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Multifractal analysis of phytoplankton biomass and 
temperature in the ocean 

Laurent Seuront,1 François Schmitt,2 Yvan Lagadeuc,1 Daniel Schertzer/ Shatm Lovejoy,3 

and Serge Frontier1 

Abstract. Many attempts have been made to relate 
phytoplankton biomass ditributions to their turbulent 
environments. These studies have not taken the intermittent 
nature of turbulent processes into account, and hence poorly 
approximate inhomogeneous patterns. Since these oceanic 
fields are scaling for a wide range of scales, and scaling 
processes are believed to generically yield universal 
multifractal (characterized by three basic exponents), it is 
natural to analyse temperature and phytoplankton biomass in 
such a framework. Over the range 0.5s to 11h30', the 
temperature followed a single scaling regime, whereas the 
phytoplankton had both a low and high frequency regime (the 
break occurring at about lOOs). We estimated the universal 
multifractal parameters finding that fluorescence was nearly 
dynamically passive (i.e. similar to temperature) on smaller 
scales but biologically active at larger scales. 

Introduction 

Marine systems exhibit intimate relationships between 
physical and biological processes (Legendre and Demers, 
1984; Mackas et al., 1985), as shown by the coupling 
between the distribution of phytoplankton populations and 
the structure of their physical environment over a wide range 
of spatial and temporal scales (Haury et al., 1978). On small 
scales in fully turbulent flows, the fluctuations of 
phytoplankton biomass, estimated by Fourier power spectral 
analysis (Platt, 1972; Platt and Denman, 1975), are considered 
similar to those of a passive scalar. However, power spectral 
analysis is only adequate to characterize turbulent processes 
for homogeneous models. Contrary to classical theoretical 
concepts regarding turbulent events as homogeneous 
processes (Obukhov, 1949; Corrsin, 1951), it has been shawn 
that the rate of energy transfer and the variance fluxes of 
passive scalars from large to small scales exhibit - at al! 
scales - sharp fluctuations called intermittency which 
generate inhomogeneity (Batchelor and Townsend, 1949; 
Kolmogorov, 1962; Obukhov, 1962). 

Indeed, the well-known "-5/3" power spectrum (i.e. a second 
arder moment) associated with the behavior of a passive scalar 
only characterizes variability in a very limited way (except in 
the case of "quasi-Gaussian" statistics ). lndeed the 
determination of the probability distribution require the 
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determination of moments of ali orders. With the assumption 
of scaling, this determination reduces to the estimation of an a 
priori infinite hierarchy of exponents which remain 
numerically indeterminable, especially for the highest orders 
corresponding to the most extreme variability. Multifractal 
fields then require an infinite hierarchy of exponents, rather 
than the single exponent of fractal patterns (Mandel brot, 
1983). However, in the framework of universal multifractals 
(Schertzer and Lovejoy, 1987, 1989), this hierarchy is 
characterized by only a few relevant exponents. ln this letter 
we shall show how the intermittent distribution of temperature 
and phytoplankton biomass can be characterized with 
universal multifractals. We study a time series of temperature 
(a passive tracer of the fluid flow) and in vivo fluorescence 
(regarded as a phytoplankton biomass proxy) simultaneously 
recorded at an anchor station in a tidally mixed coastal water, 
the Southern Bight of the North Sea, using a CTD recorder 
(Sea-Bird 19) and a fluorometer (Sea Tech), respectively. The 
sampling frequency being 2 Hz, our analysis is based on a time 
series of 82,976 measurements. 

Scaling and Multiscaling of Temperature and 
Phytoplankton fields 

The estimation of the fluorescence power spectrum ( E(j), j 
is frequency) in a log~log plot shows two scaling regimes 
(Fig. 1). Over smaller scales (1s to lOOs), the observed power 
law trend ( E(j) cc F 13 with f3 = 1. 7 5) shows that the temporal 
distribution (or spatial, via the classical Taylor's hypothesis) 
of phytoplankton and temperature are close to the expected 
Obukhov-Corrsin "-5/3 power law" for passive scalars. In 
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Figure 1. The power spectra E(j) ( j is frequency) of the 
fluorescence and the temperature data, shown in a log-log 
plot. The fluorescence data are scaling from 0.01 Hz to 1 Hz 
with a spectral slope f3 •1.75 and for frequency smaller than 
0.01 Hz with a spectral slope f3 ... 1.22. The temperature data 
are scaling with f3 ... 1. 7 4 . 
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bath cases, the spectra are slightly steeper than -513: this is 
expected in case of multifractal intermittency corrections 
(Frisch et al., 1978; see below). On the other hand, over 
larger scales (> lOOs), the scaling of the spectrum (fJ- 1.22) 
roughly agrees with theoretica! and experimental studies 
predicting that the fluorescence spectrum will be flatter than 
the spectrum of a passive scalar, and supporting a predominant 
influence of biological factors on phytoplankton variability 
(Powell et al., 1975; Denman and Platt, 1976; Denman et al., 
1977). Power spectral ana!ysis corresponds to the second 
order strucn1re function. It is generalized with the help of the 
q'h arder structure functions <(AS,)q >•<IS(t+-r)-S(t)F > 
(Kolmogorov, 1962; Obukhov, 1962) where for a duration,; 
the fluctuations of the scalar S are averaged over ali available 
values ("(.)" indicates statistical or spatial averaging). For 
scaling processes, we consider the scale invariant structure 
functions exponents l;;(q) defined by < (ASJq >• 
< ( Mr t > ( T/T t q), where T is the largest period (ex ternal 
scale) of the scaling regime (Monin and Yaglom, 1975). For 
simple (monofractal) processes such as Brownian motion, the 
scaling ex panent of the structure function l;;(q) • q His linear: 
l;;(q) "'qH where H •\;(1) is a parameter describing the scale 
dependence of the average fluctuations ( H = 1 13 for a scalar 
passively advected by non-intermittent turbulence). For 
multifractal processes, l;;(q) is nonlinear and concave. 

We performed this analysis for various moments of arder 
from 0 to 5 (with an increment of 0.1) and showed the 
corresponding scaling in Fig. 2. These empirical curves also 
confirms the results of power spectral analysis and shows that 
there is a unique scaling regime for al! scales for temperature, 
and two scaling regimes for fluorescence. We theo plotted in 
Fig. 3 the functions \;( q) - the si opes of the straight !ines of 
Fig.2. The clear non!inearity of this function is a first 
indication that variability in phytoplankton biomass and 
oceanic temperature can be characterized as multifractals. 
Moreover, the two curves corresponding to temperature and 
fluorescence on scales smal!er than 100 seconds are very close 
to each ether; within experimental error, they cannat be 
distinguished (we quantify this below with universal 
multifractal parameters). Thus, for ali moments (and hence, ali 
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Figure 2. The structure functions < (t.s,)q > vs. -r in a 
log-log plot for q = 1 and 3 (from top to bottom) for 
temperature (black symbols) and for fluorescence (open 
symbols). Linear trends are clearly visible for temperature for 
ali orders of moments, whereas fluorescence ex.hibits two 
scaling tendencies. 

q 

Figure 3. The empirical curves of scaling exponent 
structure functions /;(q) for temperature (thick continuous 
Iine), small-scale (dashed Jine) and large-scale fluorescence 
(thin continuous line) compared to the theoretical monofractal 
linear curve \;(q) ~ qH with H = 0.42 and H .. 0.12 
(discontinuous !ines). The nonlinearity of the empirical 
curves indicates multifractality. 

intensities), phytoplankton and temperature intermittencies 
have nearly the same probabilities. This confirms that small 
scale fluorescence is a passive scalar, as claimed by previous 
studies using only power spectra. On the other hand, the 
specifie nonlinearity of the scaling exponent \;(q) for in vivo 
fluorescence at scales greater than 100 seconds shows that 
phytoplankton variability can be regarded as a multifractal 
even for scales dominated by biological activities. 

Universal Multifractal Parametrization 

Universal multifractals are specifie types of multifractals. 
They are likely to be ubiquitous, because they are stable and 
attractive limit classes obtained with continuous 
multiplicative scaling processes (Schertzer and Lovejoy, 
1987, 1989). ln this framework, \;(q) depends only on three 
parameters in the following way: \;(q) = Hq- K(q) where 
K(q)•C1(qa-q)l(a-1) (a;ol) and the function H=\;(1) 
defines the scaling of the mean field ( H = 0 for a conservative 
field, i.e. its mean <tf,> is strictly scale invariant) and K(q) 
expresses intermittency. The first index C1 (0 :s: C1) measures 
the mean homogeneity of the field: the larger C1, the more the 
mean field is inhomogeneous or fractal (cl is the fractal 
codimension of the mean of the process), C1 is then the 
measure of the sparseness of the field. The index a(O :s: a :s: 2) 
expresses the deviation from the mean of the field values; as 
a decreases, the high values of the field do not dominate as 
much as for larger values of a. More precisely, a measures 
the "degree" of multifractality, i.e. how fast increases the 
inhomogeneity with the arder of the moments. Indeed, a - 0 
corresponds to the monofractal ~-mode! (Novikov and Stewart 
1964; Mandelbrot 1974; Frisch et al., 1978) and reaches its 
maximum (a = 2) for the (misnamed) log-normal mode! 
(Kolmogorov, 1962; Obukhov, 1962). a ,which characterizes 
the generator of the process, is called the Lévy index (see e.g. 
Feller (1971) for stable variables). First, taking H = \;(1) 
gives Hr • 0.42± 0.02 for temperature and HFss- 0.41± 0.02 
for small-scale fluorescence. These values are very close to 
each other, significantly larger than the 113 value for 
homogeneous Obukohv-Corrsin passive scalar turbulence, and 
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slightly larger than the value reported in Schmitt et al. (1996) 
for atmospheric temperature (H=0.38±0.02). For large
scale fluorescence, we obtain HFLs •0.12±0.01. This is a 
small value but nevertheless shows that the mean of the 
fluctuations are scaling ( H .. 0 for scale-independent average 
fluctuations). We then estimate the values of a and C, by 
considering the field ~-c obtained from the scalar field by 
performing a fractional differenciation of order H 
( rp, - t!.S, /-r:H ; see Schertzer and Lovejoy, 1987). The values 
of a and C1 can be directly obtained from this field, by 
applying the Double Trace Moment analysis technique 
(Lavallée et al., 1992): this consists of raising the field at the 
smallest scale to the 'Y/th power, and then considering the q'h 
order of moments of the resultat ali scales. This gives a new 
scaling exponent function dependent on these two parameters: 
K(q. fJ) = K( qTJ)- qK( 'fi), (K( q) a K(q,1)) and leads to 
K(q,TJ) = TJ"K(q). Thus, K(q,fJ) vs. 11 appear as a linear 
log-log plot with a slope of a. This is shown in Fig. 4, for q 
= 2, 2.5 and 3. Estimates of a are given by the slopes of the 
straight !ines and C1 is given by the value of log K(q), which 
is the intercept of the straight line. Using this method we find 
aT •1. 7 :t 0.05 and CI(T) = 0.04±0.0 1 for temperature data and 
aFSS •1.8:t:0.05and Cl(FSS) m0.04:t:0.01 for fluorescence data 
at small scales. These values are very close to each other and 
confirm that the statistics of fluorescence at small scales are 
similar to those of a passive scalar. The values of a we 
obtain here for oceanic temperature are larger than previous 
reports of a for atmospheric turbulence (Schmitt et al., 1993, 
1996; Tessier et al., 1993) within the range 1.3-1.5. It is 
nevertheless smaller than a = 2 corresponding to log-normal 
statistics (Baker and Gibson, 1987; Gibson, 1991). 

At small scales, the similarity of the universal multifractal 
parameters of temperature and fluorescence reflects profound 
couplings between the space-time structure of phytoplankton 
populations and the structure of their physical environment. 
In this multifractal framework, phytoplankton biomass then 
appears to be passive and inhomogeneously (i.e. non
randomly) distributed, contrary to the basic perception of 
small scale interactions in plankton ecology which is based 
on a passive but homogeneous distribution of phytoplankton. 
This inhomogeneity then may have important effects on 
concentration-dependent processes such as phytoplankton 
coagulation (e. g. Jackson and Lochmann, 1993). These 
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Figure 4. The curves K(q, TJ) vs. 17 in a log-log plot for q = 
2, 2.5 and 3 (from bottom to top) for temperature field. The 
slope and intercept of the !ines give respectively estimates of 
a and cl. 

findings also provide a complementary approach to previous 
theoretical studies of the effects of turbulence (regarded as a 
random process generating homogeneity) on contact rates 
between predators and preys (Rothschild and Osborn, 1988). 

For large-scale fluorescence, we first averaged the data up to 
the scale of 100 s, to place it in what we identified as the 
second regime, and then applied the Double Trace Moment 
analysis technique. We obtained aFLs = 0.8:t:0.02 and 
C I(FLSJ • O. 02± O. 01. These values show that the statistics of 
small-scale fluorescence differ significantly from those of 
large-scale: not only does the average of the fluctuations vary 
differently with scale (the value of H), but also with the 
parameters characterizing the type of intermittency. They 
indicate "lower" multifractality (apf..S <ar) and larger mean 
homogeneity (Cvl..S) < C1m) than temperature at the same 
scales. At these scales, the combination of biological 
processes - such as growth, sinking, or community 
interactions - provides an aggregative effect which 
dominates the dispersive effect of turbulence (Denman and 
Platt, 1975; Lekan and Wilson, 1978). 

Conclusions 

We have shown that the intermittency of phytoplankton 
and temperature fields in the Southern Bight of the North Sea 
are multifractal over the whole range of measurements scales. 
Furthermore, our analysis of the physical as weil as the 
biological processes gives credence to the prediction that 
these stochastic processes are universal multifractals; we 
estimated the three fundamental parameters, which in this 
framework characterize ali the statistics of the fields. Our 
analysis of temperature and phytoplankton biomass differs 
from the previous multifractal analysis of zooplankton data by 
Pascual et al. (1995) in severa! ways. First, the use of 
universal multifractals makes the analysis much more robust; 
only three basic parameters are needed to characterize the 
whole variability of the fields. Next, we directly analysed the 
data using structure functions as is usually clone in turbulence 
studies (e.g. Manin and Yaglom, 1975), and estimated the 
slopes of their Fourier power spectra which are very suitable to 
make comparisons with ether fields. Both approaches provide 
nevertheless a stochastic basis for multifractal simulations: 
this allows efficient simulation of intermittent fields on a wide 
range of space-time scales, contrary to the usual deterministic 
models which are restricted to specifie scales. Furtherrnore, 
the universal multifractal framework is useful for simulations 
(Wilson et al., 1989; Pecknold et al., 1993), because it 
provides very precise control of the variability by the way of 
continuons multiplicative processes (with the help of the basic 
parameters). This approach then allows to include the 
multiscale detailed variability of natural processes and 
therefore opens a new perspective for modeling oceanic 
ecosystems. 

These results show not only that biological as weil as 
physical processes can be characterized by three universal 
exponents, but also that these exponents help to discriminate 
between a regime where physics is dominant (smaller scales, 
higher variability) and a regime where on the contrary biology 
is dominant, damping out variability of turbulent physical 
processes (larger scales, lower variability). The cross-over 
between passive and biologically active regimes for 
fluorescence (i.e. phytoplankton biomass) seems to intervene 
at a period of about 100 seconds. We have no clear 
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interpretation of this characteristic time scale to propose; it is 
indeed significantly smaller than the generation time of the 
phytoplankton populations ( .. 1 day). 
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Abstract. In this paper, we present evidence that 
intermittency of Eu1erian and Lagrangian turbulence of 
ocean temperature and plankton fields is multifractal and 
furthermore can be analysed with the help of universal 
multifractals. We analyse time series of temperature and in 
vivo fluorescence taken from a dri:fter in the mixed coastal 
waters of the eastern English Channel. Two analysis 
techniques are used to compute the fundamental universal 
multifractal parameters, which describe ali the statistics of 
the turbulent fluctuations: the analysis of the scale 
invariant structure function exponent Ç(q) and the Double 
Trace Moment technique. At small scales, we do not detect 
any significant difference between the universal 
multifractal behavior of temperature and fluorescence in an 
Eulerian framework. This supports the hypothesis that the 
latter is passively advected with the flow as the former. On 
the one hand, we show that large scale measurements are 
Lagrangian and indeed we obtain for temperature 
fluctuations a (1) -

2 power spectrum corresponding to the 
theoretical scaling of a Lagrangian passive scalar. 
Furthermore, we show that Lagrangian temperature 
fluctuations are multiscaling and intermittent. On the ether 
band, the flatter slope at large scales of the fluorescence 
power spectrum points out that the plankton is at these 
scales a "biologically active" scalar. 

1. Introduction 

Scaling laws have been proposed in Eulerian 
(Kolmogorov, 1941a; Obukhov, 1941, 1949; Corrsin, 
1951) and Lagrangian frameworks (Landau and Lifshitz, 
1944; Inoue, 1950, 1951, 1952a, b; Lin, 1960; Manin and 
Yaglom, 1975) for velocity and passive scalar turbulence. 
In an Eulerian framework this general scaling picture has 
been confirmed with oceanic velocity (see e.g. Grant et al., 
1962) and temperature data (Grant et al., 1968; Gargett et 
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al., 1984) over a wide range of scales. However, we are 
not aware of any reports of scaling spectra of oceanic 
turbulent measurements of either velocity or passive 
scalars taken in Lagrangian frameworks. In this paper, we 
perform both Eulerian and Lagrangian analyses of the 
intermittency of temperature fluctuations and fluorescence 
data (which is a proxy of phytoplankton biomass; see 
below). This comparison between Eulerian and 
Lagrangian frameworks appears to be of main interest to 
understand the e:ffect of a sampling procedure on the 
characterization of a given process, but also to provide 
information about living organisms' perception of their 
fluid medium. 

ln vivo fluorescence measurements are used to test the 
hypothesis that living particles in turbulent fluid motions 
behave as passive scalars (Platt, 1972; Denman and Platt, 
1976) whose Fourier spectral statistics are - to within 
intermittency corrections - known theoretically. This 
comparison allows us to study the nature of the couplings 
between the structure of phytoplankton populations and the 
structure of their physical environment (Legendre and 
Demers, 1984; Mackas et al., 1985). The statistics of 
fluorescence data have been previously analysed using 
power spectral analysis (Platt and Denman, 1975). 
However, the power spectrum is a second arder· moment, 
and is only sufficient for characterizing the variability if 
the latter is quasi-gaussian. On the contrary we find that 
the variability is far from gaussian - in accord with 
cascade theories - and give it a precise scale-by-scale and 
intensity-by-intensity characterization using multifractals. 
In contrast to the single exponent which is sufficient to 
characterize the scaling properties of fractal sets, the 
multifractal formalism generally describes scaling 
relations with an infinite family of scaling exponents (e.g. 
the fractal dimensions associated with different levels of 
fluid activity). However, due to the existence of stable, 
attractive, multifractal generators, only certain aspects of 
the multifractal dynamics will be important; we expect to 



obtain universal multifractals (Schertzer and Lovejoy, 
1987, 1989), in which this hierarchy is characterized by 
only three fundamental exponents. 

Our multifractal characterization of biomass improves 
on the multifractal analysis of Pascual et al. (1995) in 
several ways. First, the use of universal multifractals 
makes the data analysis much more robust~ only three 
fundamental parameters need to be estimated and we can 
use an analysis technique special1y designed for their study 
(the Double Trace Moment technique, see Lavallée (1991) 
and Lavallée et al. (1992)). Second, using the notions of 
sampling dimensions and multifractal phase transitions, 
we can quantify the range of statistical moments which can 
be accurately estimated given the limited sample size. 
Other improvements with respect to Pascual et al. (1995) 
concern the pre-processing of the data which is performed 
in their paper, taking the square of the difference of 
fluorescence data. While this processing can be somewhat 
justified for velocity turbulence - at !east if it can be 
measured at dissipation scales for plankton biomass -, it 
becomes here quite ad hoc. Is is certainly better :fi.rst to 
directly analyse the data using structure functions, as we 
do here, and as is usually done in turbulence studies (see 
e.g. Monin and Yaglom, 1975). Finally, we also estimate 
the slopes of the power spectra of our data, which is 
essential in making comparisons with other fields and 
experiments. 

In this paper, we present evidence that temperature and 
fluorescence variability can be characterized as universal 
multifractals. Since our data were taken. from a drifting 
platform, they have the interesting properties that they 
exhibit both Eulerian and Lagrangian regimes. In section 
2 we present the theoretical scaling relations for velocity 
and passive scalar turbulent fluctuations in Eulerian and 
Lagrangian framework, and in section 3 the data analysis. 

2. Scaling relations for turbulent fields in Eulerian and 
Lagrangian frames 

2.1 Eulerian relations for turbulent velocity and passive 
scalar fields 

Scaling relations in Eulerian turbulence (Kolmogorov, 
194la~ Obukhov, 1941, 1949; Corrsin, 1951) can be 
expressed using the energy flux & and the scalar variance 
flux x: 

(t:..Vr) 3 & , __ _ 

1 1 (1) 

(2) 

where t:..v; =jV(x+l)-V(x)/ and t:..B, =j8(x+l)-8(x)/ 
are the velocity and temperature shears at scale l, t:..v; 1 l is 
the inverse of the local eddy turnover time, and """ " 
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means equality of scaling laws, i.e. having the same 
scaling exponents (see below). Originally, these scaling 
relations where considered in the framework of 
homogeneous turbulence, i.e. the fluxes were considered as 
homogeneous, exhibiting no scale dependence. As a 
consequence, a unique exponent was required for the 
velocity and temperature, the famous 1/3 law in physical 
space, 5/3 for the energy or variance power spectra : 

(3) 

(4) 

However, it is well known that this homogeneity 
assumption was theoretically and empirically untenable: 
fluxes are extremely inhomogeneous and scale dependent 
(therefore the subscript lin Eq. 1). But because the fluxes 
are conserved by the nonlinear terms of the equations of 
motion they are (on average) conserved during the 
cascade, i.e. their (ensemble) average should be strictly 
scale invariant: 

(5) 

where the angle brackets "<.>" indicate statistical 
(ensemble) averaging. The corresponding 
(inhomogeneous) scaling relationslùp for the velocity field 
(Eq. 1) is often called the Kolmogorov refined similarity 
law (Kolmogorov 1962; Obukhov 1962) and the 
corresponding refining for the temperature fluctuations 
(Eq. 2) has been proposed for simulation and analysis of 
passive clouds (Schertzer andLovejoy, 1987; Wilson et al., 
1991; Pecknold et al., 1993). 

In cascade models of turbulence, the highly 
inhomogenous fluxes are the results of a multiplicative 
process in wlùch the variability is built up from large to 
small scales: larger structures are multiplicatively 
randomly modulated by smaller scales. In this case, this 
leads to multifractal fields, with the following multiscaling 
statistics (Schertzer and Lovejoy, 1987): 

( (&1 )q)"" ;._K.(q) 

((X Il)"' }.,Kz(q) 

([ t:..Vr r) ,., Â-Çv (q) 

([(L1BY M-; r)"' Â-Çv.o(3q) 

with the relations, from Eqs. 1-2: 

(6) 

(7) 

(8) 

(9) 

Kc(q)=q-Çv(3q) ; Kz(q)=q-Çv,e(3q) (10) 

where L is a fixed outer scale and -i = L Il is the 
corresponding scale ratio, K,(q) and Kz(q) are the 
scaling moment functions for the fluxes, Çv(q) is the 
scaling exponent of the (usual) velocity structure function 
and (v,e(q) is the joint structure function scaling 
exponent of the product (t:..81)

2 t:..~ . The strict scale 
invariance (Eq. 5) of the averaged fluxes yields Kc(l) = 0 
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and Kz(l) = 0. Such multifractal fields are called 
"conservative multifractals". On the contrary, Eqs. 3-4 
point out already that V and e are not conserved. We 
may note that the conservation of the fluxes implies 
Çv(3) = 1 and Çv,9 (3) = 1, which corresponds to the exact 
relations for the small-scale dissipation fields given by 
Kolmogorov (1941) and Yaglom (1949). 

These relations (Eqs. 6-9), giving the scaling moment 
functions K(q) and Ç(q), characterize ali the fluctuations 
of the fluxes of energy and scalar variances and the 
fluctuations of the wind shears. But they do not directly 
give the scaling moment function Ç 0 (q) of the passive 
scalar fluctuations, defined as: 

( (Ll8
1 
)q)., Tçu(q) (11) 

I d d, h di fl -112 3/2 . . d n ee t e correspon ng ux rp1 = s1 X1 ts a mtxe 
flux of energy and scalar variance, which is non 
conservative. Obviously the two fluxes s1 ,x1 are 
strongly correlated, so that the assumption of 
independence of the fluxes, used in Benzi et al. ( 1992), is a 
very simplistic hypothesis. An alternative is to relate this 
mixed flux to the structure function of the velocity and the 
temperature, as is done in Schmitt et al. (1996), which 
obtained the following expression, assuming statistical 
independence of the velocity and passive scalar 
fluctuations: 

Ç 9 (q) = q 13+ K,(q !6)- Kx(q /2) 
(12) 

This expression was tested by Schmitt et al. (1996) on 
atmospheric turbulence data, with simultaneous records of 
wind velocity and temperature fluctuations. Unfortunately, 
since our Eulerian data gives only the passive scalar field 
without simultaneous velocity fluctuations, Eq. 12 cannot 
be tested here. 

Nevertheless, we can analyze Eulerian scaling moment 
functions for a passive scalar using for Ç0 (q) the general 
expression for universal multifractals. Universal 
multifractals are the stable and attractive classes which are 
obtained with continuous multiplicative scaling processes 
(Schertzer and Lovejoy, 1987, 1989). In this framework 
the scaling moment functions Ç(q) (or K(q) 1) have a 
precise theoretical shape: 

Ç(q) = Aq+Bqa (13) 

where A and B are constants and 0 s a S 2 is the Lévy 
index for stable variables (see e.g. Feller, 1971). This 
parameter is the most important, because, it describes the 
kind of multifractality of the field: for a = 0, an 
inhomogeneous mono-fractal mode] is recovered (the f3-
model, see Frisch et al. (1978)), and for the other bound, 
a = 2 corresponds to a lognonnal multifractal 
(Kolmogorov, 1962; Obukhov, 1962; Yaglom, 1966). The 
condition of conservation of flux ( K(l) = 0) yields an 

1 For conservative pmcesses, we use the notation K(q). 

expression which depends only on two parameters: cl is 
the codimension of the mean of the process, and verifies 
0 s cl s 1 (the larger is cl , the more the field is 
inhomogeneous) and the Lévy index a: 

cl ( a ) K(q)=- q -q 
a-1 

For the wind velocity field, the condition 
Eqs. 1, 13 give: 

Çv(q)=~- a~1((~r -~J 

(14) 

(15) 

This equation has been used to characterize the wind 
velocity field in atmospheric turbulence (Schmitt et al., 
1993, 1996; Schertzer et al., 1995), giving the values: 
a = 1.5 ± 0.05 and cl = 0.15 ± 0.03 . 

