4.23). In that
particular case, it seems difficult to distinguish between the wide and the narrow band-
gap materials. In addition it is unreasonable to assume that the material characteristics
will be preserved in the vicinity of contact region with such a thermal treatment. On
this basis, it is acceptable to assume that there exists a finite transition layer between

_the metal characteristics and semiconductor properties.

On the other hand, the way in which the structural properties of this transition layer
are varying in the contact growth direction could be simulated by means of any
monotonic function. Moreover, we assumed that the thickness of this transition layer is

much less than the distance between the active zone and the Ohmic contact itself.
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Figure 4.23 schematic diagram illustrating the vertical transition zones associated with the
vertical QOhmic contacls.
The dashed lines represents the boundaries of the simulated region.

Let us recall that in the test vehicle considered in the present work, the Ohmic
contact are located very far from the active zone. Hence it seems useless to include the
whole structure in the simulation code. A first method to reduce the simulated zone is
to bring artificially closer the Ohmic contact and the active region. However, it is
worth noting that the transition region has to be conserved in order to avoid any
artefact between the contact region and the heterojunction. Therefore a second
approach is to simply model the boundaries between the active zone and the |

equilibrium zone as it is illustrated by means of dashed lines in Figure 4.23.

In this situation, we assumed that a vertically constant Fermi-level exists at the
vertical boundaries of the active zone rather than a constant equi-potential value. On
the other hand the uniform constant charge distribution is replaced by the charge
distribution associated with this constant Fermi-level. In the present work this
equilibrium distribution was obtained using Thomas-Fermi approximation, but it can

be calculated using any other distribution function statistics.



4.15 Notes on the thermal part in the energy equation :

Let us recall the energy equation and rewrite it while separating the thermal and the

drift energies as follows,

E=8y tEqpn Lq. 4-87
Cley +e4) =1 ~ (8,,+8d—w) Eq. 4-88
#—+V.V,(s,,,+ad)=qv.f‘—;V,.(NKBOV)— 'ts(s) ¢
by simple algebra we get,
C(ey, +e4) - . - (8h+8d—w0) Lq. 4-89
#+V.V,(e,h+ed)=qv.17ne, —Kz0 V,.( v)-—’—ts—(:)——

where F,, is the net deriving force (drift - diffusion) reads,

. Eq. 4-90
Fo =F-—V (n1K40) 7
n

net

Thus Eq. 4-89 can be separated into two equations as follows :

een) o (em-w,) Eq. 4-91
—+v.V =- V. ¥)-———mm—=
ot +Vv r(SIh) ]<Be r (V) TS(S)
c(eg) . = (ad) Eq. 4-92
+v.V =gqv.F,, ——
6’ v r(ed) qV.>ryy rs(s)

Where now Eq. 4-91 is written only for the thermal energy and Eq. 4-92 for the drift
one. This means that the thermal energy directly derived from the Monte-Carlo data is
not sufficient to calculate the thermal part of the electron energy. This is because the
thermal energy of Mont-Carlo data is solely the part of thermal energy associated with
the drift one. On the other hand, the remainder of the thermal energy, resulting from

any local decrease or increase in electronic pressure KbV, .(V), is not included in

Monte-Carlo data. In contrast, one can calculate this thermal energy remainder by
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means of Eq. 4-92. Not to mention that the term K ;0 V, (V) with a uniform average

velocity in Monte-Carlo simulations vanishes.

This helps us to correctly describe the thermal cooling problem and the time
analysis of the simulations, not to mention the effect of the calculated thermal energy
(drift associated + pressure associated) on the counterbalance between the drift and
diffusion forces. The correction outlined above could be theoretically applied to a
strong cooling process between room temperature and liquid Helium temperature. Such

a procedure is directly linked to the general 1ssue of feeding [34] the central inter-gate

parabolic-like quantum-well

Previously, we have shown that the electron density within this region is practically
zero at low temperature with no means to supply this region by means of tunnelling or
thermal supplying processes. However, such a situation of complete depletion seems
questionable with a strong influence of initial condition and/or the bias history. Now,
when we use Thomas-Fermi approximation as the initial condition we obtained the
results displayed in Figure 4.22. In the following we will start from this potential

distribution which seems more realistic to address the nature of quantum transport.
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Figure 4.24 lateral channel potential profile along with the Fermi-energy.
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As a general rule, we believe that the Thomas-Fermi approximation has to be used

as the initial condition in simulation processes specially at low temperatures.

