N° d'ordre

THESE de DOCTORAT de l'UNIVERSITE de LILLE1

présentée par Vincent De Waele

pour obtenir le titre de DOCTEUR

spécialité : LASERS, MOLECULES, RAYONNEMENT ATMOSPHERIQUE

ETUDE EXPERIMENTALE ET THEORIQUE DES SPECTRES DE VIBRATION DE L'ETAT EXCITE S₁ D'HETEROCYCLES AZOTES DERIVES DU BIPHENYLE

Soutenue le 14 octobre 1999

Devant le jury composé de

Mme C. DANIEL M P. MILLIE Mme C. DEMUYNCK M C. SOURISSEAU M E. KASSAB M J. P. FLAMENT M O. POIZAT Rapporteur Rapporteur Examinateur Examinateur Examinateur Examinateur Examinateur

A mes parents... Pour la confiance accordée A françois et caroline... Pour les joies partagées

A isabelle avec tout mon amour

Le travail présenté est le résultat d'une collaboration entre le Laboratoire de Spectrochimie Infrarouge et Raman de Lille (LASIR) et le Laboratoire de Physique des Lasers et Molécules (PHLAM) réalisée dans le cadre du Centre d'Etudes et de Recherches sur les Lasers et Applications (CERLA) de l'Université des Sciences et Technologies de Lille (USTL). Cette collaboration a été initiée entre le LASIR et le LDMP (Laboratoire de Dynamique Moléculaire et Photonique) et s'est poursuivie dans le cadre du PHLAM. Je remercie les directeurs respectifs de ces trois laboratoires, Messieurs D. Bougeard, J.M. Robbe et P.Glorieux de m'avoir accueilli et permis de réaliser ce travail.

Je remercie Monsieur B. Macke, directeur du CERLA, pour le support financier dont ont bénéficié ces études.

Je remercie l'Institut de Développement et des Ressources en Informatique Scientifique (IDRIS), ainsi que son Directeur Monsieur V. Alessandri pour l'attribution des ressources informatiques et l'aide apportée à la réalisation de ce projet (Projet 970900, 980900 et 990900).

Je remercie Madame C. Demuynck, Professeur à L'USTL, directrice du DEA LAMORA, d'avoir encouragé cette collaboration entre les UFR de Physique et de Chimie et d'avoir accepté d'examiner ce travail.

Je remercie Monsieur C. Sourisseau, Directeur de Recherche CNRS au Laboratoire de Physico-Chimie Moléculaire de Bordeaux d'avoir accepté de juger ce travail.

Je tiens aussi à remercier E. Kassab, Chargé de Recherche CNRS au Laboratoire de Chimie Théorique de paris VI pour son aide ainsi que pour sa participation au jury de thèse.

Je tiens à exprimer ma profonde gratitude à Madame C. Daniel, Directeur de Recherche CNRS au Laboratoire de Chimie Quantique de Strasbourg ainsi qu'à Monsieur P. Millié, Ingénieur CEA au Département de Recherche sur l'Etat Condensé, les Atomes et les Molécules pour l'honneur qu'ils m'ont fait en acceptant d'être rapporteur de ce travail.

Un grand merci à J.P Flament, Directeur de Recherche CNRS au PHLAM, pour la direction de ce travail, pour m'avoir fait bénéficier de sa grande expérience de la chimie quantique et de la pertinence de ces conseils qui m'ont aidé à tracer ma route parmi les approximations du hamiltonien en évitant les embûches J'ai de plus fortement apprécié sa grande gentillesse et sa disponibilité.

Un grand merci à G. Buntinx et O. Poizat, Directeurs de Recherche CNRS au LASIR pour la direction de ce travail, pour m'avoir aidé à faire mes premiers pas dans le monde des molécules polyatomiques et de la spectroscopie résolue dans le temps. Je les remercie pour leur confiance, l'aide qu'il m'ont apportée, et leur disponibilité mais aussi pour la générosité avec laquelle ils ont partagé leurs compétences et leurs passions.

Merci enfin à tous les membres du LASIR et ceux qui y sont passés durant ces années et qui ont contribués à ce travail par leur aide ou tout simplement, mais c'est important, par leur bonne humeur. Un petit clin d'œil particulier à Claude, Laura, Gotard, et Ryszard.

Table des matières

1	Rap	opels:	photophysique des états excités singulet S_1	9										
	1.1	Princi	pes généraux régissant la photophysique des hétérocycles azotés	10										
		1.1.1	Diagramme de Jabloński											
		1.1.2	Fluorescence $S_1 \rightarrow S_0 \ldots \ldots$	10										
			1.1.2.1 Conversion interne $S_1 \rightarrow S_0$	12										
			1.1.2.2 Conversion intersystème $S_1 \rightarrow T_1 \ldots \ldots \ldots \ldots$	15										
	1.2	Propr	iétés photophysiques des hétérocycles azotés	16										
		1.2.1	Les aza-benzènes	16										
		1.2.2	L'état S_1 de la pyridine	18										
		1.2.3	Propriétés photophysiques de l'état S_1 des 44BPY, 22BPY et 4PPY	19										
2	Pro	priété	s structurales et vibrationnelles des 44BPY, 22BPY et 4PPY	23										
	2.1	La 4,4	'-bipyridine et la 2,2'-bipyridine	24										
		$2.1.1^{'}$	Propriétés structurales	24										
		2.1.2	Propriétés vibrationnelles	26										
	2.2	La 4-p	phénypyridine	28										
		2.2.1	Méthodes de calcul	28										
		2.2.2	Propriétés structurales	29										
		2.2.3	Propriétés vibrationnelles de 4PPY	31										
		2.2.4	Conclusions	39										
3	Etu	de par	\cdot spectroscopie Raman de résonance picoseconde de l'état S_1											
	de l	a 44B	PY, de la 22BPY et de la 4PPY	42										
	3.1	Princi	pe de la spectroscopie Raman picoseconde	42										
		3.1.1	L'effet Raman et Raman de résonance	42										
		3.1.2	Expérience pompe-sonde	47										
		3.1.3	Résolution temporelle	48										
	3.2	Dispos	sitif expérimental	50										
		3.2.1	La source laser picoseconde	52										
			3.2.1.1 Le laser Titane-Saphir amplifié	52										
			3.2.1.2 Génération des impulsions de pompe et de sonde	53										

		3.2.2	Ligne à retard optique	55
		3.2.3	Acquisition des signaux Raman	56
	3.3	Résult	tats	57
		3.3.1	Conditions expérimentales	57
		3.3.2	Spectres de l'état S_1 de la 44BPY	58
			3.3.2.1 44BPY-h ₈	58
			3.3.2.2 Dérivés isotopiques $-d_4$ et $-d_8$	59
		3.3.3	Spectres de l'état S_1 de la 22BPY	63
	3.4	Spects	res de l'état S_1 de la 4PPY	66
4	Etu	de stri	ucturale <i>ab initio</i> de l'état ${}^{1}n\pi^{*}$ de la 44BPY, de la 22BPY et	;
-	de l	a 4PP	Y	68
	4.1	Métho	ode	68
		4.1.1	Principe des calculs <i>ab initio</i> des fonctions d'onde d'états excités	
			moléculaires	68
		4.1.2	Choix de la méthode de calcul des états excités singulet des bipy-	
			ridines	73
			4.1.2.1 La méthode CIS	73
			4.1.2.2 Applicabilité de la méthode CIS	74
		4.1.3	Description des calculs	76
	4.2	Struct	ure de l'état $1^{1}n\pi^{*}$ des bipvridines	77
		4.2.1	Etats excités de valence des bipyridines	77
		4.2.2	Structure de l'état singulet $n\pi^*$ de la 4.4'-bipvridine	83
			4.2.2.1 Etude dans la symétrie D_2	83
			4.2.2.2 Analyse de la structure symétrie C_{2n}	90
			4.2.2.3 Analyse de la structure de symétrie C_2	96
			4.2.2.4 Analyse de la structure de symétrie C_{s}	97
			4.2.2.5 Structure de symétrie C_1	97
		4.2.3	Structure et fonctions d'onde de l'état $n\pi^*$ de la 22BPY	97
	4.3	Struct	ure de l'état $n\pi^*$ de la 4-phénylpyridine	98
	4.4	Discus	ssion	103
		4.4.1	Torsion intercycle et distorsion hors plan du cycle excité	103
		4.4.2	Origine de la localisation de l'excitation $n\pi^*$	105
			4.4.2.1 La brisure de symétrie en chimie quantique	105
			4.4.2.2 Exemple de l'ion He_2^+	106
		4.4.3	Traitement des états $n\pi^*$ localisés	109
			4.4.3.1 Fonction d'onde et hamiltonien du problème	109
	4.5	Résun	né	113

5	\mathbf{Pro}	priétés	s vibrati	ionnelles de l'état S ₁ des 44BPY, 22BPY et 4PPY	115
	5.1	Calcul	des fréq	uences de vibration de l'état S_1 $(n\pi^*)$ de la 44BPY	. 115
		5.1.1	Résulta	ts	. 115
			5.1.1.1	Attribution des spectres de l'état S_1	. 122
		5.1.2	Discussi	ion	. 124
			5.1.2.1	Comparaison entre les fréquences observées dans les spectr	res
				Raman et celles calculées pour la structure de symétrie	
				C_{2v}	. 124
			5.1.2.2	Comparaison des fréquences observées avec celles calcu-	
				lées pour les structures de symétrie C_2, C_s , et C_1	. 131
			5.1.2.3	Comparaison avec l'attribution empirique	. 133
			5.1.2.4	Conclusion	. 135
	5.2	Analys	se vibrati	ionnelle de l'état S_1 de la 4PPY \ldots \ldots \ldots \ldots	. 136
		5.2.1	Résultat	ts	. 136
			5.2.1.1	Description des modes normaux	. 136
			5.2.1.2	Attribution des spectres Raman de l'état S_1	. 136
		5.2.2	Discussi	on	. 140
			5.2.2.1	Comparaison des fréquences observées et calculées pour	
				la structure C_{2v}	. 140
			5.2.2.2	Effets des distorsions hors du plan	. 141
		5.2.3	Conclus	ion	. 142
	5.3	Propri	étés vibr	ationnelles de l'état S_1 de la 22BPY $\ldots \ldots \ldots \ldots$. 142
		5.3.1	Résultat	ts	. 142
			5.3.1.1	Description des modes normaux calculés pour la struc-	
				ture trans plane de l'état $n\pi^*$. 143
			5.3.1.2	Attribution des spectres Raman de l'état S_1 de la 22BPY	7 151
		5.3.2	Discussi	on	155
			5.3.2.1	Confirmation de la structure dissymétrique	155
			5.3.2.2	Conclusion	156
6	Cal	cul des	intensi	tés Raman de résonance de l'état S. de la 14BPV	158
Ŭ	6 1	Théori	e de l'int	rensité de diffusion Raman de résonance	159
	0.1	611	Express	ion dans la base des états stationnaires du hamiltonien	159
		6.1.2	"Théorie	e dépendant du temps" de la diffusion Raman de résonanc	e161
		6.1.3	Effets à	temps court	163
	6.2	Métho	de de cal	cul	164
	6.3	Résult	ats		166
		6.3.1	Fonction	ns d'onde et énergie des états S_n	166
		6.3.2	Spectres	s Raman de résonance calculés pour les transitions $1^1B_1 \rightarrow$	
			$3^{\hat{1}}B_3$ et	$1^1B_1 \rightarrow 1^1A_2$	169
	6.4	Discus	sion		173

6.5	Résumé		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•			•		1	74	

A Modes normaux de l'état fondamental de la 44BPY et de la 22BPY 181

Ń

Introduction

Des études expérimentales par spectrométries optiques transitoires ont montré que les hétérocycles azotés dérivés du biphényle (phénylpyridines, bipyridines, bipyrimidines...) sont caractérisés par des propriétés photochimiques très diversifiées selon les conditions expérimentales (photo transferts de proton, d'électron, d'atome d'hydrogène). Ces molécules sont donc des modèles simples pour étudier la réactivité de la fonction imine (-N=) qui est impliquée dans de nombreux domaines de la chimie et de la biochimie. Ce sont aussi des ligands très utilisés en chimie organométallique (complexes photosensibilisateurs de type $Ru(2,2'-bipyridine)_3^{2+}$, complexes bimétalliques à valence mixte, par exemple).

Un aspect particulièrement intéressant de la réactivité de ces hétérocycles azotés est la possibilité d'une double réactivité mettant en jeu les états excités singulet S_1 et triplet T_1 , respectivement. Ainsi, des processus de photoréduction par transfert d'électron ou transfert d'atome d'hydrogène à l'état S_1 et à l'état T_1 ont été mis en évidence. Ces molécules constituent donc également de bons exemples pour étudier les réactivités relatives de ces deux catégories d'états excités. La présence d'états $n\pi^*$ et $\pi\pi^*$ d'énergies proches et modulables selon l'environnement accroît encore la complexité de la situation.

Récemment, la réactivité photochimique des 4,4'-bipyridine (44BPY), 2,2'-bipyridine (22BPY), et 4-phénylpyridine (4PPY) en solution en présence de différents donneurs d'atomes d'hydrogène a été étudiée en détail au LASIR. Les résultats obtenus en cou-

plant des mesures d'absorption électronique transitoire et de diffusion Raman de résonance résolue dans le temps, dans des domaines temporels allant des subpicosecondes à la microseconde, ont montré que, pour la 44 BPY et la 4PPY, l'état S_1 est considérablement plus réactif que l'état T_1 vis-à-vis du processus d'arrachement d'atome d'hydrogène. Cette différence étonnante et la vitesse anormalement rapide du processus à l'état S_1 ne peuvent être expliquées sur la seule base de considérations thermodynamiques. La connaissance de la structure et de la configuration électronique des états excités précurseurs, S_1 et T_1 , est certainement déterminante pour une meilleure compréhension des réactivités relatives de ces états. Cependant il n'existe pas aujourd'hui de méthodes d'analyse structurale pour les espèces de courtes durées de vie. Il est nécessaire d'avoir recours à des méthodes de spectrométrie moléculaire transitoires. Les spectrométries électroniques (absorption, émission) ne fournissant pratiquement aucune information structurale pour les phases condensées, la meilleure approche consiste à utiliser une méthode de spectrométrie vibrationnelle. C'est dans ce but que la spectrométrie de diffusion Raman résolue dans le temps a été développée au LASIR. Ainsi, l'interprétation qualitative des spectres de l'état triplet T_1 des 44BPY, 22BPY et 4PPY a établi que, dans tous les cas, la structure est analogue à celle de l'état triplet $\pi\pi^*$ du biphényle, et peut être caractérisée par une distorsion quinoïdale avec un renforcement notable du caractère π de la liaison intercycle et une conformation coplanaire des deux cycles.

L'objet du travail présenté dans ce mémoire est l'étude structurale de l'état excité singulet S_1 des 44BPY, 22BPY et 4PPY. Dans un premier temps, nous avons obtenu les spectres Raman de résonance de ces espèces et de quelques uns de leurs isotopes deutérés. Une interprétation de ces spectres en termes de structures a été proposée au cours d'un travail parallèle qui était surtout consacré à l'analyse de la réactivité photophysique

Introduction

après excitation. Cependant cette interprétation est restée très qualitative et incomplète du fait de la difficulté d'établir une corrélation fiable entre données vibrationnelles et paramètres structuraux en l'absence de calcul de champ de force. Dans ce mémoire, sont présentés les résultats d'une étude structurale et vibrationnelle théorique des molécules étudiées dans l'état S_1 . Malgré les importants développements méthodologiques dans le domaine de la chimie quantique et l'accroissement considérable de la puissance des outils informatiques, la détermination théorique précise des surfaces d'énergie potentielle d'états excités de molécules de la taille du biphényle est encore aujourd'hui pratiquement impossible ou tout du moins a un coût informatique prohibitif. L'étude théorique des propriétés structurales de ces états excités ne peut donc être entreprise qu'à l'aide de méthodes approchées qui peuvent cependant se révéler insuffisantes et même conduire à des prédictions erronées. L'étude complémentaire des états excités par une spectroscopie vibrationnelle et une méthode théorique permet de contourner partiellement ce problème. La confrontation des fréquences expérimentales et théoriques offre en effet la possibilité de valider la structure calculée et renseigne sur la précision du calcul de la surface de potentiel. Notre démarche a été la suivante: dans un premier temps, nous avons optimisé la structure en utilisant la méthode CIS. Nous avons ensuite calculé les fréquences de vibration théoriques correspondantes pour enfin les comparer aux fréquences expérimentales obtenues par spectroscopie de diffusion Raman de résonance.

Les deux premiers chapitres de ce mémoire présentent essentiellement des rappels concernant la photophysique de l'état S_1 des hétérocycles azotés (chapitre 1) et les propriétés structurales et vibrationnelles de l'état fondamental des molécules étudiées (chapitre 2). Le chapitre 2 comporte en plus des rappels concernant la 44BPY et la 22BPY, l'étude de la structure ainsi que l'attribution des spectres de vibration de l'état S_0 de la 4PPY au moyen de plusieurs méthodes *ab inito* (HF, HF-MP et DFT).

Le chapitre 3 présente le principe de la spectroscopie Raman picoseconde et sa mise en œuvre expérimentale. Il regroupe les résultats obtenus pour l'état S_1 de la 44BPY, de la 22BPY, et de la 4PPY en solution; leur interprétation étant reportée aux chapitres 5 et 6.

Les chapitres 4 et 5 sont dédiés à l'étude par la méthode CIS de l'état S_1 des molécules étudiées. Compte tenu d'hypothèses sur la nature $n\pi^*$ de l'état S_1 , la structure de cet état excité a été optimisée pour chacune des molécules. Les structures obtenues sont présentées et discutées au chapitre 4 qui comporte également une brève présentation des méthodes *ab initio* de calcul des états excités. Cette partie est volontairement succincte compte tenu d'une part de la littérature abondante sur ce sujet, et d'autre part en raison du travail présenté qui n'est pas orienté vers le développement de méthodes de calcul. Le cinquième chapitre présente les propriétés vibrationnelles calculées et leur confrontation avec les valeurs expérimentales. La validité des structures présentées au chapitre 4 est discutée dans ce chapitre.

Finalement, le chapitre 6 propose une première approche de la modélisation de l'intensité des spectres de diffusion Raman de l'état S_1 de la 44BPY, enregistrés en résonance avec deux transitions $S_1 \rightarrow S_n$. Pour cela, la fonction d'onde de ces états excités supérieurs a été calculé par la méthode MCSCF qui procure une description plus réaliste des états excités de plus haute énergie que la méthode CIS.

Chapitre 1

Rappels : photophysique des états excités singulet S_1

On appelle hétérocycles azotés les polyènes aromatiques (benzène, biphényle, anthracène ...) dont un ou plusieurs groupements CH sont substitués par un atome d'azote. Chacun des atomes d'azote porte une paire d'électrons non engagée dans une liaison chimique. Ces molécules possèdent donc des états excités $n\pi^*$ qui ont de plus la particularité d'être situés parmi les plus bas états $\pi\pi^*$ aussi bien dans la configuration singulet que dans la configuration triplet. Les orbitales n étant fortement stabilisées dans les solvants polaires ou protiques, la différence d'énergie entre les états $n\pi^*$ et $\pi\pi^*$ varie avec la nature du solvant et des inversions sont possibles. Il s'ensuit des modifications importantes des propriétés photophysiques [1, 2] (couplage vibronique ou spin-orbite avec d'autres états excités, rendement des processus de désactivation radiatifs et non radiatifs) et de la réactivité photochimique en fonction du solvant.

Dans ce chapitre, nous allons dans un premier temps rappeler les principes généraux de la photophysique en insistant sur les conséquences de la proximité des états excités $n\pi^*$ et $\pi\pi^*$. Nous mentionnerons quelques travaux significatifs relatifs à la photophysique des aza-benzènes et plus particulièrement ceux relatifs à la pyridine. Un bref résumé des connaissances de la photophysique de l'état S_1 de la 2,2'-bipyridine, de la 4,4'-bipyridine et de la 4-phénylpyridine sera présenté.

1.1 Principes généraux régissant la photophysique des hétérocycles azotés

1.1.1 Diagramme de Jabloński

Les différents processus photophysiques unimoléculaires peuvent être schématisés par le diagramme dit de Jabloński [3][4] (figure 1.1). Les espèces excitées sont généralement formées par absorption photonique dans une transition électronique $S_0 \rightarrow S_n$. L'état excité S_n se désactive vers l'état S_1 par conversion interne. Ce processus non radiatif est particulièrement efficace si bien que la plupart des autres processus photophysiques sont observés à partir de l'état S_1 . Cet état peut se désactiver:

- 1. par fluorescence $S_1 \rightarrow S_0$;
- 2. par conversion interne $S_1 \rightarrow S_0$;
- 3. par croisement intersystème $S_1 \rightarrow T_1$.

La durée de vie de l'état excité dépend de l'efficacité de ces trois processus compétitifs.

1.1.2 Fluorescence $S_1 \rightarrow S_0$

La fluorescence est un processus radiatif d'émission au cours duquel le système passe d'un état vibronique $\Phi_i^{S_1}$ à un état $\Phi_f^{S_0}$. Si on considère uniquement ces deux états

FIG. 1.1 – DIAGRAMME DE JABLOŃSKI. PROCESSUS PHOTOPHYSIQUES RADIATIFS : A, ABSORPTION; F, FLUORESCENCE; PROCESSUS PHOTOPHYSIQUES NON RADIATIFS : ISC, CROISEMENT INTERSYSTÈME; IC, CONVERSION INTERNE.

électroniques, l'intensité de la transition dépend comme pour l'absorption de la valeur de l'opérateur moment dipolaire de l'état S_1 entre les deux états initial et final:

$$M_{if} = \langle \Phi_i^{S_1} | \mu^i | \Phi_f^{S_0} \rangle$$

En se plaçant dans l'approximation de Born-Oppenheimer, on sépare le mouvement des noyaux de celui des électrons, la fonction d'onde s'écrit alors $\Phi = \phi(r, R)\chi(R)$, où ϕ est la fonction d'onde électronique et χ la fonction d'onde vibrationnelle. r et R sont les coordonnées électroniques et nucléaires. Le moment dipolaire peut être développé en série de Taylor au voisinage de la configuration d'équilibre des noyaux :

$$\mu = \mu_0 + (\frac{\partial \mu}{\partial Q})_0 \partial Q + \dots$$

où Q est une coordonnée normale de vibration. En négligeant la dépendance du moment dipolaire vis-à-vis des coordonnées nucléaires, *approximation de Franck-Condon*, les éléments de l'opérateur moment de transition s'écrivent :

$$M_{if} = \underbrace{\langle \phi^{S_1} | \mu_0 | \phi^{S_0} \rangle}_{moment \ de \ transition \ électronique} \times \underbrace{\langle \chi_i | \chi_f \rangle}_{facteur \ de \ Franck \ Condon}$$

La partie électronique de la transition dépend de la symétrie et du recouvrement spatial de la partie électronique des fonctions d'onde des deux états. La fluorescence a lieu à partir des états vibrationnels $|v = 0\rangle$ de l'état S_1 , vers un état vibrationnel $|v = n\rangle$ de l'état S_0 . L'intensité de la bande observée est proportionnelle au carré du recouvrement entre les fonctions d'onde vibrationnelles initiale et finale $\langle 0|n\rangle$.

1.1.2.1 Conversion interne $S_1 \rightarrow S_0$

La conversion interne est une transition non radiative ultrarapide entre états de même multiplicité [5, 6].

La probabilité de transition entre deux états est reliée à la topologie des surfaces de potentiel adiabatiques de ces deux états. Schématiquement, on peut distinguer deux cas représentés sur la figure 1.2 pour une seule dimension: le cas (a) correspond au croisement évité de deux surfaces adiabatiques et le cas (b) à celui de deux surfaces semblables sans point de contact.

Les conversions sont très rapides lorsqu'il existe des points des hypersurfaces pour lesquels les deux surfaces sont proches. On parle alors d'effet entonnoir. Un entonnoir ne correspond pas forcément à un minimum de la surface supérieure. Le passage entre les deux surfaces est si rapide que l'équilibre vibrationnel n'est pas réalisé si bien que la connaissance seule de la position des noyaux ne suffit pas à caractériser l'état quantique des molécules mais la direction et la vitesse des mouvements nucléaires sont nécessaires [7]. Ces entonnoirs sont courants pour les molécules organiques en raison du nombre

FIG. 1.2 – Conversion interne et topologie des surfaces de potentiel. (a)Croisement évité entre deux surfaces; (b) Surface sans point de contact.

important de coordonnées internes. Bernardi et Coll [8, 9, 10, 11] ont montré que dans la majorité des cas, les entonnoirs ne correspondent pas à des croisements évités mais à des intersections coniques.

Le second cas (fig 1.2-b) diffère du précédent par le fait que le minimum de la surface supérieure correspond à un état intermédiaire, c'est à dire que l'équilibre thermique est atteint dans cet état.

Pour modéliser les processus non radiatifs, de nombreux auteurs ont considéré la molécule en interaction avec son environnement (matrice solide, solvant) par l'intermédiaire d'un champ de phonons par analogie avec les transitions radiatives et leur champ de photons [12, 13, 14, 15]. Ces théories sont passées en revue par Henry et Kasha dans la référence [16]. En dépit du succès obtenu dans la prédiction des effets de deutération sur les transitions $S_1 \rightarrow S_0$ et $T_1 \rightarrow S_0$, ces théories présentent deux défauts majeurs. Elles ne sont pas adaptées à l'étude des conversions rapides $S_n \rightarrow S_1$ pour lesquelles il n'est plus possible de négliger la relaxation vibrationnelle (IVR). Mais surtout, elles dépendent toutes du solvant et ne permettent pas de distinguer le cas des petites molécules de celui des molécules constituées d'un plus grand nombre d'atome pour lesquelles la conversion interne est importante et même observée pour des molécules isolées. Jortner et Berry [17] ont levé cette seconde difficulté en distinguant le cas des petites molécules dont les niveaux vibrationnels sont discrets du cas des molécules qui peuvent posséder une densité importante de niveaux vibrationnels de l'état S_0 d'énergie voisine du minimum de l'état S_1 . Dans ce dernier cas, la conversion interne est possible même pour la molécule isolée, la transition est alors d'autant plus irréversible que la densité d'état est importante. Dans ce modèle, la solvatation peut toujours influencer la conversion en jouant le rôle de réservoir d'énergie mais aussi en augmentant la densité d'états vibroniques. Le résultat important des travaux de Jortner est d'avoir montré que la conversion interne nécessite la présence dans le hamiltonien de termes de couplage entre les états électroniques. En utilisant les perturbations dépendantes du temps, le taux de transition $k_{i\rightarrow j}$ entre une paire d'états *i* et *j* est donné par

$$k_{i \to f} = \frac{2\pi}{\hbar} \langle \Phi_f | H' | \Phi_i \rangle^2 Q_\epsilon$$

où H' est le hamiltonien de perturbation, Φ_i et Φ_f les états final et initial et Q_{ϵ} la densité d'états donnée par le nombre de niveaux de l'état final par unité d'énergie à l'énergie de l'état initial [18]. Cette équation correspond à la règle de Fermi pour les transitions non radiatives. Toutes ces théories soulignent le rôle du facteur de Franck-Condon [19].

Pour une conversion interne, H' est l'opérateur H_N d'énergie cinétique des noyaux. Dans le cas de couplage faible, il est possible de séparer la fonction d'onde électronique de la fonction d'onde nucléaire. L'élément du couplage s'écrit

$$\langle \Phi_f | H_N | \Phi_i \rangle \sim \beta_{IC} \langle \psi_f | \psi_i \rangle$$

où β_{IC} représente la partie électronique du couplage et $\langle \psi_f | \psi_i \rangle$ la partie vibration-

nelle. L'effet du facteur de Franck-Condon sur les transitions non radiatives est illustré sur la figure(1.3). Les cas (a) et (b) illustrent l'effet de l'augmentation de l'écart énergétique. Ainsi, l'augmentation de la densité d'état occasionnée par une plus grande différence d'énergie est compensée par la diminution du recouvrement des fonctions d'onde. Le schéma (c) montre l'augmentation du recouvrement des fonctions d'onde vibrationnelles en raison de la variation de géométrie entre les deux états. Ces effets expliquent que pour les systèmes conjugués π rigides peu modifiés entre les état S_0 et S_1 , la conversion interne est peu efficace si bien que la fluorescence est importante.

FIG. 1.3 – FACTEUR DE FRANCK-CONDON ET TRANSITION NON RADIATIVE.

1.1.2.2 Conversion intersystème $S_1 \rightarrow T_1$

Les modèles développés pour la conversion interne et présentés dans la section précédente s'appliquent également à la description de la conversion intersystème $S_1 \rightarrow T_1$. La probabilité de transition peut toujours être écrite comme étant proportionnelle au produit d'un terme de couplage électronique β_{el} par un terme de recouvrement de Franck-Condon des fonctions d'onde vibrationnelles, le tout multiplié par la densité d'états vibroniques dans l'état final. Le hamiltonien de couplage comporte en plus un terme d'interaction spin-orbite, H_{SO} , qui permet le passage de l'état singulet à l'état triplet impossible dans l'approximation adiabatique de Born-Oppenheimer. L'existence du terme de couplage spin-orbite et donc la possibilité de conversion $S_1 \rightarrow T_1$ est régie par les règles de El Sayed [20, 21] rappelées ci- dessous :

- les transitions ${}^{1}n\pi^{*} \leftrightarrow {}^{3}\pi\pi^{*} et {}^{3}n\pi^{*} \leftrightarrow {}^{1}\pi\pi^{*}$ sont permises;
- les transitions ${}^{1}n\pi^{*} \leftrightarrow {}^{3}n\pi^{*} et {}^{1}\pi\pi^{*} \leftrightarrow {}^{3}\pi\pi^{*}$ sont interdites.

Le facteur de Franck-Condon joue le même rôle que pour la conversion interne, la conversion singulet-triplet est favorisée par les distorsions de géométrie entre les états initial et final.

1.2 Propriétés photophysiques des hétérocycles azotés

1.2.1 Les aza-benzènes

La photophysique des aza-benzènes a fait l'objet de nombreuses études expérimentales et théoriques (voir la référence [22] pour une revue de ces travaux). L'état S_1 est peu fluorescent et l'étude de sa désactivation renseigne sur les mécanismes de transfert non radiatif. Le rendement de conversion intersystème $S_1 \rightarrow T_1$ est élevé pour la pyrazine [23] et la pyrimidine [24, 25] alors que pour l'état S_1 de la pyridine c'est la conversion interne qui domine [26]. Pour comprendre ces mécanismes, il est important de connaître d'une part la position des états excités et les couplages qui existent entre ces états et d'autre part de déterminer leur nature et leur structure. L'analyse des spectres d'absorption $S_0 \rightarrow S_n$ est souvent complexe et l'attribution des bandes $n\pi^*$ controversée. De ce fait, de nombreuses études théoriques se sont attelées à la détermination des énergies de transition verticale des aza-benzènes d'abord à l'aide de méthodes semi-empiriques (CNDO/S et PPP) puis par des méthodes *ab initio* qui traitent correctement la corrélation électronique (MRCI et CASSPT2) (voir référence [27] et les références citées dans l'article). Le couplage vibronique entre les états S_1 et S_2 , $n\pi^*$ et $\pi\pi^*$, a été mis en évidence pour la pyridine [28] et la pyrazine [29] par spectroscopie Raman de résonance et étudié par des méthodes *ab initio* pour la seconde [29].

Le second volet de la compréhension des processus de transfert non radiatif est la caractérisation des surfaces de potentiel et en particulier de leur minima. Sobolewski et Domcke [30] ont calculé les surfaces de potentiel des états S_0 , S_1 et S_2 de dérivés benzèniques le long de la coordonnée de réaction qui mène à une forme préfulvénique et ont attribué les rendéments de conversion non radiative élevés à l'existence de cet état métastable. Cette interprétation est différente de celle de Hochstrasser et Marzzaco pour qui les taux de conversion interne élevés sont le résultat du couplage vibronique entre les états S_1 et S_2 [31]. La structure des états excités des aza-benzènes est mal connue en raison des difficultés expérimentales et théoriques à prédire les géométries des états excités. Les études de structure sont souvent relatives à la pyrazine ou la stétrazine. Ces molécules ont en effet un degré élevé de symétrie dans l'état fondamental et possèdent plusieurs atomes d'azote. Il existe donc une possibilité d'abaissement de la symétrie dans l'état excité par localisation selon que l'excitation $n\pi^*$ est ou non localisée sur les atomes d'azote. Ce problème a été étudié pour la pyrazine [32, 33, 34, 35] et la s-tétrazine [36, 37]. Le bilan de ces études est que l'état $n\pi^*$ conserve la symétrie de l'état fondamental.

1.2.2 L'état S_1 de la pyridine

Puisque les bipyridines et la phénylpyridine comportent un ou deux cycles pyridiniques, il est intéressant de rappeler brièvement les propriétés connues de l'état S_1 de la pyridine et plus particulièrement celles relatives à sa structure.

Comme cela a été mentionné plus haut, le rendement de fluorescence de la pyridine est faible et le processus de désactivation dominant de l'état S_1 serait la conversion interne. Il est admis que le premier état excité de la pyridine est l'état ${}^{1}B_{1}$, de nature $n\pi^{*}$ [26, 27, 30]. Une étude précise des progressions vibroniques dans la bande d'absorption $S_0 \to S_1(n\pi^*)$ a montré l'abaissement important de la fréquence de vibration d'un mode de déformation des liaisons CH hors du plan du cycle (mode 16b), qui passe de 403 cm⁻¹ dans l'état fondamental à 60 cm⁻¹ dans l'état excité [38]. La pyridine adopterait alors une conformation de type bateau dans l'état S_1 avec toutefois une hauteur de barrière d'énergie entre les deux puits symétriques peu élevée si bien que la molécule se comporterait d'un point de vue spectroscopique comme une molécule plane. L'étude récente des profils rotationnels des transitions vibroniques situées dans cette même bande $n\pi^*$ est plutôt en faveur d'une structure plane [26]. Cette conclusion est confortée par la comparaison des constantes de rotation déduites expérimentalement et calculées à partir de la structure de l'état $n\pi^*$ optimisée par un calcul CASSCF. Les fréquences de vibration ont été calculées et l'abaissement du mode 16a observée (voir ci-dessus) est bien reproduit mais la structure prédite est plane. Finalement, la structure de cet état $n\pi^*$ a également été optimisée par la méthode CIS [39]. Ces calculs reproduisent aussi l'abaissement du mode de vibration, mais montrent que la présence de distorsions hors du plan du cycle dépend de la base utilisée. Ces différentes études illustrent la difficulté de caractériser précisément la structure des états excités.

1.2.3 Propriétés photophysiques de l'état S_1 des 44BPY, 22BPY et 4PPY

Il existe peu d'informations relatives à l'état S_1 de ces molécules en particulier en raison de leur faible fluorescence [40]. L'étude par fluorescence picoseconde de la durée de vie de l'état S_1 de la 22BPY dans l'eau montre que le processus de désactivation principal est la conversion intersystème en accord avec des études antérieures dans d'autres solvants [41]. Les auteurs ont de plus calculé les énergies des premiers états excités S_n et T_n par la méthode semi-empirique CS-INDO. Les deux plus basses transitions verticales sont de nature $n\pi^*$. Les deux états sont calculés d'énergies voisines. Des calculs d'interaction de configuration prenant en compte des di et tri excitations sélectionnées selon un critère perturbatif concluent à la nature monoexcitée de ces états $n\pi^*$. Les propriétés photophysiques de la 44BPY et de la 22BPY ont été essentiellement étudiées par absorption transitoire à l'échelle nano/microseconde [42, 43, 44, 45, 46, 47, 48] et subpicoseconde [49]. Après excitation dans une bande d'absorption $S_0 \to S_n \pi \pi^*$ permise suivie de la relaxation rapide vers l'état S_1 , l'évolution des spectres d'absorption transitoire enregistrés entre 1 et 100 picosecondes [49] montre la disparition des bandes d'absorption de l'état S_1 (λ_{max} =378 et 590 nm dans l'eau) et l'apparition de celle de l'état T_1 (λ_{max} =335 nm) (Voir fig 1.4). La durée de vie de l'état S_1 ainsi que la position des bandes d'absorption $S_1 \rightarrow S_n$ sont reportées dans le tableau 1.1 pour des solvants aux caractères protiques et polaires variés.

L'analogie des spectres de l'état T_1 de la 44BPY et de la 22BPY avec ceux du biphényle [50] suggère un état de nature $\pi\pi^*$. Par contre, les spectres de l'état S_1 des bipyridines sont très différents de ceux de l'état S_1 du biphényle [51] dont la durée de vie est beaucoup plus longue (16 ns dans le n-hexane). La nature $n\pi^*$ de l'état S_1 des bipyridines, sa durée de vie très courte et le taux de croisement intersystème important

Fig. 1.4 – Spectres d'absorption transitoire enregistrés pour une solution de 44BPY (10^{-3} M) dans l'eau pour différents retards pompe-sonde entre 2 et 100 ps après excitation à 266 nm [49].

	4	4BPY	2	2BPY	4PPY					
solvant	$ au_s$	λ_{max}	τ_s	λ_{max}	$ au_s$	λ_{max}				
CH ₃ CN	41	374, 580	64	363, 530	100	370, 575				
H ₂ O	27	378, 590	54	367, 527	84	370,575				
C_6H_{14}	11	365, 562	74	365, 525	22	368, 555				
CH₃OH	11.5	378, 590	77	365,528	28	370,575				

TAB. 1.1 – DURÉES DE VIE (PS) ET LONGUEUR D'ONDE D'ABSORPTION MAXIMALE (NM) DE L'ÉTAT S_1 DE LA 44BPY, DE LA 22BPY ET DE LA 4PPY.

sont en accord d'une part avec les règles de croisement intersystème rappelées en début de ce chapitre et d'autre part avec les résultats d'études effectuées par fluorescence [41].

La 4PPY a reçu une attention plus particulière en raison de la forte dépendance de ses propriétés photophysiques à la nature du solvant. L'état S_1 est non fluorescent dans les solvants organiques mais une fluorescence apparaît dans l'eau et dans les milieux acides [52] [53] [54]. Sur la base de calcul CNDO/S, ce comportement est attribué à la modification de la nature de l'état S_1 dûe à la protonation de l'état excité. L'état S_1 serait $n\pi^*$ (¹B₂) dans les solvants organiques mais deviendrait $\pi\pi^*$ (¹A₂) dans l'eau et dans les acides suite à la déstabilisation de l'état $n\pi^*$ après protonation. Plus récemment [55], les propriétés de fluorescence de la 4-phénylpyridine ont été interprétées sur la base des hypothèses de Lim [1] concernant l'effet du couplage vibronique sur les processus non radiatifs. Selon les auteurs [55], l'état S_1 est de nature $\pi\pi^*$ et l'apparition de la fluorescence serait la conséquence de la déstabilisation de l'état $n\pi^*$ diminuant le couplage vibronique $n\pi^* - \pi\pi^*$ Les conclusions de ces deux travaux sont en contradiction avec les résultats obtenus par absorption transitoire subpicoseconde [56] qui montrent un important croisement intersystème $S_1 - T_1$ et suggèrent une nature $n\pi^*$ pour l'état S_1 dans l'eau et dans les solvants organiques. Les résultats de l'étude par spectroscopie d'absorption transitoire subpicoseconde (voir tableau 1.1) suggèrent que les états S_1 des 44BPY, 22BPY et 4PPY sont de même nature.

Nous avons donc entrepris l'étude de l'état S_1 de la 44BPY, de la 22BPY et de la 4PPY par spectroscopie Raman de résonance picoseconde et par des méthodes de chimie quantique afin d'une part de confirmer la nature $n\pi^*$ des états excités et d'autre part d'obtenir des informations structurales sur ceux-ci.

Chapitre 2

Propriétés structurales et vibrationnelles des 44BPY, 22BPY et 4PPY

Les propriétés structurales et vibrationnelles de l'état fondamental de la 44BPY et de la 22BPY ont déjà été étudiées expérimentalement et à l'aide de calculs quantiques. Jusqu'à présent, la 4PPY n'a fait l'objet d'aucune analyse, ni par diffraction des rayons X, ni par spectrométrie vibrationnelle, ni par calculs quantiques. Nous avons donc réalisé une étude structurale et vibrationnelle de cette molécule dans l'état fondamental au moyen de méthodes *ab initio* avant d'aborder l'étude de l'état excité S_1 . Nous présentons dans la première partie de ce chapitre un résumé des résultats de la littérature pour la 44BPY et la 22BPY. Le calcul de la structure et des modes de vibration de l'état fondamental de la 4PPY est présenté dans la seconde partie de ce chapitre. Nous ne nous intéressons qu'au domaine spectral inférieur à 1800 cm⁻¹ puisque seul ce domaine sera considéré dans notre étude de l'état S_1 de ces molécules. En effet, les modes d'élongation

FIG. 2.1 - SCHÉMA DES BIPYRIDINES.

des liaisons CH, attendus vers 3000 cm^{-1} , fournissent peu d'informations sur la structure de molécules aromatiques.

2.1 La 4,4'-bipyridine et la 2,2'-bipyridine

2.1.1 Propriétés structurales

Les deux bipyridines étudiées sont schématisées sur la figure 2.1. Les propriétés des bipyridines ont été rassemblées dans un article de revue par Summers [57]. Des études par diffraction des rayons X [58, 59] ont montré que ces deux molécules, ainsi que des ligands bipyridiniques plus complexes [60], sont constitués de deux cycles pyridiniques peu modifiés par rapport à la molécule de pyridine isolée et sont reliés entre eux par une liaison C-C simple. La structure de ces hétérocycles azotés est très semblable à celle du biphényle, la substitution d'un groupement CH par un atome d'azote ayant peu d'influence sur la structure de la molécule isolée. Des calculs *ab initio* et DFT, validés par la reproduction des spectres Raman et Infrarouge [61, 62, 63], conduisent à la même conclusion. Mais comme pour le biphényle, il se pose le problème de la détermination de l'angle de torsion intercycle.

Le caractère simple de la liaison intercycle autorise la rotation des deux cycles au-

tour de celle-ci pour atteindre la conformation la plus stable. Deux effets antagonistes gouvernent l'équilibre autour cette liaison:

- les interactions autour de la liaison CC centrale: la répulsion stérique entre atomes d'hydrogène situés en ortho de la liaison centrale ou la répulsion électrostatique entre les atomes d'azote également placés en ortho de cette liaison tendent à favoriser une conformation à deux cycles perpendiculaires. Cette gène est identique pour le biphényle, la 44BPY et la 22BPY en conformation cis, mais disparaît pour la 22BPY de conformation trans;
- la conjugaison π : une conformation coplanaire est favorisée par la délocalisation du nuage π sur la toute la molécule.

Les interactions étant faibles, l'angle intercycle est très sensible aux modifications de l'environnement ou aux perturbations de l'espèce moléculaire (par ionisation, protonation, excitation électronique ...). Par exemple, le biphényle existe sous une conformation plane (D_{2h}) à l'état cristallin au-dessus de 40K [65, 66, 67, 64] mais adopte une conformation décalée d'environ 40° à l'état gazeux [68], en solution, ainsi que dans les cristaux en-dessous de 40K [69, 70, 71, 72]. Cette sensibilité rend difficile la détermination théorique de la longueur de la liaison C-C centrale, de l'angle de torsion intercycle et des autres paramètres qui leur sont directement associés. En effet la rotation intercycle provoque la rupture partielle de la conjugaison, qui s'accompagne d'importants changements dans la contribution de la corrélation électronique. Des méthodes post Hartree-Fock sont nécessaires pour décrire correctement ces effets [73]. Les performances des méthodes *ab initio* et de la fonctionnelle de densité pour le calcul du potentiel de torsion de la liaison intercycle ont été étudiées par Karpfen et coll. [74].

Dans le cas de la 44BPY, les études en phase gaz par diffraction d'électrons proposent un angle de torsion de 37° [75], une étude par RMN du proton conclut à une structure décalée en solution avec un angle de 29° [59]. Par ailleurs les spectres IR et Raman en phase solide on été attribués sur la base d'une analyse en coordonnée normale pour une symétrie D_{2h} [76, 77]. Cette symétrie est en contradiction avec les résultats de diffraction des rayons X [59] qui montrent que dans une maille cristalline, il existe deux molécules de 44BPY différenciées par la valeur de leur angle de torsion (17.9° et 34.1°) et reliées entres elles par une liaison hydrogène N...H. Enfin les calculs *ab initio* [61] et DFT [63] de la molécule isolée aboutissent également à une structure décalée avec un angle de torsion de 44° ou de 37° selon la méthode.

Pour la 22BPY, la forme trans plane est la configuration stable en solution et dans le cristal [57] conformément à la minimisation des gènes stériques et à la présence d'intéractions attractives entre les hydrogènes et la paire libre portée par chaque azote. Toutefois la configuration cisoïde, métastable, peut être stabilisée par complexation [57]. Des calculs *ab initio* [78, 62] confirment la stabilité relative de ces deux conformations.

2.1.2 Propriétés vibrationnelles

Les modes normaux de l'état fondamental de la 44BPY et de la 22BPY ont été calculés au niveau Hartree-Fock [61, 62] puis par DFT [63]. Pour la 44BPY, bien que la DFT améliore notablement la valeur des fréquences calculées, ces études ont montré que les spectres Raman et IR peuvent être attribués à l'aide de calculs Hartree-Fock. Ces calculs procurent une description précise des modes de vibration en terme de distribution d'énergie potentielle (DEP), très utile pour interpréter les variations de fréquences entre deux espèces voisines en terme de modification de structure. Pour la 22BPY la corrélation entre les spectres IR et Raman et les calculs Hartree-Fock s'est révélée plus délicate pour certains modes. Ceci résulte du fait que, en raison de la complexité accrue des DEP liée à l'abaissement de symétrie relativement à la 44BPY, une détermination plus fine des constantes de force est nécessaire. Ces calculs ont été effectués avec une base 6 - 31G(*, +), nous les avons reproduits avec une base $6 - 31G^*(+)$ utilisée dans ce travail pour les états excités (voir chapitre 4). Ces résultats ne sont pas sensiblement modifiés.