For a scaling field which has no known condition of 
normalisation (as for example a passive scalar), we can 
write Eq. 13 on the following v.ay: 

cl ( a ) Çe(q)=qH-- q -q a-1 (16) 

The new parameter H is there the degree of non
conservation of the average field ( Ç 8 (1) = H ): 
H :;z: 0 means that the fluctuations are scale-dependent 
( H ~ 0.38 for temperature in atmospheric turbulence, see 
Schmitt et al. (1996)). The second term expresses a 
deviation from homogeneity (in which case Ç 8 (q) = qH ), 
and represents the intermittency corrections. We use Eq. 
16 to test the scaling behaviour of the temperature and 
fluorescence data, and determine these three parameters 
(H, C1 and a ). 

2.2 Lagrangian relations for turbulent velocity and passive 
scalar fields 

In a Lagrangian framework, as one follows the motion of 
an element of fluid, the scaling relations (Eqs. 1-2) are 
now to be expressed as a function of the difference of time 
( t ) of observations (usually between actual time and 
initial time) instead of difference of!ocation in an Eulerian 
framework. One obtain by replacing ~v; Il by 1/ t in 
Eqs. 1-2 (Landau and Lifshitz, 1944; Inoue, 1950, 1951, 
1952a, b; Lin, 1960; Monin and Yaglom, 1975): 

(tl v;/ 
s,:::: (17) 

(Ll(),)2 
x, ., (18) 

t 

where LlV, =jV(-r+t)-V(-r)! and ~(), =i()(T+t)-&(T)I 
are the velocity and temperature fluctuations for an 
element of fluid on a time scale t ( -r being the initial 
time). The assumption of a Lagrangian cascade for these 
fluxes (Novikov, 1989, 1990) leads formally to simpler 
scaling relations than in an Eulerian framework, since in 



Eq. 18 the scalar variance flux no longer depends 
expliciteZ;?- on a cross-product of velocity and temperature 
fields: 

((&,t) ~ AK,(q); ((tJ.v,t) ~ A-Zy(q) (19) 

((xJ) ~ AKz(q); ((tJ.e,r) ~ A-ze<tJ> c2o) 

with the relations, given by Eqs. 17-18: 

(21) 

where T is a :fixed outer time-scale and A = T 1 t is the 
corresponding time-scale ratio, Kc (q) and Kz (q) are the 
Lagrangian scaling moment functions for the fluxes, 
Zv(q) is the Lagrangian velocity structure function scaling 
exponent and Z 8 ( q) is the Lagrangian passive scalar 
structure function scaling exponent. The fluxes are still 
assumed to be conservative (i.e. their mean is scale
invariant): K(l) = 0 . This implies Zv (2) = 1 and 
Z8 (2)=1. 

Assuming universality (Eq. 14) for the (Lagrangian) 
flux of scalar variance, the (Lagrangian) structure 
functions' scaling exponents Z0 (q) of a passive scalar 
depend only on the universal exponents (due to Eq: 21), 
whereas we pointed out that in the Eulerian framework the 
determination of the corresponding structure functions' 
scaling exponents is quite more involved and has not such 
a straightforward relationship with the scaling function of 
the variance flux. One may note that the transformations 
(for sorne other motivation) from space to spaœ are 
somewhat discussed in Marsan et al. (1996). 

2.3 Eulerian turbulent "biologically active" scalars 

For chemically (Corrsin, 1961) or biologically (Denman 
and Platt (1976) and Denman et al. (1977)) active3 scalars 
in turbulence, one usually assumes that there is a 
characteristic time, i.e. having a exponential decay (e.g. 
first arder chemical reactions) or having an exponential 
population growth law. Due to this characteristic time, 
one expects a scalar variance spectrum with a slope -1 (as 
in the case of the Batchelor (1959) convective subrange, 
see below) for frequencies smaller than the corresponding 
characteristic frequency. The reason for this result is 
clear: for frequencies smaller than the characteristic 
frequency of the exponential law, the latter imposes its 
frequency, i.e. the flux of variance is no more ruled by 
turbulence, because it is too slow compared ta the chernical 
reaction (here chlorophyll a synthesis) or population 
growth. Therefore, one must replace in Eq. 18 the inverse 
of the local eddy turnover time 1 1 t = t, V, 1 l by this 
characteristic frequency cv< , which gives: 

X (F)I ~ (~ ) 2 
Cü c (22) 

2 Indeed the velocity was used to define implicite! y the time. 
3However, there are stilf dynamically passive, i.e. not influencing the 
velocity field. 
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where F is the fluorescence concentration (which is a 
proxy of the phytoplankton concentration) and x <F> is the 
flux of scalar variance, as before. Then, the scalar 
variance being the Fourier transform of its spectrum, i.e.: 

(23) 

we obtain, for the Fourier power spectrum of the 
biologically active scalar (Denman and Platt, 1976): 

EF(k) ~ (tJitk-1 ~ X(F)/Ci)c-lk-
1 (24) 

As mentioned this spectrum is sirnilar to Batchelor 
(1959) convective-subrange, although the mechanism is 
rather different. In case of convection it corresponds to 
high wave numbers (or frequencies), contrary to the case 
of the active scalar, where it occurs for lower frequencies. 
More precisely, the convective subrange is the range of the 
wave numbers where the molecular viscosity is already 
effective, whereas the molecular diffusion is not yet 
effective. This obviously requires a high Prandtl number 
(this number being the dimensionless ratio of the 
molecular viscosity and di.ffusivity). The convection 
results from non-local interactions, it is therefore the eddy 
turn at the beginning of the viscous subrange which will 
rule the convection. 

Furthermore, fluorescence as a measure of 
phytoplankton abundance is a very special active scalar. 
For scales where the biological activities have time to 
develop (and is not destroyed by the turbulent motion), the 
phytoplankton cannat be considered as isolated: there are 
continuons predator-prey interactions, and two fluxes of 
creation and destruction of phytoplankton. Therefore, at 
large scales (when the biological time scales are of the 
same order as turbulent time scales), we still expect a 
highly intermittent phytoplankton density, but with 
characteristics clearly different from a passive scalar. In a 
previous paper (Seuront et al., 1996), we empirically 
analysed the biological activity and its multifractal 
characteristics in an Eulerian framework and confirmed 
this picture. We can here interprete these previous 
empirical results (Seuront et al., 1996) and propose, 
using Eq. 22, for the structure function scaling exponent 
Ç F(q) of a biologically active scalar the following 
expression: 

ÇF(q)=-Kz(~) (25) 

where Kz (q) is the scaling exponent of the flux of 
fluorescence scalar variance. Because this flux is 
conservative ( Kz (1) = 0 ), the biologically active scalar is 
not conservative: Ç F (1) = -Kz (1 1 2) :;t: 0. We may notice 
that, up until now, there have been no attempts to study 
even the average fluctuations of the plankton variability in 
a Lagrangian frame, to our knowledge. 
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Fig. 1. A portion of temperature (a) and in vivo fluorescence (b) time series 

recorded in the Sou:them Bight of the North Sea. Shmp fluctuatioos occuring 

œ ali time scales are clearly visible, indicating the intermittent behaviour of 

the dataset. 

3. Empirical study of turbulent temperature and 
fluorescence 

3 .1 The data, their spectra and Eulerian/Lagrangian 
transition 

The data were obtained as part as an experiment conducted 
adrift in tidally mixed coastal waters in the eastern English 
Channel, at the end of March 1995 during a period of 
spring tide. Temperature and in vivo fluorescence were 
simultaneously recorded during two hours at a 15m 
depth with a CTD recorder (Sea Bird 25) and a 
fluorometer (Sea Tech), respectively. The sampling 
frequency OJ being 2 Hz, our analysis are based on a time 
series of 11082 measurements, presented as a typical case 
of the variability of the different datasets sampled in this 
period. Samples of the data are shown in Fig. 1. One may 
note that the variability observed in the data used in our 
computation is always greater than the resolution of the 
measurements in both cases, and then is independent of 
any instrumental uncertainties. 

We computed the Fourier power spectra of temperature 
and in vivo fluorescence fluctuations. The fluorescence 
power spectrum is shown in Fig. 2. It follows a power-law 

5,5 
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f;l;l 3,5 
I>J) 
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Fig. 2. The power spec:trum of the turbulent fluorescence, shown in a log-log 

plot. The data are scaling from 0.04 to 1 Hz with a skye close to 

Kolmogorov power law trend of a passive scalar E(f) oc j-P with 

f3 "'1.66. For lower frequeocies, there is no evidence of a linear trend nor 

dlaracteristicperiods. 

behaviour from 0.04 to 1Hz according to: 

E(m)a::.m-13 (26) 

where the slope f3 is close to the Obukhov-Corrsin 
Eulerian value 5/3 given by Eq. 4 (using the usual Taylor 
hypothesis to transform frequencies into a distance). In 
the multifractal frame, the intermittencies are taken into 
account noting that: 

(27) 

with Ç 0 (2) given by Eq. 16, but empirically the correction 
to 5/3 is small for this second order of moment. For 
frequencies less than 0.04 Hz, fluorescence fluctuations do 
not exhibit evidence of power law behaviour nor 
characteristic periods. This is likely due to the shortness 
of the data set; it has been shown (Seuront et al., 1996) 
from a longer time series (but taken in an anchor station), 
that fluorescence data are scaling over smaller frequencies. 
This may also be due to the transition from Eulerian to 
Lagrangian sampling- see below. 

The temperature power spectrum presents a mixed 
behaviour with two scaling tendencies for frequencies from 
0.038 to 1 Hz (/3 ::= 1.65 ), and for frequencies lower than 
0.038 Hz (j3z2) (Fig. 3a). These tendencies being 
difficult to distinguish, we transformed the spectral density 
by a multiplicative factor m 2 

, and the resùlting spectrum 
exhibits a power law behaviour with an exponent 0.35 
(r 2 = 0.95,p < 0.001) which clearly breaks for frequency 
of about 0.038-0.040 Hz, lower frequencies being 
assimilated to a "noisy background" (horizontal tendency, 
see Fig. 3b). 

In arder to interprete this change in behaviour of the 
power spectrum, let us recall that the measurements are 
taken from a boat adrift in the Channel. For the high 
frequency range of the measurements we can consider the 
boat as not moving, so the measurements correspond to a 



s 
4 

3 

""' 2 ... 
~ 1 
Ill 

j 0 

-1 

-2 

-3 

-4 -3 -Z -1 0 

Log f(Hz) 

-1 

h 

-2 
r:.. 
>< 
'"' .... 

-3 
~ 
Ill 

j 
-4 

-5 

-4 -3 -Z -1 0 

Log f (Hz) 

Fig. 3. The power spectrum of the turbulent temperature (a), shown in a log
log plot, exhibits a scaling behaviour for frequencies from 3.8 1 0"2 to 1 Hz 
with a ;:pectral slope j3 z 1.65 and for frequencies greater than 3.8 1 0"2 Hz 
with a slope j3 ""1.96. The power spectrum., transformed by a factor a.> 2 (b) 
confums the scale breaking of the data, exhibiting a linear trend of 0.35 from 
3.810"2 to 1Hz 

fix-point procedure, i.e. Eulerian sampling. This is 
confirmed by the two small-scale spectra, each of them 
close to a -5/3 slope. The scale break exhibited by the 
temperature field for frequencies of about 0.03? Hz is 
associated with a characteristic time scale of 13 seconds. 
Using the instantaneous tidal circulation of about 1 m.s-1 

observed during the field experiment, we estimate that the 
associated length scale is "" 13 meters, which is close to 
the size (12.5m) of the ship used during the sampling 
experiment (N/0 Sepia II, CNRS-INSU). This means that 
for frequencies smaller than 0.038 Hz, the inertia of the 
boat becomes negligible and the measurements are 
effectively taken following the flows, i.e. in a Lagrangian 
framework. This transition is also confirmed by the 
spectral analysis of the temperature data which exhibit a 
spectral slope close to -2 as given by Eqs. 20-21 and 27. 
W e may note here that contrary to the Eulerian frame 
where there are intermittency corrections to the spectral 
slope, in the Lagrangian frame we do not expect any 
intermittent correction for this second order moment 
(because here, the second order moment has the same 
scaling as a conservedflux: fJ= 1+ Z8 (2) = 2-Kx(l) = 2. 
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< !Aiït/" >=< (A8T)q > (t 1 T)ÇlqJ. Linear trends are clearly visible for ali 

order of moments, from 0.5 to 13s, for Eulerian scales (less than 13 secœds) 
and Lagrangian time scales (greater than 13 seconds). The straight !ines 
indicate the best regressiœ over eadl range of scales for each value of q. 
This gives in particular: H = Ç(l) = 0.34 ±0.01 and Ç(2) = 0.65 ± 0.02 for 
Eulerian temperature and H = Ç(1) = 0.51 ±0.01 and Ç(2) = 0.96 ± 0.03 for 
Lagrangian temperature. 

It is then possible to show that ~ time series recorded a 
priori in a oceanic Lagrangian framework can exhibit both 
Eulerian and Lagrangian components whose relative 
importance is determined by the size of the boat. We now 
determine the scale invariant properties of the 
intermittency of temperature and fluorescence fields, using 
·direct multifractal analysis techniques. 

3.2 Multifractal study ofEulerian intermittencies 

We computed the structure functions ((!lB, )q) for the 
temperature field. Two power law regimes are visible in 
log-log plot (Fig. 4), consistent with the scale transition 
observed on the Fourier power spectrum. We obtain an 
Eulerian scaling over a range of scale from 0.5 s to 13 s 
(also observed for fluorescence field). We also estimated 
the structure functions for the fluorescence field. 

In Fig. 5 we plotted the structure functions' scaling 
exponents Ç(q) obtained as the slopes of the straight lines 
for the range ofscales 0.5 to 13 s. Here as below, the error 
bars come from the different portions of the dataset 
analysed separately: for example, with the scaling of 
Eulerian temperature and fluorescence up to 13 s and a 
database of Il 082 points, we can estimate the exponents 
for 425 non-overlapping intervals. The scaling of the first 
exponents are very similar for temperature and 
fluorescence, respectively with H = Ç (1) = 0.34± 0.02 and 
H = Ç(1) = 0.36± 0.02, respectively. This is slightly 
smaller than the values obtained in Seuront et al. (1996) 
( H = 0.42 ± 0.02 for temperature and 0.41± 0.02 for 
fluorescence), but nevertheless close to 1/3, the value 
corresponding to the Obukhov-Corrsin non-intermittent 
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Fig. 5. Empirical values of Ç(q) obtained here for fl.uorescecnce (d.a&led 
line) and Eulerian ( cootinuous !ine) temperature, compared to the 
homogeneous linear curve Ç(q) =q /3 correspCilding to Obukhov-Corrsin 
nan-intermittent turbulence (discœtinuous line). The noolinearity of the 
empirical curves indicates multifractality. 

passive-scalar turbulence. The scaling of the second orcier 
moments con:firm the estirnates from the power spectra 
( f3 = 1 + Ç(2) ), with Ç(2) = 0.66 ± 0.02 for fluorescence 
and Ç(2) = 0.65 ± 0.02 for temperature. More generally, 
for other orders of moments the non-linearity of the curves 
Ç(q) in Fig. 5 shows that these two fields can be 
considered as multifractals; the two curves corresponding 
to Eulerian sampling for temperature and fluorescence (i.e. 
phytoplankton biornass) are very close to each other. 
Within experimental error, they cannat be qualitatively 
considered as being different (we quantify is below). As 
shawn in Seuront et al. (1996), this is a generalization of 
the result obtained by Denrnan and Platt (1976) who tested 
the assumption that the fluorescence was a passive scalar 
using only power spectra (a second arder moment). Figure 
5 shows that for ali moments (and thus ali intensities), 
fluorescence and temperature intermittencies have nearly 
the same probabilities. These multifractal statistics are 
compatible with the intermittent structure of the original 
time series (Fig. 1) which clearly ex:hibit numerous 
structures of different strengths and scales. 

We now attempt to quantitatively characterize these 
intermittencies. Using Eq. (16) we have directly: 

H= Ç(l) 

cl =H-Ç(1) · 
(28) 

This gives H"" 0.34 ± 0.02 , C1 "" 0.037 ± 0.004 for 
temperature, and H"" 0.36 ± 0.02 , C1 "" 0.035± 0.004 for 
fluorescence. The value of a can be estimated using the 
best nonlinear fit of Eq. 16 (for 0 :s; q :s; 6.5 and using a 
simple !east-square method) of the empirical curve: we 
obtain for beth temperature and fluorescence 
a ,.; 1.8 ± 0.05 . These values are quite close to those 
reported in Seuront et al. (1996): H"" 0.42, C1 ""0.04 and 
a,.; 1.7 for temperature, and H"" 0.41, C1 ""0.04 and 
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Fig. 6. The Eulerian scalin.g expanent stnlàure functian Ç(q) empirical 
curves (dashed line), compared to the homogeneous linear curve 
Ç(q) =q /3 correspanding to Obukhov-Corrsin non-intemrittent turbulmce 
(di.scootinuous line), and to the lmiversal multifractal func:tians obtain with 
H, C1 and a in Eq. 16 (cœtinuous line). The multifractal fit is excellmt 
until moment order q = 6.0±0.2 for temperature (a) and q =6.2 ±0.2 for 
fl.uorescmce (b). 

a "" 1.8 for fluorescence. The value of a we obtain shows 
that these fields are not lognormal multi:fractals ( a = 2 ), 
but also that the lognormal approximation for Ç(q) should 
not be tao far from empirical estimates. The values of 
C1 "" 0.04 may seem to be quite small, but one must 
remember that this concems the scalar field; if one 
considers the (non-conserved) flux (see Eq. 2): 

-v2 312 ( ôB} 
3 

rpl =&/ XI :;:;;-~- (29) 

then the value of cl must be transformed to 
Cil' = 3"' clB ,.; 021 . This values is larger than our Iatest 
estimate for the energy flux: in the atmosphere (Schertzer 
et al., 1995; Schmitt et al., 1996): C1 ""0.15; this shows 
that the scalar turbulence is more intermittent than the 
velocity turbulence. 

Furthermore, within experimental error the values we 
obtain for temperature and fluorescence cannat be cleariy 



distinguished. We compared the empirical estimates with 
the theoretical curves in Fig. 6 (using Eq. 16 and the 
values above): the correspondence is excellent until 
moment order qr ::;;6.0±02 and qp ""6.2±0.2, after 
which the empirical curves are linear (Fig. 6). This linear 
behaviour of the empirical scaling exponent structure 
function Ç(q) is well-known for sufficiently high arder 
moments (Schertzer and Lovejoy, 1989) and is due to 
sampling limitations (i.e. second order multifractal phase 
transition; see Schertzer and Lovejoy (1992)) or is 
associated with a divergence of statistical moments (i.e. 
first order multifractal phase transition; see Schertzer and 
Lovejoy (1992)) if substantiated by large enough sample 
size. Here with one realization of about 11,000 datapoints, 
the change in behaviour is likely to be due to sampling 
limitations. In this case, the critical moment q, (for a 
scaling exponent structure function given by Eq. 16) is 
given by (Schertzer and Lovejoy, 1992): 

( 
l )lia 

q, = c;_ (30) 

And in this case, the empirical Ç(q) follows: 

(31) 

where y , is a maximum singularity associated to q, . 
Here with the values estimated above, we obtain: q, z 62 
for temperature, and q, "" 65 for fluorescence, which are 
very close to the values previously proposed from the 
empirical curves. This critical moment is only linked to 
the sampling limitations; when more samples are taken 
into account in the statistics, it increases. In any case, 
most statistical parametrization basically dealing with 
maximum moment of order 3 (skewness), a critical 
moment greater than 6 then characterizes very rare events. 

3.3 Multifractal study ofLagrangian intermittencies 

As with Eulerian data above, we computed the structure 
functions for Lagrangian temperature which were shown 
to exhibit a scaling behaviour over scales greater than 13s. 
The corresponding behaviour of the fluorescence data is 
quite different, and it is not clear if there is sorne scaling 
or not (see Fig. 3); therefore, we do not proceed to the 
analysis of large-scales fluorescence field, leaving it to a 
future study. There is also an indetermination about the 
interpretation to give to this change of behaviour: is it due 
to Eulerian!Lagrangian transition, as for the temperature, 
or due ta the biological activity, as obtained - for another 
dataset- in Seuront et al. (1996). 

The scaling exponent for the :first and second moments 
of the Lagrangian temperature are Z 11 (1)"" 05 1± 0.02 and 
2 11 (2)"" 0.96± 0.03. The corresponding estirnates for 
other moments gives the curve Z 8 (q), whose (slight) 
nonlinear behaviour (see especially the low arder 
moments) is the signature of multifractal Lagrangian 
intermittency. 
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The slopes of the straight lines then give the estimates of a : a :::: 1.8 and 

C1 is estimated by the intercq>t: C1 "" 0.05 . 

Let us recall here the simple expression for 
given by Eqs. 18, 20-21: 

Ze(q) = 2_ _ _s_((2..)a _2_J 
2 a-1 2 2 

(32) 

which directly gives the universal parameter cl as 
C1 = 1-2Z' (2) . Here we obtain C1 "" 0.05± 0.01 . A 
simple way to estimate a is to take it as the best nonlinear 
fit of the data using Eq. 32. This gives a= 18± 0.05, the 
same value as what we obtain in the Eulerian case. We 
also verified these values by comparison with those 
obtained from the Double Trace Moment analysis (DTM) 
(Lavallée, 1991; Lavallée et al., 1992), which was applied 
on the data after a fractional differentiation of the 
temperature data of the arder 112 (i.e. a o; 112 

multiplication in Fourier space, to remove the t 112 scaling 
of the first moment), and taking the square of the result, 
yielding an estirnate of x, (see Eq. 18), whose pattern can 
be seen in Fig. 7. 
The basic idea of the DTM technique is ta generalize the 
application of statistical methods to the quantity 
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The wùversal multifrac:tal fit is excellmt until moment order 
q:::: 10.4 ± 05 for temperature, corresponding to multifrac:tal phase transition 

associated with sampling limitations .. 

(;rA )
77

. This is done by taking the 77th power of x Ao at 
the scale ratio A 0 (the ratio of the outer or largest scale of 
interest to the smallest scale of homogeneity), and then 
studying its scaling behaviour at decreasing values of the 
scale ratio A s; A 0 : 

( ) - (X_,)ry /( )7)) 
Xt..,A 0 17-1 ry)\ %11 0 

\<xJ 
(33) 

The moments of this new field then have a multiple 
scaling behaviour. characterized by the new moment 
scaling function 1: 0 (q,17) = K(q17)-qK(17) ( is a constant). 
For conservative universal multifractals, this gives, with 
the help ofEq. 14: 

(34) 

Then, by keeping q fixed (but different from the special 
values 0 or 1), the slope of K 0 (q,17) as afunction of 17 on 
a log-log graph gives the values of the index a , which 
with the help of the intersection with the line ( 77 = l) 
yields C1 (Fig. 8). This again gives a :::: 1.8 and 
cl "'0.05, which confirms the values estimated above. 

We then compare the universal multifractal fit obtained 
with a and C1 in Eq. 32, with the empirical estimates. 
The universal multifractal and empirical fits were 
excellent un til moment of about 10.4 ± 0.5 , after which the 
empirical curves exhibit a linear behaviour (Fig. 9) which 
can reasonably be associated with sarnpling limitation 
because of the small number of data considered (because 
we had to average the original time series up to the scale of 
13s, in arder to be in the Lagrangian scales). This critical 
moment is given here by the following expression, 
obtained using Eq. 32, (it replaces Eq. 30, which was 

a Eu!erian data Lagrangian data 

(f> 0.038 Hz) if< 0.038 Hz) 

H, C1 andafromEq. 16 cl and a :from Bq. 32 

f3 H c1 C( f3 H c1 a 

Temperature 1.65 0.34 0.037 1.7 1.96 0.51 0.05 1.8 

Fluorescence 1.66 0.36 0.035 1.8 - - - -

b Eu!erian data Eulerian data 

passive scalar biological!y active scalar 

forf> 0.01 Hz for/" 0.01 Hz 

13 H c1 C( f3 H c1 a 

Temperature 1.74 0.42 0.04 1.7 - - - -

Fluorescence 1.75 0.41 0.04 1.8 1.22 0.12 0.02 0.8 

Table 1. The values of the u:J:riversal multifractal parameters obtained here. 
a=ding to Eq. 16 for Euleriao values and Eq. 32 for Lagrangian (a). 
compared to the values we previously obtained in Seuront et al. (1996) (b). 
The values of the si opes ofthe Fourier power spectra are a1so indicated 

obtained using Eq. 16): 

qs =2(~J!Ia (35) 

We obtain q s ::::: 10.5, which is very close to the empirical 
value given above. 

4. Conclusion 

It appears clearly from the present study that an a priori 
Lagrangian sampling may exhibit Eulerian and 
Lagrangian components separated by a length scale 
intimately linked to the size of the ship used to collect the 
field data. Indeed our results show that Eulerian and 
Lagrangian passive scalar turbulence exhibit multifractal 
statistics compatible with universal multifractals, in 
qualitative accord with the visual appearance of the time 
series. The values of the parameters are summarized in 
Tables 1a-b, which contain also the values reported in 
Seuront et al. ( 1996). 

These analyses also provide an empirical confirmation 
of the (J} _, the01-y of the turbulent Lagrangian turbulent 
behaviour of a passive scalars. We obtained here a first 
evidence of Lagrangian multifractality, and we estimated 
the universal multifractal pararneters (see also Table la-b), 
according to Eq. 32, which is a Lagrangian anal ogy of the 
refined similarity hypothesis for Eulerian turbulence. 
However, our Lagrangian study needed an averaging of the 



dataset, which means that these results must be con:firmed 
with rouch larger datasets, in order to be confident about 
the numerical values of the parameters. 

On the other hand, in vivo fluorescence (a 
phytoplankton biomass proxy) appears to be a passive 
scalar on small scales (less than 13 seconds) associated 
with an Eulerian framework. Moreover, the commonality 
of the basic multifractal parameters of temperature and 
fluorescence re:tlects profound nonlinear coupings between 
the space-time structure of phytop1ankton populations and 
the structure of their physical environment. As already 
noted in Seuront et al. (1996), this generalizes the results 
obtained in Denman and Platt (1976), with only a Fourier 
power spectrum analysis. In order to better understand the 
nature of the coupling between these fields, one direction 
for the future researches is to study their multifractal 
correlations; another is to analyze these fields in a 
vectorial multifractal framework. 