_ 4.16 Leburton’s model :

In this section, we will investigate the model proposed by Leburton et al. [35]. In
this model the adiabatic approximation is assumed to be valid. Under this condition the
authors decoupled the 2D-dependence of Schroedinger equation into vertically and
laterally solutions. The vertical one gives the ground energy position in the quasi-
triangular quantum well. The lateral one gives the information about the lateral
transmission probability. To investigate the validity of such an approximation, we
calculated the potential along with the charge concentration firstly under the
assumption of full donor ionisation. Figure 4.25 depicts the two dimensional
distribution of both the potential and the charge concentration for the device under test
considered before. From this figure one can detect that the device of a 50 nm-thick
wide-band-gap semiconductor, doped 10" em?, is normally-on under the assumption
_of full jonisation which contradicts the experimental data. Such a disagreement can be
overcame either by assuming first a shrinking in the doped epilayer thickness or by

revisiting the assumption of full ionisation.

Let us consider now these assumptions respectively with firstly the simulations of a
20 nm-thick wide-band-gap layer. This results in the potential and charge distributions

depicted in Figure 4.26.



4-61

HETJ

165.8

0 3033

Figure 4.25 (a) potential contours in case of full ionised donors of 10 cm™ in the
wide band gap material of about 50 nm-thick.

HETJ

165.8
0 303.3

Figure 4.23 (b) charge contours in case of full ionised donors of 10’ cni™ in the
wide band gap material of about 50 nm-thick. .
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Figure 4.26 (a) potential contours in case of full ionised donors of 10’ cnr™ in the
wide band gap material of about 20 nm thick
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Figure 4.26 (b) charge contours in case of full ionised donors of 10’ cm™ in the
wide band gap material of about 20 nm thick



In Figure 4.26 one can note the formation of a confined chérge in the inter-gate
region between completely depleted zones under the two gates. Figure 4.27 illustrates
the potential profile in the 2DEG channel just under the heterointerface. In this figure,
the extensions of Fermi-level under the gates are plotted in dashed lines. Indeed, in the
channel under the gates, the Fermi-level is not determined because the charge
concentration in these zones is practically zero. Also it can be seen that the inter-gate

zone is isolated from the adjacent zones. Nevertheless, we assume that the Fermi-level

1s constant everywhere.
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Figure 4.27 lateral channel potential profile detected from the
two dimensional distribution of Figure 4.26 (a).

To calculate the ground state of the quasi-triangular quantum well at
heterointerface, one can either restrict the calculation to this quantura well itself or

take all the vertical diminution into account.
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In the former, we assumed a closed system with an infinite barrier height at the
heterointerface. In the latter, the simulated domain of the closed system was defined
with an infinity barrier height at the lateral free surface. As expected, an enlargement
. in the simulated domain results in a decrease in the energy position of the ground state.

Figure 4.28 illustrates the ground state calculated using the two methods.
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0.02 . .
vertical distance _«
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lateral distance (nm)

Figure 4.28 ground level profile calculated using different methodes.

Also depicted in Figure 4.29(a) are the family of lateral profile of ground state
(based on the vertical dimension taking as a whole) for various gate voltages. In this
figure (b) the corresponding transmission probabilities are also shown. Also plotted is
the Fermi-level (E;) position in order to investigate the crossover condition between Eg¢

and the resonant peaks.
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Figure 4.29 (a) lateral profile of heterointerface ground level for various gate voliages.