Pour la plupart des modes normaux du biphényle et des bipyridines, les résultats montrent une similitude dans la forme des modes, dans les DEP, dans la valeur des fréquences et dans les intensités IR et Raman, les attributions pouvant être transposées d'une molécule à l'autre.

De la même manière que la structure des hétérocycles azotés peut être décrite comme l'association de groupements phényle ou pyridinique, les modes de vibration de ces molécules peuvent être décrits à partir des modes normaux du benzène ou de la pyridine. Il est donc possible d'utiliser pour présenter ces modes la même notation que celle utilisée par Wilson pour les modes du benzène [79]. Cependant, comme cela a été mentionné précédemment, certains modes de la 22BPY ont des DEP assez modifiées et leur analogie avec les vibrations du benzène ou de la pyridine est plus délicate. De même, la forme des modes est fortement modifiée par deutération, particulièrement pour la 22BPY, si bien que la correspondance entre modes des dérivés $-h_8$ et $-d_8$ est souvent très approximative. Nous conserverons toutefois autant que possible la notation de Wilson pour ne pas alourdir la discussion.

Les déplacements cartésiens des modes dans le plan sont représentés en annexe pour la 44BPY-h₈ et la 22BPY-h₈. Chaque mode de cycle donne lieu à deux composantes, une en phase et une en opposition de phase, d'autant plus séparées en fréquence que la force du couplage intercycle est grande [80]. Pour la plupart des modes, l'éclatement est faible ($\leq 30 \text{ cm}^{-1}$), il existe cependant un couplage fort, typique de ces molécules. La combinaison en phase des mouvements de respiration de cycle, (mode 1 ~ 1000 cm⁻¹ dans le benzène), se couple avec le mouvement d'élongation de la liaison C-C centrale pour donner un mode composé à 50% de l'élongation intercyle qui vibre autour de 1300 cm⁻¹ et d'un mode de déformation de cycle qui se couple à son tour avec la combinaison en phase des modes 6a (~ 600 cm⁻¹ dans le benzène) pour finalement donner deux composantes à 700 cm⁻¹ et 300 cm⁻¹. La fréquence de vibration intercycle fournit une mesure du degré de distorsion quinoïdale du squelette carboné. Par exemple, l'augmentation de sa valeur de 80 cm⁻¹ en passant de l'état S_0 de la 44BPY à l'état triplet T_1 témoigne d'une forte distorsion quinoïdale [81].

2.2 La 4-phénypyridine

Cette étude préliminaire a pour but d'attribuer les spectres de vibration de la 4PPY et de vérifier que les propriétés structurales et vibrationnelles de l'état fondamental sont correctement décrites au niveau HF. Etudiant les modes de vibration de la 4PPY, il nous a semblé intéressant de comparer entre elles les différentes méthodes dont on sait qu'elles traitent différemment la conjugaison entre les cycles du biphényle [74].

2.2.1 Méthodes de calcul

La structure de la 4PPY a été optimisée par les méthodes RHF, RHF-MP2, DFT-LDA [82, 83, 84, 85], DFT-B3LYP et DFT-BLYP avec la base $6 - 31G^*(+)$ qui a été choisie pour l'étude des états excités (voir chapitre 4). Les modes de vibration ont été calculés au niveau RHF, DFT-LDA, DFT-B3LYP et DFT-BLYP [86, 87, 88, 89] avec la base $6 - 31G^*(+)$. La série de programmes Gaussian94 [90] a été utilisée. La matrice des dérivées secondes de l'énergie, calculée en coordonnées cartésiennes, a été transformée en coordonnées internes au moyen du programme REDONG [91]. Ce programme a également été utilisé pour le calcul des DEP. Ces données ont été comparées à celles obtenues expérimentalement à partir des spectres IR et Raman de la 4PPY à l'état solide et en solution pour en tester la pertinence.

2.2.2 Propriétés structurales

Les structures calculées avec les différentes méthodes sont reportées dans le tableau (2.1), la notation est celle de la figure (2.2). Dans tous les cas, les structures prédites sont constituées de deux cycles aromatiques plans, ayant des paramètres proches de ceux de la pyridine et du benzène, joints par une liaison intercycle simple et faisant un angle de 30 à 45 ° entre eux. La valeur des angles de valence n'est pas significativement modifiée selon la méthode utilisée. D'une manière générale, exceptée la liaison intercycle dont la dépendance au choix de la méthode est plus complexe, toutes les longueurs de liaison sont calculées plus courtes au niveau HF. En DFT les liaisons sont calculées systématiquement plus longues de 0.01 Å avec la fonctionnelle BLYP qu'avec la B3LYP. En conséquence, l'angle de torsion intercycle est plus faible de 2.2 ° avec la fonctionnelle BLYP. Cet effet est directement lié à la modification de l'encombrement stérique autour de la liaison intercycle.

Les paramètres structuraux calculés avec les méthodes HF-MP2 et DFT-B3LYP sont très proches exceptés l'angle de torsion et la longueur de la liaison intercycle. Les deux méthodes traitent donc d'une manière équivalente la corrélation au sein des deux groupements mais différemment la corrélation entre les deux parties de la molécule.

FIG. 2.2 - NUMÉROTATION DES ATOMES DE LA 4PPY.

ì

	RHF	LDA	B3LYP	BLYP	MP2
liaisons Å		a i i <u>a</u> a a			
$C_4C'_4$	1.489	1.464	1.484	1.491	1.476
C_3C_4	1.391	1.397	1.403	1.415	1.401
$C'_{3}C'_{4}$	1.392	1.398	1.405	1.416	1.403
C_2C_3	1.383	1.387	1.393	1.403	1.394
$C_2'C_3'$	1.384	1.387	1.394	1.403	1.395
C_1C_2	1.321	1.334	1.341	1.354	1.346
$N_1'C_2'$	1.385	1.391	1.396	1.406	1.397
angles °					
$C_3C_4C_5$	116.9	116.4	116.6	116.4	117.1
$C'_3C'_4C'_5$	118.6	118.6	118.4	118.3	119.0
$C_2C_3C_4$	119.1	119.4	119.5	119.7	119.3
$C'_{2}C'_{3}C'_{4}$	120.7	120.7	120.8	120.8	120.4
$C_1C_2C_3$	123.9	123.9	123.9	124.1	124.0
$ N_1' C_2' C3'$	120.2	120.1	120.2	120.2	120.2
$C_6C_1C_2$	117.1	116.7	116.5	116.1	116.3
$C_6'N_1'C_2'$	119.6	119.7	119.6	119.6	119.7
ω	43.5	29.8	36.9	35.7	43.6

Tab. 2.1 – Structures calculées pour la 4PPY (base $6 - 31G^*(+)$) par différentes méthodes.

Déplacements dans le plan des cycles									
$\rightarrow R_{CC}, R^*_{CC}$: élongations des liaisons CC et CN								
$\rightarrow \beta_{CH}, \beta_{CH}^*$: déformation des angles de valence CCH								
$\rightarrow \delta_{CCC}, \delta^*_{CCC}$: déformation des angles de valence CCC, CNC,								
$\rightarrow \Omega_{ir}$: élongation de la liaison intercycle								
Déplacemer	nts hors du plan des cycles								
$\rightarrow \tau, \tau^*$: torsion des liaisons CC et CN								
$ ightarrow \gamma, \gamma^*$: déformation des angles dihédraux CCCH								
$\rightarrow au_{ir}$: torsion de la liaison intercycle								
* se rapporte au cycle pyridinique									

Enfin, les longueurs de liaison, calculées avec la fonctionnelle locale LDA, sont intermédiaires entre les valeurs HF et B3LYP. Par contre, la liaison intercycle est calculée beaucoup plus courte qu'avec les autres méthodes (1.46 Å). Cette courte longueur entraîne une faible valeur de l'angle de torsion intercycle ($\omega = 29.8^{\circ}$). Les structures calculées ainsi que leur sensibilité à la méthode utilisée sont en bon accord avec les études relatives au biphényle [74]

2.2.3 Propriétés vibrationnelles de 4PPY

Les tableaux 2.3 à 2.6 rassemblent les résultats obtenus pour chacune des méthodes de calcul. Il s'y trouve pour chaque mode la fréquence calculée, la symétrie ainsi qu'une description sommaire du mode. La colonne « localisation » reporte le pourcentage de DEP sur chaque cycle (« IC » regroupe les coordonnées internes de déformation intercycle). La définition des coordonnées internes est donnée dans le tableau (2.2).

Pour évaluer la validité des différents calculs, il est possible de comparer les fréquences théoriques correspondantes, affectées d'un facteur d'échelle propre à chaque méthode, avec les fréquences IR et Raman expérimentales. Le facteur d'échelle est de 0.9 et 0.967 respectivement pour les méthodes HF et DFT. Pour la méthode HF, il est connu que

Exp.	(cm^{-1})	Са	lc.			Di	istribution d'énergie potentielle. (%)							
I.R.	Raman	sym.	fréq.	local	isation	. (%)	description du mode							
				Ph	Py*	I.C.	coordonnées. internes (%)							
		a	75	5	5	90	$ au_{ir}(90)$							
ł		b	92	49	51	0	$\gamma^{*}(29) \ \gamma(28) \ \tau^{*}(20) \ \tau(18)$							
		b	135	50	50	0	$\delta_{ccc}^{*}(35) \ \delta_{ccc}(32) \ \tau^{*}(11) \ \tau(12)$							
244	249	6 -	256	49	51	0	$\delta_{ccc}^{*}(9) \ \delta_{ccc}(10) \ \gamma^{*}(15) \ \gamma(12) \ \tau^{*}(27) \ \tau(25)$							
328	332p	a	313	33	40	27	$\Omega_{ir}(27) R_{cc}^{*}(7) R_{cc}(6) \delta_{ccc}^{*}(28) \delta_{ccc}(23)$							
ļ	•	a	372	2	95	3	$\gamma^{*}(23) \tau^{*}(72)$							
		Ь	376	52	48	0	$\delta_{ccc}^{*}(25) \ \delta_{ccc}(26) \ \gamma^{*}(8) \ \gamma(12) \ \tau^{*}(10) \ \tau(11)$							
ļ	401p	a	404	95	1	4	$\gamma(32) \tau(63)$							
442	· 1	Ь	480	57	43	0	$\delta_{ecc}^{*}(19) \delta_{ecc}(15) \gamma^{*}(9) \gamma(25) \tau^{*}(10) \tau(12)$							
559	563	Ь	559	40	60	0	$\gamma^{*}(35) \gamma(28) \tau^{*}(24) \tau(8)$							
604		a	599	48	52	0	$\delta_{acc}^{*}(44) \delta_{ccc}(36) \beta_{ab}^{*}(7) \beta_{cb}(10)$							
	619	b	614	97	3	0	$\int \frac{\partial ccc}{\partial ccc} (67) \beta_{cb} (26)$							
	670	b	668	3	97	0	$R_{**}^{*}(5) \delta_{***}^{*}(69) \beta_{**}^{*}(22)$							
687	010	Ь	691	99	1	Õ	$\gamma(74) \tau(25)$							
730		b	737	53	47	0	$\gamma^{*}(22) \gamma(44) \tau^{*}(25) \tau(8)$							
746	748	a	753	40	41	19	$\Omega_{in}(19) B^*(9) R_{co}(11) \delta^*(26) \delta_{coc}(20) \beta_{ch}(9)$							
767	765	6	759	41	59	0	$\gamma^{*}(42) \gamma(35) \tau^{*}(16) \tau(5)$							
101	100	ь Ь	810	10	81	0	$\gamma'(12)\gamma(03)\gamma'(10)\gamma(0)$							
820	831	a	897		01	0	$\gamma(11)\gamma(11) = (0)$ $\gamma(80) \tau(20)$							
000	004	a	856		00	0	$\gamma(00), (20)$							
(017)			800	05	5	0	$\gamma(13) \gamma(23)$							
(917)		0	030	100	0	0	$\gamma(75) \tau(24)$							
(917)		L L	900 046	100	08	0	$\gamma(10) \tau(22)$							
Ì			054		100	0	$\gamma^{*}(83) \tau^{*}(17)$							
		L L	904	0	100	0	(7(03)7(11))							
0.05		0	902 086	50	1	0	$P_{*}^{(10)} (21)$ $P_{*}^{(6)} \delta_{*}^{(20)} \delta_{-}^{(14)} \beta_{+}^{(11)}$							
900	1002	u la	900	27	41 62	1	$\begin{bmatrix} R_{cc}(0) & 0_{ccc}(30) & 0_{ccc}(31) & 0_{ch}(11) \\ R^*(24) & R^*(11) & \delta^*(32) & \delta^*(10) & \beta^*(6) & \beta_+(6) \\ \end{bmatrix}$							
1001	1005p	a	1020	70	20	0	$\begin{array}{c} R_{cc}(24) & R_{cc}(11) & \sigma_{ccc}(32) & \sigma_{ccc}(13) & \rho_{ch}(0) & \rho_{ch}(0) \\ R^{*}(23) & R_{cc}(65) \end{array}$							
1041	1020p	u l a	1055	76	50 94	0	$R^*(17) = R(30) \beta^*(6) \beta_1(32)$							
1041	1044p	a	1033	10	24 06	0	$\frac{P_{cc}(11) P_{cc}(33) P_{ch}(3) P_{ch}(32)}{P^{*}(41) \delta^{*}(8) R^{*}(47)}$							
1073	1079	L L	1077	56	90 44	0	$P_{cc}(41) = 0_{ccc}(0) P_{ch}(41)$ $P_{cc}(41) = 0_{ccc}(0) P_{ch}(41)$							
1075	1072	0	1007	30	44 61	0	$R_{cc}^{(11)} R_{cc}^{(20)} \rho_{ch}^{(51)} \rho_{ch}^{(55)}$							
1100	1150		1099	100	01	0	$\begin{bmatrix} n_{cc}(22) & n_{cc}(10) & \rho_{ch}(50) & \rho_{ch}(15) \\ P_{cc}(7) & R_{cc}(92) \end{bmatrix}$							
1102	1100	0	1174	100	1	0	$P_{cc}(1) P_{ch}(33)$							
109	1995-	a	1174	1	100	1	$ \begin{array}{c} P_{cc}(13) \ \beta_{ch}(03) \\ P_{ch}(23) \ \beta_{ch}(03) \end{array} $							
1232	1200p 1999	u (1221	1	90	T	$\mu_{cc}(22) \rho_{ch}(10)$							
1979	1220		1915	26	20	46	$O_{1}(A6) = R^{*}(0) = R(8) \delta^{*}(5) R^{*}(15) R(13)$							
(1210)	1203p		1010	20	29	40	$\begin{array}{c} S_{ir}(40) & R_{cc}(3) & R_{cc}(3) & 0 \\ P^{*}(0) & R_{cc}(3) & R^{*}(18) & R_{cc}(63) \end{array}$							
(1010)			1207	12	20 79	0	$\begin{bmatrix} R_{cc}(0) & R_{cc}(0) & \rho_{ch}(10) & \rho_{ch}(00) \\ R^{*}(7) & R^{*}(60) & R^{*}(26) \end{bmatrix}$							
(1002)	(1990)	10	1910	5	05	0	$P_{cc}(1) p_{ch}(00) p_{ch}(20)$							
(1999)	(1998)		1374		90 94	0	$P_{cc}(00) P_{ch}(1)$ $P^{*}(10) P_{ch}(58) R^{*}(14) R_{ch}(6)$							
1400		U	1411		04 60	0	$\begin{bmatrix} 1_{cc}(10) & 1_{cc}(00) & \rho_{ch}(17) & \rho_{ch}(0) \\ R^* (20) & R & (27) & R^* (26) \end{bmatrix}$							
1400	1110	<i>b</i>	1440	140	00 8	0 0	$R_{cc}(50) R_{cc}(51) P_{ch}(20)$							
1444	1440		1400	192	0 57	0	$\begin{bmatrix} 1 c_{c}(10) & 0 c_{c}(0) & \rho_{ch}(11) \\ R^{*}(21) & R^{*}(15) & R^{*}(25) & R^{*}(26) \end{bmatrix}$							
1481	1519		1409	40	91 90	19	$\begin{bmatrix} \mu_{cc}(21) & \mu_{cc}(10) & \mu_{ch}(00) & \mu_{ch}(20) \\ 0 & (12) & R^* & (12) & R^* & (20) & R^* & (12) & R^* & (22) \end{bmatrix}$							
1549	тэтэр		1020	10	00 01	10	$\begin{array}{c} s_{ir}(10) \ \mu_{cc}(10) \ \mu_{cc}(20) \ \mu_{ch}(10) \ \mu_{ch}(42) \\ R^* (6A) \ R \ (12) \ \delta^* \ (9) \ R^* \ (0) \end{array}$							
1042	1500		1694	19	01 19	0	$\begin{bmatrix} n_{cc}(0+1) & n_{cc}(1+2) & 0_{ccc}(0) & \rho_{ch}(0) \\ R^*(1+2) & R^*(60) & \delta & (0) & R^*(1+4) \end{bmatrix}$							
1987	1000	0	1004	02	10	7	$\begin{array}{c} \Pi_{cc}(12) \ \Pi_{cc}(00) \ \theta_{ccc}(3) \ Pch(14) \\ \Omega_{cc}(7) \ P^{*}(6A) \ \delta^{*}(0) \ R^{*}(10) \end{array}$							
	1000		1041		92	1	$\begin{bmatrix} s_{ir}(1) & n_{cc}(04) & 0_{ccc}(9) & \rho_{ch}(19) \\ D & (69) & (9) & \rho_{ch}(10) \end{bmatrix}$							
1	1012	a	1090	1 90	U	4	$n_{cc}(00) \sigma_{ccc}(0) \mu_{ch}(19)$							

TAB. 2.3 – Fréquences de vibration de la $4PPY-S_0$. Calcul LDA/ $6-31G^*(+)$. Les fréquences entre () sont celle dont l'attribution est incertaine .

$\mathbf{Exp.}$	(cm^{-1})	\mathbf{C}	alc.			Di	stribution d'énergie potentielle. (%)
I.R.	Raman	sym.	fréq.	local	isation	(%)	description du mode
			0.967	Ph	Py	I.C.	coordonnées. internes (%)
ĺ		a	67	4	4	92	$\tau_{ir}(92)$
		b	91	50	50	0	$\gamma^{*}(28) \ \gamma(28) \ \tau^{*}(19) \ \tau(18)$
		b	126	50	50	0	$\delta^{\star}_{ccc}(33) \ \delta_{ccc}(31) \ \gamma(6) \ \tau^{\star}(10) \ \tau(11)$
244	249	b	258	49	51	0	$\delta_{ccc}^{*}(10) \ \delta_{ccc}(12) \ \gamma^{*}(14) \ \gamma(11) \ \tau^{*}(27) \ \tau(24)$
328	332	a	302	31	36	33	$\Omega_{ir}(33) R^{*}_{cc}(7) R_{cc}(6) \delta^{*}_{ccc}(25) \delta_{ccc}(21)$
		b	364	52	48	0	$\delta^{*}_{ccc}(25) \ \delta_{ccc}(25) \ \gamma^{*}(8) \ \gamma(11) \ \tau^{*}(11) \ \tau(11)$
		a	381	2	96 9	2	$\gamma^{*}(25) \tau^{*}(71)$
	401p	a	405	95	2	3	$\gamma(33) \tau(62)$
442	F 0.0	6	488	58	42	0	$\int_{-\infty}^{\infty} \frac{\partial_{ccc}(13)}{\partial_{ccc}(13)} \frac{\gamma^{*}(9)}{\gamma^{*}(28)} \frac{\gamma(10)}{\tau^{*}(10)} \frac{\tau(13)}{\tau(13)}$
559	563	D	555	38	62 50	0	$\gamma^{*}(35) \gamma(25) \tau^{*}(25) \tau(8)$
604	010		600	48	52	0	$\beta_{ccc}(43) \delta_{ccc}(30) \beta_{ch}(1) \beta_{ch}(10)$
	619	D I	013	97	ు గం	0	$ \begin{array}{c} R_{cc}(0) & \sigma_{ccc}(00) & \beta_{ch}(20) \\ P_{c}(7) & S_{cc}(07) & \beta_{ch}(20) \end{array} $
607	670		600 600	4	90 9	0	$R_{cc}(1) \sigma_{ccc}(01) \rho_{ch}(22)$
687			090 700	97	ঠ ৫1	0	$\gamma(10) \tau(21)$
130	740	0	(29 797	39	40	0	γ (30) γ (34) τ (30) O (20) D^{*} (0) D (11) S^{*} (26) S (20) Q (0)
140	148		131 754	40	40	20	$\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{j=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{j=1}^{2} \frac{1}{2} \sum_{j=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{j=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{j=1}^{2} \frac{1}{2} \sum_{i=1}^{2} $
101	105		794	19	39 87	0	γ (20) γ (53) τ (10) τ (7)
020	091	0	010	100	01	0	γ (80) γ (9) τ (1)
0.30	034	a	000 000		100	0	$\gamma(30) \ \gamma(20)$
(017)			004	07	3	0	γ (60) 7 (20) γ (78) τ (18)
(917)		a	904 040	100	0	0	$\gamma(10) \tau(10)$ $\gamma(75) \tau(24)$
(917)		L L	048	1	00	0	$\gamma(10) \tau(21)$ $\gamma^{*}(82) \tau^{*}(17)$
		a	940 960		100	0	$\gamma^{*}(82) \tau^{*}(18)$
		L B	966	100	0	0	$\gamma(02) + (10)$ $\gamma(75) + \tau(25)$
985		a	979	18	82	0	$R_{**}^{(10)}(40) R_{ee}(7) \delta_{***}^{*}(36) \delta_{eee}(9) \beta_{**}^{*}(6)$
1001	1003p	a	985	81	19	Õ	$R_{cc}^{*}(9) R_{cc}(25) \delta_{ccc}^{*}(8) \delta_{ccc}(43) \beta_{ch}(12)$
	1020p	a	1006	67	33	0	$R_{cc}^{*}(14) R_{cc}(44) \delta_{ccc}^{*}(15) \delta_{ccc}(17) \beta_{ch}(6)$
1041	1044p	a	1037	80	20	0	$\frac{R_{ee}^{2}(11)}{R_{ee}^{2}(49)} \frac{\delta_{eee}^{2}(11)}{\delta_{eee}^{2}(8)} \frac{\beta_{eb}(26)}{\beta_{eb}(26)}$
1073		a	1066	2	98	0	$R_{cc}^{*}(47) \delta_{ccc}^{*}(13) \beta_{cb}^{*}(38)$
1073	1072	Ь	1078	98	2	0	$R_{cc}(49) \delta_{ccc}(7) \beta_{ch}(42)$
1103		b	1087	2	98	0	$R_{cc}^{*}(41) \delta_{ccc}^{*}(6) \beta_{cb}^{*}(51)$
1162	1158	Ь	1156	100	0	0	$R_{cc}(16) \beta_{ch}(84)$
1189		a	1178	99	1	0	$R_{cc}(19) \beta_{ch}(80)$
	1223	b	1245	7	93	0	$R^*_{cc}(89)$
1232	1235p	a	1216	1	98	1	$R_{cc}^{*}(26) \beta_{ch}^{*}(70)$
1278	1283p	a	1274	23	26	51	$\Omega_{ir}(51) \ R^*_{cc}(10) \ R_{cc}(7) \ \delta^*_{ccc}(6) \ \delta_{ccc}(6) \ \beta^*_{ch}(10) \ \beta_{ch}(10)$
1313		b	1288	75	25	0	$R_{cc}^{*}(16) R_{cc}(59) \beta_{ch}^{*}(8) \beta_{ch}(13)$
1332		b	1324	90	10	0	$R_{cc}(20) \ \beta_{ch}^{\star}(8) \ \beta_{ch}(68)$
1339	1335	6	1328	-37	63	0	$R_{cc}^{*}(8) R_{cc}(30) \beta_{ch}^{*}(51) \beta_{ch}(6)$
1408		b	1408	9	91	0	$R_{cc}^{*}(29) \ \beta_{ch}^{*}(59) \ \beta_{ch}(5)$
1444	1448	b	1445	89	11	0	$R_{cc}(31) \delta_{ccc}(6) \beta_{ch}(52)$
1481		a	1482	39	61	0	$R_{cc}^{*}(18) R_{cc}(11) \beta_{ch}^{*}(41) \beta_{ch}(27)$
	1513p	a	1504	51	38	11	$\Omega_{ir}(11) \ R_{cc}^{*}(14) \ R_{cc}(18) \ \beta_{ch}^{*}(23) \ \beta_{ch}(31)$
1542		b	1548		88	U	$\begin{bmatrix} R_{cc}^{*}(64) & R_{cc}(6) & \delta_{ccc}^{*}(9) & \beta_{ch}^{*}(14) \\ R_{cc}^{*}(61) & R_{cc}^{*}(61) & R_{cc}^{*}(61) & R_{cc}^{*}(61) \end{bmatrix}$
1587	1588	b	1586	90	10	0	$\begin{bmatrix} R_{cc}^{*}(7) & R_{cc}(61) & \delta_{ccc}(9) & \beta_{ch}(21) \\ R_{cc}^{*}(7) & R_{cc}^{*}(62) & S_{cc}^{*}(62) & S_{cc}^{*}(62) \end{bmatrix}$
	1600	a	1598		95	5	$\begin{array}{c} \Omega_{ir}(5) \ \mathcal{K}_{cc}^{*}(60) \ \delta_{ccc}^{*}(9) \ \beta_{ch}^{*}(25) \\ \mathcal{D}_{ccc}(61) \ \mathcal{D}_{ccc}(61) \ \mathcal{D}_{ccc}(61) \ \mathcal{D}_{ccc}(61) \end{array}$
L	1612	<u>a</u>	1008	96	0	4	$K_{cc}(04) \ o_{ccc}(8) \ p_{ch}(24)$

TAB. 2.4 – Fréquences de vibration de la 4PPY- S_0 . Calcul B3LYP/6 – $31G^*(+)$. Les fréquences entre () sont celles dont l'attribution est incertaine.
$\mathbf{Exp.}$	(cm^{-1})	Ca	lc.	Dis			stribution d'énergie potentielle. (%)
I.R.	Raman	sym.	fréq.	localisation (%)		ı (%)	description du mode
				Ph	Py*	I.C.	coordonnées. internes (%)
		a	68	4	5	91	$\tau_{ir}(91)$
		b	91	50	50	0	$\gamma^{*}(28) \gamma(28) \tau^{*}(20) \tau(18)$
		b	128	50	50	0	$\delta_{ccc}^{*}(33) \delta_{ccc}(31) \gamma(6) \tau^{*}(11) \tau(12)$
244	249	Ь	257	49	51	0	$\delta_{acc}^{*}(10) \ \delta_{ccc}(12) \ \gamma^{*}(14) \ \gamma(11) \ \tau^{*}(27) \ \tau(24)$
328	332	a	304	31	35	33	$\Omega_{ir}(33) R_{**}^{*}(7) R_{cc}(6) \delta_{***}^{*}(24) \delta_{ccc}(21)$
0.00	00-	ь Б	367	52	48	0	$\int \delta^{*} (25) \delta_{ccc}(25) \gamma^{*}(8) \gamma(12) \tau^{*}(11) \tau(11)$
		a	376	1	96	2	$\gamma^{*}(24) \tau^{*}(72)$
	401n	a	405	96	1	3	$\gamma(-1) = \gamma(-1) = \gamma(-1$
442	1015	h h	488	58	42	Ň	$\int \delta^{*} (18) \delta_{\cdots}(13) \gamma^{*}(9) \gamma(27) \tau^{*}(10) \tau(13)$
550	563	h	556	30	61	0 0	$\gamma^{*}(35) \gamma(26) \tau^{*}(25) \tau(8)$
604	000		604	18	52	0	$\int \lambda^* (43) \delta (36) \beta^* (7) \beta (10)$
004	610		617	40	04 9	0	$P_{ccc}(45) \delta_{ccc}(55) \rho_{ch}(1) \rho_{ch}(10)$
	019		017		06 06	0	$\frac{1}{1} \frac{1}{1} \frac{1}$
0.07	670		000	4	90	0	$R_{cc}(1) \delta_{ccc}(00) \rho_{ch}(23)$
687			091 700	97	ა იე	0	$\gamma(1) \tau(20)$
730		b	728	37	63	0	$\gamma^{-}(33) \gamma(32) \tau^{-}(29)$
746	748		740	40	40	20	$\Omega_{ir}(20) R_{cc}^{-}(10) R_{cc}(12) \delta_{ccc}^{-}(26) \delta_{ccc}(20) \beta_{ch}(9)$
767	765	6	752	62	38	0	$\gamma^{*}(29) \gamma(55) \tau^{*}(8) \tau(6)$
		b	815	13	87	0	$\gamma^{*}(79) \gamma(10) \tau^{*}(7)$
830	834	a	830	100	0	0	$\gamma(80) \tau(20)$
		a	858	0	100	0	$\gamma^{*}(80) \tau^{*}(20)$
(917)		b	898	97	3	0	$\gamma(78) \tau(19)$
(917)		а	929	100	0	0	$\gamma(75) \ au(25)$
		b	941	1	99	0	$\gamma^{*}(81) \tau^{*}(18)$
		a	948	0	100	0	$\gamma^{*}(82) \ \tau^{*}(18)$
		6	958	100	0	0	$\gamma(74) \ \tau(26)$
985		a	976	6	94	0	$R_{cc}^{*}(54) \delta_{ccc}^{*}(34) \beta_{cb}^{*}(6)$
1001	1003p	a	988	93	7	0	$R_{cc}(37) \delta_{ccc}(43) \beta_{ch}(12)$
	1020p	a	1008	67	33	0	$R_{cc}^{*}(13) R_{cc}(35) \delta_{ccc}^{*}(17) \delta_{ccc}(24) \beta_{ch}(7)$
1041	1044p	a	1039	80	20	0	$R_{cc}^{*}(10) R_{cc}(51) \delta_{ccc}^{*}(8) \beta_{ch}(25)$
1073	r	a	1066	1	98	0	$R_{**}^{*}(47) \delta_{***}^{*}(16) \beta_{**}^{*}(35)$
1073	1072	b	1082	94	6	0	$\frac{\partial \mathcal{L}}{\partial \mathcal{L}} = \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \frac{\partial \mathcal{L}}{\partial \mathcal{L}} + \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \frac{\partial \mathcal{L}}{\partial \mathcal{L}} + \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \frac{\partial \mathcal{L}}{\partial \mathcal{L}} + \frac{\partial \mathcal{L}}{$
1103	1011	b	1089	5	95	0	$R_{**}^{*}(41) \delta_{***}^{*}(6) \beta_{**}^{*}(48)$
1162	1158	b	1167	100	0	0	$B_{ac}(12) \beta_{ab}(87)$
1189	1100	a	1187	99	1	ů.	$B_{rec}(20) \beta_{reb}(78)$
1100	1993	a	1991	1	98	1	$B^*(28) \beta^*.(67)$
1929	1220 1935n	a	1221	6	94	Î.	R^* (80)
1978	1200p	a	1200	22	25 25	53	$O_{cc}(03)$ $O_{cc}(53) R^{*}(10) R(8) \delta^{*}(6) \delta(6) \beta^{*}(0) \beta(8)$
1210	1200	L L	1210		20	0.0	$\frac{St_{ir}(00)}{R_{cc}(10)} \frac{R_{cc}(0)}{R_{cc}(0)} \frac{R_{cc}(0)}{R_{cc}(0)} \frac{R_{cc}(0)}{R_{ch}(0)} \frac{R_{ch}(0)}{R_{ch}(0)} \frac$
1010			1299	64	26	0	$ \begin{array}{c} \Pi_{cc}(19) \ \Pi_{cc}(52) \ \rho_{ch}(11) \ \rho_{ch}(15) \\ P_{ch}(7) \ R^{*} \ (20) \ R_{ch}(55) \end{array} $
1332	1995		1002	60	30 91	0	$\begin{bmatrix} n_{cc}(1) \ p_{ch}(30) \ p_{ch}(33) \\ D_{c}(50) \ A^{*}(34) \ A_{c}(16) \end{bmatrix}$
1339	1339	0	1338	09	31 00	0	$R_{cc}(52) \beta_{ch}(24) \beta_{ch}(10)$
1408	1 4 4 2	0	1412	8	92	0	$R_{cc}^{*}(29) \beta_{ch}^{*}(00)$
1444	1448	b	1447	89	11	U	$\begin{bmatrix} R_{cc}(3) & R_{cc}(31) & 0_{ccc}(3) & \beta_{ch}(33) \\ R_{cc}(31) & R_{cc}(31) & 0_{ccc}(31) & 0_{ccc}(31) \\ R_{cc}(31) & R_{cc}(31) & 0_{ccc}(31) \\ R_{cc}(31) & R_{cc}(31) & 0_{ccc}(31) \\ R_{cc}(31) & R_{cc}(31) & R_{cc}(31) \\ R_{cc}(31) & R_{cc}(31)$
1481		a	1483	25	75	U	$ \begin{array}{c} K_{cc}(21) \ K_{cc}(1) \ \beta_{ch}^{-}(52) \ \beta_{ch}(11) \\ \end{array} $
	1513p	a	1503	66	25	9	$ \sum_{i=1}^{M_{ir}(9)} K_{cc}^{*}(9) K_{cc}(21) \beta_{ch}^{*}(15) \beta_{ch}(42) $
1542		b	1531	10	90	0	$ \mathcal{K}_{cc}^{-}(64) \delta_{ccc}^{+}(10) \beta_{ch}^{+}(16) $
1587	1588	b	1575	93	7	0	$R_{cc}(62) \delta_{ccc}(8) \beta_{ch}(23)$
	1600	a	1582	2	91	6	$\Omega_{ir}(6) \ R^*_{cc}(57) \ \delta^*_{ccc}(8) \ \beta^*_{ch}(26)$
	1612	a	1598	95	3	2	$R_{cc}(63) \ \delta_{ccc}(8) \ \beta_{ch}(25)$

TAB. 2.5 – Fréquences de vibration de la $4PPY-S_0$. Calcul BLYP/6 – $31G^*(+)$. Les fréquences entre () sont celles dont l'attribution est incertaine

Exp. (cm^{-1})		Calc.		Distribution d'énergie potentielle. (%)				
I.R.	Raman	sym.	fréq.	localisation (%)		(%)	description du mode	
			0.9	Ph	Py	I.C.	coordonnées. internes (%)	
		a	61	3	4	93	$\tau_{ir}(93)$	
		6	94	51	49	0	$\gamma^{*}(27) \gamma(29) \tau^{*}(17) \tau(18)$	
ļ		b	120	49	51	0	$\delta^*_{ccc}(32) \ \delta_{ccc}(31) \ \gamma^*(7) \ \gamma(7) \ \tau^*(10) \ \tau(10)$	
244	240	b	267	49	51	0	$\delta_{ccc}^{*}(11) \delta_{ccc}(13) \gamma^{*}(13) \gamma(10) \tau^{*}(26) \tau(25)$	
328	332	a	295	30	35	35	$\Omega_{ir}(35) R^{*}_{cc}(6) R_{cc}(6) \delta^{*}_{ccc}(25) \delta_{ccc}(21)$	
		6	357	52	48	0	$\delta_{ccc}^{*}(24) \delta_{ccc}(25) \gamma^{*}(8) \gamma(10) \tau^{*}(11) \tau(12)$	
		a	399	5	94	1	$\gamma^{*}(26) \tau^{*}(68)$	
	401p	a	412	93	5	3	$\gamma(31) \tau(62)$	
442	1	Ь	502	61	39	0	$\delta_{rec}^{*}(16) \delta_{ccc}(10) \gamma^{*}(8) \gamma(32) \tau^{*}(10) \tau(16)$	
559	563	b	565	36	64	0	$\delta_{ccc}(6) \gamma^{*}(34) \gamma(21) \tau^{*}(28) \tau(8)$	
604		a	599	48	52	0	$\delta_{acc}^{*}(43) \delta_{ccc}(35) \beta_{ab}^{*}(7) \beta_{cb}(10)$	
	619	b	611	97	3	0	$\frac{1}{R_{cc}(6)} \delta_{ccc}(65) \beta_{ch}(26)$	
	670	b	663	3	97	Õ	$B_{**}^{*}(7) \delta_{***}^{*}(67) \beta_{**}^{*}(22)$	
687	0.0	b	701	96	4	Õ	$\gamma(63) \tau(33)$	
746	748	a	732	39	41	20	$\Omega_{in}(20) R^*(9) R_{in}(11) \delta^*(27) \delta_{acc}(20) \beta_{ab}(9)$	
730	110	h	743	30	70	ñ	$\gamma^{*}(32) \gamma(26) \tau^{*}(37)$	
767	765	ь Б	773	72	28	ñ	$\gamma^{*}(19) \gamma(63) \tau^{*}(7) \tau(8)$	
(830)	(834)	h	846	11	89	0 0	$\gamma'(10) \gamma(00) \gamma'(1) \gamma(0)$	
(830)	(834)	a	864	100	0	0	$\gamma(02) \gamma(1) \gamma(1)$	
(017)	(004)	u a	885	100	100	0	$\gamma(01) \tau(13)$	
(917)			045	07	200	0	$r_{1}^{(0)}$ $r_{20}^{(17)}$	
085			940 070	85	5 15	0	$R^{*}(11) R (46) \delta (31) R (8)$	
1001	10025	u a	919	10	20 Q1	0	$\frac{R_{cc}(11)}{P_{cc}(40)} = \frac{1}{C_{cc}(51)} \frac{\rho_{ch}(5)}{\rho_{ch}(5)}$	
1001	1003p		904		00	0	$\int L_{cc}(39) \sigma_{ccc}(39) \sigma_{ccc}(39) \sigma_{ccc}(39) \rho_{ch}(39)$	
		L L	900		99 9	0	γ (04) / (15) $\alpha(74) = \sigma(22)$	
	1000	0	990	90	2	0	$\gamma(14) \gamma(22)$ $D^*(0) D^*(20) S^*(10) S^*(20) Q^*(11)$	
	1020p		1002	100	3U 0	0	$R_{cc}(0) R_{cc}(29) \theta_{ccc}(10) \theta_{ccc}(30) \rho_{ch}(11)$	
			1010	100	100	0	$\gamma(10) \tau(22)$	
1041	1014	D	1010		100	0	$\gamma^{*}(02) T^{*}(11)$ $D^{*}(11) D^{*}(45) S^{*}(10) Q^{*}(95)$	
1041	1044p		1034	(4	20	0	$\begin{bmatrix} R_{cc}(11) & R_{cc}(43) & 0_{ccc}(12) & p_{ch}(23) \\ R_{cc}(70) & R_{cc}(14) & 0_{ccc}(12) & 0_{ccc}(7) \end{bmatrix}$	
1073	(1070)		1061		18	0	$R_{cc}^{*}(10) R_{cc}(14) \beta_{ch}^{*}(8) \beta_{ch}(1)$	
(1073)	(1072)	0	1069	3	97	0	$\begin{bmatrix} R_{cc}^{*}(48) \ \delta_{ccc}^{*}(10) \ \beta_{ch}^{*}(39) \\ R_{cc}^{*}(40) \ R_{cc}^{*}(41) \ \beta_{ch}^{*}(39) \end{bmatrix}$	
(1103)		0	1070	64	36	U	$R_{cc}^{+}(29) R_{cc}(41) \beta_{ch}^{+}(6) \beta_{ch}(20)$	
1162	1158	0	1175		0	0	$R_{cc}(20) \beta_{ch}(79)$	
1189	(1000)		1200	97	3	0	$R_{cc}(41) \beta_{ch}(55)$	
	(1223)	6	1212	86	14	0	$R_{cc}^{*}(11) R_{cc}(74) \beta_{ch}(10)$	
1232	1235	a	1218	0	100	0	$R_{cc}^{*}(25) \beta_{ch}^{*}(72)$	
	(1223)	6	1245	12	88	0	$R_{cc}^{*}(66) R_{cc}(6) \beta_{ch}^{*}(18) $	
1278	1283	a	1270	24	27	49	$\Omega_{ir}(49) R^{*}_{cc}(9) R_{cc}(7) \delta^{*}_{ccc}(7) \delta_{ccc}(6) \beta^{*}_{ch}(11) \beta_{ch}(11)$	
1313		6	1318	55	45	0	$R_{cc}^{*}(7) R_{cc}(8) \beta_{ch}^{*}(36) \beta_{ch}(46)$	
1332		b	1336	47	53	0	$\beta_{ch}^{*}(46) \beta_{ch}(43)$	
1339	1335							
1408		b	1411	9	91	0	$R_{cc}^{*}(26) \beta_{ch}^{*}(61) \beta_{ch}(6)$	
1444	1448	b	1452	90	10	0	$R_{cc}(29) \ \delta_{ccc}(6) \ \beta_{ch}(56)$	
1481		a	1496	64	35	0	$R_{cc}^{*}(10) R_{cc}(19) \beta_{ch}^{*}(24) \beta_{ch}(44)$	
	1513p	a	1521	29	61	10	$\Omega_{ir}(10) \ R^*_{cc}(21) \ R_{cc}(11) \ \beta^*_{ch}(38) \ \beta_{ch}(17)$	
1542		b	1580	22	78	0	$R_{cc}^{*}(57) R_{cc}(13) \delta_{ccc}^{*}(8) \beta_{ch}^{*}(13) \beta_{ch}(8)$	
1587	1588	b	1607	79	21	0	$R_{cc}^{*}(15) R_{cc}(52) \delta_{ccc}(8) \beta_{ch}(18)$	
	1600	a	1625	57	43	0	$R_{cc}^{*}(27) R_{cc}(37) \beta_{ch}^{*}(12) \beta_{ch}(16)$	
	1612	a	1637	37	54	9	$\Omega_{ir}(9) \ R^*_{cc}(34) \ R_{cc}(23) \ \delta^*_{ccc}(6) \ \beta^*_{ch}(15) \ \beta_{ch}(10)$	

TAB. 2.6 – FRÉQUENCES DE VIBRATION DE LA $4PPY-S_0$. CALCUL $HF/6 - 31G^*(+)$. Les fréquences entre () sont celles pour laquelle l'attribution est incertaine. Les fréquences, calculées, écrites en italiques n'ont pas été corrigées les fréquences sont systématiquement surestimées d'environ 10%, d'où le facteur 0.9. Ce facteur n'a pas été affiné par cohérence avec les calculs relatifs aux états S_1 (voir Chapitre 4). Le facteur de correction pour la DFT-B3LYP a été établi à partir de l'attribution des modes totalement symétriques. Les fréquences calculées avec les fonctionnelles BLYP et LDA n'ont pas été corrigées. En effet, les premières sont calculées très voisines des valeurs expérimentales et il n'est pas possible de déterminer un facteur unique applicable sur tout le domaine spectrale pour les secondes. La comparaison entre les valeurs théoriques et expérimentales est facilitée par certaines caractéristiques des spectres expérimentaux: une analogie étroite est observée concernant les intensités relatives des bandes IR et Raman entre la 4PPY, le biphényle et la 44BPY. De plus les raies Raman polarisées correspondent aux modes totalement symétriques. La corrélation établie pour chacune des méthodes est présentée dans les tableaux 2.3 à 2.6

Plusieurs remarques peuvent être faites:

1. Pour toutes les méthodes, les modes normaux apparaissent comme des combinaisons des modes typiques du benzène et de la pyridine. La notation de Wilson sera donc utilisée. De par la différenciation des deux cycles, tous les modes ne sont pas des combinaisons en phase ou en opposition de phase de modes de cycle comme cela est le cas pour la 44BPY et la 22BPY. Certains modes sont très localisés sur l'un ou sur l'autre cycle, d'autres sont largement délocalisés. Bien que le type de mode de cycle benzénique ou pyridinique qui entre dans la description d'un mode de la 4PPY soit le même pour toutes les méthodes, on constate que la répartition de l'énergie potentielle sur l'un ou l'autre cycle varie selon la méthode. Ainsi les modes de hautes fréquences (1400- 1600 cm⁻¹) 8a et 8b, et dans une moindre mesure, 19a et 19b, sont calculés très délocalisés en HF et plutôt localisés avec la méthode DFT.

2. Parmi les résultats de DFT, ceux obtenus avec les fonctionnelles BLYP et B3LYP sont très proches. Les longueurs de liaisons ayant été calculées systématiquement plus courtes avec la fonctionnelle B3LYP qu'avec la fonctionnelle BLYP (voir tableau 2.1), les fréquences sont donc plus élevées en B3LYP. Cependant, les DEP restent très semblables dans les deux cas et les deux jeux de fréquences sont pratiquement proportionnels. Ces deux calculs conduisent strictement à la même attribution. La corrélation entre les valeurs expérimentales et celles calculées avec la DFT-B3LYP (affectées du facteur 0.967) est excellente. La fonctionnelle B3LYP sera conservée car elle rend mieux compte de la torsion intercycle [74]. La méthode LDA conduit quant à elle à des résultats plus discutables. Dans la région comprise entre 300 et 1150 cm⁻¹, on constate que les fréquences, sans facteur correctif, sont bien calculées. La corrélation est moins bonne pour les modes de plus hautes fréquences. En particulier deux modes calculés à 1374 et 1411 cm⁻¹, et qui correspondent au mode 14 dans la notation de Wilson, sont attendus autour de 1250 cm⁻¹ pour les molécules dérivées du biphényle [80, 61, 62]. Le calcul DFT-LDA est donc globalement moins bon que celui DFT-B3LYP pour lequel l'accord en fréquence est meilleur sur la totalité du domaine spectral étudié. Il faut toutefois nuancer un peu cette conclusion. En effet il a été précisé dans le premier point qu'il existe pour certains modes des disparités importantes dans la localisation de l'énergie potentielle suivant la méthode utilisée. Une conséquente immédiate de ceci est une dépendance importante des intensités infrarouge au choix de la méthode. Dans le tableau (2.7), nous comparons les intensités observées et prédites par DFT-LDA et par DFT-B3LYP pour les trois modes totalement symétriques autour de 1000 cm⁻¹, pour lesquels les deux méthodes donnent des DEP différentes. On constate que la LDA est de ce point de vue en meilleur accord.

Exp.	LD	A	B3LYP		
$freq(^a)$	freq	int.	freq	int.	
985(w)	985	0.9	1012	3.7	
1000(m)	1000	6.8	1018	3.7	
	1038	0.5	1040	0.4	

Tab. 2.7 – Intensités infrarouge observées et calculées pour les trois bandes autour de 1000 cm⁻¹.^a:w et m signifient respectivement bande faible et bande d'intensité moyenne, la troisième bande n'étant pas observée.