Lastly, on larger scales (greater than 13 seconds) 
associated with a Lagrangian framework, the lack of 
scaling behaviour related to the small number of 
datapoints in the series does not allow us to explore the 
Lagrangian fluorescence variability, and to test Eq.· 25: 
this will be done in future studies, using larger datasets. 
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ABSTRACT: The variability of in vivo fluorescence, temperature and salinity in the vertically stratified 
and well-rnixed waters of the Baie des Chaleurs (Québec, Canada) was investigated as a continuous 
function of scale by applying the concept of fractal dimension to variogram analysis. Widely applied to 
the description of spatial heterogeneity, fractal dimension appears here to be a helpful descriptive tool 
in discrimina ting between homogeneity and heterogeneity in time series of both physical and biologi
cal parameters. ln stratified waters, the structuration of in vivo fluorescence, temperature and salinity 
remains the same over time, in spite of rnixing induced by the rise of a strong wind, and is shown to be 
associated with the global structure of the water column. In mixed waters, the situation is more 
camp! ex, giving rise to specifie behaviour of in vivo fluorescence and salinity. In bath cases, the differ
ences observed between the fractal dimensions can be explained in terms of different ranges of scales 
perceived in pattern variability and thus, in the complexity of the pattern structure. We also suggest 
that the departure from strict selfsirnilarity which seems to be associated with the vertical structure 
of the residual circulation is an indicator of the transitional zone between different levels of system 
organisation. 

KEY WORDS: Space-tirne variability · Homogeneity · Heterogeneity · Fractal dimension · Stratified 
and mixed waters 

INTRODUCTION 

Most processes in natural environments-physical 
forcings, population and cornrnunity dynamics-are 
sources of heterogeneity and create space-time struc
tures such as gradients, patches, trends or other com
plex patterns (Legendre & Fortin 1989, Dutilleul & 
Legendre 1993). These heterogeneous structures are 
particularly well developed in marine environments 
(Steele 1974, 1978, Haury et al. 1978) where resources 
such as plankton exhibit patchiness over a continuum 
of scales (Platt 1972, Mackas & Boyd 1979, Mackas et 
al. 1985). The multiscale variability of marine environ
ments, outlined by Steele (1985, 1989). leads to a view 
of the ocean as a 'landscape' in the sense that it can be 
described by patterns of different temporal and spatial 
scales. Many physical and biological oceanographers 
have thus related their findings to the spectrum of 
physical pro cesses, ranging from circulation patterns in 
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oceanic basins to large gyres, to fine-scale eddies or 
rips (e.g. Denman & Powell1984, Legendre & Demers 
1984, Mackas et al. 1985, Platt & Sathyendranath 1988). 
Ecologists have also recognised spatial heterogeneity 
as a major factor regulating the distribution of species 
(Wiens 1976, Risser et al. 1984, Urban et al. 1987). Th us, 
as reviewed by Wiens (1989). ecology must deal with 
scale, because the abjects it focuses on, the organisms 
and types of environment, are rarely found to be homo
geneously distributed through time or space. Y et until 
recently no quantitative nor qualitative theory has 
described the origin, dynamics, and consequences of 
heterogeneity in ways that could increase the accuracy 
of predictions about ecological processes in complex 
environments. Dealing with scales has thus been re
quired in order to overcome the difficulties generated 
by space-tirne dependencies associated with an hetero
geneous distribution of ecological variables. 

Mandelbrot (1983). who recognised the ubiquity of 
sets that viola te basic assumptions of uniforrnity, intro
duced the concept of the fractal, a geometrie form 
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which exhibits structure at all scales. In heterogeneous 
sets, where estimates of quantities such as biomass 
vary precisely with the scale at which measurements 
are made (Burrough 1981, 1983a, Milne 1988), fractal 
dimension then appears to be a useful measure of 
space-time complexity (Phillips 1985), and provides 
several advantages over other descriptive indices of 
ecological patchiness. Classical statistical theory works 
wellin predicting change in variance due to different 
sizes of sampling units or different grains of sampling 
strategy when the sampling units are independent. 
The basic assumption of independence of replicates, 
however, is rarely verified in natural science and, 
therefore, the use of classical theory is questionable. 
Moreover, the more traditional, widely used mathe
matical descriptors, such as the variance-ta-mean ratio 
(Taylor 1961, Frontier 1972, Downing et al. 1987), have 
little meaning in a multiscale spatial context (Palmer 
1988, Hurlbert 1990). Furthermore, space-time depen
dence frequently prohibits rigorous statistical analyses 
of ecological data, while inferences based on auto
correlated observations are risky (Bivand 1980). 

The primary goal of fractal analysis and similar tech
niques (i.e. spectral analysis) is to describe variability 
over a continuum of scales. Fractal geometry is thus 
becoming increasingly popular among scientists and 
has been successfully applied to a great variety of 
problems involving complex patterns in nature, includ
ing terrestrial (Burrough 1981, 1983a, Krummel et al. 
1987) and Martian (Woronow 1981) landscapes, cloud 
shapes (Lovejoy 1982), rainfall time series (Olsson et 
al. 1992), breaking waves (Longuet-Higgins 1994). 
shoreline erosion rate (Phillips 1985). and distributions 
of nesting bald eagles in rugged landscapes (Penny
cuick & Kline 1986). In ecology, insightful descriptions 
of various possible applications of fractals are given by 
Frontier (1987) and Sugihara & May (1990). Fractals 
have been used to describe habitat complexity (Brad
bury & Reichelt 1983, Bradbury et al. 1984, Gee & War
wick 1994a, b), species diversity (Frontier 1985, 1994), 
movements of marine (Bundy et al. 1993, Erlandson & 

Kostylev 1995) and terrestrial (Wiens et al. 1995) in
vertebrates, shapes of marine snow (Li & Logan 1995, 
Logan & Kilps 1995) and growth processes (Kaandorp 
1991, Kandoorp & Dekluijver 1992). 

Basically, in ecology, 'variability' indicates changes in 
the values of a given quantitative or qualitative descrip
tor; it is distinct from 'heterogeneity' which refers to 
patterns and processes composed of parts of different 
kinds (Kolasa & Rollo 1991). This distinction is, how
ever, not as sharp as may appear at first glanee, and 
meanings essentially depend on the choice of approach 
(Downing 1991, Naeem & Colwell 1991, Shashak & 
Brand 1991). From a statistical viewpoint, however, 
'heterogeneity', when applied to the distribution of the 

values taken by a random variable, is the opposite of 
'homogeneity', which refers to sameness and similarity. 
The degree of similarity implied by the term 'homo
geneity' may vary from a minimum of a single common 
attribute, as in the equality of means, to the extreme of 
total sameness, that is, equivalence of distributions, and 
th us refers-in the framework of time series analysis
to a pattern of variability characterised by the closeness 
of scales of variations. In this paper, 'homogeneity' and 
'heterogeneity' are specifically associated with patterns 
remaining similar upon subdivision in time-at each 
scale, the pattern differs but always shows the same rel
ative variability-as strictly defined in the framework 
of fractal theory (Mandelbrot 1977, 1983). In that way, 
fractal dimensions (Dp) appear to be helpful measures 
in discriminating between homogeneity and hetero
geneity of space-time patterns. They reflect the balance 
of short-range and long-range variations and thus char
acterise homogeneous and heterogeneous patterns, re
spectively (Burrough 1981, He et al. 1994). A low Dp 
value means that the heterogeneity of the variable is 
high and there are dominant long-range effects. A high 
Dp characterises very complex processes where short
range, local variability is highly developed and tends to 
obfuscate long-range trends; the variable is thus more 
evenly distributed (i.e. Jess structured) in space and 
time. As an example, DF"' 2 in a bi-dimensional space 
characterises regular-or homogeneous-patterns, 
indicating that the variation within a sampling unit will 
be equal to the variation among sampling units, while 

- Dp < 2 characterises more irregular-or heteroge
neous-patterns. 

In this paper, the concept of fractal dimensions is 
used in conjunction with variogram analysis, a geosta
tistical technique which is conceptually sirnilar to the 
traditional block-size techniques of Pattern Analysis 
(Greig-Smith 1979). but offers the advantage of 
describing variation as a continuous function of scale 
(Palmer 1988). Fractal dimension Dp is thus regarded 
as an index of the complexity perceived in series of 
temperature, salinity and in vivo fluorescence re
corded both in stratified and mixed waters in the Baie 
des Chaleurs (Québec, Canada). 

MATERIAL AND METHODS 

Sampling procedure. Sampling was conducted in 
the Baie des Chaleurs from 10 to 12 September 1991 
at a stratified station (20 rn depth) close to Caplan, 
located weil inside the bay, and from 20 to 22 Septem
ber at a vertically mixed water colurnn (20 rn depth) at 
Grande-Rivière, close to the entrance ofthe bay (Fig. 1). 
At each anchor station, measurements of physical 
parameters (temperature and salinity) and in vivo fluo-
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QUEBEC 

Baie des Chaleurs 

25 km 

Fig. 1. Locations of the 2 anchor stations along the north shore 
of Baie des Chaleurs, eastern Canada 

rescence (an index of phytoplankton biomass) were 
taken every hour from the surface to 20 rn depth with a 
SBE 25 Sealogger CTD and a Sea Tech fluorometer 
over periods of 57 h at Capian and 52 h at Grande
Rivière. Every 2.25 h, current speeds and directions 
were measured for 5 min at 2.5, 5, 7.5, 10, 12.5, 15, 17.5 
and 20 rn with an Aanderaa current meter, which was 
moored at 5 rn during the times between profiles. 

Data analysis. The vertical stratification of the water 
masses was calculated using the potential energy EP 
(J m-3), which corresponds to the amount of energy 
required to redistribute mass in a complete vertical 
mixing (Simpson et al. 1979, Pond & Pickard 1983): 

0 

Ep = ~ j(p-p)gz·dz (1) 
-H 

0 

where H, p, p = ~ J pz· dz, gand z are the height of 
-H 

the water column, the density, the mean density of the 
water colurnn, the gravitational acceleration (rn s-2) 

and the depth, respectively. 
The Richardson number, Ri, was used to estima te the 

dynarnic stability of the water column (Vandevelde et 
al. 1987): 

Ri = g. dp/dz 
P (du/dz)2 

(2) 

where p, g, u and z are the density, the gravitational 
acceleration, the horizontal component of the current 
velocity (rn s-1), and the depth, respectively. This num
ber compares the stabilising effect of buoyancy forces 
(represented by the square of the Brunt-Vaisilla fre
quency, dp/dz) to the destabilising influence of vertical 
shear in the horizontal velocity field (represented by 
the square of the velocity gradient, du/dz) over a given 
depth interval. Values under 0.25 indicate a potential 
instability, and larger values indicate a greater poten
tial stability (Mann & Lazier 1991). 

Missing data due to an inadequate (>1 rn s-1) de
scending speed of the CTD probe were estimated 
using the method proposed by Zagoruiko & Yolkina 
(1982), which is particularly adapted to the prediction 
of missing data in bi-dirnensional data tables. Unlike 
1-dirnensional interpolation techniques, such as krig
ing, this method provides for each missing data value a 
predicted value which is not lirnited to an intermediate 
value of its surrounding data in a given series but takes 
into account the whole data table. 

To detect dates, intensity and duration of any 
changes in the values of a given pararneter, we used 
the cumulative sums method (Ibanez et al. 1993). The 
calculation consists of subtracting a reference value 
(here the mean of the series) from the data; then these 
residuals are successively added, forming a cumula
tive function. Successive negative residuals produce a 
decreasing slope, whereas successive positive residu
ais create an increasing slope (the value of the slope is 
proportional to the mean deviation). Values not very 
düferent from the mean show no slope. 

Fractal analysis. The concept of fractals has been re
cently introduced to the description of natural systems 
(Mandelbrot 1983) and strictly refers to geometrical 
patterns in which the Hausdorff-Besicovitch dimension 
exceeds the topological (i.e. Euclidean) dimension. In 
less technical terms, fractals are temporal or spatial phe
nomena pres en ting a detailed structuration at ail scales, 
i.e. they do not lose details upon repeated magnifications 
or reductions. We used a method (Burrough 1981, 1983a) 
based on geostatistics and regionalised variable (RV) 
theory (Matheron 1971, Journel & Huijbregts 1978) to 
calcula te fractal dimensions of physical parameters and 
in vivo fluorescence for each of the profiles. RVs are 
continuous variables whose variations are too complex 
to be described by traditional mathematical functions 
(Phillips 1985). Patterns of variation in RVs can then be 
expressed by their semivariance y(h), defined as: 

1 
N(h) 

y(h) = -(-) 2)Z(i)-Z(i+h)]
2 

(3) 
2N h i=! 

where Z(i + h) is the value of the dependent variable 
Z(i) at a point separated from point i by distance, or 
lag, h, and N(h) is the number of pairs of data points 
separated by the lag h. The sernivariogram is the plot 
of y(h) as a function of h. The sernivariance has, under 
certain conditions (e.g. see Berry & Lewis 1980 for 
further developments on the variance properties of the 
Weierstrass-Mandelbrot fractal function), the form of a 
fractal function that scales with h 4 - 2D at the origin; the 
fractal dimension D of the RV Z(i) can thus be esti
mated from the slope m of a log-log plot of the semi
variogram of Z(i) (Burrough 1981, 1983a): 

D = (4 -m)/2 (4) 
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Because semivariogram estima tes tend to deteriora te 
with increasing lag h for finite-length sample series 
(i.e. greater distances are more affected by low sample 
sizes and spurious properties of the data; Journel & 
Huijbregts 1978), an objective criterion is needed for 
deciding upon an appropriate range of h to include in 
the regressions. We used the values of h which max
imised the coefficient of determination (r2) and min
imised the total sum of the squared residuals for the 
regression. 

Semivariogram analysis requires the assumption of 
at least reduced stationarity, i.e. the mean and the vari
ance of a time series depend only on its length and not 
on the absolute time (Platt & Denman 1975, Legendre 
& Legendre 1984). Stationarity was tested by calcu
lating Kendall's coefficient of rank correlation, 't, be
tween the series and the x-axis values in arder to 
detect the presence of a linear trend (Kendall & Stuart 
1966) (Kendall's coefficient of correlation was used in 
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preference to Spearman's coefficient of correlation p, 
although the latter was recommended in Kendall 
(1976), because Spearman's p gives grea ter weight to 
pairs of ranks that are further apart, while Kendall's 1: 

weights each disagreement in rank equally; see Sokal 
& Rohlf (1995) for further developments]. We thus 
eventually detrended the time series by fitting regres
sions to the original data by least squares and used the 
regression residuals in further analysis. 

RESULTS 

Physical data 

The structure of the current speed and direction at 
5 rn (where the greatest number of data values were 
collected) presented 2 distinct patterns associated with 
an increase of the wind speed at Caplan and with 

Sian 

Slcm 

s lem 

Slcm 

E 

E 

E 

E 

the rise of a heavy swell at Grande
Rivière. 

At Ca plan, the time series could be di
vided in 2 parts according to the wind 
speed, which ranged from 1.9 rn s-1 dur
ing the first 27 profiles to 6.6 rn s-1 on and 
after the 28th profile (Lagadeuc et al. 
1997). For ail the profiles, current speed 
and direction were tidally dependent 
(Lagadeuc et al. 1997). However, as cur
rent direction was always directed to the 
west-northwest during flood and to the 
east-southeast during ebb, current 
speed depended on wind. During the 
first 27 profiles, current speed was less 
thau 5 cm s- 1 during flood, and approxi
mately 40 to 50 cm s-1 during ebb. Dur-
ing windy profiles, highest speeds were 
observed during flood (around 15 cm 
s-1). while during ebb, current speeds 
were approxirnately half this value (La
gadeuc et al. 1997). 

At Grande-Rivière, current speed 
and direction were not significantly 
tidally dependent (autocorrelation, p < 
0.05). However, before the swell (i.e. 
the first 29 profiles) the current was 
consistently directed to the north
northeast with a speed around 6 to 8 cm 
s-1, whereas during the swell (on and 
after the 30th profile). the speeds were 
slightly higher (around 15 cm s-1) with a 
west-southwest direction. 

Fig. 2. Eulerian residual current in relation to depth at Ca plan 

The vertical structure of the water 
column also presented 2 distinct pat
terns. At Caplan, these 2 patterns are 
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perceptible from an unidirectional drift 
to the northeast which is stopped by 
the action of wind at 2.5 rn (Fig. 2). For 
the other depths, a general pattern was 
observed for the effect of tide and wind 
on eulerian residual currents: south
eastward drift followed by northwest-
ward drift. Moreover, the magnitude of 
drift decreased near bottom, where the 
northwestward drift due to wind was 
stronger than the southeastward drift 
due to tide (Fig. 2). At Grande-Rivière, 
except at 2.5 rn where the drift associ
ated with the swell was west-north
west (Fig. 3), eulerian residual currents 
displayed similar patterns of variation 
whatever the depth: the north-north
east drift associated with tide before 
the swell was west-southwest there-
after (Fig. 3). As previously observed at 
Caplan, the amplitude of drifts de
creased with depth, and the drift asso
ciated with the swell was always 
higherthan the tidal drift (Fig. 3). In ali 
cases, the drifts observed at Grande-
Rivière were always 2 or 3 times 
smaller than those observed at Capian. 

During the first part of the cruise, 
alternative variations in intensity of 
stratification were tidally dependent at 
Capian (Fig. 4a). Thereafter, progres
sive homogenisation was observed 
with the decrease of EP. Dynarnic 
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stability Ri showed values Iess than 
0.25 at the surface and near the bottom 
during windy profiles (Fig. Sa), which 

Fig. 3. Eulerian residual current in relation to depth at Grande-Rivière 

suggest a dynarnic destabilisation (i.e. mixing) of the 
water colurnn as opposed to the advection of mixed 
water. In contrast, at Grande-Rivière the water column 
was always homogeneous (i.e. mixed) with very low 
values of Ep (Fig. 4b) and values of dynamic stability Ri 

less than 0.25 at the surface during the 52 profiles and 
near the bottom, especially for profiles during swells 
(Fig. Sb). 

In v.ivo fluorescence 

In vivo fluorescence exhibited a vertical gradient at 
Capian during the first part of the lime series in relation 
to the stratification of the water colurnn (Raby et al. 
1994). During the second part of the tirne series, the 
vertical gradient was destroyed by water colurnn mix
ing, and phytoplankton were evenly distributed. A fluo
rescence maximum was observed during the first part 

of the time series in the surface layer over the thermo
cline and was more than twice as large as the maximum 
observed at Grande-Rivière, where in vivo fluores
cence was always homogeneously distributed. 

Moreover, the computation of the cumulative sum 
series in both cases pointed out 2 distinct patterns of 
variability. At Capian, except after profile 31 when the 
water colurnn was homogenised by wind, we found the 
following recurrent trend: an increasing siope during 
flood which characterised a group of values Iower than 
the mean, followed by a decreasing siope during ebb 
(Fig. 6a) that characterises sorne values higher com
pared to the whole series. Chlorophyll a (chi a) and in 
vivo fluorescence being highly correlated, as shawn by 
Raby et al. (1994) on the same set of samples, in vivo 
fluorescence fluctuations can be reiated to the fluctua
tions of phytoplankton biomass. 

In contrast, at Grande-Rivière, where hydrodynamic 
conditions were weaker, we found a diel periodicity, 
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Fig. 4. Potential energy during the time series at (a) Capian 
and (b) Grande-Rivière. 1 and 1 indicate high tide and low 

tide, respectively 

shown by an increasing slope during nighttime (i.e. 
from 2 h before sunset to 2 h before sunrise) and a 
decreasing slope during daytime (Fig. 6b). That be
haviour might correspond to the decrease of in vivo 
fluorescence around the solar midday, corresponding 
to photoinhibition (Falkowski & Kiefer 1985). linked to 
a decrease of primary production as observed by 
Lizon et al. (1995) in low turbulent conditions and sup
ported by the weak correlation between fluorescence 
and chl a (Raby et al. 1994). 
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1 and 1 indicate high tide and low tide, respectively 

Semivariogram analysis and fractal dimensions 

The double logarithm.ic semivariograms for tempera
ture, salinity and in vivo fluorescence time series at 
Caplan and Grande-Rivière together with their best 
fitting lines are given in Figs. 7 & 8, respectively. Only 
scales less than half of the totallength of the data set 
are shown, because greater distances are more af
fected by low sample sizes and spurious properties 
of the data (Journel & Huijbregts 1978). 
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Fig. 5. Richardson number (Ri) in relation to depth and time at (a) Capian and (b) Grande-Rivière. Hatched iso-Ri basins 
correspond to Ri< 0.25. 1 and l indicate high tide and low tide, respectively 
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At Ca plan, temperature, salinity and in vivo fluores
cence semivariograms exhibit similar behaviours. In 
the sub-surface (2 rn; Fig. 7), their linearity over the 
whole range of time scales illustrates temporal depen
dence, suggesting that the same process can be 
regarded as the source of physical and biological 
patterns. This process can then be associated with the 
general drift to the northeast which clearly dominates 
the eulerian residual circulation pattern (cf. Fig. 2). 
From 5 to 11 rn (Fig. 7); semivariograms exhibit a linear 
behaviour as the temporallag in creas es up to 8 h. This 
behaviour is restricted to maximum time scales of 5 h 
for deeper layers. The scales of temporal dependence 
(i.e. semivariograms' linearity) can then be associated 
with characteristic time scales which are clearly depth
dependent (Fig. 7), and can be related to the progres
sive change in direction and intensity of the eulerian 
residual circulation (Fig. 2). The semivariograms are 
not influenced by that change of vertical structure, in 
spite of the transition observed between stratification 
and dynarnic homogenisation of the water column 
due to the northwestward drift induced by the wind. 

Indeed, semivariograrn analyses conducted separately 
on the stratified and the mixed part of the series re
vealed very similar linear behaviours (Fig. 9) which are 
indistinguishable from each other (t-test, p > 0.05; Zar 
1984) and from the linear behaviour observed from the 
semivariogram analysis conduced on the whole series 
(covariance analysis, F-test, p > 0.05). These results 
thus suggest an extrerne sirnilarity-at a given depth
between the effects of different physical forcings such 
as wind or tide on the temporal structuration of vari
ability of physical and biological parameters. 
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At Grande-Rivière, the situation is quite different 
(Fig. 8). Temperature semivariograms are clearly linear 
over the whole range of scales from the sub-surface to 
15 rn depth. At deeper layers the linearity is only 
observed for time scales increasing up to 5-6 h. Semi
variograms of salinity are linear from the sub-surface 
to 15 rn depth as the ternporallag increases up to about 
16-18 h and linear deeper fortime scales of about 6-8 h. 
As previously suggested at Capian, the lost of scale 
dependence of semivariograrns seems to be associated 
with the vertical structuration of the residual circula-

tion in direction and intensity (Fig. 3). 
On the other hand, the differences ob

0.5 .----------.. -•• -~--:"' .. ,-,·· 

-~-·-··· __ ... -··".J 

served in the time scales at which semi-
variograrns of temperature and salinity 
lose linearity could be related to the 
specificity of salinity which, unlike 
temperature, is influenced by river dis
charge and rnixing with water masses 
corning from outside the bay (Le Quéré 
1992, Bonardelli et al. 1993) and ex
hibits a general temporal evolution 
more irregular than temperature, es
sentially deeper than 15 rn (Le Quéré 
1992). Sernivariograms of in vivo fluo
rescence were linear for tirne scales of 
6-8 h from the sub-surface to 17 rn 
depth, and this specifie behaviour of the 
fluorescence semivariograrns can be 
related to the biological activity which 
is quite dominant (i.e. diel periodicity; 
cf. Fig. 6a), in comparison with the 
variability observed at Caplan which is 
mainly dominated by physical pro
cesses (i.e. tidal periodicity; cf. Fig. 6b) . 
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In both cases, log-log linearity of 
scale-invariant parts of sernivariograms 
is very strong, with coefficient of deter
mination (r) ranging between 0.948 and 
0.998 for temperature, 0.855 and 0.999 
for salinity, and 0.905 and 0.999 for in 
vivo fluorescence at Capian and 0.749 
and 0.997 for temperature, 0.855 and 
0.997 for salinity, and 0.959 and 0.999 

-0.2 0.2 0.6 1.0 1.4 -D.2 0.2 0.6 1.0 1.4 

Log h Log h 

Fig. 7. Double logarithmic semivariograms of in vivo fluorescence(+), tempera
ture (•) and salinity (..1.) for Capian anchor station (curves have been vertically 

offset so as not ta overlap). Straight dashed !ines show the scaling range 
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fractal dimensions DF of temperature, 
salinity and in vivo fluorescence ex
hibited different patterns of variation 
within stations and between stations. 
Thus, we showed that there were sig
nificant differences between salinity, 
temperature and in vivo fluorescence 
fractal dimensions for either station 
(Kruskal-Wallis test, p < 0.05). How
ever, at Capian mean fractal dimen
sions DF of temperature, salinity and 
in vivo fluorescence were significantly 
different from each other (Jonckheere 
test, p < 0.05; Siegel & Castellan 1988). 
whereas at Grande-Rivière, mean frac
tal dimensions of salinity and in vivo 
fluorescence were not significantly 
different but were both significantly 
different from that of temperature 
(Jonckheere test, p > 0.05 and p < 0.05, 
respectively). On the other hand, mean 
fractal dimensions of salinity and in 
vivo fluorescence were significantly 
different between the 2 stations (Wil
coxon-Mann-Whitney V-test, p < 0.05). 
whereas there was no significant dif
ference between mean fractal dimen-

Fig. 8. Double logarithmic semivariograms of in vivo fluorescence (+),tempera
ture (e) and salinity (<~.)for Grande-Rivière anchor station (curves have been ver
tically offset so as not to overlap). Straight dashed lines show the scaling range 

sions of temperature (Wilcoxon-Mann
Whitney V-test, p > 0.05). Fractal 
dimension Dp plotted as a function of 

for in vivo fluorescence at Grande-Rivière. The mean 
fractal dimensions of temperature, salinity and in vivo 
fluorescence were respectively 1.54 (± 0.02 SE), 1.69 
(± 0.03 SE) and 1.48 (± 0.02 SE) at Caplan, and 1.5 
(± 0.03 SE), 1.57 (± 0.02 SE) and 1.59 (± 0.01 SE) at 
Grande-Rivière. The mean empirical estimates of the 
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Fig. 9. Double logarithmic semivariograms of temperature at 
4 m depth for Caplan anchor station before (o) and after (•) 

destratification by wind 

depth (Fig. 10) leads to further conclu
sions. At Caplan (Fig. lOa), DF of temperature, salinity 
and in vivo fluorescence exhibited similar patterns of 
variation, with a maximum value between 12 and 14 rn 
depth, suggesting the influence of interna! waves. In 
contrast, at Grande-Rivière the situation was quite 
different (Fig. lOb): fractal dimensions of temperature 
and in vivo fluorescence exhibit respectively maximum 
and minimum values around 10 m depth, while DF 
of salinity exhibited a tendency to decrease from the 
sub-surface to bottom. 