10

02V

Y
o
T

Ln(Transmission)
A & R
(=] o o

60

'

1 1 il 1

40

50

60

70 80 90 100 110
energy (meV)

Figure 4.29 (b) transmission probability calculated for the potential p/'(‘)'ﬁles of (a).
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At Vg = V, = 0.1 Volt, six resonant peaks are clearly apparent in the energy
window from E; (= 50 mel” ) up to the barrier height (=100 me}”). When the gate bias
is increased to 0.2 Volt only one sharp resonant peak can be detected. The resoﬁant
- features in the 1-V characteristics are the reflect of the crossover between the resonant
peaks and E; On this basis it can be seen from Figure 4.29(b) that only the nearest
quantum level with respect to E¢ satisfy this condition. From the current-voltage
characteristic point of view this means that only one peak should be measured in
contradiction with the experiment. Nevertheless, it seems interesting to quantitatively
calculate this resonant tunnelling contribution with the following procedure. As a first
remark, it is important to distinguish between the lateral 2D injection described by the
lateral 2D supply function (Eq. 4-93 [35]) and the vertical 2D injection discussed in
the previous chapters.

* Lq. 4-93
SFIaleml = quv(s);:_;lz_[fl/Z(s - qus/z) - fl/2 (8 - qus/z)] 7

where now v(g) is the lateral velocity in function of lateral energy € and all the other
‘variables have their usual meaning. Vy is equal 0.2 mV. The I-V characteristics, wé
calculated, is plotted in logarithmic scale in Figure 4.30. As expected the tunnelling
current peak value is very low in agreement with experiment due to the wide

electrostatic tunnelling barriers.

The fact that the resonant states of the transmission probability disappeared before
reaching the crossing point with Fermi-level is due to the tapered shape of the
electrostatic barriers (see also Figure 4.29). Although the calculated current value is
acceptable as compared with experiment in [1] (1nA), the broadening of the calculated
current peak is extremely under estimated. In addition, the number of peaks in the
device under test was three whereas only one peak was calculated at this stage of
work. At last, the peak voltage is also highly over estimated with respect to the

experiment.
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Figure 4.30 I-V characteristics resulting from the integration with respect to energy of the
transmission probabilities of Figure 4.29 (b) times the lateral injection supply function.

In an attempt to get a closer agreement with experiment Leburton et al. [35]
proposed a purely phenomenological approach, which takes the interface disorders into

account. A Fermi-like distribution profile was assumed with an interface disorder

potential which reads,

, , 2 Eq. 4-94
9Vpo (%, )= [V (%, ») = Vi ()] x - . -1
1+ exp(aDO[L max (V) =V (x, y)])
Vinax (V) = Viin ()

Where o 1s a fitting parameter. (in the analysis of [35] a pp 1s chosen to be 15).

The main goal of introducing of interface disorders was to sharpen the shape of the

barrier. In our case, we tried to introduce an equivalent effect by means of different

magnitudes namely 10'® cm™ and 1.5 10'® cm™ respectively.
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The main difference between Leburton’s correction and our approach is that we
introduce a disorder on the charge level whereas Leburton et al. tailored the potential
by means of a disorder potential. Nevertheless, it seems that the assumption of non
* perfect heterointerface in the present status of technology is the earlier idea to be

invoked. In the following, however, we shall prove that this has a second order effect.

It 1s worth noting that the gradual interface-energy discontinuity is formerly
assumed in our model. The ionisation probability of these interface donor-states are

described by a Fermi-Dirac like distribution described in Eq. 4-95.
N Eq. 4-95

+ _
ionised =

1+2exp(e; —€on)

Where N is the maximum interface disorder states, N} .., is the effectively

ionise

ionised interface disorder states and ¢,,, is the ionisation energy.

The iso-potential patterns are shown in Figure 4.31(a) for N=10'® cm® and

Figure 4.31(b) for N;=1.5 x 10" cm™.

Comparing the two cases represented in this figure, one can deduce that the effect of
interface disorders is to increase the effective gate bias voltage as seen by the 2DEG in
the conduction channel. This can be directly pointed out by noticing the 0.4 V voltage
contour in the above figure. For seek of clarity, we plotted in Figure 4.32 the potential
profile for different interface disorder states concentrations. The general trends of the

laterally varying potential profile are similar to that displayed in Figure 4.29(a).

