80000

460

THESE

Présentée

Pour l'obtention du grade de Docteur de l'Université en Sciences des Matériaux

Par

50376.

1999.

145

Hassan GALLOUJ

DETERMINATION ET VALIDATION DE CHAMPS DE FORCES PAR LA METHODE DE FONCTIONNELLE DE DENSITE (DFT) POUR DES RESIDUS AMINO ACIDES AROMATIQUES.

Soutenue le 5 Février 1999

Jury

Présidente

Sylvia TURRELL

Rapporteurs

Gheorghe SURPATEANU Jacky LIEVIN

Examinateurs

Gérard VERGOTEN Philippe LAGANT A mes parents, ma famille et Dalila

Ce travail a été réalisé au Centre de Recherches et d'Etudes en Simulations et Modélisation Moléculaires (CRESIMM), dirigé par le Professeur Gérard VERGOTEN

Je tiens à remercier le Professeur Gérard VERGOTEN de m'avoir accueillir dans son laboratoire, et Monsieur Philippe LAGANT - CR CNRS pour sa disponibilité et son soutien permanent au cours de la réalisation de ce travail.

Je remercie également la présidente du jury Madame le professeur Sylvia TURRELL de l'Université des Sciences et Technologies de Lille pour l'honneur qu'elle m'a accordé en présidant cette soutenance de thèse, ainsi qu'aux rapporteurs, le Professeur Gheorghe SURPATEANU de l'Université du Littoral Côte d'Opal Dunkerque et le Professeur Jacky LIEVIN de l'Université Libre de Bruxelles (Belgique) d'avoir accepté d'être les rapporteurs de cette thèse.

Un grand merci a tous les membres du laboratoire, Mesdemoiselles V. LEDAÚPHIN et V. DURIER ainsi qu'à Messieurs M. TAZI, A. AKOUBRI, P. BOYER et Y. KARZAZI, pour leurs encouragements et leurs sympathies.

Publications

- 1. A density functional theory derived force field for p-cresol. Use of the ultraviolet resonance Raman intensities to check the vibrational analysis accuracy.
- P. Lagant, H. Gallouj, G. Vergoten, Journal of Molecular Structure 372 (1995) 53-68
- 2. A density functional theory derived force field for 4-Ethylimidazole. Use of the ultraviolet resonance Raman intensities to check the vibrational analysis accuracy.
- H. Gallouj, P. Lagant, G. Vergoten, Journal of Raman Spectroscopy 28 (1997) 909-916
- **3**. A density functional theory derived force field for 3-Ethylindole. Use of the ultraviolet resonance Raman intensities to check the vibrational analysis accuracy.
- H. Gallouj, P. Lagant, G. Vergoten, Journal of Raman Spectroscopy 29 (1998) 343-351

Communications par affiches

- 1. Use of the density functional theory to include effects of electronic correlations of p electrons delocalized systems into dynamical studies of peptides.
- H. Gallouj, P. Lagant, G. Vergoten, 6th European Conference on the Spectroscopy of Biological Molecules, 3-8 September 1995, Villeneuve d'Ascq, France.
- 2. Density functional theory derived force field for histidine and tryptophan
- H. Gallouj, P. Lagant, G. Vergoten, 7th European Conference on the Spectroscopy of Biological Molecules: Modern Trends, September 1997, Madrid, Spain.

SOMMAIRE

Introduction générale	p 1
Chapitre 1: Méthode de calcul	р7
I Méthode ab initio	p 8
I.1 Equation de Schrödinger	p 8
I.2 Approximation de Born-Oppenheimer	p 8
I.3 Déterminant de Slater	p 9
I.4 Approximation de Hartree-Fock	p 9
I.5 Fonctionnelle de la densité	p 11
I.6 Guassian 92/DFT	p 12
I.6-1-Base de calcul 6-31G(df,p)	p 12
I.6-2-Equation de Kohn-Sham	p 12
I.6-3-Expression de Exc[ρ]	p 13
I.6-4-Calcul de Exc	p 13
I.6-5-Matrice de Fock	p 14
I.6-6-Gradient d'énergie	p 14
II Programme Redong	p 15
II.1 Méthode	p 15
II.1-1-Calcul des fréquences de vibration	p.15
II.1-2-Construction de la matrice B	p 16
II.1-3-Matrice B ⁻¹	p 17
II.1-4-Matrice des constante de force en coordonnées internes	p 17

II. 1-5-Matrices des vecteurs propres de vibrations en coordonnées	
internes D	p 17
II.1-6-Raffinement des constantes de force.	p 18
II.1-7-Composantes non redondantes	p 18
III La distribution d'énergie potentiel	p 19
IV Intensité de résonance Raman	p 19
IV.1 Mécanisme de diffusion	p 20
IV.1-1-Tenseur de polarisabilité	p 20
IV.1-2-Moment de transition	p 21
IV 1-3-Le terme d'Albrecht (A)	p 22
1V.1-4-Calcul de Δ^{e} à partir de l'indice de liaison	p 24
1V.1-5-L'intensité relative	p 25
Références	p 27
Chapitre 2: Para-crésol	p 30
I Introduction	p 31
II Résultats	p 32
II.1 Optimisation	p 32
II.1-1-Géométrie du p-crésol	p 32
II.1-2-Charges du p-crésol	p 32
II.1-3-Les facteurs d'échelle des coordonnées internes du p-crésol	p 38
II.1-4-Constantes de force du p-crésol	p 38
II.2 Modes de vibration du p-crésol	p 39
II.2-1-Modes de vibration de hautes fréquences	p 39

II.2-1-1 Mode d'élongation de OH (v_{OH})	p 39
II.2-1-2 Modes d'élongation de CH (v_{CH})	. p 39
II.2-1-3 Modes d'élongation de CH ₃	p 51
II.2-2-Modes de vibration dans le plan du benzène	p 51
II.2-2-1 Modes de vibration v8a et v8b	p 51
II.2-2-2 Modes de vibrations v19b et v19a	p 51
II.2-2-3 Modes de vibrations v14 et v3	p 52
II.2-2-4 Modes de vibrations entre 1160 et 1260 cm ⁻¹	p 52
II.2-2-5 Mode de vibration v1	p 53
II.2-2-6 Modes de vibrations propres à la respiration	
du cycle (v6a et v6b)	p 53
II.2-2-7 Modes de vibrations de déformation de CCH ₃	
et CO (v18b et v19b)	p 53
II.2-3-Modes de vibrations propres au déformation de CH ₃	p 53
II.2-4-Modes de vibrations hors du plan du cycle	p 54
II.2-4-1 Modes de vibrations propres aux déformations	
de CH (v11, v10a, v5 et v17a)	p 54
II.2-4-2 Modes de vibrations propres au torsion	
de CC (v17b et v16a)	p 54
II.3 Résonance Raman	p 61
II.3-1-Description des états de transition	p 61
II.3-2-Niveaux énergétiques du p-crésol	p 61
II.3-3-Intensités de résonance	p 64
II.3-3-1 Transition électronique L _a	p 64

II.3-3-2 Transition électronique $B_{a,b}$	p 65
III. Conclusion	p 67
Références	P 68
Chapitre 3: 4-éthylimidazole	p 69
I Introduction	p 70
II Résultats	p 71
II.1 Optimisation	p 71
II.1-1-Géométrie du 4-éthylimidazole	p 71
II.1-2-Charge du 4-éthylimidazole	p 73
II.1-3-Cordonnées internes du 4-éthylimidazole	p 73
II.1-4-Facteurs d'échelle du 4-éthylimidazole	p 73
II.1-5-Constantes de force du 4-éthylimidazole	p 79
II.2-1-Les modes de vibration du 4-éthylimidazole	p 85
II.2-1-Les modes de vibration de hautes fréquences	p 85
II.2-1-1 Mode d'élongation de NH (v_{39})	p 85
II.2-1-2 Modes d'élongation de C ₂ H et C ₅ H (ν_{37} , ν_{38})	p 85
II.2-1-3 Modes d'élongation du groupement	
éthyle (-CH ₂ -CH ₃ (v_{32} - v_{36})	p 86
II.2-2-Modes de vibration dans le plan du cycle d'imidazole	p 86
II.2-2-1 Modes de vibration v_{26} , v_{30} et v_{31}	p 86
II.2-2-2 Modes de vibrations couplés entre l'imidazole	
et la déformation de CH ₂ (v_{21} , v_{22} , v_{23} et v_{24})	p 87
II.2-2-3 Modes de vibration v_{18} , v_{19} et v_{20}	p 87

•

II.2-2-4 Modes de vibration v_7 , v_{13} et v_{14}	p 88
II.2-3-Modes de déformation du substitut CH ₂ -CH ₃	p 89
II.2-4-Modes de vibration hors plan de l'imidazole	p 89
II.2-4-1 Modes de vibration hors plan de C_5H et C_2H	
$(\mathbf{v}_{10} \text{ et } \mathbf{v}_{12})$	p 89
II.2-4-2 Modes de vibration des torsions du cycle d'imidazole	
$(v_8 \text{ et } v_9)$	p 90
II.2-4-3 Modes de déformation hors du plan de NH (v_6)	p 90
II.3 Résonance Raman	p 90
II.3-1-Les états énergétiques de la molécule du 4-éthylimidazole	p 95
II.3-2-Intensité de résonance Raman du 4-éthylimidazole	p 95
III Conclusion	p 98
Références	p 102
Chapitre 4: 3-éthylindole	p 104
I Introduction	p 105
II Résultats	p 107
II.1 Optimisation du 3-éthylindole	p 107
II.1-1-Géométrie du 3-éthylindole	p 107
II.1-2-Charges du 3-éthylindole	p 109
II.1-3-Coordonnées internes du 3-éthylindole	p 109
II.1-4-Facteurs d'échelle du 3-éthylindole	p 115
II.1-5-Constantes de force du 3-éthylindole	p 115
II.2 Modes de vibration du 3-éthylindole	p 139

II.2-2-Modes de hautes fréquences	p 139
II.2-2-1 Modes d'élongation de NH (v_{60})	p 139
II.2-2-2 Modes d'élongation de CH (v55-v58)	p 140
II.2-2-3 Modes d'élongation du groupement éthyle	
(v50-v54)	p 140
II.2-3-Modes de vibration dans le plan de l'indole	p 141
II.2-3-1 Modes de vibration v47, v48, v49	p 141
II.2-3-2 Modes de vibration v46, v42 et v41	p 141
II.2-3-3 Modes de vibrations v_{39} et v_{22}	p 142
II.2-3-4 Modes couplés entre l'indole et le groupement	
CH ₂ (v39, v36 et v34)	p 143
II.2-3-5 Modes de vibration v33-v30	p 144
II.2-3-6 Modes de vibration v_{26} , v_{16} , v_{12} , v_{11} et v_{10}	p 145
II.2-4-Modes hors du plan	p 146
II.2-4-1 Modes de vibration propre aux déformation hors	
du plan du CH du cycle benzènique	p 146
II.2-4-2 Modes de vibrations v_{20} , v_{19} , v_{14} , v_{13}	p 147
II.2-4-3 Mode associé à la déformation hors du plan	
de NH (πNH)	p 148
II.2-4-4 Modes de vibration $v9$, $v8$, $v6$ et $v5$	p 148
II.2-5-Déformation du groupement éthyle	p 148
II.2-6-Modes propres aux dérivés tétradeutériés du cycle	
benzénique du 3-éthylindole	p 149

.

II.3 Résonance Raman	p 162
II.3-1-Transitions électroniques	p 162
II.3-2-Energie des transitions électroniques du 3-éthylindole	p 164
II.3-3-Intensité de résonance Raman du 3-éthylindole	p 168
II.3-3-1 Intensité de résonance Raman des modes	
v49, v48, et v47	p 168
II.3-3-2 Intensités de résonance Raman des modes	
v16, v22, et v26	p 169
II.3-4-Attribution des transitions électroniques	p 172
III Conclusion	p 173
Références	p 174

Conclusion générale

p 177

Introduction générale

1

Bien qu'ils possèdent de nombreuses propriétés de fonction intrinsèques, les acides aminées sont les éléments constitutifs de la chaîne des protéines. Ils ont été l'objet de très nombreux travaux de nature structurale et dynamique. Les études spectroscopiques (IR ou Raman) (pour connaître les modes de vibrations) et structurales sont particulièrement abondantes. Ces résultats servent à une meilleure interprétation du spectre vibrationnel d'une protéine et à une meilleure connaissance de sa structure. En revanche, en parallèle avec ces études expérimentales, les méthodes théoriques (ab initio, semi-empiriques et empiriques) n'ont pas cessé de progresser depuis le premier programme "Gaussian" en 1970 [1]. Les résultats de ces méthodes théoriques sont encourageants et incitent beaucoup d'auteurs à choisir cet axe de recherche que l'on peut désigner par "simulation et modélisation moléculaire". Par ailleurs le temps de calcul n'a pas cessé de diminuer avec les progrès de l'informatique.

Dans ce travail, on s'intéressera aux molécules suivantes; para-crésol (4-méthylphénol),

4-éthylimidazole et 3-éthylindole. Ces trois molécules seront considérés comme modèles des trois résidus d'acides aminées respectivement, tyrosine, histidine et tryptophane.

A l'aide des méthodes ab initio appuyées par la théorie de la fonctionnelle de densité (DFT) (formulée dans le programme Gaussian DFT/92 [2] et Gaussian 94 [3]) nous avons essayé de reproduire le mieux possible les fréquences de vibrations expérimentales de ces molécules et d'en déduire un jeu de constantes de forces. Cependant les fréquences de vibration harmoniques calculées à partir du calcul ab initio sont typiquement plus hautes que les fréquences fondamentales obtenues expérimentalement [4]. La source majeure de cette différence est la négligence de l'effet d'anharmonicité dans le traitement théorique. Cette différence entre fréquences calculées et expérimentales est presque uniforme et peut être réduite en appliquant un ensemble de facteurs d'échelle. Cette méthode est désignée par SQM (Scaled Quantum Mechanical force field method). La détermination des facteurs d'échelle

 $\sum_{i=1}^{n}$

appropriés pour l'estimation des fréquences expérimentales à partir des fréquences théoriques a reçu beaucoup d'attention dans la littérature. Ainsi Pople [5] a trouvé que les fréquences de vibrations calculées par la méthode Hartree-Fock en utilisant une base de calcul 3-21G (HF/3-21G) et les fréquences expérimentales pour 38 molécules ont un rapport de 1,123 et un facteur d'échelle de 0,89.

L'utilisation des facteurs d'échelle est faite dans ce travail à l'aide du programme Redong [6]. Celui ci permet une application directe des facteurs d'échelle sur les constantes de forces et non pas sur les fréquences de vibrations.

La théorie de la fonctionnelle de densité (DFT) atteint actuellement une popularité importante, due à différents éléments; l'introduction des nouveaux potentiels d'échange et de corrélation [7-10] qui donnent de meilleurs prédictions, et de la dérivée première analytique [11-13], la récente formulation [14-16] et l'implantation [17] de la dérivée seconde analytique, et finalement le développement des programmes [18, 19]. Il s'avère que les fréquences de vibrations et la géométrie optimisée obtenues par cette méthode sont raisonnables [20]. Cela est confirmé par les résultats de Qin [21] concernant la molécule de phénoxyl qui est proche du para-crésol étudié ici. Une étude comparative faite par Johnson [22] sur 32 molécules montre que la DFT donne les meilleurs résultats en ce qui concerne les vibrations moléculaire comparativement aux autres méthodes de calcul ab initio HF, MP2 et QCISD (Quadratic Configuration Interaction with Single and Double excitations). Plusieurs fonctions d'échange et de corrélation peuvent être utilisées par la méthode DFT. Les fonctions les plus prometteuses sont peut être les hybrides B-LYP et B3-LYP qui forment respectivement une combinaison entre les fonctions d'échange de Becke (B) [8] et B3 [23] et celle de corrélation de Lee, Yang et Parr (LYP) [9]. Pople [24] a montré que les fréquences de vibrations obtenues par la méthode DFT/6-31G (d) en utilisant la fonction d'échange et de corrélation B-LYP présentent une erreur movenne de 13 cm⁻¹ par rapport aux fréquences

3

expérimentales pour un ensemble de molécules. Cette erreur est de 243 cm⁻¹ en utilisant la méthode HF/6-31G(d) pour le même ensemble de molécules. Rauhat [25] a obtenu avec une base de calcul de 6-31G(d) un facteur d'échelle de 0,99 en utilisant la fonction B-LYP et de 0,963 avec la fonction B3-LYP pour un ensemble de 20 petites molécules.

L'utilisation d'une large base de calcul étendue permet de meilleurs résultats (par exemple la base 6-31G (df,p) qui est une base polarisée). Une fois les fréquences de vibrations déterminées, nous procédons aux attributions des modes à l'aide de la distribution d'énergie potentielle. Cette attribution peut être confirmée en utilisant les effets isotopiques (deutération). Enfin nous calculerons les intensités Raman de résonance pour les différentes modes à partir d'un programme développé au laboratoire, utilisant le terme A d'Albrecht (A) [26]. Tout ces calculs seront comparés aux résultats expérimentaux. Cependant ces derniers ne sont pas toujours accessibles. Nos résultats alors seront comparés aux résultats expérimentaux sur des molécules proches.

Le but de ce travail réside essentiellement dans les reproductions des fréquences et des intensités Raman de résonance expérimentales des trois molécules; p-crésol, 4-éthylimidazole et 3-éthylindole qui sont des dérivées proches des trois acides aminés: tyrosine, histidine et tryptophane, respectivement. Les reproductions de ces deux données expérimentales permettent la validation des champs de forces et des distributions d'énergie potentielle obtenues des trois molécules étudiées.

Références

- [1] W. J. Hehre, W. A. Lathan, M. D. Newton, R. Ditchfield, J. A. Pople, 1970. Gaussian 70, Quantum Chem. Program, Exch. No. 236. Indiana Univ., Bloomington, Ind.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W.
 Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J.
 L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, J.
 M. Defrees, J. Baker, J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsbergh PA, 1993
- [3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb,
 J. R. cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M.
 A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y.
 Ayala, W. chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin,
 D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C.
 Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsbergh PA, 1995
- [4] W. J. Hehre, L. Radon, P. v. R. Schleyer, J. A. Pople, ab initio Molecular Orbital Theory; Wiley: New York, 1986
- [5] J. A. Pople, H. B. Schlegel, R. Krishnan, D. J. Defrees, J. S. Binkley, M. J. Frisch, R.
 A. Whiteside, F. R. Hout, J. W. Hehre, Int. J. Quantum Chem., Quantum Chem. Symp.
 15 (1981) 269
- [6] A. Allouche, J. Pourcin, Spectrochimica Acta, 49 A (4) (1993) 571
- [7] H. S. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 58 (1980) 1200
- [8] A. D. Becke, Phys. Rev., 38 A (1988) 3098
- [9] C. Lee, W. Yang, R. G. Parr, Phys. Rev., 37 B (1988)
- [10] P. J. Perdew, A. J. Chevary, H. S. Vosko, A. K. Jackson, R. M. Pederson, D. J. Singh,

C. Fislhais, Phys. Rev., 46 B (1992) 6671

- [11] L. Fan, L. Verluis, T. Ziegler, J. E. Baerends, W. Ravenck, Int. J. Quantum Chem.Symp., 22 (1988) 173
- [12] I. Papai, A. St-Amant, J. Ushio, D. Salahub, Int. J. Quantum Chem. Symp, 24 (1990)29
- [13] R. Fournier, J. Andzelm, D. Salahub, J. Chem. Phys., 90 (1989) 6371
- [14] R. Fournier, J. Chem. Phys., 92 (1990) 5422
- [15] I. B. Dunlap, J. Andzelem, Phys. Rev., 45 A (1992) 81
- [16] A. Komornicki, G. Fitzgerald, J. Chem. Phys., 98 (1993) 1398
- [17] G. B. Johnson, Theor. Comput. Chem., 2 (1995) 169-219
 G. B. Johnson, J. M. Frisch, Chem. Phys. Lett., 216 (1-2) (1993) 133
- [18] W. M. P. Gill, G. B. Johnson, A. J. Pople, J. M. Frisch, Int. J. Quantum Chem. Symp., 26 (1992) 319
- [19] C. N. Handy, E. P. Maslen, D. R. Amos, S. J. Andrews, W. C. Murray, J. C. Laming, Chem. Phys. Lett., 197 (1992) 506
- [20] T. Ziegler, Chem. Rev., 91 (1991) 651
- [21] Y. Qin, R. A. Wheeler, J. Chem. Phys. 102 (1995) 1689
- [22] B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys., 98 (7) (1993) 5612
- [23] (a) A. D. Becke, J. Chem. Phys., 97 (1992) 9173; (b) 98 (1993) 5648
- [24] B. G. Johnson, W. M. P. Gill, A. J. Pople, J. Chem. Phys., 98 (1993) 5612
- [25] G. Rauhat, R. Pulay, J. Phys. Chem., 99 (1995) 3093
- [26] A. C. Albrecht, J. Chem. Phys., 34(5) (1961) 1476

Chapitre 1

Méthode de calcul

I Méthode ab initio

I.1 Equation de Schrödinger

Dès l'apparition de l'équation de Schrödinger en 1926, on s'est aperçu de la difficulté de sa résolution:

$$H\Psi = E\Psi \qquad (I-1)$$

où

$$H = \sum_{\mu=1}^{N} -\frac{\hbar \nabla_{\mu}^{2}}{2m_{\mu}} + \sum_{i=1}^{n} -\frac{\hbar \nabla_{i}^{2}}{2m_{e}} + \sum_{\mu<\nu=1}^{N} \frac{Z_{\mu} Z_{\nu} e^{2}}{R_{\mu\nu}} - \sum_{i=1}^{n} \sum_{\mu=1}^{N} \frac{Z_{\mu} e^{2}}{r_{i\mu}} + \sum_{i(I-2)$$

N est le nombre de noyaux de masse m_{μ} de charge Z_{μ} et de position R_{μ} et n est le nombre d'électrons de masse m_e et de position r_i . Les deux premiers termes de l'équation (I-2) représentent respectivement les opérateurs associés aux énergies cinétiques des noyaux et des électrons, et les trois termes suivants, sont les opérateurs associés aux interactions électrostatiques entre noyaux, entre noyaux et électrons et entre électrons eux mêmes.

L'expression de l'hamiltonien H indique que, dans la plupart des cas, il n'existe pas de solution analytique exacte de cette équation (I-1) à l'exception des systèmes avec un électron (atome d'hydrogène et d'hydrogénoides).

La résolution de cette équation passe par plusieurs approximations.

I.2 Approximation de Born-Oppenheimer

L'approximation de Born-Oppenheimer suppose que pour chaque position (R_{μ}) des noyaux, le mouvement des électrons est suffisamment rapide pour que la solution, obtenue de l'équation (I-1) en supposant les noyaux fixes, soit proche de la solution exacte. Cette approximation est basée sur la différence de masse entre noyaux et électrons. Ainsi l'hamiltonien H sera réduit à un hamiltonien électronique H_e qui correspond aux mouvements des électrons dans le champ des noyaux fixes et dont la solution ne dépend que des coordonnées des électrons.

L'équation (I-1) reste toujours complexe; car c'est une équation aux dérivées partielles du second ordre portant sur 3n variables (n est le nombre d'électrons).

I.3 Déterminant de Slater

La plus grande difficulté rencontrée pour résoudre l'équation de Schrödinger consiste en l'existence des termes de répulsion colombienne $\frac{1}{r_{ij}}$ (eq. (I-2)), qui couplent les mouvements des électrons. Pour satisfaire au principe d'antisymétrie de Pauli, Slater a proposé de chercher une fonction approchée sous la forme d'un déterminant sur les fonctions Φ_i (orbitales moléculaires) dépendant des coordonnées d'espace et de spin d'un seul électron:

$$\Psi = \begin{vmatrix} \Phi_{1}(1) & \dots & \Phi_{n}(1) \\ \vdots & & \vdots \\ \vdots & & \vdots \\ \Phi_{1}(n) & \dots & \Phi_{n}(n) \end{vmatrix}$$
(I-3)

I.4 Approximation de Hartree-Fock

Cette approximation est basée sur le fait que l'équation (I-1) peut être décomposée en n équations indépendantes:

$$F\Phi_i = \varepsilon_i \Phi_i$$
 (I-4)

où

$$F = h_0 + \sum_j (2J_j - K_j)$$
 (I-5)

9

$$h_{0} = -\frac{\nabla^{2}}{2m_{e}} - \sum_{\mu} \frac{Z_{\mu}}{r_{i\mu}} \quad (I-6)$$

 J_j et K_j désigne respectivement l'interaction colombienne et d'échange entre électrons.

Ces équations sont connues sous le nom d'équations de Hartree-Fock et elles sont à la base du calcul ab initio. F est l'opérateur de Fock.

La résolution des équations de Hartree-Fock est complexe, puisqu'il s'agit d'équations aux dérivées partielles d'ordre deux portant sur les trois coordonnées de l'électron (x,y et z), d'où la nécessité d'une solution itérative. Cependant la solution de ces équations concernant un système à un électron donne les orbitales de Slater [1] (STO) χ_p . Ces orbitales seront les fonctions de base dans la résolution des équations Hartree-Fock, ainsi la solution cherchée obtenue à partir de la détermination des coefficients C_{pi} tels que:

$$\Phi_i = \sum_p^n C_{pi} \chi_p \qquad (I-7)$$

d'où la notion LCAO (linear combination of atomic orbilal).

Ce processus, formalisé par Roothaan [2], aboutit à l'équation matricielle suivante, appelée l'équation de SCF (Self Consistent Field):

$$FC = SC\epsilon$$
 (I-8)

où, C et ε sont les coefficients et les valeurs propres des orbitales moléculaires et S est la matrice de recouvrement:

$$S_{ij} = \left\langle \chi_i \, \middle| \, \chi_j \right\rangle = \int \chi_i^* \, \chi_j dr = 0 \text{ si } i \neq j \qquad (I-9)$$

Dans le cas d'un calcul ab initio les χ_p sont des fonctions de type gaussian [1].

I.5 Fonctionnelle de densité

Hohenberg et Kohn [3] ont énoncé une théorie basée sur le fait que l'énergie totale de l'état électronique standard de la molécule est exprimée en fonction de la densité électronique $\rho(\mathbf{r})$ de l'état standard.

$$\rho(\mathbf{r}) = \sum_{i} n_{i} \Phi_{i}^{2}(\mathbf{r}) \qquad (\text{I-10})$$

où n_i est le nombre d'électrons dans l'orbitale Φ_i .

L'équation à résoudre est analogue à celle de Hartree-Fock si on omet le terme Vxc

$$\left(-\frac{\hbar^2}{2m}\nabla_i^2 + V_N + V_c + Vxc\right)\Phi_i = \varepsilon_i\Phi_i \qquad (I-11)$$

 V_N et V_c , correspondent respectivement aux interactions colombiennes avec les noyaux et les électrons (eq. (I-2)) et Vxc contient les contributions d'échange et de corrélation. Elle est écrit comme une fonction locale de la densité ρ , déterminée dans le cas limite d'un gaz homogène d'électrons. D'autres formes de Vxc[ρ] existent, introduisant par exemple le gradient de ρ pour tenir compte de l'inhomogénité de la densité. Cette méthode est connue sous le nom de la théorie de fonctionnelle de densité (DFT) [3,4].

Ces approximations citées plus haut forment la base des calculs ab initio, en faisant appel à des méthodes mathématiques (analyse numérique, ...) pour la résolution des équations Hartree-Fock et le premier programme Gaussian a vu le jour en 1970 [5]. Le nom Gaussian vient du fait que les fonctions de bases utilisées χ_p sont des gaussiennes.

Dans notre cas les programmes utilisés sont Gaussian 92/DFT [6] et 94/DFT [7] avec une base de calcul 6-31G(df,p).

I.6 Gaussian 92/DFT

I.6-1-Base de calcul 6-31G(df,p)

La base 6-31G(df,p) (ou 6-31G** [8] en ajoutant les sept gaussiennes de type f) fait partie de l'ensemble des bases polarisées. Elle est construite de la même façon que la base 6-31G [9] en additionnant cinq gaussiennes de type d et sept gaussiennes de type f aux atomes lourds (C, N, O,...) et trois gaussiennes de type p aux atomes légers (H,...).

L'inclusion de ces gaussiennes de type d, f ou p a pour l'effet de déplacer le centre des charges électroniques par rapport au noyau et donc de représenter la déformation locale de la densité électronique.

I.6-2-Equation de Kohn-Sham

L'énergie dans le cas de la théorie de Hartree-Fock pour un système à couche pleine est:

$$\mathbf{E} = 2\left\langle i \left| \mathbf{h}_{0} \right| j \right\rangle + 2\left\langle i i \left| j j \right\rangle - \left\langle i j \right| i j \right\rangle \qquad (I-12)$$

où

$$\langle ii|jj \rangle = J = \int \frac{\Phi_i^*(r_1)\Phi_i(r_1)\Phi_j^*(r_2)\Phi_j(r_2)}{r_{12}}dr_1dr_2$$
 (I-13)

Et dans le cas de la DFT cette énergie est donné en fonction de la densité p:

$$E = 2\langle i | h_0 | i \rangle + 2\langle ii | jj \rangle + Exc[\rho] \qquad (I-14)$$

où

$$\langle ii|jj \rangle = J = \int \frac{\rho(r_1)\rho(r_2)}{r_{12}} dr_1 dr_2$$
 (I-15)

avec

$$\rho = 2\sum_{i}^{n} \Phi_{i}^{2} \qquad (I-16)$$

L'équation (I-14) est appelée équation de Kohn-Sham (KS).

I.6-3-Expression de Exc[ρ]

Exc[ρ] est l'énergie d'échange et de corrélation, la différence entre l'équation (I-12) et (I-14) est le remplacement d'une intégrale d'échange (eq. (I-12)) par une intégrale impliquant la fonction de densité ρ (Exc[ρ]).

$$\operatorname{Exc}[\rho] = \int f(\rho_{\alpha}, \rho_{\beta}, \gamma_{\alpha\alpha}, \gamma_{\alpha\beta}, \gamma_{\beta\beta}) dr \qquad (I-17)$$

où, α et β désignent le spin + $\frac{1}{2}$ et - $\frac{1}{2}$ [10]

et $\gamma_{\alpha\alpha} = \nabla \rho_{\alpha} \nabla \rho_{\alpha}, \ \gamma_{\alpha\beta} = \nabla \rho_{\alpha} \nabla \rho_{\beta}, \ \gamma_{\beta\beta} = \nabla \rho_{\beta} \nabla \rho_{\beta}.$

De nombreux choix sont possibles pour la fonction f. Dans notre cas f est choisie comme étant la somme de la fonction d'échange de Becke (B) [11] et de corrélation de Lee, Yang et Parr (LYP) [12]. Cependant une approche est faite par Johnson [10] concernant la fonction de corrélation LYP en supprimant les termes du second-ordre de cette fonction à l'aide d'une intégration partielle de ces termes [13].

Dans Gaussian 94/DFT [7] la fonction d'échange et de corrélation utilisée est du type B3LYP [14].

I.6-4-Calcul de Exc

Dans la pratique l'intégrale de l'équation (I-17) est trop compliquée pour être évaluée. Cela est réalisé par la méthode de la quadrature numérique, en particulier le schéma de partition atomique utilisé par Satoko [15] et développé par Becke [16]. Ainsi l'équation (I-17) devient:

$$Exc = \sum_{A} \sum_{i} \omega_{Ai} f(\rho_{\alpha}, \rho_{\beta}, \gamma_{\alpha\alpha}, \gamma_{\alpha\beta}, \gamma_{\beta\beta}, r_{Ai})$$
(I-18)

La première sommation concerne les atomes, et la seconde est effectuée sur les grilles de la quadrature numérique. ω_{Ai} est le poids de la quadrature et r_{Ai} est le point de la grille:

$$\mathbf{r}_{\mathrm{A}i} = \mathbf{R}_{\mathrm{A}} + \mathbf{r}_{\mathrm{i}} \qquad (\mathrm{I-19})$$

 R_A est la position du noyau A et r_i définissant le centre d'intégration de la grille.

Par la suite l'intégration se fait sur la partie radiale développée par Muray [17] et la partie angulaire développée par Lebedev [18,19].

I.6-5-Matrice de Fock

La matrice de Fock pour le spin α est la suivante:

$$\mathbf{F}^{\alpha} = \mathbf{h}_{0} + \mathbf{J} + \mathbf{F}^{\mathbf{x}\mathbf{c}\alpha} \qquad (\mathbf{I}\text{-}\mathbf{20})$$

оù

$$\mathbf{F}_{\mu\nu}^{\mathbf{x}c\alpha} = \int \left\{ \frac{\partial}{\partial \rho_{\alpha}} \Phi_{\mu} \Phi_{\nu} + \left[2 \frac{\partial}{\partial \gamma_{\alpha\alpha}} \nabla \rho_{\alpha} + \frac{\partial}{\partial \gamma_{\alpha\beta}} \nabla \rho_{\beta} \right] \nabla \left(\Phi_{\mu} \Phi_{\nu} \right) \right\} d\mathbf{r} \qquad (I-21)$$

 Φ_{μ} sont les fonctions de bases de l'orbitale atomique.

I.6-6-Gradient d'énergie

L'énergie électronique totale de KS est donné sous la forme suivante [10]:

$$E = \sum_{\mu\nu} P_{\mu\nu} h_0^{\mu\nu} + \frac{1}{2} \sum_{\mu\nu\lambda\sigma} P_{\mu\nu} P_{\lambda\sigma} \langle \mu\nu | \lambda\sigma \rangle + Exc \qquad (I-22)$$

où, $P_{\mu\nu}$ est un élément de la matrice de densité totale.

La différenciation de E est formulée par Pople [20] et la dérivée seconde analytique par Handy [21].

II Programme Redong

Le programme Redong [22] réalisé par Allouche et Pourcin est conçu dans le but d'évaluer une analyse vibrationnelle complète de la molécule. Ce programme est basé sur:

- Une transformation des constantes de force de l'espace des coordonnées cartésiennes à l'espace des coordonnées internes.
- (2) Un raffinement des constantes de force en utilisant la méthode non linaire de moindres carrés.
- (3) Une décomposition des modes normaux en utilisant la méthode des moindres carrés pour la détermination des coordonnées non redondantes.

Ce programme nécessite deux fichiers:

*Un fichier d'entrée où l'on décrit l'ensemble complet des coordonnées internes, des fréquences expérimentales de vibration et les facteurs d'échelle.

*Un fichier d'optimisation ab initio ou semiempirique dans lequel les constantes de

force en coordonnées cartésiennes sont souvent surestimées

Dans notre cas ce fichier est donné par le calcul ab initio GAUSSIAN 92 [6] et 94 [7].

II.1 Méthode

II.1-1-Calcul des fréquences de vibration

La matrice des constantes de force en coordonnées cartésiennes f est transformée en une matrice des constantes de force pondérées f' selon l'équation suivante [23, 24]:

$$\mathbf{f} = \left(\mathbf{M}^{-\frac{1}{2}}\right)^{+} \mathbf{f}\left(\mathbf{M}^{-\frac{1}{2}}\right)$$
(II-1)

où, M est la matrice diagonale des masses atomique de dimension (3N,3N) (N est le nombre des atomes de la molécule) et M⁺ est sa transposée.

Les matrices des vecteurs propres L et des valeurs propres Λ sont obtenues à partir de l'équation suivante:

$$f'L = L\Lambda$$
 (II-2)

Les fréquences de vibrations v sont liées aux éléments diagonaux λ de la matrice des valeurs propres Λ par la relation suivante:

$$\lambda = 4\Pi^2 c^2 v^2 \qquad \text{(II-3)}$$

où, c est la vitesse de la lumière.

II.1-2-Construction de la matrice B

Soit S l'ensemble des coordonnées internes ρ utilisées dans le fichier d'entrée du programme Redong. S est généralement plus grand que le nombre de degré de liberté 3N-6 (pour les molécules non linaire). Les coordonnées cartésiennes de dimension 3N sont transformées en coordonnées internes ρ à l'aide de la matrice de passage B.

Une fois la géométrie de la molécule connue (fichier d'optimisation), la matrice B peut être construite selon deux méthodes:

La première en exprimant les paramètres internes (distance, angles,....) en termes des coordonnées cartésiennes [25].

La seconde est appelée la méthode des vecteurs s de Wilson [26].

La matrice B est de dimension (S,3N). Pour qu'elle soit complète il faut ajouter les six coordonnées internes de translation et de rotation (condition d'Eckart-Sayvetz) [27]. Ainsi la matrice B devient une matrice de dimension (S + 6,3N) appelée B'. Cependant B' n'est pas une matrice carrée et donc elle n'est pas inversible.

II.1-3-Matrice B^{,-1}

Boatz et Gordon [28] ont développé une méthode pour le calcul de la pseudo-inverse de la matrice B' à partir de la matrice inverse de l'énergie cinétique G de dimension (S + 6, S + 6), ainsi à partir de l'équation de G:

$$G = B'M^{-1}B'^{+}$$
 (II-4)

on déduit:

$$B^{-1} = M^{-1}B^{-1}G^{-1}$$
 (II-5)

II.1-4-Matrice des constante de force en coordonnées internes F

Une fois la matrice B^{,-1} construite, on déduit la matrice F des constantes de force en coordonnées internes:

$$F = (B'^{-1})^{+} f(B'^{-1})$$
 (II-6)

II.1-5-Matrice D des vecteurs propres de vibrations en coordonnées internes

Le nombre des coordonnées internes est supérieur à 3N-6, les S - (3N-6) valeurs propres nulles de la matrice G correspondent à une combinaison linaire des coordonnées internes. Les vecteurs propres associés aux valeurs propres nulles donnent les S -(3N-6) relations de redondance.

La matrice D des vecteurs propres de vibration en coordonnées internes est déduite de la matrice des vecteurs propres en coordonnées cartésiennes L (eq. II-2):

$$D = BM^{\frac{1}{2}}L$$
 (II-7)

II.1-6-Raffinement des constantes de force.

En général les constantes de force obtenues à partir du calcul ab initio et par conséquent les fréquences sont souvent surestimées. Fogarasi et Pulay [29,30] ont proposé de raffiner les fréquences théoriques (calculées) en utilisant la méthode des moindres carrés et de transférer les facteurs d'échelle aux constantes de force. Dans ce programme le raffinement s'effectue directement sur les constantes de force et non pas sur les fréquences et donc les modes normaux. Cela donne la possibilité de transférer les constantes de force d'un isomère à un autre, puisque la coordonnée interne est inchangée.

Le raffinement direct des constantes de force donne dans un premier temps les fréquences suivantes v_{cale}^{raf} . A partir de cette fréquence et en minimisant le terme suivant:

$$\sum \left| \frac{v_{\exp} - v_{calc}^{raf}}{v_{\exp}} \right| = C \qquad \text{(II-8)}$$

on déduit la matrice C.

La matrice des constantes de force raffinées en coordonnées internes est:

$$F^{raf} = C^{\frac{1}{2}}FC^{\frac{1}{2}}$$
 (II-9)

II.1-7-Composantes non redondantes

La matrice D est unique si toutes les coordonnées internes sont présentes. L'analyse des vecteurs propres en utilisant la technique numérique des moindres carrée peut enlever les redondances:

Soit le i'ème vecteur propre de la matrice D;

$$\mathsf{D}_{i} = \sum_{k}^{S} \mathsf{D}_{ki} \rho_{k} \qquad (\text{II-10})$$

et t₁ une combinaison des coordonnées internes.

$$t_1 = \sum_{j=1}^{S} T_{j1} \rho_j$$
 (II-11)

Soit R_n un paramètre où n varie de 1 à S. Les composantes irréductibles non redondantes sont déduites en minimisant le terme suivant:

$$\left(D_{i}-\sum_{n}R_{n}t_{n}\right)^{2} \quad (\text{II-12})$$

Ce programme est utilisé dans le but de compléter les résultats provenant du calcul ab initio. Il peut être modifié facilement et utiliser ainsi des résultats provenant d'autres méthodes de calcul. En éliminant les redondances les coordonnées de symétries sont facilement obtenues, ainsi que la matrice des constantes de force en coordonnées de symétrie pour des molécules symétriques.