DISCUSSION 

The empirical estimates of the mean fractal dimen
sions DF showed that the mean Dp of temperature is 
smaller than that of in vivo fluorescence and salinity at 
Ca plan. This can be related with the processes likely to 
influence the variability of both temperature (T) and 
salinity (S). The T-S diagram (Fig. lla) suggests an 
almost linear rnixing of relatively warm (T > l4°C) 
and weakly saline (27.5 < S < 29.5%o) waters (A), with 
colder (T < l4°C) more saline (S > 29.5%o) waters (B). 
characteristic of the eastern part and to the mouth of 
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can then be suggested as being 
caused by the strengthening of the 
influence of the Gaspé current (Bug
den 1981) on the northern coast of the 
Baie des Chaleurs, where it is usually 
weak, indeed lacking, as previously 
observed (Le Quéré 1992, Bonardelli 
et al. 1993). The associated time scales 
are then small compared with those 
associated with the seasonal forcing 
on temperature variability, leading to 
a perceived higher homogeneity . 
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Depth (a) Capian Depth (b) Grande-Rivière vivo fluorescence are significantly dif
ferent at Caplan to those at Grande
Rivière. This suggests that the physi
cal forcings (i.e. mainly atmospheric) 
responsible for the temperature vari-

Fig. 10. Fractal dimensions (Dp) of in vivo fluorescence (•), temperature (e) and 
salinity (.6.) in relation to depth for (a) Capian and (b) Grande-Rivière anchor 
stations. Straight broken !ines correspond to the theoretical case Dp = -513 

the bay, respectively (Legendre 1987). This distribu
tion of water masses is associated with the cyclonic 
circulation of the Baie des Chaleurs observed during 
the sampling experiment (Le Quéré 1992) and has 
already been suggested to potentially modify the water 
mass properties of the Baie des Chaleurs by vertical 
mixing (Legendre & Watt 1970, Legendre 1987). More
over, temperature fluctuations are mainly dependent 
on atmospheric (i.e. seasonal) warming and cooling 
whereas salinity is mainly influenced by river and pre
cipitation runoffs leading to smaller scales variations. 
The intermediate value of the fractal dimension of in 
vivo fluorescence might then be regarded as a result of 
the interactions between these 2 different forcings. At 
Grande-Rivière the mean fractal dimension of temper
ature is smaller than those of salinity and in vivo fluo
rescence, which are not significantly different, indicat
ing that variability of biological processes is mainly 
determined by salinity and is characterised by short
range variations in comparison with temperature. 
Indeed, the T-S diagram (Fig. 11b) shows the strong 
influence of weakly saline (S < 29.5%o) waters, differ
ent from the water masses typical of the mouth of the 
bay (B, Fig. lla) and associated with the rise of a west
southwest heavy swell after the 30th profile (cf. Fig. 3) 
of the sampling experiment. The properties of these 
water masses (i.e. in terms of temperature and salinity) 
are roughly similar to those observed in the upper 
water masses of the Gulf of St. Lawrence, Canada 
(Lauzier 1957, Dickie & Trites 1983). The shift in the 
main current direction associated with the rising swell 

ability are on an equivalent space
time scale at Caplan and Grande-Rivière. On the other 
hand, salinity appears to be associated with more 
homogeneous space-time patterns at Caplan than at 
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Grande-Rivière (i.e. DF was greater at Caplan, show
ing the predominance of short-range processes at 
Caplan). This last observation agrees with our previ
ous observations concerning the different forcing 
processes at Caplan and Grande-Rivière. In contrast, 
in vivo fluorescence shows a more heterogeneous 
structuration at Caplan than at Grande-Rivière (i.e. DF 
greater at Grande-Rivière), indicating the prevalence 
of short-range variability and thus of biological 
processes when the hydrodynamical forcings are less 
developed (cf. Figs. 2 to 5). 

Corn paris on of the estimated mean fractal dimensions 
of temperature, salinity and in vivo fluorescence with 
those of other environmental data shows that the varia
tions of these variables are always more homogeneous 
than those of landform (Mandelbrot 1977), seisrnicity 
frequency (Khattri 1995), river discharge, geological 
sediment and clirnate data (Mandelbrot & Wallis 1969), 
and more heterogeneous than the variability perceived 
in soil properties (Burrough 1981, 1983a), spatial distri
bution of plant communities (Palmer 1988) and spatial 
distribution of marine birds and their zooplanktonic 
preys (Russel et al. 1992). We have no clear pheno
menological explanation for these differences, though 
empirical Dp rnight be directly linked to the nature of the 
processes generating the observed patterns. Indeed, 
geological fluctuations associated with earthquake 
occurrence are associated with large-scale processes 
(intime or space; e.g. periods of about 100 yr; see e.g. 
Khattri 1995) and lead to low fractal dimensions corre
sponding to long-range trends and thus to a great 
heterogeneity. In contrast, fluctuating data associated 
with smaller-scale processes, such as turbulent motion, 
widely recognised as a controlling factor of plankton 
distribution (Legendre & Demers 1984, Mackas et al. 
1985), are expected to lead to higher fractal dimensions 
(Burrough 1981, 1983a). Our empirical DF can also be 
compared to the fractal dimension D~ estimated from the 
theoretical spectral exponent ~ (~ = %) characterising 
isotropie and homogeneous turbulent processes (Kol
mogorov 1941, Obukhov 1941). D~ is estimated as D~ = 
2- (~- 1)/2 (Feder 1988, Schroeder 1991). From a 
statistical viewpoint, most Dp are significantly different 
from D~ (modified t-test; Scherrer 1984). Moreover, as 
previously suggested, DF values reflect the balance of 
short- and long-range variations, and therefore the 
differences observed between Dp and D~ are associated 
with the theoretical spectral exponent ~, as the differ
ences observed in the empirical estimations of ~ might 
be related to the different space-time scales of the re
lated external physical forcings (Platt 1972, Denman & 
Platt 1975, 1976, Platt & Denman 1975, Powell et al. 1975, 
Fasham & Pugh 1976, Denman et al. 197t, Horwood 
1978, Lekan & Wilson 1978, Demers et al. 1979, Wiegand 
& Pond 1979, Seuront et al. 1996a, b, Seuront 1997). 

At Caplan, no differences could be observed in the 
fractal dimensions of the data from the first and second 
day despite the increase in wind speed. Generally 
speaking, mixing processes in the ocean are responsi
ble for the transfer of kinetic energy from the largest to 
the smallest scales, spanning severa! orders of magni
tude from the basin scales down to the viscous scales 
(i.e. the Kolmogorov length scale, Àk) at which turbu
lent energy is dissipated as heat by molecular viscosity 
(Denman & Gargett 1995). The range of spatial scales 
over which turbulence, or at least mixing, occurs is 
intrinsically linked to the dissipation rate of turbulent 
kinetic energy (e) by the way of the Kolmogorov length 
and time scales À.k and 'tk [/...k = (v3/e) 114 and 'tk = (v/e) 112, 

where v is the kinematic viscosity) and thus to the 
hydrodynamic conditions. The dissipation rate of wind 
turbulent kinetic energy e (m2 s-3) was estimated as e = 
(5.82 x w-9)W3/z, where Wis the wind speed (rn s-1) 

and Z the depth (m) (MacKenzie & Leggett 1993). This 
dissipation rate, averaged over the water column for 
the 2 periods (i.e. before and after the increase in the 
wind speed), increased from 7.18 x w-9 m 2 ç 3 to 3.01 x 
10-7 m2 s-3

, leading to a decrease in the Kolmogorov 
length and time scales À.k and 'tk (from 3.43 to 1.35 mm 
and from 11.78 to 1.82 s, respectively) and thus to an 
increase in the range of time and space scales affected 
by turbulent motions. However, this increase in the 
range of turbulent space-time scales is far from being 
perceptible from our hourly sampling interval which 
can thus be proposed to explain the non significant dif
ferences between fractal dimensions before and after 
the destratification of the water colurnn by wind (cf. 
Fig. 9) and thus does not allow any inferences about 
the effects of varying hydrodynarnic conditions on the 
structure-in terms of homogeneity or heterogeneity, 
and thus in terms of short- or long-range variability
of this pelagie environment. Moreover, the structure 
of phytoplankton biomass appears to be independent 
of the concentration since a decrease of 40% of the 
total biomass between the first and the second part of 
the cruise (Raby et al. 1994) was not associated with 
a change in the estimated fractal dimension or the 
characteristic scale-breaking observed in the semi
variograms. Furthermore, as the phytoplankton as
semblage was very similar over the sampling period 
(Mingelbier 1995), we cannot test any potential spe
cifie effects on fluorescence fractal dimensions. 

On the other hand, it is worth noting that the vertical 
distribution of the mean DF of temperature, salinity 
and in vivo fluorescence at Caplan (Fig. 10a) can be 
related to the tirne-averaged vertical distribution of the 
Richardson number, Ri (Fig. 12a). The minimum and 
maximum values of DF can be associated respectively 
with the least stable (i.e. low Ri, surface layers and 
near the bottom) and stable (i.e. high Ri, mid-depth) 



Seuront & Lagadeuc: Space-time variability in coastal waters 91 

water masses. Thus, in surface layers and near the bot
tom, where mixing processes are more developed, the 
low dynarnic stability leads to low fractal dimensions 
showing-at the time-space scales of the study-the 
predominance patterns irregularly distributed in space 
and time and thus, characterised by long-range varia
tions. On the other hand, at mid-depth, the greater 
dynarnic stability tends to damp out any kind of fluc
tuations, leading to less structured patterns with close 
scales of variation, characterised by higher fractal 
dimensions and suggesting a potential aliasing of 
internai waves. The situation is quite different at 
Grande-Rivière (Fig. lOb), where the maximum value 
of the mean Ri (Fig. 12b) can be related to the maxi
mum and minimum values of the fractal dimensions of 
temperature and in vivo fluorescence, respectively. 
This last observation shows that in weak hydrody
narnic conditions in vivo fluorescence exhibits a very 
specifie behaviour, far from physical control, showing 
that the biological activity and its associated variability 
are more developed in stable conditions (i.e. high Ri). 
In the case of salinity, we have no clear explanation to 
propose for the decreasing tendencies of the mean 
fractal dimension which can, however, be related to 
the interactions between the characteristic water 
masses of the mouth of the bay and the water masses 
advected by the west-southwest drift induced by the 
swell. Consequently, the differences observed be
tween our low and high empirical Dp can be explained 
in terms of different range of scales perceived in 
pattern variability and thus in the complexity of the 
pattern structure. 

Ri 
0 5 JO 15 0 5 
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Beyond the nurnerical values of fractal dimensions, 
semivariogram analysis can also provide information 
about the scaling behaviour of a given process. Thus, 
the fractal dimension is not necessarily a constant over 
varying sampling intervals (Palmer 1988). We cannot 
test the scale invariance of temporal patterns of tem
perature, salinity and in vivo fluorescence in that way 
because of the small number of data values available 
in the analysis and because the semivariance does not 
always increase monotonically with increasing lag 
(Fig. 7). but appears to increase in a series of steps 
(Figs. 7 & 8). In the case of ideal fractals, like Brownian 
fractal functions (Burrough 1983a, b). the semivario
gram shows clear range and sill (e.g. see Phillips 1985 
for further details).. leading to the assertion that the 
data show at least local second-order stationarity 
(Journel & Huijbregts 1978). Increasing the size of the 
inter-sample distance, however, frequently leads to 
observation of increased sernivariance (Burrough 
1983a) implying that new scales of variation have been 
encountered. This stepwise behaviour (i.e. changes in 
fractal dimension when shifting between scales) 
implies that in place of true self-sirnilarity, tempera
ture, salinity and in vivo fluorescence show only partial 
self-similarity over lirnited range of scales separated by 
transition zones (Mandelbrot 1977, 1983). where the 
environmental properties or constraints acting upon 
organisms are probably changing rapidly (Frontier 
1987; also e.g. the landscape patterns analysed by 
Krummel et al. 1987 and Palmer 1988). In the Baie des 
Chaleurs (i.e. at Capian and Grande-Rivière), the 
departures from true self-similarity seem to be associ-

ated with the progressive change in 
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the eulerian residual circulation with 
depth (cf. Figs. 2 & 3). Indeed, the 
change of direction of the eulerian 
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Fig. 12. Time-averaged Richardson number (Ri) in relation to depth for 
(a) Caplan and (b) Grande-Rivière anchor stations 

residual circulation can be suggested 
as a possible source of scale breaking 
between scale dependence and scale 
independence, in so far as the loss 
of self-sirnilarity of sernivariograms 
seems to be associated with the depth, 
showing a reversai in the direction of 
the residual circulation of water 
masses (Figs. 2 & 3). These factors, 
their combinations and/or the interac
tions with water masses coming from 
river discharge or outside the bay can 
be proposed as possible sources 
of variability and th us could be respon
sible not only for the different time 
scales of temporal dependence of vari-
ogram analysis but also for the absence 
of scale-invariant structuration after 
the scale breaking. These departures 
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from true self-similarity, rather than the precise 
numerical values of the fractal dimension, may be of 
most interest to ecologists, because such departures 
indicate variation in the sources of biological patterns 
(Burrough 1983a, Bradbury et al. 1984, Russel et al. 
1992). As an example, the critical range represented by 
the well-known 'Platt-knee' corresponds to the transi
tion zone (at a scale between 0.2 and 20 km; Platt & 

Denman 1975, Denman & Platt 1976, Denman et al. 
1977) between scales dominated by physical processes 
and larger scales dominated by the combina ti on of bio
logical activities, such as growth, sinking, or commu
nity interactions. However, unlike the previous case, 
our results do not show any characteristic scales which 
can be obviously related to a well-known physical or 
biological transition zone. 

To date, most studies using fractal approaches have 
focused on phenomena which are temporally invariant 
over the scale of the study (e.g. vegetation patterns, 
Palmer 1988; coral reefs structure, Bradbury & Reichelt 
1983, Bradbury et al. 1984; or geological formations, 
Burrough 1983a) and we are not aware of any reports 
of a temporal fractal approach. However, our sampling 
experiments have been conducted at anchor stations 
(i.e. an eulerian point of view). so that temporal and 
spatial components of variation are inextricably con
founded in our data. This confounding of space and 
time has already been pointed out by Russel et al. 
(1992) in a study of the 'spatial' distributions of marine 
birds and their food and might be suggested as a pos
sible source of bias in the estimation of fractal dimen
sions. Nonetheless, the estimated fraction dimensions 
are consistent with the global physical structure of 
bath stations and can thus be regarded as a useful 
index of the complexity perceived in time series of 
temperature, salinity and in vivo fluorescence. 

These results, suggesting relationships exist between 
the vertical structure of the water column (i.e. dynamic 
stability and residual circulation), fractal dimensions 
and the characteristic scale breaking between temporal 
dependence and independence th us lead us to consider 
a physical control of temperature, salinity and in vivo 
fluorescence variability at Capian associated with high 
hydrodynamic conditions and a slightly more complex 
situation at Grande-Rivière, where, probably because 
of the weak hydrodynamism and the peculiar pattern of 
water masses circulation, temperature, salinity and in 
vivo fluorescence exhibit more specifie patterns of 
variations. However, it can also be suggested that the 
differences observed between fractal dimensions may 
be caused by processes exhibiting very specifie inter
mittent behaviours. Indeed, previous studies conducted 
on zooplankton data (Pascual et al. 1995), temperature 
and in vivo fluorescence {Seuront et al. 1996a, b) have 
shawn that the best tool to describe intermittent fields is 

provided by multifractal theory. Multifractal analysis, 
inadequate in the present study because of the small 
number of data available, can be regarded as a statisti
cal generalisation of fractal theory (Mandelbrot 1977, 
1983) leading to the consideration of multifractal fields 
as a hierarchy of sets each with its own fractal dimen
sion. Thus multifractal fields are described by scaling 
relations that require a farnily of different exponents, 
rather than the single exponent of 'traditional' fractal 
patterns, which then characterise variability in a very 
lirnited way. Furthermore, despite the apparent com
plexity induced by a multifractal framework, using the 
universal multifractal formalism (Schertzer & Lovejoy 
1987, 1989)-recently successfully applied to oceanic 
fields (Seuront et al. 1996a, b, Seuront 1997)-the 
distribution of a scalar field can be wholly described 
with only 3 indices, which summarise the whole statis
tical behaviour from larger to smaller scales. 

Nevertheless, fractals provide a workable middle 
ground between the excessive geometrie arder of 
Euclid and the geometrie chaos of roughness and frag
mentation (Mandelbrot 1989). and appear to be par
ticularly well adapted to the study of multiscale envi
ronments such as pelagie ecosystems. However, even 
though the results of this fractal analysis should have 
probably been more illustrative by considering a finer 
grain and a great er extent, which are often regarded as 
sorne of the main aspects of the scales of a study (Le
gendre & Fortin 1989, Wiens 1989, Jarvis 1995). they 
are consistent with more classical techniques concern
ing the time-space physical structure of the studied 
environments, and thus appear to be quite satisfactory. 
Furthermore, the value of geostatistical analysis is that 
different and complex dynamics can be described in a 
common format that allows direct comparisons to be 
made among systems. One should be aware, however, 
that the generic name 'fractal dimension' deals with 
different concepts of dimensions: topological dimen
sion, Hausdorff dimension, self-similarity dimension, 
box-counting dimensions and information dimension 
among others. They are all related, sometimes they are 
the same and sometimes different, and that can be con
fusing even for a research mathematician (Peitgen et 
al. 1992). Practically, for ecologists, this means that at 
present it is only possible to compare different esti
mates of fractal dimension when the same calculation 
technique is used. There is, therefore, a need to cali
brate different methods of calculating fractal dimen
sions and un til this is done, comparisons of DF values of 
sirnilar phenomena reported in the litera ture, obtained 
with different techniques, are of lirnited value. 
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DISTRIBUTION INHOMOGÈNE MUL TI-ÉCHELLE DE LA BIOMASSE 
PHYTOPLANCTONIQUE EN MILIEU TURBULENT 

Laurent SEURONT 

Université des Sciences et de Technologies de Lille, CNRS URA 1363, 
Station Marine, B.P. 80, F-62930 Wimereux, France 
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Résumé :La turbulence océanique est classiquement considérée comme génératrice d'homogénéité dans la distribution des 
paramètres physiques et biologiques, essentiellement aux petites échelles. Cependant, les nombreux travaux qui ont étudié la 
distribution de la biomasse phytoplanctonique en relation avec la structure de son environnement physique n'ont pas tenu 
compte de la nature intermittente des mouvements turbulents. Nous nous sommes donc intéressés à la description de tous les 
niveaux de variabilité de la température (un scalaire purement passif) et de la fluorescence (un estimateur de la biomasse 
phytoplanctonique) qui, par le biais de l'analyse multifractale universelle, peuvent être entièrement pa.-mnétrisés à l'aide de 
seulement trois paramètres fondamentaux. Les principes de la prise en compte de l'intermittence de la turbulence sont décrits 
le plus simplement possible et illustrés par une analyse d'une série temporelle de température et de fluorescence dont les 
résultats sont confrontés à ceux de la littérature. 

MULTISCALE INHOMOGENEOUS STRUCTURATION OF PHYTOPLANKTON BIOMASS 
IN A TURBULENT ENVIRONMENT 

:Key words: turbulence, inhomogeneity, phytoplankton, space-time distribution 

Abstract: Usua/ly, oceanic turbulent processes are regarded as a great factor of homogeneization of abiotic as weil as 
biotic parameters, essentially on small scales. However, many attempts have been made to relate phytoplankton biomass 
distribution to their physical environment but without taking into account the intermittent properties of the turbulent jluid 
jlows. We then consider here to describe each variability leve/ of temperature (a pure/y passive scaar) and fluorescence 
(regarded as a phytoplankton biomass proxy) fields which can be wholly characterised with on/y three basic parameters by 
the way of universal multifracta/ analysis. Basis of our approach of intermittent turbulence are explained as simple as 
possible and illustrated by an analysis of a temperature and fluorescence ti me series which is compared with some published 
results. 

INTRODUCTION 

En milieu océanique, globalement dominé par les 
processus turbulents (Yamazaki & Osborn, 1988), l'état 
actuel des connaissances tend à montrer que la 
distribution des organismes planctoniques résulte en 
grande partie des caractéristiques spatio~temporelles de 
leur environnement physique (Denrnan & Powell, 1984 ; 
Legendre & Demers, 1984). L'existence et la nature de ce 
couplage entre processus physiques et biologiques 
apparaissent aujourd'hui fondamentales dans les études 
écologiques du plancton en général et du phytoplancton 
en particulier (Mackas et al., 1985 ; Davis et al., 1991). 
En effet, les paramètres physiques et biologiques 
présentent une covariabilité spatio-temporelle très nette, 
depuis les échelles des bassins océaniques (Gargett, 1991) 
jusqu'à celles des couches mélangées de surface 
(Desiderio et al., 1993), en passant par les échelles 
intermédiaires (Mackas et al., 1991 ; Denman & Abbott, 
1994). 
Plus particulièrement, aux plus petites échelles, qui sont 
d'un intérêt majeur pour des processus biologiques et 
écologiques comme la dynamique phytoplanctonique 
(Estrada et al., 1987, 1988) ou zooplanctonique (Castello 
et al., 1990 ; Marrasé et al., 1990), les processus 

turbulents sont considérés comme un facteur 
d'homogénéisation et introduits comme tels dans la 
modélisation de leurs effets biologiques (Rotschild & 
Osborn, 1988 ; Evans, 1989 ; Osborn et al., 1990 ; 
Granata & Dickey, 1991; Yamazaki etal., 1991 ; Kiorboe 
& Saiz, 1995). 
Toutefois, contrairement à des concepts théoriques 
fondamentaux considérant la turbulence comme un 
processus homogène (Kolmogorov, 1941 ; Obukhov, 
1941), des travaux ultérieurs (Batchelor & Townsend, 
1949) ont montré que le taux de dissipation de l'énergie 
cinétique turbulente G, classiquement utilisé pour décrire 
le degré de turbulence d'un fluide, présentait des 
variations brutales et très localisées incompatibles avec 
J'hypothèse d'homogénéité de la turbulence. Dès lors, il 
semble que la turbulence doive être considérée comme un 
processus générateur d'hétérogénéité à petite échelle (i.e. 
inhomogénéité), comme 1' ont montré des analyses 
récentes de la distribution de la température en Manche 
orientale ou en Mer du Nord (Seuront, 1995). 
La distribution de ces irrégularités, ou intermittences, de 
la turbulence ainsi que leurs effets sur la distribution des 
organismes planctoniques et sur le concept désormais 



« classique » de passivité du phytoplancton (Platt, 1972) 
ayant été analysés en détail dans Seuront et al. (1996a, b), 
cet article se veut avant tout être une approche 
pédagogique du concept d'intermittence des processus, 
encore trop souvent méconnue de la communauté des 
océanographes biologistes. Par souci de clarté, toute 
formulation mathématique et détails des techniques 
d'analyse ont été évités et, à titre d'illustration, une série 
temporelle de température (traceur passif de la turbulence) 
et de fluorescence (estimateur de la biomasse 
phytoplanctonique) a été analysée à l'aide de ces 
techniques novatrices en sciences de la mer et ses résultats 
ont été comparés à ceux, plus généraux, présentés dans 
Seuront et al. (1996a, b). 

PROBLÉMATIQUE: TURBULENCE, 
INTERMITTENCE ET INHOMOGÉNÉITÉ 

Homogénéité et inhpmogénéité d'un processus 
turbulent 
De manière générale, aux plus petites échelles d'espace et 
de temps, 1' étude de la distribution du phytoplancton 
repose essentiellement sur l'utilisation de l'analyse 
spectrale (P1att & Denman, 197 5) qui permet d'exprimer 
la contribution relative de la variance locale à la variance 
totale d'un processus. Les différentes estimations des 
spectres de variance de 1' abondance phytoplanctonique, 
estimée en terme de fluorescence, ont montré une loi de 
décroissance en -5/3 (Platt, 1972 ; Powell et al., 1975 ; 
Fasham & Pugh, 1976 ; Lekan & Wilson, 1978). Ces 
résultats sont en accord avec des travaux essentiellement 
théoriques (Kolmogorov, 1941 ; Obukhov, 1941, 1949 ; 
Corrsin, 1951) qui ont montré, sous l'hypothèse 
d'isotropie locale (invariance par rotation) et 
d'homogénéité tridimensionnelles de la turbulence, que le 
spectre des fluctuations de vitesse (Kolmogorov, 1941 ; 
Obukhov, 1941) comme celui des fluctuations d'un 
scalaire passif (Obukhov, 1949 ; Corrsin, 1951), 
présentaient des lois de décroissance en -5/3, que la 
turbulence soit considérée d'un point de vue spatial ou 
temporel. Cette approche théorique est classiquement 
associée au concept de cascade d'énergie (Richardson, 
1922), impliquant une hiérarchie infinie de tourbillons de 
taille décroissante, depuis les échelles de création de la 
turbulence jusqu 'aux échelles où les effets de la viscosité 
n'étant plus négligeables, l'énergie cinétique turbulente se 
dissipe sous forme de chaleur (figure 1). 
Cependant, une analyse spectrale étant associée à un 
moment statistique d'ordre 2 (i.e. la variance), elle ne fait 
que traduire le comportement moyen d'un processus et ne 
peut rendre compte des fluctuations brutales, perceptibles 
quelles que soient les échelles considérées, dans la 
distribution temporelle des flux de variance de données de 
température et de fluorescence (figure 2) ; le flux de 
variance exprimant la contribution de chaque donnée à la 
variance totale du processus. 
L'apparition de ces irrégularités dans les champs 
turbulents correspond au phénomène d'intermittence, 
générateur d'inhomogénéité et, de fait, incompatible avec 
l'hypothèse d'homogénéité tridimensionnelle de la 
turbulence. Il est dès lors nécessaire de modifier la vision 
classique de. la turbulence en y introduisant la notion 
d'inhomogénéité, traduisant le fait que les tourbillons à 
petite échelle remplissent de moins en moins d'espace, et 
ont une intensité de plus en plus grande, à mesure que 

10 

dissipation 
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Figure 1 : Représentation schématique du spectre d'une cascade d'énergie, 
où E(k) est la densité spectrale (unité de variancelk)' el k est indifféremment 
un nombre d'ondes ou une fréquence selon que la turbulence est considérée 
d'un point de vue spatial ou temporel. L'énergie cinétique, générée à grande 
échelle, cascade à travers une hiérarchie de tourbillons de taille décroissante 
jusqu'à J'échelle de la viscosité où elle est dissipée en chaleur. La variabilité 
du processus présente une invariance d'échelle en -5/3 conforme à la théorie 
de Kolmogorov..Obukhov. Les nombres d'ondes Je,.,.. and k,;, correspondent 
respectivement aux échelles de création de la turbulence et aux échelles de 
dissipation visqueuse. 
Figure 1: Schematic representation showing the form of the frequency 
spectrum of turbulent velocity cascade. where E(k) is the spectral density 
(variance unitsllc)' and k is indifferent/y a wavenumber or a frequency 
depending on whether turbulence is considered in a spatial or temporal 
framework. The kinetic energy generated by large scale processes (e.g. 
wind or tidal currents) cascades through a hierarchy of eddies of 
decreasing size to the viscous subrange where it is dissipated into heat. 
The change in variance with wavenumber (i.e. slope of spectrum) is 
seule-invariant with a -513 slope as predicted by the theoretical 
Kolmogorov-Obukhov power law. The wavenumbers k_, and kllfin 

respective/y show the largest scale of creation of turbulence and the 
smaUest scale (Kolmogorov length scale) reached by turbulent eddies 
where turbulent motions are smoothed out by viscous effects. 