3. Le calcul Hartree-Fock conduit, après une mise à l'échelle par un facteur 0.9, à un jeu de fréquences qui, même si le rapport moyen ν_{calc}/ν_{obs} est un peu plus élevé qu'au niveau DFT-B3LYP, est en très bon accord avec les données expérimentales. Ceci est particulièrement vrai pour les modes de vibration totalement symétriques correspondant à des mouvements dans le plan des cycles. Les fréquences expérimentales et les fréquences HF et B3LYP correspondantes sont présentées dans le tableau (2.8), les déplacements cartésiens des modes totalement symétriques pour une symétrie C_{2v} sont représentés sur la fig??. La connaissance de ces modes est particulièrement intéressante car, comme nous le verrons plus loin, ils correspondent aux vibrations spécifiquement actives dans les spectres de diffusion Raman transitoire de l'état S_1 de cette molécule. Seule la vibration dont la DEP correspond au mode 14 de Wilson (mode dit de "kékulé") présente une anomalie: sa fréquence est correctement calculée sans mise à l'échelle. Cette caractéristique du calcul HF a déjà été observée pour d'autres systèmes aromatiques tels que le benzène ou 44BPY [62]. Il faut noter que la différence de DEP calculées au niveau HF et B3LYP est plus marquée que pour la 44BPY. Notamment le degré de localisation des mouvements sur l'un des cycles est très sensible à la méthode. Dans le cas de la 44BPY, où les deux cycles sont identiques, les mouvements se font exactement à la même fréquence et se couplent quelle que soit la méthode en une

Obs.	DFT	HF	Description approximative
1612	1608	1637	R_{CC} , (8 <i>a</i> en phase)
1600	1598	1625	R_{CC} , (8 <i>a</i> opposition de phase)
1513	1504	1521	$R_{CC}, \beta_{CH}, (19a \text{ en phase})$
1481	1482	1496	$R_{CC}, \beta_{CH}, (19a \text{ opposition de phase})$
1283	1274	1270	Ω_{ir} (élongation intercycle)
1235	1216	1218	β_{CH} (9 <i>a</i> de la pyridine)
1189	1178	1170	β_{CH} (9a du phényle)
1072	1066	1069	$R_{CC}, \beta_{CH}, (18a \text{ de la pyridine})$
1044	1037	1034	$R_{CC}, \beta_{CH}, (18a \text{ du phényle})$
1020	1006	1002	$\delta_{CCC}, R_{CC}, (1 \text{ opposition de phase})$
1003	985	984	$\delta_{CCC}, R_{CC}, (12 \text{ sur la pyridine})$
985	979	979	$\delta_{CCC}, R_{CC}, (12 \text{ sur le phényle})$
748	737	732	$\delta_{CCC}, \Omega_{ir}, (1 \text{ en phase})$
604	600	599	δ_{CCC} , (6a opposition de phase)
332	302	295	$\delta_{CCC}, \Omega_{ir}, $ (6a en phase)

TAB. 2.8 – MODES SYMÉTRIQUES (DANS LE PLAN DES CYCLES) DE LA 4PPY CALCU-LÉS AU NIVEAU HF ET DFT-B3LYP. LES FRÉQUENCES OBSERVÉES SONT CELLES DES SPECTRES RAMAN, LES FRÉQUENCES CALCULÉES SONT MISES À L'ÉCHELLE PAR UN FACTEUR 0.967 EN DFT-B3LYP ET 0.9 EN HF. LA NOTATION DES MODES EST CELLE DE WILSON

composante en phase et en une composante en opposition de phase. Pour 4PPY, les mouvements des deux cycles, pour chacun des modes normaux, ne sont pas exactement de même énergie. Le couplage est donc facteur d'une part de l'énergie calculée pour les modes de chaque cycle et d'autre part de la précision sur la valeur des paramètres intercycles (longueur de liaisons, angle de torsion) dont on sait qu'ils sont délicats à calculer.

2.2.4 Conclusions

Hormis la localisation des modes de vibration, on retrouve à peu près les mêmes caractéristiques dans les calculs HF et B3LYP de l'état fondamental de la 4PPY que celles reportées auparavant pour la 44BPY, c'est-à-dire un bon accord expérience/calcul

Fig. 2.3 – Forme des modes normaux de l'état S_0 de la 4PPY calculés avec la méthode HF/6 – $31G^*(+)$. Seuls les modes normaux totalement symétriques pour une symétrie $C_{2\nu}$ (cycles coplanaires) sont présentés

concernant la méthode HF et des résultats un peu meilleurs en B3LYP. Il est important d'avoir obtenu des résultats satisfaisants au niveau HF étant donné que l'approximation de ce calcul pour l'état fondamental est équivalent à celui du calcul CIS que nous présenterons plus loin pour l'état excité S_1 .

Chapitre 3

Etude par spectroscopie Raman de résonance picoseconde de l'état S_1 de la 44BPY, de la 22BPY et de la 4PPY

3.1 Principe de la spectroscopie Raman picoseconde

3.1.1 L'effet Raman et Raman de résonance

Lorsqu'une molécule est soumise à l'action d'un champ électrique, il apparaît un moment dipolaire induit $\vec{\mu}_I$ qui résulte de la distorsion du nuage électronique. Ce moment dipolaire induit s'exprime par :

$$\vec{\mu}_I = \vec{\vec{lpha}} \vec{E}$$

où $\vec{\alpha}$ est le tenseur de polarisabilité moléculaire et \vec{E} le champ électrique appliqué. Dans le cas d'une onde électromagnétique, le dipole induit est oscillant, la molécule rayonne

alors dans tout l'espace une onde électromagnétique dont l'amplitude du champ \vec{E}_{diff} s'écrit:

$$\vec{E}_{diff} \propto \vec{\mu}_I = \vec{\vec{\alpha}} \vec{E}_0 \cos(\omega_0 t)$$

 $\vec{E}_0 \cos(\omega_0 t)$ est le champ électrique incident.

Les vibrations moléculaires entrainent des distorsions du nuage électronique et donc une modulation de la polarisabilité aux fréquences de vibration. Si Q est une coordonnée généralisée représentant un mode de vibration de pulsation Ω_v , on obtient, en développant $\vec{\alpha}$ en série de Taylor autour de la position d'équilibre des noyaux, l'expression suivante de la dépendance de la polarisabilité avec les coordonnées nucléaires:

$$\alpha(t) = \alpha_0 + (\frac{d\alpha}{dQ})_0 Q(t)$$

avec $Q = Q_0 cos(\Omega_v t)$.

La composante i du champ diffusé s'écrit alors :

$$(E_{diff})_{i} = \sum_{j} (\alpha_{ij}^{0})_{0} (E_{0})_{i} cos(\omega_{0}t) + \frac{1}{2} \sum_{j} \left(\frac{d\alpha_{ij}}{dQ}\right)_{0} Q_{0} E_{0} \left[cos((\omega_{o} - \Omega_{v})t) + cos((\omega_{o} + \Omega_{v})t) \right]$$

$$(3.1)$$

C'est la description classique de la diffusion d'une radiation lumineuse par une molécule dans l'approximation dipolaire. Le premier terme décrit une diffusion sans changement de fréquence; c'est la diffusion Rayleigh. Le second terme décrit un processus de diffusion inélastique appelé diffusion Raman. Lorsque la diffusion se fait à une fréquence plus basse que celle de la radiation incidente, on parle alors de diffusion Raman Stokes et dans le cas contraire de diffusion Raman anti-Stokes. Cette diffusion dépend de la variation de la polarisabilité, son intensité est donc plus faible de plusieurs ordres de grandeur que celle de la diffusion Rayleigh qui dépend de la valeur à l'ordre 0 du développement de Taylor de la polarisabilité. La diffusion Raman est un processus d'interaction rayonnement/matière au cours duquel:

- un photon d'énergie $\hbar\omega_0$ incident est diffusé avec une énergie différente $\hbar\omega_0 \pm \hbar\Omega_{IF}$;

- la molécule passe de l'état vibronique initial I à l'état vibronique final F. L'énergie entre les deux états vaut $E_{IF} = \mp \hbar \Omega_{IF}$.

La spectroscopie de diffusion Raman permet donc la détermination des niveaux vibroniques d'une molécule par la mesure de la position des pics de diffusion relativement à la fréquence de l'excitatrice ω_o . Dans sa forme la plus générale, les états vibroniques initial et final peuvent être deux états électroniques différents. Dans la plupart des cas, on s'intéresse à la diffusion Raman au sein d'un même état électronique, on parle de Raman vibrationnel ou tout simplement de diffusion Raman. L'intensité de la diffusion Raman varie fortement avec la longueur d'onde incidente (excitatrice), en particulier lorsque celle-ci correspond à une bande d'absorption de l'espèce étudiée. On parle dans ce cas de Raman de résonance ou de pré-résonance. Le modèle mécanique ne suffit pas pour rendre compte de ces effets purement électroniques. Ils sont correctement décrits lorsque l'on traite quantiquement la molécule. Dans ce cas la section efficace de diffusion pour une transition de la molécule entre les états $|I\rangle$ et $|F\rangle$, d'énergie E_I et E_F s'écrit:

$$\sigma_{I-F}(\bar{\nu}_0) \propto \nu_o \nu_s^3 \sum_{\rho\lambda} |(|\alpha_{\rho\lambda})_{I-F}|^2$$

avec ν_o la fréquence de la radiation incidente, $\nu_s = \nu_o - \nu_{IF}$ la fréquence de la radiation diffusée, avec $\nu_{IF} = (E_I - E_F)/(2\pi\hbar)$. $(\alpha_{\rho\lambda})_{I-F}$ est le $\rho\lambda^{i\epsilon me}$ élément du tenseur de polarisabilité pour la transition $I \to F$.

L'expression du tenseur de polarisabilité peut être établie dans la base des états stationnaires du hamiltonien ou en résolvant l'équation de Schrödinger dépendant du temps [92] . Ces deux formulations sont mathématiquement équivalentes. Le choix de l'une ou de l'autre dépend du problème considéré. L'expression de l'intensité Raman aété établie et discutée par Albrecht [93, 94] à partir de l'équation de dispersion de Kramer-Heisenberg et Dirac (KHD). Bien que mal adaptée à la taille de nos molécules si on souhaite calculer la polarisabilité, cette formulation permet néanmoins la compréhension des effets électroniques. La même présentation dans le formalisme dépendant du temps peut être trouvée par ailleurs [95].

$$(\alpha_{\rho\lambda})_{I-F} = \frac{1}{hc} \sum_{r} \left[\frac{[\mu_{\rho}]_{Ir} [\mu_{\lambda}]_{rF}}{\underbrace{\bar{\nu}_{rI} - \bar{\nu}_{0} + i\Gamma}_{\text{terme résonant}} + \underbrace{\frac{[\mu_{\lambda}]_{Ir} [\mu_{\rho}]_{rF}}{\underbrace{\bar{\nu}_{rF} + \bar{\nu}_{0} + i\Gamma}_{\text{terme non résonant}}} \right]$$
(3.2)

Dans l'équation 3.2, $[\mu_{\lambda}]_{Ir}$ représente la $\lambda^{i \grave{e}me}$ composante du moment de transition entre les états $|I\rangle$ et $|r\rangle$, Γ est un facteur d'amortissement lié à la durée de vie de l'état r.

L'effet Raman de résonance apparaît lorsque le nombre d'onde de l'excitatrice approche la valeur d'une transition électronique $\bar{\nu}_{Ir} \sim \bar{\nu}_0$. Dans ce cas, la polarisabilité et par conséquent le signal Raman augmentent. Cette particularité représente souvent une motivation importante dans le choix de la spectroscopie Raman de résonance. Cet accroissement de l'intensité diffusée permet l'étude d'espèces minoritaires dont le signal Raman classique serait masqué par celui des molécules environnantes. Ceci est notamment le cas lors de l'étude de molécules en solution. En plus de cette considération d'ordre pratique, les intensités relatives des différentes bandes observées dans les conditions de résonance diffèrent fortement du cas classique, elles sont en effet reliées aux propriétés de l'état en résonance. Pour comprendre cela, il faut réécrire l'équation 3.2 dans les conditions de résonance.

On peut écrire les états vibroniques :

$$|I\rangle = |g\rangle|i\rangle, \ |F\rangle = |g\rangle|f\rangle, \ |r\rangle = |e\rangle|v\rangle$$

où $|g\rangle$ et $|e\rangle$ représentent la partie électronique et $|i\rangle$, $|f\rangle$, $|v\rangle$, la partie vibrationnelle de la fonction d'onde.

Dans ces conditions, en négligeant la dépendance du moment de transition avec les coordonnées nucléaires, celui-ci s'écrit :

$$[\mu_{\rho}]_{Ir} \simeq [\mu_{\rho}]^{0}_{ge} \langle i | v \rangle$$

où $[\mu_{\rho}]^{0}$ est le terme d'orde zéro du développement du moment de transition en série de Taylor autour de la position d'équilibre.

Dans les conditions de résonance, le second terme de l'équation 3.2 est négligeable. La polarisabilité s'écrit :

$$(\alpha_{\rho\lambda})_{gi-gf}(\bar{\nu}_0) = \frac{1}{hc} [\mu_{\rho}]^0_{ge} [\mu_{\rho}]^0_{eg} \sum_{v} \frac{\langle f|v\rangle\langle v|i\rangle}{\bar{\nu}_{gi,ev} - \bar{\nu}_0 + i\Gamma_{ev}}$$
(3.3)

L'équation 3.3 représente la contribution principale à l'intensité Raman de résonance. Pour que celle-ci ne soit pas nulle, deux conditions doivent être remplies :

- 1. les moments de transition $[\mu_{\rho}]_{ge}^{0}$ et $[\mu_{\rho}]_{eg}^{0}$ doivent être non nuls;
- 2. le produit des intégrales de Franck-Condon $\langle f|v\rangle\langle v|i\rangle$ doit être différent de zéro au moins pour certaines valeurs de v.

La première condition est remplie si la transition $|g\rangle \rightarrow |e\rangle$ est permise. L'obtention de spectres Raman de résonance requiert donc l'utilisation d'une excitation située dans le contour d'une bande intense. Il est ainsi possible d'utiliser cette technique de manière sélective en ajustant la longueur d'onde excitatrice sur la transition électronique correspondant à un chromophore particulier de sorte à n'étudier qu'une espèce spécifique, voire une partie d'une molécule dans le cas de macromolécules à chromophores localisés. La seconde condition impose que les fonctions d'onde vibrationnelles $|i\rangle$ et $|v\rangle$ ne soient pas orthogonales entre elles, c'est-à-dire qu'il existe soit une modification de la forme de la surface de potentiel dans l'état résonant, soit un déplacement de cette surface par rapport à la position d'équilibre de l'état $|g\rangle$. En pratique, les deux conditions sont souvent réalisées simultanément, mais c'est l'effet de déplacement du potentiel qui contribue le plus à l'intensité Raman de résonance [92]. Par conséquent les modes actifs dans un spectre Raman de résonance seront ceux qui sont fortement modifiés dans la transition résonante. Si la molécule est symétrique les modes actifs seront ceux appartenant à la représentation totalement symétrique de la molécule. Les spectres Raman de résonance sont donc généralement plus simples que ceux obtenus en Raman classique et le nombre de modes actifs renseigne sur la symétrie de l'espèce étudiée. Pour être complet, il faut préciser que les modes de vibration qui couplent vibroniquement l'état résonant ou l'état étudié peuvent aussi être actifs dans les spectres Raman de résonance. Cette activité, plus faible, apparaît dans l'expression de la polarisabilité si on tient compte de la variation du moment de transition avec les coordonnées de vibration [92].

En résumé, la spectroscopie Raman de résonance consiste en l'analyse du rayonnement diffusé par une molécule lorsque la longueur d'onde excitatrice est accordée dans une transition électronique de cette molécule. L'effet de résonance apporte :

- une augmentation importante de l'intensité du signal Raman et donc de la sensibilité;
- des informations sur les distorsions et les couplages vibroniques des états impliqués dans la transition résonante.

3.1.2 Expérience pompe-sonde

La spectroscopie Raman transitoire picoseconde, comme la plupart des techniques spectroscopiques à résolution temporelle élevée, fait appel à la méthode dite *pompesonde*. L'utilisation de cette méthode est imposée lorsque la réponse temporelle des systèmes de détection (détecteur, échantillonnage, obturation...) est trop lente comparée à la durée de vie des espèces transitoires ou des processus que l'on souhaite étudier. On contourne ce problème en utilisant deux impulsions laser synchronisées, dont la durée est courte devant celle du processus étudié. La première impulsion, appelée pompe, perturbe l'échantillon à l'instant t_0 . On mesure alors la réponse du système à une seconde impulsion, impulsion sonde, retardée d'un temps Δt par rapport à la pompe. De cette manière on s'affranchit des temps de réponse du système de détection. En répétant la mesure pour différents retards entre les impulsions de pompe et de sonde, il est ainsi possible d'étudier l'évolution d'un système sur des échelles de temps très courtes, la limitation principale étant la durée des impulsions que l'on utilise et la précision avec laquelle on peut les coupler temporellement. L'application de cette méthode nécessite que le système étudié soit d'une part "déclenchable", c'est à dire que l'on puisse le perturber par application d'une impulsion optique et d'autre part que le retour à l'état initial soit réalisé entre deux séquences pompe-sonde successives.

Dans nos expériences Raman picoseconde, la pompe crée une population d'espèces excitées par absorption dans une bande $S_0 \rightarrow S_n$. On enregistre alors avec un retard Δt les spectres de diffusion Raman obtenus en résonance avec les transitions électroniques des différentes espèces transitoires formées. A titre d'exemple, la figure 3.1 illustre le principe de l'étude du premier état excité singulet S_1 formé par conversion interne à partir de l'état excité S_n et sondé par diffusion Raman de résonance.

3.1.3 Résolution temporelle

La résolution temporelle de la spectroscopie Raman transitoire est limitée par les caractéristiques physiques des impulsions [96, 97]. L'analyse de Fourier s'appliquant aux trains d'impulsions courtes, la durée de l'impulsion et sa largeur spectrale ne sont donc pas des paramètres indépendants. Dans le cas idéal, le profil temporel de l'impulsion est donné par la transformée de Fourier de son spectre. La durée de l'impulsion est ainsi

Fig. 3.1 – Principe de la méthode pompe-sonde appliquée à l'analyse de l'état S_1 par diffusion Raman de résonance.

reliée à sa largeur spectrale par la relation :

$$\Delta \bar{\nu}. \Delta \tau \ge K$$

où K est une constante qui dépend de la forme des impulsions. L'égalité est obtenue lorsque le laser fonctionne à la limite de Fourier. Pour un profil de type $sech^2$, qui est le profil souvent observé pour les sources laser d'impulsions brèves, K vaut 10.5 ps.cm⁻¹. Un durée d'impulsion située entre 1 et 3 ps correspond donc à une largeur comprise entre 10.5 à 3.5 cm⁻¹, valeurs compatibles avec la spectroscopie Raman de résonance. Des durées d'impulsions plus courtes (régime femtoseconde) réduiraient de manière trop importante la résolution spectrale.

Dans une expérience pompe-sonde, la résolution temporelle n'est pas donnée par la durée des impulsions. Il faut tenir compte du recouvrement temporel de la pompe et de la sonde. Une mesure plus juste de la résolution temporelle du dispositif est donnée par la largeur à mi-hauteur de la trace de corrélation croisée entre la pompe et la sonde, la position du temps t=0 étant donnée au maximum de celle-ci.

3.2 Dispositif expérimental

Le dispositif expérimental utilisé est schématisé sur la figure (3.2). Il peut se décomposer en trois parties distinctes dont les fonctions sont bien définies. La première partie correspond à la génération d'impulsions picosecondes synchronisées (source laser picoseconde). La seconde partie est constituée d'un ensemble d'éléments optiques permettant d'amener les impulsions sur l'échantillon, d'ajuster les directions de polarisation et de contrôler le retard de l'impulsion de sonde par rapport à l'impulsion de pompe. Enfin la troisième concerne le système de mesure adapté à la spécificité des signaux Raman.

ï

FIG. 3.2 - Schéma du dispositif expérimental.

3.2.1 La source laser picoseconde

Le propos de ce paragraphe n'est pas de présenter une description exhaustive du laser, qui peut être trouvée dans la référence [98], assortie d'une comparaison avec d'autres sources laser utilisées en spectrométrie Raman picoseconde, mais plutôt de donner ses principales caractéristiques et performances.

3.2.1.1 Le laser Titane-Saphir amplifié

ï

Il est constitué d'un oscillateur Ti:Sa (fs/ps) (Mira 900D, Coherent), pompé par un laser continu à Argon ionisé (Innova 310, Coherent), d'une puissance de 10W, couplé à un amplificateur à dérive de fréquence (Alpha 1000, B.M.Industries) utilisé en régime picoseconde. Le Mira émet à une cadence de 76 MHz des impulsions picosecondes (Δt =1.5-3 ps, $\Delta \bar{\nu} \simeq 7$ -3.5 cm⁻¹) accordables dans l'infrarouge entre 690 et 1000 nm.

L'énergie par impulsion ($\simeq 10nJ$) et la cadence de tir élevée sont inadaptées à l'étude de processus photochimiques. L'amplificateur à dérive de fréquence permet d'une part d'amplifier les impulsions et d'autre part de réduire la cadence de tir. Il est constitué d'un étireur d'impulsions, d'un amplificateur régénératif et d'un compresseur d'impulsions. L'amplificateur régénératif utilise aussi la technologie Ti:Sa. Il est pompé par un laser Nd:YLF déclenché et doublé intracavité (621D, B.M.Industries) qui délivre des implusions nanosecondes ($\sim 200ns$) avec une cadence de 1kHz et une puissance de 12-13W. En sortie de compresseur ce laser délivre à une cadence de 1 kHz des impulsions accordables entre 740 et 850 nm dont l'énergie est de l'ordre du millijoule à 790 nm. Cette cadence représente un bon compromis entre la nécessité d'effectuer de nombreuses accumulations et les besoins de renouvellement de l'échantillon. L'émission du laser est polarisée linéairement.

3.2.1.2 Génération des impulsions de pompe et de sonde

Lorsque l'on travaille à l'échelle de la picoseconde, il n'est pas possible de synchroniser électroniquement deux sources laser indépendantes avec suffisamment de précision. La pompe et la sonde doivent donc être générées à partir d'une impulsion initiale unique par conversion de fréquence dans des matériaux non linéaires. La puissance élevée des impulsions courtes favorise le rendement de ces conversions.

Deux dispositifs différents ont été employés dans nos expériences, selon la longueur d'onde de sonde désirée:

- un premier dispositif permettant de générer la seconde et la troisième harmonique du laser Ti:Sa;
- 2. un générateur et un amplificateur paramétrique optique (OPG-OPA) qui permet d'étendre l'accordabilité de la sonde au domaine visible.

Le dispositif permettant de générer la seconde et la troisième harmonique du laser est schématisé sur la figure 3.3. A l'aide d'une lame séparatrice, on génère deux impulsions de fréquence ω , synchronisées, qui constitueront les impulsions de sonde et de pompe. La seconde harmonique (2ω) est obtenue par doublage de l'émission du laser dans un cristal de β – borate de barium (BBO). La troisième harmonique est générée par somme de fréquences $\omega + 2\omega$ dans un second cristal de BBO. Une ligne à retard optique disposée avant le second cristal de BBO permet le recouvrement temporel des impulsions ω et 2ω dans le cristal. Ce dispositif délivre des impulsions de pompe accordables entre 247 et 283 mn et de sonde accordables dans le domaine 370-425 nm.

L'inconvénient de ce dispositif réside dans le fait que la pompe et la sonde ne sont pas accordables indépendamment. De plus la faible accordabilité de la sonde restreint ce laser à l'étude d'un nombre limité de molécules.

Fig. 3.3 – Génération de la pompe autour de 253 nm et de la sonde autour de 380 nm.

L'accordabilité de la sonde est accrue par l'utilisation d'un générateur et d'un amplificateur paramétrique optique (OPG-OPA). La génération paramétrique est un processsus non linéaire au cours duquel un photon de pulsation ω_1 , signal, et un second ω_2 , idler, sont créés à partir d'un photon initial ω , ($\omega_1 > \omega_2$). La conservation de l'énergie imposant que

$$\omega = \omega_1 + \omega_2$$

les impulsions émises ont une fréquence plus basse que celle de l'impulsion initiale. Les longueurs d'onde émises sont celles pour lesquelles l'accord de phase est réalisé, accord de phase imposé par la conservation du vecteur d'onde :

$$\vec{k} = \vec{k}_1 + \vec{k}_2$$

ou encore en tenant compte de la variation de l'indice de réfraction du matériau avec la

longueur d'onde:

$$n\frac{\omega}{c} = n_1 \frac{\omega_1}{c} + n_2 \frac{\omega_2}{c}$$

Le dispositif utilisé est représenté sur la figure 3.4. Le système OPG-OPA utilise deux cristaux de BBO pompés à 400 nm. On prélève à l'aide d'une lame séparatrice 50% du faisceau qui est focalisé dans le premier cristal de BBO. Le signal et l'idler sont générés par fluorescence paramétrique. On place en sortie du cristal un système dispersif (prismes plus réseau) de manière à ne sélectionner qu'une faible portion des longueurs d'onde autour de la pulsation ω_1 désirée. La partie de la radiation incidente qui n'a pas interagi dans le cristal est séparée au moyen d'un miroir dichroïque et est réfléchie sur un miroir mobile.

L'énergie des impulsions de pulsation ω_1 est cependant trop faible et doit donc être amplifiée. Une première amplification est réalisée lors du second passage dans le même cristal de BBO. L'amplification finale s'opère par passage dans un second cristal de BBO pompé par les 50% restant du faisceau incident à 400 nm. Les lignes à retard optiques disposées sur le trajet des faisceaux permettent d'assurer le recouvrement temporel des impulsions dans les cristaux.

Ce dispositif délivre en sortie des impulsions d'une durée 1.4 ps pour une largeur spectrale inférieure à 12 cm⁻¹, sur toute la plage d'accord (460 et 675 nm). L'énergie des impulsions est comprise entre 15 et 40 μ J selon la longueur d'onde.

3.2.2 Ligne à retard optique

Le retard Δt entre la pompe et la sonde est introduit en augmentant le trajet optique de la sonde. Ceci est réalisé en plaçant sur son trajet une platine micrométrique contrôlée par un moteur pas à pas sur laquelle sont placés deux miroirs faisant entre eux un angle de 45°. Un déplacement de la platine de 150 μ m correspond à un allongement du trajet de 300 μ m et à une augmentation du retard optique entre la pompe et le sonde

3.2.3 Acquisition des signaux Raman

Les faisceaux de pompe et de sonde sont focalisés dans l'échantillon. Pour assurer un recouvrement optimal des impulsions de pompe et de sonde, le faisceau de pompe est légèrement plus large que le faisceau de sonde. Le signal Raman est collecté à 90°. On dispose à l'entrée du spectromètre un filtre coupe bande (Notch) centré sur la longueur d'onde excitatrice afin de réduire l'intensité de la diffusion Rayleigh entrant dans celui-ci. Ces filtres possèdent une densité optique très importante (DO_i6) sur une bande extrêmement étroite ($\sim 700 \text{ cm}^{-1}$). Le signal est focalisé sur la fente d'entrée d'un spectromètre monoétage de manière à privilégier la luminosité. La lumière dispersée est détectée au moyen d'une caméra CCD (détecteur LN-CCD-1100-PB-UV/AR + contrôleur ST-138,

Princeton Instrument) placée dans le plan focal du spectromètre. Le détecteur est interfacé à un ordinateur, par l'intermédiaire du programme Winspec (v.1.6.3, Princeton).

Afin d'éviter la photodégradation et la réexcitation d'espèces transitoires, la solution est mise en circulation. Deux dispositifs ont été utilisés. Le premier consistait en une cellule à circulation 4 faces en CaF_2 (transparentes aux UV). Ce dispositif a ensuite été remplacé par un jet de solution qui permet de s'affranchir des émissions parasites des faces de la cellule.

Le signal Raman transitoire est superposé au signal du solvant ainsi qu'aux fluorescences parasites induites par la pompe et la sonde. Pour extraire les spectres des espèces transitoires, on enregistre en plus du spectre correspondant à l'irradiation de la solution par la pompe et la sonde, ceux correspondant à l'irradiation par la sonde seule puis par la pompe seule. Le spectre Raman des espèces transitoires est alors obtenu par soustraction des deux derniers spectres du premier.

3.3 Résultats

3.3.1 Conditions expérimentales

La 4,4'-bipyridine, la 2,2'-bipyridine et la 4-phénylpyridine sont disponibles commercialement (Aldrich); les dérivés isotopiques 44BPY-d₄, 44BPY-d₈ et 22BPY-d₈ ont été synthétisés auparavant au laboratoire selon les modes opératoires donnés dans la référence [62]. Les échantillons sont sublimés sous vide à 80°C avant toute mesure. Les solutions ont une concentration de l'ordre de 10^{-3} M. Les solvants utilisés (n-hexane, acétonitrile, méthanol, éthanol, 2-propanol) sont des produits SDS de qualité spectroscopique. L'eau est distillée.

Les spectres Raman ont été enregistrés en résonance à 370 et 380 nm. La longueur

d'onde de pompe est alors respectivement de 247 et 253 nm. L'énergie des impulsions de pompe est d'environ 20 μ J, celle des impulsions de sonde est comprise entre 10 et 20 μ J. La largeur à mi-hauteur de la trace de corrélation croisée $3\omega - 2\omega$ obtenue par différence de fréquences dans un cristal de BBO est d'environ 4 ps. La largeur spectrale des impulsions de sonde est de 9 cm⁻¹.

Les spectres en résonance autour de 530 et 630 nm ont été enregistrés avec des impulsions d'une durée de 1.4 ps (mesurée par autocorrélation et en suposant une forme d'impulsion $sech^{2}(t)$). La trace de corrélation croisée pompe-sonde a une largeur à mi-hauteur de 2.8 ps. La largeur spectrale des impulsions de sonde est de 10 cm⁻¹.

Les spectres de diffusion Raman, dispersés au moyen d'un spectromètre équipé de réseau 2340 tr/mm (λ_{blaze} =400 nm) et 600 tr/mm (λ_{blaze} =600 nm) pour la transition UV et visible respectivement sont enregistrés entre 250 et 1800 cm⁻¹. Le domaine des plus basses fréquences (<250 cm⁻¹) ne peut être étudié en raison de la diffusion Rayleigh. Celui des plus hautes fréquences où sont attendus les modes d'élongation des liaisons CH et CD apporte peu d'informations sur la structure et n'a pas été étudié.

3.3.2 Spectres de l'état S_1 de la 44BPY

3.3.2.1 44BPY-h₈

ŕ

La figure 3.5 présente les spectres de l'état S_1 de la 44BPY-h₈ enregistrés à 380 et 633 nm en solution aqueuse, 5 ps après l'excitation de pompe. Des spectres similaires, bien que de moins bonne qualité, ont été obtenus dans différents solvants [98, 99] (n-hexane, méthanol, acétonitrile, éthanol). Quelques déplacements de fréquences et de légères variations d'intensité sont toutefois observés. Il a été conclu que l'état $S_1 n\pi^*$ conserve la même configuration dans tous les solvants. Les spectres Raman de résonance enregistrés à 370 et 380 nm sont semblables mises à part quelques variations de l'intensité relative des bandes Raman. De même les spectres sondés à différentes longueurs d'onde dans le visible (580, 600 et 633 nm) sont presque identiques. Les bandes d'absorption UV et visible correspondent donc chacune à une transition électronique unique.

Dans les spectres de l'état S_1 (fig. 3.5), 15 bandes attribuables à des modes fondamentaux peuvent être dénombrées dont 7 sont actives quasiment exclusivement en résonance à 380 nm (1591, 1485, 1221, 1020, 970, 725, 588 cm⁻¹) et 7sont actives dans la transition à 580 nm (1518, 1411, 1155, 1045, 986, 936, 334 cm⁻¹). Une seule bande est intense dans les deux transitions (1332 cm⁻¹). La bande observée à 1695 cm⁻¹ est la combinaison des raies intenses à 970 et 725 cm⁻¹. Une attribution empirique ainsi que des informations qualitatives sur la structure de l'état S_1 ont été déduites de ces spectres dans une analyse préliminaire [98, 99]. Nous y reviendrons dans les chapitres suivants.

3.3.2.2 Dérivés isotopiques -d₄ et -d₈

ŕ

Les spectres Raman de résonance de la $44BPY-d_4$ et $-d_8$ sont reportés sur les figures (3.6) et (3.7). Ils présentent un activité similaire à celle du dérivé perhydrogéné. Les fréquences correspondant aux modes normaux sont reportées sur les figures.

FIG. 3.5 – SPECTRES RAMAN DE L'ÉTAT S_1 DE LA 44BPY-H₈ DANS L'EAU. Le retard pompe-sonde est de 5 ps. (a) $\lambda_{sonde} = 380$ nm. (b) $\lambda_{sonde} = 633$ nm

FIG. 3.6 – SPECTRES RAMAN DE L'ÉTAT S_1 DE LA 44BPY-D₄ DANS L'EAU. Le retard pompe-sonde est de 5 ps. (a) $\lambda_{sonde} = 380$ nm. (b) $\lambda_{sonde} = 633$ nm

FIG. 3.7 – SPECTRES RAMAN DE L'ÉTAT S_1 DE LA 44BPY-D₈ DANS L'EAU. Le retard pompe-sonde est de 5 ps. (a) $\lambda_{sonde} = 380$ nm. (b) $\lambda_{sonde} = 633$ nm

3.3.3 Spectres de l'état S_1 de la 22BPY

Les spectres de meilleure qualité ont été obtenus dans le méthanol. Ils sont présentés sur la figure 3.8 pour le dérivé $-h_8$ et sur la figure 3.9 pour le dérivé $-d_8$. 19 bandes sont dénombrées dans le spectre de la 22BPY- h_8 . Les deux bandes observées au-dessus de 1565 cm⁻¹ dans le spectre à 380 nm sont des combinaisons de la raie intense à 731 cm⁻¹ avec les deux bandes à 989 et 959 cm⁻¹. La bande observée à 1460 cm⁻¹ contient probablement une contribution de l'harmonique de la raie à 731 cm⁻¹ mais correspond certainement aussi à un mode propre car elle est également active dans le spectre en résonance avec la transition visible où n'est pas active la bande à 731 cm⁻¹. Il reste donc 17 modes propres de vibration attribuables à l'état S_1 . Les fréquences de ces modes sont reportées sur les spectres des figures (3.8) et (3.9). Tous les modes ne sont vraissemblablement pas observés ou résolus, en particulier entre 1200 et 1400 cm⁻¹ où les bandes observées sont larges et dissymétriques.

FIG. 3.8 – SPECTRES RAMAN DE L'ÉTAT S_1 DE LA 22BPY-H₈ DANS LE MÉTHANOL. Le retard pompe-sonde est de 20 ps. (a) $\lambda_{sonde} = 380$ nm. (b) $\lambda_{sonde} = 532$ nm

FIG. 3.9 – SPECTRES RAMAN DE L'ÉTAT S_1 DE LA 22BPY-D₈ DANS LE MÉTHANOL. Le retard pompe-sonde est de 20 ps. (a) $\lambda_{sonde} = 380$ nm. (b) $\lambda_{sonde} = 532$ nm

3.4 Spectres de l'état S_1 de la 4PPY

Les spectres Raman de résonance picoseconde de la 4-phénylpyridine ont été enregistrés dans le n-hexane (figure 3.10) et dans les alcools. Celui obtenu en résonance avec la transition visible (575 nm) possède une très faible intensité. Dans l'eau, leur acquisition est impossible en raison d'une fluorescence trop importante. Les spectres ne comportent que neuf bandes repérées sur la figure 3.10 par leur fréquence.

FIG. 3.10 – SPECTRES RAMAN DE L'ÉTAT S_1 DE LA 4PPY-H₈ DANS LE *n*-HEXANE. Le retard pompe-sonde est de 10 ps. (a) $\lambda_{sonde} = 380$ nm. (b) $\lambda_{sonde} = 532$ nm

Chapitre 4

Etude structurale *ab initio* de l'état ${}^{1}n\pi^{*}$ de la 44BPY, de la 22BPY et de la 4PPY

4.1 Méthode

4.1.1 Principe des calculs *ab initio* des fonctions d'onde d'états excités moléculaires

L'objet de la chimie quantique est l'étude des solutions de l'équation de Schrödinger $H\Phi = E\Phi$, H étant le hamiltonien décrivant le système étudié. Cette équation est une équation aux dérivées partielles qui dépend des coordonnées nucléaires et électroniques et par conséquent, ne possède pas de solution analytique. Born et Oppenheimer ont montré que, dans la plupart des cas, il est possible de découpler dans la fonction d'onde le mouvement des noyaux de celui des électrons. Le mouvement des électrons étant beaucoup plus rapide que celui des noyaux, le nuage électronique s'adapte instantanément au mouvement des noyaux. Ces derniers sont donc soumis à un potentiel électrostatique moyen. Le hamiltonien total s'écrit alors comme la somme d'un terme nucléaire H_N et d'un terme électronique H_e . On cherche donc des solutions de la forme $\Phi = \Psi_e(\vec{r}, \vec{R}) \Psi_N(\vec{R})$ où Ψ_e et Ψ_N sont respectivement les fonctions d'onde électronique et nucléaire, \vec{r} et \vec{R} sont les coordonnées des électrons et des noyaux. Avec cette approximation, la fonction d'onde Ψ_e est solution de l'équation

$$H_e\Psi_e = E_e\Psi_e$$

Pour une molécule constituée de n électrons et de N atomes, le hamiltonien électronique non relativiste s'écrit :

$$H_e = -\sum_{i=1}^n \frac{\Delta_i}{2} - \sum_{i=1}^n \sum_{A=1}^N \frac{Z_A}{r_{iA}} + \sum_{i=1}^n \sum_{j>i}^n \frac{1}{r_{ij}}$$
(4.1)

Les solutions Ψ_e , E_e définissent les états électroniques du système étudié. La plus basse valeur propre de l'équation 4.1 correspond à l'état fondamental de la molécule, celles d'énergies supérieures aux états excités. En changeant la configuration des noyaux, on obtient d'autres ensembles de solutions électroniques; on peut ainsi tracer les "surfaces d'énergie potentielle" $E_n(\vec{R})$.

On cherche donc les solutions de l'équation électronique. La fonction d'onde Ψ_e est une fonction polyélectronique, et les coordonnées des électrons sont corrélées par le terme $\frac{1}{r_{ij}}$ d'interaction électrostatique. De la même manière que précédemment, on découple les mouvements des électrons et on cherche des fonctions d'onde qui s'écrivent sous la forme d'une combinaison antisymétrique de produits de fonctions monoélectroniques appelées orbitales (ϕ_i). Pour satisfaire au principe de Pauli, on exprime la fonction d'onde électronique sous la forme d'un déterminant de Slater, noté:

$$\Psi_e^0 = |\phi_1 \bar{\phi_1} \phi_2 \bar{\phi_2} \dots \phi_n| \tag{4.2}$$
Les *n* électrons sont alors répartis parmi *n* à n/2 orbitales (ϕ_i ou $\bar{\phi}_i$ selon le spin de l'électron). Ce "remplissage" d'orbitales définit une configuration électronique.

En découplant de la sorte les n électrons, on a simplifié la résolution de l'équation électronique mais on a introduit un défaut de corrélation qu'il faudra éventuellement reconsidérer plus tard. La recherche des solutions de l'équation 4.1 se fait donc en deux temps :

- la détermination des orbitales adaptées à la description de l'état excité étudié: cette étape détermine en quelque sorte une fonction d'onde d'ordre zéro de l'état excité;
- 2. la prise en compte de la corrélation électronique.

Cette décomposition du problème est un peu simplificatrice puisqu'en pratique on essaye si possible d'inclure une partie de la corrélation électronique dès la première étape. Cependant, la première étape a pour but principal le calcul des orbitales de l'état, c'est-à-dire une bonne description de la physique du ou des états considérés.

A priori, n'importe quelle fonction d'onde électronique peut servir à la description d'un état électronique mais un choix judicieux permet de simplifier le problème. L'idéal serait de n'avoir qu'une configuration par état. Ceci est réalisable, en première approximation du moins, par la méthode SCF.

Dans la méthode SCF, on fait l'approximation que la fonction d'onde du système est bien décrite par une seule configuration et on optimise la forme des orbitales moléculaires occupées de façon à rendre l'énergie du système minimale. Ces orbitales moléculaires sont exprimées comme des combinaisons d'orbitales atomiques (LCAO), c'est en variant les coefficients des combinaisons que l'on minimise l'énergie. L'aspect variationnel de la méthode limite cependant son application au plus bas état électronique d'une symétrie donnée. Ce point est particulièrement contraignant lorsque l'on souhaite déterminer des géométries ou des constantes de force. Une deuxième limitation vient de la nature des états excités qui ne sont pas toujours correctement décrits par une seule configuration lorsque les molécules possèdent des orbitales dégénérées ou quasidégénérées.

L'alternative à ces deux problèmes est d'utiliser des méthodes d'interaction de configuration (IC) dans lesquelles on développe la fonction d'onde sur un ensemble de fonctions du type de celles de l'expression 4.2. Le théorème de MacDonald [100] assure alors qu'il est possible de déterminer variationnellement la fonction d'onde Φ_e pour un état excité. Ce théorème montre que, si on considère une suite d'IC emboitées (c'est-à-dire que chacune contient toutes les précédentes) et que l'on note $e_{m,k}$ la valeur propre de rang k dans l'IC de rang m, ces valeurs propres étant classées par ordre croissant, alors :

$$e_{m+1,k} \le e_{m,k} \ (k < m)$$

Ceci implique que la suite $e_{m,k}$ (k fixe, $m \to \infty$) est décroissante. En supposant que cette suite d'IC converge vers les valeurs propres exactes du hamiltonien électronique (E_k) , on a alors

$$e_{m,k} > (E_k)$$

On a donc une extension du théorème variationnel appliquable à la détermination des fonctions des états excités. En minimisant $e_{m,k}$ par rapport aux orbitales qui définissent les configurations, on se rapproche nécessairement de la valeur propre E_k ; la fonction d'onde n'est cependant pas quelconque, c'est le vecteur propre de rang k d'une matrice d'IC $m \times m(k \leq m)$.

Etant donné que l'IC complète est pratiquement impossible, il se pose le problème du choix de l'espace des configurations et de la base d'orbitales dans laquelle est effectuée cette IC.

La méthode la plus simple consite à restreindre l'espace des configurations aux mono-excitations, et d'utiliser les orbitales de l'état fondamental provennant d'un calcul Hartree-Fock: c'est la méthode CIS (Configuration Interaction Single). C'est la méthode que nous avons utilisée pour le calcul des structres et des propriétés vibrationnelles. Ces spécificités sont données un peu plus loin. On remarque toutefois sa principale limitation: elle ne prend pas en compte les di-excitations, c'est-à-dire qu'une telle fonction d'onde ne peut représenter un état de nature di-excité. De même, la description des états est limitée *a priori* aux plus bas états excités, la contribution des di-excitations augmentant rapidement avec l'énergie des états [101, 102]. Une alternative consiste à utiliser la méthode MCSCF, il est alors possible d'inclure des configurations mono- et di-excitées et d'optimiser les orbitales moléculaires, adaptant de cette manière ces dernières à la description de l'état excité souhaité. Les configurations doivent cependant être soigneusement choisies. Cette seconde méthode a été utilisée lors de la modélisation des intensités Raman de résonance, pour le calcul des états excités S_n , n > 1.

Ces deux méthodes permettent d'obtenir une bonne description qualitative des premiers états moléculaires. Cette description n'est en général pas suffisante, car les problèmes qui concernent les états excités mettent en général en jeu plusieurs états de surface de potentiel (transitions électroniques, dynamique sur des surfaces d'états excités...). La spécificité de ces problèmes nécessite des méthodes de calcul qui traitent d'une manière équivalente tous les états étudiés. C'est-à-dire qu'il faut réintroduire la corrélation électronique dans la fonction d'onde et tendre vers la solution exacte. Schématiquement, ceci est réalisé par:

- intéraction de configuration Simple et Double à partir de la fonction d'onde MCSCF:
 on parle alors de méthode MRCI;
- la méthode des perturbations: on utilise dans ce cas souvent une fonction d'onde CASSCF que l'on perturbe (méthode CASSCF-PT2).

4.1.2 Choix de la méthode de calcul des états excités singulet des bipyridines

Du point de vue des calculs, la taille des bipyridines est à la limite de ce qui est faisable à l'aide de méthodes sophistiquées (CASSCF, MR-CI) même si des molécules de cette taille ont été étudiées [103]; cela demande des moyens considérables¹. La limite est d'autant plus sévère que l'on souhaite déterminer la structure et les fréquences de vibration. L'étude des structures a donc été entreprise au niveau CIS, c'est-à-dire pour une fonction d'onde exprimée comme une combinaison linéaire de configurations monoexcitées.

4.1.2.1 La méthode CIS

La méthode CIS consiste à écrire la fonction d'onde des états excités comme une combinaison linéaire de déterminants de Slater monoexcités, construits à partir des orbitales moléculaires de l'état fondamental.

La fonction d'onde de l'état fondamental représentée par un déterminant de Slater s'écrit :

$$\Psi_{HF} = (n!)^{-1/2} |\phi_1 \dots \phi_i \dots \phi_n|$$

Les ϕ_i sont les spin-orbitales occupées optimisées par une calcul SCF de l'état fondamental. En substituant dans le déterminant une orbitale occupée ϕ_i par une orbitale virtuelle ϕ_a , on engendre un déterminant monoexcité:

$$\psi_{ia} = (n!)^{-1/2} |\phi_1 \dots \phi_a \dots \phi_n|$$

La fonction d'onde CIS s'exprime sur cette base de déterminants monoexcités :

^{1.} Un test de calcul CASSCF des états excités de la 4,4'-bipyridine avec une base $6 - 31G^*(+)$ a nécessité 10h Cray environ

$$\Psi_{CIS} = \sum_{ia} a_{ia} \psi_{ia}$$

Les coefficients a_{ia} sont obtenus par diagonalisation de la matrice du hamiltonien, dont les éléments dans la base des monoexcitations s'écrivent :

$$\langle \Psi_{ia}|H|\Psi_{jb}\rangle = [E_{HF} + \epsilon_a - \epsilon_i]\delta_{ij}\delta_{ab} - (ja||ib)$$

Les énergies des états sont les valeurs propres de cette matrice, les coefficients a_{ia} sont les composantes des vecteurs propres. Dans la formule ci-dessus, ϵ_i et ϵ_a sont les valeurs propres de l'opérateur de Fock de l'état fondamental.