III La distribution d'énergie potentielle

A partir des constantes de force en coordonnées internes F^{raf} (eq. II-9) un nouvel ensemble de fréquences est calculé. La PED (distribution d'énergie potentielle) et l'intensité de résonance Raman sont déduites à partir des valeurs raffinées des constantes de force et des fréquences

$$(\text{PED})_{ij} = 100 \frac{(l_{ij})^2 (F^{\text{ref}})_{ij}}{\lambda_i}$$
(III-1)

où l est la matrice des vecteurs propres en coordonnées internes

IV Intensité de résonance Raman

La spectroscopie Raman de résonance constitue un nouvel outil pour l'étude des vibrations couplées aux transitions électroniques. Dans cette forme de spectroscopie, l'intensité de la lumière diffusée est examinée comme une fonction de proximité de la

longueur d'onde d'excitation à la bande d'absorption électronique de l'échantillon. De nombreuses informations peuvent être obtenues à l'aide de la spectroscopie Raman de résonance concernant la surface d'énergie potentielle des deux états électroniques fondamental et excité. De plus, cette technique peut être utilisée comme une sonde utilisant les structures de chromophores dans un mélange complexe car l'aspect sélectif est obtenue par l'effet de résonance. Comme la longueur d'onde d'excitation est accordée à une transition électronique (phénomène de résonance), les modes vibrationnels du chromophore sont exaltés par rapport à ceux existant à l'état fondamental. Ces modes peuvent être attribués en se référant à la structure chimique du chromophore.

IV.1 Mécanisme de diffusion

IV.1-1-Tenseur de polarisabilité

L'intensité de diffusion de la transition Raman entre deux états m et n est donnée par Tang et Albrecht [31]:

$$I_{s} = \frac{8\pi v_{s}^{4}}{4c^{4}} I_{0} \sum_{\rho\sigma} \left| \left(\alpha_{\rho\sigma} \right)_{mn} \right|^{2} \qquad (IV-1)$$

où, I₀ est l'intensité incidente à la fréquence v_0 , v_s est la fréquence de diffusion, c est la célérité de la lumière et $\alpha_{\rho\sigma}$ est le tenseur de polarisabilité de la transition, avec ρ et σ désignant respectivement la polarisation incidente et diffusée ($\rho,\sigma = x,y,z$).

A partir de la théorie de perturbation au second ordre, Behringer [32] a donné l'expression suivant du tenseur de polarisabilité:

$$(\alpha_{\rho\sigma})_{gi,gj} = \frac{1}{h} \sum_{ev} \left(\frac{\langle gj | \mu_{\rho} | ev \rangle \langle ev | \mu_{\sigma} | gi \rangle}{\nu_{ev,gj} - \nu_{0} + i\Gamma_{ev}} + \frac{\langle gi | \mu_{\sigma} | ev \rangle \langle ev | \mu_{\rho} | gj \rangle}{\nu_{ev,gj} + \nu_{0} + i\Gamma_{ev}} \right)$$
(IV-2)

où, μ_{ρ} et μ_{σ} sont les opérateurs du moment dipolaire, $|gi\rangle$ et $|gj\rangle$ sont respectivement les fonctions d'ondes vibroélectroniques d'état initial et final, $|ev\rangle$ est la fonction d'onde de l'état excité e et de l'état de vibration v, Γ_{ev} est une constante désignant la durée de vie de l'état excité (demi largeur de la bande associée à l'état vibrationnel v et supposée être constante pour tout les niveaux de vibrations) et $v_{ev,gi}$ et $v_{ev,gj}$ sont les fréquences de transition.

Quand v_0 est proche de $v_{ev,gi}$ le premier terme domine et devient responsable de l'effet de résonance.

IV.1-2-Moment de transition

En utilisant l'approximation de Born-Oppenheimer, la fonction d'onde vibroélectronique Ψ_{gi} peut être séparée en une partie électronique et une partie vibrationnelle.

$$\Psi_{gi} = |gi\rangle = \theta_g(\xi, Q)\phi_i^g \qquad (\text{IV-3})^{-\infty}$$

où $\theta_g(\xi, Q)$ et $\phi_i^g(Q)$ sont respectivement la fonction d'onde électronique de l'état standard g et vibrationnelle de l'état i, et ξ et Q représentent respectivement l'ensemble des coordonnées internes électroniques et nucléaires.

Ainsi on a:

$$\left| ev \right| \mu_{\rho} \left| gi \left\langle = \int (\phi_{\nu}^{*})^{*} (M_{e}(Q))_{g,e} (\phi_{i}^{*}) dQ \right\rangle$$
(IV-4)
$$\left[M_{e}(Q) \right]_{g,e} = \int \theta_{e}^{*} \mu_{\rho} \theta_{g} d\xi$$
(IV-5)

avec

 $[M_e(Q)]_{g,e}$ est le moment de transition purement électronique entre l'état excité e et l'état standard g. Il présente une faible variation et peut être développé en série de Taylor autour de la géométrie d'équilibre, 0 [33]:

$$\left[M_{e}(Q)\right]_{g,e} = M_{g,e}^{0} + \frac{\partial M_{g,e}}{\partial Q}\right]^{0}Q + \dots$$
 (IV-6)

En utilisant les deux premiers termes de cette équation, l'expression du tenseur de polarisabilité devient (en négligeant la partie non résonante et en ignorant la polarisation dans l'équation IV-2):

$$(\alpha)_{gi,gj} = A + B$$
 (IV-7)

avec

$$A = \frac{1}{h} \sum_{v} \frac{(M)_{g,e}^{0^{2}} \langle gj | ev \rangle \langle ev | gi \rangle}{\nu_{ev,gi} - \nu_{0} + i\Gamma_{ev}}$$
(IV-8)

et
$$B = \frac{1}{h} \sum_{v} \left((M)_{g,e}^{0} \frac{\partial M_{g,e}}{\partial Q} \right)^{0} \frac{\langle gj | ev \rangle \langle ev | Q | gi \rangle + \langle gi | ev \rangle \langle ev | Q | gj \rangle}{v_{ev,gi} - v_{0} + i\Gamma ev}$$
(IV-9)

En plus de ces deux termes A (terme d'Albrecht) et B qui participent avec un grand pourcentage dans l'intensité de résonance Raman s'ajoute le terme C qui est négligé dans la plupart des cas par différent auteurs.

Le terme A est dominant dans l'évaluation de l'intensité de résonance Raman dans le cas des transitions fortement probables et son application se limite aux modes qui sont totalement symétriques. En revanche, l'intensité des autres modes est évalué par le terme B. Ce terme devient dominant dans le cas d'une transition électronique faiblement probable couplée au niveau vibrationnel à la plus proche transition fortement probable.

IV.1-3-Le terme d'Albrecht (A)

En ne s'intéressant dans une première approximation qu'au terme A et donc aux modes qui sont totalement symétriques, Peticolas [34,35] a développé une méthode approximative permettant de calculer l'intensité de résonance Raman. Cette méthode est basée sur plusieurs approximations: (1) La température est suffisamment basse pour que la vibration de la molécule ne concerne pratiquement que les états vibrationnels 0 et 1 (v = 0 ou 1).

Le terme de Franck-Condon de l'équation IV-8 devient:

$$\langle gj|ev \rangle \langle ev|gi \rangle = \langle g1|e0 \rangle \langle e0|g0 \rangle$$
 pour v = 0 (IV-10)
 $\langle g1|e1 \rangle \langle e1|g0 \rangle$ pour v = 1

(2) S'il n'y a pas de changement de fréquence en passant de l'état fondamental g à l'état excité e, le terme de Franck-Condon pour les 3N-6 modes normaux peut être écrit seulement en fonction du déplacement Δ_j^e correspondant à la variation des coordonnées normales Q_j^e entre l'état excité e et l'état fondamental g.

$$\Delta_j^e = Q_j^e - Q_j^g \qquad (IV-11)$$

où, j désigne les 3N-6 coordonnées normales.

et

Inagaki [36] a suggéré que le terme de Franck-Condon s'exprime comme une fonction

linéaire de Δ^{e} pour v<2: $\langle g1|e0 \rangle = -\langle e1|g0 \rangle \approx \frac{\Delta^{e}}{\sqrt{2}}$ (IV-12)

En effectuant la sommation au niveau 0 et 1 de l'équation IV-8 et en utilisant l'équation IV-12, le terme A^2 peut être écrit approximativement de la façon suivante entre les deux niveaux g0 et el [34]:

$$A^{2} = M_{ge}^{2} M_{eg}^{2} \frac{\Delta^{e^{2}}}{2} \left[\frac{\Omega^{2} + (\Gamma_{e1} + \Gamma_{e0})^{2}}{\left[\left(E_{e0} - h \nu_{0} \right)^{2} + \Gamma_{e0}^{2} \right] \left[\left(E_{e1} - h \nu_{0} \right)^{2} + \Gamma_{e1}^{2} \right]} \right]$$
(IV-13)

 Ω désigne la fréquence circulaire de vibration.

L'intensité de résonance Raman pour une faible valeur de Δ_j^e concernant le j ème mode normal peut être exprimée d'une façon simple [34,37]:

$$I_{j} = K \left(\Delta_{j}^{e} \right)^{2} \Omega_{j}^{2}$$
 (IV-14)

où, K est une constante.

IV.1-4-Calcul de Δ^{e} à partir de l'ordre de liaison

Dans la théorie de Wilson [38]; $\Delta^e = L^{-1}R^e$ où L est la matrice des vecteurs propres dans l'équation séculaire et R^e est le déplacement des coordonnées internes entre l'état excité et l'état fondamental g.

Soit Φ_i l'orbitale moléculaire et f_r l'orbitale atomique:

$$\Phi_i^m = \sum_{r=1}^{N_c} C_{ir}^m f_r \qquad (IV-15)$$

où, m est l'indice de l'état électronique e ou g, Nc est le nombre d'atomes de carbone ou d'azote et C_{ir}^{m} est le coefficient de l'orbitale atomique f_r .

Ainsi l'ordre de liaison b_{rs} pour la liaison entre les atomes r et s est défini par:

$$b_{rs}^{m} = \sum_{ij} \frac{\eta_{i}^{m} \left(C_{ir}^{m^{*}} C_{js}^{m} + C_{js}^{m^{*}} C_{ir}^{m} \right) S_{ij}}{2}$$
(IV-16)

Où η_i^m est le nombre d'électrons dans la i ème orbitale moléculaire et Sij est l'élément de la matrice de recouvrement. Pour certaines molécules et surtout les acides nucléiques, la relation linaire entre la distance de liaison 1_{rs}^m est l'ordre de liaison est vérifiée [39]:

$$l_{rs}^{m} = C_0 - C_1 b_{rs}^{m}$$
 (IV-17)

où, C_0 et C_1 sont deux constantes, avec $C_1 = 0.18$ Å par unité d'ordre de liaison pour les deux liaison C-C et C-N [40-42].

Ainsi la différence de distance de liaison en passant de l'état fondamental g à l'état excité e, l_{rs}^{e} est proportionnelle à la variation de l'ordre de liaison b_{rs}^{e} :

$$l_{rs}^{e} = -C_1 b_{rs}^{e} \qquad (IV-18)$$

où

 $\mathbf{R}_{k}^{\mathbf{e}} = -C_{1}\mathbf{b}_{k}^{\mathbf{e}} \qquad (\text{IV-19})$

k désigne la liaison r-s.

et donc, Δ_j^e s'exprime de la fâçon suivante:

$$\Delta_{j}^{e} = \sum_{k} L_{jk}^{-1} \left(-C_{1} b_{k}^{e} \right)$$
 (IV-20)

et l'intensité I_j :

$$I_{j} = KC_{1}^{2} \left(\sum_{k} L_{jk}^{-1} b_{k}^{e}\right)^{2} \Omega_{j}^{2} \qquad (\text{IV-21})$$

IV.1-5-Intensité relative

Si I_1 est la bande la plus intense observée en spectre de résonance Raman,

l'intensité relative en utilisant l'équation 21 et donnée par le rapport $\frac{I_j}{I_1}$:

$$\frac{I_j}{I_1} \approx \left(\frac{\Omega_j \Delta_j^e}{\Omega_1 \Delta_1^e}\right)^2 = \left(\frac{\sum_k L_{jk}^{-1} b_k^e \Omega_j}{\sum_k L_{1k}^{-1} b_k^e \Omega_1}\right)^2$$
(IV-22)

En réalité, K n'est pas tout à fait une constante (éq. IV-21) ; elle dépend de la fréquence de vibration Ω_j et de la différence δ entre l'énergie de transition et l'énergie incidente :

$$\delta = h v_{ev,gi} - h v_0 \qquad (\text{IV-23})$$

En utilisant l'équation 13 et 14, K_j est définie de la façon suivante :

$$K_{j} = \frac{D}{\left[\delta^{2} + \Gamma^{2}\right]\left[\left(\delta + \Omega_{j}\right)^{2} + \Gamma^{2}\right]} \qquad (\text{IV-24})$$
Soit Ω_{max} la fréquence vibrationnelle de la bande la plus intense en résonance Raman (arbitrairement prise égale à 10).

A partir de l'équation IV-22, on peut écrire l'intensité approchée I_j^0 où K est supposée constante:

$$I_j^0 = 10 \left[\frac{\Omega_j L_j}{\Omega_{\max} L_{\max}} \right]^2 \qquad (\text{IV-25})$$

avec

$$L_{j} = \sum_{k} L_{jk}^{-1} b_{k}^{e}$$
 (IV-27)

L'intensité (où K est supposée être variable) est [43]:

$$I_{j} = I_{j}^{0} \left[\frac{\left(\delta + \Omega_{\max}\right)^{2} + \Gamma^{2}}{\left(\delta + \Omega_{j}\right)^{2} + \Gamma^{2}} \right] \quad (\text{IV-28})$$

Références

- W. J. Hehre, L. Radom, P. R. Schleger, J. A. Pople, ab initio molecular orbital theory ed: John Wiley and Sons (1986) 18
- [2] C. C. J. Roothaan, Rev. Mod. Phys., 32 (1960) 179
- [3] H. P. Hohenberg, W. Kohn, Phys. Rev., 136 (1964) 864
- [4] W. Kohn, L. J. Sham, Phys. Rev., 140 A (1965) 1133
- [5] W. J. Hehre, W. A. Lathan, M. D. Newton, R. Ditchfield, J. A. Pople, 1970. Gaussian70, Quantum Chem. Program, Exch. No. 236. Indiana Univ., Bloomington, Ind.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W.
 Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J.
 L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, J.
 M. Defrees, J. Baker, J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsbergh PA, 1993
- [7] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb,
 J. R. cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M.
 A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y.
 Ayala, W. chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin,
 D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C.
 Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsbergh PA, 1995
- [8] W. J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys., 56 (1972) 2257
 P. C. Hariharan, J. A. Pople, Theor. Chim. Acta, 28 (1973) 213
- [9] W. J. Hehre, L. Radom, P. R. Schleger, J. A. Pople, Ab initio molecular orbital theory ed: John Wiley and Sons (1986) 77
- [10] B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Pys., 98(7) (1993) 5612

- [11] A. D. Becke, Phys. Rev., 38 A (1988) 3098
- [12] C. Lee, W. Yang, R. G. Parr, Phys. Rev. 37 B (1988) 785
- [13] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett., 157 (1989) 200
- [14] P. J. Stevens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem., 98 (1994)
 11623
- [15] C. Satoko, Chem. Phys. Lett., 83 (1981) 111
- [16] A. D. Becke, J. Chem. Phys., 88 (1988) 2547
- [17] C. W. Murray, N. C. Handy, G. I. Laming, Mol. Phys. 78 (4) (1993) 997
- [18] V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz., 15 (1975) 48
- [19] V. I. Lebedev, Zh. Vychisl, Mat. Mat. Fiz., 16 (1976) 293
- [20] J. A. Pople, P. M. W. Gill, B. G. Johnson, Chem. Phys. Lett., 199 (1992) 557
- [21] N. C. Handy, D. J. Tozer, G. J. Laming, C. W. Murray, R. D. Amos, Isr. J. Chem., 33 (1993) 331
- [22] A. Allouche, J. Pourcin, Spectrochimica Acta, 49A(4) (1993) 571
- [23] E. B. Wilson, J. C. Decius, P. C. Cross, Molecular vibrations, Mc Graw-Hill (1955)
- [24] S. Califano, Vibrational States, John Wiley (1976)
- [25] S. Califano, Vibrational States, John Wiley (1976) 83
- [26] S. Califano, Vibrational States, John Wiley (1976) 88
- [27] Eckart, C. Phys. Rev., 47 (1935) 552
- [28] J. A. Boatz, M. S. Gordon, J. Phys. Chem., 93 (1989) 1819
- [29] G. Fogarasi, P. Pulay, ab initio calculation of force field and vibrational spectra, inVibrational Spectra and Structure, vol. 14 (Ed. J. R. During). Elsevier (1985)
- [30] G. Fogarasi, P. Pulay, Ann. Rev. Phys. Chem., 35 (1984) 191
- [31] Tang, J., Albrecht, A. C. 1970. In Raman Spectroscopy, ed. H. A. Szymanski, 2:33

67 New York: Plenum

- [32] J. Behringer, Z. Elektrochem., 62 (1958) 906
- [33] T. G. Spiro, P. Stein, Ann. Rev. Phys. Chem. 28 (1977) 501.
- [34] D. C. Blazej, W. Peticolas, Proc. Natl. Acad. Sci. USA., 74(7) (1977) 2639
- [35] W. L. Peticolas, D. P. Strommen, V. Lakshminarayanan, J. Chem. Phys., 73(9) (1980)4185
- [36] F. Inagaki, M. Tasumi, T. Miyazawa, J. Mol. Spectrosc., 50 (1974) 286
- [37] A. Warshel, Ann. Rev. Biophys. Bioeng., 6 (1977) 273
- [38] E. B. Wilson, Jr., J. C. Decius, P. C. Cross, Molecular Vibration (Mc Graw-Hill, New York, 1955)
- [39] M. Tsuboi, Y. Nishimura, A. Y. Hirakawa, W. L. Peticolas, in Biological Applications of Raman Spectroscopy, Vol :2, (T. G. Spiro, ed.) Jhon Wiley, New York, (1987) 109
- [40] P. G. Wright, P. Stein, J. M. Burke, T. G. Spiro, J. Am. Chem. Soc. 101 (1979) 3531
- [41] B. Bak, J. L. Mahler, L. Nygaard, S. O. Sovensen, J. Mol. Spectrosc., 2 (1958) 361
- [42] I. Fischer-Hijalmars, Pure Appl. Chem., 11 (1965) 571
- [43] P. Lagant, P. Derreumaux, G. Vergoten, W. Peticolas, J. Computational Chemistry, 12(6) (1991) 731

Chapitre 2 Para-crésol

· • • •

I. Introduction

La molécule de para-crésol (4-méthylphénol) peut être considérée comme un modèle simplifié pour l'étude vibrationnelle du résidu amino acide tyrosyl.

Les résidus tyrosine, phenylalanine et tryptophane montrent de forts changements d'intensité des bandes vibrationnelles liées aux modes normaux associés aux cycles aromatiques principalement dans le domaine d'excitation dans l'ultraviolet.

A partir du programme Gaussian 92/DFT [1], une étude détaillée des modes vibrationnels et leur distribution d'énergie potentielle du p-crésol et des trois dérivés deutériés sera effectuée de même que l'intensité de résonance Raman des modes les plus importants.

Les résultats vibrationnels de cette molécule seront comparés aux résultats expérimentaux du p-crésol ainsi qu'à ceux du calcul effectué par Takeuchi [2]. Les intensités de résonance Raman des modes normaux du p-crésol sont comparées à celles de la tyrosine en raison de leurs attributions en grande partie au cycle benzènique, comme on pourra le voir plus loin.

La molécule du p-crésol a fait l'objet de plusieurs études spectroscopiques et vibrationnelles. Jakobsen [3] et Green [4], respectivement en 1964 et 1970 ont essayé d'attribuer les modes fondamentaux à l'aide du spectre Raman et IR de la molécule du p-crésol et de ses quelques dérivés deutériés. Une étude complète de cette molécule a été faite par Takeuchi [2] en 1987. Cette étude comporte la détermination des modes fondamentaux à l'aide du spectre Raman et IR du p-crésol et de ses sept dérivées deutériés dans un solvant hydrophobe. La reproduction de ces modes normaux a été effectuée à l'aide du calcul des coordonnées normales en utilisant la méthode de matrice GF [5] et en examinant leur distribution d'énergie potentielle. L'effet de la liaison d'hydrogène a été étudié par Takeuchi [6] (1988) à l'aide du spectre Raman du p-crésol dans différents solvants et de l'analyse des bandes situées entre 1300 et 1150 cm⁻¹, supposées être des marqueurs d'environnement de la molécule de tyrosine dans une protéine.

II. Résultats

La figure 1 décrit les numéros des atomes de la molécule de p-crésol. La substitution par le groupe $-CH_2CHNH_3^+COO^-$ sur le C1 du phénol donne la molécule de tyrosine.

II.1. Optimisation

II.1.1 Géométrie du p-crésol

La géométrie de départ est prise à partir du cristal monoclinique du p-crésol obtenue par rayons X [7]. L'optimisation a duré 151 heures en CPU (DEC α 3400), aboutissant à une géométrie plane très proche de celle du départ sauf pour l'angle de déformation C₄OH où la différence est de 11 °. Cependant cet angle, observé à 109 ° par Larsen [8] en utilisant les microondes, est calculé ici également à 109 ° (Tableau 1b).

Les liaisons, les angles de valence et les angles dièdres sont décrit respectivement dans les tableaux 1a, 1b, 1c. La géométrie de la molécule est très importante pour le calcul des modes de vibration et de leurs distributions d'énergie potentielle. Deux géométries peu différentes peuvent générer d'énormes différences au niveau des modes vibrationnels et de leur distribution d'énergie potentielle [9].

VI.1.2. Charges du p-crésol

Le tableau 2 décrit les charges atomiques du p-crésol en unités atomiques obtenues par la méthode de Mulliken. Deux charges importantes se manifestent pour cette molécule, celle de l'atome d'oxygène (-0,519 u.a) et celle de l'hydrogène lié à cette dernière

Fig 1 : Numérotation des atomes du para-crésol

Atome 1	Atome 2	Calc.	Expt. ^a
C1	C2	1,401	1,406
C1	C6	1,396	1,391
C7	C1	1,511 .	1,520
C2	C3	1,388	1,397
C2	H8	1,085	1,084 b
C3	C4	1,397	1,388
C3	H9	1,083	1,084 b
C5	C4	,1,394	1,397
C4	O10	1,367	1,387
C6	C5	1,393	1,401
C5	H11	1,086	1,084 b
C6	H12	1,085	1,084 b
C7	H14	1,092	1,100 b
C7	H15	1,092	1,100 b
H16	C7	1,096	1,100 b
O10	H13	0,962	0,956 c

Tableau 1a : Distances de liaisons atomiques du p-crésol exprimées en Å

(a b c) Valeurs expérimentales prises respectivement à partir des références [7,2,8] respectivement.

Tobleau 1b Anglea de volence du n prégol exprimés e	n doorág
Fableau 1D Angles de valence du D-clesul explinites e	HUCRICS

Atome 1	Atome 2	Atome 3	Calc.	Expt. ^a
C7	C1	C6	121,442	122
C7	C1	C2	121,003	120
C6	C1	C2	117,551	118
H8	C2	C3	118,978	
H8	C2	C1	119,292	
C3	C2	C1	121,730	. 121
H9	C3	C4	118,940	
H9	C3	C2	121,319	

w.c.ab

C4	C3	C2	119,741	120
O10	C4	C5	122,854	120
O10	C4	C3	117,587	118
C5	C4	C3	119,559	120
H11	· C5	C6	120,129	
H11	C5	C4	119,997	
C6	C5	C4	119,874	118
H12	C6	C5	118,974	
H12	C6	C1	119,481	
C5	C6	C1	121,545	122
H16	C7	H15	107,097	
H16	C7	H14	107,240	
H16	C7	C1	111,542	
H15	C7	H14	107,828	
H15	C7	C1	111,575	
H14	C7	C1	111,327	
H13	O10	C4	109,154	109 b

(a b) Valeurs expérimentales prises respectivement à partir des références [7,8] respectivement

atome 1	atome ?	atome 3	atome 4	Calc
				<u> </u>
C7	C1	C2	H8	-1,074
C7	C1	C2	C3	179,095
C6	C1	C2	H8	179,681
C6	C1	C2	C3	-0,150
Ċ7	C1	C6	H12	1,018
C7	C1	C6	C5	-179,092
C2	C1	C6	H12	-179,741
C2	C1	C6	C5	0,149
H16	C7	C1	C6	105,593
H16	C7	C1	C2	-73,621

Tableau 1c : Angles dièdres du p-crésol exprimés en degrés

H15	C7	C1	C6	-134,673
H15	C7	C1	C2	46,113
H14	C7	C1	C6	-14,154
H14	. C7	C1	C2	166,631
H8	C2	C3	Н9	0,060
H8	C2	C3	C4	-179,776
C1	C2	C3	H9	179,892
C1	C2	C3	C4	0,056
H9	C3	C4	O10	0,070
H9	C3	C4	C5	-179,796
C2	C3	C4	O10	179,910
C2	C3	C4	C5	0,044
H11	C5	C4	O10	-0,121
H11	C5	C4	C3	179,738
C6	C5	C4	O10	-179,904
C6	C5	C4	C3	-0,045
C5	C4	O10	H13	-0,085
C3	C4	O10	H13	-179,946
H12	C6	C5	H11	0,053
H12	C6	C5	C4	179,836
C1	C6	C5	H11	-179,837
C1	C6	C5	C4	-0,051

Numéro	Charges
d'atomes	atomique (u.a)
C1	0,1104
C2	-0,1334
C3	-0,1153
C4	0,2671
C5	-0,1539
C6	-0,1367
C7	-0,3845
H8	0,0935
H9	0,1092
O10	-0,5196
H11	0,0885
H12	0,0929
H13	0,3264
H14	0,1120
H15	0,1188
H16	0,1243

Tableau 2 : Charges atomiques du p-crésol en unités atomiques

(0,326 u.a). L'importance de la valeur de ces deux charges peut expliquer l'existence de la liaison d'hydrogène entre l'atome d'oxygène O10 et l'atome d'hydrogène H13 d'une autre molécule.

II.1.3. Les facteurs d'échelle des coordonnées internes du p-crésol

Les coordonnées internes du p-crésol sont partagées en trois groupes comprenant 32 coordonnées dans le plan formé par le cycle benzènique du p-crésol, 9 coordonnées propres au groupe CH₃ désignées par une étoile et 14 coordonnées hors du plan (Tableau 3).

La matrice des constantes de force en coordonnées cartésiennes obtenue par le calcul ab initio DFT est transformée en une matrice de constantes de forces en coordonnées internes (F_R) à l'aide du programme Redong [10]. Cette matrice F_R est affinée en utilisant le groupe des facteurs d'échelle décrit dans le tableau 4. Les facteurs d'échelle sont situés entre 0,8 et 1, sauf celui associé à la torsion de CO (τ_{CO}) qui est de 0,66. Cette faible valeur est peut être due à l'influence de la liaison d'hydrogène sur le mode attribué à la torsion de CO.

II.1.4. Constantes de force du p-crésol

Le tableau 5 décrit la moitié de la matrice symétrique des constantes de forces en coordonnées internes raffinées en utilisant les facteurs d'échelle décrits dans le tableau 4. Les constantes de forces associées aux élongations (R1-R16) sont comparables à celles obtenues par Takeuchi [2], à l'exception des constantes de force correspondant à l'élongation CC du cycle benzènique, estimée à 6,83 mdyn Å⁻¹ par Takeuchi et calculée à 4,8 mdyn Å⁻¹ (Tableau 5). Les constantes de forces de déformation angulaire (R17-R41) calculées dans le tableau 5 sont en majeure partie similaires à celles calculées par Takeuchi. Une différence importante est remarquée concernant les valeurs des constantes de forces des déformations angulaires hors du plan du cycle benzènique impliquant les CH (R43-R46) et la torsion de CH₃ (R48). Elles sont calculées respectivement à 0,26 et 0,01 mdyn Å⁻¹ (Tableau 5) et à 0,49 et 0,005 mdyn Å⁻¹ par Takeuchi.

Les valeurs de constantes de couplage entre coordonnées dans le plan et hors du plan sont généralement nulles confirmant la séparation des modes dans le plan et des modes hors du plan ainsi que l'on pourra constater plus loin.

II.2. Modes de vibration du p-crésol

II.2.1 Modes de vibration de hautes fréquences

II.2.1.1 Mode d'élongation de OH (v_{OH})

Le mode attribué à l'élongation de OH (v_{OH}) est calculé à 3611 cm⁻¹ et observé à la même fréquence dans le spectre IR du p-crésol solvate par CCl₂ = CCl₂ [2] (Tableau 6). Ce mode se déplace à 2628 cm⁻¹ pour le dérivé deutérié, p-crésol (C₂, C₃, C₅, C₆) d₄ O-D (Tableau 9), correspondant à celui observé à 2668 cm⁻¹ (Tableau 9). Cette différence entre fréquence calculée et expérimentale peut être liée à l'influence de la liaison d'hydrogène. Cela est confirmé par la valeur du rapport de fréquence calculée entre le p-crésol et son dérivé deutérié qui est de l'ordre de 1,7 ($\approx \sqrt{2}$) puisque c'est un mode entièrement propre à OH.

II. 2.1.2 Modes d'élongation de CH (v_{CH})

Un seul mode est observé par Takeuchi en spectre IR du p-crésol à 3028 cm⁻¹. Il est attribué à l'élongation de CH. Les quatre modes correspondant à v_{CH} sont calculés à 3013, 3026, 3034 et 3061 cm⁻¹ (Tableau 6). Les modes observés à 2253 cm⁻¹ pour le p-crésol (3, 5)-d₂, 2256 cm⁻¹ pour le p-crésol (2, 6)-d₂ et 2260 cm⁻¹ pour le p-crésol (2, 3, 5, 6)-d₄

Dans	le plan	Hors du plan					
Numéro de	Attribution	Numéro de Attribution					
coordonnée internea		coordonnée interne					
R1*	vC7-H14	R42	πCCH3				
R2*	vC7-H15	R43	πC2H				
R3*	vC7-H16	R44	πС6Н				
R4	vO10-H13	R45	πСЗН				
R5	vC6-H10	R46	πC5H				
R6	vC5-H11	R47	πC4O				
R7	vC3-H9	R48	тССН3				
R8	vC2-H8	R49	τC4O				
R9	vC4-O10	R50	τC4C3				
R10	vC1-CH3	R51	τC3C2				
R11	vC4-C3	R52	τC2C1				
R12	vC3-C2	R53	τC1C6				
R13	vC2-C1	R54	τC6C5				
R14	vC1-C6	R55	τC5C4				
R15	vC6-C5						
R16	vC5-C4						
R1 7 *	δH14C7H15						
R18*	δH14C7H16		ng.				
R19*	δH15C7H16						
R20	δC4O10H13						
R21	δС4С3Н9						
R22	δС2С3Н9						
R23	δС3С2Н8						
R24	δC1C2H8						
R25	δC1C6H12						
R26	δC5C6H12						
R27	δC6C5H11						
R28	δC4C5H11						
R29	δC5C4O10						
R30	δC3C4O10						
		1 · · · · · · · · · · · · · · · · · · ·					

Tableau 3 : Les coordonnées internes du p-crésol

	Dans le plan	Hors du plan
R31	δC6C1CH3	
R32	δC2C1CH3	
R33*	δC1C7H14	
R34*	δC1C7H15	
R35*	δC1C7H16	
R36	δC4C3C2	
R37	δC3C2C1	
R38	δC2C1C6	
R39	δC1C6C5	
R40	δC6C5C4	
R41	δC5C4C3	

a : L'étoile représente les coordonnées internes propres au groupement méthyle

Coordonnées internes	Facteur d'échelle
τCΟ	0.66
πCCH3	0.80
vOH	0.87
vCH3	0.88
vCH, vCO, TCCH3	0.90
νСС, δΗСΗ, δСΗ	0.93
δCH3	0.94
τCC	0.95
πСН	0.96
δСОН	0.97
πCO, δCCC, νCCH3	0.98
δCO	0.99
δCCH3	1.00

Tableau 4 : facteurs d'échelles du p-crésole obtenus par calcul DFT

Notations pour les coordonnées internes: v: élongation, δ : déformation dans le plan, π : déformation hors du plan

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	4,729			т., ₁ .										
2	0,035	4,673			·									
3	0,041	0,050	4,605											
4	0,000	-0,001	-0,001	7,301										
5	0,011	-0,002	0,000	-0,002	4,951									
6	0,001	0,002	0,001	-0,006	0,010	4,915								
7	0,001	0,000	0,001	-0,002	0,001	0,004	5,045							
8	-0,002	0,007	0,003	0,001	0,005	0,002	0,009	4,945						
9	0,005	0,007	0,009	0,027	0,010	0,047	0,006	0,011	5,899					
10	0,053	0,084	0,116	-0,003	0,008	0,004	0,004	0,009	0,026	4,687				
11	0,004	-0,008	-0,010	-0,023	0,012	-0,005	0,054	-0,007	0,415	0,020	4,871			
12	-0,001	0,013	0,014	-0,004	0,005	0,002	0,068	0,070	-0,008	-0,015	-0,172	5,067		
13	0,002	-0,008	-0,009	0,000	-0,004	0,008	-0,010	0,075	0,057	0,200	0,361	-0,176	4,746	
14	-0,004	0,002	-0,004	-0,004	0,068	-0,009	• 0,009	-0,005	0,025	0,173	1,951	0,436	-0,083	4,897
15	0,007	0,000	0,007	0,002	0,068	0,077	0,001	0,006	0,019	0,018	0,420	2,028	0,412	-0,168

.

Tableau 5 : Matrice des constantes de forces en coordonnées internes (Fr) du p-crésol exprimées en mdyn Å -1 pour les élongations et en mdyn Å (rad)-2 pour les angles de déformation dans le plan et hors plan et pour les angle dièdres.