1' échelle diminue. On remarquera que si classiquement les 
terminologies « variabilité » et « hétérogénéité » semblent 
devoir être appliquées à la description des fluctuations 
perceptibles dans les valeurs, respectivement d'un ou de 
plusieurs paramètres (Kolasa & Rollo, 1991 ; Shachak & 
Brand, 1991 ), il apparaît que dans leur utilisation, la 
distinction entre ces deux concepts n'est pas aussi nette 
(Downing, 1991 ; Pinel-Alloul, 1995). Nous avons donc 
introduit le terme « inhomogénéité », de préférence au 
terme générique « variabilité » et par opposition à 
« hétérogénéité», pour décrire les fluctuations 
perceptibles dans les valeurs d'un seul paramètre, ici la 
température ou la fluorescence. 

Intermittence, fractals et multifractals 
Ainsi, en considérant un processus de cascade élémentaire 
identique à toute échelle, il est possible de représenter un 
processus homogène (non-intermittent), comme un 
processus inhomogène (intermittent) (figure 3). Dans le 
premier cas de figure (figure 3a), à une échelle donnée, un 
tourbillon se résout, à 1 'échelle immédiatement inférieure, 
en quatre sous-tourbillons deux fois plus petits, ce qui 
conduit à un degré d'occupation totale de l'espace daru 
lequel se déploie la cascade, ici un espace bidimensionnel. 
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Figure 2 : Echantillons de la distribution temporelle de x. le flux de variance 
de données temporelles de température (a) et de fluorescence ( b) 

~~,·::·. échantillonnées le 17 Juin 1991 dans le sud de la Mer du Nord,. mettant en 
r:.,· évidence le phénomène d'intermittence. 
,r,· Figure 2: Samples of patterns of z, the rate of variance fluxes of 
·-' temperature (a) and fluorescence (b) time series recorded in the 17 June 
~~·, 1991 in theSouthernBightoftheNorthSea. 

En revanche, une manière d'introduire le concept 
d'intennittence est de considérer qu'un tourbillon se 
résout en sous-tourbillons actifs et inactifs, ce qui conduit 
à une dimension non entière, soit fractale, du support de 
la turbulence, représentée par le "~mode!" (figure 3b) 
(Novikov & Stewart, 1964 ; Mandelbrot, 1974 ; Frisch et 
al., 1978). 
De manière générale le concept de dimension fractale 
découle de celui d'homothétie interne ou autosimilarité 
selon laquelle un objet peut être co~sidéré comme ~ 
ensemble de copies de lui-même à différentes échelles. 
Ainsi, une transformation géométrique conduisant à 
« N objets n fois plus petits » introduit une dimension d : 

d = IogN 1 Iogn 
L'introduction de la géométrie fractale dans les études des 
processus associés à la turbulence permet donc de rendre 
compte du degré d'occupation spatiale d'un processus. Le 
concept théorique de cascade homogène apparaît alors 
comme un cas particulier de cascade inhomogène. 
Toutefois, un tel modèle, s'il permet d'accéder à une 
représentation inhomogène du concept de cascade 
d'énergie, présente l'inconvénient de réduire 
considérablement la représentation du degré 
d'intennittence d'un champ turbulent puisqu'il ne 
c~n~idère que deux niveaux d'énergie (ou plus 
generalement, deux niveaux d'activité), ce qui ne 
correspond pas à la multiplicité des intensités perceptibles 
au sein de processus turbulents, qu'ils soient d'origine 
biotique ou abiotique (figure 2). Dans ce cadre, il est 
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Figure 3 :Processus élémentaire de cascades isotropes: a, un processus de 
cascade homogène (non-intermittente) et b. un processus de cascade 
inhomogène (intermittente), ce dernier processus correspondant au "/3-
model". Dans les deux cas, la prise en compte d'un rapport d'échelle '). = 2 
permet d'accéder à la dimension spatiale de la cascade, non entière (fractale) 
dans le cas de la cascade inhomogène (d'après Schertzer & Lovejoy, 1993). 
F1gure 3: Elementary processes of isotropie cascades : a, an 
homogeneous cascade process (non-intermittent) and b, an 
inhomogeneous cascade process (intermittent), which illustrates the "/3-
model". In both cases the scale ratio À = 2 gives rise to the spatial 
dimension of the cascade which is non-euc/idean (fractal) in the case of 
the inhomogeneous cascade (from Schertzer & Lovejoy, 1993). 

préférable d'envisager un processus de cascade qui, au 
lieu de considérer des sous-tourbillons actifs ou inactifs 
associe à un tourbillon des sous-tourbillons faibles o~ 
forts, l' « a-modèle»" (Schertzer & Lovejoy, 1983, 1985), 
ce qui conduit à un champ inhomogène présentant 
différentes intensités, et donc à un plus grand réalisme 
(figure 4). 
Au bout d'un grand nombre de pas de cascade de ce 
processus, il est possible de générer effectivement des 
champs intermittents en tous points similaires à ceux que 
nous avons pu observer à partir des données empiriques. 
Dans ce contexte, chaque degré d'intermittence est associé 
à une dimension fractale. L'intermittence de la turbulence 
est dès lors définie par une infinité de dimensions 
fractales, d'où la notion de multifractals qui apparaît 
comme une application du concept de fractal simple, 
développé à partir de la description d'objets géométriques 
(Mandelbrot, 1983), à la description de la variabilité 
temporelle et/ou spatiale de processus intermittents. En 
outre, les figures 3 et 4 illustrent la manière dont les 
concepts de fractals et de multifractals permettent 
d'étudier de manière continue un processus multi-échelle 
inhomogène par dégradation successive des échelles 
d'observation. 
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Figure 4 : Processus de cascade isotrope multifractale reposant sur une 
généralisation de la figure 3a par introduction · de différents degrés 
d'intensité (i.e. intermittence) de la turbulence. 
Figure 4: Processes of multifractal isotropie cascade based on a 
generalization of figure 3a introducing different turbulent intensity levels 
(i.e. intermittencies). · 

Vers une description multifractale universelle de 
l'intennittence · 
Notre prise en compte de 1' intermittence des processus 
turbulents repose sur lille généralisation du concept de 
multifractals géométriques qui consiste à associer un 
moment statistique à chaque intensité d'lill processus 
turbulent, soit à chacun de ses degrés d'intermittence. 
Ainsi, les moments statistiques les plus faibles traduisent 
les propriétés moyennes d'un processus turbulent, comme 
peut le faire 1' analyse spectrale par son association à lill 
moment statistique d'ordre 2, alors que les moments 
statistiques les plus élevés traduiront les intermittences les 
plus fortes, qui sont aussi les plus rares et par conséquent 
les plus difficiles à détecter et à analyser. 
Malgré l'apparente complexité induite par la multiplicité, 
voire l'infinité, des paramètres statistiques nécessaires à 
décrire la variabilité d'un .champ inhomogène, 
l'utilisation des multifractals universels (Schertzer & 
Lovejoy, 1987, 1989) permet de caractériser pleinement 
les statistiques d'un champ turbulent à partir de trois 
paramètres : H, C1 et a. 
- H, estimé par combinaison non-linéaire de la pente du 
spectre de variance, traduit les propriétés moyennes du 
processus considéré. 
- cl est la codimension fractale de la moyenne d'un 
processus, soit le degré d'hétérogénéité moyenne du 
processus. Plus C1 est élevé, plus le degré d'intermittence, 
soit l'inhomogénéité sera important (CI = 0 pour lill 
processus homogène tel que la cascade d'énergie de 
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Kolmogorov et C1 = d, d étant la dimension de l'espao 
euclidien considéré, pour un processus si hétérogène qu' i 
est de dimension fractale nulle). 
- a représente un degré de multifractalité. ll exprim 
l'importance de la déviation à la moyenne des valeurs d1 
champ; plus il est élevé, plus les valeurs s'écartant de 1: 
moyenne du champ sont nombreuses; a= 0 dans le cas d1 
modèle de turbulence monofractal (figure 3b). 
La figure 5 présente une illustration des propriétés d'w 
champ intermittent hypothétique traduites par le. 
paramètres C1 et a. Dans le premier cas de figure (figurt 
5a), le paramètre C1 est fixé et a varie: plus a augmente 
plus le nombre de valeurs du champ considéré s'écartan 
de sa moyenne est élevé (i.e. plus le nombrt 
d'intermittences sera élevé et donc, la multifractalité) 
Dans le second cas de figure (figure Sb), le paramètre ~ 
est fixé et cl varie: plus cl augmente, plus l'expression dt 
chaque intermittence est marquée par rapport au reste dl 
champ, i.e. plus l'inhomogénéité est élevée. 
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Figure 5 : Illustration des propriétés d'un champ turbulent (E, le taux dl 
dissipation de 1 'énergie cinétique) traduites par les paramètres multifractah 
universels C1 et a quand a (a) et C1 varient (b) (d'après Pecknold et al. 
1993). 
Figure 5: Illustration of turbulent field properties (c, the turbulent kinetic 
energy dissipation rate) with the universal multifractal parameters C, 
and a for varying a (a) and C, (b) (fromPecknold et al., 1993). 

MATÉRIEL ET MÉTHODES 

Les données utilisées ici pour illustrer l'inhomogénéité de 
la turbulence océanique ont été obtenues le 17 juin 1991 
lors d'un échantillonnage eulérien (i.e. au point fixe) de 
4h55 réalisé en marée de mortes-eaux dans le sud de la 
Mer du Nord (51°0l,30'N ; 02°04,90'E), caractérisée pat 
son fort hydrodynamisme tidal. La température, 
considérée comme un scalaire purement passif, et la 
fluorescence, considérée comme un estimateur de la 
b~omasse phytoplanctonique, ont été enregistrée~ 
Simultanément, en continu, à une même profondeur (5 rn), 



respectivement à l'aide d'une sonde CTD Sea-Bird 19 et 
d'un fluorimètre Sea Tech. La fréquence d'échantil
lonnage étant de 2 Hz, nos analyses sont basées sur une 
série temporelle de 35400 données dont un échantillon est 
présenté sur la :figure 6. 
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Figure 6 : Échantillons de données temporelles de température (a) et de 
fluorescence (b) prélevés dans le Sud de la Mer du Nord. Des fluctuations 
brutales et très localisées sont clairement visibles. 
Figure 6: Samples of temperature (a) and fluorescence (b) time series 
from the Southern Bigh of the North Sea. Sharp fluctuations occurring on 
small time scales are clearly visible. 

Notre caractérisation de la variabilité des champs de 
température et de fluorescence repose dans un premier 
temps sur l'analyse spectrale qui permet d'en résumer les 
caractéristiques moyennes, alors que leur caractérisation 
détaillée repose sur la paramétrisation de tous leurs 
niveaux de variabilité que nous autorise la technique 
d'analyse multifractale universelle, le DTM ("Double 
Trace Moment") (Lavallée, 1991 ; Lavallée et al., 1992). 

PARAMÉTRISATION MULTI-ÉCHELLE D'UN 
PROCESSUS INBOMOGÈNE 

Si le spectre de variance E(/) de la température (figure 7), 
en représentation log-log, montre une loi de décroissance 
(i.e. invariance d'échelle) en -1,75 [E(f) a:.f·fl avec j3= 
1, 75] conforme au -5/3 théorique de Kolmogorov
Obukhov (1941) sur toute la gamme d'échelles 
considérées, le spectre de la fluorescence (figure 7), donc 
de la biomasse phytoplanctonique, présente un 
comportement sensiblement plus complexe (l'écart du j3 
empirique au fJ théorique étant une expression de 
l'intermittence de la turbulence). Pour des fréquences 
s'étendant de 9,5.10'3 à 0,5 Hz (soit pour des échelles 
temporelles de 1 à 105 secondes), le spectre de 
fluorescence présente une loi de décroissance en -1,78 ce 
qui s'accorde avec l'hypothèse de passivité de la biomasse 
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Figure 7 : Spectre de variance de la température (a) et de la fluorescence 
( b ), en représentation log-log. La température présente une invariance 
d'échelle avec fJ = 1,75 à toutes les échelles, alors que la fluorescence est 
invariante d'échelle (ft = 1,78) seulement de 9,5.10'3 à 0,5 Hz. Les 
différences observées avec le comportement spectral théorique d'un scalaire 
passifE(f) = ) 11 avec fJ = S/3 sont dues aux intermittences 
Figure 7: Variance spectrum E(f) (fis frequency) of the temperature (a) 
and fluorescence (b) data, shown in a log-log plot. The temperature data 
are scaling with fJ = 1, 75 whatever the scale whereas fluorescence data 
are scaling only from 9,5.}(}'3 to 0,5 Hz with fJ = 1, 78. The observed 
differences with the theoretical -513 power law trend of a passive scalar 
E(f) = jP with fJ = 513 are due to intermittencies . 

phytoplanctonique. En revanche, pour des fréquences 
inférieures à 9,5.10'3 Hz (soit pour des échelles 
temporelles supérieures à 105 secondes), le comportement 
spectral de la fluorescence présente une rupture d'échelle. 
L'insuffisance de données nous a empêché de déceler un 
comportement invariant d'échelle, observé dans le cas 
d'un enregistrement englobant un cycle de marée complet 
(j3 = 1,22 pour des échelles supérieures à 105 secondes) 
(Seuront et al., 1996a). Dès lors, ce comportement peut 
être associé à des résultats théoriques et empiriques 
(Powell et al., 1975 ; Denman & Platt, 1976 ; Denman et 
al., 1977 ; Bennett & Denman, 1985 ; Steele and 
Henderson, 1992 ; Powell & Okubo, 1994) prédisant un 
aplatissement du spectre de fluorescence par rapport à 
celui d'un scalaire passif (e.g. la température) aux 
échelles où l'influence de la dynamique biologique sur la 
variabilité du phytoplancton devient prépondérante par 
rapport à celle des processus physiques. 
De plus, la rupture d'échelle du champ de fluorescence 
pour des fréquences de l'ordre de 9,5.10'3 Hz peut être 
associée à une échelle temporelle de l'ordre de 105 
secondes qui, en considérant la théorie de la turbulence 
gelée (Taylor, 1921) et une circulation moyenne 
instantanée de l'ordre de 0,3 m.s-1

, ·telle qu'observée 
durant l'échantillonnage, correspond à une échelle 
spatiale de l'ordre de 31 mètres. 
Plus précisément, aux échelles inférieures à 105 secondes 
(i.e. 31 mètres), où le comportement de la fluorescence est 
similaire à celui de la température, 1 'application du DTM 
a montré que la distribution de la biomasse 
phytoplanctonique était analogue à celle de la température 
avec des paramètres multifractals sensiblement 
similaires : H = 0,41 ± 0,02 dans le cas de la température 
et 0,43 ± 0,02 dans le cas de la fluorescence et des valeurs 
de cl et a très proches dans les 2 cas: cl = 0,050 ± 0,01 
et a= 1,75 ± 0,05 pour la température et cl = 0,045 ± 
0,01 et a = 1,85 ± 0,05 pour la fluorescence. La 



distribution du phytoplancton à petite échelle, qui est d'un 
intérêt écologique majeur (Davis et al., 1991), semble 
donc passive dans la mesme où la grande similitude 
existant entre les estimations des paramètres universels de 
la fluorescence et de la température révèlent un couplage 
étroit entre la structure spatio-temporelle des populations 
phytoplanctoniques et celle de leur environnement 
physique. En outre, les techniques de simulation 
multifractale (Pecknold et al., 1993) nous permettent 
d'accéder à une représentation encore inédite à ce jour de 
la structuration spatiale inhomogène de la biomasse 
phytoplanctonique (figure 8) en milieu turbulent 
En revanche, aux échelles où le comportement de la 
fluorescence diffêre significativement de celui de la 
température, 1' absence de comportement invariant 
d'échelle ne nous a pas permis d'appliquer une analyse 
multifractale. 
Ces résultats confirment les résultats obtenus à petite 
échelle par Seuront et al. (1996a, b) à partir de séries 
temporelles enregistrées · à la même station dans des 
conditions hydrodynamiques et hydrologiques similaires 
(marée de mortes-eaux, sud de la Mer du Nord ; Seuront 
et al., 1996a) comme dans des conditions radicalement 
différentes en Manche orientale (marée de vives-eaux ; 
Seuront et al., 1996b) (Tableau I) et dans l'estuaire du St 
Laurent (Teissier, corn. pers.). D'autre part, Seuront et al. 
(1996a) ont montré à partir d'une série temporelle plus 
longue (11h30) qu'après une rupture d'échelle très nette 
se produisant autour de 30 mètres c~ 100 secondes), la 
variabilité de la biomasse phytoplanctonique présentait 
une invariance d'échelle et des paramètres multifractals 
très spécifiques, indiquant une homogénéité plus grande 
et une multifractalité plus faible que dans le cas de la 
température (Tableau I). 
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Figure 8 : Simulation bidimensionnelle d'un champ multifractal de 
phytoplancton avec H = 0,40; C1 = 0,045 ± 0,01 et a= 1,85 ± 0,05. Les 
structures perceptibles à différentes échelles illustrent la structure 
multifractale sous-jacente, responsable du phénomène d' intennittence 
observé dans les données empiriques. Les différents niveaux de gris 
correspondent aux intensités du champ (croissant du noir au blanc). 
Figure 8: A bidimensional simulation of a multifractal turbulent field 
using H = 0,40; C1 = 0,045 :t 0,01 and a= 1,85 :t 0,05 Different 
structures dominate at different length scales, illustrating the underlying 
multifractal structure that produces the empirically observed 
intermittencies. The greyscale corresponds to the field intensifies 
(increasingfrom black to white). 

Tableau I: Valeurs des paramètres multifractals universels obtenus dans la présente étude, comparées aux valeurs obtenues par Seuront et al. (1996a, b), et valeurs 
des pentes fJ des spectres de Fourier. 
Table 1 : The values of the universal multifractal parameters obtained here, compared to the values we previous/y obtained (Seuront et al., J996a, b). The 
values of the slopes fJ of the Fourier power spectra are also indicated. 

scalaire passif scalaire actif 
pour j>O,Ol Hz pour f> 0,038 Hz pour f> 9,5 10"3 Hz pour f< 0,01 Hz 

(Seuront et al., 1996a) (Seuront et a/.,1996b) présente étude (Seuront et a/.,1996a) 

f3 H Cl a. B H Cl a. ~ H Cl a. 13 H Cl a. 
1 Température 1,74 0,42 0,04 1,7 1,65 0,34 0,04 1,7 1,75 0,41 0,05 1,75 - - - -
1 Fluorescence 1,75 0,41 0,04 1,8 1,22 0,12 0,02 

CONCLUSION 

Ces résultats nous ont permis de vérifier l'hypothèse de 
passivité moyenne de la biomasse phytoplanctonique en 
milieu turbulent telle qu'elle a été formulée dès les années 
1970, mais aussi de confirmer sa validité en considérant 
la distribution des intermittences quelles que soient les 
échelles de variabilité. En effet, les analyses entreprises 
n'ont pas pennis de déceler de différences significatives 
entre les distributions de la température et de la 
fluorescence, toutes deux inhomogènes, et ce, aux petites 
échelles d'espace et de temps (les échelles temporelles et 
spatiales considérées étant respectivement inférieures à 
une centaine de secondes et à une vingtaine de mètres), 
confirmant en cela des résultats récents {Seuront et al. 
1996a, b). 
En revanche, au delà d'une échelle critique qui a ici été 
estimée à une trentaine de mètres, et à la lumière de 
résultats antérieurs (Seuront et al., 1996a), il semble que 

0,8 1,78 0,43 0,045 1,85 1,22 0,12 0,02 0,8 

la dynamique des propriétés biologiques du phytoplancton 
prenne le pas sur les processus de dispersion turbulente et 
soit à l'origine d'une structuration très spécifique de la 
biomasse chlorophyllienne. 
Contrairement aux résultats de Pascual et al. (1995) qui 
ne fournissent que des informations qualitatives (e;g. 
absence d'analyse spectrale, essentielle pour établir des 
comparaisons avec d'autres champs et un début de 
paramétrisation d'un processus sur la multifractalité du 
comportement statistique d'abondances zooplancto
niques), l'utilisation des multifractals universels a montré 
que la variabilité associée à des processus stochastiques, 
tels que la distribution de la température et de la 
fluorescence, pouvait être pleinement caractérisée par 
seulement trois paramètres et ce, quelles que soient les 
échelles spatiales ou temporelles considérées. De fait, ces 
résultats montrent que dans un milieu turbulent, considéré 



classiquement comme étant générateur d'homogénéité, la 
distribution du phyto-plancton était particulièrement non 
uniforme, ou inhomogène. Cette inhomogénéité, inhérente 
à la structure des mouvements turbulents, retranscrite par 
l'outil de simulation multifractale, permet ainsi 
d'envisager, loin des statistiques gaussiennes classiques, 
la description multi-échelle du couplage fortement non
linéaire existant entre processus physiques et biologiques. 
Ces techniques, associées au concept de diffusion, 
processus influant directement sur la dynamique des 
populations planctoniques (Okubo, 1980), ont d'ailleurs 
permis d'élaborer un modèle de prospection alimentaire 
de copépodes dans un champ · multifractal de 
phytoplancton (Marguerit, 1996) dont le développement 
semble aujourd'hui essentiel dans l'étude des flux de 
matière au sein de l'écosystème pélagique. 
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Abstract. In the tidally mixed coastal waters of the eastern English Channel, the vertical properties 
of temperature, salinity, in vivo fluorescence, turbidity and light were investigated along an 
inshore-offshore transect, sampled in different tidal conditions. The vertical distribution of these 
parameters was then characterized in terms of mean value, variability (i.e. standard deviation) and 
heterogeneity (i.e. fractal dimension), regarded as a quantitative characterization of the structure of 
the vertical variability of both physical and biological parameters. These different estima tes were then 
subjected to multivariate spatio-temporal analysis and showed a very specifie spatio-temporal 
structure suggesting a differentiai control of the vertical properties of water masses associated with 
both inshore-offshore gradient and tidal advection. In particular, the fractal dimension (i.e. hetero
geneity) of in vivo fluorescence is higher during ebb for offshore waters, suggesting a density depend
ence of the phytoplankton biomass structure. In contrast, the vertical variability of fluorescence is 
higher during flood for inshore waters, leading to an inverse relationship between variability and 
heterogeneity of the vertical distribution of phytoplankton biomass. 

Introduction 

The general importance of recognizing the causes and consequences of hetero
geneity has frequently been emphasized both in marine and terrestrial ecology 
(Hutchinson, 1953; Levin and Paine, 1974; Wiens, 1976; Roughgarden, 1977; 
Southwood, 1977, 1988; Kolasa and Rollo, 1991; Levin, 1992). However, there is 
great confusion in the scientific literature about the relative meaning of 'vari
ability' and 'heterogeneity', depending essentially on a choice of approach 
(Downing, 1991; Naeem and Colwell, 1991; Shachak and Brand, 1991). General 
measures of heterogeneity are sometimes not widely known (Kolasa and Rollo, 
1991) and are usually associated with traditional descriptors, such as the variance
ta-mean ratio (Taylor, 1961; Frontier, 1972; Downing et al., 1987), or the variance 
associated with a mean abundance estimation, regarded as a primary measure to 
examine heterogeneity changes across scales (Greig-Smith, 1952; Kershaw, 1957; 
Goodall, 1974; Ripley, 1987). In this paper, 'variability' indicates changes in the 
values of a given quantitative or qualitative descriptor (Kolasa and Rollo, 1991), 
whereas 'heterogeneity' refers to the structure of its variability, estimated using 
the concept of fractal dimension. Initially introduced to describe the structure of 
patterns so irregular and fragmented that they present not simply a higher degree 
but an altogether different level of complexity, as compared with Euclidean 
approximations (Mandelbrot, 1977, 1983), the concept of fractal more generally 
characterizes patterns exhibiting structure at ali scales. Fractal dimension then 
appears as a useful measure of spatial heterogeneity, offering the advantage of 
describing variability as a continuous function of scale (Palmer, 1988). Low and 
high fractal dimensions characterize heterogeneous and homogeneous patterns 
exhibiting strong and weak spatial dependence, respectively. Since the fractal 
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dimension increases with an increase in complexity of a geometrical abject, the 
fractal geometry therefore provides a method of gaining new insights into spatial 
patterns and heterogeneity. The applicability of these concepts to planktonology 
has recently been demonstrated (Seuront and Lagadeuc, 1997). 

In the eastern English Channel, characterized by its megatidal regime, the 
fluvial supplies, distributed from the Bay of Seine to Cape Griz-Nez, generate a 
coastal water mass drifting nearshore, separated from the open sea by a frontal 
area (Brylinski and Lagadeuc, 1990; Lagadeuc et al., 1997). This coastal flow 
('fleuve côtier'; Brylinski et al., 1991) is characterized by its freshness, turbidity 
(Dupont et al., 1991) and phytoplankton richness (Brylinski et al., 1984; 
Quisthoudt, 1987). Moreover, the dissipation of tidal energy is basically regarded 
to be responsible for the vertical homogenization of inshore and offshore water 
masses (50 rn maximum depth). However, recent investigations have shown that 
the variability perceived in temperature and phytoplankton biomass fluctuations 
can be wholly characterized in terms of heterogeneity over a wide range of scales 
(Seuront et al., 1996a,b; Seuront, 1997) and that this heterogeneity cannat be 
neglected. Indeed, considering the vertical and temporal heterogeneity of photo
synthetic parameters, estimates of primary production are increased from 40 to 
100% (Lizon et al., 1995; Lizon, 1997; Lizon and Lagadeuc, 1998). The goal of the 
present paper is to focus on changes through time and space of the vertical patterns 
ofboth physical and biological parameters characterized in terms ofvariability and 
heterogeneity using a multivariate approach similar to the spatio-temporal analy
sis initially introduced by Ibanez (1973). Our main findings are: (i) that the vari
ability perceived in vertical patterns of well-mixed waters can be quantitatively 
characterized as structurally homogeneous using the concept of fractal dimension; 
(ii) that there is a very specifie structure in space and time ofvariability and hetero
geneity associated with both inshore-Dffshore gradient and tidal forcing; (iii) that 
a multivariate spatio-temporal analysis, used in conjunction with fractal analyses, 
provides an appreciation of the nature and magnitude of the sources of variabil
ity, and appears to be critical for understanding the underlying biological and 
physical processes, and also for designing sampling strategies. 

Method 

Study area and sampling 

Sampling was carried out in April 1993 during spring tide in the Dover straight 
(eastern English Channel), along a transect perpendicular to the coast and to the 
general drift of waters. The transect consisted of 15 equidistant stations (0.3 nauti
cal mile) and was sampled four times from inshore to offshore waters (50°54'35N, 
1°37'15E to 50°57'28N, 1 ~2'35E), leading to equivalent sampling of inshore and 
offshore water masses (Figure 1). It takes -2.5 h to sample each transect, which 
was separated from the one after by -30 min. At each station, measurements of 
physical parameters [temperature, salinity, transmission and photosynthetically 
active radiation (PAR)] and in vivo fluorescence (i.e. an index of phytoplankton 
biomass) were taken from the surface to bottom with an SBE 25 Sealogger CTD 
and a Sea Tech fluorometer, respectively. 
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Fig. 1. Position of the stations along the transect, in the eastern English Channel in the Dover Strait. 