Cette méthode est un point de départ séduisant pour l'étude des états excités, comme l'est la méthode Hartre-Fock pour l'état fondamental. Elle est conceptuellement et informatiquement simple et applicable à de grosses molécules. De plus, dans ce formalisme, la fonction d'onde et l'énergie sont bien définies :

$$E_{CIS} = E_{HF} + \sum_{ia} a_{ia}^2 (\epsilon_a - \epsilon_i) - \sum_{ijab} a_{ia} a_{jb} (ja||ib)$$

L'existence d'une expression simple de l'énergie permet de programmer des méthodes analytiques de calcul du gradient et de la hessienne des surfaces de potentiel. La méthode est donc adaptée à l'étude des structures et des modes de vibration des états excités de molécules polyatomiques.

4.1.2.2 Applicabilité de la méthode CIS

Le calcul d'une fonction d'onde au niveau CIS est comparable à celui réalisé au niveau HF pour l'état fondamental, sous reserve que l'état soit correctement décrit à l'aide de configurations monoexcitées. L'IC dans l'espace complet des monoexcitations prend alors en compte une bonne partie de la repolarisation des orbitales de l'état fondamental, c'est-à-dire de la réorganisation de la densité électronique consécutive à l'excitation. Il convient toutefois de limiter l'application de cette méthode aux premiers états excités, la contribution des di-excitations à la fonction d'onde électronique augmentant avec l'énergie de l'état. En plus de cette restriction concernant sa nature monoexcitée, un état sera d'autant mieux décrit au niveau CIS que sa fonction d'onde contient une forte contribution d'une configuration dominante. Enfin, il existe une dernière condition plus difficilement prévisible: il est souhaitable que les excitations non incluses dans la fonction d'onde CIS ne mélangent pas les états électroniques. Ceci changerait fortement la nature de ceux-ci et la fonction d'onde CIS ne pourrait être considérée comme une fonction d'onde d'ordre zéro. Pratiquement, cela revient à dire que les régions de l'espace des coordonnées nucléaires pour lesquelles la surface de l'état est isolée des autres surfaces sont favorables à l'application de la méthode CIS.

Dans les conditions où l'approximation est valable, on peut alors attendre de la méthode CIS une précision sur la structure et sur les constantes de force comparable à celle obtenue au niveau HF.

Notre choix de travailler à ce niveau est motivé par le fait que nous nous intéressons à un état particulier, dont nous souhaitons par ailleurs confronter les fréquences à celles observées expérimentalement. C'est-à-dire que la position de cet état nous importe peu: nous ne nous plaçons pas dans une logique de détermination de l'état S_1 par comparaison avec la position des autres états électroniques, auquel cas il faudrait traiter de manière équivalente tous les états. Nous recherchons plutôt une description correcte du minimum de potentiel de la surface de l'état excité ce qui peut être obtenu au niveau CIS moyennant les conditions précisées ci-dessus sur la nature de la fonction d'onde.

Comme rappelé au chapitre 1, les études précédentes suggèrent une nature $n\pi^*$ pour

l'état S_1 de la 44BPY, de la 22BPY et de la 4PPY. Or, Castellucci et coll. ont montré que l'état singulet $S_1 n\pi^*$ de la 22BPY est de nature mono-excitée avec une participation négligeable des di et tri-excitations à la fonction d'onde de cet état [41]. Une fonction d'onde monoexcitée peut donc représenter correctement cet état à l'ordre zéro. Par ailleurs, les études de l'état fondamental et de diverses formes réduites des bipyridines ont montré que le calcul du champ de force au niveau Hartree-Fock est suffisant pour interpréter les spectres Raman et IR. L'absence de corrélation électronique dans la méthode CIS ne devrait donc pas non plus être un facteur trop pénalisant pour le calcul des fréquences.

4.1.3 Description des calculs

Le programme Gaussian 94 [90] a été utilisé pour optimiser les structures et pour calculer les constantes de force des états excités au niveau CIS [39]. Le calcul analytique des gradients et des dérivées secondes de l'énergie permet de traiter des molécules de taille importante.

Pour cette étude, nous avons utilisé la base $6 - 31G^*(+)$ qui contient une couche d'orbitales 3d de polarisation sur les atomes lourds (les 6 orbitales cartésiennes ont été conservées) ainsi qu'une couche d'orbitales sp diffuses représentées par une gaussienne (exposant 0.0639) sur les atomes d'azote. Ce choix est basé sur des études ab initio antérieures des bipyridines. Ces études ont montré que cette base permet une description satisfaisante des propriétés structurales et vibrationnelles de l'état fondamental des espèces neutres et des ions radicalaires instables des bipyridines au niveau Hartree-Fock [61]. Pour des états électroniques de valence et dans la mesure où, par le choix de la méthode CIS, on a renoncé à inclure la corrélation électronique, cette base représente un bon compromis entre la précision de la méthode et le besoin en ressource informatique. Les structures des états excités ont été optimisées à partir de la géométrie stable de l'état fondamental pour les molécules étudiées. Les contraintes de symétrie ont été progressivement relachées par déformation le long des modes normaux pour lesquels la surface d'énergie potentielle (SEP) présente une courbure négative. Afin d'éviter des artefacts qui résulteraient du niveau de calcul, nous avons considéré les structures complètement optimisées, mais aussi des structures correspondant à des états de transition sur la SEP, énergétiquement proches de la géométrie optimisée. La correction CIS-MP2 [39] a été appliquée à l'énergie des géométries optimisées.

La matrice des dérivées secondes de la surface d'énergie potentielle (constantes de force) a été calculée analytiquement, en coordonnées cartésiennes, pour les différentes structures optimisées par un algorithme contenu dans le programme Gaussian 94. Ces constantes de force ont servi au calcul des fréquences des modes de vibration. Elle ont été transformées dans un jeu de coordonnées internes à l'aide du programme REDONG [91], conçu pour éliminer les redondances. Les modes de vibration et les distributions d'énergie potentielle sont aussi calculés au moyen de REDONG.

Les orbitales moléculaires ont été représentées à l'aide du programme Moldem.

4.2 Structure de l'état $1^{1}n\pi^{*}$ des bipyridines

4.2.1 Etats excités de valence des bipyridines

ć

Si on exclut les liaisons σ , l'espace de valence des bipyridines est constitué de 16 orbitales dont 14 orbitales moléculaires π semblables à celles du biphényle, auxquelles s'ajoutent 2 orbitales non liantes, combinaisons symétrique et antisymétrique des orbitales hybrides n localisées sur chacun des azotes. Les orbitales de la 44BPY et de la 22BPY impliquées dans la fonction d'onde des premiers états excités singulet sont

Etat	Energie ^(a)	$f^{(b)}$	Nature	Fonction d'onde CIS ^(c)
1^1B_2	6.228 eV	0.08	$\pi\pi^*$ (80%)	$0.27 36,42\rangle + 0.15 37,43\rangle + 0.21 38,45\rangle +$
				0.25 39,44 angle+0.21 40,45 angle+0.48 41,42 angle
$1^{1}B_{3}$	$6.230 \ \mathrm{eV}$	0.162	$\pi\pi^*~(100\%)$	-0.16 37,45 angle+0.58 39,42 angle+0.24 40,43 angle-
				0.24 41,44 angle
$1^{1}B1$	$6.232 \mathrm{eV}$	0.020	$n\pi^*~(90\%)$	$0.36 36,45\rangle + 0.51 38,42\rangle + 0.1 39,43\rangle -$
				0.2 40,42 angle
$2^{1}B1$	$6.276 \mathrm{eV}$	0.010	$\pi\pi^* (90\%)$	$0.11 36,45\rangle - 0.17 37,44\rangle + 0.197 38,42\rangle -$
				0.27 39,43 angle+0.51 40,42 angle+0.27 41,45 angle
2^1B2	$6.324 \mathrm{eV}$	0.019	$n\pi^*~(70\%)$	$0.46 36,42\rangle$ + $0.1 36,60\rangle$ - $0.1 37,43\rangle$ +
				$0.33 38,45\rangle - 0.17 39,44\rangle - 0.16 40,45\rangle -$
				$0.27 41,42\rangle$
$2^{1}A$	$6.89 \mathrm{eV}$	0.00	$\pi\pi^* \ (90\%)$	$-0.33 37,42\rangle + 0.26 39,45\rangle - 0.38 38,44\rangle +$
				0.39 41,43 angle

^(a) Transitions verticales. ^(b) Forces d'oscillateur. ^(c) $|x, y\rangle$ signifie que le déterminant monoexcité est obtenu par la promotion d'un électron de l'orbitale x dans l'orbitale y; la numérotation des OM est celle de la figure 4.1

TAB. 4.1 – PREMIERS ÉTATS EXCITÉS DE LA 4,4'-BIPYRIDINE CALCULÉS AU NIVEAU CIS, AVEC LA BASE $6 - 31G^*(+)$ pour la géométrie de l'état fondamental.

représentées sur les figures 4.1 et 4.2, respectivement.

Les tableaux 4.1 et 4.2 contiennent les résultats du calcul CIS concernant les paramètres électroniques des six plus basses transitions verticales $S_0 \rightarrow S_n$ pour la 44BPY et la 22BPY. Dans les deux cas, on trouve cinq états dont les énergies sont très proches: deux de nature $n\pi^*$ et trois de nature $\pi\pi^*$. Pour la 22BPY, de conformation stable trans-plane, la nature $n\pi^*$ ou $\pi\pi^*$ est clairement définie car ces deux types d'états appartiennent à des représentations irréductibles différentes (groupe C_{2h}). Dans le cas de la 44BPY, de symétrie D_2 , le mélange des configurations $n\pi^*$ et $\pi\pi^*$ est possible. Toutefois, l'analyse du poids des configurations dans la fonction d'onde CIS montre que les états gardent un caractère $n\pi^*$ ou $\pi\pi^*$ marqué.

Fig. 4.1 – Représentation des quatre orbitales π les plus hautes, des quatre orbitales π^* les plus basses et des deux orbitales n de l'état fondamental de la 44BPY.

Fig. 4.2 – Représentation des quatre orbitales π les plus hautes, des quatre orbitales π^* les plus basses et des deux orbitales n de l'état fondamental de la 22BPY.

Etat	Energie ^(a)	f ^(b)	Nature	Fonction d'onde CIS ^(c)
1^1B_u	5.550 eV	0.054	$\pi\pi^*$	-0.14 38,43 angle - 0.13 39,44 angle - 0.12 40,47 angle +
				0.64 41,42 angle
$2^1 A_g$	$6.051 \ \mathrm{eV}$	0.000	$\pi\pi^*$	$-0.20 38,44\rangle - 0.16 39,47\rangle + 0.35 40,42\rangle +$
				0.10 40,44 angle+0.53 41,43 angle
1^1A_u	6.123 eV	0.009	$n\pi^*$	-0.31 36,43 angle+0.11 36,63 angle+0.53 37,42 angle+
				0.25 37,42 angle-0.12 37,58 angle
1^1B_g	$6.307 \ \mathrm{eV}$	0.000	$n\pi^*$	+0.42 36,42 angle + 0.29 36,44 angle - 0.13 36,58 angle -
				0.42 37,43 angle+0.11 37,63 angle
2^1B_u	$6.390 \ \mathrm{eV}$	0.037	$\pi\pi^*$	$-0.13 38,43\rangle - 0.15 38,47\rangle + 0.38 39,42\rangle +$
				0.30 40,43 angle - 0.10 40,47 angle + 0.44 41,44 angle
3^1A_g	$6.942~{\rm eV}$	0.000	$\pi\pi^*$	$+0.33 38,42\rangle + 0.10 38,44\rangle + 0.34 39,44\rangle -$
				$0.15 40,42\rangle$ + $0.30 40,44\rangle$ - $0.11 41,43\rangle$ +
				$0.27 41,47\rangle$

^(a) Transitions verticales. ^(b) Forces d'oscillateur. ^(c) $|x, y\rangle$ signifie que le déterminant monoexcité est obtenu par la promotion d'un électron de l'orbitale x dans l'orbitale y; la numérotation des OM est celle de la figure 4.2

TAB. 4.2 – Premiers états excités de la 2,2'-bipyridine calculés au niveau CIS, avec la base $6 - 31G^*(+)$ pour la géométrie de l'état fondamental.

D'après les tableaux 4.1 et 4.2, les deux états $n\pi^*$ sont proches et situés à environ 6eV (environ 200 nm) au-dessus de l'état fondamental. Trois états $\pi\pi^*$ sont aussi prédits dans cette région. Le spectre d'absorption de la 44BPY à 4,2K a permis de localiser deux transitions $n\pi^*$ à 319 nm et la première transition $\pi\pi^*$ à 270 nm [104]. Comme attendu à ce niveau de calcul, les énergies de transition $S_0 \to S_n$ prédites sont surestimées. Les différences d'énergie ne sont pas significatives à ce niveau de calcul. Nous avons fait l'hypothèse que l'état S_1 est de nature $n\pi^*$. En effet les propriétés photophysiques et photochimiques de cet état, étudiées auparavant par spectroscopie d'absorption transitoire [49], sont apparues très fortement caractéristiques d'une configuration $n\pi^*$. Compte tenu des remarques faites dans les paragraphes précédents quant à la limite de validité de la méthode CIS, il peut sembler incongru d'attacher de l'importance à la différence d'énergie entre les deux états $n\pi^*$. Mais comme il s'agit ici d'états électroniques tous deux $n\pi^*$ dont les fonctions CIS sont construites à partir des mêmes déterminants monoexcités avec des coefficients similaires (au signe prés), ces deux états doivent être traités de manière équivalente par la méthode CIS. En ce sens, la proximité des deux états dans le calcul est significative. Mais surtout la présence de deux transitions $n\pi^*$ d'énergies voisines dans les bipyridines a déjà été proposée par ailleurs sur la base d'études des spectres d'absorption de l'état fondamental [104] et par des calculs semi-empiriques [41]. Les résultats qui concernent les différences d'énergie des deux états $n\pi^*$ de la 44BPY et de la 22BPY sont rassemblés dans le tableau 4.3.

1

Comme précisé au début de ce chapitre nous allons nous intéresser à l'état $n\pi^*$ de plus basse énergie. Nous déterminerons dans un premier temps sa structure, puis nous confronterons les fréquences calculées pour cette structure avec celles observées par spectroscopie Raman picoseconde pour l'état S_1 des bipyridines en solution.

	Exp. ^(a)	$CIS/6 - 31G^*(+)$	CS-INDO CI ^(b)
4,4'-Bipyridine	$< 800 \text{ cm}^{-1}$	741 cm^{-1}	
2,2'-Bipyridine	$< 800 \text{ cm}^{-1}$	1481 cm ⁻¹	2500 cm^{-1}

^(a) Spectroscopie électronique à basse température, réf

[104]. ^(b) Calculs semi-empiriques monoexcités, réf. [41]

TAB. 4.3 – DIFFÉRENCE D'ÉNERGIE ENTRE LES DEUX TRANSITIONS $n\pi^*$ de l'ÉTAT S₀ des 44BPY et 22BPY-trans.

4.2.2 Structure de l'état singulet $n\pi^*$ de la 4,4'-bipyridine

4.2.2.1 Etude dans la symétrie D_2

Les deux premiers états $n\pi^*$ de la 44BPY, dans la symétrie D_2 de l'état S_0 , appartiennent aux représentations B_1 et B_2 . La structure de ces deux états a été optimisée pour cette contrainte de symétrie. Aucun minimum stable n'a pu être mis en évidence sur les surfaces d'énergie potentielle. L'optimisation de chacun de ces états conduit à des extrema pour laquelle la matrice des dérivées secondes possède deux valeurs propres négatives. Les énergies des états singulets B_1 et B_2 sont reportées sur la figure 4.3 pour les deux géométries optimisées ainsi que pour la géométrie de l'état fondamental.

Sur ce schéma, on remarque que les deux surfaces de potentiel $n\pi^*$ sont calculées comme étant énergétiquement proches. De plus il y a inversion de l'ordre des états entre les deux minima ce qui indique un croisement des surfaces permis par la symétrie. La figure 4.4 représente les orbitales naturelles du calcul CIS de ces deux états excités dont les populations sont nettement différentes de 0 ou 2. Les fonctions d'onde CIS des deux états apparaissent comme des combinaisons linéaires de monoexcitations à partir des deux orbitales n de la bipyridine.

Le tableau 4.4 rassemble les principales données structurales calculées pour chacun

Fig. 4.3 – Energies CIS/6 – 31G(*, +) des états $n\pi^*$ optimisés sous la contrainte de symétrie D_2 ainsi qu'à la géométrie de l'état S_0 .

ŕ

Etat ${}^{1}B_{2}$

Fig. 4.4 – Représentation de la densité électronique des états $n\pi^*$ dans la base des orbitales naturelles. La structure est optimisée dans la contrainte de symétrie D_2 . Les taux d'occupation des orbitales naturelles sont donnés entre parenthèses.

FIG. 4.5 – NUMÉROTATION DES ATOMES LOURDS DE LA 44BPY.

des états. La numérotation des atomes est celle définie figure 4.5. Les deux structures optimisées sont similaires. La principale différence concerne la valeur légèrement différente de l'angle de torsion intercycle.

s,

	Etat ${}^{1}B_{1}$	Etat ${}^{1}B_{2}$	Etat S_0
Liaisons (Å)			
N_1C_2	1.343	1.344	1.320
C_2C_3	1.379	1.378	1.384
C_3C_4	1.403	1.404	1.390
$C_4C'_4$	1.474	1.468	1.488
Angles (°)			
$C_6 \widehat{N_1} C_2$	122.2	122.4	117.3
$N_1\widehat{C_2}C_3$	119.6	119.5	123.8
$C_2 \widehat{C_3} C_4$	121.6	121.0	118.9
$C_3\widehat{C_4}C_5$	121.7	121.7	117.3°
ω	33.6	28.7	44.0

TAB. 4.4 – Structure des états singulets $n\pi^*$ optimisée sous contrainte de symétrie D_2 . Calcul $(CIS/6 - 31G^*(+))$, et de l'état fondamental S_0 $(RHF/6 - 31G^*(+))$.

Les modifications de structure remarquables par rapport à l'état fondamental (voir

tableau 4.6) sont:

- une modification des angles des valence dans le voisinage de l'azote;
- une augmentation de la longueur de la liaison CN (+0.01 Å);
- un léger renforcement de la liaison intercycle (-0.01 Å) accompagné d'une diminution de la valeur de l'angle de torsion intercycle (environ -10°).

Les modes normaux pour lesquels la surface d'énergie potentielle possède une courbure négative sont représentés sur la figure 4.6.

Le premier est un mode de vibration dans le plan des cycles, de symétrie b_3 , pour lequel la déformation des deux cycles se fait en opposition de phase. La relaxation de la structure selon cette direction aboutit donc à une structure C_2 (axe $C_2 = z$ le long de la liaison intercycle) composée de deux cycles plans non équivalents. La valeur propre de la hessienne calculée pour ce mode est anormalement négative, reflet d'une singularité numérique. Toutefois le calcul point par point de l'énergie des états $n\pi^*$ pour différentes structures obtenues par déformations successives le long de ce mode montre que la surface de potentiel ne présente pas de discontinuité ni dans l'énergie, ni dans la valeur du gradient, ni dans celle de la courbure. Ceci a été vérifié pour différentes valeurs de l'angle de torsion intercycle et quel que soit l'état, B_1 ou B_2 , le plus bas (fig 4.7). De plus, l'énergie du plus bas des états singulets $n\pi^*$ est abaissée par déformation le long de ce mode b_3 et les deux surfaces $n\pi^*$ se séparent.

La seconde direction selon laquelle la courbure de la surface est négative est un mode de symétrie b_1 (resp. b_2) pour l'état B_2 (resp. B_1). La relaxation le long de ce mode conduit également à une structure C_2 . Cette distorsion est une déformation en opposition de phase (resp. en phase) d'un mode de vibration hors du plan du cycle de la pyridine. La déformation le long de ces modes a moins d'effet que la précédente sur

Mode de symétrie b_3 Etats 1B_1 et 1B_2

Mode de symétrie b_1 Etat 1B_2

Mode de symétrie b_2 Etat 1B_1

Fig. 4.6 – Modes normaux des états $n\pi^*$ de fréquences négatives lorsque la symétrie D_2 est imposée.

Fig. 4.7 – Energies CIS des deux états $n\pi^*$ pour différents déplacements le long du mode de vibration de symétrie b_3 à partir de la structure optimisée pour l'état 1B_1 . Les mêmes déformations à partir de la structure optimisée de l'état 1B_2 donnent des résultats comparables.

Symétrie	D_2	C_{2v}	C_2	C_s	C_1
CIS	-492,02512	-492,03621	-492,03835	-492,03942	-492,04057
CIS-MP2	-493,49135	$-493,\!49515$	$-495,\!49541$	-493,50190	-493,50064

TAB. 4.5 – ENERGIE EN HARTREE DE L'ÉTAT ${}^{1}n\pi^{*}$ optimisé au niveau CIS/6 – $31G^{*}(+)$ sous différentes contraintes de symétrie. La correction CIS-MP2 a été appliquée pour la structure optimisée au niveau CIS.

la stabilisation de la structure. L'effet prédominant est la dissymétrie des deux cycles qui doit être envisagée impérativement.

En relaxant simultanément la géométrie le long de ces deux modes, on aboutit à une structure complètement optimisée de l'état $n\pi^*$ qui ne possède pas d'élément de symétrie (symétrie C_1). Les énergies des structures C_2 (cycles différenciés plans) et C_1 sont comparées à celle de la structure D_2 dans le tableau 4.5. Nous avons aussi étudié les structures coplanaires équivalentes aux structures C_2 et C_1 , soit les structures $C_{2\nu}$ et C_s respectivement. En effet, comme on peut le voir dans le tableau 4.5, les énergies de ces structures sont voisines de celles des structures C_2 et C_1 . De plus, on remarque que l'énergie relative de ces structures est sensible aux effets des configurations excitées supérieures dont une partie est introduite par le calcul CIS-MP2. Les énergies des structures coplanaires $(C_{2v} \text{ et } C_s)$ sont davantage abaissées que celles des conformations présentant un angle de torsion intercycle. La structure C_s devient alors celle de plus basse énergie. La stabilité relative des différentes structures optimisées est donc sensible à la prise en compte de la corrélation électronique. Cependant cette prise en compte par la méthode CIS-MP2 n'est certainement pas assez précise pour conclure définitivement sur ce point. Pour cette raison nous considérerons dans nos analyses non seulement la structure optimisée dans le calcul CIS mais également les autres structures d'énergies et de géométries voisines $(C_{2\nu}, C_2 \text{ et } C_s)$.

4.2.2.2 Analyse de la structure symétrie C_{2v}

La structure de plus haute symétrie envisageable est celle à deux cycles plans dans un arrangement coplanaire. Elle appartient au groupe C_{2v} , l'axe C_2 passant par les deux atomes d'azote et la liaison intercycle. Dans ce groupe, les états électroniques $n\pi^*$ appartiennent à la représentation B_1 . Les énergies des deux états singulet $n\pi^*$, 1^1B_1 et 2^1B_1 , corespondant à la structure C_{2v} optimisée avec la base $6 - 31G^*(+)$, sont présentées sur le diagramme de la figure 4.8. Relativement à la structure D_2 , le passage en C_{2v} stabilise le plus bas des états $n\pi^*$ et sépare notablement les deux surfaces de potentiel.

En conséquence de la non équivalence des deux cycles, les orbitales RHF non liantes ne sont plus les combinaisons linéaires symétrique et antisymétrique des deux orbitales non liantes des atomes d'azote (figure 4.9), mais deux orbitales moléculaires n localisées sur chacun de ces atomes. Par contre, les orbitales π^* qui conjuguent les deux cycles à travers la liaison intercycle sont peu modifiées par rapport à celles de la structure symétrique; elles restent délocalisées sur la molécule. Comparé au cas de la structure D_2 (figure 4.4), la fonction d'onde CIS des états $n\pi^*$ s'exprime maintenant comme la combinaison de monoexcitations à partir d'une seule orbitale n vers les deux orbitales π^* . Ainsi, la densité électronique résultante est caractérisée par une transition $n\pi^*$ localisée sur un seul cycle pyridinique. Ceci est clairement illustré lorsque l'on représente la densité électronique CIS dans la base des orbitales naturelles (ON). On constate alors que deux ON sont monooccupées. Elles ont été représentées sur la figure 4.9. Elles décrivent la promotion d'un électron à partir d'une orbitale n vers une orbitale π^* localisée sur le cycle d'où provient l'électron.

Afin de différencier de manière commode les deux cycles, l'expression "cycle excité" désignera le cycle sur lequel est localisée la transition. L'autre cycle sera dénommé cycle

Symétrie D_2

ï

Symétrie C_{2v}

Fig. 4.8 – Energie CIS/6 – 31 $G^*(+)$ des états $n\pi^*$ optimisés dans la symétrie D_2 et C_{2v} .

Principales OM-HF impliquées dans la fonction d'onde de l'état $1^{1}n\pi^{*}$

Projection dans la base des orbitales naturelles : une ON de type n et une orbitale de type π sont mono-occupées

Fig. 4.9 – Représentation de la fonction d'onde CIS de l'état $n\pi^*$ optimisé sous la contrainte C_{2v} .

ï

"non excité". La structure optimisée sous la contrainte C_{2v} est présentée sur la figure 4.10. Le cycle excité est à droite. Dans le tableau 4.6, les structures optimisées pour l'état $n\pi^*$ sont comparées avec la géométrie d'équilibre calculée pour l'état S_0 de la 44BPY. La notation est celle de la figure 4.5, les coordonnées primées sont relatives au cycle excité. On remarque que le cycle non excité est peu modifié comparativement à l'état fondamental. Le second cycle présente de fortes distorsions. Les principales distorsions sont localisées autour de l'atome d'azote. Les liaisons CN sont plus longues (+0.036 Å) en accord avec le caractère anti-liant de l'orbitale π^* participant à la fonction d'onde CIS sur cette liaison . Les angles de valence dans lesquels est impliqué l'atome d'azote sont fortement modifiés. L'angle \widehat{CNC} s'ouvre, passant de 117 ° à 130 °. En association avec cette variation, les angles \widehat{NCC} diminuent (de 123.8 ° à 113.8 °). Malgré ces modifications, le cycle conserve une configuration de type "aromatique" et on n'observe pas de distorsion de type quinoidal.

La molécule subit aussi des variations de structure autour de la liaison CC intercycle. Sa longueur diminue par rapport à l'état fondamental (-0.015 Å) alors que les liaisons CC adjacentes s'allongent (+0.024 Å sur le cycle excité et +0.010 Å sur le cycle non excité). Les effets ne sont donc pas confinés au voisinage de l'azote.

Dans le tableau 4.7 sont comparées les distorsions du cycle excité de la 44BPY avec différents calculs de la structure du premier état singulet $n\pi^*$ de la pyridine. Foresman et col. [39] ont optimisé la géométrie de cet état excité au moyen de la méthode CIS pour différentes bases d'orbitales atomiques. La longueur des liaisons CN est très sensible à l'extension de la base; elle est calculée notablement plus courte (1.36 Å) avec une base $6 - 31G^*$ qu'avec la base minimale (1.40 Å). Les liaisons CC sont moins affectées, la tendance est même inversée en ce qui concerne la liaison C_2C_3 . Les variations des longueurs de liaison et des angles de valence entre l'état fondamental et l'état excité

FIG. 4.10 – STRUCTURE DU PREMIER ÉTAT $n\pi^*$ calculée au niveau CIS avec la base 6 – 31 $G^*(+)$ pour les symétries C_{2v} et C_2 . Les longueurs et les angles sont respectivement exprimés en Angström et en degré.

	$S_0^{(a)}$		n	π*	
Symétrie	D_2	C_{2v}	C_2	C_{s}	<i>C</i> ₁
Liaisons				<u> </u>	
N_1C_2	1.320	1.322	1.323	1.322	1.324
$N'_1C'_2$	1.320	1.356	1.358	1.356	1.356
C_2C_3	1.384	1.380	1.381	1.380	1.380
$C'_2C'_3$	1.384	1.366	1.367	1.367	1.370
C_3C_4	1.390	1.400	1.397	1.401	1.398
$C'_{3}C'_{4}$	1.390	1.414	1.411	1.418	1.412
$C_4C'_4$	1.488	1.473	1.472	1.472	1.473
C_4C_5	1.390	1.400	1.397	1.401	1.396
$C'_4C'_5$	1.390	1.414	1.411	1.418	1.416
C_5C_6	1.384	1.380	1.381	1.380	1.382
$C'_5C'_6$	1.384	1.366	1.367	1.367	1.368
C_6N_1	1.320	1.322	1.323	1.322	1.321
$C'_{6}N'_{1}$	1.320	1.356	1.358	1.356	1.358
$C_6 N_1 C_2$	117.3	115.4	116.6	116.1	116.6
$C'_6 N'_1 C'_2$	117.3	130.0	130.4	124.4	125.1
$N_1C_2C_3$	123.8	124.5	124.2	124.4	124.2
$N_1'C_2'C_3'$	123.8	113.8	113.6	113.5	113.1
$C_2C_3C_4$	118.9	120.2	119.7	120.0	119.6
$C'_{2}C'_{3}C'_{4}$	118.9	123.0	122.5	120.0	120.6
$C_3C_4C_5$	117.3	$114,\!8$	115.8	115.0	115.9
$C'_3C'_4C'_5$	117.3	116.4	117.3	116.5	117.5
$C_4C_5C_6$	118.9	120.2	119.7	120.0	119.6
$C'_4C'_5C'_6$	118.9	123.0	122.5	121.1	121.0
$C_5C_6N_1$	123.8	124.5	124.2	124.4	124.1
$C'_{5}C'_{6}N'_{1}$	123.8	113.8	113.6	113.5	113.1
ω	44.0	0.0	31.0	0.0	30.0
$C'_3C'_2N'_1C'_6(\theta)$	0.0	0.0	0.0	32.0	31.0
$C_2'C_3'C_4'C_5'(\theta)$	0.0	0.0	0.0	4.5	4.0

 $(a) \text{ RHF}/6 - 31G^*(+)$

TAB. 4.6 – Strutures optimisées pour le premier état singulet $n\pi^*$ de la 44BPY. Seuls les paramètres importants pour la discussion sont reportés.

Etude struturale *ab initio* de l'état $n\pi^*$ de 44BPY, 22BPY et 4PPY

	Cycle excité	Etat $n\pi^*$ de la pyridine				
méthode	CIS	CIS	CIS	CIS	CASSCF(4,3)	
base	$631G^{*}(+)$	STO3G	321 <i>G</i>	631 <i>G</i> *	$631G^{**}$	
Liaisons					······································	
N_1C_2	1.356 (+0.036)	1.401 (+0.056)	1.380 (+0.049)	$1.360 \ (+0.039)$	1.376 (+0.043)	
C_2C_3	1.366 (+0.018)	1.367 (-0.020)	1.370 (-0.012)	1.373 (-0.012)	1.363 (-0.031)	
C_3C_4	1.414 (+0.024)	1.401 (+0.016)	1.400 (+0.016)	1.403 (+0.019)	1.439 (+0.043)	
Angles						
$C_6 \widehat{N_1} C_2$	130.0 (+12.7)	127.6 (+12.2)	129.6 (+10.8)	126.44 (+7.6)	128.4 (+10.8)	
$N_1 \widehat{C_2} C_3$	113.8 (-10.0)				115.9 (-6.6)	
$C_2\widehat{C_3}C_4$	123.0 (+4.1)				120.4 (+1.8)	
$C_3\widehat{C_4}C_5$	116.4 (-0.9)	119.7 (+1.2)	119.5 (+0.5)	119.2 (+0.6)	119.0 (+0.7)	

Tab. 4.7 – Comparaison de la structure du cycle excité avec des structures calculées pour l'état ${}^1n\pi^*$ de la pyridine.

sont à peu près la même pour toutes les bases. La structure calculée par Becucci et col. par un calcul CASSCF de valence est globalement identique aux structures CIS, les liaisons N_1C_2 et C_3C_4 sont toutefois calculées plus longues. La géométrie d'équilibre du cycle excité de la 44BPY est proche de celle de la pyridine dans l'état $n\pi^*$. La structure calculée pour l'état $n\pi^*$ de la 44BPY optimisée sous la contrainte C_{2v} peut donc être décrite comme une pyridine excitée $n\pi^*$ substituée par une pyridine aromatique, la liaison intercycle conservant un caractère de simple liaison.

4.2.2.3 Analyse de la structure de symétrie C₂

Comme on peut le constater dans le tableau 4.6, la structure de symétrie C_2 est identique à la structure C_{2v} en ce qui concerne la géométrie des deux cycles pyridiniques. La relaxation le long du mode de torsion intercycle ne modifie donc pas sensiblement la distribution électronique de l'état $n\pi^*$. Les deux cycles sont décalés d'un angle de 31°, valeur notablement plus faible que celle dans l'état fondamental (43 ° au niveau RHF). L'énergie de cette structure est légèrement plus basse que celle de la structure C_{2v} .

4.2.2.4 Analyse de la structure de symétrie C_s

La structure C_s coplanaire est obtenue à partir de la structure C_{2v} par déformation selon un mode de vibration hors du plan localisé sur le cycle excité. Les distorsions affectent donc principalement celui-ci (voir tableau 4.6). Le second cycle est très peu perturbé; la molécule se compose toujours d'un cycle excité et d'un second non excité. La déformation se caractérise par un basculement de l'atome d'azote du groupement pyridinique excité hors du plan du cycle. Ce basculement s'accompagne d'une diminution de la valeur de l'angle $C_2 \widehat{N_1} C_6$. L'atome de carbone situé en para de l'azote bascule aussi hors du plan du cycle mais dans une moindre mesure, de même que les quatre liaisons CH. Le cycle excité adopte donc une structure de type bateau.

4.2.2.5 Structure de symétrie C₁

La structure complétement optimisée est de symétrie C_1 , elle est représentée sur la figure 4.12. Comme le montre le tableau 4.6 cette structure est une combinaison des structures C_s et C_2 .

4.2.3 Structure et fonctions d'onde de l'état $n\pi^*$ de la 22BPY

A l'état fondamental, la 22BPY est trans-plane mais possède aussi un minimum secondaire pour la forme cissoïde. Ces deux conformations ont été envisagées dans les calculs d'états excités. Les fonctions d'onde CIS ainsi que les structures d'équilibre qui leur correspondent sont qualitativement similaires aux résultats obtenus dans le cas de la 44BPY:

1. la fonction décrit une excitation localisée sur un seul groupement pyridinique;

2. la structure est caractérisée par un cycle fortement perturbé et par un second cycle peu modifié par rapport à l'état fondamental.

Cette description est valable pour les deux conformations trans et cis. Les structures optimisées dans le groupe de symétrie C_s sont reportées dans le tableau 4.8 pour les deux conformères ainsi que pour la forme trans de l'état fondamental, la notation étant celle de la figure 4.11. Les modifications de structure du cycle excité sont proches de celles observées pour la 44BPY en ce qui concerne les liaisons CN et l'angle CNC. Cependant les autres liaisons CC du cycle excité sont elles aussi perturbées. On constate un racourcissement des liaisons $C'_3C'_4$ et $C'_5C'_6$ associé à l'allongement les deux autres liaisons CC. La distribution électronique du cycle excité est donc davantage modifiée que dans le cas de la 44BPY. Les énergies des différentes structures sont reportées dans le tableau 4.8. La structure trans est calculée la plus stable, toutefois ce paramètre n'est pas très significatif à ce niveau de calcul. Les deux conformations devront donc être considérées lors de l'analyse vibrationnelle.

Les deux structures présentées ne correspondent pas à des états stables. Dans les deux cas, la structure est stabilisée par la distorsion hors du plan du cycle excité comme pour la 44BPY. La 22BPY-trans est stable vis-à-vis de la torsion intercycle ce qui n'est pas le cas de l'isomère cis, qui est stabilisé par relaxation de l'angle intercycle et ce à cause des interactions stériques entre les atomes d'hydrogène. Les structures complètement optimisées sont illustrées sur la figure 4.12.

4.3 Structure de l'état $n\pi^*$ de la 4-phénylpyridine

La 4PPY ne possède qu'un seul atome d'azote et par conséquent une seule paire d'électrons libres. L'excitation est donc localisée sur le cycle pyridinique. Le calcul au niveau CIS du plus bas état $n\pi^*$ de la 4PPY aboutit à une structure très proche de celle

	S_0 -trans	$^{1}n\pi^{*}$ -trans	$^{1}n\pi^{*}$ -cis
Liaisons			
N_1C_2	1.330	1.332	1.333
$N_1'C_2'$		1.354	1.358
N_1C_6	1.325	1.318	1.322
$N_1'C_6'$		1.353	1.349
C_2C_3	1.392	1.402	1.405
$C'_2C'_3$		1.421	1.415
C_3C_4	1.383	1.376	1.372
$C'_{3}C'_{4}$		1.360	1.364
C_4C_5	1.385	1.387	1.392
$C'_4C'_5$		1.433	1.438
C_5C_6	1.384	1.384	1.378
$C'_5C'_6$		1.351	1.352
C_2C_2'	1.490	1.448	1.442
Angles			
$C_2 N_1 C_6$	123.5	118.7	119.0
$C_2'N_1'C_6'$		131.9	131.8
$N_1C_2C_3$	122.2	121.5	121.2
$N_1'C_2'C_3'$		110.5	110.8
$C_3C_4C_5$	118.5	118.7	119.7
$C'_{3}C'_{4}C'_{5}$		119.9	119.9
$C_4C_5C_6$	118.0	117.2	117.2
$C'_4C'_5C'_6$		119.4	119.4
E(CIS)		-492.0477804	-492.0449217
E(CIS-MP2)		-493.5115500	-493.5074758

TAB. 4.8 – Structures du premier état singulet $n\pi^*$ des formes cis- et trans- de la 22BPY dans la contrainte de symétrie C_s (Calcul CIS/6 – $31G^*(+)$) et comparaison avec l'état S_0 (HF/6 – $31G^*(+)$).

.

FIG. 4.11 - NUMÉROTATION DES ATOMES LOURDS DE LA 22BPY.

obtenue pour la 44BPY, c'est-à-dire présentant un cycle pyridinique excité, substitué par un cycle phényle peu perturbé par rapport à l'état fondamental. Comme pour la 44BPY, la structure complètement optimisée est de symétrie C_1 et il existe des structures instables de symétrie C_{2v} , C_2 et C_s d'énergies voisines. Les structures optimisée sous contraintes C_{2v} et C_1 , la plus haute et la plus basse symétrie étudiée, sont reportées dans le tableau 4.9. La numérotation est la même que pour la 44BPY (figure 4.5), l'atome d'azote N_1 étant substitué par l'atome de carbone C_1 .

	S ₀ -C ₂	$^{1}n\pi^{*}-C_{2v}$	¹ nπ*-C ₁
Liaisons			
C_1C_2	1.385	1.384	1.387
$N_1'C_2'$	1.321	1.357	1.36
C_1C_6	1.385	1.384	1.384
$N_1'C_6'$	1.321	1.357	1.357
C_2C_3	1.384	1.383	1.384
$C_2'C_3'$	1.383	1.368	1.364
C_3C_4	1.392	1.400	1.399
$C'_{3}C'_{4}$	1.391	1.412	1.416
C_4C_5	1.392	1.400	1.397
$C'_4C'_5$	1.391	1.412	1.411
C_5C_6	1.384	1.383	1.382
$C'_5C'_6$	1.383	1.367	1.372
C_4C_4'	1.489	1.483	1.478
Angles			
$C_2C_1C_6$	119.6	118.3	118.2
$C'_2 N'_1 C'_6$	117.1	129.7	123.7.
$C_1C_2C_3$	120.2	120.8	120.4
$N_1'C_2'C_3'$	123.9	113.8	112.9
$C_2C_3C_4$	120.7	121.9	121.2
$C_2'C_3'C_4'$	119.1	123.3	120.8
$C_3C_4C_5$	118.6	116.2	117.6
$C'_{3}C'_{4}C'_{5}$	116.9	116.1	116.4
$C_4C_5C_6$	120.7	121.9	121.1
$C_4'C_5'C_6'$	119.1	123.3	1204
ω	43.5	0.0	35.0

TAB. 4.9 – Structures du premier état singulet $n\pi^*$ de la 4PPY optimisées sous différentes contraintes de symétrie (Calcul CIS/6 – $31G^*(+)$) et comparaison avec l'état S_0 (HF/6 – $31G^*(+)$).

4,4'-Bipyridine

4-Phénylpyridine

2,2'-Bipyridine (Trans) 2,2'-Bipyridine (Cis)

FIG. 4.12 – Schéma de la structure du premier état singulet ${}^{1}n\pi^{*}$ de la 44BPY, de la 4PPY, et de la 22BPY en conformation trans et cis.

4.4 Discussion

Le plus bas état excité $n\pi^*$ de la 44BPY, de la 22BPY et de la 4PPY peut être décrit, sur la base d'un calcul CIS, comme composé d'un cycle pyridinique excité $n\pi^*$ substitué par un groupement pyridinique ou phényle peu modifié par rapport à l'état fondamental de la molécule. Avant de confronter les fréquences qui découlent des structures calculées à celles observées sur les spectres Raman de résonance de l'état S_1 , quelques particularités des structures calculées doivent être discutées. Le premier point de la discussion concerne la pertinence des distorsions hors du plan, le second point traite du problème de la dissymétrie des deux cycles à l'état excité.

4.4.1 Torsion intercycle et distorsion hors plan du cycle excité

Dans le deuxième chapitre, nous avons mentionné la difficulté de déterminer par le calcul la valeur de l'angle de torsion intercycle de molécules bicycliques à l'état fondamental ainsi que la sensibilité de cette valeur à la force de la liaison intercycle. Puisque la structure calculée pour l'état S_1 n'est pas caractérisée par un fort renforcement de cette liaison, les difficultés rencontrées pour l'état fondamental subsistent. On observe néanmoins une diminution significative de l'angle de torsion intercycle (~ 15 °) pour la 44BPY et la 4PPY. Cette variation est à relier au fait que, malgré l'important confinement de l'orbitale π^* sur le cycle excité, celle-ci présente un caractère liant le long de la liaison intercycle. Cependant il n'est pas exclu que la méthode CIS localise trop, ou pas assez, l'orbitale sur le cycle excité avec donc une erreur possible sur la détermination de l'angle de torsion. En plus de ce problème de localisation, l'encombrement stérique autour de la liaison centrale influence aussi la torsion. On constate à la lecture du tableau 4.7 que, pour l'état S_1 de la pyridine, les liaisons CC situées en para de l'atome d'azote, calculées au niveau CASSCF, sont plus longues que celles calculées par la méthode CIS. Ce résultat extrapolé à la 4,4'-bipyridine ou à la 4-phénylpyridine aurait pour conséquence de diminuer les interactions stériques autour de la liaison intercycle avec des répercussions sur les valeurs de la longueur de cette liaison et de l'angle de torsion intercyle. La valeur de cet angle reste donc incertaine compte tenu de la précision de la méthode CIS.

La seconde caractéristique structurale discutable est la distorsion hors du plan du cycle pyridinique excité. On a vu dans le tableau (4.7) que la structure du cycle excité est comparable aux géométries prédites pour l'état $n\pi^*$ de la pyridine. Le problème de la distorsion hors du plan de la pyridine dans l'état ${}^{1}n\pi^{*}$ est régulièrement discuté. Différents auteurs ont étudié ce problème sans toutefois vraiment tirer de conclusion claire quant à la présence et à l'origine d'une structure non plane. A partir d'une fine étude de la bande d'absorption $n\pi^*$ de la pyridine à 287 nm, Jesson et coll. [38] ont montré l'abaissement d'un mode de vibration hors du plan des liaisons CH qui passe de 403 cm⁻¹ à 60 cm⁻¹ entre l'état S_0 et l'état S_1 et ils concluent à une structure présentant une faible distorsion hors du plan, de type bateau, avec une hauteur de barrière de quelques cm⁻¹ entre les puits de la surface de potentielle. Une structure non plane, comparable par l'ampleur des déformations à la géométrie du cycle excité dans les structures complétement optimisés de l'état $1^{1}n\pi^{*}$ de la 44BPY, de la 22BPY et de la 4PPY, a par ailleurs été proposée par Buma et coll. pour l'état $^{3}n\pi^{*}$ de la pyridine sur la base de mesures par spectroscopie électronique d'écho de spin, complétées par des calculs MRCI. D'un autre côté, Beccucci et coll. [26] ont optimisé la structure de l'état singulet $n\pi^*$ de la pyridine par un calcul CASSCF de valence. La structure optimisée est plane. Les constantes de rotation déduites de ces expériences sont en bon accord avec les valeurs déduites des spectres optothermiques haute résolution enregistrés dans la transition $n\pi^*$ de la pyridine. Enfin, Foresman et coll. [39] ont aussi étudié la pyridine
dans le cadre d'un l'article de présentation de la méthode CIS. Ils ont montré que le choix de la base influence la présence ou l'absence d'une distorsion hors du plan. La structure est plane en base minimale 3 - 21G et la pyridine adopte une conformation bateau avec la base $6 - 31G^*$. La présence de cette distorsion hors du plan est donc aussi sujette à caution.

Compte tenu d'une part du faible écart énergétique existant entre les différentes géométries considérées et de la difficulté à prédire théoriquement la valeur des paramètres qui distinguent ces différentes structures relativement à la précision de la méthode CIS, nous ne pouvons pas affirmer que la structure complètement optimisée est effectivement la plus stable; les structures de transition seront par conséquent également considérées lors de l'analyse vibrationnelle.