<u></u>	1	2	3	4	5	6	7	8	9	10	11	12	13	14
						affarðin silver og na						<u>, </u>		· · ·
16	-0,003	0,002	-0,004	-0,010	-0,008	0,067	-0,005	0,010	0,339	-0,012	-0,172	0,445	1,936	0,382
17	0,074	0,074	-0,069	0,001	-0,005	-0,001	-0,001	-0,005	-0,007	-0,120	0,000	0,000	-0,005	0,001
18	0,075	-0,067	0,078	0,001	-0,005	-0,001	-0,001	-0,003	-0,005	-0,138	-0,001	0,000	-0,007	0,004
19	-0,063	0,080	0,081	0,000	-0,002	-0,001	-0,001	-0,001	-0,003	-0,155	0,004	-0,010	0,002	-0,010
20	0,000	-0,001	-0,001	0,151	-0,002	0,025	0,001	0,002	0,396	-0,002	0,041	-0,007	0,004	-0,008
21	0,000	0,000	0,000	-0,006	-0,009	0,005	0,061	-0,010	-0,045	-0,021	0,296	0,122	0,056	-0,249
22	0,003	0,000	0,000	0,001	-0,008	-0,007	0,028	-0,022	-0,020	-0,012	0,119	0,325	0,037	-0,293
23	0,001	-0,004	-0,003	0,006	-0,005	-0,008	-0,021	0,045	-0,027	-0,019	0,039	0,342	0,105	0,053
24	-0,004	0,002	0,000	0,002	0,006	-0,008	-0,010	0,050	-0,042	-0,043	0,054	0,124	0,311	0,042
25	0,004	-0,003	-0,002	0,001	0,047	-0,012	-0,007	0,005	-0,044	-0,047	-0,236	-0,297	0,044	0,327
26	-0,005	0,000	-0,002	-0,002	0,045	-0,023	-0,007	-0,005	-0,029	-0,018	-0,276	-0,252	0,054	0,114
27	0,001	0,001	0,000	-0,001	-0,021	0,038	-0,004	-0,009	-0,023	-0,010	0,049	-0,250	-0,284	0,039
28	0,000	-0,001	-0,001	0,014	-0,011	0,063	0,004	-0,009	-0,061	-0,020	0,036	-0,295	-0,239	0,055
29	-0,001	0,000	0,001	-0,078	0,003	-0,025	-0,005	-0,011	0,126	-0,014	0,057	0,103	-0,277	-0,261
30	0,000	0,001	0,002	0,060	-0,010	-0,016	-0,036	0,004	0,229	-0,016	0,412	-0,023	-0,244	-0,288
31	-0,044	0,031	0,014	0,000	-0,035	0,004	-0,008	-0,008	-0,033	0,118	-0,267	0,081	0,072	0,395
32	0,044	-0,026	-0,008	0,001	-0,004	-0,010	0,004	-0,028	-0,031	0,103	-0,284	0,019	0,365	0,066
33	0,037	-0,057	-0,057	0,001	0,012	-0,001	0,003	-0,003	-0,003	0,136	-0,007	-0,002	0,044	-0,021
34	-0,058	0,036	-0,060	-0,001	-0,001	0,002	-0,001	0,007	0,005	0,131	0,004	0,005	-0,022	0,024

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	•													
35	-0,059	-0,061	0,032	-0,001	0,000	0,001	0,000	0,005	0,012	0,119	0,000	0,008	-0,013	0,002
36	-0,002	0,000	0,000	0,004	0,016	0,002	-0,089	0,032	0,064	0,034	-0,415	-0,447	-0,093	0,542
37	0,003	0,002	0,004	-0,009	-0,002	0,016	0,031	-0,094	0,070	0,063	-0,093	-0,467	-0,416	-0,095
38	-0,001	-0,004	-0,006	-0,001	0,039	0,006	0,004	0,037	0,064	-0,221	0,551	-0,100	-0,437	-0,460
39	0,001	0,004	0,004	0,001	-0,092	0,035	0,014	0,001	0,072	0,064	0,511	0,549	-0,098	-0,441
40	-0,001	0,000	0,000	-0,014	0,031	-0,101	0,000	0,018	0,085	0,031	-0,085	0,544 .	0,523	-0,094
41	0,000	-0,001	-0,002	0,018	0,007	0,041	0,041	0,007	-0,355	0,030	-0,469	-0,080	0,520	0,549
42	0,005	0,013	-0,016	0,000	0,000	0,000	0,000	0,001	-0,001	-0,008	0,007	-0,001	-0,003	-0,004
43	0,001	-0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,002	-0,001	0,000
44	-0,001	0,002	-0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000	-0,001	-0,001	0,001	-0,001
45	0,000	-0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,003	0,000	0,001	0,000	-0,001
46	0,001	0,001	-0,001	0,000	0,001	0,000	0,000	0,000	0,000	-0,003	-0,001	0,001	0,001	0,000
47	0,001	0,002	-0,001	0,000	0,000	0,000	0,000	0,000	0,000	-0,004	0,000	-0,001	0,001	0,002
48	0,007	-0,018	0,012	0,000	0,003	0,000	0,000	-0,003	0,001	-0,002	-0,011	0,010	-0,010	0,010
49	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
50	0,000	0,000	-0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	-0,002	0,001
51	0,000	-0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,002	-0,001	-0,001	0,001
52	0,004	0,013	-0,013	0,000	-0,001	0,000	0,000	0,000	-0,001	-0,010	0,002	0,001	0,000	0,003
53	-0,006	-0,010	0,012	0,000	0,000	0,000	0,000	0,000	0,001	0,011	0,000	0,000	-0,003	0,000

ŝ

.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
54	0,001	0,001	-0,001	0,000	0,000	0,000	0,000	0,	0,000	-0,002	0,000	0,000	-0,001	0,002
55	0,000	-0,001	0,001	0,000	-0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,001	-0,001	0,002
	15	16	17	18	19	20	21	22	23	24	25	26	27 .	28
15	4,936													
16	-0,173	4,913				z.								
17	-0,005	0,006	0,466											
18	-0,009	0,006	-0,086	0,470										
19	-0,004	-0,001	-0,090	-0,091	0,473									
20	0,006	-0,009	0,000	0,000	0,000	0,785								
21	-0,286	0,034	0,001	0,001	0,001	-0,005	0,406							
22	-0,242	0,052	0,000	0,000	0,000	-0,006	-0,069	0,410						
23	-0,243	-0,278	0,003	0,002	0,001	0,006	0,015	-0,001	0,426					
24	-0,287	-0,237	0,001	0,002	0,003	0,000	0,010	0,011	-0,085	0,426				
25	0,110	0,057	0,001	0,002	0,002	-0,003	-0,077	-0,077	-0,058	-0,012	0,426			
26	0,328	0,039	0,004	0,002	0,002	-0,006	-0,076	-0,078	-0,078	-0,057	-0,083	0,423		

15		16	17	18	19	20	21	22	23	24	25	26	27	28
 		<u></u>	<u></u>											
27 0,3	17	0,112	0,000	0,000	-0,001	-0,014	-0,055	-0,077	-0,077	-0,075	0,010	0,000	0,422	
28 0,10	08	0,312	0,001	0,001	0,001	0,003	-0,010	-0,057	-0,076	-0,077	0,009	0,014	-0,081	0,415
29 -0,02	27	0,419	-0,001	-0,001	0,001	-0,048	0,013	-0,002	-0,063	-0,080	-0,056	-0,008	-0,004	-0,013
30 0,1	13	0,055	-0,001	0,000	0,000	0,077	-0,025	0,014	-0,006	-0,054	-0,080	-0,062	0,008	0,009
31 0,02	26	-0,293	-0,001	0,004	-0,022	-0,004	-0,080	-0,062	-0,004	0,000	-0,001	0,004	-0,011	-0,056
32 0,0	82	-0,272	-0,009	-0,013	0,012	0,000	-0,053	-0,011	0,007	-0,007	-0,001	0,001	-0,058	-0,077
33 0,00	03	0,009	-0,087	-0,087	-0,106	0,001	0,002	0,008	-0,004	-0,004	-0,002	-0,004	-0,006	-0,004
34 1 0,00	05	-0,009	-0,087	-0,101	-0,085	-0,001	-0,003	-0,005	-0,002	-0,002	-0,002	-0,002	0,005	0,001
35 0,00	08	-0,010	-0,098	-0,086	-0,082	-0,001	-0,002	-0,003	-0,001	0,001	-0,001	-0,002	0,001	0,000
36 0,52	28	-0,086	-0,001	-0,001	-0,001	0,011	-0,337	-0,341	-0,014	-0,020	0,154	0,154	0,132	0,067
37 0,53	30	0,515	-0,004	-0,004	-0,005	-0,006	-0,024	-0,010	-0,341	-0,341	0,069	0,134	0,153	0,153
38 -0,10	08	0,565	0,010	0,009	0,010	0,004	0,133	0,073	-0,003	0,006	0,002	-0,006	0,070	0,133
39 -0,4	38	-0,096	-0,005	-0,004	-0,004	0,009	0,152	0,155	0,135	0,068	-0,342	-0,340	-0,010	-0,022
40 -0,42	25	-0,424	-0,001	-0,001	0,000	0,011	0,065	0,134	0,153	0,152	-0,019	-0,014	-0,341	-0,335
41 -0,08	87	-0,475	0,001	0,001	0,000	-0,029	0,011	-0,012	0,070	0,134	0,136	0,071	-0,003	0,004
42 -0,0	03	0,005	-0,003	0,004	0,004	0,000	0,001	0,001	0,001	0,001	0,000	0,000	0,001	0,001
43 -0,0	01	-0,001	0,001	-0,002	0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000
44 0,0	01	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
45 -0,00	01	0,000	0,000	-0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

15	5	16	17	18	19	20	21	22	23	24	25	26	27	28
			······································											
46 0,0	000	0,000	0,002	-0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
47 -0,0)01	0,001	0,002	-0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
48 -0,0	010	0,012	0,006	-0,006	0,002	0,000	0,000	0,001	0,000	-0,002	0,001	0,000	-0,001	0,000
49 0,0	000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
50 -0,0)01	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
51 0,0	000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
52 -0,0	002	-0,001	0,002	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000
53 0,0	000	-0,001	-0,004	0,004	-0,002	0,000	0,000	0,000	0,000	0,000	0,000	-0,001	0,000	0,000
54 0,0)01	-0,001	0,003	-0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
55 0,0	000	-0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
29)	30	31	32	33	34	35	36	37	38	39	40	41	42

29 0,670

30 -0,303 0,654

31 -0,078 -0,079 0,599

32 -0,075 -0,077 -0,233 0,583

٠

	29	30	31	32	33	34	35	36	37	38	39	40	41	42
	<i>27</i>		<u> </u>										T I	
33	-0,002	-0,001	-0,044	0,061	0,525									
34	0,001	0,000	0,047	-0,039	-0,134	0,511								
35	0,002	0,002	0,015	-0,013	-0,133	-0,122	0,506							
36	-0,011	0,011	0,142	0,063	-0,010	0,008	0,005	0,678						
37	0,144	0,060	0,003	0,000	0,008	0,004	0,000	0,034	0,682					
38	0,153	0,155	-0,366	-0,350	-0,016	-0,008	-0,003	-0,206	-0,003	0,717				
39	0,064	0,142	-0,003	0,000	0,005	0,004	0,003	-0,308	-0,204	0,003	0,682			
40	0,017	-0,017	0,067	0,136	0,010	-0,007	-0,001	-0,200	-0,305	-0,203	0,032	0,676		
41	-0,367	-0,352	0,156	0,152	0,003	-0,001	-0,003	0,001	-0,204	-0,308	-0,206	-0,001	0,719	
42	0,000	0,002	-0,005	0,002	0,003	0,022	-0,030	-0,002	-0,002	0,007	0,000	-0,002	-0,002	0,310
43	-0,001	0,000	-0,001	0,000	0,001	0,005	-0,006	0,000	-0,001	0,000	0,001	0,000	0,000	-0,008
44	0,000	0,000	-0,002	0,001	0,001	0,008	-0,009	0,000	0,000	0,000	0,000	0,000	0,000	-0,006
45	0,000	0,000	-0,001	0,001	-0,002	0,003	-0,001	-0,001	0,000	0,000	0,001	0,000	0,000	0,008
46	0,000	0,000	0,000	0,000	-0,001	0,004	-0,003	0,000	0,000	0,000	-0,001	0,001	0,001	-0,009
47	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	-0,040
48	0,000	0,001	-0,004	0,003	0,009	-0,007	-0,003	-0,001	0,002	0,000	-0,002	0,001	0,000	-0,014
49	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
50	0,000	-0,001	0,001	-0,001	0,002	-0,001	-0,001	0,000	0,000	0,001	-0,001	0,000	0,000	0,025
51	0,000	0,000	0,000	0,000	-0,003	0,003	0,000	0,000	0,000	0,001	0,000	-0,001	0,000	0,064

29	30	31	32	33	-34	35	36	37	38	39	40	41	42
•													
-0,001	0,000	-0,001	, 0,000	0,005	0,017	-0,024	0,000	-0,002	0,001	0,001	0,000	0,001	0,004
0,001	0,000	0,004	-0,004	-0,003	-0,023	0,028	0,000	0,001	-0,001	0,000	0,000	-0,001	-0,005
0,000	-0,001	0,000	0,000	-0,001	0,008	-0,007	0,001	0,001	-0,001	0,000	0,000	0,000	-0,062
0,000	0,000	-0,001	0,001	-0,001	-0,003	0,004	0,000	0,000	-0,001	0,001	0,000	-0,001	-0,025
43	44	45	46	47	48	49	50	51	52	53	54	55	
											<u></u>		
0,268													
0,009	0,265											•	
0,001	0,032	0,241						·					
-0,031	0,002	-0,006	0,231										
0,001	-0,006	0,008	0,006	0,383			:						
-0,002	0,000	0,002	-0,002	-0,003	0,010								
-0,006	0,005	0,002	-0,002	-0,020	0,000	0,041							
0,048	-0,034	-0,003	0,047	0,038	0,000	-0,012	0,195						
	29 -0,001 0,000 0,000 0,000 43 0,268 0,009 0,001 -0,031 0,001 -0,002 -0,006 0,048	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 30 31 32 33 34 35 36 37 38 39 40 41 -0,001 0,000 -0,001 0,000 0,005 0,017 -0,024 0,000 -0,001 0,000 0,000 0,001 0,000 0,000 0,001 0,000 0,000 -0,001 0,000 0,000 -0,001 0,000 0,000 -0,001 -0,000 -0,001 -0,000 -0,001 -0,001 -0,000 -0,001 -0,001 -0,001 -0,001 -0,001 -0,001 <t< td=""></t<>

.

.

	43	44	45	46	47	48	49	50	51	52	53	54	55	
52	0,006	0,051	-0,048	-0,028	0,031	-0,012	-0,002	0,003	-0,113	0,200				
53	-0,054	-0,008	-0,030	-0,050	-0,034	0,012	-0,001	0,020	-0,008	-0,106	0,204			
54	-0,028	0,010	0,029	0,014	-0,064	0,000	0,009	-0,017	0,027	-0,004	-0,115	0,208		
55	0,032	-0,048	0,043	-0,012	-0,041	-0,001	0,003	-0,102	-0,016	0,019	0,004	-0,094	0,189	

correspondent respectivement à ceux calculés à 2263 (Tableau 7), 2240 (Tableau 8) et 2266 cm⁻¹ (Tableau 9).

II.2.1.3 Modes d'élongation de CH₃

Les modes d'élongation de CH_3 sont calculés à 2865 cm⁻¹ pour l'élongation symétrique, 2914 et 2942 cm⁻¹ pour l'élongation dégénérée. Ils correspondent respectivement aux modes observés à 2865, 2920 et 2945 cm⁻¹ [2]. Cependant, Takeuchi attribue les modes observés à 2865 et 2920 cm⁻¹ respectivement à une harmonique des modes de vibration propres à la déformation de CH_3 et à l'élongation symétrique de CH_3 respectivement.

II.2.2 Modes de vibration dans le plan du cycle benzènique

II.2.2.1 Modes de vibration v8a et v8b

Les modes de vibration v8b et v8a (notation de Wilson [5]) sont attribués en grande partie aux élongations des CC. Ils sont calculés respectivement à 1596 et 1622 cm⁻¹, et observés à 1597 et 1618 cm⁻¹ (Tableau 6). Ces modes se déplacent respectivement à 1563 et 1595 cm⁻¹ dans le dérivé deutérié p-crésol d₄-OD (Tableau 9) et correspondent aux modes observés à 1570 cm⁻¹ et au doublet de Fermi (1582 - 1600 cm⁻¹).

II.2.2.2 Modes de vibrations v19b et v19a

Ces deux modes sont attribués aux mélange de déformations de CH (δ_{CH}) et de l'élongation de CC (ν_{CC}). Ils sont calculés respectivement à 1430 et 1519 cm⁻¹ et observés à 1425 et 1514 cm⁻¹ (Tableau 6). Les déplacements de fréquences des modes v19b et v19a pour les dérivés deutériés sont en parfait accord avec les fréquences observées (Tableau 7, 8 et 9).

II.2.2.3 Modes de vibrations v14 et v3

Ces deux modes sont attribués essentiellement à l'élongation des liaisons CC (v_{CC}) et à la déformation de CH (δ_{CH}) couplée à la déformation de COH (δ_{COH}) pour le mode v3. Ils sont calculés respectivement à 1297 et 1329 cm⁻¹ (Tableau 6) et observés à 1291 et 1326-1335 cm⁻¹ (doublet de Fermi). La fréquence du mode v14 présente un léger déplacement pour les trois dérivés deutériés, en opposition à celle correspondant au mode v₃ où le déplacement est considérable. (Tableaux 7, 8 et 9).

II.2.2.4 Modes de vibrations entre 1160 et 1260 cm⁻¹

Quatre modes sont calculés dans cette région , à 1161 cm⁻¹ (v9a) attribué à la déformation de CH (δ_{CH}), à 1170 cm⁻¹ (δ_{COH}), et à 1217 (v7a) et 1258 cm⁻¹ (v7a') attribués respectivement à l'élongation de CCH₃ (v_{CCH3}) et de CO (v_{CO}). Ces fréquences et leurs déplacements pour les dérivés deutériés sont en parfait accord avec celles observées (Tableaux 6, 7, 8 et 9). Une étude de Takeuchi [6] sur le p-crésol dans différents solvants donneurs ou accepteurs de protons a montré qu'un léger déplacement se manifeste selon les différents solvants. Le plus grand déplacement de fréquence est observé pour le mode v7a pouvant être expliqué par la présence de la vibration de type v_{CO} dans ce mode, permettant à une liaison d'hydrogène d'affecter d'une façon directe la fréquence relative. La fréquence associée au mode (v7a') passe de 1255 cm⁻¹ à 1275 cm⁻¹ dans un solvant donneur de proton et à 1230 cm⁻¹ dans un solvant accepteur de proton [6]. Cette région de fréquences représente alors un marqueur d'environnement de la molécule de tyrosine incluse dans un environnement protéique.

II.2.2. 5 Mode de vibration y1

Le doublet de Fermi, observé à 823-842 cm⁻¹ correspond au mode calculé à 823 cm⁻¹ (v1). La présence de l'élongation de CO dans ce mode (Tableau 6) peut expliquer la sensibilité de la fréquence au milieu environnant comme il a été discuté par Takeuchi [6]. Ce mode présente un léger déplacement pour les dérivés deutériés (Tableaux 7,8 et 9).

II.2.2.6 Modes de vibrations propres à la respiration du cycle (v6a et v6b)

Ces deux modes sont calculés à 459 cm⁻¹ (v6a) et 648 cm⁻¹ (v6b) et correspondent respectivement aux modes observés à 458 et 638 cm⁻¹ pour le p-crésol (3, 5)- d_2 , 458 et 636 cm⁻¹ pour le p-crésol (2, 6)- d_2 et 452 et 627 cm⁻¹ pour le p-crésol d_4 -OD. Ces légers déplacements de fréquence pour les dérivés deutériés sont en accord avec les fréquences observées (Tableaux 7,8 et 9).

II.2.2.7 Modes de vibrations de déformation de CCH₃ et CO (v18b et v19b)

Les modes v18b et v19b sont attribués respectivement au déformation dans le plan de CCH₃ (δ_{CCH3}) et de CO (δ_{CO}). Ils sont calculés à 304 et 422 cm⁻¹ et observés à 334 et 422 cm⁻¹.

II.2.3 Modes de vibrations propres au déformation de CH₃

Les déformations symétriques et dégénérées de CH_3 sont calculées respectivement à 1384 et 1447, 1465 cm⁻¹. Elles correspondent aux deux modes observés respectivement à 1378 et 1455 cm⁻¹ (Tableau 6). Les rotations de CH_3 sont à 982 et 1035 cm⁻¹ et correspondent aux fréquences observées respectivement à 984 et 1035 cm⁻¹ (Tableau 6). Ces fréquences restent pratiquement les mêmes pour les dérivés deutériés (Tableaux 7, 8 et 9).

II.2.4 Modes de vibrations hors du plan du cycle

II.2.4.1 Modes de vibrations propres aux déformations de CH (v11, v10a,

v5 et v17a)

Ces modes sont calculés à 804 (v11), 830 (v10a), 921 (v5) et 952 cm⁻¹ (v17a) et observés à 804-817 cm⁻¹ (doublet de Fermi), 920 et 948 cm⁻¹ respectivement pour les modes v11, v5 et v17a. Ces quatre modes sont attribués essentiellement à la déformation de CH (π_{CH}) couplée aux torsions de CC (τ_{CC}). Deux modes obtenus à 701 et 726 cm⁻¹ et observés respectivement à 705 et 729 cm⁻¹ pour le p-crésol (2, 6)-d₂ sont attribués à la déformation de CD (π_{CD}) (Tableau 8). Ils correspondent respectivement aux modes v10a et v11. pour le dérivé deutérié p-crésol d₄-OD. Ces quatre modes se déplacent à 636 (v10a), 712 (v11), 761 (v5) et 789 cm⁻¹ (v17a) et sont observés respectivement à 653 et 705 cm⁻¹ pour les modes v10a et v11.

II.2.4.2 Modes de vibrations propres au torsion de CC (v17b et v16a)

Les modes attribués au torsion de CC (τ_{CC}) sont calculés à 146 (v17b) et 414 cm⁻¹ (v16a) (observé à 414 cm⁻¹). Le mode v17b n'est pas observé par Takeuchi [2], cependant Jakobsen [3] observe un mode à 161 cm⁻¹ en spectre Raman du p-crésol en phase liquide et qu'il attribue à un mode fondamental.

Takeuchi [2] a attribué le mode calculé à 17 cm⁻¹ à la torsion de CCH₃ (CCH₃). Le mode correspondant est obtenu à 65 cm⁻¹ par le calcul DFT (Tableau 6).

Tableau 6 Fréquences calculées et observées du p-crésol et distribution d'énergie potentielle

Fyntl a	Calc	modeb	Attribution (%)
Lapu	<u>65</u>	mode	тССН3(80)
	146	17h	$\pi CC(64) + \pi CH(20) + \pi CCH3(10)$
294	297	170	$\tau CO(96)$
320	321	10b	$\pi CCH_3(41) + \tau CC(32) + \pi CH(7) + \tau CO(7)$
334	304	18b	$\delta CCH_3(63) + \delta CO(17)$
414	414	16a	$\tau CC(58) + \pi CH(34)$
422	422	9b	$\delta CO(50) + \delta CCH_3(16) + \delta CCC(15)$
461	459	6a	$\delta CCC(48) + \nu CCH_3(11) + \delta CH(9) + \nu CC(8)$
504	504	16b	$\pi CO(45) + \pi CCH_3(28) + \tau CC(13)$
645	648	6b	$\delta CCC(59) + \delta CH(19) + \nu CC(10)$
700	693	4	$\pi CO(33) + \tau CC(29) + \pi CH(20) + \pi CCH_3(16)$
739	736	13	$vCCH_3(34) + \delta CCC(20) + vCO(19) + vCC(13)$
804*	804	11	$\pi CH(73) + \pi CC(16) + \pi CO(9)$
817*	004	11	n C H(73) + n C C(10) + n C C(3)
	830	10 a	$\pi CH(72) + \tau CC(13) + \pi CO(9)$
823*	833	1	$vCC(47) + vCO(17) + \delta CCC(14) + vCCH_3(11)$
842*	000	I	
920	921	5	$\pi CH(73) + \tau CC(22)$
948	952	17a	$\pi CH(74) + \tau CC(24)$
984	982		CH3 rock(70) + v CC(19)
1014	1009	18a	$\delta CCC(36) + \nu CC(32) + \delta CH(26)$
1039	1035		CH3 rock(75) + π CH(8)
1100	1102	15	$\delta CH(65) + \nu CC(23)$
1170	1161	9a	$\delta CH(81) + \nu CC(14)$
1169	1170		$\delta \text{COH}(51) + \nu \text{CC}(25) + \delta \text{CH}(11)$
1217	1217	7a	$vCCH_3(47) + \delta CH(20) + vCC(17) + \delta CCC(10)$
1254	1258	7a'	$vCO(56) + vCC(18) + \delta CH(15)$
1291	1297	14	$vCC(57) + \delta CH(32)$
1326*	1329	3	$vCC(45) + \delta CH(32) + \delta COH(21)$
1335*	1527	2	
1378	1384		CH3 s.def.(89)
1425	1430	19b	$\delta CH(35) + \nu CC(32) + CH_3 \text{ deg.deform.}(22)$
1455	1447		CH3 deg.def.(99)

obtenue par calcul DFT

1455	1465		CH ₃ deg.def.(79) + ν CC(10)	
1514	1519	19a	$\delta CH(43) + \nu CC(33) + \nu CO(10)$	
1597	1596	8b	$vCC(66) + \delta CH(10)$	
1618	1622	8a	$vCC(62) + \delta CH(19)$	
2865	2865		s. s CH3(99)	
2920	2914		deg. s CH ₃ (99)	
2945	2942		deg. s CH ₃ (99)	
	3013		vCH(99)	
3028	3026		vCH(98)	
	3034		vCH(98)	
	3061		vCH(99)	
3611	3611		vOH(100)	

Fréquences données en cm⁻¹

^a Fréquences observées prises à partir de la référence [2]

^b Notations de Wilson [5]

* Doublet de résonance de Fermi

v: élongation, δ : déformation dans le plan, π : déformation hors plan, τ : torsion; rock(rocking): rotation, tw(twisting): torsion, wag(wagging): balancement, scis(scissoring): cisaillement, s.def(symmetric deformation): déformation symétrique, deg.def(degenerate deformation): déformation dégénérée, a.s(asymmetric stretching): élongation asymétrique, s.s(symmetric stretching): élongation symétrique, deg.s(degenerate stretching): élongation dégénérée.

Exptl a	Calc.	mode b	Attribution (%)
	65		τCCH3(80)
	145	17b	$\tau CC(66) + \pi CH(18) + \pi CCH_3(10)$
291	296		τCO(91)
325	303	18b	$\delta CCH_3(62) + \delta CO11(17)$
	320	10b	$\pi CCH_3(39) + \tau CC(33) + \tau CO(9)$
388	389	16a	$\tau CC(74) + \pi CH(24)$
407	407	9b	$\delta CO(48) + \delta CCH_3(16) + \delta CCC(16)$
460	458	6a	$\delta CCC(48) + \nu CCH_3(10) + \delta (CH, CD)()$
463	470	16b	$\pi CO(44) + \pi CD(28) + \tau CC(15) + \pi CCH_3(10)$
631	616	4	$\tau CC(37) + \pi CCH_3(33) + \pi CD(15)$
636	638	6b	δ CCC(60) + δ (CH,CD)(19)
706	703	13	$vCCH_3(31) + \delta CD(21) + vCC(18) + vCO(10)$

Tableau 7 Fréquences calculées et observées du p-crésol (3,5)-d2 et distribution d'énergie potentielle obtenue par calcul DFT

721	667	10 a	$\pi \text{CD}(78) + \tau \text{CC}(17)$
758	763	11	$\pi CD(50) + \pi CO(45)$
828	821	1	$vCC(46) + vCO(23) + \delta CCC(13)$
855	846	18a	$\delta \text{CD}(58) + \delta \text{CCC}(13) + \nu \text{CC}(11)$
872	864	15	$\delta \text{CD}(75) + \nu \text{CC}(10)$
881	890	5	$\pi CH(70) + \tau CC(17)$
914	920	17a	$\pi CH(72) + \tau CC(21)$
996	997		CH3 rock(65) + v CC(15)
1036	1035		CH ₃ rock(73)
1058	1054	9a	$\delta \text{CCC}(27) + \nu \text{CC}(24) + \delta \text{CH}(20) + \delta \text{CD}(15)$
1154	1146		$\delta \text{COH}(44) + \nu \text{CC}(26) + \delta \text{CH}(20)$
1202	1205	7a	$vCCH_3(43) + \delta CH(29) + vCC(14)$
1240	1240	7a'	$vCO(42) + vCC(24) + \delta CH(18)$
1252	1269	3	$vCC(48) + \delta CH(19) + vCO(11)$
1319	1322	14	$vCC(54) + \delta COH(22) + \delta CH(19)$
1378	1383		CH3 s. def.(89)
1396	1405	19b	$vCC(39) + CH_3 \text{ deg. def.}(23) + \delta CH(13)$
1453	1447		CH3 deg. def.(92)
	1460		CH3 deg.def.(77)
1474	1484	19a	$vCC(36) + \delta CH(18) + vCO(15)$
1588	1585	8b	$vCC(66) + \delta COH(8)$
1607	1612	8a	$vCC(63) + \delta CH(13)$
	22,32		vCD(96)
2253	2263		vCD(96)
	2865		s. s CH3(99)
2920	2914		deg. s CH3(99)
	2942		deg. s CH3(99)
3027	3027		vCH(99)
	3030		vCH(99)
3611	3611		vOH(99)

		•	
Exptl a	Calc.	modeb	Attribution
	65		τCCH3(80)
	147	17b	$\tau CC(66) + \pi (CH,CD)(19) + \pi CCH_3(10)$
	297		τCO(95)
330	301	18b	$\delta CCH_3(64) + \delta CO(15)$
	320	10b	$\pi CCH_3(38) + \tau CC(33) + \tau CO(10)$
387	386	16a	$\tau CC(73) + \pi CH(19)$
413	412	9b	$\delta CO(53) + \delta CCH_3(15) + \delta CCC15)$
454	449	16b	$\pi CO(29) + \pi CCH_3(29) + \tau CC(21) + \pi (CH,CD)(17)$
459	458	6a	$\delta CCC(45) + \nu CCH_3(11) + \delta (CH, CD)(10)$
	636	6b	$\delta CCC(60) + \delta (CH,CD)(18)$
670	679	4	$\pi \text{CO}(60) + \tau \text{CC}(35)$
705	701	10a	$\pi \text{CD}(78) + \tau \text{CC}(15)$
715	712	13	$vCO(21) + vCCH_3(21) + vCC(18) + \delta CD(15)$
729	726	11	$\pi \text{CD}(72) + \pi \text{CCH}_3(14)$
799*	810	1	$vCC(40) + vCCH_3(21) + \delta CD(11)$
815*	010	. 1	
889	855	5	$\pi CH(65) + \tau CC(17) + \pi CD(10)$
867	866	15	$\delta CD(55) + \delta CCC(18) + \nu CC(13)$
872	883	18a	δCD(81)
925	894	17a	$\pi CH(68) + \tau CC(18)$
980	980		CH ₃ rock(67) + ν CC(20)
1038	1029		CH ₃ rock(84)
1047	1041	9a	$\delta CH(26) + \nu CC(25) + \delta CCC(23) + \delta CD(15)$
1163	1166		$\delta \text{COH}(42) + \nu \text{CC}(25) + \delta \text{CH}(19)$
1204	1203	7a	$vCCH_3(34) + \delta CH(29) + vCC(13) + \delta CCC(11)$
1223	1227	3	$\delta CH(30) + \nu CC(17) + \delta COH(14) + \delta CD(11)$
1238	1242	7a'	vCO(47) + vCC(22)
1303	1308	14	$vCC(78) + \delta COH(12)$
1376	1383		CH ₃ s. def.(89)
1407	1417	19b	$vCC(30) + \delta CH(28) + \delta COH(13)$
1454	1446		CH3 deg. def.(91)
1462 -	1458		CH ₃ deg.def.(73)
1475	1484	19a	$vCC(36) + \delta CH(18) + vCCH_3(11) + vCO(10)$
1584	1587	8b	vCC(68)

Tableau 8 Fréquences calculées et observées du p-crésol (2,6)-d2 et distribution d'énergie potentielle obtenue par calcul DFT

	2238	vCD(96)	
2256	2240	vCD(96)	
	2865	s. s CH3(99)	
2920	2914	deg. s CH3(99)	
	2942	deg. s CH3(99)	
3027	3018	vCH(99)	
	3059	vCH(99)	
3611	3611	 vOH(99)	

Tableau 9 Fréquences calculées et observées du p-crésol (2,3,5,6)-d4 et distribution d'énergie potentielle obtenue par calcul DFT

Exptl a	Calc.	modeb	Attribution (%)
	65		τCCH3(80)
	141	17b	$\tau CC(65) + (16) + \pi CCH_3(9)$
	219		τCO(95)
323	295	18b	$\delta CCH_3(59) + \delta CO(20)$
	311	10 b	$\pi CCH_3(44) + \tau CC(38)$
	363	16a	$\tau CC(84) + \pi CD(13)$
	385	9b	$\delta CO(46) + \delta CCH_3(18) + \delta CCC(14)$
427	430	16b	$\pi CO(34) + \pi CD(31) + \tau CC(18) + \pi CCH_3(15)$
454	452	6a	$\delta \text{CCC}(48) + \delta \text{CD}(12) + \nu \text{CCH}_3(10)$
601	594	4	$\pi CC(51) + \pi CCH_3(19) + \pi CD(19) + \pi CO(7)$
625	627	6b	$\delta CCC(60) + \delta CD(18) + \nu CC(9)$
653	636	10a	$\pi \text{CD}(76) + \tau \text{CC}(21)$
690	6 87	13	$vCCH_3(25) + \delta CD(22) + vCC(20) + vCO(14)$
705	712	11	$\pi CD(55) + \pi CO(27) + \pi CCH_3(7)$
·	761	5	$\pi \text{CD}(84) + \tau \text{CC}(11)$
792	783	1	$\delta CD(33) + \nu CC(31) + \nu CO(10) + \nu CCH_3(8)$
	789	17a	$\pi \text{CD}(74) + \pi \text{CO}(18)$
814	807	15	δCD(78)
849	846	9a	$\delta CD(55) + \nu CC(16) + \delta CCC(14)$
87 6	864	18a	$\delta CD(60) + \nu CC(15) + \delta CCC(14)$
893	897		$\delta COD(63) + \delta CD(21)$
951	951		CH3 rock(46) + δ CD(19) + δ CCD(14)
1034	1029		CH3 rock(82)

wige-

1064	1068	3	$\delta CD(50) + CH_3 \operatorname{rock}(24) + \delta COD(14)$
1121	1123	7a	$\delta \text{CD}(25) + \nu \text{CCH}_3(25) + \delta \text{CCC}(24) + \nu \text{CO}(12)$
1219	1223	7a'	$vCO(42) + vCC(28) + vCCH_3(20)$
1287	1292	14	vCC(87)
1350	1357	19b	$vCC(56) + \delta CD(15)$
1375	1382		CH3 s.def.(90)
1436	1444	19 a	$vCC(42) + CH_3 \text{ deg.def.}(20) + \delta CD(11)$
1459	1448		CH3 deg.def.(77)
1459	1458		CH ₃ deg.def(78)
1570	1563	8b	vCC(73)
1582*	1595	8a	$vCC(69) + \delta CD(11)$
1600*	1575 00		
	2224		vCD(96)
	2234		vCD(96)
	2247		vCD(96)
2260	2266		vCD(96)
2668	2628		vOD(99)
2865	2865		s. s. CH3(99)
2920	2914		deg. s.CH3(99)
2945	2942		deg. s.CH3(99)

II.3. Résonance Raman

II.3.1 Description des états de transition

Selon la symétrie de l'état de transition de la molécule et sa configuration électronique, Platt [11, 12] a séparé les transitions électroniques en les identifiant à l'aide de notations différentes. Dans le cas de la molécule du cycle benzènique, le passage de l'état standard caractérisé par la notation ¹A (l'indice 1 signifie un état singulet) et une configuration ...e⁴f⁴ à un état de configuration ...e⁴f³g est identifié à un état B et L. Ces états B et L sont séparés par des opérations de symétrie. On obtient quatre états de transitions possibles pour la configuration ...e⁴f³g. Ces états sont B_{a,b}, L_b et L_a, respectivement de symétrie E_{1u}, B_{2u} et B_{1u}.

La molécule du p-crésol est un dérivé disubstitué du cycle benzènique. En revanche la symétrie diminue lorsqu'on passe du cycle benzènique (groupe de symétrie D_{2h}) au p-crésol (C_{2v}) para disubstitué, en rendant les transitions L_a et L_b probables.

Dans cette partie, nous allons essayer d'identifier ces transitions B_{ab} , L_a , L_b aux différentes transitions monoélectroniques $\pi \rightarrow \pi^*$ à l'aide des intensités de résonance calculées pour le p-crésol et de les relier à celles de la tyrosine obtenues à partir de l'excitation ultraviolette. Cette comparaison est possible car les modes concernés sont en grande partie des modes propres au phénol.

II.3.2 Niveaux énergétiques du p-crésol

Le tableau 10 décrit les coefficients des orbitales moléculaires et l'énergie des cinq états énergétiques du p-crésol allant de la Homo -2 à la Lumo +1. Ces états sont tous de caractère π . Les énergies calculées dans trois transitions $\pi_1 \rightarrow \pi_1^*$, $\pi_1 \rightarrow \pi_2^*$, $\pi_2 \rightarrow \pi_1^*$ sont respectivement à 6,19; 6,667; 7,17 ev correspondant théoriquement aux longueurs d'onde situées à 200, 185 et 172 nm. En revanche les transitions L_a et L_b du p-crésol sont observées
		Homo-2	Homo-1	Homo	Lumo	Lumo+1
C1	2pz	-0,2017	0,0086	0,3126	0,0234	0,3713
	3pz	-0,1232	0,0099	0,2283	0,0093	0,4760
C2	2pz	-0,2125	0,2976	0,1300	0,3291	0,1577
	3pz	-0,1361	0,2138	0,0993	0,4424	-0,219
C3	2pz	-0,1509	0,2951	-0,1995	-0,2990	-0,1670
	3pz	-0,0988	0,2146	-0,1610	-0,4069	-0,2322
C4	2pz	-0,0224	-0,0027	-0,2814	-0,0434	0,3916
	3pz	0,0028	-0,0019	-0,1725	-0,0439	0,4516
C5	2pz	-0,1641	-0,2946	-0,1990	0,3118	-0,1123
	3pz	-0,1067	-0,2191	-0,1675	0,4379	-0,1562
<u>C6</u>	2pz	-0,2240	-0,2784	0,1530	-0,2913	-0,2241
	3pz	-0,145	-0,2007	0,1223	-0,4099	-0,3042
C7	2pz	0,1424	-0,0087	-0,0810	-0,0178	0,0164
	3pz	0,0706	-0,0187	-0,0223	-0,0945	0,0958
C10	2pz	0,3556	0,0017	0,2995	0,0203	0,1710
	3pz	0,2648	0,0006	0,2474	0,0225	-0,1909
Energ (e.V)	gie	-8,8430	-6,7740	-5,7950	0,3960	0,8780

Tableau 10 Coefficients et énergies des orbitales moléculaires du p-crésol

H - L	H - L+1	H - 1 - L
		·
- 0,177	- 0,335	- 0,039
- 0,325	0,297	- 0,500
- 0,162	- 0,367	[.] 0,059
- 0,269	- 0,363	0,065
- 0,287	0,316	0,458
- 0,173	- 0,427	0,039
0,010	0,015	0,000
0,330	0,031	- 0,002
	H - L - 0,177 - 0,325 - 0,162 - 0,269 - 0,287 - 0,173 0,010 0,330	H - L $H - L + 1$ $-0,177$ $-0,335$ $-0,325$ $0,297$ $-0,162$ $-0,367$ $-0,269$ $-0,363$ $-0,287$ $0,316$ $-0,173$ $-0,427$ $0,010$ $0,015$ $0,330$ $0,031$

Tableau 11 Variation de l'indice de liaison pour les transitions électroniques du p-crésol

respectivement à 220 et 276 nm et apparaissent très proches de celles de la tyrosine (222 et 275 nm) [13]. La transition de force oscillatoire la plus intense est située à 193 nm ($B_{a,b}$) pour la tyrosine, avec un coefficient d'absorption de 46500M⁻¹ cm⁻¹ [14, 15].

Le tableau 11 décrit les variations de l'indice de liaison pour les trois transitions. On note une variation importante de l'indice de liaison correspondant à la liaison C_2 - C_3 et C_4 - O_{10} pour la transition $\pi_1 \rightarrow \pi_1^*$ et de C_2 - C_3 et C_5 - C_6 pour la transition $\pi_2 \rightarrow \pi_1^*$. Cependant pour la transition $\pi_1 \rightarrow \pi_2^*$, une participation de toutes les liaisons du cycle benzènique est remarquée.

II.3.3 Intensités de résonance

Le tableau 12 décrit les intensités de résonance Raman calculées à partir du terme A du tenseur de diffusion pour le p-crésol et celles observées obtenues à partir du rayonnement ultraviolet à l'excitation 192 et 223 nm de la tyrosine.

Dans le cas d'une transition $(B_{a,b})$ fortement probable et pour les modes qui sont totalement symétriques (symétrie A₁), le terme A domine les deux autres termes B et C constituant l'intensité de résonance. Les intensités de résonance sont normalisées à 10.

II.3.3.1 Transition électronique L_a

La transition électronique L_a correspond à l'excitation à 223 nm pour la tyrosine. Les intensités associées à cette transition sont de l'ordre de 10 - 4,4 et 3,7 (Tableau 12) respectivement pour les modes v8a, v9a et v8b. Cependant des très faibles intensités sont observées pour les modes v1, v7a et v7a' [16] au contraire de la transition B_{a,b} où ces derniers sont les plus intenses. Ces intensités sont plus proches de celles calculées pour la molécule du p-crésol lors de la transition $\pi_1 \rightarrow \pi_2^*$ à l'exception de l'intensité calculée pour le mode v8b. Ce mode (v8b) a une intensité nulle, en revanche l'intensité observée est de 3,7. Cette différence peut être expliquée par l'aspect vibrationnel de ce mode, qui n'est pas totalement symétrique, et qui donc favorise la prédominance d'un autre terme que le terme A (B ou C) dans le calcul de l'intensité.

II.3.3.2 Transition électronique B_{a,b}

Cette transition est fortement possible, elle est située à 192 nm sur le spectre d'absorption de la tyrosine [15].

Tous les modes décrits en Tableau 12 sont très intenses à l'exception du mode v9a où l'intensité est de 3,2. L'intensité de résonance calculée dans le cas du p-crésol qui s'avère la plus proche de cette transition ($B_{a,b}$) et celle correspondant à la transition $\pi_2 \rightarrow \pi_1^*$. Cependant deux différences sont notées dans la comparaison des intensités concernant les modes v7a et v8b. En revanche, pour le mode v8b, la différence d'intensité peut être expliquée de la même façon que pour celle observée lors de la transition électronique L_a (3-3a). Par ailleurs , la différence d'intensité notée pour le mode 7a (9,8 : observée et 4 : calculée) peut être due à une contribution limitée du terme A de l'ordre de 40% dans le calcul d'intensité de résonance.

	Expt.					**************************************		
tyrosine a					Intensi	tés calculées	·	
	223 nm	192 nm		Modes	Sym.	$\pi 1 \rightarrow \pi 1^*$	π1→π2*	$\pi 2 \rightarrow \pi 1^*$
852	1	5	833	1	A1	4	1,5	3
1180	4,4	3,2	1161	9a	A1	0,7	5,6	4
1210	1,4	9,8	1217	7a	A1	5	0	4
1263	0,6	7,4	1258	7a'	A1	10	0	5,6
1601	3,7	7,2	1596	8b	B1	0	0	0
1617	10	10	1622	8a	A1	0	10	10

Tableau 12 Calcul des intensités relatives de résonance Raman du p-crésol pour les transitions électroniques permises $\pi \to \pi^*$ en utilisant le terme A du tenseur de diffusion.

^a Intensités prises à partir des résultats expérimentaux [16]

III. Conclusion

La méthode de calcul DFT à l'aide de facteurs d'échelle bien choisis donne une reproduction de la composition des modes normaux correspondant aux fréquences observées dans la molécule du p-crésol. De plus les déplacements corrects des fréquences pour les dérivés deutériés confirme la validité de la distribution d'énergie potentielle. Ajoutons à cela qu'une grande partie des intensités de résonance Raman peut être reproduite uniquement à partir du terme A (Franck-Condon), ainsi que la détermination des transitions électroniques L_a $(\pi_1 \rightarrow \pi_2^*)$ et $B_{a,b}$ $(\pi_2 \rightarrow \pi_1^*)$. Cependant la liaison hydrogène perturbe quelques fois la comparaison entre les fréquences calculées pour la molécule isolée et celles observées (correspondant à une molécule solvatée). Cela se manifeste pour la fréquence associée à la torsion de CO où le facteur d'échelle obtenu est très faible (0,66) par rapport aux autres. Il en est de même pour la fréquence attribuée à l'élongation de OH où le déplacement de fréquence pour le dérivé deutérié associée à l'élongation de OD (v_{OD}) n'est pas tout à fait correct. Cela n'influence en rien les constantes de forces qui restent tout à fait crédibles, et particulièrement en ce qui concerne la constante de force associée à la torsion CO (0,041 mdyn Å⁻¹) qui est comparable à celle trouvée par Takeuchi [2] et évaluée à 0,0397 mdyn Å⁻¹.