Data analysis 

Fractal dimensions were estimated using a method (Burrough, 1981, 1983) based 
on geostatistics and regionalized variables (RV) theory (Matheron, 1971; Journel 
and Huijbregts, 1978). Patterns of variation in RV can th en be expressed by their 
semivariance y(h), defined as: 

(1) 

where N (h) is the number of pairs of data separated by the distance, or lag h, and 
Zx and Zx + h are the observed values of a given variable at point x and x + h. The 
fractal dimension D was estimated from the slope m of a log-log plot of the semi
variogram (Burrough, 1981, 1983): 

D = (4- m)/2 (2) 

It can be noticed that if the y(h) values estimated between two near samples are 
no more or less different than between two distant samples, the slope of the semi
variogram will be 0, corresponding to a fractal dimension of 2. The slope of the 
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semivariogram m (and therefore the fractal dimension D), indicating the rate of 
change from one scale to another, can then be regarded as an index of the degree 
of spatial dependence of a given parameter. Only scales less than half of the total 
length of the data set are considered, because grea ter distances are more affected 
by law sample sizes and spurious properties of the data (Journel and Huijbregts, 
1978). 

Since our aim was to look for the spatio-temporal properties of our sampling, 
we applied a method similar to the spatio-temporal analysis developed by Ibanez 
(1973) to characterize sampling processes in plankton ecology. We selected vari
ables related to the space-time scales of our sampling experiment and a princi
pal component analysis (PCA) was performed on the observations (i.e. stations 
along each transect, Q mode) and the variables (R mode, sensu Legendre and 
Legendre, 1984). These variables are latitude, longitude, depth, sun elevation and 
tidal current direction. We take as an arbitrary origin for latitude and longitude 
a point located at the intersect between the transect extension and the coastline. 
Depth is expressed in metres, sun elevation reaches its maximum value around 
solar midday, and decreases before and after the solar midday at the same rate, 
and current direction is expressed as an alternance between northerly and 
southerly drifts during flood and ebb tides, respectively. Furthermore, the 
identification of the components of the multivariate analyses was carried out 
using the factor loadings of the variable in the R mode of PCA analysis sin ce the 
factor loading of a given factor could be related to the variance explained by such 
a factor (Legendre and Legendre, 1984). Because a criterion is needed for decid
ing upon appropriate observations to group in the data space, a cluster analysis 
based on an unweighted centroid algorithm (Sokal and Michener, 1958) has been 
carried out on a (Euclidean) distance matrix calculated from the first two prin
cipal components of the multivariate analysis. Afterwards, we introduced 
additional variables related to bath mean, variability and heterogeneity (i.e. 
mean, standard deviation and fractal dimension) of temperature, salinity, light 
transmission, PAR and in vivo fluorescence in arder to characterize their 
organization in the spatio-temporal space associated with the sampling experi
ment. Wind speed and direction were also introduced as indicators of external 
physical forcing. 

Results 

Fractal dimensions were estimated for in vivo fluorescence, temperature and 
salinity which exhibited a scaling behaviour over the whole range of studied 
scales, for inshore as well as for offshore stations (Figure 2). Their linearity over 
the whole range of spatial scales illustrates spatial dependence, suggesting that 
the same process can be regarded as the source of physical and biological 
patterns. Indeed, the mean fractal dimensions of temperature, salinity and in vivo 
fluorescence, estimated for the wh ole data set as 1.495 (± 0.020 SE), 1.510 (± 0.017 
SE) and 1.485 (± 0.019 SE), respectively, were not significantly different 
(Kruskal-Wallis test, P > 0.05). However, the mean fractal dimensions (Table I) 
and their spatial distribution along each transect (Figure 3) lead to further 
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Table I. The mean fractal dimensions of temperature (DT), salinity (Ds) and in vivo fluorescence (Dp) 
for the four sampled transects, shown together with their standard error 

Transect Fractal dimension D 

DT Ds DF 

1 1.488 (0.032) 1.520 (0.024) 1.502 (0.044) 
2 1.626 (0.025) 1.544 (0.034) 1.472 (0.030) 
3 1.545 (0.016) 1.597 (0.018) 1.432 (0.034) 
4 1.399 (0.032) 1.367 (0.048) 1.545 (0.040) 

conclusions. First, except in the case of in vivo fluorescence, mean fractal dimen
sions were significantly different between transects (Kruskal-Wallis test, P < 
0.05 ). Furthermore, except in the case of the first transect, mean fractal dimen
sions of fluorescence, salinity and temperature are significantly different for each 
transect (Kruskal-Wallis test, P < 0.05), the salinity and temperature fractal 
dimension being not significantly different (Dunn test, P > 0,05; Siegel and 
Castellan, 1988). Second, in vivo fluorescence fractal dimensions exhibit a signifi
cant tendency to increase for each transect ( estimated by calcula ting the Kendall 
coefficient of rank correlation 't between the series and the x axis values; Kendall 
and Stuart,1966), whereas temperature and salinity exhibit tendencies to increase 
for the first and fourth transects, and tendencies to decrease for the second tran
sect. Furthermore, PAR and transmission did not exhibit even a partial scaling 
behaviour (i.e. their variability is independent of scale), and therefore were not 
subjected to fractal analysis (data not shown). 

The results of PCA showed that two components explained 95.20% of the 
total variance. The first component (PC-1), which explained 58.95% of the vari
ance, was significantly correlated to latitude, longitude and depth (Figure 4a; 
Table II). This component can then be considered representative of the transect 
from inshore to offshore waters. The second component (PC-2), which 
explained 35.25% of the variance, was significantly correlated to tidal current 
direction and sun elevation (Figure 4a; Table II). The significance of the latter 
component is essentially linked to the alternance of tidal current directions, the 
significant inverse correlation of this axis to sun elevation being associated with 
the solar midday occurrence during flood tide. The projections of the obser
vations in a bidimensional plane defined by the first two components showed 
two distinct parts. The upper and lower parts characterize stations sampled 
during ebb and flood ti des, respectively (Figure 4b ). Furthermore, the 
unweighted centroid clustering showed four groups of observations (Table III; 
Figure 4b ), which confirmed and specified the previous results. The nature of 
these clusters in the environmental space was related to the temporal and spatial 
discrimination shown by the PCA, highlighting both flood tide-ebb tide and 
inshore-offshore differences associated with the gradients shown by the two 
principal axes. 

The additional variables (Table IV), shown in the space of the two first princi
pal components, have been plotted considering their correlation with these axes 
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Fig. 2. Double logarithmic semivariograms of temperature, salinity and in vivo fluorescence (from 
top to bottom) for inshore (a, cande) and offshore (b, d and f) stations of the first transect, shown 
together with their best fitting line. rn is the slope of the empirical se mi variance y( h) versus the lag h , 
in a log-log plot. 

as coordinates; a central square indicates the 95% confidence limits (Figure 5). 
The coordinates of the initial five spatio-temporal variables were also plotted 
considering the values of their corresponding eigen vectors. The observed means, 
standard deviations and fractal dimensions exhibited very specifie behaviours 
(Table IV). The behaviour of observed means can be divided into two different 
groups. First, the means of salinity, transmission and PAR showed a tendency to 
increase from inshore to offshore waters, whereas temperature and in vivo 
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fluorescence showed an inverse tendency. These results, in agreement with our 
previous clustering observations (cf. Figure 4b and Table III), can be related to 
the very specifie hydrological structure observed in the eastern English Channel, 
characterized by an inshore-offshore gradient in terms of salinity, temperature, 
turbidity, phytoplankton and zooplankton biomass (Brylinski and Lagadeuc, 
1990; Brylinski et al., 1991 ). 

The distribution of standard deviations (SD) and fractal dimensions (D) on the 
PCA plot leads to further conclusions. The standard deviations of temperature 
and salinity exhibit very similar behaviours, showing a higher vertical variability 
for inshore waters where mixing processes associated with tidal drift are more 
developed. On the contrary, the vertical variability of in vivo fluorescence and 
transmission is higher during flood and ebb tides, respectively, but is also slightly 
higher for inshore than offshore waters. These observations suggest a differentiai 
alteration of the mean vertical properties of water masses associated with both 
inshore-offshore gradient and tidal advection. Therefore, in the case of purely 
passive scalars (such as temperature and salinity), fluctuations are directly linked 
with tidal mixing processes, whereas in the case of transmission and fluorescence, 
other processes-related to physical and chemical properties of particulate 
matters or the species composition and physiological state of phytoplankton 
cells-get into action and should be taken into account very carefully. Only the 
fractal dimensions estimated for in vivo fluorescence are significantly correlated 
with the two first principal components in the case of fluorescence (Figure 5; 
Table IV). This last observation confirms the absence of systematic variations 
observed in the spatial distribution of temperature and salinity fractal 
dimensions, and the tendency to increase of fluorescence fractal dimensions along 
each transect (cf. Figure 3). In vivo fluorescence fractal dimension is then higher 
for offshore stations and during ebb tide. 

Discussion 

The empirical fractal dimensions, estimated over the whole range of considered 
scales for offshore and inshore stations, suggest that the scales of spatial depend
ence are very similar for in vivo fluorescence, salinity and temperature, indicat
ing similar sources of physical and biological patterns. However, as shawn by the 
spatio-temporal analysis, fractal dimensions of salinity and temperature are 
tidally and geographically independent, in opposition to fluorescence fractal 
dimensions, obviously higher in offshore waters (cf. Figure 5 and Table IV). The 
vertical structure of in vivo fluorescence is th en more homogeneous, or less struc
tured, in offshore locations where the mean observed values of fluorescence are 
low, suggesting a link between the structure and the strength of the fluorescence 
signal (i.e. phytoplankton biomass). Indeed, considering the absence of photo
inhibition (i.e. a clear decrease of in vivo fluorescence around solar midday; 
Falkowski and Kiefer, 1985), phytoplankton biomass distribution in the eastern 
English Channel might then be strongly density dependent, whereas Prairie and 
Duarte (1996) found a weak density dependence in a set of various marine and 
freshwater phytoplankton populations. In that way, because of the strong 
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Table II. The first two spatio-temporal eigen vectors (standardized after multiplication by the square 
root of the eigen vectors' corresponding eigen values) associated with the live spatio-temporal 
variables 

Latitude 
Longitude 
Depth 
Sun elevation 
Current direction 

PC-1 

-0.979 
0.981 

-0.977 
-0.271 

0.013 

PC-1, first principal component; PC-2, second principal component. 

PC-2 

0.160 
--{).161 
-D.058 
-D.906 

0.941 

Table III. Clusters of stations using the first two components of the PCA. Cl us ter analysis has been 
carried out on a Euclidean distance matrix calculated from the two first principal components of the 
PAC 

C-I C-II C-III C-IV 

T1-1-T1-10 Tt-11-Tt-15 T2-1cT2-15 T,.t-TJ-7 
T2-1-T2-? T2-IO-T2-13 T,.s-TJ.Js T4-1-T4.(l 
T4-7-T4-s T4-9-T4-15 

C, cluster; T;.i, transect number (i) and station number U). 

hydrodynamic conditions occurring in the eastern English Channel, the observed 
density dependence could be a consequence of the aggregation processes of 
phytoplankton cells, mainly driven by phytoplankton density and hydrodynam
ics (Riebesell, 1991a,b; Ki!l)rboe, 1997). Fractal dimension of fluorescence also 
exhibits a tidal dependence, leading to an inverse relationship between fractal 
dimension and standard deviation of fluorescence (cf. Figure 5). Fractal dimen
sion and standard deviation are then higher during ebb and flood, respectively. 
However, even if precise phenomenological arguments are stilllacking to exp lain 
these differences, it can be suggested that horizontal advection processes 
associated with the semidiurnal M2 tidal component can be responsible for the 
advection of different water masses through the en tire water column, and modify 
the biological structure of the water column, leading to a differentiai tidal control 
in terms of biological variability and heterogeneity between inshore and offshore 
waters. Whatever that may be, we showed that in tidally mixed coastal waters the 
vertical variability of bath physical and biological parameters could be wholly 
characterized in terms of heterogeneity on small scales (i.e. the scale of the water 
column). Moreover, the vertical variability and its related heterogeneity present 
very specifie patterns in time and/or in space on larger scales (i.e. scales related 
to the tidal cycle and to the inshore-offshore hydrological gradient). 

Previous studies on the dynamics of plankton populations have generally 
underscored the importance of bath temporal and spatial variability of biomass 
and population structure (e.g. Haury et al., 1978). Our results indicate that the 
variability-in so far as it describes the amplitude of fluctuations around a mean 
value-is an insufficient parameter to characterize the structure of a given 
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PC-2 ............... 
Current. direction 

a 

!Latitude 

PC-2 

1-1 

PC-1 

0 

Fig. 4. Correlation circle showing (a) the position of the initial variables and (b) the position of the 
stations in the bidimensional space of the principal axes PC-1 and PC-2. Clusters are shown by dark 
circles (C-I), open squares (C-Il), dark squares (C-III) and open circles (C-IV). 

process. Describing and characterizing this variability is, however, a main 
problem in plankton ecology, especially given recent developments in methods 
for continuously recording at high spatial and temporal resolution (Dickey, 1988, 
1991). In that way, the main contribution of semivariogram analysis and fractal 
dimensions is then to identify and to characterize the scales of spatial depend
ence-as well as the scales of temporal dependence ( e.g. Seuront and Lagadeuc, 
1997)-which are of main interest to appreciate the nature and magnitude of 
sources of variability, critical for understanding the underlying biological and 
physical processes. Moreover, quantitative characterization of patterns, as real
ized in the framework of fractal dimensions, provides a basis for comparing 
models to data, and biological to environmental fluctuations. Such an approach 
also has considerable implications for the design and evaluation of sampling 
schemes in coastal as well as in open ocean. Indeed, the accuracy of a regional 
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Fig. 5. Position of the 14 factors (for codes, see Table IV) in the bidimensional space of PC-1 and· 
PC-2. The coordinates are the correlation coefficients with these axes. The five initial coordinates (no 
abbreviations) are placed with the corresponding elements of the eigen vectors (standardized after 
multiplication by the square root of the corresponding eigen values). Factors significantly correlated 
with PC-1 and/or PC-2 are located outside the central square, corresponding to the 95% confidence 
interval. 

estimate of a spatially dependent parameter (i.e. temperature, salinity and in vivo 
fluorescence) will depend on both fractal dimension estima tes and the scale at 
which measurements are taken. In contrast, the accuracy of a regional estimate 
of a spatially independent (e.g. transmission) parameter will depend only on the 
number of observations. 

This paper bas presented evidence for the potential of spatio-temporal analy
sis, used in conjunction with semivariogram and fractal analyses, to become an 
important descriptive tool in plankton ecology. Furthermore, distinguishing 
between variability and heterogeneity, such an approach provides new insights 
into the spatial and temporal structure of highly fluctuating patterns and 
processes, the understanding of which is actually a maj Ôr issue in marine ecology. 
Indeed, both physical and biological small-scale variability experienced by plank
tonic organisms have been shown to have important implications for foraging, 
growth and population dynamics (Goldman, 1988; Costello et al., 1990; Marrasé 
et al., 1990; Davis et al., 1991; Rothschild, 1992), while heterogeneity (i.e. a struc
tured variability in space and/or intime) is increasingly regarded as an intrinsic 
property of ecosystems (Levin, 1976; Chesson, 1986; Chesson and Case, 1986; 
Naeem and Colwell, 1991). Future studies investigating the magnitude of key 
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Table IV. Names and codes of the 14 additional variables used in the PCA, together with their 
correlation with the two first components of the PCA. The codes are used on the graphs 

Additional data Code PC-1 PC-2 

Mean value 
Temperature T 0.628 -0.259 
Salinity s -0.912 0.244 
Fluorescence F 0.300 0.107 
Transmission Tr -0.789 0.219 
PAR PAR -0.327 0.232 

Standard deviation 
Temperature SDT 0.320 -0.165 
Salinity SDs 0.484 -0.102 
Fluorescence SDp 0.320 -0.559 
Transmission SDTr 0.171 0.419 

Fractal dimension 
Temperature DT -0267 0.022 
Salinity Ds -0.205 -0.029 
Fluorescence Dp -0.729 0.282 

Windspeed Wsp. 0.200 0.180 
Wind direction Wdir. 0.150 0.100 

PC-1, first principal component; PC-2, second principal component. 

fluxes (e.g. carbon or nitrogen cycles) in marine systems should then take advan
tage to focus on the ecological consequences of the spatio-temporal structure of 
variability and heterogeneity in order to provide the most precise understanding 
of a given system, critical to obtain robust estimates of stocks and fluxes (Platt et 
al., 1989). 
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ABSTRACT: In theoretical and field primary production studies, mu ch interest is currently focused on 
the influence of aperiodic vertical mixing generated at the surface by wind speed and/or beat flux. In 
the present work, a Lagrangian random walk mode! was used ta study the interactions between 
periodic vertical tidal mixing and beth photoadaptation and primary production of phytoplankton, in 
typical shallow coastal waters, such as the eastern English Channel. The mode! considers a depth
dependent diffusion coefficient fluctuating accord.ing to the high-low tidal cycles and neap-spring ti dai 
cycles, water columns of different euphotic zone and mixed layer depths, and photoresponse tirne 
constants of natural phytoplankton populations collected in the eastern English Channel. Cells were 
allowed ta light-shade adapt, according to the vertical mixing time scales, by altering their photosyn
thetic properties in response to variations in light. The simulation results indicate fust that vertical tidal 
mixing could control photoadaptation processes at the scale of the high-low tidal cycles at spring tide, 
and at the scale of neap-spring tidal cycles in shallow coastal systems. Secondly, it appears that the 
decreasing vertical mixing intensity between spring and neap tide conditions is responsible for a sig
nificant increase in daily primary production rates, despite the occurrence of photoinhibition at neap 
tide. Therefore, primary production in coastal seas would be a function not only of light and nutrient 
concentrations, but also of photoadaptation processes in relation with vertical tidal mixing. In another 
way, the Lagrangian mode! suggests that the theory according to which cells are adapted to the mean 
light intensity of a water column in a turbulent regime is valid only from a populational point of view. 
From the mode! used, it appears also that our present knowledge on photosynthetic dynamic modeling 
is unsuited to generating pronounced vertical gradients of photosynthetic parameters in ail water 
columns. 

KEY WORDS: Models · Phytoplankton · Photosynthetic parameters · Photoadaptation kinetic · Primary 
production ·Vertical tidal mixing · Coastal waters ·Eastern English Channel 

INTRODUCTION 

In natural environments, phytoplankton cells experi
ence light variations due to astronomical cycles, cloud 
cover, and also to vertical motion caused by turbulent 
mixing encountered in the water columns. Phytoplank
ton can respond to these light variations by photoadap
tation processes (Harris 1980, Capblancq 1995). 

Conceptual bases of phytoplankton photoadaptation 
in response to vertical mixing have been provided by 
studies by Marra (1978a, b), Falkowski (1980), Perry 
et al. (1981), Falkowski & Wirick (1981), Falkowski 
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(1983) and Lewis et al. (1984a). These consist of an 
adaptation of cells to the vertical gradient of light 
when the time-scales of physiological processes are 
shorter than those of vertical mixing events. The pho
tosynthetic characteristics of phytoplankton, such as 
the parameters of the photosynthesis versus irradi
ance curves, then display heterogeneities in the water 
column. In contrast, if vertical mixing takes place on 
lower time-scales than those of photoadaptation, pho
tosynthetic properties of phytoplankton are expected 
to be more uniformly distributed with depth. In agree
ment with these theoretical considerations, it has 
recently been shown that photoadaptation of phyto
plankton can take place at neap tide, in a shallow 
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coastal systPm like the eastern English Channel, influ
enced mostly by the tide (Lizon et ct!. 1995). In this 
area, the occurrence of photoadélptation processes 
was not obvious because the tidal range is one of the 
highest in the world (ranging from 3 to 9 rn), and the 
physical structure of the waters, chlorophyll a and 
nutrient profiles are more generally homogeneous 
(Lizon et al. 1995). Furthermore, photoadaptation pro
cesses occurring in the eastern English Channel have 
noticeable ecological implications. If they are not con
sidered at neap tide, substantial bias (on the arder of 
40%) can result in the da il y primary production rate 
computations (Lizon et al. 1995). 

Concurrently with field or experimental studies 
(Portier & Legendre 1979, Marra 1980, Lewis et al. 
1984a, b, ]\.'fallin & Paerl 1992, Kromkamp & Limbeek 
1993, Grobbelaar 1994). severa! models (Falkowski & 

Wirick 1981, Woods & Onken 1982, Lande & Levvis 
1989, Yamazaki & Kamykowski 1991, Kamykowski et 
al. 1994, Weissing & Huisman 1994, Woods & Bark
mann 1994) have been formulated in arder to carry out 
thorough studies of interactions between vertical mix
ing and photoadaptation. The previously mentioned 
biological-physical interactions have been modelled in 
2 fundamentally different ways. The first approach 
describes the average values of photosynthetic proper
ties of a cell population at a given depth, according to 
vertical rnixing intensity. This type of madel can be 
labelled Eulerian or bulk property mode!. The second 
approach describes vertical displacements and physio
logical responses of individual phytoplankton cells 
in a water column. This kind of model, called Lagran
gian mo del, is primarily of inter est because it considers 
variability in the photosynthetic characteristic of 
phytoplankton that may exist among cells at the same 
depth. Such a variability, resulting from different indi
vidual light exposure histories of cells in turbulent 
environments, matches with in situ measUiements of 
the phytoplankton responses obtained, for example, by 
flow cytometry (Chisholm et al. 1986, Li & Wood 1988, 
Oison et al. 1991). Moreover, recent studies haYe 
shawn-on the basis of innovative statistical tech
niques of analysis in oceanography-that phytoplank
ton biomass is heterogeneously distributed at rnicro
scale, though basically regarded as homogenised by 
turbulent fluid motions (SeUiont et al. 1996a, b). Con
sequently, processes associated with prin1ary produc
tion, or more generally processes encountered in 
marine environments, cannat be considered as aver
age phenomena, but rather as a juxtaposition of many 
specifie events such as individual photosynthetic 
responses. In this way, a Lagrangian approach along 
with the previous studies, leads to the characterization 
of each variability leve! rather than the description of 
an average process. 

ln the previous sludies of photoadaptation in relation 
with turbulence, vertical mixing was always generated 
by an upper mixcd-layer mode! forced by wind speeds, 
and sometimes by heat flux. Hydrodynamical regimes 
were generally constant throughout the day. No theo
retical or field study has been conducted on the influ
ence of periodic variations of vertical mixing-which 
is generated at the bottom of shallow waters by tidal 
currents (Simpson et al. 1990, 1991)- on photosyn
thetic processes and daily primary production rates of 
phytoplankton. Sorne theoretical studies have consid
ered periodic variations of vertical tidal mixing, but 
with regard to phytoplankton biomass only (Cloern 
1991, Koseff et al. 1993, Baretta et al. 1995, Skogen et 
al. 1995). Other studies on the interactions between 
turbulence and photosynthesis have been conducted 
in situ, but in deep waters or in wind-driven turbulent 
waters (Portier & Legendre 1979, Demers & Legendre 
1981, Lewis et al. 1984b, Vézina etal. 1995, Delgadillo
Hinojosa et al. 1997). Furthermore, the conclusions of 
field studies about the effect of vertical mixing on pri
mary production rates (increase or decrease) are often 
inconsistent (Marra 1978b, Mallin & Paer! 1992, Del
gadillo-Hinojosa et al. 1997). Thus, the aim of this 
paper is to conduct a theoretical study, using a 
Lagrangian mode!, on the interactions between verti
cal mixing (which changes according to high-low tidal 
cycles and neap-spring tidal cycles) and both photo
adaptation processes and daily primary production 
rates in typical shallow coastal water columns. In this 
way, the variability of the environmental conditions in
volved in primary production control cannot bide a 
possible relationship between the previously men
tioned physical and biological processes. Such a rela
tionship is hypothesized here. 

The model used in this study describes physiological 
properties of cells instead of cel! concentrations. It takes 
into account both the photoresponse time constants of 
natural phytoplankton populations from the eastern 
English Channel and the tidal current speed measure
ments collected at the same place. For m1;re clarity, 
non-mobile phytoplankton cells are considHed in the 
present case. The sinking rate of cells and wind-driven 
turbulence are neglected. First, a detail€d account of 
physical and biological aspects of our modelling is pro
vided. Secondly, we focus on the relationships between 
vertical mixing related to tidal forcing and both photo
adaptation and primary production processes. 

MATERIALS AND METHODS 

The physical model. In simple vertical transport 
models such as those used in sorne studies (Falkowski 
& Wirick 1981, Yamazaki & Kamykowski 1991, Koseff 
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et al. 1993, Kamykowski el al. 1994, McGillicuddy 
1995), the effcct of turbulence on \'er li cal mixing is typ
ically parameterized by a dcpth-dependent diffusion 
coefficient (K,.). Following Tè!ylor (1954) and Koseff et 
al. (1993). eddy diffusivity is characterized by a turbu
lent velocity scale and a length sc ale which are respec
tively shear velocity u' and the depth of the water col
umn in shallow systems. Since we consider only the 
tide as a source of turbulence in the present study, the 
vertical distribution of K" is parabolic (Koseff et al. 
1993). Using the logarithmic law velocity profile, Kv 
(m-2 ç 1) at depth z and time t is given by (Fisher et al. 
1979, Koseff et al. 1993): 

K,.(z, t) = [K · u'(t) · H(t) · ( h(t) ) · (1- h(t) )] + K 0 (1) 
H(t) H(t) 

where K is the Von Karman constant (0.4), K0 is a small 
\'alue included so that the diffusivity is never equal to 
zero (1 x 10-5 m-2 s-1, a value higher than the molecu
lar diffusivity; cf. Koseff et al. 1993), and h(t) is the dis
tance between the depth of a particle, Z(t) (see Eq. 7). 
and the depth of the water column, H(t) (see Eq. 4). The 
shear velocity u• (m s-1) is defined as {Dyer 1986): 

u'(t) = K · u(t) 

logetd) 

(2) 

where kb is the average diameter of the grains of sedi
ment (0.005 rn). and u(t) is the current velocity calcu
lated for a depth d, near the bottom of the water col
. urnn. In order to treat current velo city variations 
according to both the semidiurnal (M2) and the neap
spring (Mf) tidal cycles, current velocity u(t) (m s-1) was 
calculated by the standard following equation: 

u(t) = [A+B-sin(
2

7tt)J·sin( 27tt) (3) 
T]\1f TM2 

v,rhere A= 0.95 rn s-1, B = 0.43 m ç 1, TM2 = 12.4 h and 
TMI = 14 d. The 2 parameters A and B (the average and 
the range of current velocity variations at the scale of 
the neap-spring tidal cycles respectively) were calcu
lated from in situ current velocity measurements made 
at a depth d in different tidal conditions in the eastern 
English Channel (Lizon 1997). The depth of the water 
column, H(t) (rn), a Ume-dependent parameter, also 
ranges according to both the M2 and Mf tidal cycles: 

H(t) = H + Ç(t) (4) 

v;here H (m) is the average depth of a water column, 
and Ç(t) (m) is the range of the water elevation above 
the a\·erage depth of the water column. This last vari
able is defined from a madel which depends on the 
serni-tidal range a(t) (rn) (G. Chapalain pers. comm.): 

Ç(t) = a(t) ·cos( 21tt) 
T~12 

a(t) = o.s[c+D·sin(~=~) J 

(5) 

(6) 

where C = 5.9 rn and D = 2 m. These 2 parameters were 
also calculated from in situ water column depth varia
tions in different tidal conditions in the eastern English 
Channel (Lizon 1997). 