4.4.2 Origine de la localisation de l'excitation $n\pi^*$

La structure proposée pour l'état S_1 de la 4,4'-bipyridine et de la 2,2'-bipyridine pose le problème de la dissymétrie de la molécule dans l'état excité. Nous allons d'abord, à partir d'un modèle simple de brisure de symétrie, présenter les spécificités de ce problème et la manière de le traiter à l'aide des méthodes de chimie quantique. Nous discuterons ensuite sur cette base de l'existence dans la bipyridine de caractéristiques favorables à une telle brisure de symétrie.

4.4.2.1 La brisure de symétrie en chimie quantique

Le problème de la brisure de symétrie spatiale apparaît lorsque les méthodes standard de la chimie quantique (RHF, MCSCF, CI, VB ...) prédisent des fonctions d'onde électroniques de symétrie plus basse que celle du squelette nucléaire. Cette particularité peut se manifester dans les calculs de radicaux, d'ions, d'état excités ... lorsque ces systèmes peuvent être représentés par plus d'une structure résonnante dans une description de type "Valence Bond" ou dans une base d'orbitales localisées.

La brisure de symétrie résulte de l'inadaptation d'une fonction d'onde à la réalisation de deux objectifs antagonistes :

- la minimisation de l'énergie par relaxation des orbitales moléculaires ou de la structure de la molécule;
- la minimisation de l'énergie de résonance.

McLean *et al.* [105] ont illustré le problème dans le cas de l'ion He_2^+ . Leur propos est reporté dans le paragraphe suivant. C'est un modèle de la brisure de symétrie de la fonction SCF et de l'effet de la relaxation des orbitales. Cet exemple classique permet d'illustrer simplement le problème. D'autres exemples de systèmes sujets à la brisure de symétrie peuvent par exemple être trouvés dans l'article de J.P. Malrieu et J.P Daudey [106] et les références citées dans cet article.

4.4.2.2 Exemple de l'ion He_2^+

A grande distance $He_{[a]} - He_{[b]}$, le cation est caractérisé par deux structures de Lewis qui coexistent et qui correspondent à deux fonctions d'onde SCF dégénérées. Chacune d'elles représente une structure résonante avec la charge localisée sur l'un des atomes d'hélium. Ces fonctions d'onde localisées, qui brisent la symétrie, peuvent s'exprimer par:

$$\Phi_g = |\sigma_a^2 \sigma_b'|$$
$$\Phi_d = |\sigma_a' \sigma_b^2|$$

On peut aussi construire une fonction d'onde qui respecte la symétrie du système :

Orbitales pour les fonctions d'onde localisées

Orbitales pour la fonction d'onde symétrique

Fig. 4.13 – Schéma des orbitales de l'ion He_2^+ optimisées pour les fonctions d'onde non symétriques et la fonction d'onde symétrique.

$$\Phi_{sym} = |(\sigma_a'' + \sigma_b'')^2 (\sigma_a''' - \sigma_b''')|$$

La forme des orbitales impliquées dans les fonctions d'onde est schématisée sur la figure 4.13.

Lors de la minimisation de l'énergie SCF, deux effets influencent la stabilité relative de ces deux solutions:

Relaxation des orbitales: Dans le cas des solutions localisées Φ_d et Φ_g , la minimisation de l'énergie par relaxation des orbitales est maximale; l'orbitale σ_a ressemble fortement à l'orbitale 1s de l'atome d'hélium alors que l'orbitale σ_b est beaucoup moins diffuse et est semblable à l'orbitale 1s de He^+ . La relaxation est beaucoup moins importante dans le cas de la fonction Φ_{sym} . La fonction peut s'écrire :

$$\Phi_{sym} = \underbrace{|\sigma_b^{''2}\sigma_a^{'''}| - |\sigma_a^{''2}\sigma_b^{'''}|}_{intéraction \Phi_d/\Phi_g} + \underbrace{|\sigma_a^{''2}\sigma_a^{'''}| - |\sigma_b^{''2}\sigma_b^{'''}|}_{\acute{tats ioniques supérieurs}}$$

L'effet de relaxation des orbitales est alors limité par la présence des deux derniers termes qui reflètent dans la fonction d'onde la contribution d'états ioniques supérieurs. La taille des orbitales est donc restreinte pour diminuer la contribution de ces états qui déstabilisent l'énergie.

Effets de résonance: La solution Φ_{sym} comporte un terme d'interaction entre les deux formes résonantes, qui stabilise l'énergie. Cette intéraction n'est pas du tout prise en compte dans Φ_g et Φ_d

A courte distance $R \sim R_e$ les effets de résonance prédominent si bien que la solution symétrique (délocalisée) est la plus stable. Lorsque R augmente, la stabilisation par la relaxation des orbitales l'emporte et les solutions de plus basse énergie sont les fonctions d'onde localisées. En conséquence, si on étudie l'énergie SCF sans imposer de contrainte de symétrie à la fonction d'onde, la courbe obtenue est discontinue. D'un autre côté, la solution délocalisée ne décrit pas correctement la relaxation des orbitales.

Cet exemple illustre la difficulté de réaliser les deux objectifs contradictoires d'effet de résonance et de relaxation des orbitales à l'aide d'une fonction d'onde composée d'une seule configuration. Les méthodes multiconfigurationelles (MCSCF, CI, MRCI, VB...) sont donc généralement employées pour traiter ce type de problème mais n'apportent pas de solution idéale. En effet, excepté le cas de l'IC totale, la solution dépend de la forme des orbitales moléculaires. Les nombreux exemples de la littérature tels que le radical σ du formyloxyl (HCO_2) [107, 108] ou NO_2 [108, 109, 107] illustrent l'importance de la construction de la fonction d'onde pour traiter correctement ces problèmes. Ces problèmes sont fondamentaux et dépassent le cadre de la brisure de symétrie. En effet,

comme l'explique McLean [105], les deux effets présentés plus haut sont aussi présents dans certaines molécules non symétriques mais, dans ce cas, l'inadaptation de la fonction d'onde est moins spectaculaire. Supposons ainsi que la brisure de symétrie dans les bipyridines étudiées soit un artefact lié à une mauvaise prise en compte dans les calculs de la délocalisation de l'électron à travers l'orbitale π^* . Alors dans ce cas la fonction d'onde présenterait la même faiblesse dans le cas de la 4-phénylpyridine, dont le nuage π est similaire. Pourtant pour la 4PPY, le confinement de l'excitation est beaucoup moins surprenant que dans le cas des bipyridines où il s'accompagne d'une dissymétrisation de la molécule.

Nous allons maintenant exprimer le problème de la brisure de symétrie dans le cas des états excités $n\pi^*$.

4.4.3 Traitement des états $n\pi^*$ localisés

4.4.3.1 Fonction d'onde et hamiltonien du problème

Le raisonnement qui suit est illustré pour la 4,4'-bipyridine, il est toutefois très général est s'applique tout aussi bien à la 2,2'-bipyridine.

A partir des deux paires libres de la 44BPY, on peut construire deux fonctions Φ_d et Φ_g qui décrivent une excitation localisée sur chaque cycle.

$$\Phi_{g} = |\phi_{core} n_{d}^{2} n_{g}^{'1} \pi_{g}^{1*} \alpha \beta \dots \alpha \beta \alpha|$$
$$\Phi_{d} = |\phi_{core}^{'} n_{d}^{'1} n_{g}^{2} \pi_{d}^{1*} \alpha \beta \dots \alpha \beta \alpha|$$

En optimisant ces deux fonctions lors d'un calcul SCF, par exemple, on obtient les orbitales schématisées sur la figure 4.14. Ce type de fonction d'onde permet d'optimiser la forme des orbitales en particulier l'orbitale n qui perd son électron et l'orbitale π^* qui se peuple. Etude struturale *ab initio* de l'état $n\pi^*$ de 44BPY, 22BPY et 4PPY

Fig. 4.14 – Schéma des orbitales localisées n et π^* impliquées dans les fonctions d'ondes Φ_d et Φ_g .

Le comportement de l'énergie de ces deux fonctions d'onde Φ_d et Φ_g est schématisé sur la figure 4.15, le long d'une coordonnée qui fait passer la molécule d'une structure D_{2h} à C_{2v} . Ces solutions localisées sont caractérisées par des minima pour une géométrie de symétrie plus basse que dans l'état S_0 .

Pour tenir compte de l'intéraction entre les deux excitations localisées, on construit donc à partir de ces deux fonctions d'onde localisées les deux fonctions d'onde suivantes adaptées à la symétrie:

$$\Phi_{\pm} = c_g \Phi_g \pm c_d \Phi_d$$

Les coefficients c_d et c_g sont obtenus en resolvant le problème d'IC 2×2 non orthogonal :

$$\begin{bmatrix} \langle \Phi_d | H | \Phi_d \rangle & \langle \Phi_d | H | \Phi_g \rangle \\ \langle \Phi_g | H | \Phi_d \rangle & \langle \Phi_g | H | \Phi_g \rangle \end{bmatrix} \begin{bmatrix} c_g \\ c_d \end{bmatrix} = E \begin{bmatrix} 1 & S \\ S & 1 \end{bmatrix} \begin{bmatrix} c_g \\ c_d \end{bmatrix}$$

avec

$$S = \langle \Phi_d | \Phi_g \rangle$$

Ces nouvelles fonctions d'onde tiennent maintenant compte des interactions entre les deux excitations $n\pi^*$ localisées ce qui peut modifier fortement la forme des courbes d'énergie potentielle. Les deux cas extrêmes, couplage fort et couplage faible, sont représentés sur la figure 4.15.

Dans le cas d'un couplage faible, la surface S_1 présente un double puits symétrique dont les minima sont proches de ceux des solutions Φ_d et Φ_g . En cas de couplage fort, l'excitation est délocalisée et la surface adiabatique ne présente qu'un seul minimum de symétrie D_{2h} .

L'intensité du couplage est alors liée à la valeur de l'intégrale de recouvrement des fonctions d'onde Φ_d et Φ_g . En négligeant la contribution des orbitales non directement impliquées dans l'excitation, cette intégrale dépend d'une part de l'intéraction entre les paires libres des atomes d'azote et d'autre part du recouvrement des orbitales π^* peuplées par excitation. On a alors approximativement [32]

 $\langle \Phi_d | \Phi_g \rangle \sim \langle n_d | n_g \rangle \langle \pi_d^* | \pi_g^* \rangle$

$$\Delta E = E_{+} - E_{-} \propto \langle n_d | n_g \rangle \langle \pi_d^* | \pi_g^* \rangle$$

Le problème posé par la dissymétrie des bipyridines est formellement analogue à celui rencontré dans l'étude des états singulet $n\pi^*$ de la pyrazine.

Pour cette dernière, le problème théorique de la localisation a été étudié par la méthode CASSCF, VB et MRCI [35, 34, 32, 110]. Les deux premiers formalismes prédisent une structure dissymétrique, la troisième méthode conclut quant à elle à une excitation délocalisée. L'énergie de résonance et l'énergie de stabilisation géométrique ont également été déduites à partir de résultats expérimentaux. L'énergie d'intéraction des orbitales n correspond expérimentalement à la différence d'énergie entre les deux pics des électrons n observés dans le spectre photoélectronique, soit pour la pyrazine environ 6000 cm⁻¹ [110]. Une autre valeur de l'interaction est donnée par la séparation entre les transitions $n\pi^*$. Dans ce cas, l'interaction au travers de l'orbital π^* est prise en compte. La valeur de cette énergie est de 5500 cm⁻¹ [110]. Cette valeur est du même ordre de grandeur que celle obtenue par spectroscopie photoélectronique. La contribution principale à l'énergie de résonance est donc le couplage des paires libres.

Pour la molécule de bipyridine, les paires libres sont trop éloignées pour intéragir spatialement. Il peut cependant exister un couplage par l'intermédiaire du réseau σ comme cela est le cas pour la molécule de pyrazine [111]. Cependant l'analyse des spectres d'absorption électronique de la 44BPY et de la 22BPY [104] ont montré que les deux transitions $n\pi^*$ sont séparées de moins de 800 cm⁻¹. Le couplage est donc beaucoup plus faible que dans le cas de la pyrazine. Cette indépendance électronique des deux cycles est liée au faible couplage à travers la liaison intercycle. Cette particularité d'indépendance a également été proposée pour analyser les spectres d'absorption du biphényle [112]. L'existence d'états localisés en fonction de la force du couplage entre deux fragments a aussi été proposée lors d'une étude *ab initio* de supermolécules, composées de deux molécules intéragissant par l'intermédiaire de liaisons hydrogène [113] et pour expliquer la fluorescence de la molécule de 9,9'-bianthryle [114].

C'est donc vraissemblablement la faiblesse de la conjugaison intercycle qui est la cause de la localisation de l'excitation. Pour vérifier si c'est bien ce paramètre qui in-

fluence la solution CIS, nous avons optimisé la structure du plus bas état excité $n\pi^*$ de la 2,6-naphtyrine. Cette molécule est semblable à la 2,2'-bipyridine en ce qui concerne la position des deux atomes d'azote mais la conjugaison π entre les deux moitiés de la molécule est importante. L'analyse des spectres d'absorption de cette molécule montre que les deux états $n\pi^*$ sont énergétiquement bien séparés [104] reflétant donc un couplage plus important. Dans ce cas, la méthode CIS prédit elle aussi deux transitions séparées et l'optimisation du plus bas état singulet $n\pi^*$ aboutit à un état symétrique.

4.5 Résumé

L'optimisation du premier état singulet $n\pi^*$ de la 4,4'-bipyridine, de la 2,2'-bipyridine et de la 4-phénylpyridine au niveau CIS prédit une molécule composée d'un cycle pyridinique dans l'état $n\pi^*$ proche de la pyridine excitée et relié par une liaison simple à un groupement phényle ou pyridinique à l'état fondamental. Les distorsions calculées sont en accord avec d'autres études relatives aux bipyridines ou à la pyridine. Toutefois, l'existence d'une structure dissymétrique est surprenante et doit être considérée avec précaution. La faible intéraction des paires libres à l'état fondamental est néanmoins un argument en faveur de la localisation observée. Afin de valider la structure calculée, nous allons confronter les fréquences de vibration théoriques qui découlent de cette structure avec celles observées pour l'état S_1 par spectroscopie Raman picoseconde.

Fig. 4.15 – Principe de la dissymétrisation des géométries d'équilibre. Φ_d et Φ_g sont les fonction d'onde localisées et $\Phi_{\pm} = c_g \Phi_g \pm c_d \Phi_d$

Chapitre 5

Propriétés vibrationnelles de l'état S_1 des 44BPY, 22BPY et 4PPY

Les fréquences de vibration de l'état excité S_1 des 44BPY, 22BPY et 4PPY ont été calculées à partir des structures optimisées présentées dans le chapitre 4. Nous les comparons maintenant aux fréquences expérimentales obtenues par spectroscopie Raman de résonance résolue dans le temps (voir chapitre 3).

5.1 Calcul des fréquences de vibration de l'état $S_1(n\pi^*)$ de la 44BPY

5.1.1 Résultats

Les modes normaux calculés pour les différentes structures (C_{2v}, C_2, C_s, C_1) sont reportés dans les tableaux (5.1 à 5.4). Les modes selon lesquels la structure est instable ainsi que les modes correspondant aux élongations des liaisons CH ne sont pas reportés. Pour chaque mode figurent dans le tableau la fréquence calculée, la fréquence mise à l'échelle par le facteur 0.9 ainsi qu'une description de la distribution d'énergie potentielle du mode. Le symbole * se rapporte au cycle excité. L'analyse des DEP montre que plus de 70% des modes de vibration sont localisés sur l'un ou l'autre cycle. La colonne "localisation" indique pour chaque mode la part d'énergie sur chaque cycle ou sur les coordonnées intercycles (IC) qui sont soit l'élongation intercycle, soit la torsion intercycle. Les coordonnées hors du plan sont notées τ_{ir} , τ et γ et correspondent respectivement à la torsion intercycle, aux torsions autour des liaisons des cycles (CC et CN) et aux mouvements hors du plan des CH et des liaisons C-cycle. Les coordonnées dans le plan du cycle sont notées Ω_{ir} , R_{cc} et δ_{ccc} , β_{ch} , représentant respectivement l'élongation de la liaison intercycle, les élongations des liaisons CC et CN, les déformations des angles de valence CCC et CCH.

Dans les tableaux (5.1 à 5.4) on constate que les modes de vibration sont similaires pour toutes les structures optimisées. Les faibles distorsions autour de la structure C_{2v} et l'abaissement de symétrie qui en résulte modifient peu les fréquences et la distribution d'énergie potentielle des modes de vibration. Il est ainsi possible d'établir une correspondance univoque entre les modes calculés pour une structure C_{2v} plane et chacune des structures voisines optimisées. Celle-ci est facilitée par la corrélation existant entre le groupe C_{2v} et le groupe C_2 d'une part et le groupe C_{2v} et le groupe C_s d'autre part. La correspondance des modes dont la fréquence est supérieure à 1000 cm⁻¹ est établie directement sur la base des DEP. Ce domaine de fréquence ne contient que des modes de symétrie a_1 et b_2 dans le groupe C_{2v} . Ces deux représentations auxquelles appartiennent les mouvements dans le plan des cycles ne sont plus corrélées lors de l'apparition de distorsions hors du plan. A quelques variations de fréquence près, ces modes sont identiques pour les quatre structures. La région des fréquences inférieures à 1000 cm⁻¹ est plus sensible à l'abaissement de la symétrie. On y observe des mélanges partiels de modes

No	mbres	d'onde	Di			stribution d'énergie potentielle. (%)
	c1	n^{-1}	local	isation	(%)	description du mode
	calc.	*0.9	Py	Py*	I.C.	coordonnées. internes (%)
b_1	103	92	39	61	0	$\gamma^*(34) \ \gamma(20) \ \tau^*(27) \ \tau(19)$
b ₂	198	178	48	52	0	$\delta^*_{ccc}(45) \ \delta_{ccc}(41)$
b ₁	259	233	51	49	0	$\gamma^{*}(19) \ \gamma(11) \ au^{*}(30) \ au(40)$
a1	347	313	30	36	34	$\Omega_{ir}(34) \ R^*_{cc}(6) \ R_{cc}(7) \ \delta^*_{ccc}(27) \ \delta_{ccc}(21)$
a_2	435	391	79	22	-1	$\gamma^{*}(18) \ \gamma(20) \ au(58)$
b2	437	393	46	54	0	$R_{cc}^{*}(16) R_{cc}(7) \delta_{ccc}^{*}(36) \delta_{ccc}(37)$
a_2	439	395	5	97	-2	$\gamma^*(62) au^*(35)$
a2	514	462	1	99	0	$\gamma^{*}(88) \ au^{*}(11)$
b_1	549	494	43	57	0	$\gamma^*(36) \ \gamma(21) \ au^*(21) \ au(22)$
b ₁	620	558	48	52	0	$\gamma^{*}(49) \ \gamma(31) \ au(17)$
a ₁	632	569	40	60	0	$\delta_{ccc}^{*}(48) \ \delta_{ccc}(33) \ \beta_{ch}^{*}(9) \ \beta_{ch}(5)$
b2	645	581	1	99	0	$R_{cc}^{*}(7) \ \delta_{ccc}^{*}(70) \ \beta_{ch}^{*}(22)$
b ₁	737	664	7	93	0	$\gamma^{*}(71) \ au^{*}(21)$
b2	737	664	96	4	0	$R_{cc}(7) \ \delta_{ccc}(65) \ \beta_{ch}(23)$
$ a_1 $	785	707	50	32	18	$\Omega_{ir}(18) R_{cc}^{*}(10) R_{cc}(8) \delta_{ccc}^{*}(18) \delta_{ccc}(35) \beta_{ch}(6)$
b_1	818	737	95	5	0	$\gamma(47) \ au(48)$
b_1	913	822	96	4	0	$\gamma(89) \ \tau(7)$
a_2	932	839	96	4	0	$\gamma(77) \ au(19)$
b ₁	1006	905	2	98	0	$\gamma^{*}(83) \tau^{*}(15)$
a ₁	1009	908	2	97	1	$R_{cc}^{*}(81) \ \delta_{ccc}^{*}(13)$
a_2	1024	921	2	98	0	$\gamma^{*}(75) \ au^{*}(23)$
b_2	1045	941	6	94	0	$R_{cc}^*(91)$
a1	1077	970	1	98	1	$R_{cc}^{*}(36) \ \delta_{ccc}^{*}(41) \ \beta_{ch}^{*}(21)$
a_1	1086	978	95	5	0	$R_{cc}(59) \ \delta_{ccc}(29) \ \beta_{ch}(7)$
b1	1089	980	100	0	0	$\gamma(87) \tau(13)$
a_1	1115	1003	59	41	0	$R_{cc}^{*}(16) R_{cc}(10) \delta_{ccc}^{*}(20) \delta_{ccc}(41) \beta_{ch}(8)$
$ a_2 $	1126	1013	100	0	0	$\gamma(84) \ au(16)$
a ₁	1192	1073	95	5	0	$R_{cc}(55) \ \delta_{ccc}(8) \ \beta_{ch}(32)$
b2	1205	1085	34	66	0	$R_{cc}^{*}(28) R_{cc}(31) \beta_{ch}^{*}(34)$
b_2	1231	1108	81	19	0	$R_{cc}^{*}(6) R_{cc}(77) \beta_{ch}^{*}(11)$
b_2	1239	1115	91	9	0	$R_{cc}(57) \ \delta_{ccc}(8) \ \beta_{ch}(27)$
$\begin{vmatrix} a_1 \end{vmatrix}$	1293	1164	5	95	0	$R_{cc}^{*}(17) \beta_{ch}^{*}(77)$
	1369	1232	96	4	0	$R_{cc}(23) \beta_{ch}(71)$
b2	1400	1260	2	98	0	$R_{cc}^{*}(66) \beta_{cb}^{*}(28)$
	1413	1271	25	22	53	$\Omega_{ir}(53) R_{cc}^{*}(5) R_{cc}(8) \delta_{ccc}^{*}(7) \delta_{ccc}(8) \beta_{ch}^{*}(9) \beta_{ch}(9)$
b_2	1468	1321	51	49	0	$R_{cc}^{*}(16) R_{cc}(8) \beta_{ch}^{*}(31) \beta_{ch}(41)$
b_2	1482	1334	14	86	0	$R_{cc}^{*}(25) \ \beta_{ch}^{*}(58) \ \beta_{ch}(9)$
b_2	1529	1377	44	56	0	$R_{cc}^{*}(27) \ \delta_{ccc}^{*}(8) \ \beta_{ch}^{*}(21) \ \beta_{ch}(40)$
a ₁	1553	1397	3	93	4	$R_{cc}^{*}(25) \beta_{ch}^{*}(65)$
b_2	1587	1428	86	14	0	$R_{cc}^{*}(7) R_{cc}(27) \delta_{ccc}(7) \beta_{ch}(51)$
a_1	1682	1514	91	3	6	$\Omega_{ir}(6) R_{cc}(27) \beta_{ch}(61)$
b_2	1747	1573	96	4	0	$R_{cc}(67) \ \delta_{ccc}(12) \ \beta_{ch}(17)$
a_1	1750	1575	2	90	7	$\Omega_{ir}(7) R_{cc}^{*}(54) \delta_{ccc}^{*}(9) \beta_{ch}^{*}(28)$
$ a_1 $	1803	1623	97	1	2	$R_{cc}(60) \ \delta_{ccc}(9) \ \beta_{ch}(28)$

TAB. 5.1 – Fréquences de vibration du plus bas état $^1n\pi^*$ de la 44BPY optimisée sous la contrainte $C_{2\nu}.$

Ne	Nombres d'onde Dis				Di	stribution d'énergie potentielle. (%)
	ci	m^{-1}	local	isation	(%)	description du mode
	calc.	*0.9	Py_	Py*	I.C.	coordonnées. internes (%)
a	72	65	6	5	89	$\tau_{ir}(89)$
b	103	92	39	61	0	$\gamma^*(36) \ \gamma(21) \ \tau^*(22) \ \tau(16)$
6	147	132	49	51	0	$\delta^*_{ccc}(32) \ \delta_{ccc}(31) \ \gamma^*(9) \ \tau^*(9) \ \tau(12)$
6	296	266	53	47	0	$\delta_{ccc}^{*}(13) \ \delta_{ccc}(5) \ \gamma^{*}(16) \ \gamma(15) \ \tau^{*}(16) \ \tau(32)$
a	331	298	32	36	32	$\Omega_{ir}(32) R_{cc}^{*}(5) R_{cc}(6) \delta_{ccc}^{*}(27) \delta_{ccc}(22)$
b	433	389	47	53	0	$R_{cc}^{*}(13) R_{cc}(6) \delta_{ccc}^{*}(27) \delta_{ccc}(36) \gamma^{*}(5) \tau(7)$
a	440	396	18	82	1	$\gamma^*(50) \ \gamma(5) \ \tau^*(30) \ \tau(13)$
a	446	401	65	30	4	$\gamma^{*}(19) \gamma(19) \tau^{*}(11) \tau(46)$
a	536	482	1	99	0	$\gamma^{*}(85) \ \tau^{*}(11)$
6	575	517	57	43	0	$R_{cc}^{*}(5) \ \delta_{ccc}^{*}(7) \ \gamma^{*}(18) \ \gamma(26) \ \tau^{*}(13) \ \tau(26)$
b	620	558	18	82	0	$R_{cc}^{*}(7) \ \delta_{ccc}^{*}(25) \ \beta_{ch}^{*}(7) \ \gamma^{*}(40) \ \gamma(11) \ \tau(6)$
a	634	570	38	62	0	$\delta_{ccc}^{*}(47) \ \delta_{ccc}(32) \ \beta_{ch}^{*}(8)$
6	654	589	14	86	0	$\delta^*_{ccc}(47) \ \beta^*_{ch}(16) \ \gamma^*(17) \ \gamma(6) \ \tau^*(6)$
6	724	652	11	89	0	$\gamma^{*}(63) \ \tau^{*}(22)$
6	736	663	92	8	0	$R_{cc}(7) \ \delta_{ccc}(62) \ \beta_{ch}(21)$
a	786	708	50	32	18	$\Omega_{ir}(18) \ R^*_{cc}(10) \ R_{cc}(8) \ \delta^*_{ccc}(18) \ \delta_{ccc}(36) \ \beta_{ch}(7)$
b	828	745	91	9	0	$\gamma(47) \tau(43)$
b	925	833	94	6	0	$\gamma(87) \ au(7)$
a	962	866	99	1	0	$\gamma(79) \ \tau(20)$
b	993	894	3	97	0	$R_{cc}^{*}(64) \gamma^{*}(27)$
a	1004	903	1	98	1	$R_{cc}^{*}(81) \ \delta_{ccc}^{*}(12)$
a	1036	932	1	99	0	$\gamma^{*}(71) \tau^{*}(23)$
b	1048	943	2	98	0	$R_{cc}^{*}(58) \gamma^{*}(31) \tau^{*}(7)$
a	1082	974	2	98	0	$R_{cc}^{*}(33) \ \delta_{ccc}^{*}(40) \ \beta_{ch}^{*}(20)$
a	1088	979	94	6	0	$R_{cc}(55) \ \delta_{ccc}(31) \ \beta_{ch}(6)$
b	1093	983	100	0	0	$\gamma(84) \ \tau(14)$
a	1117	1006	59	41	0	$R_{cc}^{*}(18) R_{cc}(13) \delta_{ccc}^{*}(17) \delta_{ccc}(38) \beta_{ch}(7)$
a	1128	1015	100	0	0	$\gamma(82) \ au(17)$
a	1186	1068	98	2	0	$R_{cc}(52) \ \delta_{ccc}(9) \ \beta_{ch}(36)$
[b	1202	1081	63	37	0	$R_{cc}^{*}(16) R_{cc}(57) \beta_{ch}^{*}(20) \beta_{ch}(6)$
6	1208	1087	53	47	0	$R_{cc}^{*}(17) R_{cc}(34) \beta_{ch}^{*}(26) \beta_{ch}(16)$
Ь	1241	1117	88	12	0	$R_{cc}(70) \beta_{ch}^{*}(6) \beta_{ch}(14)$
a	1280	1152	1	99	0	$R_{cc}^{*}(18) \beta_{ch}^{*}(80)$
a	1357	1221	99	0	1	$R_{cc}(25) \beta_{ch}(71)$
b	1397	1257	2	98	0	$R_{cc}^{*}(62) \beta_{cb}^{*}(33)$
a	1417	1276	25	25	49	$\Omega_{ir}(49) R^*_{cc}(5) R_{cc}(8) \delta^*_{ccc}(6) \delta_{ccc}(7) \beta^*_{ch}(14) \beta_{ch}(10)$
b	1465	1318	11	89	0	$R_{cc}^{*}(28) \beta_{ch}^{*}(58) \beta_{ch}(8)$
b	1470	1323	64	36	0	$R_{cc}^{*}(12) R_{cc}(9) \beta_{ch}^{*}(23) \beta_{ch}(52)$
b	1527	1374	33	67	0	$R_{cc}^{*}(34) \ \delta_{ccc}^{*}(8) \ \beta_{ch}^{*}(25) \ \beta_{ch}(30)$
b	1548	1393	3	91	6	$\Omega_{ir}(6) R^*_{cc}(26) \beta^*_{ch}(63)$
a	1581	1423	88	12	0	$R_{cc}^{*}(6) R_{cc}(29) \delta_{ccc}(6) \beta_{ch}(53)$
b	1677	1509	91	2	7	$\Omega_{ir}(7) R_{cc}(28) \beta_{ch}(59)$
a	1749	1574	97	3	0	$R_{cc}(70) \ \delta_{ccc}(11) \ \beta_{ch}(16)$
b	1749	1574	1	91	8	$\Omega_{ir}(8) R_{cc}^{*}(55) \delta_{ccc}^{*}(9) \beta_{ch}^{*}(27)$
a	1803	1623	97	0	3	$R_{cc}(61) \ \delta_{ccc}(9) \ \beta_{ch}(28)$

TAB. 5.2 – Fréquences de vibration du plus bas état ${}^{1}n\pi^{*}$ de la 44BPY optimisée sous la contrainte C_{2} .

No	mbres	d'onde	Di			stribution d'énergie potentielle. (%)
	Сі	n^{-1}	local	isation	(%)	description du mode
	calc.	*0.9	Py	Py*	I.C.	coordonnées. internes (%)
a'	102	92	34	66	0	$\gamma^{*}(22) \gamma(19) \tau^{*}(40) \tau(16)$
a″	197	177	43	57	0	$R_{cc}^{*}(7) \ \delta_{ccc}^{*}(40) \ \delta_{ccc}(37) \ \tau^{*}(6)$
a'	213	192	22	77	0	$\delta^*_{ccc}(10) \ \tau^*(63) \ \tau(17)$
a'	347	312	29	57	14	$\Omega_{ir}(14) \ \delta^*_{ccc}(16) \ \delta_{ccc}(13) \ \gamma^*(16) \ \tau^*(20) \ \tau(8)$
a'	364	328	11	79	10	$\Omega_{ir}(10) \ \delta^*_{ccc}(18) \ \gamma^*(19) \ \tau^*(40)$
a''	379	341	1	100	0	$R_{cc}^{*}(17) \gamma^{*}(34) \tau^{*}(48)$
$a^{\prime\prime}$	434	391	64	37	0	$\delta^{*}_{ccc}(15) \ \delta_{ccc}(13) \ \gamma^{*}(12) \ \gamma(12) \ \tau(36)$
a''	442	398	56	44	0	$R_{cc}^{*}(6) \ \delta_{ccc}^{*}(27) \ \delta_{ccc}(29) \ \gamma^{*}(7) \ \gamma(6) \ \tau(16)$
a''	499	449	2	98	0	$\delta^*_{ccc}(15) \ \gamma^*(61) \ \tau^*(15)$
a'	575	518	69	30	0	$\delta^*_{ccc}(12) \ \gamma^*(6) \ \gamma(37) \ \tau^*(10) \ \tau(29)$
a'	612	551	35	63	2	$\delta^*_{ccc}(50) \ \delta_{ccc}(23) \ \beta^*_{ch}(8)$
a'	681	612	13	87	0	$\delta^*_{ccc}(7) \gamma^*(61) \gamma(10) \tau^*(18)$
a''	695	626	5	95	0	$\delta^*_{ccc}(38) \ \beta^*_{cb}(16) \ \gamma^*(32) \ \tau^*(7)$
a″	738	664	93	7	0	$R_{cc}(7) \ \delta_{ccc}(64) \ \beta_{ch}(22)$
a'	758	682	8	92	0	$\gamma^{*}(72) \ \tau^{*}(18)$
a'	772	694	54	27	19	$\Omega_{ir}(19) R_{cc}^{*}(5) R_{cc}(6) \delta_{ccc}^{*}(17) \delta_{ccc}(41) \beta_{ch}(7)$
a'	819	737	89	11	0	$\gamma^{*}(8) \gamma(46) \tau(43)$
a'	914	823	91	9	0	$\gamma(84) \tau(7)$
a''	936	843	95	6	0	$\gamma(76) \tau(18)$
a''	975	878	4	96	0	$\hat{R}^{*}_{cc}(27) \gamma^{*}(52) \tau^{*}(16)$
a'	980	882	12	88	0	$R_{cc}^{*}(17) \ \delta_{ccc}^{*}(39) \ \beta_{ch}^{*}(10) \ \gamma^{*}(19) \ \gamma(5)$
a' '	1017	915	2	98	0	$R_{cc}^{*}(7) \delta_{ccc}^{*}(7) \gamma^{*}(65) \tau^{*}(18)$
a'	1065	959	17	81	2	$R_{cc}^{*}(63) R_{cc}(7) \delta_{ccc}^{*}(6) \delta_{ccc}(8) \beta_{ch}^{*}(11)$
a'	1085	977	79	21	0	$R_{cc}^{*}(15) R_{cc}(49) \delta_{ccc}(12) \gamma(12)$
a'	1090	981	98	2	0	$\gamma(79) \tau(13)$
a'	1114	1003	64	36	0	$R_{cc}^{*}(27) R_{cc}(6) \delta_{ccc}^{*}(6) \delta_{ccc}(49) \beta_{ch}(9)$
a''	1125	1012	100	0	0	$\gamma(83) \tau(16)$
a''	1173	1056	22	78	0	$R_{cc}^{*}(59) R_{cc}(16) \beta_{ch}^{*}(9) \gamma^{*}(6)$
a'	1190	1071	95	5	0	$R_{cc}(55) \ \delta_{ccc}(8) \ \beta_{ch}(31)$
a''	1209	1088	31	69	0	$R_{cc}^{*}(44) R_{cc}(30) \beta_{ch}^{*}(21)$
a''	1229	1106	77	23	0	$R_{cc}^{*}(7) R_{cc}(74) \beta_{cb}^{*}(14)$
a''	1246	1121	79	21	0	$R_{cc}^{*}(16) R_{cc}(48) \delta_{ccc}(8) \beta_{ch}(23)$
a'	1283	1155	5	95	0	$R_{cc}^{*}(16) \beta_{ch}^{*}(78)$
a'	1366	1229	96	3	1	$R_{cc}(23) \beta_{ch}(70)$
a''	1394	1254	4	96	0	$R_{cc}^{*}(49) \beta_{cb}^{*}(42)$
a'	1413	1272	24	22	54	$\Omega_{ir}(54) R_{cc}^{*}(6) R_{cc}(8) \delta_{ccc}^{*}(7) \delta_{ccc}(8) \beta_{ch}^{*}(8) \beta_{ch}(9)$
a''	1470	1323	70	30	0	$R_{cc}^{*}(13) R_{cc}(12) \beta_{ch}^{*}(16) \beta_{ch}(55)$
a''	1502	1352	4	96	0	$R_{cc}^{*}(35) \beta_{cb}^{*}(57)$
a''	1536	1383	42	58	0	$R_{cc}^{*}(29) \ \delta_{ccc}^{*}(7) \ \beta_{ch}^{*}(22) \ \beta_{ch}(38)$
a'	1561	1405	3	93	4	$R_{cc}^{*}(25) \beta_{ch}^{*}(66)$
a''	1588	1429	79	21	0	$R_{cc}^{*}(11) R_{cc}(25) \delta_{ccc}^{*}(5) \delta_{ccc}(7) \beta_{ch}(46)$
a'	1678	1510	90	2	8	$\Omega_{ir}(8) R_{cc}(26) \beta_{ch}(60)$
a'	1698	1528	3	93	4	$R_{cc}^{*}(59) \ \delta_{ccc}^{*}(8) \ \beta_{ch}^{*}(26)$
a''	1743	1569	96	4	0	$R_{cc}(66) \ \delta_{ccc}(12) \ \beta_{ch}(17)$
a'	1799	1619	97	2	1	$R_{cc}(60) \ \delta_{ccc}(9) \ \beta_{ch}(28)$

TAB. 5.3 – Fréquences de vibration du plus bas état ${}^1n\pi^*$ de la 44BPY optimisée sous la contrainte C_s .

Nombres d'onde			Di	stribution d'énergie potentielle. (%)
cm ⁻¹	local	isation	(%)	description du mode
calc. *0.9	Py	Py*	I.C.	coordonnées. internes (%)
67 60	7	10	84	$ au_{ir}(83)$
$103 ext{ }92$	36	64	0	$\gamma^{*}(25) \gamma(20) \tau^{*}(34) \tau(15)$
146 131	42	58	0	$\delta^*_{ccc}(30) \ \delta_{ccc}(25) \ \tau^*(23) \ \tau(12)$
249 224	16	84	0	$\delta^*_{ccc}(17) \ \delta_{ccc}(5) \ \tau^*(62) \ \tau(6)$
331 298	34	48	18	$\Omega_{ir}(18) \ \delta^*_{ccc}(20) \ \delta_{ccc}(15) \ \gamma^*(10) \ \tau^*(12) \ \tau(9)$
348 314	15	79	6	$\Omega_{ir}(6) \ \delta^*_{ccc}(22) \ \gamma^*(17) \ \tau^*(34) \ \tau(8)$
371 334	1	97	2	$R_{cc}^{*}(19) \ \gamma^{*}(31) \ \tau^{*}(45)$
443 399	93	4	3	$\gamma(26) au(65)$
447 402	38	62	0	$R_{cc}^{*}(7) \ \delta_{ccc}^{*}(25) \ \delta_{ccc}(28) \ \gamma^{*}(15) \ \tau^{*}(13)$
512 461	2	98	0	$\delta^*_{ccc}(15) \ \gamma^*(60) \ \tau^*(16)$
588 529	71	29	0	$\delta^*_{ccc}(14) \ \gamma(35) \ \tau^*(8) \ \tau(30)$
626 563	38	61	1	$\delta^*_{ccc}(46) \ \delta_{ccc}(27) \ \beta^*_{ch}(8)$
677 610	6	94	0	$\delta^*_{ccc}(18) \ \gamma^*(59) \ \tau^*(11)$
696 626	10	90	0	$\delta^*_{ccc}(27) \ \beta^*_{ch}(12) \ \gamma^*(39) \ \tau^*(10)$
736 662	89	11	0	$R_{cc}(7) \ \delta_{ccc}(61) \ \beta_{ch}(21) \ \gamma^*(6)$
749 674	10	90	0	$\gamma^{*}(66) \ \tau^{*}(20)$
778 700	52	31	18	$\Omega_{ir}(18) \ R^*_{cc}(7) \ R_{cc}(7) \ \delta^*_{ccc}(17) \ \delta_{ccc}(38) \ \beta_{ch}(7)$
828 745	90	10	0	$\gamma^{*}(5) \gamma(48) \tau(42)$
926 833	93	7	0	$\gamma(85)$ $ au(7)$
963 867	95	5	0	$\gamma(75) au(19)$
978 881	2	98	0	$R_{cc}^{*}(34) \gamma^{*}(48) \tau^{*}(15)$
999 899	10	90	0	$R_{cc}^{*}(18) \ \delta_{ccc}^{*}(31) \ \beta_{ch}^{*}(8) \ \gamma^{*}(29) \ \gamma(5)$
1027 924	2	98	0	$R_{cc}^{*}(12) \ \delta_{ccc}^{*}(10) \ \gamma^{*}(58) \ \tau^{*}(16)$
1071 964	8	91	1	$R_{cc}^{*}(62) \ \delta_{ccc}^{*}(11) \ \beta_{ch}^{*}(16)$
1088 979	90	10	0	$R_{cc}^{*}(7) R_{cc}(56) \delta_{ccc}(25) \beta_{ch}(5)$
1094 984	100	0	0	$\gamma(83) \ au(14)$
1117 1005	60	40	0	$R_{cc}^{*}(29) R_{cc}(11) \delta_{ccc}^{*}(7) \delta_{ccc}(40) \beta_{ch}(8)$
1128 1015	100	0	0	$\gamma(82) \ \tau(17)$
1164 1047	7	93	0	$R_{cc}^{*}(68) \beta_{ch}^{*}(9) \gamma^{*}(10)$
1186 1068	97	3	0	$R_{cc}(53) \ \delta_{ccc}(9) \ \beta_{ch}(35)$
1203 1083	80	20	0	$R_{cc}^{*}(16) R_{cc}(72) \beta_{ch}(7)$
1209 1088	24	76	0	$R_{cc}^{*}(35) R_{cc}(13) \beta_{ch}^{*}(37) \beta_{ch}(8)$
1245 1120	81	19	0	$R_{cc}^{*}(10) R_{cc}(62) \beta_{ch}^{*}(6) \beta_{ch}(15)$
1271 1144	1	99	0	$R_{cc}^{*}(17) \ \beta_{ch}^{*}(80)$
1356 1220	99	1	1	$R_{cc}(25) \ \beta_{ch}(71)$
1389 1250	3	96	0	$R^*_{cc}(45) \ \beta^*_{ch}(48)$
1417 1275	26	24	50	$\Omega_{ir}(50) \ R^*_{cc}(7) \ R_{cc}(9) \ \delta^*_{ccc}(6) \ \delta_{ccc}(7) \ \beta^*_{ch}(12) \ \beta_{ch}(10)$
1469 1322	77	23	0	$R_{cc}^{*}(10) R_{cc}(12) \beta_{ch}^{*}(12) \beta_{ch}(62)$
1491 1342	5	95	0	$R_{cc}^*(36) \ \beta_{ch}^*(55)$
1534 1381	33	67	0	$R_{cc}^{*}(37) \ \delta_{ccc}^{*}(8) \ \beta_{ch}^{*}(23) \ \beta_{ch}(29)$
1556 1400	3	92	5	$\Omega_{ir}(5) R^*_{cc}(28) \beta^*_{ch}(62)$
1583 1424	83	17	0	$R_{cc}^{*}(10) R_{cc}(27) \delta_{ccc}(6) \beta_{ch}(49)$
1676 1508	91	2	7	$\Omega_{ir}(7) R_{cc}(28) \beta_{ch}(60)$
1707 1536	2	91	8	$\Omega_{ir}(8) \ R^{*}_{cc}(55) \ \delta^{*}_{ccc}(9) \ \beta^{*}_{ch}(27)$
1748 1573	97	3	0	$R_{cc}(69) \ \delta_{ccc}(11) \ \beta_{ch}(16)$
1801 1621	97	_1	2	$R_{cc}(60) \ \delta_{ccc}(9) \ \beta_{ch}(28)$

TAB. 5.4 – Fréquences de vibration du plus bas état $^1n\pi^*$ de la 44BPY optimisée sous la contrainte $C_1.$

hors du plan avec des modes dans le plan. Toutefois une corrélation approximative peut être établie. Pour le passage de la symétrie C_{2v} à C_2 , celle-ci est univoque dans la région 700-1000 cm⁻¹ où les modes sont peu modifiés, on observe seulement un mélange des deux modes de symétrie b_2 (942 cm⁻¹) et b_1 (905 cm⁻¹) pour la symétrie C_{2v} qui donne dans la symétrie C_2 deux modes appartenant à la représentation b (894 et 904 cm⁻¹). En dessous de 700 cm⁻¹, la corrélation a moins de sens car le mélange des modes est plus important. On identifie cependant sans ambiguïté les modes provenant des vibrations a_1 en C_{2v} . Il est aussi possible de corréler les modes entre 700-1000 cm⁻¹ en passant de la structure C_{2v} à C_s . La seule différence notable est le mélange des modes a_1 à 908 et 970 cm⁻¹ pour la structure C_{2v} , qui donne lieu à deux modes à 882 et 977 cm⁻¹. Pour les modes dont la fréquence est inférieure à 700 cm⁻¹, on identifie aisément ceux issus des modes a_1 . Il faut cependant souligner l'éclatement du mode a_1 à 313 cm⁻¹ qui se distribue sur deux modes a' situés à 312 et 328 cm⁻¹ du fait du couplage avec les modes hors du plan. Enfin la corrélation de la structure C_1 avec la structure C_{2v} se déduit des deux autres structures.

Nous venons de montrer que, malgré la présence de distorsions hors du plan, la DEP des modes de vibration de la structure C_{2v} est peu affectée par l'abaissement de symétrie. La plupart des modes calculés pour les structures C_s , C_2 et C_1 peuvent être considérés comme ceux de la structure C_{2v} faiblement perturbés. Sur cette base nous allons maintenant, dans un premier temps, établir une comparaison précise entre les vibrations calculées pour la structure C_{2v} et celles observées expérimentalement, puis dans un second temps, nous allons analyser les modifications induites par l'abaissement de la symétrie.

Comme cela a été rappelé au chapitre 2, sont principalement actifs en Raman de résonance les modes totalement symétriques. Nous allons donc nous intéresser particulièrement à ceux-ci. Dans le cas d'une structure de symétrie C_{2v} , 15 modes totalement symétriques sont calculés entre 300 et 1700 cm⁻¹. La forme de ces modes, établie à partir des déplacements cartésiens calculés, est présentée sur la figure 5.1. On remarque que les modes de vibration pour lesquels les mouvements des cycles étaient faiblement couplés dans l'état So sont maintenant complétement découplés et localisés sur chacun des cycles. Les déplacements des atomes restent cependant typiques des modes de Wilson dont la notation peut être utilisée. Les modes ν_1 et ν_2 correspondent à la même distorsion quinoïdale du cycle que les modes 8a en phase et en opposition de phase de l'état S_0 . De même les modes ν_3 et ν_4 sont issus des modes 19a de l'état S_0 et les modes ν_6 et ν_7 des modes 9a. Les modes ν_8 et ν_{10} , localisés sur le cycle non perturbé sont équivalents aux modes 18a et 12 de l'état S₀. Par contre, les modes ν_{11} et ν_{12} localisés sur le cycle excité correspondent aux modes 18a et 12 pour les dérivés deutérés mais à un mélange de ceux-ci pour le dérivé -h₈. Les autres modes sont délocalisés sur toute la molécule. Ils sont issus des modes 1, 6a et intercycle, fortement couplés dans l'état fondamental (voir chap 2). ν_5 contient une forte contribution du mode d'élongation intercycle, ν_9 est la combinaison en opposition de phase des modes 1, et enfin ν_{13} , ν_{14} et ν_{15} sont des modes de déformation de cycle analogues à ceux existant dans l'état S_0 .