Références

- M.J. Frisch-, G.W. Trucks, H.B. Schlegel, P.MW. Gill, B.G. Johnson, M.W. Wong,
 J.B. Foresman, M.A. Robb, M. HeadGordon, E.S. Replogle, R. Comperts, J.L. 433
 Andres, K. Raghavachari, J.S. Binkley, C. Conzalez, R.L. Martin, D.J. Fox, D.J.
 Defrees, J. Baker, J.J.P. Stewart and J.A. Pople, Program Gaussian G92/DFT REV
 G.4 Gaussian, Inc. Pittsburgh PA, 1993
- [2] H. Takeuchi, N. Watanabe, I. Harada, Spectrochim. Acta, 44A (1988) 749
- [3] R. J. Jakobsen, Spectrochim. Acta, 21 (1965)
- [4] J. H. S. Green, D. J. Harrison, W. Kynaston, Spectrochim. Acta, 27A (1971.) 2199
- [5] E. B. Wilson, Jr., J. C. Decius and P. C. Cross, Molecular Vibration, Mc Graw-Hill, New York, 1955
- [6] H. Takeuchi, N. Watanabe, Y. Satoh, I. Harada, J. Raman Spect. 20 (1989) 233.
- [7] C. Bois, Acta Crystallogr. B 26, (1970) 2086.
- [8] N. W. Larsen, J. Molec. Struct., 51 (1979) 175
- [9] M. Majoube, G. Vergoten, J. Raman Spect., 23 (1992) 431
- [10] A. Allouche, J. Pourcin, Spectrochim. Acta, 49A (1993) 571.
- [11] J. R. Platt, J. Chem. Phys., 17 (1949) 484
- [12] H. B. Kelevens, J. R. Platt, J. Chem. Phys., 17 (1949) 470
- [13] S. A. Asher, M. Ludwig, C. R. Johnson, J. Am. Chem. Soc., 108 (1986) 3197
- [14] P. A. Fodor, R. A. Copeland, C. A. Grygon, T. G. Spiro, J. Am. Chem. Soc., 111(15) (1989) 5509
- [15] R. P. Rava, T. G. Spiro, J. Phys. Chem., 89 (1985) 1856
- [16] C. Su, Y. Wang, T. G. Spiro, J. Raman Spectrosc., 21 (1990) 435

Chapitre 3 4-éthylimidazole

I Introduction

L'imidazole joue un rôle important sous forme d'aminoacide histidine dans l'activité de certains peptides ou protéines. Ce cycle sert de site de fixation des ions métalliques dans la protéine et peut être ionisé au pH physiologique. Le groupe imidazole de l'histidine, dans sa forme neutre, existe sous deux formes tautomères [1].

En étudiant les rapports des intensités Raman des deux tautomères en fonction de la température pour quelques modes de vibrations de la L-histidine (modes propres au cycle d'imidazole), on montre que le rapport entre l'intensité du tautomère I (où le substitut est lié à l'atome C4 du cycle imidazole (Fig.1)) et celle du tautomère II (où le substitut est sur l'atome C5 du cycle imidazole (Fig.1)) augmente avec la température. Ashikawa [1] conclut que l'un des deux tautomères (noté I) est énergiquement plus stable.

Notre étude sera faite sur la molécule du 4-éthylimidazole (4-EIm) (tautomère I). A partir d'un calcul ab initio DFT (théorie de la fonctionnelle de densité) utilisant l'ensemble de base 6-31G (df, p) (5d, 7f) et à l'aide du programme Gaussian 94, nous allons déterminer les modes vibrationnels de cette molécule et de quelques dérivés deutériés ainsi que l'intensité de résonance Raman associée aux premièrs états excités de la molécule de 4-éthylimidazole.

Les calculs seront comparés aux nombreux résultats expérimentaux et théoriques associés aux molécules d'histidine, de 4-éthylimidazole et d'imidazole cités ci-dessous.

De nombreuses études des modes normaux de vibration ont été faites sur la molécule d'imidazole. En utilisant le champ de forces Urey-Bradley, Cordes [2] en 1967 a donné une description approchée des modes de vibration de la molécule d'imidazole associée à une symétrie C_{2v} .

Colombo [3] a effectué en 1973 une étude des modes normaux de vibration intramoléculaires et intermoléculaires du cristal d'imidazole en utilisant de la méthode CNDO/2 [4]. A l'aide du programme HONDO [5] et en utilisant un ensemble de base ab initio 3-21G, Majoube [6]

en 1992 a donné la composition des vibrations de chacun des modes normaux de la molécule d'imidazole. Enfin dans un travail datant de 1994, Majoube [7] a donné les modes vibrationnels de la molécule du 4-méthylimidazole (4-MIm) et son dérivé deutérié N-D 4-méthylimidazole à partir du spectre FT Raman et IR. Ces résultats expérimentaux seront comparés à ceux obtenus ici à partir du calcul ab initio en utilisant l'ensemble de bases 6-31G (df, p) basées sur la théorie de Hartree-Fock (HF) à l'aide du programme Gaussian-92 [8] ainsi que la distribution d'énergie potentielle. Les modes de vibration calculés [7] sont obtenus en utilisant deux facteurs d'échelle; 0,804 pour les coordonnées internes dans le plan du cycle imidazole, et 0,726 pour les coordonnées internes hors du plan. Au niveau de la molécule d'histidine, on cite deux études spectrales faites par Garfinkel [9] (Raman) en 1958 et Berthomieu [10] (IR) en 1995.

II Résultats

La figure 1 décrit les numéros des atomes de la molécule du 4-méthylimidazole. La molécule d'histidine est obtenue en substituant le groupement $CH_2CH(NH_2)COOH$ sur l'atome C4 du cycle d'imidazole.

II.1 Optimisation

II.1-1 Géométrie du 4-éthylimidazole

Partant d'une géométrie plane du cycle d'imidazole obtenue à partir des rayons X de la molécule d'histidine [11] "Cambridge Structural Data Base 1996", l'optimisation de la molécule du 4-méthylimidazole a duré 6 heures et 25 minutes en temps CPU (DEC α 3400). La géométrie finale est plane et comparable à celle obtenue à partir des rayons X du cristal orthorhombique de L-histidine [12] (Tableau 1).

Fig 1: Numérotation des atomes du 4-éthylimidazole

Comme on peut le constater dans le tableau 1a concernant les distances de liaisons et dans le tableau 1b, concernant les angles de volume, la différence entre les résultats calculés et les résultats expérimentaux ne dépasse pas respectivement 0,027 Å et 1 °.

En conclusion l'optimisation conserve bien la géométrie expérimentale.

II.1-2 Charge du 4-éthylimidazole

Le tableau 2 décrit les charges atomiques obtenues par la méthodes de Mulliken de la molécule du 4-éthylimidazole. Les charges les plus importantes sont obtenues pour les atomes d'azote N1 et N3 chargés négativement ainsi que l'atome d'hydrogène H8 chargé positivement.

Le calcul donne un moment dipolaire total de la molécule de 3,3625 debye.

II.1-3 Cordonnées internes du 4-éthylimidazole

Le tableau 3 décrit les 51 coordonnées internes de la molécule du 4-éthylimidazole. Ces coordonnées sont partagées en 3 groupes: un groupe des coordonnées dans le plan de l'imidazole, formé par 22 coordonnées, un autre groupe des coordonnées propres au substituant (éthyle) formé par 18 coordonnées (désignées par une étoile dans le tableau 3), et un troisième groupe formé par des coordonnées hors du plan d'imidazole par 11 coordonnées.

Toutes ces coordonnées internes sont classées dans 7 groupes de facteurs d'échelle allant de 0,89 à 1 (Tableau4).

II.1-4 Facteurs d'échelle du 4-éthylimidazole

Les facteurs d'échelle sont obtenus en rapprochant le plus possible les

Atome 1	Atome 2	Calc.	Expt. ^a
N1	C2	1,366	1,339
C5	N1	1,382	1,374
N1	H8	1,006	-
N3	C2	1,313	1,327
C2	H9	1,081	-
C4	N3	1,384	1,382
C4	C5	1,372	1,361
C6	C4	1,500	1,505
C5	H10	1,079	
C7	C6	1,537	
C6	H8	1,096	
C6	H8	1,097	
C7	H8	1,095	
C7	H8	1,093	
H8	C7	1,095	

Tableau 1a : Distances de liaisons atomiques du 4-éthylmidazole exprimées en Å

^a Valeurs expérimentales des distances de liaisons dans le cristal orthorhombique de Lhistidine mesurées à partir des rayons X [12]

Tableau 1b : Angles de valence du 3-éthylimidazole exprimés en degrés

Atome 1	Atome 2	Atome 3	Calc.	Expt. ^a	
H8	N1	C5	126,406		
H8	N1	C2	126,728		
C5	N1	C2	106,866	106,9	
H8	C2	N3	126,034		
H8	C2	N1	122,204		
N3	C2	N1	111,762	112,2	
C4	N3	C2	105,769	104,9	
C6	C4	C5	128,900	129,9	
C6	C4	N3	121,243		
C5	C4	N3	109,854	109,6	
H8	C5	• C4	132,308,		
H8	C5	N1	121,942		

C4	C5	N1	105,750	106,4
H8	C6	H8	106,643	
H8	C6	C7	108,872	
H 8	- C6	C4	108,921	
H 8	C6	C7	110,081	
H 8	C6	C4	109,211	
C7	C6	C4	112,912	
H 8	C7	H8	107,809	
H8	C7	H8	108,145	
H8	C7	C6	110,989	
H8	C7	H8	108,520	
H 8	C7	C6	110,152	
H8	C7	C6	111,119	

^a Valeurs expérimentales des angles de liaisons dans le cristal orthorhombique de L-histidine mesurées à partir des rayons X [12]

Atome 1	Atome 2	Atome 3	Atome 4	Calc.
H8	N1	C2	H8	0,000
H8	N1	C2	N3	-179,806
C5	N1	C2	H8	179,809
C5	N1	C2	N3	0,000
H8	C5	N1	H8	-0,183
H8	C5	N1	C2	-179,989
C4	C5	N1	H8	179,774
C4	C5	N1	C2	-0,032
C4	N3	C2	H8	-179,768
C4	N3	C2	N1	0,033
C6	C4	N3	C2	-179,519
C5	C4	N3	C2	-0,054
C6	C4	C5	H8	-0,584
C6	C4	C5	N1	179,465
N3	C4	C5	H8	180,000

Tableau 1c : Angles dièdres du 4-éthylimidazole exprimés en degrés

N3	C4	C5	N1	0,053
H8	C6	C4.	C5	122,106
H8	C6	C4	N3	-58,541
H8	C6	C4	C5	5,998
H8	C6	C4	N3	-174,649
C7	C6	C4	C5	-116,823
C7	C6	C4	N3_	62,530
H8	C7	C6	H8	-176,216
H8	C7	C6	H8	-59,650
H8	C7	C6	C4	62,685
H 8	C7	C6	H8	64,461
H8	C7	C6	H8	-178,972
H8	C7	C6	Č4	-56,638
H8	C7	C6	H8	-55,835
H8	C7	C6	H8	60,732
H8	C7	C6	C4	-176,934

Tableau 2 : Charges atomique du 4-éthylimidazole en unités atomiques

Numéro	Charge
d'atomes	atomique (u.a)
N1	-0.460468
C2	0.184505
N3	-0.401705
C4	0.163549
C5	-0.019448
C6	-0.223901
C7	-0.331125
H8	0.281638
H9	0.130840
H10	0.127405
H11	0.093921
H12	0.116827
H13	0.099107

H14	0.133933
H15	0.104923

Dans le plan Hors plan Numéro des Attribution Attribution Numéro des coordonnées interne coordonnées interne a R1* vC7-H13 R41 πCCH2 R2* R42 vC7-H14 πC5H R3* R43 πC2H vC7-H15 R4* R44 vC6-H11 πN1H R45 R5* vC6-H12 τCCH3 R46 R6 vC2-H τCCH2 R47 R7 vC5-Н τC4C5 R8 R48 τN1C5 vN-H R9 R49 τC2N1 vC-CH3 R10* vC-CH2 R50 τN3C2 R51 R11 vC4-C5 τC4N3 R12 vN1-C2 R13 vN1-C5 R14 vN3-C4 R15 vN3-C2 R16* δH13C7H14 R17* δH13C7H15 R18* δH14C7H15 R19* δH11C6H12 R20* δC6C7H13 R21* δC6C7H14 R22* δC6C7H15 R23* δC7C6H11 R24* δC7C6H12 R25* δC4C6H11 R26* δC4C6H12 R27 δC4C5H10

Tableau 3 : Coordonnées internes du 3-éthylimidazole

R28	δN1C5H10	
R29	δN1C2H9	
R30	δN3C2H9	
R31	δC2N1H8	
R32	δC5N1H8	
R33*	δССН3	
R34	δΝССΗ2	
R35	δСССН2	
R36	δN3C4C5	
R37	δN1C5C4	
R38	δΝϹΝ	
R39	δC2N1C5	
R40	δC2N3C4	

^a L'étoile représente les coordonnées internes propres au groupement éthyle.

Coordonnées internes	Facteur
	d'échelle
vCH3, vCH2	0.89
vCH	0.91
vNH	0,903
vC4C5	0.93
δHC7H, δHC6H, δCH3, δCH2	0.95
vN3C2	0.96
νCCH3, νCCH2, δC5H, δC2H, δNH, νN1C2, νN1C5, νN3C4	0.98
δCCCH3, δCCH2, δ(N3C4C5,NCN,N1C5C4,C2N1C5,C2N3C4),	1
π(CH ₂ ,C ₅ H,C ₂ H,NH), τ(CCH ₃ ,CCH ₂ ,C ₄ C ₅ ,N ₁ C ₅ ,C ₂ N ₁ ,N ₃ C ₂ ,C ₄ N ₃)	

Tableau 4 : Facteurs d'échelle du 3-éthylimidazole obtenus par calcul de DFT

Notations pour les coordonnées internes: v: élongation, δ : déformation dans le plan, π : déformation hors du plan

fréquences calculées des fréquences expérimentales. La valeur du facteur d'échelle associé aux coordonnées internes hors du plan de l'imidazole est calculée à 1, loin de celle trouvée par Majoube [7] pour la molécule 4-méthylimidazole (0,726).

II.1-5 Constantes de force du 4-éthylimidazole

La matrice symétrique des constantes de forces en coordonnées internes (F_R) associée à ces facteurs d'échelle est donnée dans le tableau 5.

Ri	1	2	3	4		6	7	8	9	10	11	12	13	14
	<u></u>							<u> </u>					······································	
1	4,679													
2	0,035	4,753												
3	0,037	0,036	4,680											
4	0,008	-0,013	0,008	4,607										
5	0,009	0,005	-0,014	0,045	4,562									
6	0,000	0,000	0,000	0,001	0,000	5,301								
7	0,000	-0,001	0,000	0,005	0,000	0,000	5,379							
8	-0,001	0,000	0,000	0,000	-0,001	0,005	0,004	6,740						
9	0,070	0,078	0,082	0,088	0,099	0,000	0,000	0,000	4,226					
10	0,002	-0,013	0,006	0,057	0,107	0,003	0,005	-0,004	0,207	4,752				
11	-0,002	0,000	0,006	0,012	-0,006	0,034	0,032	0,011	-0,016	0,113	4,909			
12	-0,005	-0,001	0,001	0,002	-0,012	0,065	0,009	0,038	-0,016	0,004	1,959	4,574		
13	0,008	0,005	0,004	0,007	0,011	0,000	0,047	0,010	0,008	0,076	0,059	-0,182	4,631	
14	-0,003	0,005	0,006	0,009	-0,005	-0,022	0,007	-0,017	-0,018	0,235	-0,053	1,589	1,516	4,014
15	0,005	0,005	0,003	0001	0,013	0,143	-0,022	-0,012	0,006	0,011	1,915	-0,196	1,944	0,036
16	0,075	0,067	-0,068	-0,003	-0,008	0,000	0,001	0,000	-0,129	0,009	0,001	0,004	-0,005	-0,002
17	0,075	-0,064	0,073	-0,008	-0,003	0,000	0,000	0,000	-0,126	0,004	-0,004	-0,001	-0,002	-0,003
18	-0,067	0,072	0,080	-0,002	-0,002	0,000	0,000	0,000	-0,132	-0,001	-0,001	0,001	-0,003	-0,001
19	-0,011	0,002	-0,002	0,081	0,081	-0,001	-0,002	0,000	-0,141	-0,128	-0,001	0,009	-0,014	-0,001
20	0,040	-0,058	-0,060	-0,008	-0,010	0,001	0,001	0,000	0,110	0,047	0,006	-0,004	0,011	0,004
21	-0,062	0,046	-0,060	0,034	-0,011	0,000	-0,001	0,000	0,133	-0,026	-0,004	-0,002	0,000	-0,001
22	-0,060	-0,058	0,039	-0,012	0,034	0,000	0,000	0,000	0,127	-0,032	0,003	0,002	-0,002	0,002
23	-0,011	0,043	-0,013	0,043	-0,061	-0,001	-0,001	0,000	0,129	-0,144	-0,002	0,010	-0,016	-0,006
24	-0,016	-0,012	0,040	-0,061	0,051	-0,001	-0,001	0,000	0,136	-0,158	-0,004	0,004	-0,009	-0,005
25	-0,007	0,011	-0,012	0,069	-0,058	0,004	0,004	0,000	-0,141	0,115	-0,002	0,018	0,000	0,057
26	-0,010	-0,009	0,005	-0,063	0,057	-0,001	0,000	0,000	-0,144	0,139	0,008	-0,018	0,018	-0,024

Tableau 5 : Matrice des constantes de forces en coordonnées internes (Fr) exprimées en mdyn Å -1 pour les élongations et en mdyn Å (rad)-2 pour les angles de déformations dans le plan, hors plan et pour les angle dièdres.

Ri	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
														ř.	1
27	-0,001	0,000	-0,001	0,003	-0,002	-0,020	0,030	-0,015	-0,001	-0,036	0,222	0,062	0,046	-0,015	
28	-0,001	0,000	-0,001	-0,006	-0,001	-0,015	0,052	-0,020	0,000	-0,023	0,137	-0,034	0,292	0,009	
29	0,000	0,001	-0,001	-0,003	0,002	0,064	-0,003	-0,026	0,003	-0,022	-0,379	0,310	0,055	0,068	
30	0,000	0,001	-0,001	0,001	0,002	0,037	-0,007	-0,023	0,002	-0,015	-0,393	0,070	0,154	0,020	
81	0,001	-0,002	0,000	0,000	-0,001	-0,009	-0,017	0,035	0,001	-0,026	0,019	0,228	0,143	-0,390	•
32	0,002	-0,001	0,000	0,000	0,002	-0,019	-0,011	0,042	0,004	-0,017	-0,030	0,136	0,266	-0,381	
33	0,052	-0,033	-0,018	-0,063	-0,060	-0,001	0,000	0,000	0,144	0,161	0,001	-0,023	0,019	-0,021	
34	-0,001	-0,007	0,004	0,039	-0,025	-0,004	-0,022	-0,003	-0,029	0,102	0,155	-0,372	0,093	0,317	
5	0,003	0,008	0,001	-0,027	0,026	-0,013	-0,023	0,000	0,025	0,089	0,338	-0,380	0,009	-0,005	
66	-0,001	-0,001	-0,005	-0,012	-0,002	0,017	0,045	0,003	0,004	-0,190	-0,493	0,752	-0,102	-0,312	
57	0,002	0,000	0,001	0,002	0,003	0,036	-0,082	0,035	0,001	0,058	-0,359	-0,028	-0,338	0,006	
8	0,000	-0,002	0,002	0,002	-0,004	-0,101	0,011	0,049	-0,006	0,037	0,772	-0,380	-0,210	-0,088	
9	-0,003	0,003	0,000	0,000	-0,001	0,028	0,028	-0,077	-0,005	0,043	0,010	-0,364	-0,410	0,772	
0	0,003	0,000	0,002	0,007	0,003	0,020	-0,002	-0,009	0,005	0,052	0,070	0,020	1,059	-0,377	
1	0,000	0,007	-0,001	0,001	-0,016	0,000	0,000	0,000	0,019	-0,006	-0,001	-0,002	-0,002	-0,001	
2	-0,003	0,001	0,002	0,000	0,003	0,000	0,000	0,000	-0,007	0,001	-0,001	0,000	0,000	0,000	
3	0,001	0,000	0,000	0,000	-0,001	0,001	0,000	0,000	0,002	-0,001	0,002	-0,001	-0,001	0000	
4	0,001	-0,001	0,000	-0,001	0,000	0,000	0,000	0,000	0,001	0,002	0,000	0,001	0,000	-0,001	
15	0,004	-0,001	-0,005	0,002	0,001	0,000	0,000	0,000	-0,007	-0,005	0,000	0,001	0,000	0,005	
6	-0,003	-0,013	-0,001	-0,002	0,027	0,000	0,000	0,000	-0,027	0,020	-0,005	-0,005	0,005	0,001	
17	-0,003	-0,001	0,002	0,001	0,009	0,000	0,000	0,000	-0,014	0,001	0,001	0,000	0,000	0,001	
18	0,002	-0,002	-0,001	-0,001	0,000	0,000	0,000	0,000	0,003	0,001	0,001	0,002	0,000	-0,001	
19	-0,002	0,001	0,001	0,000	0,002	0,000	0,000	0,000	-0,005	-0,001	0,001	0,000	0,000	-0,001	
50	-0,001	0,001	0,001	0,000	-0,001	0,000	0,000	0,000	0,001	0,001	0,001	-0,001	0,000	-0,001	
51	0.003	0.001	-0.003	0.000	-0 009	0,000	0,000	0,000	0.013	-0.001	0,000	0 001	-0.001	0,000	

		2												
Ri	15	16	17	18	19	20	21	22	23	24	25	26	27	28
15	5 598													
16	-0.005	0 468												
17	-0.001	-0.091	0.467											
18	-0.001	-0.092	-0.089	0.477										
19	-0.007	0,003	0,006	0,001	0,502									
20	0,008	-0,088	-0,089	-0,099	-0,003	0,513								
21	0,000	-0,083	-0,102	-0,090	-0,004	-0,126	0,520							
22	-0,002	-0,100	-0,087	-0,090	-0,003	-0,127	-0,129	0,523						
23	-0,008	-0,012	-0,002	-0,007	-0,075	-0,040	0,102	-0,042	0,547					
24	-0,008	0,000	-0,006	-0,007	-0,078	-0,045	-0,041	0,099	-0,126	0,562				
25	-0,012	-0,001	0,009	0,003	-0,090	-0,006	-0,002	-0,002	-0,068	-0,130	0,572			
26	0,019	0,007	0,000	0,009	-0,079	-0,008	-0,003	-0,004	-0,125	-0,072	-0,130	0,558		
27	-0,558	0,000	0,000	0,000	0,000	-0,001	0,000	0,001	0,002	0,002	-0,004	0,000	0,417	
- 28	-0,522	0,000	0,000	0,000	0,002	-0,001	0,001	0,000	0,003	0,002	-0,006	0,000	-0,011	0,469
29	0,140	-0,001	0,000	0,000	0,000	-0,001	0,002	-0,001	0,001	0,000	-0,002	0,000	-0,075	-0,041
30	0,380	-0,001	0,000	0,000	0,000	-0,001	0,002	-0,001	0,000	-0,001	0,007	-0,003	-0,090	-0,083
31	-0,022	0,001	0,000	0,000	0,000	0,000	-0,002	0,000	0,000	0,001	-0,006	0,002	-0,035	-0,028
32	0,002	0,000	0,000	-0,001	-0,002	0,002	-0,001	-0,001	-0,002	-0,001	-0,010	0,008	-0,031	-0,039
33	0,016	0,002	-0,006	0,003	-0,142	0,096	-0,051	-0,045	-0,156	-0,150	-0,156	-0,140	-0,001	-0,001
34	-0,085	0,006	-0,001	0,005	-0,001	-0,008	-0,008	0,006	-0,011	0,006	0,078	-0,047	-0,017	-0,023
35	-0,015	-0,007	-0,002	-0,006	-0,007	0,014	0,007	-0,006	-0,002	-0,015	-0,057	0,048	-0,003	0,007
36	0,100	0,002	0,003	0,001	0,008	-0,006	0,001	0,000	0,013	0,008	-0,021	-0,001	0,020	0,015
37	1,080	0,000	-0,001	0,000	-0,002	0,002	-0,001	-0,001	-0,005	-0,004	0,010	-0,001	-0,406	-0,459
38	-0,520	0,002	-0,001	0,000	0,000	0,002	-0,004	0,001	-0,001	0,001	-0,005	0,004	0,165	0,123
39	0,021	-0,002	0,000	0,000	0,002	-0,002	0,003	0,001	0,002	0,000	0,016	-0,010	0,066	0,067
40	-0,680	-0,002	-0,001	-0,001	-0,007	0,004	0,001	-0,001	-0,009	-0,005	0,001	0,008	0,155	0,253
41	-0,002	-0,006	-0,002	-0,001	0,009	0,008	-0,001	0,002	0,000	-0,002	0,005	-0,038	0,000	0,000
42	0,000	0,000	0,000	0,000	0,002	-0,004	0,001	0,003	0,000	0,001	0,001	0,018	0,000	0,000
43	0,000	0,000	-0,001	0,000	0,000	0,002	-0,001	0,000	0,000	0,000	0,000	-0,008	0,000	0,000

Ri	15	16	17	18	19	20	21	22	23	24	25	26	27	28
44	0,000	0,001	0,000	0,000	-0,004	0,000	0,000	-0,001	0,002	-0,001	0,000	-0,002	0,000	0,000
45	0,001	0,004	0,002	-0,007	0,000	-0,003	0,012	-0,008	0,000	-0,005	0,008	-0,005	0,000	0,000
46	0,000	0,009	0,001	-0,002	-0,013	-0,004	-0,002	-0,001	0,002	-0,001	-0,010	0,024	-0,001	0,000
47	0,002	0,002	0,001	0,001	0,004	-0,007	0,001	0,002	-0,004	0,003	0,000	0,031	0,000	0,000
48	0,000	0,001	0,000	-0,001	-0,006	0,002	-0,001	-0,002	0,002	-0,001	-0,002	-0,009	0,000	0,000
49	0,000	-0,001	0,001	0,000	0,002	-0,002	0,001	0,001	-0,001	0,001	0,000	0,010	0,000	0,000
50	0,000	0,000	-0,001	0,000	0,002	0,000	0,000	0,001	-0,001	0,000	0,002	0,000	0,000	0,000
51	0,000	-0,002	0,000	-0,001	-0,003	0,007	-0,001	-0,002	0,003	-0,003	-0,001	-0,031	0,000	0,000
Ri	29	30	31	32	33	34	35	36	37	38	39	40	41	42
29	0,479													
30	-0,038	0,471												,
31	-0,032	-0,037	0,425											
32	-0,013	-0,027	-0,017	0,426										
33	0,001	-0,003	0,002	0,007	0,696									
34	-0,083	-0,043	-0,093	-0,076	-0,025	0,594								
35	-0,093	-0,079	-0,067	-0,023	0,030	-0,117	0,525							
36	0,176	0,122	0,160	0,100	-0,006	-0,477	-0,409	0,886						
37	0,116	0,173	0,062	0,070	0,002	0,040	-0,004	-0,036	0,865					
38	-0,441	-0,433	0,068	0,040	0,002	0,126	0,171	-0,298	-0,289	0,874				
39	0,045	0,063	-0,408	-0,409	-0,009	0,169	0,090	-0,260	-0,133	-0,108	0,817			
40	0,104	0,075	0,117	0,199	0,011	0,141	0,151	-0,293	-0,408	-0,179	-0,316	1,196		
41	0,000	0,000	0,000	0,000	0,025	-0,006	0,002	-0,001	0,000	• 0,000	0,000	0,000	0,369	
42	0,000	0,000	0,000	0,000	-0,020	0,000	-0,001	0,000	0,000	-0,001	0,000	0,000	0,034	0,262
43	0,000	0,000	0,000	0,000	0,008	0,000	0,001	-0,001	0,000	0,001	0,000	0,000	0,057	-0,103
44	0,000	0,000	0,000	0,000	0,004	0,001	-0,001	0,001	0,000	0,000	-0,001	0,000	-0,099	-0,078

ţ

<u> </u>	29	30	31	32	33	34	35	36	37	38	39	40	41	42
45	0,000	0,000	0,000	-0,001	0,003	0,004	-0,004	0,000	0,000	0,000	0,002	-0,002	0,001	-0,001
46	0,000	0,000	0,000	0,001	-0,002	0,005	-0,002	-0,002	0,001	0,000	-0,001	0,002	-0,025	0,003
47	0,000	0,000	0,000	0,000	-0,031	0,001	-0,002	0,000	0,001	-0,001	0,000	-0,001	0,043	0,079
48	0,000	0,000	0,000	0,000	0,014	0,002	-0,001	0,001	0,000	0,000	-0,001	0,000	-0,134	-0,111
49	0,000	0,000	0,000	0,000	-0,012	-0,001	0,000	0,000	-0,001	0,000	0,000	0,000	0,024	0,140
50	0,000	0,000	0,000	0,000	-0,004	0,000	0,001	-0,002	0,000	0,000	0,000	0,001	0,098	-0,012
51	0,000	0,000	0,000	0,000	0,032	0,000	0,000	0,001	0,001	0,000	0,000	-0,001	-0,057	-0,111
						e.								
						\$1								
Ri	43	44	45	46	47	48	49	50	51					
Ri	43	44	45	46	47	48	49	50	51					
<u>Ri</u> 43	43	44	45	46	47	48	49	50	51					
Ri 43 44	43 0,288 0,054	44	45	46	47	48	49	50	51					
Ri 43 44 45	43 0,288 0,054 0,000	44 0,189 0,000	45	46	47	48	49	50	51					
Ri 43 44 45 46	43 0,288 0,054 0,000 0,001	44 0,189 0,000 -0,004	45 0,105 0,006	46	47	48	49	50	51					
Ri 43 44 45 46 47	43 0,288 0,054 0,000 0,001 -0,032	44 0,189 0,000 -0,004 -0,121	45 0,105 0,006 -0,002	46 0,042 0,016	47	48	49	50	51					
Ri 43 44 45 46 47 48	43 0,288 0,054 0,000 0,001 -0,032 0,115	44 0,189 0,000 -0,004 -0,121 0,137	45 0,105 0,006 -0,002 0,000	46 0,042 0,016 0,001	47 0,209 -0,165	48	49	50	51					
Ri 43 44 45 46 47 48 49	43 0,288 0,054 0,000 0,001 -0,032 0,115 -0,091	44 0,189 0,000 -0,004 -0,121 0,137 -0,121	45 0,105 0,006 -0,002 0,000 0,000	46 0,042 0,016 0,001 0,002	47 0,209 -0,165 0,097	48 0,235 -0,170	<u>49</u> 0,221	50	51					
Ri 43 44 45 46 47 48 49 50	43 0,288 0,054 0,000 0,001 -0,032 0,115 -0,091 0,072	44 0,189 0,000 -0,004 -0,121 0,137 -0,121 0,088	45 0,105 0,006 -0,002 0,000 0,000 -0,001	46 0,042 0,016 0,001 0,002 -0,004	47 0,209 -0,165 0,097 0,009	48 0,235 -0,170 0,047	49 0,221 -0,161	<u>50</u> 0,247	51					

II.2 Les modes de vibration du 4-éthylimidazole

II.2-1 Les modes de vibration de hautes fréquences

II.2-1-1. Mode d'élongation de NH (v_{39})

Une bande large et forte est observée dans le spectre IR de la molécule de 4-méthylimidazole polycristallin. Cette bande englobe une région allant de 2000 à 3200 cm⁻¹ [7]. Elle est caractéristique de l'élongation de NH impliquant une forte liaison hydrogène. Elle est aussi formée de plusieurs sous bandes qui sont attribuées dans un travail fait par Wolff [13] à des modes harmoniques ou à une combinaison de modes provenant du cycle imidazole. Dans le spectre Raman du polycristal, la bande ci dessus est faible et large. Elle est centrée à 2800 cm⁻¹ et se déplace à 2125 cm⁻¹ dans le cas du dérivé deutérié du polycristal de N-D 4-méthylimidazole. Cette bande est calculée à 3489 cm⁻¹ (v_{39}) dans le cas de la molécule isolée du 4-éthylimidazole (Tableau 6) et 2565 cm⁻¹ pour le N-D 4-éthylimidazole (Tableau 7).

II.2-1-2. Modes d'élongation de C₂H et C₅H (v_{37} , v_{38})

Les modes d'élongation de C₂H et C₅H sont calculés respectivement à 3111 et 3137 cm⁻¹. Ils sont observés respectivement à 3121 et 3131 cm⁻¹ dans le spectre FT Raman [7] du 4-méthyimidazole en phase aqueuse. Pour le dérivé deutérié N-D 4-éthylimidazole (C₂-D, C₅-D) ces deux modes se déplacent respectivement à 2310 et 2331 cm⁻¹. Une nouvelle bande apparaît dans le spectre FT Raman de N-D 4-méthylimidazole à 2336 cm⁻¹ [7]. Elle peut être attribuée à l'élongation de C₅D calculée à 2331 cm⁻¹ dans le cas de N-D 4-éthylinidazole (C₂-D, C₅-D).

II.2-1-3. Modes d'élongation du groupement éthyle (-CH₂-CH₃) (v₃₂-v₃₆)

Les fréquences du groupement CH_2 sont calculées à 2862 cm⁻¹ (v₃₂) pour l'élongation symétrique et à 2897 cm⁻¹ pour l'élongation asymétrique. Celles de CH_3 sont calculées à 2872 cm⁻¹ (v₃₃) pour l'élongation symétrique et 2934 (v₃₅), 2952 cm⁻¹ (v₃₆) pour l'élongation dégénérée. Elles sont attribuées respectivement aux modes observés à 2874 et 2932 cm⁻¹ dans le spectre FT Raman du 4-méthylimidazole en phase aqueuse, et à 2944 cm⁻¹ pour le polycristal (Tableau 6).

II.2-2. Modes de vibration dans le plan du cycle d'imidazole

II.2.2.1 Modes de vibration v_{26} , v_{30} et v_{31}

Le mode v_{26} calculé à 1444 cm⁻¹ est attribué pour moitié à la déformation dans le plan de l'imidazole du NH (δ_{NH}) (Tableau 6). Il est observé à 1457 cm⁻¹ pour l'histidine [14] et à 1427 cm⁻¹ pour le 4-méthylimidazole [7] en phase aqueuse. Ce mode se déplace à 1369 cm⁻¹ pour le dérivé deutérié N-D 4-éthylimidazole (Tableau 7), calculé à 1329 cm⁻¹ par Majoube [7] et observé à 1370 cm⁻¹ pour N-D 4-méthylimidazole en phase aqueuse.

Le mode v_{30} est attribué principalement à l'élongation de N₃C₂ (vN₃C₂) et à la déformation dans le plan de C₂H (δ C₂H). Ce mode ne contient pas de déformation δ _{NH}, comme on peut le voir dans la distribution d'énergie potentielle donnée par Majoube. Il est calculé à 1513 cm⁻¹ et observé à 1498 cm⁻¹ par Caswell [14] pour l'histidine en phase liquide.

Le mode d'élongation de C_4C_5 (νC_4C_5) est calculé à 1575 cm⁻¹ et observé à 1575 cm⁻¹ en phase aqueuse du 4-méthylimidazole [7].

II.2-2-2 Modes de vibrations couplés entre l'imidazole et la déformation de $CH_2(v_{21}, v_{22}, v_{23} \text{ et } v_{24})$

Ces modes propres à l'histidine et au 4-éthylimidazole sont calculés à 1251 (v_{21}) , 1282 (v_{22}) , 1325 (v_{23}) et 1350 cm⁻¹ (v_{24}) (Tableau 6) et observés respectivement à 1242, 1270, 1323 et 1351 cm⁻¹ pour l'histidine en phase aqueuse [14]. Pour le 4-méthylimidazole, on observe deux modes de fréquences 1304, 1261 cm⁻¹ [7]. Cela signifie que dans la région des fréquences situées entre 1240 et 1360 cm⁻¹, les modes propres à 4-méthylimidazole sont différents de ceux de l'histidine et du 4-éthylimidazole. Les quatre modes du 4-éthylimidazole ne présentent qu'un petit déplacement en passant au dérivé deutérié N-D 4-éthylimidazole (inférieur à 4 cm⁻¹) (Tableau 7).

II.2-2-3. Modes de vibration v_{18} , v_{19} et v_{20}

Le mode de vibration v_{18} est attribué principalement à l'élongation de N₁C₅ et à la déformation de C₅H (δ C₅H). Ce mode est calculé à 1088 cm⁻¹ et observé à 1088 cm⁻¹ dans le spectre FT Raman du 4-méthylimidazole en phase aqeuse. Il correspond à celui calculé à 1043 cm⁻¹ pour le 4-méthylimidazole [7]. Dans le spectre Raman du sel de sodium d'histidine, ce mode est observé à 1087 cm⁻¹.

Une large contribution du mode de déformation NH apparaît à la fréquence calculée à 1123 cm⁻¹ (v_{19}). Cependant ce mode est observés à 1160 cm⁻¹ et 1192 cm⁻¹ respectivement dans le spectre TF Raman du 4-méthylimidazole en phase aqueuse et en polycristal [7] (calculé par Majoube à 1115 cm⁻¹ pour le 4-méthylimidazole).

Pour l'histidine en phase aqueuse, ce mode (v_{19}) est observé à 1166 cm⁻¹ [14]. Cette différence de fréquence entre valeurs observée et calculée pour la molécule isolée du 4-EIm,

.....

provient de la forte liaison hydrogène existant entre l'atome d'hydrogène (H8) et l'atome d'azote (N3) (Fig.1) de la molécule proche.

La distance entre l'atome d'hydrogène H8 et l' atome d'azote N3 d'une molécule proche pour le cristal d'imidazole est de 1,8 Å [3]. La charge calculée par DFT de ces deux atomes est de 0,28 (H8) et - 0,4 (N3) unité atomique (u.a) (Tableau 2). Colombo [3], dans le cas du cristal d'imidazole, calcule une constante de force de l'ordre de 0,68 mdyn Å⁻¹ pour cette liaison hydrogène. Tous ces paramètres favorisent la thèse de l'existence d'une forte liaison hydrogène expliquant la différence signalée précédemment entre les fréquences. Ce mode v₁₉ passe à 837 cm⁻¹ pour la molécule de N-D 4-EIm. Il est observé à 823 cm⁻¹ pour la molécule de N-D 4-MIm en phase aqueuse et calculé à 858 cm⁻¹ [7].

Le mode v_{20} est attribué en grande partie à la déformation dans le plan de C₅H et de C₂H (δ C₅H et δ C₂H). Il est calculé à 1225 cm⁻¹ (4-EIm) et observé à 1230 cm⁻¹ pour le 4-MIm [7]. Ce mode passe à 1131 cm⁻¹ pour le dérivé deutérié N-D 4-EIm (C₂-D), et il est attribué principalement à la déformation de C₂D et C₅H et à l'élongation de NC (vNC). Il correspond à celui observé à 1132 cm⁻¹ dans le spectre Raman de N-D 4-MIm (C₂-D) [7]. Pour le dérivé deutérié N-D 4-EIm (C₂D, C₅D), deux modes, calculés à 793 et 802 cm⁻¹ et attribués à la déformation de CD et ND peuvent correspondre respectivement à ceux observés à 792 et 809 cm⁻¹ dans le spectre IR de l'imidazole d4 en phase aqueuse [2].