This means that the introduction of various interface charge concentrations has
overall the same effect of varying the gate bias voltages. Under the same scope, let us
recall that experimentally the authors of reference [1] obtained the same current profile

under optical control conditions (see Figure 4.3).
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Figure 4.31 (a) potential contour representation when the interface density of disorder states
are N,=10" enr™
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Figure 4.31 (b) potential contour representation when the interface density of disorder states
are N,=1.5 10" cmr™®
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Figure 4.32 lateral potential- profile for different interface disorder conditions.

In conclusion, the impact of introducing additional sheet charge concentration or
resulting potential modifies only the barrier height but failed to sharpen the potential
profile. Therefore, it seems that such an approach is too phenomenological and it was
decided to test other work assumption while conserving the real device topological

dimensions.

In contrast to the previous section, we will investigate the effect of including a
partial ionisation probability while maintaining the original vertical dimensions of the
measured device. At very low temperature (4.2 K) it is expected that the donors will be
partially ionised. Also the optical control measurements in [1] support this assumption.
The optimisation criterion is that the device should be at the onset of conduction at
gate bias of 0.1 V [1]. To met this condition, 13 % of the donors are assumed to be
effectively ionised. Besides the inter-gate distance was slightly increased up to 77 nm
rather than 60 nm which was the nominal inter-gate distance of the device
experimentally characterised. It is believed that this difference in geometry is within

the technological tolerance.
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The resulting potential profiles, displayed for various bias conditions are depicted in
Figure 4.33. Let us recall that previously in Figure 4.29(a) only the electrostatic barrier
height is influenced by the gate bias. In contrast, here, not only the barrier height but
also the depth of the electrostatic quantum-well is decreased with the gate potential.
The conéequences are directly detected when we compare the family of transmission
plotted in Figure 4.29(b) with Figure 4.33(b). The former demonstrates that only one
resonant transmission peak crosses the injection Fermi-level whereas in Figure 4.33(D)

three peaks satisfy the cross-over condition.

However, these studies illustrate clearly the trade off between the trends of
experimental data versus the bias control and the quantitative agreement notably for
the current magnitude, the inherent broadening and the voltage peak positions. In
particular, the present numerical experiment, we succeed to represent the voltage
positions but loose the feature of good agreement in current peak values. Also, the
broadening of the measured current peak is extremely under estimated in both
theoretical approaches. Before ending this discussion, it seems interesting to consider
further improvements in theory on the basis of what we learned through out this thesis.
There exist two important issues to be discussed, notably, the voltage broadening of

current peaks and the peak current value as compared with experiment.
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Figure 4.33 lateral profile of channel potential for various bias conditions.
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Figure 4.33 (b) transmission probabilities calculated for the potential profiles of (a).
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Figure 4.34 I-V characteristics for the first resonant peak.

In our opinion, one of the kernel issues is that we described the resonant tunnelling
process in a two-dimensional potential function using simply the one dimensional
tunnelling lateral model. This is in strong contradiction with the simple view of current
lines normal to the equipotentials which exhibit a pronounced 2D real space character.
In the following, we are discussing the expected impact and proposing original tracks

for modelling a real two dimensional real space tunnelling process.

4.17 Proposal for 2D tunnelling model :

Let us redraw a schematic diagram dividing the device cross-section into classically
allowed propagation regions and classically forbidden barrier zones. This is shown in
Figure 4.35, where the hatched areas represent the propagation regions while the clean

areas correspond to the depleted ones.
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HCTJ

Figure 4.35 schematic diagram illustrating the classically allowed regions (hatched area) and
the classically forbidden zones (white area).