5.1.1.1 Attribution des spectres de l'état S_1

Le tableau 5.5 rassemble l'attribution des spectres Raman de l'état S_1 des 44BPY-h₈, d₄ et d₈, établie par corrélation avec les modes calculés pour la structure de symétrie C_{2v} . Pour le dérivé h₈, l'attribution est univoque dans les régions 300-800 cm⁻¹ et 1000-1650 cm⁻¹. Dans la région 900-1000 cm⁻¹, les deux bandes mesurées à 970 et 986 cm⁻¹ sont attribuées à celles calculées à 978 et 970 cm⁻¹ respectivement. L'inversion provient du fait que expérimentalement la bande la plus intense située à 970 cm⁻¹ doit être

FIG. 5.1 – REPRÉSENTATION DES MODES DE VIBRATION TOTALEMENT SYMÉTRIQUES DU SINGULET $n\pi^*$ DE PLUS BASSE ÉNERGIE DE LA 44BPY. Structure C_{2v} . La notation de Wilson et les fréquences calculées sont données. (i.ph.= combinaison en phase, o.ph.= combinaison en opposition de phase)

associée à la bande la plus intense du dérivé d_4 à 970 cm⁻¹ et à celle du dérivé $-d_8$ à 957 cm⁻¹. La seule vibration calculée présentant un effet isotopique comparable est celle prédite à 978, 974 et 955 cm⁻¹ dans les dérivés h_8 , d_4 et d_8 respectivement. Il n'y a pas d'autre ambiguïté dans l'attribution des fréquences des deux autres dérivés isotopiques excepté pour la bande Raman observée à 1005 cm⁻¹ dans le spectre du dérivé d_4 qui peut correspondre à l'un ou l'autre des modes calculés à 986 ou 1028 cm⁻¹.

On constate donc que pour l'espèce $-h_8$ l'activité observée correspond exactement à celle prédite pour une structure de symétrie C_{2v} . Cette analogie est aussi évidente pour les dérivés $-d_4$ et $-d_8$, bien que quelques modes ne soient pas observés expérimentalement. Une remarque toutefois en ce qui concerne le spectre du dérivé $-d_4$, on y observe en plus une bande très faible de fréquence 817 cm^{-1} sur le spectre enregistré en résonance à 630 nm. Cette bande n'est pas observée sur le spectre en résonance à 580 nm [98], ceci laisse penser qu'elle est active par couplage vibronique et donc qu'elle ne correspond pas à un mode totalement symétrique.

5.1.2 Discussion

5.1.2.1 Comparaison entre les fréquences observées dans les spectres Raman et celles calculées pour la structure de symétrie C_{2v}

L'accord manisfeste existant entre les fréquences calculées et celles observées est un point en faveur de la validité de la structure calculée. Cependant en raison du manque de précision inhérent à tout calcul qui ne tient pas compte de la corrélation électronique, la valeur absolue des fréquences ne constitue pas un élément suffisant de comparaison. Nous devons donc utiliser d'autres critères. La reproduction des déplacements isotopiques est un premier critère qui a été utilisé pour l'attribution et qui assure que la forme globale de la DEP est bien reproduite. Un second critère est la comparaison des variations de fréquences entre l'état S_0 et l'état S_1 . Cette variation reflète les modifications de struc-

	44H	3PY-h ₈		4	4BPY-d4	Ł	4	4BPY-d₅	3
Obs. ^(a)	Calc. ^(b)	Description ^(c)		Obs. ^(a)	Calc. ^(b)	n ^o (d)	Obs. ^(a)	Calc. ^(b)	n ^o (d)
1591	1623	8 <i>a</i>	ν_1	1570	1604	ν_1	1553	1584	ν_1
1520	1575	$8a^*$	$ u_2$	1508	1565	$ u_2$	1484	1532	$ u_2$
1485	1514	19a	$ u_3$	1442	1465	$ u_3$	1412	1397	$ u_3$
1410	1397	$19a^*$	$ u_4$		1338	$ u_4$	1276	1273	$ u_4$
1332	1271	Ω_{ir}	ν_5	1308	1258	$ u_5$	1196	1157	$ u_5$
1221	1232	9a	$ u_6$	1082	1086	ν_8		986	$ u_9$
1155	1164	$9a^*$	ν_7	1046	1028	$ u_{11}$	957	955	$ u_{10}$
1051	1073	18a	ν_8	1005	986	$ u_9$	912	903	ν_6
1020	1003	$1 + 1^*(o.ph.)$	$ u_9$	970	974	$ u_{10}$	928	922	$ u_{12}$
986	970	$18a^* + 12^*$	ν_{11}	943	943	$ u_{12}$	850	852	$ u_7$
970	978	12	$ u_{10}$	911	903	$ u_6$		837	ν_8
936	908	$12^* + 18a^*$	$ u_{12} $	845	810	$ u_7$	795	780	$ u_{11}$
725	707	$1 + 1^*(i.ph.)$	ν_{13}	685	669	$ u_{13}$	680	664	ν_{13}
588	569	$6a + 6a^*(o.ph.)$	$ u_{14}$	577	558	ν_{14}	-	552	$ u_{14}$
334	313	$6a + 6a^*(i.ph.)$	ν_{15}	330	309	ν_{15}	324	305	ν_{15}

^(a)Dans l'eau; ^(b)Calcul CIS/6-31 $G^*(+)$ sym. $C_{2\nu}$; ^(c) appélation de Wilson (i.ph.= en phase, o.ph.= en opposition de phase); ^(d)Numérotation du h₈ pour une corrélation approximative

TAB. 5.5 – Attribution des spectres de l'état S_1 .

ture entre ces deux états. Nous avons donc comparé la variation de fréquence calculée, $\Delta \nu_{calc}$, et la variation $\Delta \nu_{obs}$ observée pour chacun des modes totalement symétriques de la structure C_{2v} de l'état S_1 .

Pour réaliser cette comparaison, il faut associer les modes calculés pour l'état S_1 à ceux de l'état fondamental. Trois cas ont alors été considérés:

- la DEP du mode est peu modifiée entre les deux états. Dans ce cas les variations Δν_{calc} et Δν_{obs} sont directement données par la différence de fréquences entre les états S₁ et S₀. Ceci est valable pour les modes délocalisés de l'état S₁: ν₉, ν₁₃, ν₁₄, ν₁₅ et, pour les dérivés h₈ et d₄, le mode ν₅;
- 2. le mode de l'état S₁ est localisé, mais le mouvement du cycle impliqué est similaire au mouvement des cycles dans l'état S₀. Ceci est observé pour les modes ν₁, ν₂, ν₆, ν₇, ν₈, ν₁₀, ν₁₁, ν₁₂ ainsi que pour les modes ν₃, ν₄ dans les dérivés h₈ et d₄. Les variations Δν_{calc} et Δν_{obs} sont alors calculées comme la différence entre la fréquence dans l'état S₁ et la fréquence moyenne entre les composantes en phase et en opposition de phase du mode dans l'état S₀;
- 3. le mode est trop modifié d'un état à l'autre pour qu'il soit possible de calculer une différence de fréquences. Ce sont les modes ν_3 , ν_4 , ν_5 dans le composé d₈.

Ces comparaisons sont reportées dans les tableaux 5.6, 5.7 et 5.8 pour les trois dérivés isotopiques. D'une manière générale, on observe un bon accord entre les variations des fréquences expérimentales et théoriques. En particulier l'abaissement de fréquence très important (entre -50 et -100 cm⁻¹), prédit pour les modes localisés ($8a^*(\nu_2)$, $19a^*(\nu_4)$, $9a^*(\nu_7)$, $18a^*(\nu_{11})$ et $12^*(\nu_{12})$) sur le cycle excité, est vérifé de manière remarquable sur les spectres expérimentaux. Les modes du cycle non excité qui leur correspondent ($8a(\nu_1)$, $19a(\nu_3)$, $9a(\nu_6)$, $12(\nu_{10})$) sont quant à eux peu modifiés. Cette différence de

	exp.	C_{2v}	<i>C</i> ₂	C_s	C_1
ν_1	1591 (-7)	1623 (-5)	1623 (-5)	1619 (-9)	1621 (-7)
$ u_2 $	1520 (-78)	1575 (-53)	1574 (-54)	1528 (-100)	1536 (-92)
$ u_3$	1485 (-24)	1514 (+6)	1509 (+1)	1510 (+2)	1508 (+0)
$ u_4 $	1410 (-88)	1397 (-110)	1393 (-115)	1405 (-103)	1400 (-108)
$ u_5$	1332 (+35)	1271 (+1)	1276 (+6)	1272 (+2)	1275 (+5)
ν_6	1221 (+3)	1232 (+18)	1221 (+7)	1229 (+15)	1220 (+6)
$ u_7 $	1155 (-64)	1164 (-50)	1152 (-62)	1155 (-59)	1144 (-70)
ν_8	1051 (-42)	1073 (+7)	1068 (+2)	1071 (+5)	1068 (+1)
ν_9	1020 (-18)	1003 (-18)	1006 (-15)	1003 (-18)	1005 (-16)
$ u_{11} $	986 (-107)	970 (-96)	974 (-92)	959 (-101)	964 (-100)
$ u_{10}$	970 (-24)	978 (-3)	979 (-2)	977 (-4)	979 (-2)
$ u_{12} $	936 (-59)	908 (-73)	903 (-79)	882 (-99)	899 (-82)
ν_{13}	725 (-31)	707 (-28)	708 (-27)	694 (-41)	700 (-35)
ν_{14}	588 (-19)	569 (-26)	570 (-25)	551 (-44)	563 (-32)
ν_{15}	334 (+19)	313 (+20)	298 (+5)	312 (+19)	298 (+5)

TAB. 5.6 – Fréquences calculées, pour les différentes symétries, correspondant aux modes observés expérimentalement par diffusion Raman de résonance pour l'état S_1 de la 44BPY-h₈ et variations de fréquence relativement à l'état S_0 .

exp.	C_{2v}	C_2	C_s	C_1	n°
1570 (-17)	1604 (-9)	1605 (-8)	1598 (-15)	1603 (-10)	ν_1
1508 (-79)	1565 (-49)	1564 (-50)	1503 (-111)	1529 -(85)	ν_2
1442	1465 (+15)	1457 (+7)	1463 (+13)	1456 (+8)	ν_3
	1338 (-112)	1333(-117)	1349 (-101)	1346(-104)	ν_4
1308 (+27)	1258 (+5)	1253 (+0)	1257 (+4)	1255 (+2)	ν_5
1082	1086 (+9)	1080 (+3)	1085 (+8)	1079 (+2)	ν_8
1046	1028 (-49)	1024(-53)	1028 (-49)	1025 (-52)	ν_{11}
1005 (-16)	986 (-14)	987 (-13)	989 (-11)	989 (-11)	ν_9
970 (-24)	974 (-7)	976 (-5)	968 (-13)	972 (-9)	ν_{10}
943 (-52)	943 (-38)	941 (-40)	914 (-67)	887 (-94)	$ u_{12} $
911 (-3)	903 (-2)	901 (+0)	870 (-35)	904 (-1)	ν_6
845 (-97)	810 (-95)	808 (-97)	813 (-92)	818 (-87)	ν_7
685 (-32)	669 (-29)	670 (-28)	663 (-23)	667 (-27)	$ u_{13} $
577 (-22)	558 (-29)	557 (-30)	538 (-49)	545 (-42)	ν_{14}
330 (+17)	309 (+20)	294 (+5)	293 (+4)	301 (+12)	$ u_{15} $

Tab. 5.7 – Fréquences calculées, pour les différentes symétries, correspondant aux modes observés expérimentalement par diffusion Raman de résonance pour l'état S_1 de la 44BPY-d₄ et variations de fréquence relativement à l'état S_0 .

exp.	C_{2v}	C_2	C_s	C_1	n°
1553(-5)	1584 (-9)	1585 (-8)	1580 (-13)	1582 (-11)	ν_1
1484(-74)	1532 (-61)	1533 (-60)	1491 (-102)	1498 (-95)	$ u_2 $
1412	1397	1408	1399	1406	ν_3
1276	1273	1275	1278	1282	$ u_4 $
1196	1157	1155	1170	1167	ν_5
	986 (-17)	986 (-17)	986 (-17)	987 (-16)	ν_9
957 (-10)	955 (+2)	951 (-2)	950 (-3)	949 (-4)	ν_{10}
912 (-6)	903 (-4)	902 (-3)	910 (+5)	909(+4)	ν_6
928	922 (-31)	918 (-35))	875 (-78)	879 (-74)	ν_{12}
850 (-68)	852 (-55)	835 (-72)	846 (-61)	838 (-69)	ν_7
	837 (+11)	831 (+5)	823 (-3)	830 (+4)	ν_8
795 (-34)	780 (-46)	780 (-46)	789 (-37)	793 (-33)	$ u_{11} $
680 (-33)	664 (-31)	664 (-31)	659 (-36)	661 (-34)	ν_{13}
	552 (-27)	553 (-26)	537 (-42)	548 ((-31)	ν_{14}
324 (+17)	305 (+22)	289 (+6)	288 (+5)	294 (+11)	ν_{15}

Tab. 5.8 – Fréquences calculées, pour les différentes symétries, correspondant aux modes observés expérimentalement par diffusion Raman de résonance pour l'état S_1 de la 44BPY-d₈ et variations de fréquence relativement à l'état S_0 .

comportement des deux cycles traduit clairement le fait que seul un cycle subit une diminution de la densité électronique π liante, résultat du confinement de l'orbitale π^* . L'accord indubitable entre expérience et calcul sur ce point confirme l'aspect asymétrique de la structure telle qu'elle a été calculée et la localisation de l'excitation $n\pi^*$ sur un seul cycle. De plus il existe également un bon accord pour les modes ν_9 , ν_{13} et ν_{14} dont les mouvements mettent en jeu les deux cycles. Il existe toutefois quelques points de désaccord. Tout d'abord le mode ν_2 (8a^{*}) apparaît nettement plus abaissé ($\Delta \nu_{obs} = -78$ cm⁻¹) que ne le prédit le calcul ($\Delta \nu_{calc} = -53 \text{ cm}^{-1}$). De plus, une augmentation de la fréquence du mode d'élongation intercycle (ν_5) de +35 cm⁻¹ pour le dérivé -h₈ et de $+27 \text{ cm}^{-1}$ pour le dérivé $-d_4$ est observée tandis qu'aucune variation significative n'est prédite par le calcul. Il est cependant à noter que la fréquence de ce mode varie avec le caractère protique et polaire du solvant [98, 99]. La variation observée est maximale dans l'eau, tandis que dans l'hexane, solvant non polaire et non protique, dans lequel la situation de la molécule est la plus proche du cas de la molécule isolée, l'augmentation de fréquence n'est plus que de $+10 \text{ cm}^{-1}$ pour le dérivé h₈. Cette valeur est en meilleur accord avec les prédictions du calcul $(+1 \text{ cm}^{-1})$. Une interprétation possible pour cet effet de solvatation au regard des caractéristiques de la densité électronique calculée pour l'état S_1 est la suivante. La cage de solvant pourrait entraîner une délocalisation de l'orbitale π^* sur la liaison C-C intercycle, augmentant le caractère liant de celle-ci et par conséquent sa fréquence. Un dernier point de désaccord concerne l'abaissement de fréquence du mode $18a (-42 \text{ cm}^{-1})$ qui n'est pas reproduit par le calcul.

En conclusion, la corrélation manifeste qui existe entre expérience et calcul, dans l'hypothèse d'une structure C_{2v} , concernant l'activité des modes totalement symétriques, les fréquences, mais surtout l'abaissement de fréquences des modes localisés sur le cycle excité, ne laisse aucun doute quant à la validité de la représentation de la structure de l'état S_1 de 44BPY en solution par une pyridine excitée substituée par une pyridine non excitée. Pour essayer de lever les points de désaccord que nous avons mentionnés concernant quelques fréquences, nous allons maintenant analyser les structures d'énergies voisines calculées pour l'état S_1 et étudier la dépendance des fréquences à la présence des distorsions hors du plan (torsion intercycle, distorsion de type "bateau" sur le cycle excité) qui caractérisent ces structures.

5.1.2.2 Comparaison des fréquences observées avec celles calculées pour les structures de symétrie C_2 , C_s , et C_1

Comme cela a été montré précédemment, la forme des modes normaux est peu sensible à la présence des distorsions hors du plan. En particulier, on retrouve pour chacune des symétries étudiées $(C_2, C_s \text{ et } C_1)$ les modes normaux issus de la représentation a_1 du groupe C_{2v} . Nous nous limiterons à ces modes puisque ce sont les seuls observés expérimentalement. Comme précédemment pour la symétrie C_{2v} , les fréquences calculées et les variations de fréquence entre l'état S_0 et l'état S_1 sont rassemblées dans les tableaux 5.6, 5.7 et 5.8, pour les dérivés h₈, d₄ et d₈ respectivement.

Pour les trois dérivés isotopiques, la variation de fréquence la plus significative est l'abaissement du mode ν_2 (8*a*^{*}) lorsque la structure de l'état S_1 appartient au groupe C_s ou C_1 . Cet effet résulte donc de l'apparition d'une distorsion bateau sur le cycle excité. La fréquence calculée ainsi que la variation entre l'état S_0 et l'état S_1 sont alors en meilleur accord avec les données expérimentales. Un deuxième mode, $\nu_{12}(12^*)$, est aussi fortement abaissé pour les structures C_s et C_1 des composés -d₄ et -d₈. Cependant l'accord avec la valeur expérimentale est cette fois moins bon. La fréquence des autres modes de vibration, qui ne mettent pas en jeu l'atome d'azote du cycle excité, varie peu entre les différentes structures et les modifications observées ne sont pas significatives au regard de la précision du calcul.

Par conséquent, la comparaison des fréquences expérimentales et des fréquences calculées pour les différentes contraintes de symétrie, C2v, C2, Cs, et pour la géométrie optimisée C_1 , ne fournit pas d'argument décisif en faveur d'une conformation spécifique. Il reste alors le critère de l'activité Raman de résonance. L'analyse des DEP montre que pour une structure C_s ou C_1 certains modes dans le plan sont fortement couplés avec des modes de déformation hors du plan. C'est le cas par exemple de la vibration située vers 300 cm⁻¹ pour laquelle on attend un dédoublement (ce dédoublement se manifeste dans les tableaux 5.3 et 5.4 par la contribution de la coordonnée interne intercycle Ω_{IR} à la DEP de ces modes autour de 300 cm⁻¹). Le fait que nous n'observions sur les spectres Raman que les modes attendus pour une symétrie C_{2v} semble exclure la présence d'une distorsion de type bateau. Par contre l'existence d'un angle de torsion intercycle (structure C_2) reste envisageable. En effet, même si des modes hors du plan deviennent théoriquement actifs pour cette symétrie, l'absence de couplage important avec les modes dans le plan laisse supposer que l'intensité Raman de résonance de ces modes est très faible¹. Il est donc probable que l'activité Raman effectivement observée soit la même pour les symétries C_{2v} et C_2 .

Sans être vraiment formel, la structure coplanaire $C_{2\nu}$ et la structure décalée C_2 semblent plus probables que les structures présentant une distorsion de type "bateau", C_s ou C_1 . De toute façon, l'aspect vraiment remarquable et caractéristique de l'état S_1 est la présence d'une dissymétrie entre les deux cycles suite au confinement de l'excitation $n\pi^*$ sur l'un d'eux. Cet aspect de la structure calculée, présentée au chapitre 4, est

^{1.} La forme des modes de vibration hors du plan des cycles aromatiques est peu sensible à la modification de la densité électronique π . Ils sont donc généralement non observés dans les spectres Raman en résonance avec une transition de type $\pi \to \pi^*$.

démontré sans ambiguïté par la confrontation des spectres vibrationnels expérimentaux et théoriques.

5.1.2.3 Comparaison avec l'attribution empirique

Les spectres Raman de l'état S_1 ont fait précédemment l'objet d'une attribution empirique, basée sur l'étude des déplacements isotopiques et sur la comparaison avec les spectres d'espèces voisines [99, 98]. Cette attribution est reportée dans le tableau 5.9, en comparaison avec l'attibution théorique proposée ici. Ces deux attributions sont identiques pour les modes ν_1 , ν_2 , ν_5 , ν_6 , ν_{10} , ν_{13} , ν_{14} . La bonne corrélation entre les modes calculés et observés pour la majorité de ceux-ci autorise l'attribution des modes entre 900-1050 cm⁻¹ qui n'avait pu être établie avec certitude sur la base des résultats expérimentaux. Par rapport à l'attribution expérimentale nous apportons les précisions suivantes:

le mode à 1051 cm⁻¹ dans le dérivé h₈, précédemment supposé de type 18a*, est attribué maintenant à un mode 18a. L'attribution expérimentale était basée sur le fait que ce mode est actif dans la transition visible, comme le sont tous les autres modes localisés sur le cycle excité. Cependant la large différence entre les fréquences calculées pour les modes 18a et 18a* est en faveur de cette nouvelle attribution. Le mode 18a met en jeu des mouvements des atomes d'hydrogène autour de la liaison intercycle. Dans les molécules de type biphényle, ces modes sont sensibles à la répulsion des atomes d'hydrogène de part et d'autre de la liaison intercycle [80]. On peut formuler l'hypothèse que l'activité du mode 18a dans la transition visible résulte d'un couplage mécanique entre atomes d'hydrogène en position ortho de la liaison intercycle. Toutefois seule la reproduction des intensités permettrait de vérifier l'activité de ce mode;

]	Expérie	$ence^{(a)}$				Cal	cul ^(b)	
-h ₈	$-d_4$	-d8	attribu	ition	-h8	$-d_4$	-d ₈	attributio	n
1591	1570	1553	8 <i>a</i>	UV ^(c)	1623	1604	1584	8 <i>a</i>	ν_1
1520	1508	1484	8a*	Vis ^(d)	1575	1565	1532	$8a^*$	$ u_2$
1485	1442	1412	19a	UV	1514	1465	1397	19a	ν_3
1410	-	1276	$19a^{*}$	Vis	1397	1338	1273	$19a^{*}$	$ u_4$
1332	1308	1196	Ω_{ir}		1271	1258	1157	Ω_{ir}	ν_5
1221	911	912	9a	UV	1232	903	903	9 <i>a</i>	ν_6
1155	845	850 ^(e)	$9a^*$	Vis	1164	810	852	9a*	$ u_7$
1051	1046	850 ^(c)	$18a^{*}$	Vis	1073	1086	837	18a	ν_8
1020	1003	795	18a	UV	1003	986	986	$1 + 1^{*}(o.ph.)$	ν_9
986		957	12*	Vis	970	943	922	$18a^* + 12^*$	ν_{11}
970	970	957	12	UV	978	974	955	12	$ u_{10}$
936	943	912	1*	Vis	908	903	780	$12^* + 18a^*$	$ u_{12}$
725	685	680	1	UV	707	669	664	$1 + 1^*(i.ph.)$	ν_{13}
588	577	-	$6a - 6a^*$	UV	569	558	552	$6a - 6a^*$	$ u_{14}$
334	330	-	$6a + 6a^*$	Vis	313	309	305	$6a + 6a^*$	$ u_{15}$

^(a)Dans l'eau; ^(b)Calcul CIS/6 – $31G^*(+)$ en symétrie C_{2v} ; ^(c)Bande active en résonance à 380nm; ^(d)Bande active en résonance à 600nm; ^(e)Bande non attribuée

Tab. 5.9 – Comparaison des fréquences calculées et observées de l'état S_1 de la 44BPY.

- le mode à 1020 cm⁻¹ est de type $1+1^*$ (opposition de phase) et non 18*a*;

– les modes à 986 et 936 cm $^{-1}$ sont des mélanges $12^*/18a^*.$

Donc, l'étude théorique présentée ici confirme dans l'ensemble l'attribution empirique proposée auparavant, la complète pour certains modes mal attribués et la précise par la description des DEP.

5.1.2.4 Conclusion

Le calcul des fréquences de vibration de l'état $S_1 n\pi^*$ montre que la localisation de l'excitation confère des caractéristiques remarquables aux modes normaux de cet état. Exceptés les modes normaux typiques des molécules dérivées du biphényle fortement couplés aux mouvements d'élongation de la liaison intercycle qui sont peu modifiés dans l'état excité, les autres modes liés à la structure des groupes pyridiniques sont maintenant localisés :

- le cycle non excité: ses modes de vibration sont peu modifiés par rapport à ceux du groupement pyridinique dans l'état fondamental;
- le cycle excité: Les modes conservent globalement une DEP semblable à celle dans l'état S_0 , mais les fréquences sont nettement abaissées, en accord avec la densité π^* anti-liante localisée sur ce cycle.

Ces spécificités remarquables se retrouvent dans les spectres expérimentaux. Les fréquences calculées valident donc la prédiction d'une structure à deux cycles non équivalents, résultant d'une transtion $n\pi^*$ localisée sur un cycle. D'autre part, elles ont permis de proposer une attribution précise des spectres de l'état S_1 de la 44BPY pour trois dérivés isotopiques. Malheureusement, les effets sur les fréquences calculées en la présence de distorsions hors du plan ne sont pas assez importants pour conclure avec certitude sur la présence de telles distorsions et pour trancher entre les différentes structures C_{2v} , C_2 , C_s et C_1 calculées d'énergies voisines.

5.2 Analyse vibrationnelle de l'état S_1 de la 4PPY

5.2.1 Résultats

Les modes normaux de l'état $n\pi^*$ de la 4PPY ont été calculés pour la structure $C_{2\nu}$ et C_1 . Ne disposant pas de données expérimentales concernant les isotopes deutérés, seuls les modes correspondant à la 4PPY-h₈ ont été analysés.

5.2.1.1 Description des modes normaux

Les fréquences de vibration ainsi qu'une description des modes calculés pour les structures C_{2v} (deux cycles coplanaires), et C_1 , (cycles décalés et distorsion de type bateau du cycle pyridinique), de l'état ${}^{1}n\pi^*$ de la 4PPY sont présentées dans les tableaux 5.10 et 5.11. Les déplacements cartésiens relatifs aux modes totalement symétriques du groupe C_{2v} sont reproduits sur la figure 5.2. On remarque sur cette figure et au travers des DEP que les modes de vibration sont similaires à ceux calculés pour l'état S_1 de la 44BPY. Ils comprennent notamment des composantes 8a, 19a, 9a et 18a localisées sur chacun des cycles respectivement. La composante du cycle phényle est peu modifiée par rapport à l'état fondamental (voir tableau 2.8 du chapitre 2), la fréquence des modes localisés sur le cycle excité est abaissée. On identifie ensuite les modes couplant fortement les deux cycles, typiques du squelette des molécules dérivées du biphényle $(1 + 1^*(i.ph.))$ et $6a + 6a^*$ i.ph. et o.ph.). Enfin, on retrouve autour de 950 cm⁻¹ trois modes de déformation de cycle, combinaisons des modes 1 et 12 des deux cycles.

5.2.1.2 Attribution des spectres Raman de l'état S_1

Seulement 9 bandes sont observées contre 15 attendues en symétrie C_{2v} entre 1600 et 300 cm⁻¹. Il manque deux bandes autour de 1450 cm⁻¹, deux bandes autour de 950 cm⁻¹, une bande vers 600 cm⁻¹ et une vers 300 cm⁻¹. Cette activité réduite influe peu sur l'attribution. La bande intense à 1570 cm⁻¹ est attribuée au mode ν_1 , c'est-à-dire

Nombres d	'onde		Di	stribution d'énergie potentielle. (%)
	1 lo	calisation	n (%)	description du mode
calc. *9	P	h Py*	Ì.Ć.	coordonnées. internes (%)
103 93	39) 61	0	$\gamma^*(31) \gamma(21) \tau^*(29) \tau(18)$
200 18	0 48	52	0	$R_{cc}^{*}(6) \delta_{ccc}^{*}(44) \delta_{ccc}(41)$
254 22	9 50) 50	0	$\gamma^{*}(14) \gamma(10) \tau^{*}(36) \tau(40)$
351 31	6 28	36	36	$\hat{\Omega}_{ir}(36) \hat{R}^{*}_{cc}(6) \hat{R}_{cc}(7) \delta^{*}_{ccc}(27) \delta_{ccc}(18)$
422 38	0 0	101	-1	$\gamma^{*}(77) \tau^{*}(23)$
431 38	8 43	57	0	$\hat{R}_{ec}^{*}(18) \hat{R}_{ec}(6) \delta_{ecc}^{*}(36) \delta_{ecc}(35)$
442 39	7 93	10	-3	$\gamma^{*}(7) \gamma(28) \tau(66)$
491 44	2 5	95	0	$\gamma^{*}(83) \tau^{*}(11)$
518 46	6 38	62	0	$\gamma^{*}(41) \gamma(24) \tau^{*}(21) \tau(14)$
593 53	4 49) 51	0	$\gamma^{*}(49) \gamma(40) \tau(9)$
634 57	0 37	63	1	$\delta_{coc}^{*}(50) \delta_{ccc}(28) \beta_{cb}^{*}(9) \beta_{cb}(7)$
636 57	2 2	98	0	$R_{ee}^{*}(14) \ \delta_{eee}^{*}(64) \ \beta_{eb}^{*}(20)$
681 61	3 93	5 7	0	$R_{cc}(5) \delta_{ccc}(62) \beta_{ch}(26)$
722 65	0 8	92	0	$\gamma^{*}(68) \gamma(6) \tau^{*}(24)$
763 68	6 98	2	0	$\gamma(\hat{6}3) \tau(\hat{3}5)$
778 70	0 50) 31	19	$\Omega_{ir}(19) R_{cc}^{*}(9) R_{cc}(9) \delta_{ccc}^{*}(18) \delta_{ccc}(29) \beta_{ch}(11)$
850 76	5 94	6	0	$\gamma(84) \tau(10)$
924 83	2 97	- 3	0	$\gamma(79) \tau(18)$
961 86	4 5	95	0	$R_{ac}^{*}(92)$
988 88	9 2	98	Ō	$\gamma^{*}(84) \tau^{*}(14)$
1005 90	4 99) 1	0	$\gamma(82) \tau(17)$
1011 91	0 2	98	1	$R_{ec}^{*}(80) \delta_{ecc}^{*}(14)$
1014 91	3 4	96	0	$\gamma^{*}(73) \tau^{*}(23)$
1078 97	0 19	80	Ő	$R_{res}^{*}(39) R_{res}(17) \delta_{res}^{*}(24) \beta_{rh}^{*}(17)$
1080 97	2 74	25	0	$R_{cc}(42) \ \delta^{*}_{ccc}(18) \ \delta_{ccc}(24) \ \beta_{ch}(8)$
1086 - 97	7 99) 1	0	$\gamma(77) \tau(22)$
1097 98	7 66	34	0	$R_{res}^{*}(12) R_{cc}(10) \delta_{acc}^{*}(19) \delta_{ccc}(44) \beta_{cb}(11)$
1112 10	01 10	0 0	0	$\gamma(78) \tau(22)$
1147 10	32 90	10	0	$\hat{R}_{cc}(60) \beta_{ch}(25)$
1199 10	79 84	16	0	$R_{cc}^{*}(8) R_{cc}(64) \beta_{ch}^{*}(7) \beta_{ch}(15)$
1207 10	86 39	61	0	$R_{cc}^{*}(23) R_{cc}(18) \beta_{ch}^{*}(34) \beta_{ch}(17)$
1226 11	04 78	22	0	$R_{ee}^{*}(7) R_{ee}(67) \beta_{eb}^{*}(13) \beta_{eh}(10)$
1286 11	57 19	81	0	$R_{cc}^{*}(15) \beta_{ch}^{*}(65) \beta_{ch}(16)$
1323 11	91 96	4	0	$R_{cc}^{cc}(38) \beta_{ch}^{ch}(56)$
1333 12	00 81	18	0	$R_{cc}(19) \beta_{ch}^{*}(14) \beta_{ch}(61)$
1399 12	59 24	22	54	$\Omega_{ir}(54) R_{cc}^{*}(6) R_{cc}(7) \delta_{ccc}^{*}(7) \delta_{ccc}(8) \beta_{ch}^{*}(9) \beta_{ch}(9)$
1401 12	61 3	97	0	$R_{cc}^{*}(66) \beta_{ch}^{*}(27)$
1466 13	20 34	66	0	$R_{cc}^{*}(20) \beta_{ch}^{*}(44) \beta_{ch}(30)$
1483 13	35 36	64	0	$R_{cc}^{*}(19) R_{cc}^{''}(9) \beta_{ch}^{*}(42) \beta_{ch}(27)$
1532 13	79 39	61	0	$R_{cc}^{*}(29) \ \delta_{ccc}^{*}(8) \ \beta_{ch}^{*}(24) \ \beta_{ch}(37)$
1552 13	97 3	94	3	$R_{cc}^{*}(25) \beta_{cb}^{*}(66)$
1619 14	57 89	11	0	$R_{cc}^{(29)}$ $\delta_{ccc}^{(0)}(9)$ $\beta_{ch}(52)$
1678 15	10 91	. 4	5	$R_{cc}(26) \beta_{ch}(62)$
1749 15	74 2	91	7	$\Omega_{ir}(7) R_{cc}^{*}(53) \delta_{ccc}^{*}(9) \beta_{cb}^{*}(29)$
1772 15	95 98	3 2	0	$R_{cc}(62) \ \delta_{ccc}(9) \ \beta_{ch}(27)$
1804 16	24 97	0	3	$R_{cc}(62) \ \delta_{ccc}(8) \ \beta_{ch}(27)$

TAB. 5.10 – Fréquences de vibration de la 4PPY- S_1 . Calcul CIS/6-31G*(+), structure C_{2v} .

Nombres d'onde	Di			stribution d'énergie potentielle. (%)
cm ⁻¹	locali	sation	(%)	description du mode
calc. *9	Ph	Py*	I.Ċ.	coordonnées. internes (%)
66 59	6	11	84	$\tau_{ir}(83)$
103 93	38	62	0	$\gamma^{*}(26) \gamma(21) \tau^{*}(32) \tau(14)$
141 126	43	57	0	$\delta_{ccc}^{*}(31) \delta_{ccc}(24) \gamma(6) \tau^{*}(20) \tau(12)$
258 232	17	83	0	$\delta_{ccc}^{*}(16) \ \delta_{ccc}(6) \ \tau^{*}(59) \ \tau(7)$
329 296	18	70	12	$\Omega_{ir}(12) R_{ac}^{*}(14) \delta_{ccc}^{*}(14) \delta_{ccc}(9) \gamma^{*}(15) \tau^{*}(24)$
345 311	4	93	3	$R_{ec}^{*}(21) \gamma^{*}(27) \tau^{*}(42)$
359 323	16	78	6	$\Omega_{ir}^{(6)}(6) \delta_{rec}^{*}(21) \gamma^{*}(17) \tau^{*}(37) \tau(8)$
443 398	24	76	0	$R_{ee}^{*}(9) \delta_{eee}^{*}(22) \delta_{eee}(20) \gamma^{*}(25) \tau^{*}(17)$
457 411	96	1	3	$\gamma(33) \tau(63)$
493 444	4	95	0	$R_{ac}^{*}(6) \delta_{acc}^{*}(15) \gamma^{*}(54) \tau^{*}(17)$
570 513	74	26	0	$\delta_{rm}^{*}(13) \gamma(50) \tau^{*}(6) \tau(20)$
621 559	31	67	2	$\delta_{++}^{**}(51) \delta_{ecc}(22) \beta_{++}^{*}(8) \beta_{cb}(6)$
676 609	86	14	ō	$B_{ee}(5) \delta_{eee}(57) \beta_{eb}(23) \gamma^*(6)$
678 611	7	93	Õ	δ^* (17) $\gamma^*(61) \tau^*(10)$
705 634	12	88	Ő	$\delta^{*}(25) \ \delta_{acc}(7) \ \beta^{*}(11) \ \gamma^{*}(40) \ \tau^{*}(10)$
742 668	8	92	Õ	$\gamma^{*}(64) \tau^{*}(22)$
771 694	53	29	18	$Q_{in}(18) B^*(6) B_{no}(8) \delta^*_{ini}(17) \delta_{non}(33) \beta_{nh}(12)$
777 699	94	6	0	$\gamma(65) \tau(29)$
858 772	02	8	0 0	$\gamma(81) \tau(10)$
951 855	92	8	0 0	$\gamma(31) \tau(13)$ $\gamma(74) \tau(17)$
959 863	4	96	0 0	R^* (38) γ^* (44) τ^* (13)
983 885	10	90 90	0	R^* (16) δ^* (34) β^* (9) γ^* (26) τ^* (5)
1010 917	18	82	ñ	$R^*(8) \ \delta^*(11) \ \gamma^*(47) \ \gamma(13) \ \tau^*(14)$
1015 011	80	20	0	$\gamma^{*}(14) \sim (66) \tau(14)$
1055 551	22	77	1	B^* (56) B^- (8) δ^* (7) δ_{++} (11) β^* (13)
1070 300	71	20	0	$R^*(20) R_{cc}(0) \delta_{ccc}(1) \delta_{ccc}(1) \beta_{ch}(10)$
1002 314	00	10	0	$R^*(8) \delta$ (9) $\sim (58) \tau (18)$
1109 009	82	17	0	$R^*(14) \delta (34) \beta_{12}(10) \gamma(27) \tau(8)$
1102 552	100	0	0	$N_{cc}(11) = 0_{ccc}(31) p_{ch}(10) f(21) f(0)$
1120 1008 1141 1097	87	12	0	$R^*(0) = (56) \beta_1(26)$
1141 1027	01	10	0	$R_{cc}(9) R_{cc}(90) \rho_{ch}(20)$ $R^*(66) R^*(7) \sim^*(12) \tau^*(6)$
1109 1040 1102 1074	60	94 21	0	$R_{cc}(00) P_{ch}(1) + (12) + (0)$ $R^*(12) R(26) R^*(17) R_{ch}(26)$
1195 1074	63	37	0	$P_{cc}(12) R_{cc}(50) P_{ch}(11) P_{ch}(20)$ $P^*(23) R_{cb}(53) R^*(12) R_{cb}(0)$
1200 1000	50	31 41	0	$R^*(21) = R_{cc}(33) \beta_{ch}(12) \beta_{ch}(3)$
1225 1101 1267 1140	2	07	0	$P_{cc}(21) R_{cc}(40) P_{ch}(10) P_{ch}(11)$
1207 1140	0.0	31	0	$P_{cc}(11) P_{ch}(13)$ $P_{cc}(21) R_{cc}(76)$
1309 1178	90	2 A	0	$R_{cc}(21) \beta_{ch}(10)$ $R_{cc}(41) \beta_{cc}(53)$
1996 1947	90 6	94 0.4	1	$P_{cc}(1) \rho_{ch}(0)$
1300 1247	0	94	1 51	$P_{cc}(12) P_{ch}(13)$ $O_{cc}(51) P^{*}(9) P_{c}(7) \delta^{*}(6) \delta_{c}(6) \beta^{*}(12) \beta_{c}(10)$
1409 1200	24	20	01	$\Sigma_{ir}(51) R_{cc}(6) R_{cc}(7) \delta_{ccc}(6) \delta_{ccc}(6) \rho_{ch}(12) \rho_{ch}(10)$
1409 1522	00 7	11	0	$\frac{\mu_{cc}(1)}{P^*} \frac{\mu_{cc}(10)}{2} \frac{\mu_{ch}(3)}{P} \frac{\mu_{ch}(10)}{P^*}$
1407 1000	00	80 99	0	$\frac{n_{cc}(34)}{D^{*}} \frac{\beta_{ch}(33)}{\beta^{*}} \beta_{ch$
1000 1002	20	00 09	5	$\frac{n_{cc}(40)}{D_{cc}(5)} \frac{\rho_{cc}(9)}{P_{ch}(20)} \frac{\rho_{ch}(10)}{\rho_{ch}(10)}$
	2	92	э 0	$S_{ir}(0) = \pi_{cc}(20) \beta_{ch}(02)$ $P^*(5) = P_{cb}(20) \delta_{cb}(52)$
	90	10	U	$\begin{bmatrix} \pi_{cc}(0) & \pi_{cc}(29) & \theta_{ccc}(1) & \rho_{ch}(00) \\ 0 & 0 & 0 & \rho_{cc}(20) & \rho_{ccc}(1) \end{bmatrix}$
1009 1002	91	3 00	0	$ \begin{array}{c} \mathcal{U}_{ir}(0) \ \mathcal{R}_{cc}(2\delta) \ \mathcal{P}_{ch}(01) \\ \mathcal{O} \ (\delta) \ \mathcal{P}^{*} \ (\xi \xi) \ \xi^{*} \ (0) \ \mathcal{P}^{*} \ (\delta 7) \end{array} $
1095 1525	2	90 1	8	$ \begin{array}{c} \chi_{ir}(0) \ \pi_{cc}(0) \ \theta_{ccc}(9) \ \rho_{ch}(21) \\ P \ (64) \ \delta \ (0) \ \theta \ (26) \end{array} $
1709 1593	99	1	0	$ \begin{array}{c} R_{cc}(04) \ o_{ccc}(9) \ \beta_{ch}(20) \\ R_{cc}(00) \ S_{cc}(9) \ \beta_{ch}(20) \end{array} $
1493 1013	97	F	2	$R_{cc}(02) \ O_{ccc}(\delta) \ \beta_{ch}(21)$

TAB. 5.11 – Fréquences de vibration de la 4PPY- S_1 . Calcul CIS/6-31G*(+), structure C_1 .

FIG. 5.2 – REPRÉSENTATION DES MODES DE VIBRATION TOTALEMENT SYMÉTRIQUES DU SINGULET $n\pi^*$ DE PLUS BASSE ÉNERGIE DE LA 4PPY. Structure C_{2v} . La notation de Wilson et les fréquences calculées sont données. (*i.ph.= combinaison en phase, o.ph.=* combinaison en opposition de phase)

à un mode \$a localisé sur le cycle phényle. La seconde bande, observée à 1483 cm⁻¹, est attribuée au mode ν_2 qui correspond à un mouvement de type $\$a^*$, localisé sur le cycle pyridinique. Le mode ν_3 , de type 19a, est calculé en meilleur accord de fréquence avec cette bande, mais, par analogie avec les résultats précédents pour 44BPY, est attendu peu actif en Raman de résonance. L'attribution du mode $\$a^*$ semble donc plus plausible. La bande située à 1293 cm⁻¹, observée dans les spectres Raman en résonance dans les deux transitions avec une activité similaire, correspond sans aucun doute au mode d'élongation intercycle ν_5 . De même les deux bandes observées à 1180 et 1140 cm⁻¹ sont attribuées sans ambiguïté aux deux modes 9a et $9a^*$ respectivement calculés à 1200 et 1157 cm⁻¹. La bande à 1029 cm⁻¹ est attribuée au mode ν_8 (18*a*) en accord avec la valeur de ce mode dans l'état fondamental de la 4PPY. Les deux bandes suivantes, observées à 965 et 936 cm⁻¹, ne peuvent être attribuées de manière univoque puisque quatre modes calculés à 987, 972, 970 et 910 cm⁻¹ peuvent leur correspondre. Enfin la bande observée à 706 cm⁻¹ est associée à celle calculée à 700 cm⁻¹. Les attributions sont reportées dans le tableau 5.12.

5.2.2 Discussion

5.2.2.1 Comparaison des fréquences observées et calculées pour la structure C_{2v}

Les fréquences calculées sont globalement en bon accord avec celles observées sur les spectres et il a ainsi été possible de proposer une attribution de ceux-ci. Comme pour la 44BPY, seules les vibrations dans le plan sont actives suggérant au premier abord une conformation coplanaire (C_{2v}) des deux cycles. Afin de valider la structure calculée, nous avons déterminé les variations de fréquence observées et calculées entre l'état S_0 et l'état S_1 . Ces valeurs sont données entre parenthèses dans le tableau 5.12. L'accord est globalement bon. Il porte en particulier, comme pour 44BPY, sur le fait remarquable
Analyse vibrationnelle de l'état S_1 des 44BPY, 22BPY et 4PPY

n°	Obs.	Calc. (C_{2v})	Calc. (C_1)	Description approximative
$\nu 1$	1570 (-42)	1624 (-13)	1619 (-18)	8a
$\nu 2$	1483 (-113)	1549 (-82)	1525(-100)	$8a^*$
$\nu 3$	· · · ·	1510 (-11)	1502 (-19)	19 <i>a</i>
$\nu 4$		1397 (-107)	1401 (-95)	$19a^{*}$
$\nu 5$	1293 (+10)	1259 (-11)	1268 (-2)	ω_{IR}
$\nu 6$	1180 (-9)	1200(+30)	1178 (+8)	9a
$\nu 7$	1140 (-95)	1157 (-61)	1140 (-78)	$9a^*$
$\nu 8$	1029 (-12)	1032(-2)	1027 (-7)	18a
$\nu 9$		987 (-33)	992 (-28)	1
$\nu 10$	965	972 (-22)	974 (-20)	12
$\nu 11$	936	970 (100)	970 (-102)	18a*
$\nu 12$		910 (-90)	917/885	$12^* + 18a^*$
$\nu 13$	706 (-26)	700 (-32)	694 (-36)	$1 + 1^*$
$\nu 14$		570 (-29)	559 (-40)	6a + 6a(o.ph.)
$\nu 15$		316(+17)	296 (-27)	6a + 6a(i.ph.)