II.2-2-4 Modes de vibration v_7 , v_{13} et v_{14}

Le mode à 634 cm⁻¹ (v_7) est attribué essentiellement à l'élongation de CCH₂ (vCCH₂) (Tableau 6). Il est observé à 626 cm⁻¹ dans le spectre Raman du sel de sodium d'histidine [9].

Les déformations du cycle de l'imidazole, couplées avec l'élongation de CCH_3 (vCCH₃), sont calculées à 933 (v₁₃) et 946 cm⁻¹ (v₁₄). Elles correspondent à celles observés à 917 et 931 cm⁻¹ dans le spectre Raman de l'imidazole en solution aqueuse [6].

II.2-3 Modes de déformation du groupe éthyle CH₂-CH₃

Les déformations symétriques et dégénérées de CH₃ sont calculées respectivement à 1376 (v_{25}) et 1448 (v_{28}), 1461 cm⁻¹ (v_{29}) (4-EIm) et observées respectivement à 1390, 1452 et 1488 cm⁻¹ en spectre Raman du 4-MIm en phase aqueuse [7]. En revanche, Majoube calcule le mode correspondant à v_{28} vers 1425 cm⁻¹, en dessous de la fréquence expérimentale (1452 cm⁻¹). Le mode de cisaillement de CH₂ est calculé à 1448 cm⁻¹ (Tableau 6) correspondant à celui observé pour l'histidine à 1440 cm⁻¹ [9].

Les déformations angulaires de type rocking pour CH_2 et CH_3 apparaissent vers 778 (v_{11}), 1044 (v_{16}) et 1070 cm⁻¹ (v_{17}) (Tableau 6)

II. 2-4. Modes de vibration hors plan de l'imidazole

II.2-4-1. Modes de vibration hors plan de C₅H et C₂H (v_{10} et v_{12})

Les modes de vibration v_{10} et v_{12} sont calculés à 749 et 822 cm⁻¹ pour le 4-EIm (Tableau 6). Ils correspondent à ceux observés à 758 et 826 cm⁻¹ dans le spectre Raman du polycristal du 4-MIm. Les deux modes sont calculés respectivement à 780 et 851 cm⁻¹ pour le 4-MIm [7]. Pour le dérivé deutérié N-D 4-EIm (C₂D, C₅D), ces modes se déplacent respectivement à 571 et 710 cm⁻¹.

II.2-4-2 Modes de vibration des torsions du cycle imidazole (v_8 et v_9)

Le mode calculé à 662 cm⁻¹ (v_8) est attribué totalement aux torsions du cycle de l'imidazole (Tableau 6). Les torsions du cycle se manifestent aussi en grande partie dans le mode donnant la fréquence calculée à 717 cm⁻¹ (v_9); ce mode peut être attribué à celui observé à 712 cm⁻¹ pour le monohydrochlorure d'histidine. Cependant , Majoube [7] attribue les deux modes observés à 629 et 669 cm⁻¹ dans le spectre Raman du polycristal respectivement à ceux calculés à 597 et 645 cm⁻¹ (correspondant à v_8 et v_9). En revanche, un mode non attribué est observé vers 718 cm⁻¹ et 727 cm⁻¹ respectivement dans le spectres IR du polycristal et Raman de la phase aqueuse du 4-MIm dans l'eau lourde (D₂O) [7]. Ce mode peut correspondre à celui calculé à 717 cm⁻¹ (v_9).

II.2-4-3 Modes de déformation hors du plan de NH (v₆)

Le mode de déformation hors plan de NH (π NH) est calculé à 520 cm⁻¹ pour 4-EIm. Il est calculé à 613 cm⁻¹ pour le 4-MIm et observé à 916 cm⁻¹ en spectre Raman du polycristal du 4-MIm [7]. Cette grande différence entre fréquences calculée et observée provient de la forte liaison d'hydrogène existant dans le polycristal. Ce mode se déplace à 409 cm⁻¹ pour le dérivé deutérié N-D 4-EIm (Tableau 7).

II. 3. Résonance Raman

De nombreuses études concernent les intensité de résonance Raman (IRR) et les états énergétiques de la molécule d'imidazole et de ses dérivés (4-MIm et l'histidine). Parmi ces travaux on peut citer celui de Caswell [14] qui montre que l'absorption de la molécule d'imidazole et de ses dérivés est maximale à 204 et 218 nm. Par ailleurs à l'aide de la méthode CNDO/S [15] Caswell a donné le diagramme des états énergétiques et la différence

	Expt. ^{abed}	Calc.	Attribution (%)
v1	- <u></u>	60	τCCH2(85)
v2		163	$\pi CCH_2(36) + \delta CCCH_3(27) + \tau C4N_3(12) + \tau C4C_5(8)$
v3		216	$\tau CCH_3(68) + \delta CCH_2(18)$
ν4	350a	340	$\delta CCH_2(40) + \tau CCH_3(30)$
v5		401	$\delta CCCH_3(27) + \delta CCH_2(19) + \nu CCH_2(7) + \nu CCH_3(5) +$
			δ(CH ₂ ,CH ₃)(12)
v6		520	$\pi NH(67) + \tau N_1C5(16) + \tau C_2N_1(13)$
ν7	626 ^b	634	$vCCH_2(46) + \delta cycle(16)$
v8	669a	662	$\tau C_2 N_1(33) + \tau N_1 C_5(30) + \tau N_3 C_2(9)$
v9	712 ^b	717	$\pi C_5H(+23) + \pi CCH_2(18) + \tau N_3C_2(12) + \tau C_4C_5(9)$
			+ $\tau N_1C_5(8) + \tau (C_2N_1, C_4N_3)(6)$
v10	758°	749	$\pi C_5 H(45) + \pi C_2 H(10) + \tau C_4 C_5(10) + \tau N_1 C_5(8)$
v11		778	CH ₂ rock (39) + CH ₃ rock (31) + π CCH ₂ (7) + π C ₅ H(8)
v12	826d	822	$\pi C_2 H(64) + \pi C_5 H(9) + \tau N_3 C_2(11) + \tau C_2 N_1(9)$
v13		933	$vCCH_3(23) \delta C_2N_3C_4(19) + \delta NCN(14) +$
	u		$\delta(N_3C_4C_5, C_2N_1C_5)(8) + \delta CH_3(8)$
v14	942a	946	$\delta C_2 N_1 C_5(20) + \delta N_1 C_5 C_4(13) + \delta N C N(6) + v C C H_3(18) +$
			δC5H(10)
v15	984d	988	vCCH3(30) + vCCH2(8) + vN3C4(17) +
			δ cycle(11) + δ CH ₃ (9) + δ CH ₂ (8)
v16		1044	CH ₂ rock (35) + CH ₃ rock (26) + vCCH ₃ (15)
			+ v(C4C5,N3C4)(11)
v17		1070	CH3 rock (41) + δ CH2(15) + ν CCH3(23) + δ CCCH3(6)
v18	1088a	1088	$vN_1C_5(35) + \delta C_5H(29) + \delta NH(8) + \delta C_2H(5)$
v19	1160a	1123	$vN_1C_2(41) + \delta NH(39)$

Tableau 6 : Fréquences calculées et observées du 3-éthylimidazole et la distribution d'énergie potentielle obtenue par calcul DFT

v20	1230 a	1225	$\delta C_{5}H(29) + \delta C_{2}H(25) + \nu N_{1}C_{5}(7) + \delta CH_{2}(16) + \delta CH_{3}(8)$
v21	1242 ^d	1251	$vN_3C_4(17) + vN_1C_5(8) + \delta C_5H(12) + vCCH_2(9) + CH_2 tw (32)$
v22	1270d	1282	$\delta C_2 H(29) + v cycle(20) + CH_2 tw (35)$
v23	1323d	1325	CH ₂ wag (45) + ν CCH ₂ (11) + ν N ₃ C ₄ (15) + ν (C ₄ C ₅ ,N ₃ C ₂)(10)
v24	1351d	1350	$vN_3C_2(19) + vN_1C_5(10) + vN_3C_4(9) + \delta C_5H(9) +$
			CH ₂ wag.(30)
v25	1390a	1376	CH3 s.def.(89)
v26	1457°	1444	$\delta NH(37) + \nu N_1C_2(25) + \nu N_1C_5(11) + \delta cycle(8)$
v27	1440b	1448	CH ₂ scis (80) + δ CH ₃ (12)
v28	1452a	1461	CH3 deg.def.(96)
v29	1488 ^a	1474	CH3 deg.def.(84) + δ HC6H(8)
v30	1492 ^a	1513	$vN_{3}C_{2}(33) + vcycle(14) + \delta C_{2}H(29) + \delta C_{5}H(7)$
v31	1577d	1575	$vC_4C_5(42) + \delta C_5H(13) + \delta NH(6) + vCCH_2(16)$
v32		2862	s.sCH ₂ (98)
v33	2874a	2872	s.sCH3(99)
v34		2897	a.sCH ₂ (94)
v35	2932a	2934	d.sCH3(96)
v36	2944¢	2952	d.sCH3(96)
v37	3121a	3111	vC ₂ H(99)
v38	3131a	3137	vC5H(99)
v39	2800 c	3489	vNH(99)

Fréquences données en cm⁻¹

v: élongation, δ : déformation dans le plan, π : déformation hors plan, τ : torsion; rock (rocking): rotation, tw (twisting): torsion, wag (wagging): balancement, scis (scissoring): cisaillement, s.def (symmetric deformation): déformation symétrique, d.def (degenerate deformation): déformation dégénérée, a.s (asymmetric stretching): élongation asymétrique, s.s (symmetric stretching): élongation symétrique, d.s (degenerate stretching): élongation dégénéré.

a b d Fréquences observées prises respectivement à partir du spectre FT Raman du 4-méthylimidazole en phase aqueuse, du spectre Raman de l'histidine en solution de sodium, et de l'histidine en phase aqueuse [7,9,14]

^c Fréquences observées prises à partir du spectre FT Raman de polycristal de

4-méthylimidazole.[7] vcycle : v(N1C2, N1C5, N3C2, N3C4, C4C5) δcycle : δ(NCN, C2N3C4, N3C4C5, C4C5N1,C5N1C2)

. ...

Tableau 7 : Fréquences calculées et observées du dérivé deutérié N-D 4-éthylimidazole et distribution d'énergie potentielle obtenue par calcul DFT

	Expt. ^a	Calc.	Attribution(%) ^b
ν1		60	*
v2		161	*
v3		216	*
ν4	346	338	*
v5		392	$\pi ND(38) + \tau N_1C5(16) + \tau C_2N_1(12) + \delta CCCH_3(9) + \delta CCH_2(9)$
ν6		409	$\pi ND(53) + \tau N_1C5(16) + \tau C_2N_1(14)$
ν7		625	$vCCH_2(38) + \delta cycle(13) + \pi CCH_2(9) + \tau cycle(11)$
ν8		643	$vCCH_2(28) + \delta cycle(10) + \tau C_2N_3(14) + \tau C_2N_1(8) +$
			$\tau(N_1C_5,C_4N_3)(8)$
v9		716	*
v10	782	748	*
v11		777	*
v12	821	822	*
v13	922	929	$\delta C_2 N_1 C_5(27) + \delta N C N(15) + \delta N_1 C_5 C_4(12) + \delta C_5 H(12) + \delta C_2 H(6) + $
			$\delta ND(7) + v(N_1C_2, N_3C_4)(10)$
v14		951	$vCCH_3(55) + \delta cycle(11) + \delta CH_3(16)$
v15	1017	999	$vN_3C_4(24) + vCCH_3(12) + vCCH_2(8) + \delta CN_3C(13) + \delta CH_3(9) +$
			δCH ₂ (8)
v16		1048	*
v17		1070	*
v18	•	1092	$vN_1C_2(24) + vN_1C_5(22) + \delta C_5H(17) + \delta C_2H(8)$
v19	833	838	$\delta ND(70) + \delta cycle(12)$
v20	1224	1222	*

v21		1249	*
v22		1278	*
v23		1324	*
v24		1347	*
v25	1391	1376	*
v26	1370	1370	$vN_1C_2(32) + vN_1C_5(21) + \delta ND(16) + \delta cycle(8)$
v27		1447	*
v28	1452	1460	*
v29	1465	1473	*
v30	1485	1505	*
v31	1572	1569	*
v32		2862	*
v33	2875	2872	*
v34		2897	*
v35	2934	2934	*
v36	2945d	2952	*
v37	3111	3111	*
v38	3128	3137	*
v39	2125d	2565	vND(98)

^a Fréquences observées prises à partir du spectre Raman TF du dérivé deutérié N-D 4-méthylimidazole en phase aqueuse [7].

b L'étoile (*) signifie que la distribution d'énergie potentielle est similaire à celle du
4-éthylimidazole (Tableau 6)

des indices de liaison entre l'état électronique fondamental et les états excités lors des différentes transitions électroniques de la molécule d'imidazole. Pour la molécule d'imidazole, Asher [16] a effectué la mesure des intensités Raman de prérésonance en utilisant des longueurs d'onde excitatrices entre 217 et 600 nm. De son côté Majoube [6, 7] a calculé les IRR pour les molécules d'imidazole et de 4-MIm. Les calculs des différences d'énergie pour les différentes transitions et leurs forces oscillatoires de ces deux molécules ont été effectuées par Bernarducci [17] et Markhan [18].

II.3-1 Les états énergétiques de la molécule du 4-éthylimidazole

Le tableau 8 décrit les coefficients et les énergies des différents états allant de Homo-2 à Lumo+2. Tous ces états sont de caractère π à l'exception de l'état Homo-1 qui a un caractère n. Ce résultat est comparable à celui de Benarducci obtenu avec la méthode INDO/S pour le 4-MIm [17], ainsi que le montrent les coefficients des orbitales moléculaires composant ces états. Les énergies des premières transitions électroniques $\pi_1 \rightarrow \pi_1^*, \pi_1 \rightarrow \pi_2^*,$ $n \rightarrow \pi_1^*$ et $n \rightarrow \pi_2^*$ sont calculées à 6,83; 7,83; 7,95 et 8,94 ev. Ces valeurs sont plus élevées que celles obtenues pour le 4-MIm [17].

Le tableau 9 décrit la différence des indices de liaisons des premières transitions électroniques. Ces indices de liaison sont comparables à ceux obtenus par Del Bene [15] à partir du calcul CNDO/S de la molécule d'imidazole. Pour la transition $\pi_1 \rightarrow \pi_1^*$, on note d'importantes valeurs correspondant aux liaisons C₄-C₅, N₃-C₂ et N₁-C₂. La même remarque peut être faite pour l'imidazole [15].

- <u>-</u>	Tableau 8 : Coefficients et énergies des orbitales moléculaires du 4-éthylimidazole (*)	
Homo-2	$-0,356C_{2Pz}(N1) - 0,291C_{3Pz}(N1) + 0,138C_{2Pz}(C2) + 0,108C_{3Pz}(C2) + 0,411C_{2Pz}(N3) + 0,108C_{3Pz}(C2) + 0,108C_{3P$	- 202
	$0,280C_{3Pz}(N_3) + 0,163C_{2Pz}(C_4) + 0,127C_{3Pz}(C_4) - 0,121C_{2Pz}(C_5) - 0,085C_{3Pz}(C_5)$	-7,283
Homo-1	$0,117C_{2Pz}(N1) - 0,157C_{3S}(N1) - 0,113C_{2Px}(C2) - 0,170C_{2S}(N3) + 0,100C_{2Pz}(N3) - 0,281C_{3S}(N3)$	(00 -
	+ 0- $,153C_{3P_X}(N_3) + 0,325C_{3P_y}(N_3) - 0,178C_{2P_y}(C_4) + 0,103C_{2P_x}(C_5) - 0,209C_{3S}(C_5)$	-6,995
Homo	$-0,134C_{2PZ}(N1) - 0,120C_{3PZ}(N1) - 0,303C_{2PZ}(C2) - 0,229C_{3PZ}(C2) + 0,318C_{2PZ}(C4) + 0,200C_{3PZ}(C4) + 0,200C_{3P$	c 070
	$0,203C_{3Pz}(C4) + 0,359C_{2Pz}(C5) + 0,294C_{3Pz}(C5) - 0,129C_{3S}(C7)$	-5,878
Lumo	$-0,345C_{2PZ}(N1) - 0,463C_{3PZ}(N1) + 0,399C_{2PZ}(C2) - 0,102C_{3PX}(C2) + 0,528C_{3PZ}(C2) - 0,102C_{3PZ}(C2) - 0,102C_{3P$	0.050
	$0,227C_{2Pz}(N_3) - 0,278C_{3Pz}(N_3) - 0,138C_{2Pz}(C_4) - 0,198C_{3Pz}(C_4) + 0,305C_{2Pz}(C_5) + 0,208C_{3Pz}(C_5) + 0,008C_{3Pz}(C_5) + 0,00$	0,958
	0,433 C ₃ P _Z (C5)	
Lumo+1	$-0,189C_{2Pz}(C2) - 0,286C_{3Pz}(C2) + 0,347C_{2Pz}(C3) + 0,453C_{3Pz}(C3) - 0,391C_{2Pz}(C4) - 0,189C_{2Pz}(C4) - 0,0000000000000000000000000000000000$	1.052
	$0,477C_{3PZ}(C4) + 0,266C_{2PZ}(C5) + 0,399C_{3PZ}(C5) + 0,236C_{3S}(C6) - 0,265C_{3PZ}(C6) + 0,265C_{3PZ}$	1,953
	$0,594C_{3S}(C7) - 0,126C_{2S}(H11) - 0,483C_{2S}(H12) - 0,336C_{2S}(H13) - 0,197C_{2S}(H15)$	
Lumo+2	$-0,155C_{2\mathrm{S}}(\mathrm{N1}) - 0,240C_{2\mathrm{Px}}(\mathrm{N1}) - 0,119C_{2\mathrm{Py}}(\mathrm{N1}) - 1,206C_{3\mathrm{S}}(\mathrm{N1}) - 0,630C_{3\mathrm{Px}}(\mathrm{N1}) - 0,313C_{3\mathrm{Py}}(\mathrm{N1})$	0.117
	$-0,171C_{3Pz}(N1) + 0,115C_{2Py}(C2) - 0,312C_{3S}(C2) + 0,141C_{3Py}(C2) + 0,112C_{3S}(N3) - 0,112C_{3S}(N3) - 0,0000000000000000000000000000000000$	2,117
	$0,106C_{3Py}(N_3) - 0,320C_{3S}(C_5) + 0,192C_{3Px}(C_5) - 0,135C_{3Py}(C_5) + 1,690C_{2S}(H_8) + 0,316C_{2S}(H_9)$	
	+ 0,390 C ₂ S(H10)	

(*) Seul les grands coefficients sont inclus

-	$\pi_1 \rightarrow \pi_1^*$	$\pi_1 \rightarrow \pi_2^*$	$n \rightarrow \pi_1^*$	$n \rightarrow \pi 2^*$	$\pi_2 \rightarrow \pi_1^*$	~
Liaison						
N1-C2	-0,485	-0,219	-0,513	0,062	-0,511	
N1-C5	-0,244	0,265	-0,201	-0,004	-0,143	
N3-C2	-0,645	-0,552	-0,748	-0,645	-0,762	
N3-C4	0,294	-0,382	-0,115	-0,698	-0,140	
C4-C5	-0,762	-0,872	-0,312	-0,627	-0,199	
C4-C6	0,007	0,116	-0,049	0,039	0,002	
C6-C7	-0,031	-0,079	0,004	-0,052	-0,001	
						_

Tableau 9 : Variation de l'ordre de liaison pour les transitions électroniques du 4-éthylimidazole
II.3.2. Intensité de résonance Raman du 4-éthylimidazole

Les intensités Raman de résonance calculées à partir du terme A pour les premières transitions électroniques des modes situés entre 393 et 1575 cm⁻¹ sont regroupées dans le tableau 10. Elles sont comparées à celles de l'histidine en phase aqueuse (pH 8) obtenues à partir du spectre Raman de résonance à l'excitation 218 nm. Il est à noter que ces intensités ont été normalisées à 10. Les intensités observées (pour l'histidine à 218 nm) des différents modes approchent beaucoup plus celles calculées pour la transition $\pi_1 \rightarrow \pi_2^*$ que celles correspondant à la transition $\pi_1 \rightarrow \pi_1^*$. A l'exception du mode calculé à 1123 cm⁻¹ (1166 cm⁻¹ pour l'histidine) dont la différence de fréquence est due à la liaison hydrogène et des deux autres modes calculés à 988 et 939 cm⁻¹, l'intensité de résonance est pratiquement la même. Pour la molécule d'imidazole, Asher [16] a donné les intensités de résonance à l'excitation 250 nm. Ces intensités se rapprochent de celles calculées pour la transition électronique $\pi_1 \rightarrow \pi_1^*$, comme on peut le voir sur le tableau 10.

En résumé, on suggére que la transition $\pi_1 \rightarrow \pi_2^*$ peut correspondre à la transition la plus favorable à l'excitation 218 nm de la molécule d'histidine. Cela est en désaccord avec ce qui a été conclu par Caswell [14] pour l'imidazole et par Majoube [7] pour le 4-éthylimidazole où la transition $\pi_1 \rightarrow \pi_1^*$ est majoritaire à 218 nm.

Expt.				<u> </u>	Intensités calc	ulées	<u></u>	
Imidazole ^a à	Histidine ^b à	Fréquences	H→L	H→L+1	H-1→L	H-2→L	H-2→L+1	
250 nm	218 nm	calculées.	$\pi_1 \rightarrow \pi_1 *$	$\pi_1 \rightarrow \pi_2^*$	n→π1*	$n \rightarrow \pi 2^*$	$\pi_2 \rightarrow \pi_1^*$	
· · · · · · · · · · · · · · · · · · ·	939(3)	933	3	6	3,6	2	3	
		946	1	0	1 ·	0	0	
	984(1)	988	1	5	5	6	4	•
x		1044	0	0	0	0	0	
		1070	0	0	0	0	0	
		1088	0	0	0	0	0	
1160(6)	1166(5)	1123	2,4	10	4,6	3,7	4,4	
		1225	1	1	0	0	0	
	1242(6)	1251	0	0	0	1	0	بن مع موجع
1260(7)	1270(6)	1282	4	7	10	10	10	
1328(5)	1323(10)	1325	7	4	4,5	0	3,4	
	1343(3)	1350	. 10	5	9,4	3,7	8	
	1457(6)	1444	0	4,3	0	0	0	
1490(3)	1498(9)	1513	3	9	5	9	5	
1535(2)	1577(9)	1575	2	7,7	0	2	0	

Tableau 10 : Valeurs des intensités relatives de résonance Raman du 3-éthylimidazole pour les premières transitions électroniques $\pi \to \pi^*$ et n $\to \pi^*$ en utilisant le terme A

a b Intensités données par les résultats expérimentaux respectivement dans [16] et [14]

H : homo ; L : lumo

III conclusion

Les quatre modes calculés entre $1251 (v_{21})$ et $1350 \text{ cm}^{-1} (v_{24})$ pour le 4-éthylimidazole (Tableau 6) sont attribués aux modes du cycle de l'imidazole couplés aux déformations de CH₂. Ces modes reproduisent bien les quatre modes observés pour l'histidine et décrits dans le tableau 6. Cependant, seulement deux modes sont observés dans cette région de fréquence pour l'imidazole et le 4-éthylimidazole. Cela confirme le bon choix de l'étude de la molécule 4-éthyimidazole, approchant beaucoup plus l'aspect vibrationnel de la molécule d'histidine. Cependant, les modes observés pour le 4-éthylimidazole pris dans le tableau 6, restent en majeure partie des modes propres au cycle imidazole, et ne sont pas affectés par le mouvement du groupe CH₂. Ainsi la comparaison de ces modes avec ceux calculés pour le 4éthylimidazole, reste valable.

Le facteur d'échelle obtenu dans le calcul par Majoube pour les coordonnées hors du plan du 4-méthyimidazole est de l'ordre de 0,7. Cette valeur est faible par rapport à celle obtenue pour le 4-éthyimidazole (1). C'est la raison pour laquelle, la fréquence du mode attribué à l'élongation dégénérée de CH₃ et calculée par Majoube à 2776 cm⁻¹ reste très faible par rapport à celle calculé pour le 4-éthylimidazole à 2934 cm⁻¹ (v_{35}) (Tableau 6).

Le mode correspondant à v_{26} reproduit bien la fréquence expérimentale pour le 4éthylimidazole (Tableau 6) et pour le dérivé deutérié N-D 4-éthylimidazole (Tableau 7). Dans les résultats donnés par Majoube [7], ce mode présente une différence de 27 cm⁻¹ entre fréquences observée et celle calculée pour le 4-méthylimidazole et de 41 cm⁻¹ pour le dérivé deutérié N-D 4-méthylimidazole. Cela montre l'avantage de la méthode de DFT comparativement à celle utilisée par Majoube [7] (HF/6-31G).

L'intensité Raman de résonance calculée pour la transition $\pi_1 \rightarrow \pi_2^*$ de différents modes est compatible avec celle observée pour la molécule d'histidine à l'excitation 218 nm. Le fait de ne pas avoir d'intensité Raman de prérésonance (≈ 250 nm) de l'histidine dans la bibliographie nous a obligé à nous référer à celle de l'imidazole (Tableau 10). Cette dernière est très proche de celle obtenue pour la transition électronique $\pi_1 \rightarrow \pi_1^*$. L'attribution de la transition $\pi_1 \rightarrow \pi_2^*$ à l'excitation 218 nm est un autre point de divergence avec les résultats de Majoube.

Références

- [1] I. Ashikawa, K. Itioh, Biopolymers, 18 (1979) 1859.
- [2] M. Cordes, J. L. Walter, Spectrochim. Acta, 24A (1967) 237.
- [3] L. Colombo, P. Bleckmann, B. Schrader, J. Chem. Phys., 61 (1974) 3270.
- [4] J. A. Pople, D. L. Beveridge, Approximate Molecular Orbital Theory (McGraw-Hill, New York, 1970)
- [5] M. Depuis, P. Mougenot, J. D. Watts, G. J. B. Hurst, H. O. Villar, ModernTechniques in Computational Chemistry, E. Clementi, ESCOM, Chap. 7 (1989)
- [6] M. Majoube, M. Henry, L. Chinsky, P. Y. Turpin, Chem. Phys. 169 (1993) 0.
- [7] M. Majoube, Ph. Millié, G. Vergoten, J. Mol. Struct., 344 (1995) 21.
- [8] M. J. Frisch, G. M. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B.
 Foresman, B. J. Johnson, H. B. Schlegel, M. A. Rob, E. M. Deplogle, R. Gomperts, J.
 L. Andres, K. Baghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J.
 Defrees, J. Baker, J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1992.
- [9] D. Garfinkel, J. T. Edsall, J. Am. Chem. Soc., 80 (1958) 3807.
- [10] C. Berthomieu, A. Boussac, Biospectroscopy, 1 (1995) 187
- [11] P. E. Dington, Marjorie, M. Harding Acta Crystallogr. Sect. B, 30 (1974) 204.
- [12] J. J. Madden, E. L. McGandy, N. C. Seeman, M. M. Harding, A. Hoy, Acta Crystallogr., Sect. B, 28 (1972) 2382
- [13] H.Wolf, E. Wolf, Spectrochim. Acta 27A (1971) 2109
- [14] D. S. Caswell, T. G. Spiro, J. Am. Chem. Soc., 108 (1986) 6470.
- [15] J. Del Bene, H. H. Jaffe, J. Chem. Phys., 48 (1968) 4050
- [16] S. A. Asher, J. L. Murtaugh, Applied Spectroscopy, 42 (1988) 83
- [17] E. Bernarducci, P. K. Bharadwaj, K. Krogh-Jespersen, J. A. Potenza H. Schugar, J.

Am. Chem. Soc. 105 (1983) 3861

[18] L. M. Markam, L. C. Mayne, B. S. Hudson, M. Z. Zgierski, J. Phys. Chem., 97 (1993) 10319.

Chapitre 4 3-éthylindole

yr.

I. Introduction

Le choix de l'étude vibrationnelle et des intensités de résonance Raman de la molécule de 3-éthylindole (3-EIn) provient du fait que cette molécule constitue le meilleur modèle pour le tryptophane (Trp). Beaucoup d'auteurs ont pris comme modèles du Trp les molécules du skatole (3-méthylindole) et de l'indole pour l'étude vibrationnelle: Lautié [1], Takeuchi [2], Collier [3] et Majoube [4]. Une première étude vibrationnelle détaillée de l'indole a été faite par Lautié [1] en 1979. Cette étude a porté sur l'obtention des spectres IR et Raman de l'indole dans ses trois états (solide, liquide et gaz) ainsi qu'aux nombreux dérivés deutériés en phase liquide. De plus, cette étude a révélé que dans l'état liquide et solide, l'indole est auto-associé en chaîne par la liaison hydrogène NH... π caractérisée par un déplacement relatif de fréquence de l'élongation de NH de l'ordre de 3,5 %. Enfin une attribution limitée des modes fondamentaux y a été donnée. En 1984, Takeuchi [2] a calculé les modes normaux de l'indole et de ses onze dérivés deutériés et obtenu des constantes de forces de l'indole en utilisant la méthode de la matrice GF [5].

Cette méthode est basée sur un raffinement des constantes de force en utilisant la méthode des moindres carrés, jusqu'à la reproduction la plus proche des fréquences observées. Les constantes de force initiales sont celles du cycle benzènique et du pyrrole prises séparément. Le calcul a abouti a une reproduction des fréquences expérimentales et à donné leur distribution d'énergie potentielle. L'erreur moyenne entre fréquences observées et calculées est de 6 cm⁻¹. En utilisant les constantes de forces de l'indole, Takeuchi [2] a calculé les fréquences et les modes du skatole (3-méthylindole), en assimilant le substitut de l'indole CH3 à un point de masse M. Les constantes de forces ont été ajustées en utilisant les fréquences expérimentales du tryptophane dans le processus de minimisation.

En 1988 Collier [3] a utilisé l'hamiltonien semiempirique AM1 lors de calculs quantiques semiempiriques [6]. En appliquant la méthode de Pulay [7, 8], qui consiste à transformer la matrice des constantes de forces donnée en coordonnées cartésiennes (F_x), sorties du calcul AM1, en celle en coordonnées internes (F_R), l'application des facteurs d'échelle à cette dernière permet d'ajuster les fréquences calculées à celles observées. On note deux différences dans cette méthode par rapport à notre procédure de calcul : l'ajustement en utilisant la méthode non linéaire des moindres carré et l'inclusion des facteurs d'échelle pour les éléments non diagonaux de la matrice F_R .

Il s'avère difficile de déterminer les constantes de force des molécules polycycliques hétéroaromatiques, car la structure aromatique du cycle conduit à un fort couplage entre les différentes constantes de forces.

C'est dans ce cadre que Collier dans un premier temps a calculé les fréquences vibrationnelles et les constantes de force du cycle benzènique et du pyrrole, et donc les facteurs d'échelle associés. Dans un second temps, les constantes de force ont été transférées à la molécule d'indole, permettant ainsi la détermination des fréquences vibrationnelles et le raffinement des constantes de forces. Les fréquences calculées présentent une RMSD (déviation quadratique moyenne) par rapport aux fréquences observées de 19 cm⁻¹ pour les vibrations dans le plan de la molécule d'indole, et de 27 cm⁻¹ pour les vibrations hors du plan. En s'appuyant sur les intensités IR calculées à partir de AM1, Collier a identifié les modes fondamentaux, et à l'aide de la polarisation ou de la dépolarisation des modes , il a pu identifier respectivement les modes plan et hors plan de l'indole.

Majoube [4] a présenté en 1992 un travail expérimental et théorique sur la molécule d'indole. Le premier point à consiste en l'obtention du spectre IR par transformée de Fourier de l'indole à l'état vapeur et des spectres IR et Raman de l'indole en phase solide. Le second point procède de l'analyse des coordonnées normales obtenues à partir du calcul ab initio des constantes de forces au niveau SCF, en utilisant le programme Gaussian 88 [9] avec l'ensemble de base 3-21G. Nous avons utilisé la même procédure pour nos calculs. Deux facteurs d'échelle entrent en jeu: l'un pour les coordonnées internes de l'indole dans le plan (0,9), et l'autre pour les hors plans (0,7). Le calcul des intensités IR et Raman, permet de clarifier et de faciliter l'attribution entre fréquences observées et calculées, à l'aide de la distribution d'énergie potentielle (PED). La RMSD est de 9 cm⁻¹ pour les modes dans le plan, et 11 cm⁻¹ pour les hors du plan. Les résultats de ces différentes méthodes de calcul faisant intervenir les modes vibrationnels, les constantes de force et surtout la PED permettront de formuler des comparaisons et de critiquer nos résultats. Cette comparaison sera renforçée aussi par les spectres Raman du tryptophane et du dérivé deutérié N-D tryptophane dans l'eau [10].

II. Résultats

La numérotation des atomes de la molécule du 3-EIn est représentée sur la figure 1. La substitution en C3 par le résidu CH₂CHNH₃⁺CO₂⁻ donne la molécule du tryptophane.

II.1. Optimisation du 3-éthylindole

II.1-1 Géométrie du 3-éthylindole

L'optimisation a débuté à partir d'une géométrie plane du 3-EIn, obtenue à partir des résultats de l'étude des rayons X de la molécule du tryptophane [11] disponible dans la base de données structurales de la "Cambridge Database". L'optimisation de cette molécule a duré 19 jours, 7 heures et 27 minutes en temps CPU (DEC α 3400), aboutissant à une géométrie plane peu différente de celle de départ.

Fig 1 Numérotation des atomes du 3-éthylindole

Cette géométrie est comparable à celle obtenue pour la phase cristalline du résidu de tryptophane des rayons X du N-acétyl-DL-tryptophane-N-méthylamide [12] (Tableau 1). La différence maximale entre résultats calculés et observés ne dépasse pas 0,02 Å pour les élongations et 1,12 degrés pour les déformations angulaires.

L'optimisation de la molécule donnée par le calcul de DFT, (simulation en phase gaz) respecte bien la géométrie de la molécule donnée par les rayons X.

II.1-2 Charges du 3-éthylindole

Les charges totales du 3-EIn obtenues par la méthode de Mulliken sont données dans le tableau 2. La charge la plus importante est celle de l'atome d'azote (-0,56 u.a). L'atome d'hydrogène lié à cette dernière a une charge supérieure aux autres atomes d'hydrogène (0,27 u.a), ce qui peut expliquer la liaison d'hydrogène NH... π , qui sera discutée plus loin.

II.1-3 Coordonnées internes du 3-éthylindole

Le tableau 3, donne la numérotation et la description des 83 coordonnées internes, utilisées dans le programme Redong [13] pour le calcul de la matrice des constantes de force exprimées dans l'espace des coordonnées internes (F_R). Les coordonnées sont partagées en trois groupes. Le groupe des coordonnées dans le plan,(avec 43 coordonnées), hors du plan (avec 21 coordonnées) et le groupe des coordonnées propres au substituant CH₂-CH₃ (éthyle),(avec 18 coordonnées désignées par une étoile dans le tableau 3).

	n - Santa an tao amin'ny taona dia mampiasa. Ny kaodim-paositra dia mampiasa dia mampiasa dia mampiasa dia mampi	and the strength and the second state	, and the second s	an an than 1.55 Million Arth Allah gant sing a an A	na stal dostato internet internet for population	ontrig on the matrix and the other states	Sector Protocol and the sector of the sector
Atome 1	Atome 2	Calc.	Expt. ^a	Atome 1	Atome 2	Calc.	Expt. ^a
C2	N1	1,384	1,387	C6	H15	1,085	
C9	N1	1,378	1,369	C8	C7	1,388	1,363
N1	H12	1,004		C7	H16	1,084	
C3	C2	1,369	1,356	C9	C8	1,397	1,403
C2	H13	1,080		C8	H17	1,084	
C3	C4	1,444	1,436	C11	C10	1,540	
C10	C3	1,502		C10	H18	1,096	
C4	C5	1,405	1,394	C10	H19	1,097	
C4	C9	1,420	1,412	C11	H20	1,094	
C5	C6	1,387	1,380	C11	H21	1,094	
C5	H14	1,084		H22	C11	1,093	
C6	C7	1,409	1,397	-col-mailed-in-Mailed-D- and addition-on-	ana ang sana ang san		1417 and 1421 - 1416 - 1421 - 1417 - 1421 - 1471 - 1471 - 1471 - 1471 - 1471 - 1471 - 1471 - 1471 - 1471 - 147

Tableau 1a : Distances de liaisons atomiques du 3-éthylindole exprimées en Å

^a Valeurs expérimentales de la phase cristalline du résidu de tryptophane obtenues à partir des Rayons X de la N-acétyl-DL-tryptophane-N-methylamide [12]

 Tableau To : Angles de valence du 5-emylindole exprimes en degres							
 Atome 1	Atome 2	Atome 3	Calc.	Expt. ^a	-		
H12	N1	C9	125,6				
H12	N1	C2	125,3				
C9	N1	C2	109,0	108,6			
H13	C2	C3	129,4				
H13	C2	N1	120,2				
C3	C2	N1	110,3	110,0			
C10	C3	C4	126,9				
C10	C3	C2	126,9				
C4	C3	C2	106,1				
С9	C4	C5	118,7	119,3			
C9	C4	C3	107,4				

Tableau 1b : Angles de valence du 3-éthylindole exprimés en degrés

C5	C4	C3	133,8	
H14	C5	C6	120,3	
H14	C5	C4	120,5	
C6	C5	C4	119,1	119,3
H15	C6	C7 ·	119,2	
H15	C6	C5	119,7	
C7	C6	C5	121,1	
H16	C7	C8	119,4	
H16	C7	C6	119,4	
C8	C7	C6	121,1	
H1 7	C8	С9	121,3	
H17	C8	C7	121,1	
C9	C8	C7	117,5	117,6
C8	C9	C4	122,3	121,2
C8	C9	N1	130,5	
C4	С9	N1	107,1	107,8
H19	C10	H18	106,0	
H19	C10	C11	108,9	
H19	C10	C3	109,4	
H18	C10	-C11	109,1	
H18	C10	C3	109,3	-
C11	C10	C3	113,6	
H22	C11	H21	107,4	
H22	C11	H20	108,0	
H22	C11	C10	111,1	
H21	C11	H20	108,2	
H21	C11	C10	110,7	
H20	C11	C10	1111	

^a Valeurs expérimentales de la phase cristalline du résidu de tryptophane obtenues à partir des Rayons X de la N-acétyl-DL-tryptophane-N-méthylamide [12]

 Atome 1	Atome 2	Atome 3	Atome 4	Calc.
H13	C2	N1	H12	0,064
H13	C2	N1	C9	179,733
C3	C2	N1	H12	-179,532
C3	C2	N1	C9	0,137
C8	C9	N1	H12	-0,091
C8	C9	N1	C2	-179,759
C4	С9	N1	H12	179,622
C4	C9	N1	C2	-0,046
C10	C3	C2	H13	1,379
C10	C3	C2	N1	-179,072
C4	C3	C2	H13	-179,715
C4	C3	C2	N1	-0,167
C10	C3	C4	С9	179,040
C10	C3	C4	C5	-1,512
C2	C3	C4	С9	0,135
C2	C3	C4	C5	179,583
H19	C10	C3	C4	46,803
H19	C10	C3	C2	-134,513
H18	C10	C3	C4	162,550
H18	C10	C3	C2	-18,767
C11	C10	C3	C4	-75,290
C11	C10	C3	C2	103,393
С9	C4	C5	H14	179,817

Tableau 1c : Angles dièdres du 3-éthylindole exprimés en degrés

C9	C4	C5	C6	-0,173
C3	C4	C5	H14	0,418
C3	C4.	C5	C6	-179,572
C5	C4	C9	C8	0,142
C5	C4	С9	N1	-179,601
C3	C4	С9	C8	179,687
C3	C4	C9	N1	-0,055
H14	C5	C6	H15	0,086
H14	C5	C6	C7	-179,939
C4	C5	C6	H15	-179,924
C4	C5	C6	C7	0,052
H15	C6	C7	H16	0,077
H15	C6	C7	C8	-179,912
C5	C6	C7	H16	-179,899
C5	C6	C7	C8	0,113
H17	C8	C7	H16	-0,081
H17	C8	C7	C6	179,908
С9	C8	C7	H16	179,868
C9	C8	C7	C6	-0,144
C4	C9	C8	H17	179,966
C4	C9	C8	C7	0,017
N1	С9	C8	H1 7	-0,359
N1	С9	C8	C7	179,693
H22	C11	C10	H19	-64,022
H22	C11	C10	H18	-179,390
H22	C11	C10	C3	58,319
H21	C11	C10	H19	176,597
H21	C11	C10	H18	61,229
H21	C11	C10	C3	-61,062

H20	C11	C10	н19 H18	59.075	
H20	C11	C10	C3	178,634	

Tableau 2 : Charges atomiques en unités atomiques

Numéro d'atome	Charge atomique (u.a)
N1	-0,5638
C2	-0,0057
C3	0,0497
C4	0,0495
C5	-0,1489
C6	-0,1159
C7	-0,1211
C8	-0,1032
С9	0,2175
C10	-0,2307
C11	-0,3210
H12	0,2747
H13	0,1220
H14	0,0952
H15	0,0900
H16	0,0921
H17	0,0919
H18	0,0978
H19	0,1061
H20	0,1006
H21	0,1081
H22	0,1150

II.1-4 Facteurs d'échelle du 3-éthylindole

Neuf groupes de coordonnées internes, associés à des facteurs d'échelle différents, sont formés pour raffiner les constantes de forces (Tableau 4). Les facteurs d'échelle se situent entre 0,89 et 1. Toutes les coordonnées internes hors plan correspondent au facteur d'échelle égal à 1, à l'exception des mouvements hors du plan correspondant aux coordonnées internes R65 à R69.