Let us now investigate the source injection zone. Indeed, the vertical confinement is
much more pronounced as compared with the lateral one. This gives rise to the vertical
ballistic velocity to be much higher than the lateral one. This gives rise to a vertical
‘normal-injection analogous to the 2D injection extensively studied in the previous
chapters. The result is an appreciable increase in the injection efficiency with respect
to the lateral one described above by Eq. 4-93. It remains to discuss the most probable
tunnelling path. In fact, intuitively, an electron will chose to cross the 2D real space
barrier at tracks where the path integral attenuation is minimised. This is the first
guide-line from the quantum transport probability point of view. Indeed, the direct
lateral tunnelling path which is used all over the analysis before is not the one which
minimises the attenuation experienced by the tunnelling electrons. This in turn, will
consequently increase the transmissivity of each electrostatic two-dimensional barrier
and hence the overall transmission probability. The electron real space trajectories are
schematically illustrated in Figure 4.36 along with the generic electron motion in the

classically allowed regions with a very efficient vertical injection.
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Figure 4.36 schematic diagram illustrating the ¢lectron trajectories both in the propagation
and the tunnelling regions (hatched aria).

In partial conclusion, it is expected that both the improvement in the quantum
transmission probability and in the injection efficiency would permit to have a better

agreement in current peak values.

Finally, we are expecting that the global current peak values will approach the

experimental data to a very large extent.

With respect to the shape and broadening of the current peaks, let us now discuss
schematically the resulting transmission probability. Figure 4.37 is a schematic plot of
the expected transmission probabilities. In fact, we have various resonant paths in the
inter-gate quantum well which give rise to different degrees of freedom for the
corresponding resonant energy. This results in a family of transmission probabilities
rather than unambiguously defined single-path transmissions. In other words, the
single-path highly peaked single transmission probability should be replaced by a
multi-path transmission probability resulting in an envelop transmission function
(dashed line in Figure 4.37). The relevant peak current profile is now following the
envelop shape of the transmission probability which could give rise tg a more realistic

peak current profile, in an attempted agreement with experimental data.
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Figure 4.37 schematic diagram illustrating the possible resonate transmission peaks resulting
from the flexibility achieved by different paths in the inter-gate region.

4.18 Conclusion :

In this last chapter, the lateral induced 2D real space resonant tunnelling
electrostatic induced potential function is investigated. This was done under the scope
of hydrodynamic energy model. The latter is subjected into three novel key
modifications : firstly, the modelling of a deep Ohmic contact, the second is the
additional thermal part of the energy equation which influences the counterbalance
between the electric field and diffusion force. The last important modification
concerns the introduction of the degeneracy effect into the non-degenerate
hydrodynamic energy model. The scaled time domain analysis is investigated and used
to alleviate the numerical instability. The latter was provoked by the high mobility
value along with the pronounced increase in the electron concentration as calculated

under high degeneracy conditions.
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The tunnelling process was extensively investigated under the adiabatic assumption
made by Leburton and co-workers. Finally we have shown that such an assumption is

not able to describe quantitatively all the relevant features of the tunnelling process in

the 2D real space potential.

As a last conclusion, we have shown that it is not entirely correct to describe the
resonant tunnelling process in a two dimensional potential function using simply the
one dimensional lateral tunnelling model. Some guide-lines were discussed for
accounting for two dimensional tunnelling mechanisms. In particular a strong
unbalance between the lateral and transverse velocities was recognised with the
associated benefit of pronounced vertical injection. On the other hand we proposed to
consider a multi-path tunnelling mechanisms rather than a well defined resonant
tunnelling condition. The direct expected consequences are a broadening of the
transmission probability spread now across a transmission window. The net effect
should be an enhancement in the current peak value along with a voltage broadening in

the voltage dependence current relation in closer agreement with experiment.
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CONCLUSION






General conclusion :

The common denominator of the studies reported in this work is the resonant
tunnelling effect. This effect can be observed under the condition of charge transfer
b); tunnelling and localisation by means of crystalline and/or electrostatic potential
barriers. With respect to the general context out lined in chapter one, two kinds of
structures in two terminal and three terminal configuration respectively have been
considered. To summarise the main conclusion we have drown through out this
thesis, let us recall that it was found that the injection process plays an unexpected
role in the negative differential conductance voltage dependence. The impact of
such a finding is beyond the sole framework of double barrier heterostructure and
was generalised to the open quantum systems. On the other hand, the scattering
assisted effect was systematically integrated in order to successfully describe the
current contrast. At last, from the transport properties point of view, we succeeded
to combine a classical description of transport properties based on a hydrodynamic
approach with a quantum resonant tunnelling transport properties based on what we

have learned about resonant tunnelling through out this thesis.