Tab. 5.12 – Attribution des spectres Raman de l'état S_1 de la 4PPY-h₈. Les fréquences sont exprimées en cm⁻¹. Les valeurs entre parenthèses sont les variations de fréquence observées et calculées entre l'état S_0 et l'état S_1 .

que les composantes $8a^*$ et $9a^*$ localisées sur le cycle pyridinique sont très fortement abaissées par rapport à leur valeur dans l'état S_0 , tandis que les composantes 8a et 9adu cycle phényle sont moins affectées. Cette caractéristique confirme que seul le cycle pyridinique est perturbé de manière significative dans l'état $n\pi^*$. Le mode délocalisé ν_{13} est lui aussi bien calculé. Notons cependant que le mode 8a est plus abaissé dans l'état S_1 que ne le prédit le calcul.

5.2.2.2 Effets des distorsions hors du plan

Comme pour la 44BPY, les DEP des modes sont suffisamment peu altérées par l'abaissement de symétrie en passant de C_{2v} à C_1 pour permettre d'identifier ceux correspondant aux modes totalement symétriques de la structure C_{2v} . Les fréquences calculées pour ces modes dans la symétrie C_1 ainsi que leurs variations entre l'état S_0 et l'état S_1 sont reportées dans le tableau 5.12. Il y a toutefois une exception: le mode ν_{12} se mélange fortement avec des modes hors du plan pour donner, en symétrie C_1 , deux modes à 917 et 885 cm⁻¹.

Les fréquences calculées pour la structure de symétrie C_1 sont en meilleur accord avec les données expérimentales pour trois modes. Tout d'abord la fréquence du mode ν_2 est, comme pour la 44BPY, nettement abaissée par distorsion de l'atome d'azote hors du plan du cycle et se rapproche davantage de la valeur expérimentale. Les modes 9*a* et 9*a*^{*} sont également sensibles au passage en symétrie C_1 pour laquelle la corrélation expérience/calcul est améliorée.

La structure C_1 semble donc en meilleur accord avec l'expérience que la structure C_{2v} . Cependant cette amélioration n'est observée que pour certains modes. Il est donc difficile d'affirmer définitivement que le cycle excité présente effectivement des distorsions hors du plan.

5.2.3 Conclusion

La localisation de l'excitation $n\pi^*$ sur le cycle pyridinique a pour conséquence d'abaisser fortement la fréquence des modes de vibration de ce cycle, en accord avec la diminution de la densité π sur celui-ci. Cette particularité remarquable se retrouve sur les spectres Raman picoseconde, si bien qu'il a été possible de proposer une attribution des spectres du l'état S_1 de la 4PPY. Le bon accord observé entre les spectres expérimentaux et calculés valide la structure prédite. Il n'est cependant pas possible de trancher définitivement quant à la présence ou l'absence de distorsions hors du plan des cycles.

5.3 Propriétés vibrationnelles de l'état S_1 de la 22BPY

5.3.1 Résultats

Les fréquences calculées pour les modes de vibration totalement symétriques de l'état $n\pi^*$ pour les conformations trans coplanaire et cis coplanaire sont reportées dans les

tableaux 5.13 et 5.14 pour les dérivés h_8 et d_8 . Ces valeurs ont été mises à l'échelle par le coefficient 0.9. On remarque d'abord que les fréquences calculées pour les deux conformations sont très voisines. Il paraît donc difficile de distinguer l'une ou l'autre de ces conformations compte tenu de la précision de la méthode. Nous allons donc nous restreindre à l'étude de la conformation trans, qui est la forme stable de l'état S_0 en solution. Les fréquences expérimentales mesurées sur les spectres Raman picoseconde de l'état S_1 sont reportées dans ces mêmes tableaux. On constate dans ces tableaux que plusieurs vibrations ne sont pas observées dans les spectres expérimentaux, contrairement à la 44BPY. Cela implique que la corrélation expérience/calcul sera incomplète. Par ailleurs le nombre de modes totalement symétriques attendus dans l'activité Raman de résonance est nettement plus important que pour la 44BPY du fait de la symétrie inférieure de la 22BPY. On peut donc s'attendre à une moins grande précision dans l'évaluation de cette corrélation.

5.3.1.1 Description des modes normaux calculés pour la structure trans plane de l'état $n\pi^*$

FIG. 5.3 – NUMÉROTATION DES LIAISONS DE LA 22BPY

Les modes normaux calculés pour l'état $n\pi^*$ de la 22BPY-h₈ et son dérivé totalement deutéré 22BPY-d₈ sont reportés dans les tableaux 5.15 et 5.16. La disposition des tableaux est identique à celle adoptée dans les tableaux des paragraphez précédents. Il s'y

	Fréquences	calculées	Fréquences mésurées
ĺ	$n\pi^* - trans$	$n\pi^* - cis$	
	132	122	
	306	300	
	409	407	436
	574	558	
	587	599	600
	619	617	618
	726	731	731
	864	893	
	918	904	920
	965	958	959
	984	980	989
	1022	1024	1010
	1052	1050	1059
	1063	1085	1100
	1098	1112	
	1113	1118	
	1127	1136	1153
	1184	1194	
ŀ	1222	1229	
	1293	1286	1263
	1297	1311	1320
	1359	1363	1410
	1408	1412	
	1427	1442	
	1447	1449	1465
	1481	1481	1506
	1546	1547	1558
	1579	1575	1565
	1613	1614	

TAB. 5.13 – FRÉQUENCES CALCULÉES (MULTIPLIÉES PAR UN FACTEUR DE 0.9) POUR LES MODES TOTALEMENT SYMÉTRIQUES DE L'ÉTAT S_1 DE LA 22BPY-H₈ ET FRÉQUENCES EXPÉRIMENTALES OBSERVÉES PAR RAMAN DE RÉSONANCE.LES FRÉ-QUENCES SONT EXPRIMÉES EN CM⁻¹.

Fréquences	calculées	Fréquences mésurées
$n\pi^* - trans$	$n\pi^* - cis$	
123	115	
296	291	
386	385	
555	543	
568	578	580
596	595	605
680	685	684
773	772	786
800	805	814
819	823	
825	826	
836	832	
849	851	855
865	882	
920	913	918
944	952	940
965	962	
1011	1010	
1031	1057	1025
1113	1129	1131
1165	1173	1180
1253	1257	1240
1283	1294	1262
1341	1326	1330
1388	1395	1374
		1415
1416	1426	1423
1487	1490	1464
1543	1535	1517
1577	1576	1547

TAB. 5.14 – Fréquences calculées (multipliées par un facteur de 0.9) pour les modes totalement symétriques de l'état S_1 de la 22BPY-d₈ et fréquences expérimentales observées par Raman de résonance.Les fréquences sont exprimées en cm⁻¹.

Nom	bres d'	onde			Di	tribution d'énergie potentielle. (%)		
[cm	n ⁻¹	local	isation	ı (%)	description du mode		
sym.	calc.	*0.9	Py	Py*	I.C.	coordonnées. internes (%)		
a"	65	58	2	79	19	$\tau_{ir}(19) \gamma^{*}(61) \tau^{*}(18)$		
a"	87	78	5	67	28	$ au_{ir}(28) \ \gamma^*(50) \ au^*(17)$		
a'	147	132	41	59	0	$\delta_{ccc}(38) \; \delta^*_{ccc}(55)$		
a"	236	213	39	60	1	$\gamma(10) \ \gamma^{*}(45) \ \tau(29) \ \tau^{*}(16)$		
a'	340	306	25	44	31	$\Omega_{ir}(31) \ \delta_{ccc}(19) \ \delta^*_{ccc}(33)$		
a"	448	403	35	63	2	$\gamma(10) \ \gamma^*(43) \ \tau(24) \ \tau^*(20)$		
a'	454	409	49	50	1	$R_1^*(5) R_2^*(7) \delta_{ccc}(41) \delta_{ccc}^*(30)$		
a"	458	412	84	15	1	$\gamma(19) \ \gamma^*(9) \ \tau(65) \ \tau^*(6)$		
a"	551	496	64	36	0	$\gamma(51) \ \gamma^*(28) \ \tau(14) \ \tau^*(8)$		
a"	601	541	11	89	0	$\gamma(8) \ \gamma^*(35) \ \tau^*(53)$		
a'	637	574	4	96	0	$R_{2}^{*}(8) \ \delta_{ccc}^{*}(66) \ \beta_{ch}^{*}(18)$		
a'	652	587	44	54	2	$\delta_{ccc}(36) \; \delta^{*}_{ccc}(42) \; \beta_{ch}(6) \; \beta^{*}_{ch}(9)$		
a"	661	595	7	93	0	$\gamma^{*}(82) \tau^{*}(10)$		
a,'	688	619	85	14	1	$\delta_{ccc}(62) \delta_{ccc}^*(10) \beta_{ch}(18)$		
a'	806	726	50	33	16	$\Omega_{ir}(16) R_2(5) R_1^*(9) \delta_{ccc}(31) \delta_{ccc}^*(12) \beta_{ch}(11)$		
a"	814	733	55	45	0	$\gamma(33) \gamma^*(40) \tau(22) \tau^*(5)$		
a"	833	750	40	60	0	$\gamma(31) \gamma^{*}(49) \tau(9) \tau^{*}(11)$		
a"	856	770	92	8	0	$\gamma(80) \gamma^*(6) \tau(12)$		
a"	957	862	99	1	0	$\gamma(80) \tau(19)$		
a'	960	864	8	92	0	$R_1^*(6) R_2^*(30) R_4^*(5) R_6^*(28) \delta_{acc}^*(15)$		
a'	1020	918	4	95	1	$R_1^*(17) R_3^*(17) \delta_{acc}^*(45) \beta_{ab}^*(13)$		
a"	1032	929	0	100	0	$\gamma^{*}(73) \tau^{*}(27)$		
a"	1050	945	1	99	0	$\gamma^{*}(78) \tau^{*}(21)$		
a'	1072	965	69	30	0	$R_1(12) R_2(13) R_3(8) R_6^*(15) \delta_{ccc}(21) \beta_{ch}(5)$		
a'	1094	984	57	42	1	$R_{2}^{*}(11) R_{2}^{*}(8) \delta_{ccc}(45) \delta_{ccc}^{*}(10) \beta_{cb}(8)$		
a"	1102	991	100	0	0	$\gamma(84) \tau(15)$		
a"	1120	1008	100	0	0	$\gamma(78) \tau(22)$		
a'	1135	1022	52	48	0	$R_{4}(9) R_{5}(9) R_{6}(20) R_{2}^{*}(16) R_{5}^{*}(7) \delta_{coc}^{*}(7) \beta_{ch}(6) \beta_{ch}^{*}(8)$		
a'	1168	1052	61	39	0	$R_1(6) = R_2(6) = R_5(6) = R_6(18) = R_2^*(16) = \delta_{enc}^*(10) = \beta_{ch}(20)$		
		1000			Ū	β^{*} , (7)		
a'	1182	1063	97	3	0	$R_1(12) R_2(14) R_4(6) R_5(30) R_6(16) \beta_{cb}(11)$		
a'	1221	1098	81	19	1	$R_3(13) R_4(24) \beta_{cb}(34) \beta_{**}^*(10)$		
a'	1237	1113	21	78	1	$R_{4}(8) R_{*}^{*}(24) \beta_{ch}(6) \beta_{*}^{*}(49)$		
a'	1252	1127	8	92	0	$B_{1}^{*}(5) \beta^{*}, (76)$		
a'	1316	1184	95	5	Ő	$R_1(16) R_2(6) R_3(9) \beta_{cb}(57)$		
a,	1358	1222	14	80	ő	$\Omega_{in}(6) B_{i}^{*}(14) B_{0}^{*}(26) B_{i}^{*}(10) \beta_{i}^{*}(20)$		
a'	1436	1293	92	7	1	$B_{2}(18) \delta_{acc}(6) \beta_{ab}(61)$		
a'	1441	1297	20	63	17	$\Omega_{in}(17) B^*(5) \beta_{cb}(12) \beta^*(54)$		
a'	1510	1359	9	78	13	$\begin{array}{c} \Omega_{in}(13) & B_{2}^{*}(5) & B_{2}^{*}(14) & B_{2}^{*}(7) & \beta_{ab}(6) & \beta_{2}^{*}(43) \end{array}$		
a'	1565	1408	15	74	11	$\Omega_{ir}(11) R_1^*(19) R_4^*(5) R_5^*(5) \delta_{max}^*(5) \beta_{ch}(10) \beta_{max}^*(35)$		
a'	1585	1427	43	53	4	$R_1^*(8) R_2^*(10) R_2^*(9) \beta_{ch}(31) \beta_{ch}^*(19)$		
a'	1608	1447	41	50	9	$\Omega_{ir}(9) R_{4}^{*}(9) R_{5}^{*}(10) \beta_{ch}(23) \beta_{-1}^{*}(20)$		
a'	1646	1481	83	5	12	$\begin{array}{c} \Omega_{ir}(12) R_1(15) R_4(5) \delta_{ccc}(6) \beta_{cb}(48) \end{array}$		
a'	1718	1546	3	97	0	$R_{*}^{*}(10) R_{*}^{*}(44) \delta_{***}^{*}(5) \beta_{**}^{*}(30)$		
a'	1755	1579	98	$\frac{1}{2}$	1	$R_1(14) R_2(14) R_5(13) R_6(24) \delta_{acc}(10) \beta_{cb}(22)$		
a'	1792	1613	97	2	2	$R_{3}(18) R_{4}(25) R_{5}(9) \delta_{ccc}(8) \beta_{ch}(25)$		

Tab. 5.15 – Fréquences de vibration de la 22BPY-h8 $n\pi^*$ optimisée sous la contrainte trans plane.

No	mbres	d'onde			Di	stribution d'énergie potentielle. (%)
	СТ	cm^{-1} localisation (%)			(%)	description du mode
	calc.	*0.9	Py	Py*	I.C.	coordonnées. internes (%)
a"	61	55	2	$\overline{7}6$	22	$ au_{ir}(22) \ \gamma^*(59) \ au^*(17)$
a"	82	74	6	70	24	$ au_{ir}(24) \ \gamma^*(52) \ au^*(18)$
a'	137	123	41	59	0	$\delta_{ccc}(38) \; \delta^*_{ccc}(55)$
a"	222	200	36	63	1	$\gamma(8) \ \gamma^*(46) \ \tau(28) \ \tau^*(17)$
a'	329	296	26	44	30	$\Omega_{ir}(30) \ \delta_{ccc}(19) \ \delta^*_{ccc}(32)$
a"	391	352	42	57	1	$\gamma(9) \ \gamma^*(41) \ \tau(33) \ \tau^*(16)$
a"	410	369	73	26	1	$\gamma(5) \ \gamma^*(13) \ \tau(67) \ \tau^*(13)$
a'	429	386	49	50	2	$R_1^*(5) R_2^*(7) \delta_{ccc}(39) \delta_{ccc}^*(29)$
a"	472	424	49	51	0	$\gamma(36) \ \gamma^*(39) \ \tau(13) \ \tau^*(12)$
a"	517	465	5	95	0	$\gamma^{*}(10) \ au^{*}(85)$
a"	529	476	25	75	0	$\gamma(14) \ \gamma^*(71) \ au(10)$
a'	617	555	5	94	0	$R_2^*(7) \ \delta_{ccc}^*(60) \ \beta_{ch}^*(22)$
a'	631	568	36	62	2	$\delta_{ccc}(29) \; \delta^*_{ccc}(46) \; \beta_{ch}(6) \; \beta^*_{ch}(13)$
a"	640	576	31	69	0	$\gamma(26) \ \gamma^*(58) \ \tau^*(11)$
a"	644	580	69	31	0	$\gamma(42) \ \gamma^{*}(26) \ \tau(27) \ \tau^{*}(6)$
a'	662	596	87	12	1	$\delta_{ccc}(60)$ $\delta^{*}_{ccc}(8)$ $\beta_{ch}(24)$
a"	721	649	94	6	0	$\gamma(67) \tau(27)$
a'	756	680	55	34	11	$\Omega_{ir}(11) R_1^*(8) \delta_{ccc}(29) \delta_{ccc}^*(9) \beta_{ch}(19) \beta_{ch}^*(10)$
a"	818	737	41	58	0	$\gamma(34) \ \gamma^{*}(49) \ \tau(8) \ \tau^{*}(9)$
a"	836	752	49	51	0	$\gamma(40) \ \gamma^*(45) \ \tau(8) \ \tau^*(7)$
a'	859	773	9	89	2	$R_{6}^{*}(26) \delta_{ccc}^{*}(8) \beta_{cb}^{*}(45)$
a"	867	780	8	91	0	$\gamma(7) \gamma^*(85) \tau^*(7)$
a'	889	800	3	97	0	$\hat{R}_{6}^{*}(7) \hat{\beta}_{cb}^{*}(76)$
a"	899	809	98	2	0	$\gamma(89) \tau(9)$
a'	910	819	87	12	1	$R_6(9) \beta_{ch}(64) \beta_{ch}^*(10)$
a'	917	825	97	3	0	$\beta_{ch}(80)$
a'	929	836	18	82	0	$R_5^*(7) \beta_{ch}(13) \beta_{ch}^*(66)$
a"	933	840	100	0	0	$\gamma(95) \tau(5)$
a'	943	849	79	20	1	$R_{5}(11) R_{6}(8) R_{2}^{*}(7) \beta_{ch}(53) \beta_{ch}^{*}(7)$
a'	961	865	9	90	1	$R_{2}^{*}(29) R_{6}^{*}(5) \delta_{ccc}^{*}(27) \beta_{ch}(5) \beta_{ch}^{*}(21)$
a'	1022	920	19	81	0	$R_1^*(10) R_3^*(21) R_4^*(7) \delta_{ccc}^*(17) \beta_{cb}^*(14)$
a'	1049	944	79	21	0	$R_1(6) R_2(14) R_4(9) R_5(6) R_6(9) \delta_{ccc}(19) \delta^*_{ccc}(5) \beta_{ch}(10)$
						$\beta^{*}_{cb}(13)$
a'	1073	965	61	38	0	$R_3^*(7) \ \delta_{ccc}(45) \ \delta_{ccc}^*(13) \ \beta_{ch}(11) \ \beta_{ch}^*(7)$
a'	1123	1011	54	46	0	$\beta_{ch}(49) \ \beta^*_{ch}(36)$
a'	1146	1031	31	69	0	$R_1^*(7) R_2^*(15) R_4^*(7) R_6^*(6) \delta_{ccc}^*(9) \beta_{ch}(20) \beta_{ch}^*(21)$
a'	1237	1114	97	3	0	$R_1(21)$ $R_2(15)$ $R_3(13)$ $R_4(12)$ $R_5(15)$ $R_6(13)$ $\beta_{ch}(6)$
a'	1295	1165	32	52	16	$\Omega_{ir}(16) R_1^*(8) R_3^*(11) R_6^*(11) \delta_{ccc}(9) \beta_{ch}(10) \beta_{ch}^*(17)$
a'	1392	1253	2	98	1	$R_{2}^{*}(6) R_{3}^{*}(32) R_{4}^{*}(16) R_{5}^{*}(13) \beta_{*b}^{*}(23)$
a'	1426	1283	65	34	1	$R_2(10) R_3(8) R_5(7) R_1^*(7) R_6^*(6) \beta_{ch}(22) \beta_{ch}^*(8)$
a'	1490	1341	81	15	4	$R_1(6) R_3(18) R_4(17) \hat{R}_6(6) R_1^*(7) \delta_{ccc}(8) \beta_{ch}(24)$
a'	1542	1388	9	89	2	$R_1^*(13) R_4^*(34) R_6^*(15) \delta_{ccc}^*(8) \beta_{cb}^*(12)$
a'	1574	1416	30	25	45	$\Omega_{ir}(45) R_1(8) R_1^*(15) \delta_{ccc}(6) \delta_{ccc}^*(6) \beta_{ch}(6)$
a'	1652	1487	2	98	0	$R_4^*(6) R_5^*(54) R_6^*(7) \delta_{ccc}^*(6) \beta_{cb}^*(14)$
a'	1715	1543	97	3	1	$R_1(19) R_2(17) R_5(17) R_6(20) \delta_{ccc}(11) \beta_{ch}(10)$
a'	1752	1577	96	1	3	$R_2(6) R_3(24) R_4(27) R_5(7) R_6(6) \delta_{ccc}(9) \beta_{ch}(12)$

Tab. 5.16 – Fréquences de vibration de la 22BPY-d8 $n\pi^*$ optimisée sous la contrainte trans plane.

Fig. 5.4 – Représentation des modes de vibration totalement symétriques de l'état $n\pi^*$ de la 22BPY-H₈. Structure C_s .

FIG. 5.5 - REPRÉSENTATION DES MODES DE VIBRATION TOTALEMENT SYMÉTRIQUES de l'état $n\pi^*$ de la 22BPY-H8. Structure C_s .

 $v2:1579 \text{ cm}^{-1}$

trouve la représentation du groupe C_s à laquelle appartient chaque mode, la fréquence mise à l'échelle d'un facteur 0.9 ansi qu'une description de la distribution d'énergie portentielle. Contrairement aux 44BPY et 4PPY, les coordonnées d'élongation relatives à chaque liaison CC et CN ont été différenciées. La notation est celle de la figure 5.3.

Dans l'hypothèse d'une activité Raman de résonance de type Franck-Condon, les bandes observées sur les spectres doivent correspondre à des modes totalement symétriques. Pour la 22BPY, dans la symétrie C_s , 29 modes de fréquence inférieure à 1800 cm⁻¹ appartiennent à la représentation totalement symétrique. Ce sont des vibrations dans le plan de la molécule. Les déplacements cartésiens calculés pour ces modes sont présentés sur les figures 5.4 et 5.5 pour la molécule 22BPY-h₈. Comme pour la 44BPY, la dissymétrie des deux cycles prédite par le calcul CIS dans l'état excité a pour conséquence de localiser la plupart des modes normaux. En comparant la forme de ces modes avec celle des modes de vibration de l'état fondamental (voir annexe) on peut distinguer les cas suivants:

- modes dont la forme est peu modifiée. Ce sont les modes v₅ et v₆, deux modes de déformation des angles CCH, et les modes v₂₃, v₂₅ et v₂₇, fortement couplés dans l'état fondamental et typiques du squelette carboné du biphényle. Ces modes sont délocalisés;
- modes localisés sur le cycle non excité, dont la forme et la fréquence sont similaires pour ce cycle à celles du mode délocalisé correspondant pour l'état S₀. Il s'agit des modes ν₁, ν₂, ν₄, ν₉, ν₁₀, ν₁₂ à ν₁₆, ν₂₄ et ν₂₆. Excepté le mode ν₉, qui est essentiellement de nature intercycle, ces modes donnent lieu dans l'état fondamental à deux combinaisons en phase et en opposition de phase;
- 3. modes localisés sur le cycle excité n'ayant pas d'équivalent dans l'état fondamental. Ce sont les modes ν_3 , ν_7 , ν_8 , ν_{11} et ν_{22} qui sont principalement des modes

d'élongation des liaisons CC ou CN du cycle excité. Contrairement à la 44BPY, ces vibrations d'élongation du cycle excité sont caractérisées par des redistributions importantes de DEP relativement aux modes de l'état S_0 et n'apparaissent plus comme typiques des molécules aromatiques. Le calcul prédit plutôt des modes de vibration principalement localisés sur chacune des liaisons;

4. modes qui peuvent être décrits comme la combinaison de mouvements différents des deux cycles, chacun d'eux correspondant à un mode de Wilson spécifique. Ce type de vibration mixte n'est pas présent à l'état fondamental où seules les associations en phase et en opposition de phase de modes de cycle sont permises par la symétrie. Il s'agit des modes ν_{17} à ν_{21} qui sont des combinaisons des modes de type 12, 1 et 18.

5.3.1.2 Attribution des spectres Raman de l'état S_1 de la 22BPY

Les attributions des spectres Raman de l'état S_1 de la 22BPY-h₈ et de la 22BPYd₈ sont reportées dans les tableaux 5.17 et 5.18, respectivement. Pour l'attribution du dérivé -d₈, la corrélation avec les modes du dérivée -h₈ a été précisée lorsqu'elle existe (numérotation en dernière colonne). Les fréquences calculées sont celles mises à l'échelle par le facteur 0.9. La fréquence du mode 14 n'a pas été corrigée comme pour les études précédentes de l'état fondamental des bipyridines [62] et de la 4-phénylpyridine (voir chapitre 2).

Pour les deux bandes de la 22BPY-h₈ observées à 1565 et 1558 cm⁻¹, le calcul prédit trois modes à 1613, 1579 et 1546. Il faut donc soit corréler l'un de ces modes à une troisième bande observée à 1506 cm⁻¹, soit considérer que l'un d'eux n'est pas observé. Compte tenu du fait que les trois modes correspondants dans le dérivé deutéré sont observés et que leur distribution d'énergie potentielle est peu modifiée par deutération, il est raisonnable de penser que ces trois modes sont aussi actifs dans les spectres de l'état

No	$\operatorname{Calc}^{(a)}$	Obs.	Description
ν_1	1613 (-7)	1565 (-17)	$\nu_{CC}(8a)$
ν_2	1579 (-23)	1558 (-3)	$\nu_{CC}(8b)$
ν_3	1546	1506	ν_{CC}^{*}
ν_4	1481(+9)	1465 (-1)	$\beta_{CH} + \Omega_{IR}$
ν_5	1447 (-8)	1465 (+19)	$eta_{CH}+eta_{CH}^*(i.p)$
ν_6	1427 (-4)	1410 (+0)	$eta_{CH}+eta_{CH}^*(o.p)$
ν_7	1408	1410	$\beta_{CH}^* + \Omega_{IR}$
ν_8	1359		$\beta^*_{CH} + \nu^*_{CC}$
ν_9	1297 (+10)	1320 (+19)	$\beta_{CH}^* + \Omega_{IR}$
ν_{10}	1293 (-7)	1263 (-17)	β_{CH}
ν_{11}	1222		ν_{CC}^{*}
ν_{12}	1184 (-7)	1153 (+10)	$\beta_{CH} + \nu_{CC}$
ν_{13}	$1182^{(b)}$		$\nu_{CC}(14)$
ν_{14}	1127 (-64)	1100 (-43)	eta^*_{CH} .
ν_{15}	1113 (+18)	1100 (+11)	β^*_{CH}
ν_{16}	1098 (+3)	1100 (+11)	β_{CH}
ν_{17}	1052	1059	$(\delta_{cycle} + \beta_{CH}) + \nu_{CC}^*$
ν_{18}	1022	1010	$(\delta_{cycle}+eta_{CH})+ u^*_{CC}$
ν_{19}	984	989	$\delta_{cycle} + \nu_{CC} *$
ν_{20}	965	959	$ u_{cycle} + u_{CC}^*$
ν_{21}	918	920	$\nu_{CC}^* + \delta cycle^*$
ν_{22}	864		$ u_{CC}^*$
ν_{23}	726 (-32)	731 (-33)	$\delta_{cycle} + \delta^*_{cycle}(1 + 1^*i.ph.)$
ν_{24}	619 (+9)	618(+1)	$\delta_{cycle}(6b)$
ν_{25}	587 (-64)	600 (-55)	$\delta_{cycle} + \delta^*_{cycle}(6a + 6a^*o.ph.)$
$ u_{26} $	574		δ^*_{cycle}
ν_{27}	409	436	Λ_{IP}

 $\frac{\nu_{27}}{^{(a)}} \frac{409}{^{(a)}} \frac{436}{^{(a)}} \frac{\Delta_{IR}}{^{(a)}}$

TAB. 5.17 – Attribution des spectres Raman de l'état S_1 de la 22BPY-H₈.

Calc ^(a)	Obs.	Description	(c)
1577 (-15)	1547 (-4)	$\nu_{CC}(8a)$	ν_1
1543 (-26)	1517 (-28)	$\nu_{CC}(8b)$	$ u_2$
1487	1464	$ u^*_{CC}$	$ u_3$
1416 (-10)	1415 (+0)	$\Omega_{IR} + \nu_{CC}$	
1388	1422	ν_{CC}^{*}	
1341	1374	$ u_{CC}$	
1283	1330	$ u_{CC}$	
1253	1262	$ u^*_{CC}$	
$1237^{(b)}(+6)$	1240 (+0)	$ u_{CC}(14)$	ν_{13}
1165 (-18)	1131 (-50)	$\Omega_{IR} + \nu_{CC}^* + \beta_{CH}^* + \beta_{CH}$	
1031		$ u_{CC}^* + \beta_{CH} + \beta_{CH}^*$	
1011		$\beta_{CH} + \nu_{CC}$	
965		$\delta_{cycle} + \delta^*_{cycle} + \nu^*_{CC}$	
944 (-17)	940 (-25)	$ u_{CC} + \delta_{cycle}$	
920	918	$ u^*_{CC} + eta^*_{CH}$	ν_{21}
865	855	$ u_{CC}^* + \delta_{cycle} + \beta_{CH}^*$	
849 (-2)	855 (-19)	$\beta_{CH} + \nu_{CC}$	$ u_{14}$
836 (-15)	855 (-14)	$\beta^*_{CH} + \nu^*_{CC}$	ν_{15}
825 (-2)	814 (-13)	β_{CH}	ν_{12}
819 (-1)	814 (-4)	β_{CH}	
800 (-27)	814 (-10)	eta_{CH}^{*}	ν_{16}
773 (-47)	780 (-37)	$\beta^*_{CH} + \nu^*_{CC}$	
680 (-32)	684 (-37)	$\delta_{cycle} + \delta^*_{cycle}(1 + 1^*i.p.)$	ν_{23}
596 (+5)	605 (+9)	$\delta_{cycle}(6b)$	ν_{24}
568 (-58)	580 (-50)	$\delta_{cycle} + \delta^*_{cycle}(6a + 6a^*o.p.)$	ν_{25}
555	580	δ^*_{cycle}	ν_{26}
386		Δ_{IR}	ν_{27}

 $^{(a)}$ fréquences calculées multipliées par 0.9; $^{(b)}$ mode non corrigé; $^{(c)}$ mode du dérivé h-8 pour une corrélation approximative

TAB. 5.18 – Attribution des spectres Raman de l'état S_1 de la 22BPY-d₈.

 S_1 de la 22BPY-h₈. Nous attribuons donc les bandes à 1565, 1558 et 1506 cm⁻¹ aux modes calculés ν_1 , ν_2 et ν_3 . Dans le domaine de fréquence des modes ν_4 à ν_8 seulement deux bandes Raman sont observées. Il est donc difficile de proposer une attribution univoque. La bande observée à 1465 $\rm cm^{-1}$ pourrait correspondre aux modes de fréquences 1481 ou 1447 cm⁻¹, la bande à 1410 cm-1 aux modes calculés à 1427, 1408 ou 1359 cm⁻¹. Dans ce même domaine de fréquences, tous les modes attendus pour le composé 22BPY-d₈ sont observés et l'attribution proposée dans le tableau 5.18 semble fiable. La forme des modes est trop altérée par deutération pour pouvoir établir une corrélation entre les modes des deux dérivés isotopiques dans cette région. A plus basses fréquences, les bandes observées à 1320 et 1263 cm⁻¹ dans les spectres du dérivé -h₈ correspondent aux modes calculés à 1297 et 1293 cm⁻¹. La bande à 1153 cm⁻¹ est attribuée au mode ν_{12} calculé à 1184 cm⁻¹. Cette bande pourrait également être attribuée au mode ν_{13} , de fréquence voisine, qui correspond au mode 14 de Wilson du cycle non excité. Cependant celui-ci est en général bien calculé à l'état fondamental [62, 61]. De même dans le spectres de l'état S_1 du dérivé deutéré, il est calculé à 1237 cm⁻¹ (ν_9) et corrélé à la bande observée à 1240 cm⁻¹. La bande située à 1131 cm⁻¹ pour le composé $-d_8$ ne peut être attribuée qu'au mode calculé à 1165 cm⁻¹. Pour ces raisons la bande à observée à 1153 cm⁻¹, du dérivé -h₈, ne correspond vraissemblablement pas au mode 14. Exceptée la bande observée à 1100 cm⁻¹ dans le dérivé $-h_8$ qui peut correspondre aux modes ν_{14} , ν_{15} ou ν_{16} , l'attribution des autres raies Raman est univoque. Les bandes à 940 et 918 cm⁻¹ pour le composé $-d_8$ correspondent aux modes calculés à 944 et 920 cm⁻¹. Pour les modes ν_{15} à ν_{21} , qui sont des déformations des angles CCD, seules deux bandes sont observées à 855 et 814 $\rm cm^{-1}$. Enfin, deux bandes situées autour de 600 $\rm cm^{-1}$ sont attribuables à deux des trois modes ν_{24} - ν_{26} . Le mode de plus basse fréquence n'est pas observé.

5.3.2 Discussion

Le calcul CIS des fréquences de vibration de l'état $S_1 n\pi^*$ a permis de proposer une attribution des spectres Raman de cet état excité. La confrontation des résultats expérimentaux et théoriques n'est toutefois pas assez convainquante pour garantir la fiabilité de celle-ci. Nous avons tenté de comparer les variations de fréquence calculées et observées entre l'état S_0 et l'état S_1 . Ces valeurs sont reportées dans les tableaux 5.17 et 5.18. Bien qu'il n'existe pas de désaccord flagrant, cette confrontation est moins probante que dans le cas de la 44BPY, comme nous l'avions prévu en préambule à cette étude. C'est pourquoi il est important d'avoir recours à d'autres critères pour permettre de valider la structure à deux cycles non équivalents.

5.3.2.1 Confirmation de la structure dissymétrique

Dans deux régions spectrales, la confrontation des fréquences prédites et des spectres expérimentaux permet de confirmer la dissymétrie de la structure malgré l'imprécision de l'attribution.

Considérons en premier lieu la région des basses fréquences ($\nu < 750 \text{ cm}^{-1}$). La corrélation entre les quatre bandes du dérivé h₈ observées dans cette région et les fréquences calculées est réalisée sans ambiguïté (voir tab 5.17). Les bandes observées à 436 et 731 cm⁻¹ sont attribuées respectivement à la déformation symétrique des angles de valence autour de la liaison intercycle et à la combinaison en phase des modes de Wilson 1/1* des deux cycles. Ces deux modes sont attendus actifs que les cycles soient équivalents ou non. Par contre les deux autres bandes observées à 600 et 618 cm⁻¹ correspondent à la combinaison en opposition de phase des modes $6a/6a^*$ ($\nu_{calc}=587 \text{ cm}^{-1}$) ou au mode $6b^*$ localisé sur le cycle excité ($\nu_{calc}=574 \text{ cm}^{-1}$) pour la première, et au mode 6b localisé sur le cycle non excité ($\nu_{calc}=619 \text{ cm}^{-1}$) pour la seconde. Dans le cas d'une structure à deux cycles équivalents, un seul mode totalement symétrique, la combinaison en phase du mode 6b, est attendu dans cette région. L'activité de deux modes implique nécessairement une non-équivalence des deux cycles. Cette remarque est également valable pour la 22BPY-d₈ dont le spectre présente un massif autour de 580 cm⁻¹ qui contient vraissemblablement deux bandes, corrélées aux fréquences calculées à 568 et 555 cm⁻¹.

Une seconde région du spectre, située entre 900 et 1050 cm⁻¹, est révélatrice de la structure. Cinq bandes sont observées à 918, 959, 989, 1010 et 1059 cm⁻¹, qui peuvent être corrélées aux cinq modes normaux prédits par le calcul à 918, 965, 984, 1022 et 1052 cm⁻¹ même si l'attribution précise reste incertaine. Ce sont des combinaisons des modes 1, 12, et 18. Or, pour une structure à deux cycles identiques comme à l'état fondamental, on attend dans cette région uniquement deux combinaisons en phase totalement symétriques des modes 12 et 18*a*. Les trois autres modes seraient des combinaisons en opposition de phase (12, 18*a* et 1) non symétriques. L'observation en Raman de résonance des cinq composantes montre donc que les deux cycles ne sont pas équivalents. La même conclusion est déduite pour le dérivé d₈ pour lequel les bandes observées à 914 et 940 cm⁻¹ sont attribuées à des combinaisons des modes 1 et 12 calculées à 920 et 944 cm⁻¹. L'accord observé dans le dérivé d₈ confirme de plus que les bandes observées ne sont pas attribuables à des modes hors du plan des liaisons CD dont les fréquences sont prédites autour de 850 cm⁻¹.

5.3.2.2 Conclusion

L'accord expérience/calcul pour l'état $S_1 n\pi^*$ de la 22BPY est globalement moins bon que pour la 44BPY. Ceci est dû d'une part au fait que, contrairement à cette dernière, tous les modes attendus ne sont pas observés, et que d'autre part l'abaissement de symétrie nécessite une détermination plus précise des constantes de force. Cette dernière remarque avait déjà été faite lors de l'étude *ab initio* de l'état fondamental de la 22BPY. En raison de cette moindre précision relativement au calcul de l'état S_1 de 44BPY, nous n'avons pas essayé d'analyser les effets des distorsions hors du plan calculées pour la structure complètement optimisée. Nous avons cependant établi qu'il existe des points d'accord qui permettent de valider les principales caractéristiques de la structure calculée, à savoir la non-équivalence des deux cycles pyridiniques. Tout d'abord, des raies Raman ont été attribuées à des modes qui ne peuvent être actifs en Raman de résonance que dans l'hypothèse d'une molécule possédant deux cycles non équivalents. Ensuite, il existe une très bonne corrélation expérience/calcul concernant l'activité et les fréquences de vibration situéesen-dessous de 1000 cm⁻¹. En conclusion, nous pouvons affirmer que l'état $S_1 n\pi^*$ de la 22BPY présente des caractéristiques structurales et électroniques analogues à celles de l'état S_1 des 44BPY et 4PPY, qui sont essentiellement le confinement de l'excitation dans un seul cycle pyridinique et, en conséquence, une distribution assymétrique des distorsions de géométrie.

Chapitre 6

Calcul des intensités Raman de résonance de l'état S_1 de la 44BPY

L'analyse des fréquences de vibration de l'état S_1 de la 44BPY a permis d'obtenir des renseignements sur la structure de cet état excité. Les spectres Raman étant enregistrés en résonance, l'analyse des intensités des raies observées sur ces spectres renseigne sur les propriétés électroniques de l'état S_1 . Ainsi, dans le cas de la 44BPY (voir fig 3.5), on observe des variations d'intensité importantes entre les spectres enregistrés en résonance à 380 nm et à 633 nm. En effet, pour la plupart des modes, il apparaît un basculement d'intensité entre les deux transitions: une bande observée dans une transition est observée peu intense dans le seconde. Les modes de vibration calculés pour l'état S_1 sont eux aussi remarquables (voir fig 5.1): la plupart des modes sont localisés sur l'un ou l'autre cycle. On constate alors que les bandes attribuées aux modes du cycle non excité sont principalement actives sur les spectres en résonance dans la transition UV, alors que les modes localisés sur le cycle excité sont observés en résonance avec la transition visible. Le mode d'élongation de la liaison intercycleest lui actif dans les deux transitions. Il y a cependant une exception à cela: la bande attribuée au mode 18*a* du cycle non excité est active dans la transition visible.

Les constatations ci-dessus suggèrent que le cycle excité consitue un chromophore pour la transition $S_1 \rightarrow S_n$ située dans le domaine visible, le cycle non-excité consituant quant à lui un chromophore pour la transition située dans l'UV. L'object de ce chapitre est d'analyser à l'aide de méthodes *ab initio* ces effets de résonance.

6.1 Théorie de l'intensité de diffusion Raman de résonance

6.1.1 Expression dans la base des états stationnaires du hamiltonien

L'expression classique de l'intensité Raman de résonance donnée par Albrecht [93, 92] est présentée au chapitre trois. Dans les conditions de résonance, la contribution principale aux éléments du tenseur de polarisabilité est alors données par :

$$(\alpha_{\rho\lambda})_{gi-gf}(\bar{\nu}_0) = \frac{1}{\hbar} [\mu_{\rho}]^0_{ge} [\mu_{\lambda}]^0_{ge} \sum_{\nu} \frac{\langle f|\nu\rangle\langle\nu|i\rangle}{2\pi c(\bar{\nu}_{gi,e\nu} - \bar{\nu}_0 + i\Gamma_{e\nu})}$$
(6.1)

Dans l'équation 6.1, g et e se réfèrent respectivement à l'état électronique étudié (S_1 dans notre cas) et à l'état électronique en résonance (S_n). $|i\rangle$ et $|f\rangle$ sont les états de vibration de l'état $|g\rangle$, et $|v\rangle$ celui de l'état $|e\rangle$. $[\mu_{\rho}]_{ge}^0$ et $[\mu_{\lambda}]_{ge}^0$ sont les composantes du moment de transition entre les états $|g\rangle$ et $|e\rangle$. $(\bar{\nu}_0)$ est le nombre d'onde de la radiation laser incidente et Γ_{ev} une constante phénoménologique liée à la durée de vie de l'état vibronique $|ev\rangle$.

Cette expression ne tient pas compte de la dépendance du moment de transition

avec les coordonnées nucléaires, on parle d'activité de type Franck-Condon. Il faut rappeler que seuls les modes de vibration totalement symétriques sont actifs dans cette approximation.

Le calcul précis des éléments du tenseur de polarisabilité donnés par l'expression 6.1 est difficile à mettre en œuvre dès que la taille de la molécule devient importante. En effet, il nécessite d'une part la connaissance des états propres de vibration de l'état excité en résonance et donc la détermination de la surface d'énergie potentielle de celuici. Il faut d'autre part calculer les intégrales multidimensionnelles de Franck-Condon. Le calcul de l'intensité Raman de résonance dans le formalisme de Albrecht se fait donc au prix d'approximations sur la surface de potentielle de l'état en résonance. Le cas le plus simple consiste à supposer les modes normaux harmoniques et identiques dans les deux états électroniques $|g\rangle$ et $|e\rangle$. Les intégrales de Franck-Condon s'expriment alors comme le produit d'intégrales monodimensionnelles qui peuvent être calculées analytiquement à partir des relations de Mannenback [115]. Si l'état initial est le niveau vibrationnel fondamental (|i = 0), alors le numérateur de l'équation 6.1 se calcule simplement à partir des intégrales de recouvrement suivantes [94]:

$$\langle 0|v\rangle\langle v|0\rangle = (s^{v}/v!)e^{-s} \tag{6.2}$$

$$\langle 1|v\rangle\langle v|0\rangle = \frac{\Delta}{2^{1/2}} \left[\langle 0|v\rangle\langle v|0\rangle - \langle 0|v-1\rangle\langle v-1|0\rangle\right]$$
(6.3)

avec $s = \Delta^2/2$.

 Δ est le paramètre sans dimension de déplacement du minimum de la surface de potentiel de l'état $|e\rangle$ le long du mode normal considéré. L'équation 6.3 relie l'intensité de la diffusion Raman de résonance à la distorsion de l'état excité en résonance. C'est pourquoi le formalisme présenté ci-dessus est principalement utilisé pour étudier indirectement la structure de l'état en résonance. Il est aussi possible d'aller au-delà de la simple approximation donnée ci-dessus en incluant, par exemple, dans le modèle la variation de fréquence ou la rotation des modes de vibration entre les deux états [94]. La méthode de calcul des intensités Raman de résonance présentée ci-dessus n'est pas très intéressante lorsque l'on n'étudie pas la structure de l'état excité résonant. La formulation de l'intensité de diffusion Raman de résonance dans le formalisme dépendant du temps offre une alternative mieux adaptée à notre problème.

6.1.2 "Théorie dépendant du temps" de la diffusion Raman de résonance

L'expression dépendante du temps de l'intensité Raman de résonance peut s'établir à partir de la théorie des perturbations [116] mais aussi plus simplement à partir de l'équation 6.1.

Le dénominateur de l'équation peut se réécrire :

$$\frac{1}{2\pi c(\bar{\nu}_{gi,ev} - \bar{\nu}_0 + i\Gamma_{ev})} = \frac{1}{i} \int_0^\infty dt \, e^{2\pi c(i(\bar{\nu}_0 - \bar{\nu}_{gi,ev})t - \Gamma_{ev}|t|)}$$

En remplaçant $\bar{\nu}_{gi,ev}$ par son expression $(\bar{\nu}_{ev} - \bar{\nu}_{gi})$ et en substituant l'expression du dénominateur, l'équation 6.1 s'écrit:

$$\begin{aligned} (\alpha_{\rho\lambda})_{gi-gf}(\bar{\nu}_{0}) &= \frac{1}{i\hbar} [\mu_{\rho}]^{0}_{ge} [\mu_{\lambda}]^{0}_{eg} \sum_{v} \int_{0}^{\infty} dt. e^{2\pi c (i(\bar{\nu}_{0}-\bar{\nu}_{ev}-\bar{\nu}_{gi})t-\Gamma_{ev}t)} \langle f|v\rangle \langle v|i\rangle \\ &= \frac{1}{i\hbar} [\mu_{\rho}]^{0}_{ge} [\mu_{\lambda}]^{0}_{eg} \sum_{v} \int_{0}^{\infty} dt. e^{2\pi c (i(\bar{\nu}_{0}+\bar{\nu}_{gi})t-\Gamma_{ev}t)} \langle f|v\rangle \langle v|e^{-2i\pi c\bar{\nu}_{ev}t}|i\rangle \end{aligned}$$

En supposant que la facteur d'amortissement est le même pour tous les niveaux vibroniques ($\Gamma_{ev} \simeq \Gamma$) et en remarquant que

$$\langle v|e^{-2i\pi c\bar{\nu}_{ev}t} = \langle v|e^{\frac{H_{ex}}{\hbar}t},$$

où H_{ex} est le hamiltonien vibrationnel de l'état excité supérieur résonnant, on peut noter $|i(t)\rangle = e^{\frac{H_{ex}}{\hbar}t}|i\rangle$. En appliquant la relation de fermeture $\sum_{v} |v\rangle\langle v| = 1$, l'équation 6.1 devient:

$$(\alpha_{\rho\lambda})_{gi-gf}(\bar{\nu}_0) = \frac{1}{i\hbar} [\mu_{\rho}]^0_{ge} [\mu_{\lambda}]^0_{eg} \int_0^\infty dt \, e^{2\pi c (i(\bar{\nu}_0 + \bar{\nu}_{gi})t - \Gamma_{ev}t)} \langle f|i(t)\rangle \tag{6.4}$$

L'équation 6.4 ne fait plus explicitement référence aux états propres de vibration de l'état résonnant comme cela était le cas pour l'équation 6.1. Toute ces informations sont maintenant contenues dans le hamiltonien H_{ex} . L'expression 6.4 suggère la description intuitive suivante de l'effet Raman de résonance. Le système est dans l'état propre $|i\rangle$. A l'instant t=0, l'intéraction avec le rayonnement électromagnétique cause la transition verticale dans l'état électronique supérieur. Le paquet d'onde $|i\rangle$ évolue alors sous l'influence du hamiltonien H_{ex} , dont il n'est pas un état propre. L'intensité de la diffusion Raman correspondant à la transiton $|i\rangle \rightarrow |f\rangle$ est alors donnée par la demi-transformée de Fourier du recouvrement entre le paquet d'onde qui se propage $|i(t)\rangle$ et l'état final $|f\rangle$.