II.1-5 Constantes de force du 3-éthylindole

Les constantes de forces raffinées sont données en mdyn Å⁻¹ pour les élongations, en mdyn Å rad⁻² pour les déformations et les torsions (Tableau 5). Les constantes de forces sont inférieures à celles calculées par Takeuchi [2], Collier [3] et Majoube [4]. Le tableau 5 décrit la moitié de la matrice symétrique F_R. Les valeurs des constantes de forces correspondants aux couplages entre coordonnées internes dans le plan et hors du plan sont pratiquement nulles et donc une séparation des deux types de modes normaux correspondants reflète bien la géométrie plane de la molécule (3-EIn).

D'importantes valeurs pour certaines constantes de forces représentant des couplages entre coordonnées internes sont calculées. Citons par exemple les valeurs de 1,403 et 1,526 mdyn $Å^{-1}$ respectivement pour R₁₂/R₂₁ (N₁C₂/C₄C₉) et R₁₄/R₂₁ (C₂C₃/C₄C₉). En revanche de faibles valeurs de couplage sont calculées dans le références [2, 4].

Dans le p	lan	Hors du plan		
Numéro de coordonnée	Attribution	Numéro de	Attribution	
interne ^a		coordonnée interne		
R1*	C11-H20	R64	N-H12 OPB	
R2*	С11С9-Н21	R65	C2-H13 OPB	
R3*	С11-Н22	R66	C5-H14 OPB	
R4*	C10-H18	R67	C6-H15 OPB	
R5*	C10-H19	R68	C7-H16 OPB	
R6	N1-H12	R69	C8-H17 OPB	
R7	C2-H13	R70	C4-C3 OPB	
R8	C5-H14	R71	C9-N OPB	
R9	C6-H15	R72	C10C11 TOR	
R10	С7-Н16	R73	C3C10 TOR	
R11	C8-H17	R74	C2C3 TOR	
R12	N1-C2	R75	NC2 TOR	
R13	N1-	R76	NC9 TOR	
R14	C2-C3	R77	C8C9 TOR	
R15	C3-C4	R78	C7C8 TOR	
R16	C4-C5	R79	C6C7 TOR	
R17	C5-C6	R80	C5C6 TOR	
R18	C6-C7			
R19	C7-C8			
R20	C8-C9			
R21	C4-C9			
· R22	C3-C10			
R23*	C10-C11			
R24*	H20C11H22			

Tableau 3 : Coordonnées internes du 3-éthylindole

R25*	H20C11H21
R26*	H21C11H22
R27*	H18C10H19
R28*	H20C11C10
R29*	H21C11C10
R30*	H22C11C10
R31*	H18C10C3
R32*	H19C10C3
R33*	H18C10C11
R34*	H19C10C11
R35	H12NC2
R36	H12NC9
R37	H13C2C3
R38	H13C2N
R39	H14C5C4
R40	H14C5C6
R41	H15C6C5
R42	H15C6C7
R43	H16C7C6
R44	H16C7C8
R45	H17C8C7
R46	H17C8C9
R47	C10C3C2
R48	C10C3C4
R49	C9NC2
R50	NC2C3
R51	C4C9N
R52	C8C9N
R53	. C2C3C4

R54	C3C4C5
R55	C3C4C9
R56	C9C4C5
R57	C4C5C6
R58	C5C6C7
R59	C6C7C8
R60	C7C8C9
R61	C8C9C4
 R62	C3C10C11

^a L'étoile représente les coordonnées internes propres au groupement éthyle OPB : Déformation hors du plan TOR : Torsion

Tableau 4 : Facteurs	d'échelle	du 3-éth	vlindole ol	btenus par	calcul DFT
			,	overse per	

Coordonnées internes	Facteur d'échelle
vCH3, vCH2	0.89
vCC	0.9
vNH	0.903
νCH	0.91
νC2C3, δCH	0.93
δСН3, δСН2, δНС10Н, δНС11Н	0.95
vNC, π CH	0.96
vCCH2, vCCH3, δNH, δC2H, δCCH2, δCCH3	0.98
Autres	1

Notations pour les coordonnées internes: v: élongation, δ : déformation dans le plan, π : déformation hors du plan

•. (Q

							7							
Ri	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	4,701													
2	0,037	4,725					÷							
3	0,039	0,039	4,734											
4	0,008	0,008	-0,013	4,614										
5	0,009	-0,014	0,008	0,048	4,562									
6	-0,001	0,000	0,000	-0,001	0,000	6,880								
7	0,000	0,001	-0,001	0,005	0,000	0,005	5,336							
8	-0,001	-0,001	0,005	0,000	0,004	0,000	0,001	5,121						
9	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,010	5,135					
10	0,001	0,000	0,000	0,001	0,000	-0,001	0,001	0,004	0,011	5,138				
11	0,001	0,000	0,000	0,001	0,000	0,000	0,001	0,002	0,004	0,010	5,118			
12	0,005	-0,006	-0,002	0,001	0,003	0,033	0,061	-0,009	0,003	-0,003	0,010	4,155		
13	-0,012	-0,006	-0,008	-0,006	-0,019	0,050	-0,009	0,010	0,002	0,008	0,021	-0,306	4,379	

Tableau 5 : Matrice des constantes de force en coordonnées internes (Fr) exprimées en mdyn Å⁻¹ pour les élongations et en mdyn Å (rad)⁻² pour les angles de déformations dans le plan et hors du plan et les angles dièdres

ł

14 -0,007 0,002 -0,003 0,004 -0,011 -0,009 0,052 0,005 -0,003 0,002 -0,005 -0,230 1,771 4,947

,

119

÷.

Ri	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15	0,002	0,013	0,006	0,004	0,009	0,010	0,008	-0,003	0,002	-0,001	0,006	1,337	1,469	0,002
16	-0,001	0,000	0,000	-0,003	0,012	-0,006	0,006	0,077	-0,011	0,001	0,003	0,134	0,080	-0,180
17	0,005	0,007	0,006	0,007	0,004	0,003	0,000	0,070	0,071	-0,008	0,006	0,052	0,071	0,087
18	0,002	0,003	0,003	0,002	0,005	-0,013	0,000	-0,004	0,066	0,065	-0,014	0,303	0,035	0,162
19	-0,002	-0,005	-0,001	-0,004	-0,003	0,004	-0,003	0,012	-0,001	0,073	0,073	-0,032	-0,130	0,115
20	-0,002	-0,003	-0,003	-0,001	-0,002	0,000	0,005	0,005	0,009	-0,001	0,083	-0,112	0,239	0,040
21	0,009	0,008	0,007	0,007	0,013	-0,018	0,002	-0,008	0,007	0,010	-0,004	1,403	-0,130	1,526
22	0,006	0,005	-0,002	0,076	0,114	-0,002	0,007	0,006	0,000	0,001	0,002	0,034	-0,012	0,134
23	0,071	0,074	0,073	0,093	0,097	-0,001	0,001	0,003	0,000	0,000	0,001	0,020	-0,008	-0,018
24	0,097	-0,088	0,045	-0,003	-0,007	0,000	0,000	-0,002	0,000	0,000	0,000	-0,005	0,001	-0,001
25	0,054	0,105	-0,041	-0,009	-0,003	0,000	0,000	0,001	0,000	0,000	0,000	-0,003	-0,003	-0,004
26	-0,067	0,014	0,146	-0,003	-0,002	0,000	0,000	-0,001	0,000	0,000	0,000	-0,004	0,002	-0,001
27	-0,012	-0,003	0,007	,150	0,022	0,000	-0,003	-0,002	0,000	0,000	0,000	-0,013	0,009	0,000
28	0,041	-0,055	-0,060	-0,010	-0,008	-0,001	0,001	0,001	0,001	0,000	0,000	0,017	-0,006	0,001
29	-0,074	0,143	0,000	-0,015	0,031	0,000	0,001	0,000	0,000	0,000	0,000	-0,002	0,004	0,004
30	-0,049	-0,117	-0,082	0,038	-0,010	0,000	-0,001	0,002	0,000	0,000	0,000	-0,004	0,001	0,000

					•									
 Ri	1	2	3	4	5	6	7	8	9	10	11	12	13	14
•						à								
31	-0,034	-0,030	0,004	0,028	-0,102	0,000	0,008	0,004	0,001	0,001	0,002	0,003	0,008	-0,010
32	0,014	0,021	0,007	-0,016	0,094	-0,001	-0,001	0,001	0,000	-0,001	-0,001	0,009	-0,013	0,015
33	-0,023	0,036	0,111	-0,009	-0,074	0,002	-0,001	0,002	0,000	0,001	0,000	-0,013	0,009	0,002
34	-0,005	-0,013	-0,063	-0,049	0,107	-0,003	-0,003	-0,003	0,000	-0,001	-0,001	-0,014	0,005	-0,003
35	0,001	-0,002	-0,001	-0,001	0,001	0,048	-0,017	0,000	-0,001	-0,002	-0,007	0,288	0,149	-0,035
36	0,000	-0,002	-0,001	0,000	-0,002	0,026	-0,020	0,004	-0,002	-0,001	0,009	0,157	0,267	0,010
37	-0,004	-0,005	-0,004	0,003	-0,008	-0,012	0,050	0,001	0,001	-0,001	0,000	0,093	0,061	0,329
38	-0,004	-0,005	-0,002	-0,008	-0,006	-0,019	0,039	0,001	0,000	0,000	0,001	0,319	-0,013	0,217
39	0,000	0,001	0,001	0,000	0,003	0,004	-0,001	,042	-0,014	-0,008	-0,009	-0,033	-0,013	-0,028
40	0,000	0,002	0,001	0,001	-0,002	0,000	-0,002	0,053	-0,025	0,003	-0,009	-0,028	-0,017	-0,042
41	-0,001	-0,001	0,000	0,000	-0,001	0,001	0,001	-0,022	0,037	-0,015	-0,008	-0,116	0,006	-0,096
42	-0,001	-0,001	-0,001	-0,001	-0,001	0,000	0,000	-0,011	0,055	-0,024	0,003	-0,117	0,000	-0,093
43	0,000	0,000	0,000	0,000	-0,001	0,001	0,000	0,003	-0,020	0,034	-0,014	-0,082	-0,003	-0,116
44	0,000	-0,001	0,000	0,000	-0,001	0,000	0,000	-0,008	-0,011	0,058	-0,026	-0,092	0,005	-0,114
45	0,000	0,000	0,000	0,000	-0,001	-0,003	-0,003	-0,008	0,003	-0,020	0,026	-0,028	0,004	-0,041
46	0,000	-0,001	0,000	0,001	-0,002	0,004	-0,002	-0,008	-0,007	-0,009	0,071	-0,008	-0,012	-0,047

												-			
	Ri	1	2	3	4	5	6	7	8	9	10	11	12	13	14
				نړ											
	47	-0,021	-0,033	-0,020	-0,049	-0,011	0,004	-0,019	0,000	-0,001	0,000	-0,002	-0,024	-0,376	0,371
	48	0,025	0,040	0,024	0,056	0,020	-0,012	-0,017	-0,006	-0,004	-0,004	-0,002	0,014	-0,365	0,179
	49	-0,001	0,004	0,003	0,001	0,001	-0,073	0,037	-0,004	0,003	0,003	-0,002	-0,445	-0,416	0,026
	50	0,007	0,009	0,006	0,005	0,014	0,031	-0,089	-0,002	-0,001	0,001	-0,001	-0,411	-0,049	-0,547
	51	0,001	0,004	0,000	0,001	0,002	0,037	0,013	0,005	-0,005	-0,007	-0,012	0,069	-0,359	0,902
۶.	52	-0,004	-0,009	-0,004	-0,007	-0,006	-0,034	-0,009	-0,008	-0,009	0,004	-0,015	-0,048	0,327	-0,399
	53	-0,005	-0,008	-0,005	-0,008	-0,010	0,009	0,036	0,005	0,005	0,005	0,004	0,010	0,741	-0,550
	54	0,008	0,015	0,008	0,006	0,018	-0,007	0,002	-0,034	-0,003	-0,015	-0,017	-0,294	-0,019	-0,095
	55	-0,003	-0,009	-0,005	0,000	-0,007	-0,003	0,002	-0,004	-0,002	-0,001	0,011	0,777	0,082	0,169
	56	-0,005	-0,005	-0,003	-0,005	-0,011	0,010	-0,004	0,037	0,004	0,016	0,006	-0,483	-0,063	-0,075
	57	-0,001	-0,003	-0,002	-0,001	-0,001	-0,003	0,004	-0,094	0,039	0,005	0,019	0,061	0,030	0,070
	58	0,002	0,002	0,000	0,001	0,002	-0,002	-0,001	0,033	-0,093	0,039	0,005	0,233	-0,006	0,189
	59	0,000	0,000	0,000	0,000	0,002	-0,001	0,000	0,004	0,031	-0,093	0,040	0,174	-0,002	0,230
	60	0,001	0,001	0,001	-0,001	0,003	-0,001	0,005	0,016	0,004	0,029	-0,097	0,036	0,008	0,089
	61	0,003	0,005	0,004	0,006	0,005	-0,003	-0,004	0,004	0,015	0,003	0,027	-0,021	0,032	-0,503
	62	0,055	-0,011	-0,062	-0,086	-0,042	0,002	0,000	-0,002	-0,001	0,001	0,000	0,026	-0,016	-0,003

Ri	1	2	3	4	5	6	7	8	9	10	11	12	13	14
63	0,007	0,024	0,052	0,041	0,012	-0,007	0,000	0,003	-0,001	-0,001	0,001	0,001	-0,008	-0,007
64	-0,002	-0,023	-0,030	-0,027	-0,022	0,012	-0,001	-0,001	0,000	0,001	0,000	0,002	0,001	0,001
65	0,004	-0,018	-0,012	-0,008	-0,020	-0,008	0,000	0,000	0,000	-0,001	0,000	0,002	0,001	0,002
66	0,001	0,014	0,015	0,014	0,013	0,000	0,000	-0,004	-0,005	-0,001	0,000	0,000	0,001	0,000
67	0,001	-0,001	0,000	0,001	-0,001	0,000	0,000	-0,002	-0,009	-0,002	0,001	0,001	0,000	0,000
68	0,000	0,002	0,003	0,002	0,002	-0,001	0,000	-0,001	-0,003	-0,004	0,001	0,000	0,000	0,000
69	0,001	0,014	0,016	0,014	0,013	-0,001	0,000	0,001	-0,003	-0,002	0,002	0,000	0,000	0,000
70	-0,006	-0,041	-0,054	-0,045	-0,035	0,003	-0,001	-0,001	0,002	0,001	-0,001	-0,003	-0,002	0,000
71	-0,002	-0,014	-0,019	-0,017	-0,012	0,006	0,000	0,000	0,001	0,001	-0,001	0,001	0,000	-0,001
72	0,065	0,159	0,150	-0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	-0,002	0,001	0,001
73	0,015	0,203	0,228	0,196	0,159	0,006	0,004	0,008	0,000	0,002	0,001	-0,002	0,003	0,017
74	0,006	-0,007	0,005	0,000	-0,017	-0,004	0,000	0,001	0,001	-0,001	0,001	0,004	-0,003	0,001
75	-0,001	0,017	0,021	0,019	0,018	0,010	0,000	0,001	0,000	0,000	0,000	-0,001	-0,005	-0,003
76	-0,001	-0,025	-0,030	-0,027	-0,024	-0,010	0,000	-0,002	0,000	0,001	-0,001	0,002	0,001	-0,002
77	0,001	0,023	0,026	0,022	0,021	-0,003	0,000	0,001	-0,003	0,000	-0,002	0,000	0,000	0,001
78	0,000	-0,003	-0,002	-0,002	-0,002	-0,001	0,000	-0,001	0,001	0,004	0,002	0,001	0,000	0,001

										,				
 Ri	1	2	3	4	5	6	7	8	9	10	11	12	13	14
79	0,000	-0,004	-0,004	-0,003	-0,005	0,000	0,000	0,000	0,007	-0,004	0,001	0,000	0,000	0,001
80	-0,001	0,002	0,000	0,000	0,002	0,000	0,000	0,004	-0,007	0,000	-0,001	-0,001	0,000	0,000
81	-0,002	-0,019	-0,024	-0,022	-0,016	0,001	0,000	-0,006	0,001	0,002	-0,001	0,001	-0,002	0,000
82	-0,005	0,025	0,013	0,012	0,032	0,002	0,001	-0,002	-0,003	0,002	-0,001	0,000	0,005	-0,001
83	0,001	-0,003	-0,002	0,000	-0,004	0,002	0,000	0,002	0,002	-0,002	0,001	-0,002	0,001	-0,001
														÷
Ri	15	16	17	18	19	20	21	22	23	24	25	26	27	28
15	3,476				. †						•			
16	0,232	4,587												
17	-0,159	-0,143	4,956											
18	0,074	0,390	-0,164	4,372										
19	0,031	1,866	0,394	-0,171	4,959									
20	0,081	0,423	1,880	0,432	-0,101	4,721								
21	-0,128	-0,233	0,450	1,435	0,419	-0,275	3,022							

	Ri	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	22	0,152	-0,004	0,011	-0,008	0,001	-0,001	0,027	4,734						
	23	0,005	0,017	-0,005	0,001	0,005	0,005	0,000	0,218	4,171					
	24	-0,002	-0,004	0,000	0,000	-0,002	0,000	-0,001	0,003	-0,133	0,478				
	25	-0,003	-0,001	0,001	0,001	-0,001	-0,001	0,000	0,004	-0,117	-0,094	0,474			
	26	-0,002	-0,001	0,000	0,001	0,000	0,000	-0,002	-0,006	-0,133	-0,095	-0,089	0,485		
,	27	-0,006	-0,005	-0,001	0,001	-0,001	0,000	-0,006	-0,130	-0,138	0,008	0,002	0,001	0,519	
	28	-0,001	0,001	0,000	0,000	0,002	0,001	0,005	0,050	0,106	-0,080	-0,096	-0,102	-0,003	0,516
	29	0,000	-0,003	0,000	0,000	0,000	0,000	-0,001	-0 ,034	0,146	-0,111	-0,083	-0,086	-0,002	-0,127
	30	0,008	0,008	-0,001	-0,001	0,001	0,000	-0,001	-0,018	0,111	-0,086	-0,097	-0,095	-0,006	-0,130
	31	0,027	-0,006	0,002	0,003	-0,001	0,002	-0,008	0,140	-0,101	-0,004	0,000	0,009	-0,085	-0,003
	32	-0,009	0,006	0,002	-0,002	0,003	-0,004	0,016	0,140	-0,174	0,018	0,002	0,004	-0,083	-0,013
	33	-0,013	-0,004	-0,001	0,004	-0,001	0,000	-0,005	-0,150	0,193	-0,010	-0,009	-0,002	-0,080	-0,044
	34	0,001	-0,001	-0,002	-0,004	-0,001	-0,002	-0,007	-0,168	0,084	0,007	-0,005	-0,011	-0,079	-0,043
	35	-0,272	0,002	-0,040	-0,059	-0,030	0,040	0,070	-0,009	0,003	0,000	0,000	0,000	-0,001	0,003
	36	-0,272	-0,001	-0,039	-0,060	-0,024	0,034	0,021	-0,017	0,001	0,000	0,000	0,000	0,000	0,001
	37	-0,004	0,011	-0,033	-0,169	-0,028	0,007	-0,189	-0,043	0,000	0,000	0,000	0,000	0,001	0,000

			and the second se	and the second se					the second se	the second se					
	Ri	15	16	17	18	19	20	21	22	23	24	25	26	27	28
		• •													
	38	0,041	0,013	-0,033	-0,166	-0,036	0,014	-0,174	-0,018	-0,001	0,000	-0,001	0,001	0,003	0,000
	39	0,003	0,292	0,129	0,058	-0,267	-0,274	0,045	0,002	0,002	0,000	0,000	-0,001	-0,002	-0,001
	40	0,001	0,110	0,328	0,041	-0,309	-0,230	0,071	-0,008	-0,005	0,000	0,000	0,002	0,003	-0,001
	41	-0,001	0,056	0,344	0,111	0,070	-0,233	-0,139	-0,002	0,000	0,000	0,000	0,000	0,000	0,000
	42	-0,003	0,072	0,131	0,323	0,051	-0,274	-0103	-0,002	0,000	0,000	0,000	0,000	0,000	0,000
	43	-0,002	-0,268	0,047	0,322	0,132	0,068	-0,100	-0,002	-0,001	0,000	0,000	0,000	0,001	0,000
	44	0,002	-0,225	0,063	0,120	0,347	0,055	-0,136	-0,001	-0,001	0,000	0,000	0,000	0,001	0,000
	45	-0,007	-0,222	-0,313	0,045	0,327	0,111	0,068	-0,003	-0,001	0,000	0,000	0,000	0,001	0,000
	46	-0,007	-0,264	-0,269	0,061	0,135	0,294	0,038	-0,001	-0,001	0,000	0,000	0,000	0,001	0,000
	47	0,041	0,028	-0,028	-0,068	-0,036	-0,004	0,082	0,096	0,032	-0,008	-0,007	-0,001	-0,005	0,020
	48	0,230	0,004	-0,019	-0,090	-0,046	-0,009	0,000	0,074	-0,034	0,006	0,006	-0,002	-0,004	-0,015
	49	0,544	-0,001	0,079	0,119	0,054	-0,073	-0,091	0,026	-0,003	0,000	0,000	0,000	0,001	-0,004
	50	-0,038	-0,025	0,066	0,335	0,064	-0,021	0,362	0,061	0,001	0,001	0,001	-0,001	-0,004	0,000
	51	0,029	-0,019	-0,262	-0,310	0,089	0,064	-0,077	0,033	-0,003	0,000	-0,001	-0,001	-0,002	0,000
	52	0,014	0,101	-0,281	-0,215	0,001	0,344	0,210	-0,030	0,005	-0,001	0,000	0,001	0,001	0,002
~	53	-0,271	-0,032	0,047	0,157	0,082	0,013	-0,082	-0,170	0,000	0,002	0,002	0,003	0,009	-0,005

 Ri	15	16	17	18	19	20	21	22	23	24	25	26	27	28
54	0,236	0,291	0,013	-0,254	-0,287	0,058	0,235	-0,038	0,000	0,002	0,002	-0,001	0,000	-0,007
55	-0,265	0,077	0,070	-0,301	-0,289	0,017	-0,113	0,051	0,005	-0,002	-0,002	-0,001	-0,004	0,008
56	0,029	-0,368	-0,083	0,555	0,576	-0,075	-0,122	-0,013	-0,004	0,000	0,000	0,002	0,004	-0,001
57	-0,004	-0,401	-0,456	-0,098	0,575	0,504	-0,117	0,006	0,002	0,000	-0,001	-0,001	-0,001	0,002
58	0,004	-0,128	-0,475	-0,434	-0,121	0,507	0,242	0,003	0,000	0,000	0,000	0,000	0,000	0,000
59	0,000	0,493	-0,110	-0,442	-0,479	-0,123	0,236	0,003	0,002	-0,001	0,000	0,000	-0,002	0,001
60	0,014	0,486	0,582	-0,106	-0,462	-0,405	-0,106	0,004	0,002	-0,001	0,000	-0,001	-0,002	0,000
61	-0,044	-0,082	0,543	0,526	-0,090	-0,408	-0,134	-0,003	-0,002	0,001	0,001	0,000	0,001	-0,002
62	0,001	0,009	-0,001	-0,002	0,001	0,004	0,009	0,148	0,119	-0,017	0,010	0,000	-0,145	0,098
63	-0,004	-0,005	-0,002	0,000	-0,001	-0,003	-0,002	0,003	0,033	0,002	-0,007	-0,001	0,007	0,002
64	-0,003	0,001	0,001	-0,001	0,000	0,003	0,001	0,003	-0,019	0,000	0,001	-0,001	-0,004	0,003
65	0,001	0,001	-0,001	0,003	0,001	-0,002	0,003	0,001	-0,006	0,002	-0,002	-0,001	-0,001	0,005
66	-0,001	0,000	-0,004	0,001	-0,001	0,000	-0,001	0,000	0,012	0,000	-0,001	0,001	-0,001	-0,002
67	0,000	0,000	0,000	0,002	0,000	0,000	0,000	0,001	0,000	0,001	0,000	0,000	-0,001	0,000
68	-0,001	-0,002	0,000	-0,001	0,003	-0,001	0,000	-0,001	0,002	0,000	0,000	0,000	0,000	0,000
69	0,000	-0,002	-0,001	0,000	-0,005	-0,001	0,000	0,000	0,012	-0,001	0,000	0,000	0,001	-0,001

á

 Ri	15	16	17	18	19	20	21	22	23	24	25	26	27	28
70	0,000	0,006	0,002	-0,003	0,000	0,001	-0,001	0,002	-0,041	0,000	0,003	-0,001	0,000	0,001
71	0,000	0,002	-0,001	-0,001	0,003	0,003	0,000	0,002	-0,012	0,000	0,001	0,000	-0,001	0,001
72	0,000	0,000	0,002	-0,001	0,001	-0,001	0,000	-0,003	0,002	0,013	0,009	-0,002	0,001	-0,020
73	-0,019	-0,011	0,002	0,007	-0,001	0,002	0,003	0,008	0,188	-0,007	-0,005	0,006	0,009	-0,016
74	0,000	0,001	-0,003	0,002	0,002	-0,002	0,000	0,009	0,013	0,001	-0,005	-0,003	-0,004	0,007
75	0,000	-0,001	-0,001	-0,001	-0,001	0,000	0,000	-0,002	0,008	0,000	0,000	0,001	0,005	-0,005
76	0,002	0,001	0,001	-0,003	0,000	0,003	0,000	0,000	-0,020	0,000	0,001	0,000	-0,002	0,004
77	-0,001	-0,005	-0,001	0,002	-0,007	0,001	0,000	-0,002	0,019	-0,001	-0,001	0,001	0,001	-0,002
78	-0,001	-0,004	0,001	0,000	0,004	-0,001	0,000	-0,002	-0,003	0,000	0,000	0,000	0,000	0,001
79	0,001	0,000	0,001	0,001	-0,003	0,000	0,001	0,002	-0,003	0,000	0,000	0,000	0,000	0,000
80	0,001	0,002	-0,002	-0,002	-0,003	0,000	0,001	-0,001	0,002	-0,001	0,000	-0,001	0,001	-0,001
81	-0,002	-0,003	0,005	-0,002	-0,001	0,002	0,001	0,000	-0,022	0,001	0,002	0,001	-0,001	0,002
82	-0,003	-0,007	0,003	-0,001	-0,001	0,003	-0,004	-0,009	0,003	-0,002	0,005	0,004	0,002	-0,008
83	0,004	0,005	-0,002	0,004	0,003	-0,003	0,001	0,003	0,002	0,000	-0,001	-0,001	-0,001	0,000

										·				
 Ri	29	30	31	32	33	34	35	36	37	38	39	40	41	42
· · ·														
29	0,528													
30	-0,132	0,527												
31	0,003	-0,005	0,582	š.										
32	-0,003	-0,007	-0,142	0,577										
33	-0,031	0,096	-0,063	-0,142	0,583									
34	0,097	-0,045	-0,138	-0,057	-0,140	0,573								
35	0,000	-0,002	-0,006	0,007	-0,001	-0,002	0,418							
36	0,000	-0,002	-0,003	0,001	0,000	0,000	-0,049	0,417						
37	0,001	-0,001	-0,003	-0,003	0,003	0,002	-0,036	-0,039	0,392					
38	0,001	0,000	-0,003	-0,003	0,004	0,001	-0,046	-0,035	-0,071	0,442				
39	-0,001	0,002	-0,002	0,002	-0,001	0,002	-0,013	-0,002	-0,015	-0,018	0,415			
40	0,001	-0,003	0,001	-0,002	0,004	-0,002	-0,019	-0,014	-0,016	-0,019	-0,074	0,418		
41	0,000	0,000	0,001	-0,001	0,000	0,000	-0,018	-0,013	0,009	0,004	0,006	-0,009	0,412	
42	0,000	0,000	0,000	-0,001	0,001	0,000	-0,019	-0,015	0,003	0,001	0,002	0,004	-0,092	0,412
43	0,000	-0,001	0,001	-0,002	0,001	0,000	-0,014	-0,012	0,004	0,004	-0,056	-0,015	-0,006	-0,019
44	0,000	0,000	0,001	-0,001	0,000	0,000	-0,012	-0,009	0,007	0,009	-0,078	-0,060	-0,010	-0,005

.

		-													
	Ri	29	30	31	32	33	34	35	36	37	38	39	40	41	42
	45	0,000	-0,001	0,002	-0,002	0,001	0,000	0,001	-0,001	-0,018	-0,018	-0,072	-0,073	-0,061	-0,017
	46	0,000	-0,001	0,004	-0,003	0,001	0,000	-0,001	0,005	-0,015	-0,015	-0,069	-0,074	-0,078	-0,057
	47	-0,002	-0,003	-0,051	0,039	0,005	-0,020	-0,029	-0,068	-0,026	-0,019	-0,005	-0,001	-0,011	-0,013
	48	0,001	0,005	0,062	-0,030	-0,017	0,013	-0,072	-0,085	-0,020	-0,039	0,004	-0,005	-0,008	-0,011
	49	0,000	0,004	0,009	-0,008	0,001	0,003	-0,369	-0,368	0,075	0,081	0,015	0,033	0,030	0,033
1	50	-0,002	0,001	0,006	0,006	-0,007	-0,002	0,083	0,074	-0,321	-0,370	0,033	0,034	-0,014	-0,004
	51	0,001	0,000	-0,010	0,009	-0,003	0,001	0,047	0,058	0,123	0,087	-0,022	-0,051	-0,020	-0,023
	52	0,000	-0,001	0,003	-0,005	0,003	-0,002	-0,008	-0,020	-0,102	-0,070	-0,043	-0,072	-0,102	-0,101
	53	0,001	-0,002	-0,012	-0,009	0,012	0,007	0,101	0,152	0,046	0,058	0,002	0,005	0,018	0,024
	54	-0,002	0,006	-0,007	0,003	-0,003	0,008	-0,084	-0,060	-0,056	-0,109	0,019	0,028	-0,026	-0,074
	55	0,000	-0,003	0,007	0,002	-0,003	-0,008	0,138	0,083	0,075	0,145	-0,028	-0,022	-0,015	-0,031
	56	0,002	-0,003	0,000	-0,005	0,007	0,001	-0,054	-0,023	-0,019	-0,035	0,009	-0,006	0,041	0,105
	57	-0,001	0,000	0,000	0,000	-0,002	0,000	0,032	0,016	0,031	0,036	-0,341	-0,344	0,003	-0,006
	58	0,000	0,000	-0,001	0,002	-0,001	0,000	0,036	0,027	-0,013	-0,005	-0,008	0,005	-0,320	-0,320
	59	0,000	0,001	-0,002	0,003	-0,001	-0,001	0,026	0,021	-0,010	-0,013	0,134	0,075	0,016	0,025
	60	-0,001	0,002	-0,005	0,004	-0,002	0,000	0,000	-0,004	0,033	0,033	0,142	0,147	0,139	0,074

Ri	29	30	31	32	33	34	35	36	37	38	39	40	41	42
•														
61	0,000	0,001	0,008	-0,004	0,000	0,001	-0,040	-0,038	-0,021	-0,017	0,064	0,122	0,122	0,124
62	-0,061	-0,032	-0,151	-0,150	-0,151	-0,153	0,004	0,001	0,000	-0,001	0,001	-0,004	-0,001	-0,001
63	0,011	-0,008	0,009	-0,030	-0,001	0,004	0,001	0,001	-0,002	-0,001	-0,001	0,001	0,000	0,000
64	-0,005	0,001	0,000	0,000	-0,001	-0,003	0,000	0,001	0,001	0,001	0,000	-0,001	0,000	-0,001
65	-0,003	-0,002	0,000	-0,019	-0,007	0,000	0,000	0,001	0,000	0,000	0,001	-0,001	0,000	0,000
66	0,002	-0,001	0,000	0,000	0,003	0,001	0,000	0,000	0,000	0,000	-0,001	0,001	-0,001	0,000
67	0,000	-0,001	0,000	-0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
68	0,000	-0,001	0,000	-0,002	0,002	-0,001	0,000	0,000	0,000	0,000	-0,001	0,000	0,000	0,000
69	0,002	0,000	0,000	-0,001	0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
70	-0,007	0,003	0,002	0,016	-0,008	-0,002	-0,001	0,000	0,000	-0,001	0,001	-0,001	0,000	0,000
71	-0,003	0,002	-0,002	0,005	-0,003	-0,001	-0,001	0,001	0,000	0,001	0,000	-0,001	0,000	0,000
72	0,012	-0,012	-0,007	0,010	0,004	0,008	0,000	0,000	0,000	-0,001	0,000	0,001	0,000	0,000
73	0,026	-0,004	0,012	-0,027	0,038	0,007	0,000	0,001	0,005	0,002	-0,004	0,005	0,000	0,000
74	0,002	-0,003	0,000	-0,033	-0,003	0,000	0,000	0,000	0,001	0,000	0,000	-0,001	0,000	0,000
75	0,004	0,000	0,002	0,012	0,001	0,003	0,000	-0,001	-0,001	-0,001	0,000	0,001	0,000	0,000
76	-0,005	-0,001	0,001	-0,006	-0,002	-0,003	0,001	0,000	0,000	0,000	0,000	-0,001	0,000	-0,001

.,

	Ri	29	30	31	32	33	34	35	36	37	38	39	40	41	42		
	77	0,003	-0,001	0,001	-0,003	0,005	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,000		
	78	0,000	-0,001	0,001	-0,002	0,001	-0,001	0,000	0,000	0,000	0,000	-0,001	0,000	0,000	0,000		
	79	0,000	0,000	0,000	0,001	-0,002	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000		
	80	0,000	0,003	-0,001	0,002	-0,002	0,001	0,000	0,000	-0,001	-0,001	0,001	0,000	-0,001	-0,001		
	81	-0,003	-0,003	0,003	0,006	0,002	-0,004	0,000	0,000	0,000	0,000	-0,001	0,001	0,001	-0,001		
	82	0,001	0,002	0,000	0,029	0,011	-0,002	0,002	0,000	0,001	0,001	-0,002	0,001	0,001	0,000		
	83	0,000	0,002	-0,003	-0,001	-0,005	0,003	-0,001	-0,001	0,000	0,000	0,002	-0,001	0,000	0,001		
·····	Ri	43	44	45	46	47	48	49	50	51	52	53	54	55	56		
	43	0,408															
	44	-0,094	0,410														

45 0,003 -0,010 0,414

46 0,002 0,007 -0,071 0,409

47 -0,019 -0,018 -0,020 -0,013 0,511

	Ri	43	44	45	46	47	48	49	50	51	52	53	54	55	56
	48	-0,012	-0,011	-0,015	-0,001	-0,125	0,511								
	49	0,026	0,021	0,000	-0,004	0,096	0,157	0,736							
	50	-0,007	-0,016	0,036	0,030	0,046	0,059	-0,156	0,691						
	51	-0,031	-0,018	-0,018	-0,018	0,171	0,115	-0,106	-0,210	0,737					
	52	-0,072	-0,023	0,027	0,012	-0,109	-0,092	0,028	0,172	-0,407	0,707				
,	53	0,031	0,029	0,035	0,014	-0,386	-0,386	-0,253	-0,105	-0,286	0,201	0,772			
	54	-0,101	-0,103	-0,069	-0,040	-0,034	-0,019	0,144	0,166	0,005	0,067	0,053	0,662		
	55	-0,019	-0,016	-0,052	-0,023	0,073	0,055	-0,221	-0,220	-0,135	0,005	-0,128	-0,368	0,704	
	56	0,119	0,120	0,121	0,062	-0,039	-0,036	0,077	0,054	0,130	-0,071	0,075	-0,294	-0,336	0,629
	57	0,072	0,138	0,146	0,143	0,006	0,001	-0,048	-0,067	0,072	0,114	-0,007	-0,047	0,050	-0,004
	58	0,025	0,015	0,077	0,135	0,024	0,019	-0,064	0,018	0,043	0,202	-0,043	0,100	0,045	-0,146
	59	-0,314	-0,316	0,008	-0,009	0,037	0,023	-0,047	0,023	0,049	0,094	-0,060	0,204	0,035	-0,239
	60	-0,005	0,003	-0,343	-0,338	0,033	0,016	0,004	-0,066	0,036	-0,039	-0,049	0,109	0,075	-0,183
	61	0,103	0,041	-0,008	0,006	-0,062	-0,023	0,078	0,038	-0,330	-0,301	0,085	-0,072	0,130	-0,058
	62	-0,001	-0,001	-0,002	-0,002	0,029	-0,024	-0,006	0,001	0,005	0,000	-0,006	0,000	0,006	-0,006
	63	0,001	0,000	0,001	0,000	0,002	-0,005	-0,001	0,002	-0,002	0,001	-0,004	-0,006	0,003	0,002
Ri	43	44	45	46	47	48	49	50	51	52	53	54	55	56	
------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	
64	0,000	0,000	0,000	0,000	0,000	0,000	-0,002	-0,001	0,000	0,001	0,002	0,000	0,001	-0,002	
65	0,000	0,000	0,000	0,000	0,000	0,002	-0,001	0,002	0,001	-0,001	-0,001	0,001	0,000	0,000	
66	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0,000	-0,001	0,001	0,000	
67	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	-0,001	0,001	0,001	
68	0,001	0,000	0,000	0,000	0,001	-0,001	0,000	0,000	0,000	0,000	0,000	-0,002	0,001	0,001	
69	0,000	-0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	
70	-0,001	0,000	-0,001	-0,001	-0,003	0,003	0,001	0,000	0,001	-0,001	-0,001	0,003	-0,002	-0,004	
. 71	0,000	0,000	0,000	0,000	-0,001	0,001	0,001	-0,001	-0,001	0,001	0,001	0,001	0,000	0,000	
72	0,000	0,000	0,000	0,000	0,003	-0,003	0,000	0,001	0,001	-0,001	0,000	0,000	-0,001	0,001	
73	0,001	0,000	0,001	0,001	0,014	-0,017	-0,001	-0,007	-0,002	0,003	0,002	-0,015	0,008	0,007	
74	0,000	0,000	0,000	0,000	0,003	-0,001	-0,001	-0,001	0,002	-0,002	-0,001	-0,002	0,002	0,001	
75	0,000	0,000	0,000	0,000	0,001	-0,001	0,001	0,001	-0,001	0,001	-0,003	-0,001	0,000	0,001	
76	0,000	0,000	0,000	0,000	0,000	0,000	-0,001	0,001	0,000	0,002	0,000	0,000	0,000	-0,001	
TT .	0,000	0,000	0,000	0,000	0,001	-0,002	-0,001	0,001	0,000	0,000	-0,001	-0,001	0,000	0,001	
78	0,000	0,001	0,001	0,000	0,001	-0,002	0,000	0,000	0,000	0,000	0,000	-0,002	0,001	0,002	
62	0,000	-0,001	0,000	0,000	-0,001	0,001	0,000	0,001	0,000	-0,001	0,000	0,001	-0,001	-0,001	