In chapter two, we have addressed the general problem of charge transfer
between two systems of different dimensionality. This was applied to the tunnelling
transition between the accumulation layer and the collector region through the
resonant path afforded by a Double Barrier Heterostructure (DBH). We found.by
this means novel effects, in this work referred to as signature effect, resulting from
the coupling between the quantum well and the injection zone. In short, beyond the
bias point for anti-crossing of quantum states attached to the accumulation and
quantum well regions respectively the tail of the wave function is sufficiently high
to induce a finite density of states. To our knowledge this is the first time that a such
result is mentioned with a dramatic consequence on the conduction mechanisms

under out-of-resonance conditions.




1

On the basis of local density "of states calculations, the current-voltage
characteristics have been calculated in details under various assumptions and shows
a very broad voltage range for NDC effect with a plateau-like shape in a very good
agreement with experimental data. It is believed that with the recent advances in
epitaxial growth allowing in fact to grow extremely thin and highly doped epi-
layers, such a general formalism could find a very general application. The recent
characterisation in our group of high current derivability DBH with high doped
cladding layer shows I-V relationship with the same shoulder type behaviour

predicted in this work for the first time to our knowledge.

In chapter three, we have studied the scattering assisted tunnelling. The effect of
scattering is included not only in the transmission probability but also into the
injection conditions through a novel probabilistic model. In connection to the new
formalism described in details in chapter two, we have succeeded to define four
probability rates associated with each possible scattering assisted supply condition.
The transmission probability is self-consistently solved along with the equation
defining the finite life time in the well. In addition, the transmission probability is

calculated using a new method we called AEES based on Airy function solutions.

The above model, is systematically applied to simulate the resonant tunnelling
diode fabricated in our group of research and which was characterised in the present
work as a function of temperature. The comparison between the simulated results
and the measured data are surprisingly in a very good agreement. This good
agreement is also shown to be sustained for a broad range of operating temperature
conditions. Using the above novel model, we have described successfully the main
anomalies in the I-V characteristics notably, the onset-bump, the main resonant

current and the post-resonant phonon replica.
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In chapter four, the 2D electrostatic induced potential function is investigated.
This was done under the scope of hydrodynamic energy model. Concerning this
specific feature three novel modifications were proposed (i) the modelling of a deep
Ohmic contact, (ii) introduction of the additional thermal part of the energy
eqhation which influences the counterbalance between the electric field and
diffusion force, (ii1) the last important modification concerns the introduction of the
degeneracy effect. In order to alleviate the numerical instability the scaled time

domain analysis is investigated and convergence was satisfactory reached.

Starting from the 2D potential pattern, the tunnelling process was extensively
investigated under the assumption of separation of variables. Such a model is able to
describe the main features of the measured current-voltage characteristics notably
the three anomalies due to resonant tunnelling through the camel-shape electrostatic
potential. It is believed that such a basic study of quantum effect will find
application in context of nano-devices. To mention a few, one can expect that at
ultra short gate length the conventional MOSFET will face the problem of a
quantum behaviour superimposed or dominant with respect to the conventional field
effect control scheme. Based on tunnelling and temporary localisation effect, we
thought that the devices designed for single electron electronics could also be

addressed by means of the numerical code carried out in the present work.

As a last conclusion, we have shown that it is not acceptable to describe the
resonant tunnelling process in a two dimensional potential function using simply the
one dimensional lateral tunnelling model. A novel two dimensional tunnelling
model depends on the vertical 2D injection regime is proposed. It is also shown that
this regime is analogues to that discussed in both chapters one and two for vertical
heterostructural devices. It is expected that by using the new 2D physical approach
we can get a better agreement with the experimental data not only with respect to

the current peak values but also as regards the voltage broadening of the resonant

current peaks.