Cette nouvelle formulation de l'intensité de diffusion Raman est rigoureusement équivalente à l'expression d'Albrecht. Les deux formalismes diffèrent cependant par les méthodes de calcul des expressions 6.1 et 6.4.

Il existe deux approches pour calculer l'expression 6.4. La première consiste à établir explicitement les expressions des intégrales de recouvrement $\langle f|i(t)\rangle$ moyennant diverses hypothèses sur la surface de potentiel de l'état résonant. Les expressions explicites ont ainsi été établies pour les cas de surfaces harmoniques identiques dans l'état initial et l'état résonnant mais aussi pour le cas de variations de fréquences ou en présence d'effet Duchinski [95, 94]. Cette première démarche requiert comme dans le formalisme de Albrecht, la connaissance des modes de vibration ou, tout au moins, le déplacement du minimum de la surface de potentiel de l'état excité résonnant [117]. La seconde méthode de résolution consiste à propager le paquet d'onde $|i(t)\rangle$ sur la surface de l'état en résonance. L'intérêt d'une telle approche est que, sous certaines conditions, l'effet Raman de résonance est gouverné par la dynamique dans la région de Franck-Condon si bien que, en pratique, la connaissance de la surface de potentiel de l'état résonnant pour des configurations nucléaires voisines de la géométrie d'équilibre de l'état initial suffit.

6.1.3 Effets à temps court

En général, le mouvement du paquet d'onde sur une surface de potentiel d'un état non dissociatif donne lieu à des récurrences. Ceci implique que la dynamique doit être calculée pour plusieurs périodes ce qui nécessite une détermination précise des surfaces de potentiel. Toutefois, dans le cas de molécules possèdant plusieurs modes actifs, la situation est différente. La conséquence du déplacement moyen du paquet d'onde le long de plusieurs modes est qu'il ne retourne pratiquement jamais dans la région de Franck-Condon. L'activité Raman de résonance de ces molécules est ainsi essentiellement gouvernée par la pente et par la courbure de la surface de potentiel de l'état résonnant déterminées pour la géométrie de l'état fondamental [95, 118, 119].

Dans ces conditions, en supposant que les modes de vibration de l'état fondamental sont harmoniques, le rapport entre l'intensité de deux bandes corespondant à des transitions fondamentales est donné simplement par [119]:

$$\frac{I_{10}^k}{I_{10}^{k'}} \simeq \left(\frac{\bar{\nu}_{k'}}{\bar{\nu}_k}\right) \left[\frac{V_k}{V_{k'}}\right]^2 \tag{6.5}$$

où V_k est le gradient de la surface de potentiel de l'état résonnant le long de la

direction du mode normal q_k de l'état fondamental et s'écrit

$$V_k \equiv \left(\frac{\partial V}{\partial q_k}\right)_{q_0}$$

Les intensités Raman de résonance relatives des modes normaux totalement symétriques peuvent donc être calculées sans connaître les états propres de vibration de l'état résonant. Il faut cependant souligner que les intensités ainsi calculées sont indépendantes de la longueur d'onde excitatrice. Cette approximation donne donc l'intensité moyenne d'une bande Raman le long du profil d'excitation.

6.2 Méthode de calcul

Les intensités Raman de résonance ont été calculées à l'aide de l'équation 6.5 en supposant que les effets à temps court dominent le processus de diffusion Raman de résonance. Les facteurs $\frac{1}{\omega} \frac{\partial V}{\partial q}$ s'écrivent en coordonnées cartésiennes:

$$\frac{1}{\omega_k}\frac{\partial V}{\partial q_k} = \bar{\nu}_k \vec{g} \mathbf{M} \vec{L}_k$$

où \vec{g} est le gradient de la surface de potentiel de l'état résonnant, \vec{L}_k le vecteur des déplacements cartésiens du mode normal q_k de l'état initial exprimé en coordonées réduites et **M** la matrice diagonale des masses atomiques.

La structure et les modes normaux de l'état S_1 de la 44BPY sont ceux calculés au niveau CIS avec la base $6 - 31G^*(+)$, présentés et discutés aux chapitres 4 et 5. Parmi les structures optimisées, nous avons, pour cette première approche du calcul des intensités Raman de résonance, choisi la structure C_{2v} . Ce choix est motivé d'une part par la symétrie qui simplifie l'étude des transitions $S_1 \to S_n$ et, d'autre part, par le fait que l'activité Raman de résonance observée sur les spectres de l'état S_1 correspond à l'activité attendue pour des modes totalement symétriques d'une structure C_{2v} .

Les fonctions d'onde d'un ensemble d'états S_n $(n \ge 1)$ ont été calculées par la méthode MCSCF implantée sur la suite du programme MOLPRO [120, 121]. Les bandes d'absorptions $S_1 \rightarrow S_n$ (voir figure 1.4) sont intenses et correspondent vraissemblablement à des transitions $\pi \to \pi^*$ autorisées. Donc, d'un point de vue qualitatif, les configurations des états S_n étudiés se distinguent de celle de l'état $|n\pi^*\rangle$ par une monoexcitation de nature $\pi\pi^*$. Deux types de configuration ont donc été considérés dans la fonction d'onde MCSCF selon que l'électron π^* de l'état S_1 est promu dans une orbitale π^* vacante, ce qui engendre des configurations monoexcitées $|n\pi_i^*\rangle$ ou selon que l'électron provient d'une orbitale doublement occupée dans l'état S_1 , ce qui engendre des configurations diéxcitées $|n\pi\pi_i^*\pi_i^*\rangle$. Ainsi, toutes les configurations mono et di-excitées créées par excitation parmi les 12 orbitales π et π^* et les deux orbitales n ont été incluses dans la fonction d'onde MCSCF. Pour la structure de symétrie $C_{2\nu}$, les orbitales π/π^* appartiennent aux représentations b_1 et a_2 , les orbitales n sont de symétrie a_1 . Les configurations décrites plus haut et donc les états excités sont alors soit de symétrie b_1 soit de symétrie a_2 . L'état S_1 est lui de symétrie B_1 . Les fonctions d'ondes MCSCF pour les 6 plus bas états B_1 et les 4 plus bas états A_2 ont été optimisées simultanément. Pour le calcul du gradient, nous avons préféré traiter séparément les deux groupes d'états afin d'améliorer l'optimisation des orbitales. Dans tous ces calculs, les orbitales de cœur ne sont pas gelées. La base utilisée est la même que celle utilisée pour le calcul de la structure et des modes de vibration de l'état S_1 .

6.3 Résultats

6.3.1 Fonctions d'onde et énergie des états S_n

Le tableau 6.1 rassemble les résultats du calcul MCSCF des 6 plus bas états excités singulet B_1 et des quatre plus bas de symétrie A_2 . Les valeurs expériementales (dans l'eau) des transitions $S_1 \rightarrow S_n$ sont reportées pour comparaison.

Etat	$\mathbf{E}(S_n)$	$\mathbf{E}(S_n)$	$-\mathbf{E}(S_1)$	Moment	de tra	nsition	Exp.
	Hartree	eV	nm	μ_x (u.a.)	μ_y	μ_z	nm
1^1B_1	-492.10778891	-	-				
$1^{1}A_{2}$	-492.05452427	1.448	856	0.000	0.023	0.000	590
$2^{1}B_{1}$	-492.03879121	1.887	656	0.000	0.000	0.034	
$3^{1}B_{1}$	-491.99449310	3.082	402	0.000	0.000	-0.991	378
$2^{1}A_{2}$	-491.98760825	3.269	380	0.000	-0.002	0.000	
$3^{1}A_{2}$	-491.96488776	3.887	319	0.000	-0.058	0.000	
$4^{1}B_{1}$	-491.93589937	4.676	265	0.000	0.000	1.415	
$5^{1}B_{1}$	-491.93021796	4.798	258	0.000	0.000	0.000	
$4^{1}A_{2}$	-491.92309940	5.024	247	0.000	0.397	0.000	
6^1B_1	-491.91336064	5.288	234	0.000	0.000	-0.927	:

TAB. 6.1 – ENERGIES MCSCF, ÉNERGIES ET MOMENTS DE TRANSITION $S_1 \rightarrow S_n$ des 6 premiers états 1B_1 et des 4 premiers états 1A_2 de la 44BPY.

Le calcul prédit l'état 3^1B_1 avec une énergie de transition et une valeur du moment de transition en accord avec la bande intense observée autour de 370 nm dans les spectres de l'état S_1 . Cet état est un bon candidat pour être l'état résonnant. Il est bien sûr difficile de se baser uniquement sur ces valeurs calculées compte tenu du niveau de calcul. Nous considérerons donc également l'état 2^1A_2 d'énergie voisine. Pour la transition observée dans le visible, on calcule deux états (2^1B_1 et 1^1A_2) séparés de moins d'un électron-volt et pour lesquels les moments de transition sont proches. Là aussi les deux états sont donc retenus. Les autres états sont calculés trop hauts pour être considérés. Ils sont soit effectivement situés à cette énergie et dans ce cas ne sont pas les états observés expérimentalement, ou sont situés à cette énergie en raison du manque de précision du calcul et dans ce cas il est préférable d'améliorer la fonction d'onde avant de calculer les intensités Raman de résonance. Nous nous sommes donc restreints aux premiers états.

Les configurations principales ainsi que leur poids dans la fonction d'onde MCSCF de ces états et de l'état S_1 sont reportés dans le tableau 6.2. La notation des configurations est la suivante: les deux premiers chiffres correspondent aux orbitales n, les huit suivants aux orbitales π/π^* de symétrie b_1 et enfin les quatre derniers chiffres se référent aux orbitales de symétrie a_2 . Les chiffres zéro et deux correspondent respectivement à une orbitale vide et dioccupée, les signes + et - représentent une orbitale monooccupée.

Configuration		Coefficient de l'IC				
_	Etat	$1^{1}B_{1}$	$2^{1}B_{1}$	$3^{1}B_{1}$		
2+ 2222-000 2200		0.91	0.00	0.11		
+2 2222-000 2200		0.00	0.70	-0.01		
2+ 22220-00 2200		-0.28	0.03	0.64		
$+2\ 222-2000\ 2200$		-0.00	-0.32	0.00		
+2 22220-00 2200		0.00	0.51	-0.00		
2+ 222-2000 2200		0.15	-0.00	0.45		
2+ 22-22000 2200		-0.05	-0.00	-0.30		
	Etat		$1^{1}A_{2}$	$2^{1}A_{2}$		
2+ 22220000 220-			0.89	-0.02		
+2 22220000 22-0			0.00	0.86		
2+ 22220000 22-0			0.24	0.06		
+2 222+-000 22-0			0.00	0.29		

TAB. 6.2 – PRINCIPALES CONFIGURATIONS ÉLECTRONIQUES IMPLIQUÉES DANS LA FONCTION D'ONDE MCSCF DES PREMIERS ÉTATS EXCITÉS S_n de la 44BPY pour LA GÉOMÉTRIE D'ÉQUILIBRE C_{2v} de l'ÉTAT S_1 .

Les configurations des cinq premiers états excités sont schématisées sur la figure 6.1. En comparant les fonctions d'onde des états 2^1B_1 et 2^1A_2 à celles de l'état S_1 , il apparaît qu'il n'est pas possible de passer de l'état S_1 aux deux autres états par une transition de type $\pi \to \pi^*$. Ces deux états calculés ne sont donc vraissemblablement

Fig. 6.1 – Représentation schématique des configurations électroniques principales impliquées dans la fonction d'onde MCSCF des premiers états excités S_n de la 44BPY.

pas responsables des bandes intenses $S_1 \rightarrow S_n$ observées pour la 44BPY. On vérifie par contre que les fonctions d'onde des états 3^1B_1 et 1^1A_2 peuvent être créées par application d'un opérateur monoélectronique $\pi\pi^*$ à la fonction d'onde de l'état S_1 . La transition située à 590 nm correspond à la promotion de l'électron π^* de l'état S_1 dans une orbitale π^* de symétrie a_2 localisée sur le cycle excité. La transition UV correspond plutôt à une transition $\pi\pi^*$ sur le cycle non excité. Nous avons calculé les intensités Raman de résonance correspondant à ces deux états.

6.3.2 Spectres Raman de résonance calculés pour les transitions $1^1B_1 \rightarrow 3^1B_3$ et $1^1B_1 \rightarrow 1^1A_2$

L'intensité des spectres Raman de résonance a été calculée pour les deux transitions et pour les trois dérivés isotopiques 44BPY-h₈, $-d_4$ et $-d_8$. Puisque la formule 6.5 donne le rapport des intensités de deux bandes, les spectres ont été normalisés sur la bande 8*a* pour les spectres dans l'UV et 8*a*' pour les spectres dans le visible. Les résultats, comparés aux spectres expérimentaux, sont reportés sur les figures 6.2 à 6.4 pour chacun des dérivés isotopiques.

Fig. 6.2 – Spectres Raman de l'état S_1 de la 44BPY-H₈ enregistrés dans l'eau $(10^{-3}M)$ en résonance à 633 nm (a) et 380 nm (b) 5 ps après excitation à 266 nm et 253 nm, respectivement, et spectres calculés pour les transitions électroniques $1^1B_1 \rightarrow 1^1A_2$ (c) et $1^1B_1 \rightarrow 3^1B_1$ (d)

FIG. 6.3 – Spectres Raman de l'état S_1 de la 44BPY-d₄ enregistrés dans l'eau $(10^{-3}M)$ en résonance à 633 nm (a) et 380 nm (b) 5 ps après excitation à 266 nm et 253 nm, respectivement, et spectres calculés pour les transitions électroniques $1^1B_1 \rightarrow 1^1A_2$ (c) et $1^1B_1 \rightarrow 3^1B_1$ (d)

FIG. 6.4 – Spectres Raman de l'état S_1 de la 44BPY-d₈ enregistrés dans l'eau $(10^{-3}M)$ en résonance à 633 nm (a) et 380 nm (b) 5 ps àprès excitation à 266 nm et 253 nm, respectivement, et spectres calculés pour les transitions électroniques $1^1B_1 \rightarrow 1^1A_2$ (c) et $1^1B_1 \rightarrow 3^1B_1$ (d)

6.4 Discussion

Avant de discuter des intensités Raman de résonance, il est important de constater que l'état S_1 (1¹ B_1) est décrit au niveau MCSCF à partir d'une configuration monoexcitée $|n\pi^*\rangle$ dominante. Ce calcul ne remet donc pas en cause les résultats des chapitres 4 et 5.

D'un point de vue quantitatif, le calcul des intensités Raman de résonance est globalement peu satisfaisant. Il existe cependant des points d'accord en ce qui concerne les caractéristiques essentielles des spectres de l'état S_1 .

Le point important est que les bandes intenses dans le spectre expérimental du dérivé -h₈ (8a, Ω_{ir} , 9a, et 12) sont aussi les bandes les plus intenses déterminées par le calcul. De même, sur le spectre enregistré en résonance dans la transition visible, la bande la plus intense est la bande attribuée au mode 8a^{*}, ce mode est aussi le plus intense sur le spectre calculé. Excepté pour le mode 9a calculé plus faible, ces caractéristiques se retrouvent pour les dérivés isotopiques $-d_4$ et $-d_8$. De plus, l'important effet d'inversion d'intensité entre les modes 8a et 8a^{*}, qui est l'un des effets de résonance les plus flagrants entre les transitions UV et visible, est correctement reproduit par le calcul. Cet effet est aussi clairement reproduit pour les modes 9a et 9a^{*} pour le dérivé $-h_8$ et de manière moins pertinente pour les deux variétés isotopiques, pour lesquelles l'intensité de ces modes est calculée trop faible.

Parmi les points de désaccord, il y a l'activité des modes 18a et Ω_{ir} dans la transition visible qui est calculée trop faible. Ces modes mettent en jeu des mouvements autour de la liaison intercycle. Comme pour la structure (voir chapitre 4), l'erreur pourrait provenir d'un confinement trop important de l'orbitale π^* de l'état S_1 . L'autre point de désaccord est que les bandes attribuées aux modes 12 (970 cm⁻¹) et 1 (725 cm⁻¹) sont plus intenses que ne le predit le calcul. Il est délicat de mettre en avant la précision des calculs du champ de force pour ces modes car ces modes sont typiques du biphényle et leur DEP varie relativement peu. Par contre, ces deux bandes sont particulièrement sensibles aux conditions expérimentales. Sur la figure 6.5 qui représente les spectres Raman de résonance enregistrés à 380 nm de l'état S_1 en solution dans des solvants à caractères polaires ou protiques différents, on constate que l'intensité de la bande située à 725 cm⁻¹ augmente avec le caractère protique du solvant. On remarque que le calcul est en meilleur accord concernant cette bande avec le spectres obtenu dans le n-hexane. De même sur la figure 6.6, on observe des effets de résonance sensiblement différents entre une sonde à 370 et 380 nm. Les spectres à 370 nm semblent en meilleur accord avec le calcul. Cette importante sensibilité des effets de résonance aux conditions expérimentales relativise les désaccords donnés par le calcul pour lequel les effets d'environnement ne sont pas pris en compte et qui procure une intensité moyennée sur le profil d'excitation.

6.5 Résumé

Par le calcul des intensités Raman de résonance dans l'approximation des effets à temps court, nous avons pu reproduire à l'aide de méthode *ab initio* les principales caractéristiques des spectres de l'état S_1 . Cet accord partiel représente néanmoins un argument de plus en faveur de la localisation de l'excitation sur un seul cycle pyridinique. Cette étude confirme l'hypothèse selon laquelle le cycle excité est le chromophore responbable de la transition $S_1 \rightarrow S_n$ dans le visible et le second cycle de celle située dans l'UV. Elle permet de plus d'identifier de manière indirecte les états excités S_n observés sur les spectres d'absorption transitoire subpicoseconde de l'état S_1 de la 44BPY.

Fig. 6.5 – Spectres Raman de l'état excité $S_1 n\pi^*$ de la 44BPY-h₈ dans différents solvants (10⁻³M) enregistrés en résonance à 380 nm, 5 ps après excitation à 253 nm

Fig. 6.6 – Spectres Raman de l'état excité $S_1 n\pi^*$ de la 44BPY-H₈ dans l'eau (10⁻³M) enregistrés en résonance à 380 nm et 370 nm, 5ps aprés excitation à 253 et 247 nm, respectivement
Conclusion

Les propriétés structurales et vibrationnelles de l'état excité S_1 de la 4,4'-bipyridine (44BPY), de la 2,2'-bipyridine (22BPY) et de la 4-phénylpyridine (4PPY) ont été étudiées en solution au travers d'une démarche qui associe deux techniques d'analyse complémentaires qui sont :

- la spectrométrie de diffusion Raman de résonance transitoire;
- les calculs ab initio de chimie quantique.

L'utilisation d'une source laser picoseconde accordable sur une large gamme de longueurs d'onde a permis d'enregistrer les spectres Raman des molécules précédemment citées en résonance avec deux transitions $S_1 \rightarrow S_n$ situées dans le proche UV et le visible. De cette manière, des données expérimentales complètes concernant les modes de vibration de ces états excités ont pu être recueillies. Celles-ci ont été enrichies par les spectres Raman des espèces deutérées $-d_4$ et $-d_8$ pour la 44BPY et $-d_8$ pour la 22BPY. L'activité Raman de l'état S_1 de chacune des molécules varie peu dans les différents solvants étudiés, indiquant par là que la nature de l'état est la même dans toutes les solutions.

Le comportement photophysique de l'état S_1 des molécules étudiées suggérant une nature $n\pi^*$, la structure du plus bas état excité $n\pi^*$ de la 44BPY, de la 22BPY et de la 4PPY a été optimisée par la méthode CIS. Ces calculs prédisent pour les trois molécules une structure dissymétrique qui résulte de la localisation de l'excitation sur un seul cycle pyridinique. Le cycle excité présente d'importantes distorsions et adopte une conformation de type bateau. Ces distorsions sont en accord avec les études de l'état ${}^{1}n\pi^{*}$ de la pyridine. Le second cycle est, quant à lui, peu modifié par rapport à l'état fondamental de la molécule. L'angle de torsion intercyle est abaissé par rapport à sa valeur dans l'état S_0 . Toutefois, ce dernier paramètre ainsi que la distorsion hors du plan du cycle excité sont des grandeurs trop sensibles au regard de la précision de la méthode de calcul utilisée. Des structures plus symétriques, calculées d'énergies voisines, ont donc aussi été considérées.

En conséquence de la dissymétrisation de la molécule, la plupart des modes de vibration apparaissent localisés sur chacun des deux cycles, la fréquence des modes du cycle excité étant abaissée d'une centaine de $\rm cm^{-1}$. Les fréquences de vibration théoriques ont été confrontées aux fréquences expérimentales dans l'hypothèse d'une activité Raman de résonance de type Franck-Condon. Pour la 44BPY, les 15 bandes correspondant à des modes fondamentaux observés sur les spectres Raman en résonance dans les deux transitions $S_1 \rightarrow S_n$ ont pu être attribuées aux 15 modes totalement symétriques calculés pour une structure C_{2v} à deux cycles coplanaires. L'attribution a été réalisée pour les trois dérivés deutérés étudiés. Cet accord indubitable valide la caractéristique principale de la structure calculée qui est la localisation de l'excitation $n\pi^*$ sur un seul cycle pyridinique. La précision du calcul et la spécificité du Raman de résonance n'ont toutefois pas permis de conclure quant à la présence ou non de distorsions hors du plan. La confrontation expérience/calcul aboutit à la même conclusion en ce qui concerne la localisation de l'excitation dans l'état $S_1 n\pi^*$ de la 22BPY et de la 4PPY. L'accord est toutefois moins pertinent pour ces deux dernières molécules. Dans le cas de la 4PPY, la qualitié comparaison expérience/calcul est fortement limité par le faible rapport siŕ

gnal/bruit des spectres Raman enregistrés en résonance dans la bande visible. Le moins bon accord constaté dans le cas de la 22BPY reflète la limite de la méthode de calcul utilisée. La symétrie plus basse de cette molécule entraine d'une part des DEP plus complexes, et d'autre part un nombre plus important de modes actifs en Raman de résonance. Comme cela a été auparavant constaté pour l'état fondamental de la 22BPY, une détermination plus précise des constantes de force est alors nécessaire. De plus, les variations de DEP entre l'état S_0 et l'état S_1 sont elles aussi plus complexes. La forme des modes est fortement modifiée entre les deux états, si bien qu'il n'y a plus de variations importantes de fréquence significatives par rapport à la précision du calcul comme cela est le cas pour les molécules de 44BPY ou 4PPY

L'étude effectuée en associant la spectrométrie Raman de résonance picoseconde à des calculs de chimie quantique aboutit à la conclusion que l'état S_1 de la 44BPY, de la 22BPY et de la 4PPY est de nature $n\pi^*$ dans tous les solvants étudiés et que dans cet état ces molécules peuvent être décrites comme constituées d'une pyridine excitée $(n\pi^*)$ substituée par une groupement benzénique ou pyridinique à l'état fondamental. Elle confirme et précise les conclusions de l'analyse empirique des spectres Raman de l'état S_1 de ces molécules réalisée en parallèle [98, 99]. Cette particularité est attribuée à la faible conjugaison des deux cycles au travers de la liaision intercycle.

Une conséquence directe de la localisation de l'excitation est que le cycle excité et le cycle non excité de la 44BPY sont les chromophores responsables des transitions $S_1 \rightarrow S_n$ dans le visible $(1^1B_1 \rightarrow 1^1A_2)$ et l'UV $(1^1B_1 \rightarrow 3^1B_1)$, respectivement. Ceci a été démontré par la modélisation des intensités Raman de résonance de l'état S_1 de la 44BPY en faisant l'approximation que le processus Raman est dominé par les effets à temps court et à l'aide de la représentation par une fonction d'onde MCSCF des états excités résonnants S_n . Bien qu'essentiellement qualitatifs, les résultats obtenus concernant

Conclusion

١

la modélisation des effets de résonance sont encourageants et laissent entrevoir des perspectives intéressantes. Une reproduction plus précise des intensités Raman de résonance pourrait certainement permettre de conclure quant à la présence ou non de distorsions hors du plan dans l'état S_1 . Elle permettrait également une meilleure description des propriétés électroniques de l'état excité $S_1 n\pi^*$ en fonction de l'environnement.

Enfin, l'importance de l'état S_1 dans le processus de photoréduction de la 44BPY et la 4PPY par les alcools, en particulier la vitesse de réaction extrêmement élevée, a été mentionnée en introduction. Les similitudes qui existent entre la structure proposée pour l'état S_1 et celle du radical monohydrogéné 44BPYH[•] [62] peuvent partiellement expliquer le rendement élevé du processus. La compréhension exacte de ce mécanisme photochimique, en partie élucidé expérimentalement [98] demande une étude théorique complémentaire. Dans cette perspective, les propriétés principales de l'état S_1 des molécules étudiées étant correctement décrites au niveau des monoexcitations, il serait intéressant de procéder à une étude par dynamique moléculaire dans l'état excité.

Annexe A

Modes normaux de l'état fondamental de la 44BPY et de la 22BPY

Fig. A.1 – Modes normaux de vibration de la $44BPY-S_0$ (fréq. en cm⁻¹) appartenant à la représentation totalement symétrique du groupe $C_{2\nu}$ (axe de symétrie passant par les deux azotes) calculés par la méthode $HF/6 - 31G^*(+)$.

	44BPY-h ₈		44BI	PY-d ₄	44BPY-d ₈		
n°	$ u_{exp} $	$ u_{calc}$	$ u_{exp}$	$ u_{calc}$	$ u_{exp}$	$ u_{calc}$	
	$\rm cm^{-1}$	$\rm cm^{-1}$	cm^{-1}	cm ⁻¹	cm^{-1}	$\rm cm^{-1}$	
ν_1	1607	1637	1599	1625	1571	1604	
ν_2	1589	1618	1576	1602	1546	1582	
ν_3	1511	1520	1453	1465	1418	1432	
ν_4	1487	1491		1434	1310	1365	
ν_5	1297	1270	1281	1253	1204	1185	
ν_6	1219	1215	934	925	932	925	
ν_7	1218	1213	894	886	904	890	
ν_8	1099	1066	1105	1088	820	821	
ν_9	1088	1065	1101	1065	838	832	
ν_{10}	1038	1021	1021	1000	1024	1003	
ν_{11}	1000	983	1003	984	974	955	
ν_{12}	989	980	986	979	960	951	
ν_{13}	756	735	717	698	713	695	
ν_{14}	607	595	599	587	591	579	
ν_{15}	315	292	313	289	307	283	

TAB. A.1 – Fréquences expérimentales et calculées $(RHF/6 - 31G^*(+))$ pour les trois dérivés isotopiques $-H_8$, $-D_4$ et $-D_8$ de la 44BPY dans l'état fondamental. Les fréquences calculées ont été mises à l'échelle (*0.9). Seuls les modes normaux qui deviennent totalement symétriques dans le groupe C_{2v} sont reportés. ŕ

Fig. A.2 – Forme des modes normaux de l'état fondamental de la 22BPY calculés par la méthode $HF/6 - 31G^*(+)$. Seuls les modes totalement symétriques dans le groupe de symétrie C_s sont représentés.

1

Fig. A.3 – Forme des modes normaux de l'état fondamental de la 22BPY calculés par la méthode $HF/6 - 31G^*(+)$ (suite).

. . ŕ

22BPY-h ₈				22BPY-d ₈				
calc. (*0.9)		exp.		calc. (*0.9)		exp.		
A_g	B_u	A_g	B_u	A_g	B_u	A_g	B_u	
1628		1590			1597		1559	
	1620		1579	1586		1557	I	
1616		1572		1586		1442		
	1589		1553		1551		1529	
1506		1482	1	1427	:	1415		
	1473		1448	1354		1358		
1456		1446			1341		1345	
	1430		1410	1	1296		1300	
1310		1311		1184		1191		
1287		1300			1246		1245	
	1273		1265	1227		1234		
	1193		1138		1019		1033	
	1189		1250	1015		1020		
1185		1234			977		990	
1184		1147		960		970		
	1098		1083		953		965	
1093		1094		858		874		
	1061		1063		844		850	
1038		1043 ·			830		841	
	1021		1040	825		835		
988		995		822		815		
	984		991		817		801	
757		765		711		721		
	651		651		626		664	
	614		618		593		618	
606		615		586		593		
429		440		406		415		
332		320		310		323		
	159		-		148	-		

TAB. A.2 – Fréquences calculées et observées de l'état S_0 de la 22BPY. Les fréquences théoriques sont corrigées par le facteur 0.9, sauf celles correspondant aux modes 14 (en italique dans le tableau). Seuls les déplacements des modes normaux totalement symétriques pour une structure de symétrie C_s sont reportés.

Bibliographie

- [1] Li (R.) et Lim (E. C.). J. Chem. Phys., vol. 57, n° 2, 1972, p. 605.
- [2] Kellmann (A.). J. Phys. Chem., vol. 81, n° 12, 1977, p. 1195.
- [3] Jablonski (A.). Nature, vol. 131, 1933, p. 839.
- [4] Jablonski (A.). Z. Phys., vol. 94, 1935, p. 38.
- [5] Kasha (M.). Chem. Rev., vol. 41, 1947, p. 401.
- [6] Kasha (M.). Discuss. Trans. Farraday Soc., vol. 9, 1950, p. 14.
- [7] Michl (J.). Mol. Photochem., vol. 4, 1972, pp. 243, 257, 287.
- [8] Bernardi (F.), Olivucci (M.) et Robb (M. A.). Acc. Chem. Res., vol. 23, 1990, p. 405.
- [9] Bernardi (F.), Olivucci (M.), Robb (M. A.) et Tonachini (G.). J. Am. Chem. Soc., vol. 114, 1992, p. 5805.
- [10] Bernardi (F.), Olivucci (M.), Ragazos (I.N.) et Robb (M. A.). J. Am. Chem. Soc., vol. 114, 1992, p. 8211.
- [11] Bernardi (F.), Olivucci (M.), Ragazos (I.N.) et Robb (M. A.). J. Am. Chem. Soc., vol. 114, 1992, p. 2752.
- [12] Gouterman (M.). J. Chem. Phys., vol. 36, n° 11, 1962, p. 2846.
- [13] Robinson (G. W.) et Frosch (R. P.). J. Chem. Phys., vol. 37, n° 9, 1962, p. 1962.
- [14] Robinson (G. W.) et Frosch (R. P.). J. Chem. Phys., vol. 38, 1962, p. 1187.
- [15] Lin (S H). J. Chem. Phys., vol. 44, n° 10, 1966, p. 3759.
- [16] Henry (B. R.) et Kasha (M.). Ann. Rev. Phys. Chem., vol. 19, 1968, p. 161.
- [17] Jortner (J.) et Berry (R. S.). J. Chem. Phys., vol. 48, n° 6, 1968, p. 2757.

- [18] Bixon (M.) et Jortner (J.). J. Chem. Phys., vol. 48, n° 2, 1968, p. 715.
- [19] Siebrand (W.). J. Chem. Phys., vol. 46, n° 2, 1967, p. 440.
- [20] El-Sayed (M. A.). J. Chem. Phys., vol. 36, 1962, p. 573.
- [21] El-Sayed (M. A.). J. Chem. Phys., vol. 38, 1963, p. 2834.
- [22] Innes (K. K.), Ross (I. G.) et Moonaw (W. R.). J. Mol. Specstroc., vol. 132, 1988, p. 492.
- [23] Kommendeur (J.), Majewski (W. A.), Meerts (W. L.) et Pratt (D. W.). Annu. Rev. Phys. Chem, vol. 38, 1987, p. 433.
- [24] Meerts (W. L.) et Majewski (W. A.). Laser Chem., vol. 5, 1986, p. 339.
- [25] Konigs (J. A.), Majewski (W. A.), Matsumoto (Y.), Pratt (D. W.) et Meerts (W. L.). - J. Chem. Phys., vol. 89, 1988, p. 1813.
- [26] Becucci (M.), Lakin (N. M.), Pietraperzia (G.), Salvi (P. R.), Castellucci (E.) et Kerstel (E. R. Th.). - J. Chem. Phys., no24, 1997, p. 10399.
- [27] Fulscher (M. P.), Andersson (K.) et Roos (B. O.). J. Phys. Chem., vol. 96, 1992, p. 9204.
- [28] Mochizuki (Y.), Kaya (K.) et Ito (M.). J. Chem. Phys., vol. 65, n° 10, 1976, p. 4163.
- [29] Stock (G.), Woywod (C.), Domcke (W.), Swinney (T.) et Hudson (B. S.). J. Chem. Phys., vol. 103, n° 16, 1995, p. 6851.
- [30] Sobolewski (A. L.) et Domcke (W.). Chem. Phys. Letters, vol. 180, n° 4, 1991, p. 381.
- [31] Hochstrasser (R. B.) et Marzzaco (C. A.). Molecular Luminescence. New York, N.Y., W.A. Benjamin, 1969.
- [32] Wadt (W. R.) et Goddard (W. A.). J. Am. Chem. Soc., vol. 97, n° 8, 1975, p. 2034.
- [33] Moomaw (W. R.), Decamp (M. R.) et Podore (P. C.). Chem. Phys. Letters, vol. 14, n° 2, 1972, p. 255.
- [34] Kleier (D. A.), Martin (R. L.), Wadt (W. R.) et Moomaw (W. R.). J. Am. Chem. Soc., vol. 104, 1982, p. 60.

- [35] Canuto (S.), Goscinski (O.) et Zerner (M.). Chem. Phys. Letters, vol. 68, n° 1, 1979, p. 232.
- [36] Schütz (M.), hutter (J.) et Lüthl (H. P.). J. Chem. Phys., vol. 103, n° 16, 1995, p. 7048.
- [37] Scheiner (A. C.) et SchaeferIII (H. F.). J. Chem. Phys., vol. 87, n° 6, 87, p. 3539.
- [38] Jesson (J. P.), Kroto (H. W.) et Ramsay (D. A.). J. Chem. Phys., vol. 56, n° 12, 1972, p. 6257.
- [39] Foresman (J. B.), Head-Gordon (M.), Pople (J. A.) et Frisch (M. J.). J. Phys. Chem., vol. 96, 1992, p. 135.
- [40] Summers (L. A.). Advances in heterocyclic chemistry, chap. The Bipyridines, p. 281. - 1984volume 35.
- [41] Castellucci (E.), Angeloni (L.), Marconi (G.), Venuti (E.) et Baraldi (I.). J. Phys. Chem., vol. 94, 1990, p. 1740.
- [42] Elisei (F.), Mazzucato (U.), Görner (H.) et Schulte-Frohlinde (D. J.). J. Photochem. Photobiol., vol. 50A, 1989, p. 209.
- [43] Saini (R. D.), Dhanya (S.) et Bhattacharrya (P. K.). J. Photochem. Photobiol., vol. 43A, 1988, p. 91.
- [44] Buntinx (G.), Valat (P.), Wintgens (V.) et Poizat (O.). JPC, vol. 95, 1991, p. 9347.
- [45] Buntinx (G.), Poizat (O.), Valat (P.), Wintgens (V.), Righini (R.) et Foggi (P.).
 J. Chim. Phys, vol. 90, 1993, p. 1753.
- [46] Poizat (O.), Buntinx (G.), Valat (P.), Wintgens (V.) et Bridoux (M.). J. Phys. Chem., vol. 97, 1993, p. 5905.
- [47] Poizat (O.) et Buntinx (G.). J. Phys. Chem., vol. 99, 1995, p. 9403.
- [48] Poizat (O.), Buntinx (G.) et Leygue (N.). J. Phys. Chem., vol. 99, 1995, p. 2343.
- [49] Buntinx (G.), Naskrecki (R.) et Poizat (O.). J. Phys. Chem., vol. 100, 1996, p. 19380.
- [50] Buntinx (G.) et Poizat (O.). J. Chem. Phys., vol. 91, n° 4, 89, p. 2153.

- [51] Sasaki (Y.) et Hamaguchi (H.). Spectrochimica Acta, vol. 50A, n° 8/9, 1994, p. 1475.
- [52] Kubin (J.) et Testa (A. C.). J. Photochem. Photobiol. A: Chem., vol. 83, 1994, p. 91.
- [53] Hotchandani (S.) et Testa (A. C.). J. Photochem. Photobiol. A: Chem., vol. 55, 1991, p. 323.
- [54] Testa (A. C.), Schneider (S.) et Brem (B.). J. Photochem. Photobiol. A: Chem., vol. 107, 1997, p. 147.
- [55] Sarkar (A.) et Chakravorti (S.). J. of Luminescence, vol. 65, 1995, p. 163.
- [56] Buntinx (G.), Naskrecki (R.), Didierjean (C.) et Poizat (O.). J. Phys. Chem.A, vol. 101, 1997, p. 8768.
- [57] Summers (L. A.). Adv. in Heterocyclic Chem., vol. 35, 1984, p. 281.
- [58] L. L. Merrit (jr) et Schroeder (E. D.). Acta Crist., vol. 9, 1956, p. 801.
- [59] Caudau (M. M.), Eroğlu (S.), özbey (S.), Kendi (E.) et Kantarci (Z.). Spect. Letters, vol. 32, n° 1, 1999, p. 35.
- [60] Damrauer (N. H.), Boussie (T. R.), Devenney (M.) et McCusker (J. K.). J. Am. Chem. Soc., vol. 119, 1997, p. 8253.
- [61] Ould-Moussa (L.), Poizat (O.), Castellà-Ventura (M.), Buntinx (G.) et Kassab (E.). J. Phys. Chem., vol. 100, 1996, p. 2072.
- [62] Ould-Moussa (L.). Etude théorique d'ions radicalaires instatables de la 4,4'- et de la 2,2'-bipyridine. – Thèse de PhD, Paris VI, 1997.
- [63] Castellà-Ventura (M.) et Kassab (E.). J. Raman Spectrosc., vol. 29, 1998, p. 511.
- [64] Almenningen (A.), Bastansen (A.), Frenholt (L.), Cyvin (B.) et Sandel (S.). J. Molec. Struct., vol. 128, 1985, p. 59.
- [65] Trotier (J.). Acta Cryst., vol. 14, 1961, p. 1135.
- [66] Hargraeves (A.) et Rizvi (S. H.). Acta Cryst., vol. 15, 1962, p. 365.
- [67] Charbonneau (G. P.) et Delugeard (Y.). Acta Cryst. sect. B, vol. 32, 1946, p. 1420.

- [68] bartensien (O.) et Sandal (S.). J. Molec. Struct., vol. 128, 1985, p. 115.
- [69] Sukuki (H.). Bull. Chem. Soc. Japon, vol. 32, 1950, p. 1340.
- [70] Schnit (E. D.) et Brosa (B.). J. Chem. Phys., vol. 56, 1972, p. 6267.
- [71] Eaton (V. J.) et Steele (D.). J. Chem. Soc. Faraday Discuss., vol. 2, 1973, p. 1601.
- [72] Barret (R. M.) et Steele (D.). J. Molec. Struc., vol. 11, 1972, p. 105.
- [73] Head-Gordon (M.) et Pople (J. A.). J. Phys. Chem., vol. 97, 1993, p. 1147.
- [74] Karpfen (A.), Choiand (C. H.) et Kertesz (M.). J. Phys. Chem.A, vol. 101, 1997, p. 7426.
- [75] Kubel (F.) et Strähle (J.). Z. Naturforsh., vol. 37b, 1982, p. 272.
- [76] Sungur (A.), Akyüz (S.), Eric (J.) et Davies (D.). J. Of Inclusion Phenomena, vol. 5, 1987, p. 491.
- [77] Topaçli (A.) et Akyüz (S.). Spectrochimica Acta, vol. 51A, 1995, p. 633.
- [78] Howard (S. T.). J. Am. Chem. Soc., vol. 118, 1998, p. 10269.
- [79] London, Adam Hilger, 1974volume 1.
- [80] Zerbi (G.) et Sandroni (S.). Fundamental frequencies and molecular configuration of biphenyl. Spectrochimica Acta, vol. 24A, 1967, p. 483.
- [81] Poizat (O.), Ventura (M.) et Buntinx (G.). Spectroscopiy letters, vol. 23, n° 6, 1990, p. 701.
- [82] Hohenberg (P.) et Kohn (W.). Phisical Review B, vol. 136, 1964, p. 864.
- [83] Kohn (W.) et Sham (L. J.). Physical Review A, vol. 140, 1965, p. 1133.
- [84] Quantum theory of molecular and solids, chap. The self-consistent field for molecular and solids. – New York, McGraw-Hill, 1974volume 4.
- [85] Vosko (S. H.), Wilk (L.) et Nusair (N.). Canadian J. Phys, vol. 58, 1980, p. 1200.
- [86] Lee (C.), Yang (W.) et Parr (R. G.). Physical rewiew B, vol. 37, 1988, p. 785.
- [87] Becke (A. D.). *Phys. Rev. A*, vol. 38, 1988, p. 3098.

- [88] Miehlich (B.), Savin (A.), Stoll (H.) et Preuss (H.). Chem. Phys. Lett., vol. 157, 1989, p. 200.
- [89] Becke (A. D.). J. Chem. Phys., vol. 98, 1993, p. 5648.
- [90] Gaussian 94, Revision E.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
- [91] Allouche. (A.) REDONG (QCPE628)
- [92] Clark (R. J. H.) et Dines (T J.). Angew. Chem. Int. Ed. Engl, vol. 25, 1986, p. 131.
- [93] Albrecht (Andreas C.). J. Chem. Phys., vol. 34, n° 5, 1961, p. 1476.
- [94] Myers (A. B.) et Mathies (R. A.). Biological applications of Raman spectroscopy, chap. 1: Resonance Raman intensities: a probe of excited-state structure and dynamics. - Wiley, New York, 1987volume 2.
- [95] Myers (A B.). J. Raman Spectrosc., vol. 28, 1997, p. 389.
- [96] Rullière (C.) (édité par). Femtosecond laser pulses: principle and experiments.
 Berln Heidelberg New York, Springer Verlag, 1998.
- [97] Blanc (C. Le). Ann. Phys. fr., vol. 19, 1994, p. 1.
- [98] Didierjean (C.). Etude de la photoreactivité et de la structure de l'état S₁ de quelques hétérocycles azotés dérivés du biphényle en solution par spectrométrie Raman de résonance picoseconde. - Thèse de PhD, Université des Sciences et Technologies de Lille, 1999.
- [99] Didierjean (C.), De-Waele (V.), Buntinx (G.) et Poizat (O.). Chemical Physics, vol. 237, 1998, p. 169.
- [100] MacDonald (J. K. L.). Phys. Rev., vol. 43, 1933, p. 830.
- [101] Roos (B. O.), Andersson (K.) et Fülscher (M.P.). Chem. Phys. Lett., vol. 192, n° 1, 1992.

- [102] Rubio (M.), Merchán (M.), Orti (E.) et Roos (B. O.). Chem. Phys., vol. 179, 1994, p. 395.
- [103] Molina (V.), Merchán (M.) et Roos (B. O.). Spectr. Acta part A, no55, 1999, p. 433.
- [104] McAlpine (R. D.). J. Mol. Spect., vol. 38, 1971, p. 441.
- [105] McLean (A. D.), III (B. H. Lengsfield), Pacansky (J.) et Ellinger (Y.). J. Chem. Phys., vol. 83, n° 7, 1985, p. 3567.
- [106] Malrieu (J. P.) et Daudey (J. P.). Quantum chemistry in front of symmetrybreakings. In: Strategies and applications in quantum chemistry, éd. par Ellinger (Y.) et Defranceschi (M.), p. 103. – Kluwer academic publishers, 1996.
- [107] Ayala (P. Y.) et Schlegel (H. B.). J. Chem. Phys., vol. 108, n° 18, 1998, p. 7560.
- [108] Burton (N. A.), Yamaguchi (Y.), Alberts (Ian L.) et III (H. F. Schaefer). J. Chem. Phys., vol. 95, n° 10, 1991, p. 7466.
- [109] Hrusak (J.) et Iwata (S.). J. Chem. Phys., vol. 106, n° 12, 1997, p. 4877.
- [110] Zeng (J.), Woywod (C.), Hush (N. S.) et Reimers (J. R.). J. Am. Chem. Soc., vol. 117, 1995, p. 8618.
- [111] Hoffmann (R.). Accounts of Chemical research, vol. 4, n° 1, 1971, p. 1.
- [112] McClure (D S.). Can. J. Chem., vol. 36, 1958, p. 59.

ï

- [113] Guallar (V.), Moreno (M.) et Lluch (J. M.). Chem. Phys., vol. 228, 1998, p. 1.
- [114] Ait-Lyasidi (S.), Dkaki (M.), Bitit (N.), Meziane (D.), Cazeau-Dubroca (C.) et Cazeau (Ph.). - Spectrochimica Acta Part A, vol. 55, 1999, p. 89.
- [115] Mannenback (C). *Physica*, vol. 17, 1951, p. 1001.
- [116] Lee (S-Y.) et Heller (E J.). J. Chem. Phys., vol. 71, n° 12, 1979, p. 4777.
- [117] Tannor (D J.) et Heller (E J.). J. Chem. Phys., vol. 77, n° 1, 1982, p. 202.
- [118] Williams (S. O.) et Imre (D. G.). J. Phys. Chem., vol. 92, 1988.
- [119] Heller (E. J.), Sundberg (R. L.) et Tannor (D.). J. Phys. Chem., vol. 86, 1982, p. 1822.
- [120] Werner (H. J.) et Knowles (P. J.). J. Chem. Phys., vol. 82, 1985, p. 5053.
- [121] Knowles (P. J.) et Werner (H. J.). Chem. Phys. Lett., vol. 115, 1985, p. 259.