Ri	43	44	45	46	47	48	49	50	51	52	53	54	55	56

80	0,000	-0,001	-0,001	0,000	-0,001	0,002	0,000	0,001	0,000	0,000	0,000	0,003	-0,001	-0,003
81	0,000	0,000	0,000	0,000	0,002	-0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000
82	0,001	0,001	0,000	0,001	0,003	-0,008	-0,001	-0,003	-0,002	0,002	0,004	-0,005	0,002	0,003
83	0,000	0,000	0,000	0,000	-0,003	0,004	0,002	0,000	0,000	-0,002	0,001	0,003	-0,003	0,000
۰ 														
Ri	57	58	59	60	61	62	63	64	65	66	67	68	69	70
57	0,685													
58	0,003	0,640												
59	-0,209	-0,040	0,630											
60	-0,289	-0,213	0,001	0,680										
61	-0,187	-0,245	-0,144	0,002	0,631									
62	0,003	0,002	0,002	0,004	-0,005	0,694								
63	0,000	0,000	-0,001	-0,001	0,001	0,011	0,312							
64	0,001	0,001	0,000	0,000	-0,001	0,008	-0,078	0,117						

Ri	57	58	59	60	61	62	63	64	65	66	67	68	69	70
65	0,000	0,000	0,000	0,000	0,000	0,024	-0,044	0,052	0,286					
66	0,000	0,001	0,000	-0,001	-0,001	-0,002	-0,027	-0,007	0,000	0,265				
67	0,000	-0,001	0,000	0,000	0,000	0,001	-0,006	-0,004	0,015	-0,003	0,251			
68	0,001	0,000	-0,001	-0,001	0,000	0,000	0,011	0,008	0,013	0,010	-0,004	0,258		
69	-0,001	0,000	0,001	0,000	0,000	-0,003	0,016	0,019	-0,002	0,044	0,012	-0,003	0,248	
. 70	0,000	0,000	0,001	0,002	0,001	-0,008	0,040	0,031	-0,073	-0,008	-0,017	-0,026	0,011	0,321
71	0,001	0,001	0,000	0,000	-0,001	0,002	-0,072	-0,037	-0,060	0,011	-0,020	-0,010	-0,011	-0,109
72	-0,001	0,000	0,000	0,000	0,000	-0,014	0,004	-0,002	0,000	0,001	0,000	0,000	0,001	-0,003
73	-0,001	-0,001	-0,001	-0,003	-0,002	-0,036	0,028	-0,005	-0,006	0,005	0,001	0,003	0;005	-0,019
74	0,001	0,000	0,000	0,000	0,000	0,037	-0,045	0,084	0,077	0,012	0,011	0,012	0,001	-0,120
75	0,000	0,000	0,000	0,000	-0,001	-0,021	0,112	-0,118	-0,095	0,000	-0,008	-0,013	-0,013	0,010
76	0,001	0,001	0,000	0,000	-0,001	0,012	-0,011	0,085	0,099	-0,025	-0,012	0,016	0,030	0,062
77	-0,001	0,001	0,000	0,000	0,000	-0,004	0,039	0,025	0,010	0,044	-0,012	-0,050	0,012	-0,009
78	0,001	0,000	-0,001	-0,001	0,000	0,001	0,021	-0,001	0,023	-0,044	-0,060	0,007	-0,018	-0,018
79	-0,001	0,000	0,001	0,000	0,001	0,000	0,000	0,002	-0,002	-0,054	0,011	-0,016	0,055	0,029
80	-0,001	0,002	0,001	0,001	-0,001	-0,002	-0,005	0,014	-0,025	0,018	-0,006	0,060	0,041	0,080

 Ri	57	58	59	60	61	62	63	64	65	66	67	68	.69	70
81	0,000	0,000	0,000	0,001	0,000	-0,005	0,047	0,010	-0,016	-0,009	0,051	0,017	-0,042	0,026
82	0,000	0,000	-0,002	-0,001	0,000	-0,037	0,032	-0,025	-0,108	-0,028	-0,011	0,013	0,023	0,046
. 83	-0,001	-0,001	0,000	0,000	0,001	0,007	-0,086	-0,040	0,004	0,042	0,019	-0,026	-0,043	-0,034
 							<u></u>					····.		
Ri	71	72	73	74	75	76	77	78	.79	80	81	82	83	
71	0,315													
72	-0,001	0,113												
73	-0,006	0,015	0,108											
74	0,017	0,000	0,009	0,238										
75	0,092	0,002	0,005	-0,166	0,224									
76	-0,053	-0,002	-0,005	0,050	-0,124	0,161								
77	-0,035	0,002	0,010	0,004	-0,028	0,057	0,179							
78	-0,062	0,000	0,002	0,004	-0,015	0,003	-0,110	0,219						
79	-0,029	0,000	-0,003	-0,008	-0,004	-0,003	0,016	-0,121	0,214					
80	0,011	0,000	-0,005	-0,020	0,003	0,017	0,025	-0,009	-0.115	0.228				

 							·							
 Ri	71	72	73	74	_75	76	77	78	79	80	81	82	83	
81	0,003	-0,002	0,002	-0,032	0,008	0,051	-0,021	0,033	0,010	-0,115	0,182			
82.	-0,066	0,001	0,004	-0,149	0,063	-0,002	0,051	0,017	-0,001	-0,003	0,058	0,197		
 83	0,048	0,000	-0,010	0,028	0,025	-0,108	-0,086	-0,012	0,010	-0,003	-0,086	-0,106	0,168	

Ŷ,

II.2 Modes de vibration du 3-éthylindole

Le spectre infrarouge du skatole solide (pastille de KBr) a été enregistré entre 1700 et 500 cm⁻¹ à l'aide d'un spectromètre Brücker IFS113V avec une résolution de 2 cm⁻¹ (Fig.2a). Nous avons réalisé 500 accumulations. La région des basses fréquences (650 - 100 cm⁻¹) du skatole (Fig.2b) (pastille de polyéthylène) a été enregistré à l'aide d'un appareil équipé d'un détecteur DTGS 2. Ces spectres ont été réalisés au LASIR Univérsité des Sciences et Technologies de Lille par Monsieur B. Sombret.

II.2-2. Modes de hautes fréquences

II.2-2-1. Modes d'élongation de NH (v60)

La fréquence du mode d'élongation de NH (v_{NH}) est calculée à 3524 cm⁻¹ (Tableau 6), observée à 3523 cm⁻¹ dans le spectre de l'indole en phase gaz [4]. Ce mode se déplace à 2589 cm⁻¹ par deutériation (Tableau 7) (N-D 3-EIn) et à 2620 cm⁻¹ dans l'indole vapeur [4]. Une large diminution de cette fréquence, de l'ordre de 100 cm⁻¹, est observée en passant de l'indole en phase gaz (3523 cm⁻¹) à l'indole à l'état liquide (3419 cm⁻¹) et solide (3398 cm⁻¹) [4]. Cette différence entre fréquences peut être expliquée par l'existence d'une liaison hydrogène impliquant le groupement NH. La nature de cette liaison hydrogène a été examinée en détail par Lautié [1] dans le cas de l'indole en phase cristalline , sous forme d'une liaison NH... π , dissociant les molécules en chaînes infinies. Une étude spectrale de l'indole en phase liquide et cristalline, inclut dans l'attribution des modes, la liaison hydrogène [14]. Une comparaison entre la molécule d'indole et celle de pyrrole concernant ce mode (v_{60}) [15] suggère que la liaison hydrogène NH... π de l'indole est légèrement plus faible que celle du pyrrole.

II.2-2-2 Modes d'élongation de CH (v55-v58)

Les fréquences d'élongation des groupes CH (v_{CH}) du 3-EIn sont calculées à 3122 cm^{-1} pour le cycle pyrrole et à 3071, 3060, 3049 et 3043 cm⁻¹ pour le cycle benzènique observées respectivement à 3117 et 3050 cm⁻¹ dans le spectre de l'indole en phase liquide [1] (Tableau 6). Le mode d'élongation du composé deutérié 3-EIn C₂-D est calculé à 2318 cm⁻¹, observé à 2332 cm⁻¹ dans le spectre de l'indole C₂-D en phase liquide [1].

II.2-2-3 Modes d'élongation du groupement éthyle (v50-v54)

Les fréquences du groupement CH₂ sont calculées à 2900 cm⁻¹ pour l'élongation asymétrique (v5₂) et à 2865 cm⁻¹ pour l'élongation symétrique (v5₀). Celles du groupement CH₃ sont données à 2952, 2944 et 2881 cm⁻¹ correspondant respectivement à l'élongation dégénérée (v5₄), et (v5₃) et l'élongation symétrique(v5₁).

Comme, nous ne disposions pas de fréquences expérimentales pour pouvoir raffiner les fréquences calculées, nous avons repris le facteur d'échelle utilisé pour le p-crésol correspondant aux coordonnées internes concernant l'élongation de CH3.

II.2-3. Modes de vibration dans le plan de l'indole

II.2-3-1. Modes de vibration v47, v48, v49

Les trois modes sont caractérisés par un mélange de modes du cycle benzènique et pyrrolique (Tableau 6). Les modes sont calculés à 1624 (v49), 1581 (v48) et 1557 (v47) cm⁻¹, observés respectivement à 1623, 1580 et 1555 cm⁻¹ dans le spectre Raman du tryptophane dans H₂O [10] et à 1620, 1595 et 1560 cm⁻¹ dans le spectre du skatole à l'état solide (Fig.2a). Cependant les modes v48 et v49 sont attribués dans le cas de l'indole [1, 2, 4] à des modes purement du cycle benzènique; respectivement v8b et v8a (notation de Wilson [5] pour les modes du cycle benzènique), alors que les modes du pyrrole participent pour environ 30 % à la distribution d'énergie potentielle propre à ces deux modes (v43, v49) (Tableau 6).

Le mode v47 est observé à 1520 cm⁻¹ dans le spectre IR de l'indole à l'état gazeux. Sous l'effet de la substitution du C3 de l'indole (fig.1), le mode v47 passe de 1520 cm⁻¹ à 1555 cm⁻¹. Dans le cas du tryptophane [10] il est calculé à 1557 cm⁻¹ (v47) pour le 3-EIn. Ce mode est propre au pyrrole dans [1, 2, 4]. En revanche, dans notre attribution (Tableau 6), en plus des modes du cycle benzènique, qui sont majoritaires, s'ajoutent 20% de modes propres au cycle pyrrolique.

II.2-3-2. Modes de vibration v46, v42 et v41

1720. . .

Les deux modes v46 et v42 font intervenir pour une large part des modes du cycle benzènique. Calculés respectivement à 1491 et 1454 cm⁻¹, ils sont observés à 1490 et

1460 cm⁻¹ dans le spectre IR du skatole (fig.2a). L'attribution de ces deux modes est en accord avec celle de l'indole [2,4].

Le mode de déformation du groupe NH à 1426 cm⁻¹ de la molécule 3-EIn, se déplace à 1378 cm⁻¹ dans le cas du N-D 3-EIn (Tableau 7).Il est observé dans le spectre Raman du tryptophane (dans H₂O) à 1436 cm⁻¹ et dans D₂O à 1385 cm⁻¹ [10].

II.2-3-3 Modes de vibrations v39 et v22

Beaucoup d'études indiquent que quelques bandes du tryptophane (et spécialement dans le spectre Raman de résonance dans l'ultraviolet) sont des marqueurs indiquant le changement d'environnement du résidu du tryptophane dans la protéine [16, 17]. Parmi ces bandes, on cite la double bande à 1360 et 1340 cm⁻¹ [18] et la bande à 882 cm⁻¹ [10] observées dans le spectre Raman du tryptophane (dans H₂O). Harada [18] a étudié l'origine de cette double bande et l'a attribué à la résonance de Fermi ou à une combinaison de deux bandes associées à la déformation hors du plan de l'indole. Les deux modes calculés à 1352 cm⁻¹ (v₃₉) et 878 cm⁻¹ (v₂₂) (Tableau 6), observés à 1350 et 870 cm⁻¹ (fig.2a) correspondent à ces bandes marqueurs.

Le mode v₂₂ est attribué aux modes hors du plan [1], ce qui est en désaccord avec l'attribution donnée par Takeuchi [2] et Majoube [4]. Hirakawa [10] suggère la présence d'un mode de déformation dans le plan de NH (v₂₂), en se basant sur un déplacement de fréquence de 15 cm⁻¹ en passant du tryptophane au dérivé deutérié N-D tryptophane. Cependant, le tableau 6 ne montre aucune participation de la vibration δ_{NH} à ce mode en accord avec les travaux précédents [2,4]. Par contre la contribution du mouvement d'élongation de N₁C₉ (vN_1C_9) dans ce mode (v_{22}) reflète bien le déplacement de fréquence de 882 à 871 cm⁻¹ en passant de N¹⁴-tryptophane à l'isotope N¹⁵-tryptophane [10].

II.2-3-4 Modes couplés entre l'indole et le groupement CH₂ (v39, v36 et v34)

Ces modes sont calculés à 1352 (v39), 1317 (v37), 1293 (v36) et 1233 cm⁻¹ (v34). Ils sont caractérisés par un couplage des modes propres de l'indole avec ceux de déformation du groupement CH₂.

Le mode v37 est attribué essentiellement à l'élongation CC du cycle benzènique. Ce mode correspond au mode du p-crésol [19] calculé à 1297 cm⁻¹ (mode 14 dans la notation de Wilson [5]). Ce mode n'est pas attribué par Takeuchi à un mode fondamental [2]. Majoube [4] observe une bande à 1303 cm⁻¹ dans le spectre FTIR et du FT Raman de l'indole à l'état solide; il l'attribue à une combinaison de modes. Dans les autres travaux, le mode v37 est attribué aux modes vibrationnels du cycle benzènique [1, 3, 20], en accord avec notre attribution.

Le mode v36 est formé d'un mélange de modes de vibration entre le pyrrole (majoritaire), le cycle benzènique et la déformation de CH₂. Calculé à 1293 cm⁻¹, observé à 1277 cm⁻¹ dans le spectre du FTIR de l'indole à l'état vapeur, il est attribué complètement à un mode du cycle benzènique [4], alors qu'il a été prédit comme étant un mode essentiellement de type pyrrolique dans [1,2].

La fréquence du mode v34 passe de 1233 cm⁻¹ pour le 3-EIn (Tableau 6) à 1186 cm⁻¹ pour le dérivé deutérié N-D 3-EIn (Tableau 7), 1195 cm⁻¹ pour 3-EIn C₂D et à 1093 cm⁻¹ pour

ND 3-EIn-C₂D (Tableau 8). Ces résultats sont compatibles avec ceux observés [4], respectivement à 1244 cm⁻¹ (FTIR de l'indole à l'état vapeur), 1188 cm⁻¹ (IR de N-D indole à l'état liquide), 1194 cm⁻¹ (IR de l'indole C₂-D à l'état liquide) et 1115 cm⁻¹ (IR de N-D indole à l'état liquide). Rava [21] a observé ce mode (v34) à 1238 cm⁻¹ dans le spectre Raman du tryptophane.

II.2-3-5. Modes de vibration v33-v30 :

Le mode v33 est calculé à 1229 cm⁻¹, observé à 1235 cm⁻¹ (Fig.2a). Ce mode correspond au mode de l'indole observé à 1205 cm⁻¹ [1, 2, 4]. Cependant, Majoube [4] tient compte d'un mode observé à 1229 cm⁻¹ de très faible intensité dans le spectre IR de l'indole à l'état vapeur, et il l'attribue à un mode fondamental. Nos résultats, ainsi que ceux provenant d'autres auteurs [1, 2, 3, 20] apparaissent en désaccord avec cette attribution.

Un autre mode, non attribué ici (Tableau 6) est observé à 1191 cm⁻¹ avec une faible intensité dans le spectre IR de l'indole à l'état liquide [1], et attribué à un mode fondamental de l'indole [1, 2]. Ce mode (1191 cm⁻¹) n'est pas attribué comme étant fondamental par Collier [3], Majoube [4] et Suwaiyan [20].

Le mode v32 est propre au cycle benzènique et attribué à la déformation dans le plan de CH et à l'élongation du CC du cycle benzènique; il correspond à celui calculé à 1161 cm⁻¹ pour le p-crésol [19] (c'est le mode 9a dans la notation de Wilson). Calculé à 1141 cm⁻¹, ce mode est observé à 1137 cm⁻¹ dans le spectre Raman du tryptophane à l'état liquide [10]. De même, le mode v31 reste à 65 % un mode du cycle benzènique, et correspond à celui calculé à 1102 cm⁻¹ dans le cas du p-crésol [19] (associé au mode 15 dans la notation de Wilson).

Ce mode est calculé à 1123 cm⁻¹ et observé à 1122 cm⁻¹ dans le spectre Raman de l'indole à l'état vapeur [4].

Le mode calculé à 1100 cm⁻¹ (v₃₀) (observé à 1095 cm⁻¹ (fig.2a)) est un mode provenant principalement du cycle pyrrole (δ C₂H, vN₁C₂ et δ NH). Dans le spectre IR du dérivé deutérié N-D indole à l'état liquide [1, 2, 4], on observe un nouveau mode par rapport au spectre de l'indole à 934 cm⁻¹; ce mode ne peut que correspondre à celui calculé à 910 cm⁻¹ pour la molécule du N-D 3-EIn (Tableau 7).

II.2-3-6. Modes de vibration v26, v16, v12, v11 et v10

Le mode v26 est un mode propre au cycle benzènique, calculé à 1004 cm⁻¹ et observé à 1010 cm⁻¹ (fig.2a); il correspond au mode v18a (notation de Wilson) dans le p-crésol [20].

Dans l'indole, le mode correspondant à v₁₆ est un mode du cycle benzènique. Lors de la substitution par l'éthyle en C3 dans le 3-EIn, ce mode se partage entre la déformation du cycle benzènique et la déformation des groupes CH₂ et CH₃. Calculé à 747 cm⁻¹ et observé à 762 cm⁻¹ dans le spectre Raman du tryptophane à l'état liquide [10], il s'avère le plus intense dans le spectre Raman de l'indole [4] mais également dans celui du tryptophane [10]. Les trois modes v₁₂, v₁₁ et v₁₀ sont attribués en majeure partie à la déformation du cycle benzènique, du cycle pyrrolique et à la déformation de l'éthyle dans le plan (Tableau 6).

Calculés respectivement à 567, 528 et 468 cm⁻¹, et observés à 570, 530 et 460 cm⁻¹ dans le spectre IR du tryptophane à l'état solide [18], les modes correspondants dans l'indole sont observés respectivement à 612, 538 et 387 cm⁻¹.

Cette légère différence entre fréquences calculées pour le 3-EIn et celles observées pour l'indole est due à la participation du substituent (éthyle) dans la distribution d'énergie potentielle, surtout pour le mode v_{10} où l'on trouve 20% de déformation dans le plan du groupement éthyle.

II.4. Modes hors du plan

II.2-4-1. Modes de vibration propre aux déformation hors du plan du CH du cycle benzènique.

Ces modes ont des intensités correspondantes faibles à fortes. Ils sont calculés à 974 (v25), 932 (v23), 861 (v21) et 754 cm⁻¹ (v17), observés respectivement à 980, 930, 850, et 740 cm⁻¹ dans le spectre IR du skatole à l'état solide (fig.2a). Dans l'indole, ces modes correspondent à ceux observés respectivement à 979, 924, 850, et 737 cm⁻¹ dans le spectre Raman de l'indole en phase gaz [4]. La distribution d'énergie potentielle montrée en Tableau 6 est similaire à celles données en références [2-4].

L'intensité IR obtenue à partir des calculs ab initio employant la DFT la plus élevée correspond au mode v17. Ce résultat est confirmé expérimentalement [1,2, 4]. Dans le spectre IR du tryptophane à l'état solide, cette bande intense apparaît à 744 cm⁻¹ [18] et disparaît presque complètement dans le spectre IR du composé deutérié (tryptophane C4-D), montrant que cette bande est bel et bien associée à la déformation hors plan du CH du cycle benzènique.

II.2-4-2. Modes de vibrations v20, v19, v14, v13

Le mode de déformation hors plan du C₂H (π C₂H) est calculé à 810 cm⁻¹ (v₂₀) et observé à 810 cm⁻¹ dans le spectre Raman du tryptophane (solide) [20]. C'est un mode du cycle pyrrole. Pour la molécule d'indole, les auteurs ont attribué ce mode à celui observé à 848 cm⁻¹ [1], à 767 cm⁻¹ [2] et à 914 cm⁻¹ [4]. Cependant, ce mode observé à 914 cm⁻¹ peut être considéré comme non fondamental à partir de nos résultats, ainsi qu'à partir d'autres travaux [1-3]. De même le mode observé à 848 cm⁻¹ [1] est attribué au mode v₂₁ (indiqué précédemment). Le mode observé à 767 cm⁻¹ [2] correspond plutôt à v₁₉ calculé à 787 cm⁻¹ et observé à 790 cm⁻¹ dans le spectre FT Raman de l'indole à l'état vapeur [4]. Cependant, dans le spectre IR de l'indole à l'état vapeur, effectué par Collier [3], un mode apparaît à 800 cm⁻¹, attribué au mouvement hors plan, ce mode peut correspondre au mode v₂₀ dans le cas de 3-EIn.

Le mode v₁₄, calculé à 649 cm⁻¹, est attribué à un mélange de modes entre les deux cycles et l'éthyle, avec 28 % de déformation hors plan du substituant (π C-CH₂). Il peut être observé à 673 cm⁻¹ (IR du tryptophane [18]). Cette différence entre fréquence calculée et observée peut provenir de la présence du substituant dans la molécule du tryptophane et celle de l'EIn. Le mode v₁₃ est calculé à 541 cm⁻¹, observé à 542 cm⁻¹ dans le spectre IR du tryptophane à l'état solide [18]. Il est observé à 570 cm⁻¹ dans le cas de l'indole à l'état vapeur [4] avec une attribution similaire différant toutefois de celle établie par Takeuchi [2].

II.2-4-3. Mode associé à la déformation hors du plan de NH (π NH)

Perturbé par la liaison hydrogène, le mode associé à la déformation hors du plan de NH (π NH) est caractérisé par une bande intense et large dans le spectre IR de la molécule d'indole à l'état liquide et solide, avec deux pics apparaissant respectivement à 487 cm⁻¹ et 500 cm⁻¹ [1, 4]. Il est observé à 516 cm⁻¹ dans l'indole à l'état vapeur [4] et à 487 cm⁻¹ et 500 cm⁻¹ respectivement dans le spectre IR à l'état solide du skatole (Fig.2b) et du tryptophane [18]. Ce mode correspond à celui calculé à 361 cm⁻¹ (v7) pour la molécule du 3-EIn. Cette différence de fréquence peut-être due à l'approximation harmonique dans le calcul DFT. Cet Ècart est encore plus grand dans le cas du calcul semi-empirique AM1 [3].

II.2-4-4. Modes de vibration v9, v8, v6 et v5

Les modes v9 et v8 sont calculés à 438 et 431 cm⁻¹. Associés respectivement aux modes observés à 425 et 395 cm⁻¹ pour l'indole [20] ces deux modes sont attribués à des modes fondamentaux [1, 2, 12]. Cependant, le mode observé à 395 cm⁻¹ n'est pas calculé par les méthodes AM1 [3] et ab initio (base : 3-21G) [4].

Les mode v6 et v5 sont calculés respectivement à 233 et 225 cm⁻¹, observés à 240 et 207 cm⁻¹ dans l'indole à l'état vapeur (R-TF) [4], et peuvent être attribués à la bande composite observée entre 239 et 229 cm⁻¹ (fig.2b).

II.2-5. Déformation du groupement éthyle

Les modes de déformation dégénérés du CH3 sont calculés à 1481 (v45) et 1470 cm⁻¹ (v44). Le cisaillement "scissoring" de CH₂ et la déformation symétrique de CH3, sont calculés respectivement à 1460 (v43)et 1387 cm⁻¹ (v40). Les vibrations de balancement "Wagging" et de torsion "twisting" de CH₂ vont se coupler avec les modes de l'indole pour générer les fréquences calculées respectivement à 1346 (v_{38}) et 1267 (v_{35}) cm⁻¹, observées respectivement à 1344 et 1261 cm⁻¹ pour le tryptophane à l'état liquide (Raman et IR) [10]. Les rotations (rocking) du CH₂ et CH₃ sont calculées à 1036 et 781 cm⁻¹ respectivement.

II.2-6. Modes propres aux dérivés tétradeutériés du cycle benzènique du 3-éthylindole (3-EIn)

Le tableau 9 décrit les fréquences correspondant aux modes du 3-EIn tétradeutérié sur le cycle benzènique obtenus par calcul DFT, comparées aux fréquences observées obtenues à partir des spectres IR et Raman de l'indole tétradeutériés sur le cycle benzènique en phase liquide [1] ainsi que leurs attributions. Nous montrons ici que les fréquences calculées sont très proches de celles qui sont observées.

Fig. 2a Spectre IR du skatole à l'etat solide

Fig. 2b Spectre IR des basses fréquences du skatole à l'état solide

	Calc.	Expt. ^a	Attribution (%)
v1	63		τCCH ₂ (69)
v2	110	110	$\pi CCH_2(35) + \tau Pr(24) + \delta CCCH_3(15) + \pi Pr(5)$
v3	175	179	$\delta CCH_2(34) + \tau CCH_3(23) + \delta bnPr(5)$
ν4	225	230	$\pi Pr(25) + \pi NH(19) + \tau CCbn(14) + \tau Pr(12) + \tau CCH_3(7)$
			+ π CHbn(6)
ν5	233	239	$\tau CCbn(17) + \pi Pr(13) + \tau C4C9(11) + \tau CCH_3(10) +$
			$\tau Pr(9) + \pi CCH_2(9) + \delta CCCH_3(8) + \pi NH(7)$
v6	271		$\tau CCH_3(56) + \delta CCH_2(9) + \delta bnPr(8)$
v7	361	487	$\pi \mathrm{NH}(52) + \tau \mathrm{Pr}(36)$
v8	431		$\tau Pr(33) + \pi NH(27) + \delta CCCH_3(7) + \pi Pr(5) + \pi CCH_2(5)$
ν9	438	421	$\pi Pr(35) + \tau CCbn(24) + \tau Pr(20) + \pi CHbn(14) + \pi NH(5)$
v10	468	462	$\delta bnPr(26) + \delta CCH_2(22) + \delta CCCbn(21)$
v11	528	530	$\delta CCCbn(29) + \nu C_3C_4(10) + \nu CCbn(11) + \nu CCH_2(9) +$
			$\delta CHbn(8) + \delta Pr(6)$
v12	567	564	$\delta CCCbn(23) + \delta Pr(20) + \nu CCbn(15) + \nu CCH_2(8) + \delta Pr(20) + \delta $
			$\delta CHbn(7) + \delta bnPr(5)$
v13	591	580	$\tau CCbn(33) + \pi CHbn(33) + \tau Pr(16) + \pi Pr(14)$
v14	649	673 ^b	$\pi CCH_2(28) + \tau Pr(22) + \pi CHbn(11) + \pi Pr(9) +$
			δ CCCH ₃ (6) + τ CCbn(5)
v15	697	707 ^c	$vCCH_2(26) + \delta CCCbn(18) + vCCbn(10) + \delta Pr(8) +$
			$\delta CHbn(7) + v(C_3C_4, C_2C_3)(7) + \delta CH_3(6) + \delta CCCH_3(6)$
v16	747	760	$vCCbn(24) + \delta CH_2(18) + \delta CCCbn(13) + \delta CH_3(11) + \delta C$
			$v(C_{3}C_{4},N_{1}C_{9})(8) + \delta Pr(8) + \delta CHbn(6)$
v17	754	740	$\pi CHbn(78) + \tau CCbn(11) + \pi Pr(6)$
V18	781		CH ₂ rock.(33) + CH ₃ rock.(28) + ν CCbn(9) + π Pr(5)

Tableau 6 : Fréquences calculées et observées du 3-éthylindole et distribution d'énergie potentielle obtenue par calcul DFT

v19	787	790 ^d	$\pi Pr(44) + \pi CHbn(17) + \tau CCbn(10) + \delta CH3(6) +$
			$\delta CH_2(6) + \pi CCH_2(5)$
v20	810	810	$\pi C_2 H(67) + \tau Pr(23)$
v21	861	850	$\pi \text{CHbn}(68) + \tau \text{CCbn}(16) + \pi \text{Pr}(13)$
v22	878	870	$\delta CCCbn(37) + \nu N_1C_9(10) + \nu C_3C_4(9) + \delta Pr(16) +$
			δ CHbn(14) + vCCbn(5)
v23	932	930	π CHbn(72) + τ CCbn(25)
v24	948		$\nu \text{CCH}_3(58) + \delta \text{CH}_3(21) + \delta \text{CH}_2(5) + \delta \text{Pr}(5)$
v25	974	980	π CHbn(71) + τ CCbn(28)
v26	1004	1010	$vCCbn(66) + \delta CHbn(26)$
v27	1036		CH ₂ rock.(20) + v CCH ₃ (22) + CH ₃ rock (16) + v CCH ₂
			$(9) + vC_2C_3(7) + \delta Pr(6)$
v28	1072		CH3 rock.(42) + vCCH3(22) + CH2 rock.(18) +
			δCCCH3(6)
v29	1087	1080	$\delta CHbn(16) + \delta CCCbn(15) + \delta CH_2(14) + \delta CH_3(13) + \delta CH_3(13) + \delta CH_3(14) + \delta $
			$vCCbn(12) + vC_3C_4(7) + vCCH_2(6)$
v30	1100	1095	$\delta C_2 H(24) + \nu N_1 C_2(21) + \delta N H(16) + \delta C H bn(13) +$
			vCCbn(9)
v31	1123		$\delta CHbn(42) + \nu CCbn(22) + \nu N_1C_2(11) + \delta C_2H(7)$
v32	1141	1137 ^c	δ CHbn(72) + vCCbn(18)
v33	1229	1235	$vN_1C_2(13) + vN_1C_9(13) + \delta CHbn(23) + vCCbn(12) +$
			$\nu \text{CCH}_2(7) + \delta \text{C}_2\text{H}(7) + \delta \text{CH}_2(6) + \delta \text{CCCbn}(5)$
v34	1233	1245	CH ₂ tw.(18) + ν C ₂ C ₃ (8) + ν N ₁ C ₉ (6) + δ CHbn(16) +
			$\delta C_2 H(13) + \delta N H(12) + \delta C H_3(9) + \nu C C bn(7)$
v35	1267	1255	$CH_2 tw.(45) + \delta CHbn(22) + \delta CH_3(9) + \delta NH(6) +$
			$vN_1C_9(5) + vCCbn(5)$
v36	1293		$vC_{3}C_{4}(11) + vN_{1}C_{2}(8) + vN_{1}C_{9}(8) + \delta CHbn(20) +$
			$CH_2 tw.(17)$) + $\delta C_2 H(12)$ + $\nu CCbn(9)$ + $\nu CCH_2(5)$
v37	1317	1310	$vCCbn(70) + CH_2 wag.(10) + \delta CHbn(10)$

v38	1346		CH_2 wag.(46) + vCCH_2(17) + vCCbn(11) + vCCH_3(5)
v39	1352	1350	δ CHbn(29) + vC ₃ C ₄ (11) + vC ₂ C ₃ (11) + CH ₂ wag.(21)
			$+ \delta C_2 H(13)$
v40	1387	1385	CH3 s.def. $(91) + vCCH_3(7)$
v41	1426	1420	$\delta NH(27) + \nu C_3C_4(11) + \nu N_1C_2(9) + \nu N_1C_9(6) +$
			$\delta CHbn(15) + \nu CCbn(14) + \delta Pr(5)$
v42	1454	1460	$\delta CHbn(37) + \nu CCbn(22) + \nu (N_1C_2, N_1C_9)(8) +$
			δHC10H(9)
v43	1460		$CH_2 scis(69) + \delta HC_{11}H(15)$
V44	1470		CH3 deg.def.(99)
v45	1481		CH3 deg.def.(75) + $\delta HC_{10}H(16)$
V46	1491	1490	$vCCbn(35) + \delta CHbn(32) + \delta NH(12) + vN_1C9(7)$
V47	1557	1560	$vCCbn(41) + vC_2C_3(11) + vN_1C_2(5) + \deltaCHbn(13) +$
			$vCCH_2(6) + \delta C_2H(5)$
V48	1581	1595	$vCCbn(38) + vC_2C_3(20) + \delta CHbn(9) + \delta Pr(7) + \delta Pr(7)$
			vCCH ₂ (5)
v49	1624	1620	$vCCbn(36) + vC_2C_3(14) + vN_1C_9(7) + \delta CHbn(8) +$
			$\delta \text{NH}(7) + \delta \text{C}_2\text{H}(6) + \nu \text{CCH}_2(5)^{\circ}$
v50	2865		s.sCH ₂ (98)
v51	2881		s.sCH3(99)
v52	2900		a.sCH ₂ (94)
v53	2944		d.sCH3(99)
v54	2952		d.sCH3(94)
v55	3043	3050 ^e	vCHbn(99)
v56	3049	3055 ^e	vCHbn(99)
v57	3060	3050 ^d	vCHbn(99)
v58	3071	3071 ^d	vCHbn(99)
v59	3122	3117 ^d	vC2H(99)
v60	3524	3523 ^d	vNH(99)

Fréquences données en cm⁻¹

a b c d e Fréquences prises respectivement à partir du spectre IR du skatole à l'état solide (Fig. 2), spectre IR du tryptophane à l'état solide [18], spectre Raman du tryptophane dans H₂O [10], du spectre Raman par TF de l'indole en phase gaz [4], spectre Raman de l'indole à l'état liquide [1]

v: élongation, δ : déformation dans le plan, π : déformation hors plan, τ : torsion;

rock(rocking): rotation, tw(twisting): torsion, wag(wagging): balancement, scis(scissoring): cisaillement, s.def(symmetric deformation): déformation symétrique, d.def(degenerate deformation): déformation dégénérée, a.s(asymmetric stretching): élongation asymétrique, s.s(symmetric stretching): élongation symétrique, d.s(degenerate stretching): élongation dégénérée.