The location of a particle Z(t) (m) is parameterized by 
a random walk rnodel which considers the vertical 
eddy diffusion coefficient Kvas (Pi el ou 1969, Falkowski 
& Wirick 1981): 

Z(t) = Z(t-1) ± [2M·Kv(z,t)f2 (7) 

where IJ.t is the time interval (see below). A choice is 
made between the algebraical signs +and- with equal 
probability at each t.t. Following Falkowski & Wirick 
(1981), the surface and bottom of the mixed layers are 
treated as reflective boundaries. 

The diurnallight incident upon a cell at depth z and 
time t is given by: 

I(z,t) = IM · sin(~~)efkdZ(tJJ (8) 

where IM is the light intensity on the water column sur
face at noon (850 ].lE m-2 s- 1), DL is the day length 
(12 h), and kct the extinction coefficient. These last 
parameters are considered constant for the study of 
daily primary production rates at the scale of the neap
spring tidal cycles in a given water colurnn. 

The biological mo del. The biological mode! predicts 
the primary production rate (P) by the empirical madel 
of Platt et al. (1980), as a function of the light incident 
upon a cell [I(z,t) notated I in the following equation 
in order to simplify the expression], photosynthetic 
parameters and chlorophyll a concentration of a cell 
(B = 10 pg; Montagnes et al. 1994): 

where P.: is the photosynthetic capacity [maximum of 
the photosynthesis-irradiance (PE) curve], aB is the 
photosynthetic efficiency (slope of the PE curve at low 
light intensity), and f38 a photoinhibition indice (slope 
of the PE curve at high irradiance). 

According to the photoadaptation theory (Falkowski 
& Owens 1980), phytoplankton cells are assumed to 
adapt each of their photosynthetic parameters (r in 
abridged notation) after change in light towards fully 
adapted values f/. Following Falkowski & Owens 
(1980) and Falkowski & Wirick (1981), 1/ can be para
meterized by linear functions of the logarithm of the 
light intensity incident upon a cell, as: 

!j' = br +ar·ln(J) (10) 
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Table 1. Initial va lues of photosynthetic parameters ]P,~ is in 
mgC mg chl a- 1 h- 1, a 11 and 1311 Me in mgC mg chl a- 1 h- 1 (pE 
m- ' s- 1r 1] and ce li-specifie constants used in the biological 
mode] for each photosynthetic parameters: y-LI (h- 1) are 
kinetic constants obtained from low to high light shift experi
ments on natural population of phytoplankton; y-HI (h- 1), from 
the reci procal light shifts; y-inhib. (h-1) is a kinetic constant 
determined when P,i; decreases after a shift under saturating 
light intensity; a and b are the cell-specific constants of. 
Eq . {10) , deduced from the different light shift experiments 

pl~ CtB ~B 

Initial values 2.5 0.05 0.005 
y-LI 0.462 0.278 0.131 
y-HI 0.262 0.477 0.425 
y-inhib. 0.656 
a 1.2 -0.006 -0.001 
a-inhib. -0.4 
b 1.2 0.07 0.007 

where ar and br are cell-specific constants . The instan
taneous values f ; of the photosynthetic parameters can 
then be calculated according to first-order reaction 
kinetics (Cullen & Lewis 1988): 

dr: 
-

1 = Yr·O:~"-f.) dt 1 1 
(11) 

where Yr are first-order kinetic constants. The different 
cell-specific constants used (ar. br and Yr) are pre
sented in Table 1. They have been determined from 
light shift experiments (cf. Cullen & Lewis 1988) of nat
ural populations of phytoplankton collected in coastal 
waters of the eastern English Channel (Lizon 1997). 
Results are consistent with those of Cullen & Lewis 
(1988). Significant different kinetic constants have 
been obtained from low to high light shifts and from 
the reciprocal light shifts (high to low irradiance). 
Therefore, kinetic constants of each parameter deter
rnined from Jow to high light shift experiments are 
used when cells are displaced to the surface of the 
water colurnn. In the opposite case, kinetic constants of 
each parameter determined from high to low light 
shifts are considered. 

The photoinhibition process is weil known to induce 
P~ decreases near the sea surface under high light 
intensity (Harris 1980, Vincent et al. 1984, Neale & 

Richardson 1987, Cullen & Lewis 1988, Ferris & Chris
tian 1991). Such a process has been observed in our 
earlier works conducted in the eastern English Chan
nel (Lizon et al. 1995) and during light shift experi
ments (Lizon 1997) . Photoinhibition is therefore also 
ta ken into account in the present study. It is considered 
here as a photoadaptative process in agreement with 
Cullen & Lewis (1988). In arder to parameterize photo
inhibition, P~ Yalues measured in the natural environ
ment by Lizon et al. (1995) were fitted by Eqs. (10) & 
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Fig. 1. (A) Irradiance and (B) P,i; (continuous line) values 
{Lizon et al. 1995) used to determine a specifie value ar (cf. 
Eq. 10) for P,;:, when light intensity induces photoinhibition 
processes. The best fit (r-2 = 0.703) of the measured data 
(dashed line) was obtained with ar = -0.4. PAR: photosyn-

thetically active radiation 

(11). For a light intensity higher than the photoinhibi
tion threshold (450 flE m-2 s- 1) of photosynthesis, and 
with a particular kinetic constant (Table 1), we deter
rnined a specifie value ar for PJ. It appears that the 
best fit (r2 = 0.703) of the measured data is obtained 
under high light, with ar= -0.4 (Fig. 1) . 

Implementation of the mode!. The software 
STELLA, which has been demonstrated to be an effi
cient tool to transfer a conceptual dynarnic model into 
a practical computer mode! (Costanza 1987, Richmond 
et al. 1987, Wu & Vankat 1991, Hannon & Ruth 1994), 
was used in the present work. 

In ali Lagrangian models, vertical displacements of 
organisms are a function of the vertical eddy diffusivity 
coefficient Kv, but also of the tirne step M (cf. Eq. 10). In 
the present case, Kv is parameterized from in situ mea
surements of current speeds, and therefore displays 
fluctuations according to the low-high and neap
spring tidal cycles (Fig. 2). The time step M is deter
mined following McGillicuddy (1995) and Barkmann & 
Woods (1996), so thal the mixed layer turnover times 
are consistent with measured values for mixing layers 
of sirnilar extent. In this study, as for Barkmann & 
Woods (1996), a time step of 6 min was used. The 
turnover times of 20 and 40 rn depth water columns
vertical extent of the largest eddies-are then on the 
arder of 30 min and 1 h 30 min respectively at spring 
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Fig. 2. Variations of the vertical eddy diffusivity coefficient Kv, 
at the scale of the semi-neap-spring tidal (NT-ST) cycle con

sidered 

tide, and on the order of 2 h 20 min and 7 h 30 min 
respectively at neap tide. Such turnover times are con
sistent ~th the values reported or used by many 
authors (Gargett et al. 1979, Denmann & Gargett 1983, 
Shay & Gregg 1986, McGillicuddy 1995, Barkmann & 
Woods 1996) for high and low turbulence regimes in 
shallow mixing layers. However, in order to compare 
primary production rates between neap tide conditions 
and very weak turbulent regimes, additional simula
tions were made for very small Kv values ( w-3

, 1 o-4 

and 10-s m 2 s-1), i.e. for turnover times up to 100 h. 
The biological model considers only photoadaptation 

processes at short time-scales. It takes no account of 
processes such as ontogenie adaptations (Kirk 1983). 
·which can occur at long time-scales, i.e. at the scale of 
the neap-spring tidal cycles. The physiological proper
ties of cells were the same at the beginning of each 
daylight period (12 h) (Table 1). Therefore, the madel 
was run independently for each simulated day, i.e. for 
each vertical mixing condition. 

Atsunrise of eachsimulated day, 100 cellswiththesame 
photosynthetic characteristics were randomly placed 
within themixedlayer. At each time step.M, newdepths, 
new light intensities and new photosynthetic parameter 
values were calculated for each cell. Instantaneous val
ues of primary production were also calculated for each 
cell, and integrated over the daylight period with the 4th 
arder Runge-Kutta method (Shampine & Watts 1977). 
Since 100 cells is too small a number for study of phyto
plankton responses from a statistical point of view, 3 sim
ulations with 100 cells were made for each tested vertical 
mixing condition. Thus, displayed daily prirnary pro
duction rates will square with the mean rates of the 3 
simulations. Variation coefficients of the daily production 
rates will also be presented. 

The interactions between vertical mixing intensity 
and daily primary production rates were studied at the 
scale of a semi-neap-spring tidal cycle (7 d) for differ
ent typical water columns found in the eastern English 

Table 2. Values of extinction coefficients (kd), average depths 
(Fi) of the coastal (CW), intermediate (lW) and offshore (OW) 
water columns considered in this study, and ratios between 
the euphotic zone and mixed layer depths (Z.IZml of the 3 

kd (m- 1
) 

H(m) 

Z.f'Zrr, 

water columns 

cw 

0.4 

20 

0.49 

rw 

0.3 

30 

0.53 

ow 

0.17 

40 
0.68 

Channel, along an inshore-offshore transect. The 
extinction coefficients (kd) and the average depths (H) 
of the water columns were chosen from data collected 
in the coastal, offshore and intermediate waters of the 
eastern English Channel (Table 2; Lizon 1997). How
ever, since the depths of the euphotic zones (Ze) are all 
different from the depths of the mixed layers (.2;,) (i.e. 
depths of the water columns in the present case) in the 
3 previous water masses (Table 2), additional simula
tions were made for waters where the Ze/2;, ratio is 
equal to the unit. 

RESULTS AND DISCUSSION 

Photoadaptation versus vertical mixing 

In Fig. 3, daily photosynthetic responses of sorne 
individual cells are presented for hydrodynamical 
regimes related to spring and neap tide. It appears that 
vertical heterogeneities of photosynthetic characteris
tics can take place bath at neap and spring tide. At 
neap tide, such results are consistent with earlier stud
ies conducted in the eastern English Channel (Lizon et 
al. 1995, Lizon & Lagadeuc 1998), whereas they are 
more surprising at spring tide. However, the results are 
relatively different between neap and spring tide con
ditions. 

First, vertical gradients of photosynthetic responses 
match with the photoadaptation theory (Falkowski & 
Owens 1980). but only under neap tide conditions. The 
decreases in P~ and the increases of o:B and ~B with 
depth at neap tide indicate that phytoplankton cells 
adapt their photosynthetic properties to the vertical 
gradients of light for weak tidal forcing (Figs. 3 & 4). 
Pronounced photoinhibition processes also occur at 
neap tide, as shown by the weak values of P~ in sur
face waters in the middle of the day (Fig. 3). On the 
contrary, at spring ti de, vertical heterogeneities of pho
tosynthetic parameters are inconsistent with a pho
toadaptation to the decreasing vertical gradient of 
light. Such heterogeneities may be due to the fact that 
cells tend to continuously adjust their photosynthetic 
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Fig. 3. Variations of the photosynthetic pararneters (A) P~. (B) cxB and (C) ~B for 4 individual cells, taken from 4 different depths 
(1. 5, 10 and 20 m) at spring tide (ST) and at neap tide (NT). Arrows indicate the maximum velocity of the tidal current 

characteristics to light variations while they are 
exported rapidly through the water colurnn. Since the 
time-scales of vertical mixing become shorter than 
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Il 

those of the photoadaptation processes at spring tide, 
cells clisplay only partial adaptations to the light envi
ronment. Actually, these photosynthetic parameter 
heterogeneities at spring tide reflect the large photo
synthetic characteristic variability among phytoplank
ton cells located at the same depth (Fig. 4). Consider
ing that eddy diffusivity is not homogeneously 
distributed in a water colurnn (Koseff et al. 1993), each 
cell has its individuallight exposure his tory, and there
fore, different cells cannat show similar physiological 
properties at the same depth, or at different depths at 
spring tide. In brief, the difference between our results 
at spring tide and the photoadaptation theory (Fal
kowski & Owens 1980) can be explained by the fact 
that we consider here the individual cell properties 
and not the population properties, properties on which 
the photoadaptation theory is based. 

Second, vertical gradients of photosynthetic parame
ters are higher at neap tide than at spring tide (Figs. 3 
& 5): the vertical variation coefficients (CV) of the pho-
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tosynthetic parameters display significant increases 
ben-veen spring and neap tide conditions in the 4 stud
ied water colurnns (Fig. 5, Table 3). These results 
match 'vith the simulations of Kamykowski et al. (1994) 
and the field studies of Lewis et al. (1984b). These 
authors showed, for the first time and from in situ col-

Table 3. Kendall's coefficients of rank correlation (t) calcu
lated for the box plot medians (cf. Fig. 5) of the vertical varia
tion coefficients (CV) of P~. a 5 and ~8 , and for the daily pri
mary production rates (P) corresponding to coastal (CW). 
intermediate (lW), offshore (OW) and Z,/Z,. = 1 water 
columns, between spring and neap tide conditions ("p < 1%, 
•p < 5%). 't coefficients were calculated between the original 
data series and the data series and classified by increasing 

order (Legendre & Legendre 1984) 

CV P~ CV cx5 cv~a p 

CV.' 0.810 .. 0.905'' 0.985 .. 0.970 .. 
lW 0.820"' 0.865 .. 0.901"' 0.852 .. 
ow 0.815 .. 0.880" 0.850 .. 0.335 
z.;z.,, = 1 0.765" 0.810" 0.816 .. 0.231 

lected data, the relationship between vertical hetero
geneities of the phytoplankton photosynthetic par
ameters and the hydrodynamical regimes related ta 
wind forcing. However, it appears from our simulation 
results that vertical heterogeneities of photosynthetic 
characteristics are continuous during the day at neap 
tide, whereas they tend ta be reduced, especially for 
Pr: when the current speeds are maximum at spring 
tide (Fig. 3). Therefore, the interactions between pho
toadaptation and vertical mixing at the scale of high
low tidal cycles can occur at spring ti de in our madel, in 
the same way as they occur in the eastern English 
Channel (Lizon et al. 1997). 

It must be added that our simulation results show 
that the CV of P!,, aB and ~B are higher in coastal than 
in Ze/Zm = 1 water columns, at neap tide as weil as at 
spring tide (Fig. 5). The weak values of the CV for 
Z/Zn, = 1 water columns do not fit with the measure
ments of photosynthetic responses collected in the 
eastern English Channel waters. As a matter of fact, 
Lizon et al. (1995) have shown that vertical hetero
geneity of photosynthetic parameters could be on the 
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order of 60% for water colurnns where Z.fZm. = 1. The 
photoadaptative dynarnics used, which is based on our 
present k.nowledge of this subject, th en is not adequate 
to genera te pronounced vertical gradients of photosyn
thetic parameters in ali water colurnns. The differences 
between in situ and modelling observatio::s could be 
explained by only 1 measurement of the cell-specific 
constants of the photosynthetic parameters, and under 
only 1 hydrodynamical condition. Since taxonomie 
composition of phytoplankton community and cell pig
ment contents can change, owing to ontogenie adapta
tions at the scale of the neap-spring tidal cycles (Kirk 
1983, Geider et al. 1996), it can be hypothesized that 
cell-specific constants, which are different with differ
ent species (Cullen & Lewis 1988), could also change at 
this time-scale and could be specifie to water column 
physical characteristics. Lande & Lewis (1989) have 
also suggested that it could be interesting to reconsider 
the validity of sorne functions such as Eq. (10), which 
describe the tully adaptive state of cells (f;'). A non
linear relationship bet\veen r;· and the logarithm of 
the light intensity incident upon a cell could result in 
higher heterogeneity in photosynthetic responses 
between the top and the bottom of a water column. 
These remarks are supported here by a sensibility 
analysis of the cell-specific constants ar. As a matter of 
fact, high values of ar can induce high photosynthetic 
parame ter heterogeneities in a ZeiZm. = 1 water column 
and higher differences in vertical heterogeneities of 
the photosynthetic parameters between neap and 
spring tide conditions (Fig. 6). 

Given that variations of vertical tidal mixing inten
sity could control photoadaptation processes of phyto
plankton at the scale of the neap-spring tidal cycles, 
and also at the scale of high-low tidal cycles at spring 

75 

50 

25 

ST 

liT 

Fig. 6. Box plots showing the verti
cal variation coefficients (CV) of 
the 3 studied photosynthetic para
rneters (P,i!, a.8 and ~8) at spring 
(ST) and neap ·.ide [NT), for cell
specific constants ar (cf. Eq. 10 and 
Table 1) rnultiplied by the factors 

0.5. 2• 3• 0.5, 1, 2 and 3 

tide, the question now is: what is the effect of vertical 
mixing variations at the neap-spring tidal cycles on the 
dai! y primary production rates? 

Primary production rates versus vertical mixing 

First of all, the daily primary production rates are 
noticeably different bet\veen the 4 studied water 
colurnns, irrespective of the hydrodynarnical condi
tions (Fig. 7 A). At spring and neap tides, the higher the 
ratios bet\veen the euphotic zone depths and the 
rnixed layer depths of a given water column, the higher 
the daily production rates (Fig. 7A). Such results are 
not surprising, since, when the euphotic zone depth 
increases, light incident upon the cells located at the 
bottom of the water column increases and the dai! y pri
mary production rates of cells also increase. Therefore, 
th~ daily primary production rates of cell populations 
were divided by the average daily light intensities of 
each rnixed layer in order to obtain a standardised 
index bet\veen the different studied water columns 
(Fig. 7B). 

The overall result of our simulations then is an in
crease in the daily primary production rates between 
spring and neap tide conditions (Fig. 7B). However, the 
previous increases in the daily rates are related to the 
considered water colurnns, i.e. the values of the Z.!Zm 
ratios. Statistically significant increases, on the order of 
40%, are observed in the course of the semi-neap
spring tidal cycle, for coastal and intermediate water 
columns (Table 3) . In contrast, for offshore and 
Ze!Zm = 1 water columns, the tendency toward an in
crease in daily production rates is not significant from 
a statistical point of view (Table 3). In these last 2 cases, 
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Fig. 7. (A) Daily prirnary production rates in coastal (e), intermediate 
(0), offshore (8) and Ze!Zm = 1 (D) water columns between spring (ST) 
and neap tide (NT) conditions. (B) Ratios between the daily production 
rates and the mean daily light intensities of each considered mixed 
layer. (C) Daily prirnary production rates considering photoinhibition 
processes (e and D) or not(~ and t.), in coastal (e and~) and Ze!Zm = 1 (D 
and t.) water colurnns, and daily primary production rates obtained by 
excluding photoadaptation processes (EB) in our calculations in coastal 
waters. In the cases a, b and c, daily production rates resulting from 
simulations with small Kv values (10-3, 10-4 and 10"5 m2 s-1) are reported 

synthetic parameters decreases with an in
crease in the depth of the euphotic zone 
(Fig. 5). It can thus be hypothesized that the 
low CV of photosynthetic parameters in a 
Zc!Zm = 1 water column would be insignifi
cant compared with the vertical gradients of 
light considered in the computation of the cell 
primary production rates. Thus, in a Ze!Zm = 1 
water column, low photoadaptation processes 
would have a weak effect on the daily pro-
duction rates between spring and neap tide 
conditions, for which the vertical gradients of 
lîght are similar. 

Furthermore, the control of daily primary 
production rates by vertical mixing intensity 
is made via photoadaptation processes occur
ring at short time-scales. As a matter of fact, 
differences in daily primary production rates 
between spring and neap tide conditions are 
on the or der of 40% wh en photoadaptation 
processes are taken into account in a coastal 
water column whereas they are on the order 
of only 4.2% if photoadaptation processes are 
not considered (Fig. 7C). Such results con
cerning the physical control of daily primary 
production rates via photoadaptation are in 
agreement with the simulation results of 
Barkmann & Woods (1996), and in disagree
ment with those of Lande & Lewis (1989} and 
Falkowski & Wirick (1981). As a matter of fact, 
Barkman & Woods (1996) also found higher 
production rates under stable conditions than 
in turbulent regimes, and differences on the 
or der of 40% between daily production rates 
computed for the 2 above-mentioned hydro
dynamical conditions. However, our results 
specify that production rate control can be 
exerted by vertical mixing generated by the 
tide (from the bottom of a shallow water col
umn) and occurring periodically at short tiro e
scales. In the Barkmann & Woods (1996} 
study, vertical rnixing of deep water columns 
was induced by heat flux and wind stress, i.e. 
by physical processes occurring at longer 
tirne-scales than those of vertical tidal mixing, 
or th ose of photoadaptation processes. In con
trast to our results, Lande & Lewis (1989) pre-

the increases in daily rates occur late in the course of 
the semi-neap-spring tidal cycle, and all the more 
weakly as the Z/Zrn ratios are close to unity (Fig. 7B). If 
a relationship between daily primary production rates 
and vertical mixing intensities was expected, the influ
ence of the euphotic zone depth on this relationship 
was not be cause the vertical heterogeneity of 3 photo-

dicted weak production rate differences be
tween low and high turbulent regimes, and Falkowski 
& Wirick (1981) concluded that turbulence has very lit
tle effect on phytoplankton primary productivity. The 
discrepancy between the se studies and our simulations 
can be explained by the mixing time-scales consid
ered. For example, Falkowski & Wirick (1981) used Kv 
values inducing turnover times of a 20 rn depth water 
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column, ranging betwePn 110 and 11 000 h for high 
and low turbulent regimes, respectively. In such condi
tions, vertical eddy length scales can never be higher 
than 5 m, and differences in daily production rates 
between stable and turbulent environments cannat be 
displayed. Such explanations are supported here by 
daily primary production rates computed for weak 
eddy diffusivity values (10- 3, 10-4 and 10-5 m 2 s-l) (Fig. 
1A, B): daily production rates were not different 
between turbulent conditions resulting from these 
small Kv values and neap tide conditions. 

From our simulation results, it appears that moderate 
vertical mixing, such as that encountered here some 
time bef ore neap tide ( 1 or 2 d before), would not 
induce an increase in the daily primary production 
rates, irrespective of the water columns considered. 
There is no decrease in the daily production rates 
between the fifth and the seventh day of the semi
neap-spring cycle. Such results refute the hypothesis 
formulafeô by Gallegos & Platt (1985) and Mallin & 
Paerl (1992). These authors assert that moderate verti
cal mixing could stimulate phytoplankton production 
by tempering light limitation of cells located below the 
10% incident irradiance or by reducing the photoinhi
bition effect in surface waters. Vertical mixing, how
ever, would control photoinhibition processes, but at 
the scale of the semi-neap-spring tidal cycle according 
to the present study. As a matter of fact, Fig. 1C shows 
that for 2 different water columns, daily production 
rates, whether considering photoinhibition or not, are 
similar at spring tide whereas daily rates differ by 
about 10% at neap tide, irrespective of the ZeiZm ratio 
values. These results then show, in contrast to the con
clusions of Falkowski & Wirick (1981), that daily pri
mary production rates can be a function of vertical 
mixing intensity, even if photoinhibition processes are 
not considered. 

CONCLUSION 

With reference to our hypothesis, we can conclude 
that vertical tidal mixing could control daily primary 
production rates at the scale of the neap-spring tidal 
cycles in shallow coastal water columns. As a matter of 
fact, from a simple Lagrangian mode!, it appears that 
the decreasing intensity of vertical mixing between 
spring and neap tide conditions is responsible for a sig
nificant increase in daily primary production rates (on 
the order of 40 ~-;, ), via photoadaptation processes 
occurring at short time-scales, with or without photo
inhibition processes. If conclusions of field studies are 
often inconsistent with respect to the effect of turbu
lence on primary production rates (increase or de
crease) (Marra 1978b, Mallin & Paerl1992, Delgadillo-

Hinojosa et al. 1997). this may be due to the com
petitive effect of light and nutrients in the context of 
vertical mixing and stratified waters. In the natural 
environment, vertical mixing can occur at different 
time-scales, and generate limitations in light, in nutri
ents, or in both light and nutrients (Huisman & Weiss
ing 1995, Delgadillo-Hinojosa et al. 1997). 

Therefore, primary production in coastal seas-such 
as the eastern English Channel- would not be only a 
function of light intensity and nutrient concentrations 
(Agoumi 1985, Moloney et al. 1986, Hoch 1995, Hoch & 
Ménesguen 1995, Ménesguen & Hoch 1995), but also 
of photoadaptation processes in relation with vertical 
tidal mixing intensity. Such processes should be con
sidered in future work on primary production madel
ling at mesoscales, even if there is some difficulty in 
identifying this relationship at such scales and in 
coastal seas (Vézina et al. 1995). As a matter of fact, 
biological and physical fluctuations in coastal systems 
can occur faster than the biweekly neap-spring tidal 
cycles, owing to horizontal advection processes of dif
ferent water masses (Lizon et al. 1995, Vézina et al. 
1995, Brylinski et al. 1996), and can partially bide the 
relationship between primary production and vertical 
mixing. However, before conducting further madel
ling, new experiments must be carried out in order to 
study the cell-specific constants of photoadaptation 
processes, for water columns of different Z/Zm ratios, 
and at the scale of the neap-spring tidal cycles. 
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Abstract. A multifractal method of analysis, initially developed in the framework of turbulence and 
having had developments and applications in various geophysical demains (meteorology, hydrology, 
climate, remote sensing, environmental monitoring, seismicity, volcanology), has previously been 
demonstrated to be an efficient tool to analyse the intermittent fluctuations of physical or biological 
oceanographie data (Seuront et al., Geophys. Res. Leu., 23, 3591-3594, 1996 and Nonlin. Processes 
Geophys., 3, 236-246, 1996). Th us, the aim of this paper is, first, to present the conceptual bases of 
multifractals and more precise! y a stochastic multifractal framework which among different advantages 
lead in a rather straightforward manner to uni versai multifractals. We emphasize that contrary to basic 
analysis techniques such as power spectral analysis, uni versai multifractals allow the description of the 
who le statistics of a given field with only three basic parameters. Second, we provide a comprehensive 
detailed description of the analysis techniques applied in such a framework to marine ecologists and 
oceanographers; and third, we illustrate their applicability to an original time series of biological and 
related physical parameters. Our illustrative analyses were based on a 48 h high-frequency time series 
of in vivo fluorescence (i.e. estima te ofphytoplankton biomass), simultaneously recorded with temper
ature and salinity in the tidally mixed coastal waters of the Eastern English Channel. Phytoplankton 
biomass, which surprisingly exhibits three distinct scaling regimes (i.e. a physical-biological-physical 
transition), was demonstrated to exhibit a very specifie heterogeneous distribution, in the framework 
of universal multifractals, over smaller (<10 rn) and larger (>500 rn) scales dominated by different 
turbulent processes as over intermediate scales (10-500 rn) obviously dominated by biological 
processes. 