 $\tau Pr: \tau(C_2C_3, N_1C_2, N_1C_9, C_3C_4)$

τCCbn: τ(C4C5,C5C6,C6C7,C7C8,C8C9)

 π Pr: π (C4C3,C9N)

 π CHbn: π (C5H,C6H,C7H,C8H)

δPr: δ(C9N1C2,N1C2C3,C4C9N1,C2C3C4,C3C4C9)

 $\delta bnPr: \delta(C_8C_9N, C_3C_4C_5)$

δCCCbn: δ(C9C4C5,C4C5C6,C5C6C7,C6C7C8,C7C8C9,C8C9C4)

vCCbn: v(C4C5,C5C6,C6C7,C7C8,C8C9,C4C9)

 δ CHbn: δ (C5H,C6H,C7H,C8H)

	Calc.	Expt. ^a	Attribution (%) ^b
v1	63		*
v2	110		*
v3	175		*
ν4	221		$\pi Pr(21) + \pi ND(30) + \tau CCbn(12) + \tau Pr(19) + \pi CHbn(6)$
v5	232		$\tau CCbn(14) + \pi Pr(6) + \tau C4C9(11) + \tau CCH_3(16) + \tau Pr(6)$
			+ π CCH ₂ (11) + δ CCCH ₃ (13) + π ND(6)
v6	271		$\tau CCH_3(56) + \delta CCH_2(9) + \delta bnPr(8) + \pi ND(7)$
ν7	293		$\pi \text{ND}(48) + \tau \text{Pr}(44)$
V8	405		$\tau Pr(14) + \delta CCCH_3(23) + \pi Pr(5) + \pi CCH_2(8) + \pi C_2H(6)$
ν9	438		$\pi Pr(38) + \tau CCbn(30) + \tau Pr(9) + \pi CHbn(17)$

 Tableau 7: Fréquences calculées et observées du N-D 3-éthylindole et distribution d'énergie

 potentielle obtenue par calcul_DFT

v10	455		*
v11	526		*
v12	565	542	*
v13	581	581	*
v14	644		$\pi CCH_2(28) + \tau Pr(15) + \pi CHbn(13) + \pi Pr(9) +$
			$\delta CCCH_3(6) + \tau CCbn(7)$
v15	694	712	*
v16	743	758	*
v17	754		*
v18	781		*
v19	787		*
v20	810		*
v21	861		
v22	851	865	$\delta ND(28) + \delta CCCbn(24) + \delta Pr(15) + \delta CHbn(11) +$
			$vN_1C_9(8) + vC_3C_4(5)$
v23	932	937	*
v24	950		*
v25	974		*
v26	1004	1016	*
v27	1045		*
v28	1072		*
v29	1087	1083	*
v30	910		$\delta ND(48) + \delta CCCbn(11) + \nu N_1 C_2(8) + \delta C_2 H(5)$
v31	1118		$\delta CHbn(54) + \nu CCbn(26) + \nu CCH_2(5)$
v32	1139	1134	*
v33	1230		δ CHbn(35) + vN ₁ C ₂ (11) + v(N ₁ C9,C ₂ C3,C ₃ C4)(17) +
			$vCCbn(13) + CH_2tw.(9)$
v34	1186	1189	$\delta C_2 H(33) + \nu N_1 C_2(9) + \nu N_1 C_9(9) + \nu CCbn(12) +$
			$\delta ND(8) + \delta CHbn(8)$

V35	1258		$CH_2 tw.(55) + \delta CHbn(6) + \delta CH_3(13) + \nu N_1C_9(10) +$
			δCH3(13)
v36	1284		$vN_1C_2(10) + vC_3C_4(10) + \delta CHbn(26) + CH_2tw.(17)) +$
			$\delta C_2 H(16) + \nu CCbn(7) + \nu CCH_2(5)$
v37	1314		*
v38	1344	1340	*
v39	1347	1355	δ CHbn(36) + vN1C9(8) + vC3C4(7) + vC2C3(5) + CH2
			wag.(11) + $\delta C_2 H(5)$ + $\nu CCbn(13)$
v40	1387		*
v41	1378	1385	$vC_{3}C_{4}(15) + vN_{1}C_{2}(14) + vN_{1}C_{9}(12) + vCCbn(10) +$
			$\delta CHbn(8) + \delta ND(8) + \delta Pr(5)$
v42	1449		*
v43	1460	1462	*
V44	1470		*
V45	1480		CH3 deg.def. $(35) + \delta HC_{10}H(9) + \nu CCbn(18) +$
			δCHbn(18)
V46	1482	1488	$vCCbn(18) + \delta CHbn(18) + CH_3 \text{ deg.def.}(36) +$
			δHC ₁₀ H(9)
V47	1553	1553	$vCCbn(50) + vC_2C_3(8) + \delta CHbn(16)$
V48	1580	1578	$vCCbn(32) + vC_2C_3(24) + \delta CHbn(7) + \delta Pr(8) +$
			vCCH ₂ (7)
.v49	1615	1624	$vCCbn(40) + vC_2C_3(13) + v(N_1C_9,C_3C_4)(10) +$
			$\delta CHbn(11) + \delta C_2H(6) + \nu CCH_2(5) + \delta CCCbn(6)$
v50	2865		*
v51	2881		*
v52	2900		*
v53	2944		*
v54	2952		*
V55	3043		*

v56	3049	*	
v57	3060	*	
v58	3071	*	
v59	3122	*	
v60	2589	vND(98)	

^a Fréquences prises à partir du spectre Raman du tryptophane en phase aqueuse [10]
^b L'étoile (*) signifie que la distribution d'énergie potentielle est similaire à celle du
3-éthylindole (Tableau 6)

Tableau 8: Fréquences calculées et observées du N-D 3-éthylindole C2-D et distribution d'énergie potentielle obtenue par calcul DFT

	Calc.	Expt. ^a	Attribution (%) ^b
ν1	63		*
v2	110		*
v 3	175		*
ν4	214	215	$\pi Pr(25) + \pi ND(26) + \tau Pr(19) + \tau CCbn(14) + \pi CHbn(6)$
v5	231	250	$\tau CCH_3(16) + \delta CCCH_3(13) + \pi ND(12) + \tau CCbn(12) +$
			$\tau C4C9(12) + \pi CCH_2(11) + \tau Pr(6)$
v6	271		*
ν7	292		$\pi \text{ND}(48) + \tau \Pr(45)$
V8	400		$\tau Pr(20) + \delta CCCH_3(22) + \tau CCbn(6) + \pi Pr(5) + \pi CCH_2$
			(6)
v9	435	421	$\pi Pr(33) + \tau CCbn(30) + \tau Pr(7) + \pi CHbn(17)$
v10	444		*
V11	523	538	*
v12	568		$\delta Pr(17) + \delta CCCbn(14) + \nu CCbn(11) + \nu CCH_2(6)$

v13	547	531	$\pi C_2 D(19) + \tau Pr(29) + \pi Pr(14) + \delta CCCbn(7) +$
			πCCH ₂ (6)
v14	596	574	$\pi C_2 D(24) + \tau CCbn(22) + \tau Pr(9) + \pi CHbn(22)$
v15	682	661	$vCCH_2(21) + \pi C_2D(17) + \delta CCCbn(16) + \delta Pr(9) +$
			$\delta CCbn(9) + \delta CHbn(6)$
v16	741	750	$vCCbn(25) + \delta CCCbn(16) + \delta CH_2(12) + \delta Pr(9) +$
			$\delta CH_3(7) + \delta CHbn(7) + \nu C_3C_4(5)$
v17	756	740	$\pi \text{CHbn}(72) + \tau \text{CCbn}(10) + \pi \text{Pr}(9)$
v18	775		CH ₂ rock.(38) + CH ₃ rock.(29)
v19	789		π CHbn(17) + π Pr(42) + τ CCbn(10) + π CCH ₂ (10)
v20	707		$\pi C_2 D(43) + \pi CCH_2(11) + \pi CHbn(10) + \tau Pr(7)$
v21	861		$\pi \text{CHbn}(68) + \tau \text{CCbn}(16) + \pi \text{Pr}(13)$
v22	848	836	$\delta ND(39) + \delta CCCbn(19) + \delta Pr(13) + vN_1C9(6) +$
			δCHbn(8)
v23	932	927	π CHbn(67) + τ CCbn(25)
v24	945		$vCCH_3(49) + \delta CH_3(22) + \delta CH_2(7)$
v25	974	990	$\pi CHbn(70) + \tau CCbn(28)$
v26	1004	1011	$vCCbn(67) + \delta CHbn(26)$
v27	977	969	$\delta ND(16) + \delta C_2D(16) + \nu CCH_3(16) + \delta CCCbn(11) +$
			$CH_2 \operatorname{rock} (10) + CH_3 \operatorname{rock} (9)$
v28	1066		CH3 rock. $(36) + vCCH_3(36)$
v29	1086		CH ₂ rock (21) + δ CCCbn(19) + δ CHbn(14) + CH ₃ rock
			$(14) + \nu CCbn(9) + \nu C_3C4(6)$
v30	822	803	$\delta C_2 D(49) + \delta N D(17) + v N_1 C_2(7)$
v31	1118	1115	$\delta CHbn(54) + \nu CCbn(27)$
v32	1142	1148	$\delta CHbn(69) + \nu CCbn(12)$
v33	1093		CH ₂ rock (21) + CH ₃ rock (16) + δ ND(14)+ ν CCbn(11)
			+ $vCCH_2(10)$ + $\delta C_2D(8)$ + $\delta CHbn(7)$

ere a

v34	1230	1219	$\delta CHbn(35) + \nu CCbn(13) + CH_2 tw (9) + \nu N_1C_2(8) +$
			v(N1C9,C2C3,C3C4)(13)
V35	1266		CH tw (46) + δ CHbn(16) + δ CH ₃ (9) + ν CCbn(6)
v36	1243	1250	$vN_1C_2(34) + CH_2 tw.(17) + \delta CHbn(8) + vCCbn(6)$
v37	1311	1323	*
v38	1330		CH ₂ wag. $(51) + \delta$ CHbn (22)
v39	1345		CH ₂ wag.(35) + vCCH ₂ (15) + δ CHbn(13) + vC ₃ C ₄ (7)
v40	1387		*
v41	1371	1374	$vN_1C_9(15) + vC_3C_4(13) + vN_1C_2(11) + vCCbn(15) +$
			$\delta \text{CHbn}(12) + \delta \text{ND}(8) + \delta \text{CH}_2(7)$
v42	1443	1432	*
v43	1460		*
v44	1470		*
V45	1482		CH3 tw (53) + vCCbn(11) + δ CHbn(11) + δ CH(10)
v46	1478	1483	δ CHbn(27) + vCCbn(25) + CH ₃ tw (24)
v47	1545		$vCCbn(30) + vC_2C_3(30) + \delta CHbn(13) + vCCH_2(11)$
v48	1570	1567	*
v49	1609	1612	$vCCbn(51) + vPr(16) + \delta CHbn(14) + vN_1C_9(7) +$
			v(C ₂ C ₃ ,C ₃ C ₄)(9)
v50	2865		*
v51	2881		*
v52	2900		*
v53	2944		*
v54	2952		*
v55	3043		*
V56	3049	r	*
v57	3060		*
V58	3071		*
v59	2318		vC2D(96)

Fréquences données en cm⁻¹

^a Fréquences expérimentales données par le spectre Raman et IR de l'indole en phase liquide [1].

^b L'étoile (*) signifie que la distribution d'énergie potentiel est similaire à celle du 3-éthylindole (Tableau 6)

Tableau 9 : Fréquences calculées et observées du 3-éthylindole tétradeutérié sur le cycle benzènique et distribution d'énergie potentielle obtenue par calcul de DFT

Calc.	Expt. ^a	Attribution (%)
586	567	π CDbn(65) + τ CCbn14)
648		$\pi \text{CDbn}(41) + \tau \text{CCbn}(22) + \tau \text{Pr}(13) + \pi \text{Pr}(11)$
656		$\pi \text{CDbn}(46) + \tau \text{CCbn}(13) + \pi \text{CCH}_2(11) + \tau \text{Pr}(7)$
755		$\pi \text{CDbn}(75) + \tau \text{CCbn}(14)$
769	764	$\pi \text{CDbn}(45) + \delta \text{CH}_2(14) + \delta \text{CH}_3(10) + \tau \text{Pr}(11)$
809	807	$\delta CDbn(72) + \nu CCbn(12)$
812	819	$\delta CDbn(71) + \nu CCbn(8)$
837	844	$\delta CDbn(58) + \nu CCbn(35)$
879	863	δ CDbn(33) + δ CCCbn(35) + ν CCbn(10)
1009		δCDbn(81)

^a Fréquences observées en spectre IR et Raman de l'indole tétradeutérié du cycle benzènique en phase liquide [1]

II.3 Résonance Raman

II.3-1. Transitions électroniques

nombreuses études expérimentales ont été faites concernant la De spectroscopie Raman de résonance dans l'ultraviolet (UV) de la molécule d'indole et de ses dérivés [15, 21-29]. Le spectre UV du tryptophane présente deux bandes d'absorption centrées à 220 (intense) et 280 nm (faible) (Fig. 3). La bande faible en absorption tire son origine d'une transition électronique entre l'état fondamental et les deux premiers états excités (La et Lb) [30, 31], correspondant respectivement à l'état excité de symétrie B₁u et B_{2u} dans le cycle benzènique [32] (transition interdite par raison de symétrie dans le cas du cycle benzènique). Les deux transitions électroniques sont de type $\pi \rightarrow \pi^*$. Elles se produisent à 287 nm (A \rightarrow Lb) et 276 nm (A \rightarrow La) dans l'indole, correspondant respectivement à 287 et 273 nm pour le tryptophanee en solution aqueuse [25]. Le maximum d'absorption molaire de cette bande est de 5500 M^{-1} cm⁻¹. La symétrie du cycle benzènique est réduite à C_s dans le cas du tryptophane par le cycle pyrrolique, ce qui se traduit par une augmentation de la force oscillatrice de ces deux transitions (La et Lb) et donc une réelle possibilité d'avoir ces deux transitions. Récemment, Sweeney [29] a associé les deux transitions La et Lb à un recouvrement situé à 278 nm sur le spectre d'absorption du tryptophane en solution aqueuse. La deuxième bande, de forte absorption molaire (36000 M^{-1} cm⁻¹), trouve son origine dans deux transitions électroniques Bb (218 nm) et Ba (195 nm). Pour le cycle benzènique ces deux transitions (Bb et Ba) impliquent des états excités ayant une symétrie E2u. Les forces oscillatriceses propres à ces transitions sont de 0,01, 0,112 et 0,68 respectivement pour les transitions électroniques La, Lb et Bb [22]. Ces résultats indiquent que la transition Bb est fortement permise par rapport aux autres transitions électroniques. Les transitions électroniques L_a, L_b, B_a, B_b sont attribuées à la molécule d'indole (ou du tryptophane) d'une façon similaire à celle du cycle benzènique en utilisant la nomenclature de Platt [33].

Fig 3 Spectre d'absorption du tryptophane en phase aqueuse au pH égale à 7. [29] Concentration du tryptophane: 30 µM

II.3-2 Energie des transitions électroniques du 3-éthylindole.

Le tableau 10 montre que les coefficients des orbitales moléculaires obtenus par calcul ab initio (DFT) pour les niveaux énergétiques Homo - 2, Homo - 1, Homo, Homo + 1 et Homo +2 sont des états à caractère π , excepté le niveau Lumo +2. Ce résultat est en accord avec les résultats expérimentaux qui prévoient le même caractère des transitions L_a, L_b, B_a et B_b.

En utilisant la méthode semi-empirique "Pariser-Parr-Pople SCF MO-CI", Song [23] a obtenu l'énergie des transitions électroniques de l'indole Lb, La, Bb et Ba des états singulets. Ces valeurs sont calculées respectivement à 4,48; 4,96; 5,95 et 6,33 ev (observées à 4,23 et 4,64 ev pour Lb et La). Ces valeurs sont calculées ici à 5,59; 6,13; 6,59 et 7,13 ev respectivement pour les transitions électroniques $\pi_1 \rightarrow \pi_1^*, \pi_2 \rightarrow \pi_1^*, \pi_1 \rightarrow \pi_2^*$ et $\pi_2 \rightarrow \pi_2^*$ (Tableau 10) ; en utilisant un calcul (DFT) qui fait intervenir la géométrie de l'état fondamental de la molécule (3-EIn) et non pas la géométrie des états excités [35], d'où la surestimation de ces valeurs d'environ 1ev. En apportant cette correction aux valeurs d'énergie correspondant aux transitions $\pi_1 \rightarrow \pi_1^*$ (H \rightarrow L) et $\pi_1 \rightarrow \pi_2^*$ (H \rightarrow L + 1), les longueurs d'onde calculées sont respectivement à 270 et 222 nm.

Le tableau 11 donne la différence des indices de liaison concernant toutes les liaisons de la molécule (3-EIn) et pour les différentes transitions possibles. Comme il a été expliqué précédemment, cette différence d'indices de liaison entre l'état fondamental et l'état excité de la molécule est l'un des facteurs permettant de calculer l'intensité de résonance Raman.

Niveaux	Coefficients	Valeurs propres
· · · · · · · · · · · · · · · · · · ·		(e.v)
Homo-2	$0,15125C_{2Pz}(N1) + 0,12845C_{3Pz}(N1) - 0,12083C_{2Pz}(C2) - 0,22362C_{2Pz}(C3) - 0,0000000000000000000000000000000000$	-7,238
	$0,14980C_{3Pz}(C3) - 0,24546C_{2Pz}(C4) - 0,16272C_{3Pz}(C4) - 0,22679C_{2Pz}(C5) - 0,2279C_{2Pz}(C5) - 0,2279C_{2Pz}(C5) - 0,2279C_{2Pz}(C5) - 0,2279C_{2$	
	$0,15631C_{3Pz}(C5) + 0,16653C_{2Pz}(C7) + 0,10808C_{3Pz}(C7) + 0,25556C_{2Pz}(C8) + 0,10808C_{3Pz}(C7) + 0,25556C_{2Pz}(C8) + 0,10808C_{3Pz}(C7) + 0,00808C_{3Pz}(C7) + 0,00808$	
	$0,18802C_{3Pz}(C8) + 0,13650C_{2Pz}(C9)$	
Homo-1	$0,192116C_{2Pz}(N1) + 0,16199C_{3Pz}(N1) + 0,20437C_{2Pz}(C2) + 0,16571C_{3Pz}(C2) - 0,16771C_{3Pz}(C2) - 0,16771C_{3Pz}(C2) - 0,16771C_{3Pz}(C2) - 0,1677$	-5,851
	$0,25243C_{2Pz}(C4) - 0,17841C_{3Pz}(C4) + 0,29254C_{2Pz}(C6) + 0,22559C_{3Pz}(C6) + 0$	
	$0,18517C_{2Pz}(C7) + 0,13999C_{3Pz}(C7) - 0,12727C_{2Pz}(C8) - 0,10108C_{3Pz}(C8) - 0,1008C_{3Pz}(C8) -$	
	$0,28223C_{2Pz}(C9) - 0,20554C_{3Pz}(C9)$	
Homo	$-0,25472C_{2Pz}(N1) - 0,23503C_{3Pz}(N1) + 0,24012C_{2Pz}(C2) + 0,20342C_{3Pz}(C2) + 0,2034$	-5,309
	$0,30172C_{2Pz}(C3) + 0,21358C_{3Pz}(C3) - 0,22798C_{2Pz}(C5) - 0,18474C_{3Pz}(C5) + 0,0000000000000000000000000000000000$	
	$0,18810C_{2Pz}(C7) + 0,15747C_{3Pz}(C7) + 0,19959C_{2Pz}(C8) + 0,15072C_{3Pz}(C8) - 0,000$	
	0,11609 C _{3S} (C11)	

Tableau 10 : Coefficients et énergies des orbitales moléculaires du 3-éthylindole (*)

Lumo

 $\begin{array}{l} -0,11177C_{2PZ}(N1) - 0,13561C_{3PZ}(N1) + 0,27567C_{2PZ}(C2) + 0,33548C_{3PZ}(C2) - \\ 0,14203C_{2PZ}(C3) \stackrel{!}{=} 0,17330C_{3PZ}(C3) - 0,17691C_{2PZ}(C4) - 0,21258C_{3PZ}(C4) + \\ 0,30852C_{2PZ}(C5) + 0,39250C_{3PZ}(C5) - 0,10450C_{2PZ}(C6) - 0,13013C_{3PZ}(C6) - \\ 0,23213C_{2PZ}(C7) - 0,30122C_{3PZ}(C7) + 0,29928C_{2PZ}(C8) + 0,39376C_{3PZ}(C8) \\ -0,21217C_{2PZ}(N1) - 0,28525C_{3PZ}(N1) + 0,12302C_{3PZ}(C2) - 0,18589C_{2PZ}(C4) - \\ 0,24177C_{3PZ}(C4) - 0,15468C_{2PZ}(C5) - 0,22565C_{3PZ}(C5) + 0,34374C_{2PZ}(C6) + \\ 0,49588C_{3PZ}(C6) - 0,25077C_{2PZ}(C7) - 0,34837C_{3PZ}(C7) + 0,35188C_{2PZ}(C9) + \\ 0,45574C_{3PZ}(C9) + 0,14409C_{2S}(H19) \end{array}$

Lumo+2

Lumo+1

 $\begin{aligned} -0.18065C_{2Pz}(N1) &= 0.11494C_{3S}(N1) = 0.26987C_{3Pz}(N1) + 0.29048C_{2Pz}(C2) + \\ 0.11430C_{3Px}(C2) &= 0.46044C_{3Pz}(C2) = 0.32294C_{2Pz}(C3) + 0.12934C_{3S}(C3) = \\ 0.28967C_{3Px}(C3) + 0.14312C_{3Py}(C3) = 0.40563C_{3Pz}(C3) + 0.19688C_{2Pz}(C4) = \\ 0.12410C_{3Px}(C4) = 0.21108C_{3Py}(C4) + 0.27874C_{3Pz}(C4) = 0.21208C_{3Py}(C5) = \\ 0.18281C_{3Pz}(C5) + 0.13791C_{2Pz}(C7) + 0.25166C_{3Pz}(C7) = 0.16517C_{2Pz}(C8) = \\ 0.28078C_{3Pz}(C8) + 0.10800C_{2Pz}(C9) + 0.11800C_{3Px}(C9) + 0.13680C_{3Pz}(C9) + \\ 0.49257C_{3S}(C10) + 0.13390C_{3Py}(C10) 0.25126C_{3Pz}(C10) + 0.81246C_{3S}(C11) + \\ 0.10520C_{2S}(H12) = 0.11309C_{2S}(H13) = 0.26229C_{2S}(H14) = 0.35766C_{2S}(H18) = \\ 0.41005C_{2S}(H19) = 0.46128C_{2S}(H20) = 0.21615C_{2S}(H21) = 0.24615C_{2S}(H22) \end{aligned}$

(*) Seuls les grands coefficients sont inclus

0,282

1,285

2,339

	H-L	H-L+1	H-1-L	H-L+2	H-2-L
Liaison					
N1-C2	0,150	0,229	-0,181	-0,007	-0,061
N1C9	-0,072	-0,270	0,369	-0,167	-0,061
C2-C3	-0,637	-0,432	-0,234	-0,823	-0,416
C3-C4	0,123	-0,001	0,065	-0,126	-0,081
C4-C5	-0,202	0,090	-0,143	-0,093	-0,278
C5-C6	-0,244	-0,335	-0,231	-0,075	-0,208
C6-C7	0,192	-0,260	-0,102	0,034	0,149
C7-C8	-0,428	-0,087	-0,242	-0,285	-0,436
C8-C9	-0,001	-0,038	-0,190	-0,009	-0,182
C4-C9	0,027	-0,228	-0,188	0,076	0,175
C3-C10	0,005	0,006	0,000	0,166	0,011
C10-C11	-0,026	-0,028	0,002	0,170	-0,043

Tableau 11 : Variation de l'indice de liaison pour les transitions électroniques du 3-éthylindole

H: Homo L: Lumo

II.3-3 Intensité de résonance Raman du 3-éthylindole

Le tableau 12 décrit les intensités des différentes transitions possibles (monoélectroniques) calculées uniquement à partir du terme A (terme d'Albrecht), en négligeant les termes B et C du 3-EIn comparées à celles observées pour la molécule du tryptophane. Les intensités de résonance Raman sont normalisées à 10. Les excitations à 218, 200 et 266 nm (Tableau12) correspondent respectivement aux transitions Bb, Ba, et La-Lb. Le terme A est largement majoritaire dans le cas des transitions fortement permises, comme c'est le cas pour la transition électronique Bb.

II.3-3-1 Intensité de résonance Raman des modes v49, v48, et v47

Le mode calculé à 1624 cm⁻¹ (v49) possède une bande intense à 266 nm (L_a - L_b) correspondant à une intensité faible calculée pour la transition $\pi_1 \rightarrow \pi_1^*$. Cependant, pour la transition électronique $\pi_1 \rightarrow \pi_2^*$, on calcule pratiquement l'intensité observée à 218 nm (B_b) [21].

Le mode calculé à 1581 cm⁻¹ (v48), (correspondant en partie aux vibrations v8b du cycle benzènique) est très intense à l'excitation 266 nm (transition L_a - L_b). Cette intensité disparaît lors de la transition B_b (218 nm) [20, 26]. Ce résultat correspond exactement au résultat calculé en passant respectivement de la transition électronique $\pi_1 \rightarrow \pi_1^*$ à $\pi_1 \rightarrow \pi_2^*$.

La bande correspondant au mode calculé à 1557 cm⁻¹ (v47) est très intense à 218 nm (transition Bb) par rapport à l'intensité observée à 266 nm (L_a - L_b). Le même effet est remarqué lorsqu'on passe respectivement de la transition $\pi_1 \rightarrow \pi_1^*$ à la transition $\pi_1 \rightarrow \pi_2^*$, comme on peut le constater en examinant le tableau 12. D'après les résultats du calcul effectué par Song [23], le moment de transition Bb allonge approximativement l'axe de la molécule d'indole, en passant par l'atome C7 et en coupant en deux la liaison C2C3 (Fig.1). Cela indique que la transition Bb provient en majeure partie de la variation de densité électronique au niveau de la liaison C2C3 et donc d'une variation de la longueur de liaison [36]. Dans le tableau 11, on note que la plus grande valeur absolue de la variation de l'ordre de liaison pour la transition $H \rightarrow L + 1$ ($\pi_1 \rightarrow \pi_1^*$), correspond à la liaison C2C3. Cela est en accord avec les résultats précédents puisque l'on a une fonction linéaire entre la variation de la longueur de liaison et de la variation de l'ordre de liaison. Les intensités Raman de résonance calculées pour l'ensemble des modes compris entre 1100 et 1400 cm⁻¹ pour les deux transitions $H \rightarrow L$ ($\pi_1 \rightarrow \pi_1^*$) et $H \rightarrow L + 1$ ($\pi_1 \rightarrow \pi_2^*$) correspondent bien respectivement aux intensités de résonance des transitions L_a (266 nm) et Bb (218 nm) (Tableau 12).

II.3-3-2 Intensités de résonance Raman des modes v16, v22, et v26

Les deux modes calculés à 747 (v_{16}) et 1004 cm⁻¹ (v_{26}) sont attribués par Hirakawa [10] à un couplage vibrationnel impliquant les deux modes de respiration du cycle benzènique (992 cm⁻¹) et du pyrrole (1120 cm⁻¹). Ce couplage forme deux vibrations d'ensemble (indole); l'une est en phase, l'autre est hors de phase, elles sont observées respectivement à 760 cm⁻¹ et 1016 cm⁻¹. Pour le mode v₁₆, notre attribution est presque similaire à celle donnée par Hirakawa. Cependant, le mode v₂₆ est attribué à des mouvements entièrement du cycle benzènique (Tableau 6).
L'intensité Raman de résonance de ces deux modes est faiblement reproduite pour les deux premières transitions ($\pi_1 \rightarrow \pi_1^*$ et $\pi_1 \rightarrow \pi_2^*$) (Tableau 12),en comparaisson à celles observées pour les transitions L_a et L_b.

Les intensités relatives de résonance Raman des modes v₁₆ et v₂₆ observés récemment par Sweeney [29] pour la transition Bb sont respectivement de 7,3 et 4,3. Elles s'approchent plus de nos résultats calculés pour la transition $H \rightarrow L + 1$ ($\pi_1 \rightarrow \pi_2^*$) (respectivement 2,8 et 3,7) que celles observées par Rava [21].

A l'excitation 235 nm du tryptophane par rayonnement ultraviolet, Asher [27] calcule à partir des données expérimentales, le rapport de dépolarisation propre aux modes v₂₆, v₃₈ et v₄₇. Ces rapports sont respectivement à 0,3; 0,38 et 0,35 indiquant que l'état de résonance de la transition électronique B_b est polarisé linéairement, non dégénéré et qu'un seul élément diagonal du tenseur de polarisabilité est dominant. En revanche, pour le mode v₁₆, ce rapport de dépolarisation est de 0,26 suggérant qu'une contribution non diagonale du tenseur de polarisation intervient, ceci pouvant provenir d'un autre état de transition électronique (B_a). Ainsi on peut expliquer la faible valeur calculée de l'intensité de résonance Raman pour la transition H \rightarrow L + 1 ($\pi_1 \rightarrow \pi_2^*$), par rapport à celle observée pour la transition B_b à 218 nm (Tableau 12).

L'intensité de résonance Raman observée pour ce mode (v_{22}) lors des excitations à 266 nm et 218 nm est bien reproduite par notre calcul d'intensités (Tableau 12) des deux transitions $H \rightarrow L$ et $H \rightarrow L + 1$.

Expt. tryptophane				Intensité calculée					
	266 nm a	200 nm b	218 nm b		H-L	H-L+1	H-1-L	H-L+2	H-2-L
762	3	5,7	8,6	747	0,4	2,8	2,6	1	2,4
880	2	2,8	3	878	1,8	4,8	1,2	1,2	1
1016	3	5,7	9,2	1004	1	3,7	,4	0	1,3
1127	2	5,4		1123	1,3		4,2	0,8	0,8
1238	3	6,5	2,5	1233	3	2,3	10	1,9	2,3
1305	1	2,3	1	1317	1,6	1,1	1,3	0,5	0,6
1342	4	6,3	1,7	1346	2,2	1,8	0	0,3	0,6
1361	3	3,3	3,4	1352	1	4	0	1,4	0
1462	2	4,2	2	1460			0	0	0
1496	1	5,4	1,7	1491	0,5	0,7	1,2	0	0,3
1555	5	9,1	10	1557		10	2,4	2,6	3
1578	10	10		1581	10	0,5	0	10	10
1622	9	9,7	4 c	1624	2	3	3,6	3	2,6

Tableau 12 : Calcul des intensités relatives de résonance Raman du 3-éthylindole pour les transitions électroniques permises $\pi \to \pi^*$ en utilisant le terme A du tenseur de diffusion .

a b c Intensités données par les résultats expérimentaux respectivement dans [21], [26], [21].

II.3-4 Attribution des transitions électroniques

Les intensités Raman de résonance observées à 266 (L_a-L_b) et 218 nm (B_b) des modes du tryptophane sont en grande partie comparables à celles calculées respectivement pour les modes du 3-EIn concernant respectivement les transitions $H \rightarrow L (\pi_1 \rightarrow \pi_1^*)$ et $H \rightarrow L + 1 (\pi_1 \rightarrow \pi_2^*)$. De plus les intensités de résonance non observées sont calculées à 0 (non décrites sur le tableau 12).

En conclusion, l'excitation à 266 nm qui est proche de la transition L_a-L_b et celle à 218 nm (B_b) peuvent correspondre respectivement aux transitions électroniques $\pi_1 \rightarrow \pi_1^*$ et $\pi_1 \rightarrow \pi_2^*$.

On remarque que les intensités de résonance Raman observées pour la transition B_b sont mieux reproduites que celle de L_a (266 nm). Cela provient du fait que la transition B_b est fortement probable et possède donc un moment de transition dipolaire plus important(qui augmentera le pourcentage du terme A par rapport aux autres termes (B et C) de l'intensité de résonance Raman).

III. Conclusion

Les résultats de ce calcul ont été comparés à de nombreux résultats expérimentaux et théoriques pour les trois molécules : l'indole, le 4-méthylindole et le tryptophane. De nombreuses différences sont remarquées dans cette comparaison, surtout au niveau de l'attribution des modes fondamentaux et de la distribution de l'énergie potentielle. Par exemple, les modes observés dans l'indole à 1191 et 1229 cm⁻¹, sont attribués à des modes fondamentaux, respectivement par Takeuchi [2] et Majoube [4], alors que ceci n'est pas le cas respectivement dans [4, 20] et dans [2, 3, 20], correspondant plus en cela à nos résultats. De plus, le mode v37 calculé à 1317 cm⁻¹ dans notre calcul est attribué à un mode fondamental dans les trois travaux [1, 3, 21]. En revanche ce mode (v37) n'est pas un mode fondamental dans les deux calculs [2, 4]. Plusieurs travaux [1, 2, 4] considèrent que les modes v49, v48 et v47 sont attribués respectivement aux modes du cycle benzènique v8a et v8b et au pyrrole. Cependant, ces modes forment un mélange de modes propres aux deux cycles dans notre calcul, en accord avec Hirakawa [10]. Les fréquences des dérivés deutériés de l'EIn sont comparées à celles des dérivés deutériés du tryptophane et de l'indole. Le déplacement de fréquence observé est en majeure partie reproduit par notre calcul. Ce qui accorde une crédibilité à notre fréquence calculée et la distribution d'énergie potentielle correspondante.

Dans la deuxième partie, concernant l'intensité de résonance Raman, nous avons envisagé de reproduire les intensités de résonance pour les transitions électroniques du tryptophane. La plus probable et la plus intense des transitions du tryptophane est la transition Bb (218 nm). Les intensités observées pour cette transition (Bb) sont les mieux reproduites par notre calcul. Cela va de soi puisque le terme A (Franck - Condon) est majoritaire et qu'il demeure le seul terme utilisé ici dans notre calcul d'intensités de résonance.

Références

- [1] A.Lautié, M. F. Lautié, A. Gruger, S. A. Fakhri, Spectrochim. Acta, 36A (1980) 85
- [2] H. Takeuchi, I. Harada, Spectrochim. Acta, 42A(9) (1986) 1069
- [3] W. B. Collier, J. Chem. Phys., 88(12) (1988) 7295
- [4] M. Majoube, G. Vergoten, J. Ram. Spectrosc., 23 (1992) 431
- [5] E. B. Wilson, Jr., J. C. Decius and P. C. Cross, Molecular Vibration, Mc Graw-Hill, New York, 1955
- [6] M. J. S. Dewar, E. G. Zoebisch, E. F. Haely, J. J. P. Stewart, J. Am. Chem. Soc., 107 (1985) 3902
- [7] P. Pulay, G. Fogarasi, F. Pany, J. E. Boggs, J. Am. Chem. Soc., 101 (1979) 2550
- [8] P. Pulay, G. Fogarasi, J. E. Boggs, J. Chem. Phys., 74 (1980) 3999
- [9] M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J. S. Binkley, C.
 Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker,
 R. L. Martin, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, J. A. Pople,
 Gaussian 88, Gaussian, Pittsburgh, PA (1988)
- [10] Akiko Y. Hirakawa, Yoshifumi Nishumura, Tadashi Matsumoto, Mamoru
 Nakanishi, Masumichi Tsuboi, J. Ram. Spectrosc., 7(5) (1978) 282
- [11] B. Khawas, Ind. J. Phys., A, 59 (1985) 219
- [12] Y. Harada, Y. Litaka, Acta Crystallogr. Sect. B 33 (1977) 244
- [13] A. Allouche, J. Pourcin, Spectrochim. Acta, 49A (1970) 2086
- [14] M. Bernard-Houplainand, C. Sandorfy, Can. J. Chem., 51 (1973) 1075
- [15] A. Lautié, A. Novak, J.Chim. Phys., 69 (1972) 1332; Cand. J. Spectrosc., 17 (1972)
 113
- [16] R. G. Efremov, A. V. Feofanov, I. R. Nabiev, J. Ram. Spectrosc., 23 (1992) 69

- [17] T. Miura, H. Takeuchi, I. Harada, Biochemistry, 27 (1988) 88
- [18] I. Harada, T. Miura, H. Takeuchi, Spectrochim. Acta, 42A(2/3) (1986) 307
- [19] P. Lagant, H. Gallouj, G. Vergoten, J. Mol. Struct., 372 (1995) 53
- [20] A. Sawaiyan, R. Zwarich, Spectrochim. Acta, 42A(9) (1986) 1017
- [21] R. P. Rava, T. G. Spiro, J. Phys. Chem., 89 (1985) 1856
- [22] R. Bersohn, U. Even, J. Jortner, J. Chem. Phys., 80(3) (1984) 1050
- [23] P. S. Song, W. E. Kurtin, J. Am. Chem. Soc., 91(17) (1969) 4892
- [24] Y. Yamamoto, J. Tanaka, Bull. Chem. Soc. Jap., 45(5) (1972) 1362
- [25] B. Albinson, M. Kubista, B. Nordén, E. W. Thulstrup, J. Phys. Chem., 93 (1989) 6646
- [26] P. A. Fodor, R. A. Copeland, C. A. Grygon, T. G. Spiro, J. Am. Chem. Soc., 111(15) (1989) 5509
- [27] S. A. Asher, M. Ludwig, C. R. Johnson, J. Am. Chem. Soc., 108 (1986) 3197
- [28] C. S. Yang Wang, T. G. Spiro, J. Ram. Spectrosc., 21 (1990) 435
- [29] J. A. Sweeney, S. A. Asher, J. Phys. Chem., 94 (1990) 4784
- [30] S. V. Konev, "Fluorescence and Phosphorescence of Proteins and Nucleic Acids", Plenum Press, New York, N.Y. (1967)
- [31] G. Weber, Biochem. J., 75 (1960) 335
- [32] L. D. Zeigler, B. S. Hudson In Excited states; E. C. Lim, Ed.; Academic: NewYork, V (1982) 41
- [33] J. K. Platt, H. B. Klevens, Chem. Rev., 41 (1947) 301
- [34] T. L. Smithson, R. A. Shaw, H. Wieser, J. Chem. Phys., 81(10) (1984) 4281
- [35] W. L. Peticolas, T. Rush, J. Comp. Chem., 10(16) (1995) 1261

[36] Longuet-Higgin, H. C. Proc., R. Soc (London) Ser., A (1956) 235, 537

Conclusion générale

L'utilisation des fonctions d'échange et de corrélation BLYP et B3LYP et de la base 6-31G (df,p) (5d, 7f) dans la méthode DFT permet une meilleur reproduction des fréquences de vibration comparativement aux autres méthodes de calcul. Cela se manifeste très bien au niveau des facteurs d'échelle lorsqu'on compare par rapport aux résultats obtenus par Majoube en utilisant la méthode d'Hartree-Fock concernant les molécules du 4-méthylimidazole et de l'indole. Ces facteurs d'échelle sont de 0,9 et 0,804 pour les modes dans le plan et de 0,7 et 0,726 pour les modes hors du plan respectivement pour les molécules d'indole et du 4-méthylimidazole, alors que les facteurs d'échelle obtenus par la méthode DFT approche beaucoup plus la valeur de 1.

Cependant, une difficulté est remarquée pour la reproduction des trois fréquences de vibration liées à la torsion (τ CO) pour le para-crésol où le facteur d'échelle est de 0,66 (chapitre 2, Tableaux 4 et 6) et au mode hors du plan de NH (π NH) des deux molécules du 4-éthylimidazole et du 3-éthylindole. Les fréquences de vibration calculées pour ces deux dernières molécules concernant ce mode hors du plan de NH sont de 520 et 361 cm⁻¹ respectivement pour le 4-éthylimidazole et le 3-éthylindole et correspondent aux fréquences observées respectivement à 916 cm⁻¹ dans le spectre Raman du polycristal de 4-méthylimidazole et à 487 cm⁻¹dans le spectre IR du skatole à l'état solide.

La reproduction des fréquences expérimentales et donc l'obtention d'un ensemble fiable de constantes de force, le déplacement correct des fréquences en fonction de la deutériation et l'accord de nos résultats par rapport à d'autres études théoriques encouragent l'utilisation de la méthode DFT. Les champs de forces obtenus pour les trois molécules peuvent être transférés dans l'étude des structures plus complexes (protéines). Le choix des molécules de 4-éthylimidazole et de 3-éthylindole approchent mieux respectivement les molécules de l'histidine et du tryptophane que les molécules de 4-méthylimidazole et de 3-méthylindole qui furent choisies comme modèle d'étude par quelques auteurs. L'utilisation du terme

d'Albrecht (A) pour le calcul d'intensité Raman de résonance permet d'approcher les intensités Raman de résonance expérimentales provenant des transitions les plus probables. Ces transitions électroniques sont: $B_{a,b}$ (192 nm) pour la tyrosine, B_b (218 nm) pour le tryptophane et celle observée à 218 nm pour l'histidine. Cependant, il reste difficile de reproduire les intensités de résonance observées lors d'autres transitions puisqu'on se limite au seul terme A. Ces intensités reproduites permettent donc la validation des distributions d'énergie potentielle des trois molécules étudiées.

La comparaison des facteurs d'échelle des trois molécules montre qu'ils sont très proches et transférables. La légère différence de ces facteurs d'échelles entre la molécule du p-crésol et les deux autres peut être du à la différence entre les deux programmes utilisés Gaussian DFT/92 et 94 et celles de leurs fonctions d'échange et de corrélation respectivement B-LYP et B3-LYP. A partir des résultats obtenus, de ces trois molécules, nous avons pu sélectionner un ensemble des facteurs d'échelle pour les différentes coordonnées internes. Cet ensemble peut être utilisé pour l'étude d'autres molécules proches des trois molécules étudiées. Ces facteurs d'échelle varient de 0,89 à 1 séparés en trois parties; une première entre 0,89 et 0,93 associée en grande partie aux élongations, une deuxième entre 0,95 et 0,98 liée essentiellement aux déformations angulaires dans le plan du cycle et aux déformations de CH₂ et CH₃ et en fin une troisième égale à 1 correspondant aux torsions et aux déformations hors du plan. Cela signifie que les basses fréquences sont reproduites à l'aide de la méthode DFT sans nécessité d'un facteur d'échelle et que l'approximation harmonique se manifeste plus au niveau des fréquences liées aux modes d'élongation.

	Facteurs d'échelle							
Coordonnées internes ^a	p-crésol	4-éthylimidazole	3-éthylindole	Facteur d'échelle sélectionné				
vCH ₃	0,88	0,89	0,89	0,89				
νCH_2		0,89	0,89	-				
νCH	0,9	0,91	0,91	0,91				
vNH		0,903	0,903	0,903				
vC-CH ₃	0,98	0,98	0,98	0,98				
vC - CH_2		0,98	0,98	-				
vC=C		0,93		0,93				
vCCbn	0,93		0,90	0,9				
vNC		0,98	0,96	0,96				
vN=C		0,96		-				
δHCH ₃	0,93	0,95	0,95	0,95				
δHCH ₂		0,95	0,95	-				
δCH ₃	0,94	0,95	0,95	-				
δCH ₂		0,95	0,95	-				
δCH		0,98	0,98	0,98				
δCHbn	0,93		0,93	0,93				
δΝΗ		0,98	0,98	0,98				
δCCH ₂		0,98	0,98	, - .				
δCCH ₃		0,98	0,98	-				
πCH	0,96	1	0,96	0,69				
Autres		1	1	-				

Comparaison des facteurs d'échelle obtenus pour les trois molécules

^a bn désigne le cycle benzènique, v, δ et π désignent respectivement l'élongation, la déformation et le mouvement hors du plan

Résumé en anglais

This studies is based of a determination and validation of force field using a density functional theory (DFT), and a calculation of resonance Raman intensity for the residues of amino acids aromatics. The para-cresol (4-methylphenol), 4-ethylimidazole and 3-ethylindole were tacked like a model of studies of the true residues amino acids aromatics respectively, the tyrosine, histidine and tryptophane. Using the ab initio with a density functional method of Kohn-Sham equation (formulate in Gaussian DFT/92 and Gaussian DFT/94) and taking a polarised base 6-31G (df, p), we try to reproduce a perfect experimental frequencies and force constant. The calculated frequencies were generally overestimate than experimental frequencies. Then we use a set of scaling factors to reduce this difference. This method is called a scaled quantum mechanical force field (SQM) with the Redong program. The use of isotopic effect was tacked account to confirm the determination of the potential energy distribution (PED). The resonance Raman intensity for the intense vibration modes were calculated with the Albrecht term A of the tensor of diffusion. From the results of this true molecules we have to select a set of scaling factors for the different of internal coordinates.

This set of scaling factors will be utilised for the others close molecules.