Introduction 

Marine systems, globally dominated by turbulent events in coastal as in offshore 
locations (Grant et al., 1962; Oakey and Elliott, 1982; Mitchell et al., 1985), exhibit 
an intima te relationship between the structure of phytoplankton populations and 
their physical environment (Steele, 1974, 1976, 1978; Denman and Powell, 1984; 
Legendre and Demers, 1984 ). This association of physical and biological processes 
occurs over a whole range of scales, as shawn by the patterns of physical, chemi
cal and biotic parameters which are strongly interrelated within a given time 
period or spatial region (Cassie, 1959a,b, 1960). Even if for many decades many 
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investigators have shawn that planktonic organisms are neither uniformly nor 
randomly distributed in the ocean (Hardy and Gunther, 1935; Cassie, 1963), these 
results are essentially related to spatial patterns associated with large- and coarse
scale physical processes (Mackas et al. , 1985). On the contrary, on fine and micro 
scales, which are of main interest for biological processes such as phytoplankton 
or zooplankton dynamics (Estrada et al. , 1987; Alcaraz et al. , 1988; Rothschild and 
Osborn, 1988; Sundby and Fossum, 1990; Thomas and Gibson, 1990; Granata and 
Dickey, 1991; Peters and Gross, 1994), very little is known about the effects of 
turbulent processes, basically regarded as a great factor of homogenization. 

More specifically, physical processes, regarded as a main factor in structuring 
biological communities (Legendre and Demers, 1984; Mackas et al. , 1985; Daly 
and Smith, 1993), are intimately linked with the capability of organisms to aggre
gate (i.e. to create patches) , at !east in the case of phytoplankton communities. 
Plankton patchiness (variability at horizontal scales between 10 rn and 100 km, and 
at vertical scales between 0.1 and 50 rn; Mackas et al. , 1985) is then determined by 
the quasi-equilibrium which exists (or not) between biotic processes such as phyto
plankton growth and hydrodynamism-basically estimated by the rate of kinetic 
energy e-which was shawn to be determinant in the size of patches which can 
maintain themselves in the face of diffusion (Skellam, 1951; Kierstead and Slobod
kin, 1953; Denman and Pla tt, 1976; Wroblewski and O'Brien, 1976; Denman et al. , 
1977; Okubo, 1978, 1980; Powell and Okubo, 1994) (e.g. the KISS length as defined 
by Okubo, 1980). Moreover, in addition to these theoretical investigations, the 
interactions between phytoplankton community dynamics and turbulent 
processes have been widely studied by numerous investigators (Platt et al., 1970; 
Platt, 1972; Powell et al. , 1975; Denman, 1976; Fasham and Pugh, 1976; Steele and 
Henderson, 1977, 1992; Portier et al., 1978; Horwood, 1978; Lekan and Wilson, 
1978; Demers et al. , 1979; Wiegand and Pond, 1979). 

These pioneering approaches were essentially based on the assumption that 
turbulent processes can be regarded as homogeneous processes (Kolmogorov, 
1941; Obukhov, 1941, 1949; Corrsin, 1951). However, it bas been shawn that not 
only turbulent fluid motions and the fluctuations of purely passive scalars such as 
temperature generate sharp fluctuations at all scales, but the distribution of these 
fluctuations , i.e. the activity of turbulence , is far from being homogeneous and 
rather extremely intermittent (Batchelor and Townsend, 1949; Kolmogorov, 1962; 
Obukhov, 1962). Thus, recent analysis conducted on zooplankton data (Pascual et 
al. , 1995), temperature and in vivo fluorescence (Seuront et al. , 1996a,b; Seuront, 
1997) have shawn that oceanic scalar fields were heterogeneously disttibuted over 
scales dominated by physical (i.e. turbulent) or biological processes. 

Earlier statistical analysis techniques of plankton patchiness, such as models of 
point processes or power spectral analysis [see Fasham (1978) for a review] char
acterize variability in a very limited way. For instance, power spectral analysis , 
widely used in ecological applications (Platt and Denman, 1975), being only a 
second-arder statistic, characterizes the variability verypoorly by implicitly assum
ing 'quasi-Gaussian' statistics, which are not relevant for intermittent fields . For 
such fields, the best tool is provided by multifractal analysis , as shawn by Pascual 

· et al. (1995), Seuront et al. (1996a) and Seuront (1997) for planktonic fields . 
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Multifractals can be regarded as a rather considerable generalization of fractal 
geometry, essentially developed for the description of geometrical patterns 
(Mandelbrot, 1983). Indeed, fractal geometry has been introduced to describe the 
relationship-known as a scaling relationship-between patterns and the scale of 
measurement: the 'size' of a fractal set varies as the scale at which it is examined 
and raised to a (scaling) exponent, in this case given by the fractal dimension. The 
transition to the concept of multifractal fields (Grassberger, 1983; Hentschel and 
Procaccia, 1983; Schertzer and Lovejoy, 1983, 1985, 1987a; Lovejoy and 
Schertzer, 1985; Parisi and Frisch, 1985; Meneveau and Sreenivasan, 1987) leads 
to the consideration of multifractal fields as an infinite hierarchy of sets (loosely 
speaking, each of them corresponds to the fraction of the spa ce where data exceed 
a given threshold) each with its own fractal dimension. Thus, multifractal fields 
are described by scaling relationships that require a family (even an infinity) of 
different exponents (or dimensions), rather than the single exponent of fractal 
patterns. Despite the apparent complexity induced by a multifractal framework, 
using the universal multifractal formalism (Schertzer and Lovejoy, 1987b, 1989), 
the distribution of a given scalar field can be wholly described by only three 
indices, which resume the statistical behaviour of turbulent fields from larger to 
smaller scales, as weil as from extreme to mean behaviours. 

Previous empirical and theoretical studies of phytoplankton patchiness ( e.g. 
Pla tt, 1972; Denman and Pla tt, 1976; Denman et al., 1977) have been able to quan
tify the scale of variation present in transects of chlorophyll, salinity and tempera
ture, but have been able to say little about the precise variability associated with 
those scales. Herein, the goal of this paper is to provide to marine ecologists and 
oceanographers a detailed account of the universal multifractal techniques previ
ously used for the description of phytoplankton biomass and temperature :fluctu
ations (Seuront et al., 1996a,b; Seuront, 1997) and their application to time series 
of in vivo fluorescence (i.e. phytoplankton biomass) and related physical 
parameters (i.e. temperature and salinity), taken from a fixed mooring in tidally 
mixed coastal waters of the Eastern English Channel. In that way, we provide an 
illustration of the applicability of these techniques in the characterization of the 
whole variability associated with specifie scaling regimes identified with power 
spectral analysis: on small scales, where phytoplankton biomass distribution is 
controlled by turbulent processes, and at broader scales, where the variability in 
the biological and physical parameters such as cell growth and community struc
ture, and horizontal processes, respectively, has an important role in shaping the 
phytoplankton distribution and overrides the local effects of turbulent mixing. 

Background theoretical concepts in turbulence 

Describing turbulent processes 

Developed from 'intuitive' ideas (Richardson, 1922), a classical picture of turbu
lence treats it as a field of nested eddies of decreasing sizes, where turbulent 
kinetic energy 'cascades' with negligible dissipation from the largest energy
containing eddies to smaller and smaller eddies until it reaches Kolmogorov's 
length scale (i.e. viscous scale), where viscosity effects cannat be neglected and 
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start to smooth out turbulent fluctuations. Under the associated hypothesis of 
local isotropy and tri-dimensional homogeneity of turbulence, the velocity fluc
tuations of a given eddy can be described by the scaling relationships 
(Kolmogorov, 1941; Obukhov, 1949): 

(1) 

t:Œr = 'Pl/3[1/3 (2) 

where .:1 V1 = IV(x + /) - V(x)l and âT1 = IT(x + l) - T(x)l are the velocity and 
temperature shears at scale l, e is the dissipation rate of turbulent kinetic energy 
and <pis the resulting flux of non-linear interactions of velocity and temperature 
fields given by <p = e-112x312, where x is the rate of temperature variance flux. 

In Fourier space, the 1/3 law of velocity and temperature fluctuations in phys
ical space [equations (1) and (2)] is associated with a power law for energy and 
variance power spectra (Figure 1) according to Obukhov (1941, 1949) and 
Corrsin (1951): 

(3) 

(4) 

where k is a wavenumber. 
However, contrary to the original proposai (Kolmogorov, 1941; Obukhov, 

1941), it has been shawn (Batchelor and Townsend, 1949; Kolmogorov, 1962; 
Obukhov, 1962) that the rate of energy flux e and the rate of variance flux x
respectively associated with velocity and temperature fiuctuations-exhibit at all 
scales sharp fluctuations called intermittency (Figure 2). Turbulent velocity and 
temperature fluxes are intermittent in the sense that active regions occupy tiny 
fractions of the space available. Assumption of homogeneity is then untenable 
and turbulent fields have to be regarded as inhomogeneous and scale-dependent 
processes. Assuming the validity of the 'refined similarity hypothesis' (Kolmo
gorov, 1962; Obukhov, 1962), this leads to the introduction of the subscript land 
to the modification of the relationships (1) and (2), respectively, as â V1 = e/131113 

and âTI = 't1?'3fl13. 

Modelling intermittent turbulence: from fractals to multifractals 

Intermittent turbulence, fractal theory and multiplicative processes. Basically, the 
concept of eddies hierarchically organized in an isotropie cascade from large to 
small scales can be 'naturally' related to fractal properties in respect to the link 
existing between fractals and self-similarity (e.g. an abject is called self-similar, 
or scale-invariant, if it can be written as a union of rescaled copies of itself, with 
the rescaling isotropie or uniform in ali direction). However, the phenomenology 
of turbulent cascades is rather more complex than the expression 'eddy' would 
lead us to understand, since it becomes necessary to describe how the activity of 
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;; Injection 

Log E(k) 0 
0 Cascade 

0 ~cous dissipation 

~ 

Log k 
km in km a x 

Fig. 1. Schema tic representation showing the form of the frequency spectrum of turbulent velocity 
cascade, where E(k) is the spectral density (variance units/k)Z and k is a wavenumber (m-1). The 
kinetic energy generated by large-scale processes (e.g. wind or tide) cascades through a hierarchy of 
eddies of decreasing size to the viscous subrange where it is dissipated into heat. The change in vari
ance with wavenumber (i.e. slope of power spectrum) is scale invariant with a -5/3 si ope as predicted 
by the theoretical Kolmogorov-Obukhov power law. The wavenumbers kmax and kmin• respectively, 
show the largest scale of creation of turbulence and the smallest scale (i.e. Kolmogorov length scale) 
reached by turbulent eddies where turbulent motions are smoothed out by viscous effects. 

turbulence becomes more and more inhomogeneous at smaller and smaller 
scales. The simplest cascade madel, the ·~-madel' (Novikov and Stewart, 1964; 
Mandelbrot, 1974; Frisch et al., 1978), takes the intermittent nature of turbulence 
into account by assuming that eddies are either 'dead' (inactive) or 'alive' 
(active). This cascade madel has a discrete scale ratio between a parent structure 
and a daughter structure is introduced. For simplicity of implementation, this 
scale ratio is usually 2: one parent at scale l has 2 children at scale l/2. Using a 
notation including scale ratios À= LI! (where Lis a fixed outer scale) associated 
to the scale l, we may write e2t.. = m.et,., where m is a multiplicative factor follow
ing the law: 

1 
Pr(m = -) = lj! 

tjJ 

Pr(m = 0) = 1 -lj! 

'alive' sub-eddy 

'dead' sub-eddy 

(5) 

(6) 
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Fig. 2. Samples of the pattern of the rate of energy flux e (a) estirnated from grid generated turbu
lent velocity fluctuations recorded with a hot wire velocimeter, and the rates of variance fluxes <p esti
mated from in vivo fluorescence (b) and temperature (c) recorded in the Eastern English Channel 
with a Sea Tech fluorometer and a Sea-Bird 25 Sealogger CTD, respectively. Turbulent velocity, in 
vivo fluorescence and temperature fluxes exhibit at ail scales sharp fluctuations called intermittency. 

where \jJ (0 < \jJ < 1) is the parameter of the madel expressing the fraction of dead 
and alive eddies. This elementary process is then iterated n times until the total 
scale ratio 'A = 2n is reached. If we denote \jJ = 2-c, then we have after n steps (if 
we take the first value e1 = 1): 
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Pr(e" = t..c) = t..-c 

Pr(e"-=0)=1-t..-c 

'alive' sub-eddy 

'dead' sub-eddy 

(7) 

(8) 

In practice, this means that in an Euclidean space of dimension d, the ·~-madel' 
(Figure 3) presents only t..-D active sub-eddies, among t..d potential sub-eddies 
( corresponding to the theoretical case of a homogeneous, or space-filling 

OOILn 
00 
l 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

L 

L/2 

0 
0 0 
0 0 
0 0 0 If) \\_ 

Fig. 3. Elementary isotropie cascades. The left-hand side shows a non-intermittent (i.e. homo
geneous) cascade process corresponding to the hypothetical case of a space-filling turbulence. The 
right-hand side shows how intermittency can be modelled by assuming that not ali sub-eddies are 
'alive', leading to a (mono-) fractal description of turbulence. This is an implementation of the 
'rJ-model' (adapted from Schertzer and Lovejoy, 1987b). 
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turbulence), c and D are, respectively, the fractal codimension and dimension 
characterizing the active eddies' activity, related as: 

c= d-D (9) 

where dis the dimension of the space considered (d = 1 for time series, d = 2 for 
bi-dimensional fields). It is already essential to note (Schertzer and Lovejoy, 
1992) that c measures intrinsically the fraction of the space occupied by active 
eddies, i.e. its relative sparseness. Equation (9) corresponds merely to the fact 
that at each step of the cascade process, the fraction of space filled with alive 
eddies decreases by the factor À -c and conversely their energy flux density 
increases by the same factor to ensure average conservation. 

The discrete 'fj-model' is, however, only a caricatural approximation since it 
involves only dead and alive structures, an eddy is killed within a step of the 
cascade. It was indeed expected that the (mono-) fractal nature of this approxi
mation was inadequate considering the realistic perturbations which correspond 
to replace the alternative dead or alive structures by the alternative weak or 
strong structures. 

Discrete multiplicative cascades and multifractals. Rather than only allowing 
eddies to be either 'dead' or 'alive', the 'a-madel' (Schertzer and Lovejoy, 1983, 
1985) considers a more realistic feature allowing them to be either 'more active' 
or 'less active' (Figure 4). Equations (7) and (8) are then modified according to 
the following binomial process: 

Pr( el\ = À"~+) = À -c 'strong' sub-eddy 

Pr( el\ = À"~-) = 1 - À -c 'weak' sub-eddy 

(10) 

(11) 

where 'Y+ and 'Y- (-y-< 0 < 'Y+) are, respectively, the strongest (with associated 
codimension c) and weakest singularities of the turbulent field, each singularity 
corresponding to an intermittency level. Figure 5 illustrates this mechanism for 
one step of the 'a-mode!' cascade. For n steps of the cascade process, the scale 
ratio between the largest eddy and the smallest one is then À = 2n and the final 
pattern obtained (Figures 6 and 7) is very similar to the one observed in the case 
of turbulent field data (cf. Figure 2). With larger and larger number n of steps, 
more and more 'mixed' singularities 'Y ('Y- < 'Y < -y+) are generated by the two 
initial 'pure' singularities -y+ and -y-. One may note here that the '!3-model' 
corresponds to the particular and peculiar case 'Y+= c and 'Y-= -oo, which explains 
why contrary to the general case of the 'a-madel', the iteration of the elemen
tary step does not introduce new singularities and therefore yields a 'black and 
white' outcome. 

When n becomes very large, intermittency can then be characterized by the 
statistical distribution of singularities 'Y ('Y- < -y <-y+): 

(12) 
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Fig. 4. These isotropie cascade processes show how the right-hand side multifractal 'a-mode!' gener
alizes the left·hand side monofractal '13-model' by introducing a more realistic feature of intermit
tency. The 'a-mode!' allows eddies to be 'more active' or 'Jess active' rather than allowing them to be 
either 'dead' or 'alive', leading to a multifractal description of turbulence, each intermittency leve! 
being associated with its own fractal dimension. 

and by the associated probability distribution (Schertzer and Lovejoy, 1987b ): 

(13) 

where c('Y) is a function characterizing the singularities' distribution. One may 
note here that for a multifractal, the value of the field depends on the scale of 
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1 r------f------

Fig. S. Illustration of the 'a-model' for one step of cascade. The weak and strong sub-eddies have, 
respectively, an associated probability Pr(sÀ = 11.1-) = 1 -11.-c (11.-c < 0) and Pr(sÀ = 1\.1+) =Il."" (11.-c > 0), 
rather than Pr(eÀ = 0) = 1 -11.-c and Pr(eÀ =Il.")= 1 -11.-c expected in the case of inactive and active 
sub-eddies of the '~-mode!'. 

f ,., 

f (b) 

(a) 

0 1 

Fig. 6. A schematic representation of the 'a-mode!' generalizing Figure 5 for five steps of the cascade 
process. This shows a function which starts as homogeneous over the en tire interval (a), wh ose scale 
of homogeneity is systematically reduced by a successive factor of 4 (b, c, d and e). Such a cascade 
mode! has the property of conserving the area under the curve (i.e. the energy flux to smaller scale), 
leading to a more and more sparse distribution of increasingly high peaks. The limit of the function 
when the scale of homogeneity goes to zero is dominated by singularities distributed over sparse 
fractal sets (redrawn from Schertzer and Lovejoy, 1987b). 

observation, this is why À is introduced here as a subscript. In practice, experi
mental data are recorded at the smallest available scale, and are then degraded 
through averaging, up to a given scale. As previously shawn for c in the case of 
the monofractal ·~-madel', c('Y) is a codimension [for more discussion, see 
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Fig. 7. A 2D schematic diagram showing a few steps of the discrete multiplicative cascade process of 
the 'a-mode!' with two orders of singularity 'Y- and 'Y+ ( corresponding to the two values taken by the 
independent random increments y~-< 1, and 'Y~+> 1), leading to the appearance of mixed orders of 
singularity y (y- 5o y 5o y+) (adapted from Schertzer et al., 1998). 

Schertzer and Lovejoy (1992)]. Considering that among Îl.d potential sub-eddies 
(i.e. in the case of a hypothetical space-filling turbulence) there are x_-D(-y) sub
eddies of different intensity, c(-y) is expressed as a generalization of equation (9): 

c("Y) = d- D("Y) (14) 

where D( "Y) characterizes the hier arch y of fractal dimensions associated with the 
different intermittency levels (i.e. singularities). That leads to consideration that 
the support of turbulence is defined by an infinite hierarchy of fractal dimensions 
rather than the single dimension of the '!3-model'. A turbulent process can then 
be regarded as a multifractal field, characterized by highly varying fractal dimen
sions in space and time in accordance with the local intensity of turbulent fiuid 
motions. 

Under fairly general conditions, the properties of the probability distribution 
of a random variable are equivalently specified by its statistical moments. The 
latter corresponds to the introduction of the scaling moment function K(q) which 
describes the multiscaling of the statistical moments of arder q of the turbulent 
field which writes: 

(csÀ)q) = ÎI.K(q) 

where '(.)' indicates statistical or spatial averaging. 

(15) 
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The relationship existing between the two scaling functions c(-y) and K(q) 
reduces to the Legendre transform (Parisi and Frisch, 1985) for large scale ratios 
(i.e. À» 1): 

K(q) = max.y {q-y- c('Y)} <=> c(-y) = maxq {q-y- K(q)} (16) 

Equation (16) implies that there is a one-to-one correspondence (see Figures 8 
and 9 for an illustration) between singularities and orders of moments: to any 
order q is associated the singularity which maximizes q-y - c( 'Y) and is the solution 
of c' ('Yq) = q"~" Similarly to any singularity 'Y is associated the order of moment q-v 
which maximizes q-y- K(q) and is the solution of K'(qy) = 'Yq · c(-y) and K(q) 
exhibits severa! general properties of multifractals such as convexity and non
linearity. In particular, for conservative multifractal processes (i.e. <sÀ> = <s1>, 
'r/À) since K(l) = 0 corresponds via the Legendre transform to the fact that the 
corresponding mean singularity of the process, C1 = K'(1) is a fixed point of c(-y), 
and by consequence the latter is tangential to the first bissectrix line [ c( 'Y) = 'Y] in 
'Yl = c( 'Y) = C1, bence c' ( C1) = 1. The determination of the probability distribution 
would require the determination of moments at all scales. With the assumption of 
scaling, it reduces to the determination of a hierarchy of exponents which remains 
nevertheless a priori infinite, and therefore indeterminable, especially for the 
highest orders which correspond to the most extreme variability. However, in the 
framework of universal multifractals (Schertzer and Lovejoy, 1987b, 1989, 1997; 
Lovejoy and Schertzer, 1990), the calculation complexity induced by the hierarchy 
previously described is included in few relevant exponents, which determine the 
moderate variability as well as the extreme variability. 

K(q) 

events rare 1 
K(q) 

extreme 
events 

Fig. S. K(q) versus q showing the tangent line K'(q"Y) = '!tr K(q) exhibits severa! properties of multi
fractals such as convexity and non·linearity. One may note that the tangent line K'(l) = C1 (not 
shown). 
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rare i 
events 

1 

extreme 
events 

Fig. 9. c(-y) versus -y showing the tangent line c'('/q) = q~. As K(q), c(-y) exhibits severa! properties of 
multifractals such as convexity and non-linearity. More precise! y, c(-y) is tangential to the first bissec
trix line [c(-y) =-y] in "'l = c(-yJ) = c1. 

Continuous multiplicative cascades and universal multifractals. The discrete 
cascade processes discussed up to now to simulate intermittency are quite unreal
istic because of the fixed scale ratio (usually) used at each step of the cascade. The 
continuons multiplicative cascade processes (Schertzer and Lovejoy, 1987b, 1989, 
1997), developed as a way to view cascade phenomenology as a continuons 
process, are associated with a densification of scales which consist on the one hand 
of studying the limit Ào ~ 1 adding more and more intermediate scales with a fixed 
global scale ratio À = Ào and on the other hand the limit À ~ oo (Figure 10). 
However, as theoretically demonstrated (Schertzer and Lovejoy, 1987b, 1989, 
1997; Lovejoy and Schertzer, 1990; Schertzer et aL, 1991), the densification process 
converges on universallaws depending only on two fundamental parameters: C1 

and a, which describe the multiscaling behaviour of the scaling functions K(q): 

l c K(q) = _1_1 ( q(Y.- q) 

K(q) = ~1~ln(q) (17) 
a=1 

and c(-y): 

c(-y) =cl ( c'Y ' + l__)a' 
· 1a a 

(18) 

c(-y) = C1exp( ~1 -1) a=1 

. h 1 1 1 Wlt - + -, = . 
a a 
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Densification of scales 

1-------L 

Ào------

SCALE 
RATIO 

SCALE 

Fig. 10. Scheme of the densification of scales process, leading to the viewing of cascade phenomen
ology as a continuous process. This densification consists both of studying the limit À<J __, 1 adding 
more and more intermediate scales and the limit >-. --+ =, where 11.0 and À are, respectively, the small
est scale ratio (i.e. the ratio between two successive measurements) and the global scale ratio [i.e. the 
ratio between the fixed outer scale L and the smallest scale of measurement l (il.= Ul)]. 

C1 is the mean singularity of the process, and also, as already pointed out above 
the codimension of the mean singularity, and therefore measures the mean frac
tality of the process. It satisfies 0::;; C1 ::;; d (dis the Euclidean dimension of the 
observation space ): cl = 0 for a homogeneous process and cl = d for a process 
so heterogeneous that the fractal dimension of the set contributing·to the mean 
is zero. It then characterizes a mean inhomogeneity and can be regarded as the 
me as ure of the sparseness of a given field: the higher the C1, the fewer the field 
values corresponding to any given singularity (Figure Ha). The index a, called 
the Lévy index, is the degree of multifractality bounded between a = 0 and a = 2 
which correspond, respectively, to the monofractal '!3-model' and to the 
log-normal model. It defines how fast the fractality is increasing with higher and 
higher singularities: as a decreases, the high values of the field do not dominate 
as much as for larger values of a; there are more large deviations from the mean 
(Figure llb). 

It can be noticed here that the whole previous developments, conducted in the 
framework of turbulence, can be applied to a great variety of intermittent fields. 
Indeed, they do not depend on the fact that the governing equations are known 
or not: when these equations are known (e.g. in the framework of turbulence), 
one uses until now only their scaling symmetry, not the other ones [see Schertzer 
et al. (1998) for discussion on new alternatives to bridge this gap between 
phenomenology and governing equations]. This is the main reason that the 
following class of multifractal models, often called Fractionally Integrated Flux 
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models (PIF), became used in geophysical fields not related directly to turbu
lence: in analogy with turbulence, a flux cp1, usually associated to sorne invariance 
or conservative property, is defined from a given intermittent scalar field S with 
a scaling relationship similar to those relating flux of energy e and velocity shears, 
or flux <.p and temperature gradients [equations (1) and (2)): 

(19) 

where H (0::; H::; 1) is a parameter which characterizes in a general manner (and 
in a very precise manner when a= 1) the degree of non-conservation of the field 
(H = 1/3 for a sèalar quantity passively advected by non-intermittent turbulence), 
whereas the power of the flux is often taken as a= 1 for simplicity (Schertzer and 
Lovejoy, 1987b; Teissier et al., 1993a,b). However, the most important meaning 
of H corresponds to the fact that it is the order of fractional differentia ti on in 
order to obtain the flux <Pt from the fieldS [see Schertzer et al. (1998) for more 
discussion (in particular for space-time PIF rriodels) and further details]. Let us 
mention briefly that an isotropie fractional differentiation corresponds to a 
multiplication by kH in Fourier space equivalent to power law filtering. 

Data analysis techniques 

Spectral analysis. Basically applied to a variety of geophysical and ecological data 
(Platt and Denman, 1975; McHardy and Czerny, 1987; Ladoy et al., 1991; Olsson 
et al., 1993) to detect scaling behaviours, spectral analysis corresponds to an 
analysis of variance in which the total variance of a given process is partitioned 
into contributions arising from processes with different length scales or time 
scales in the case of spatially or temporally recorded data, respectively. A power 
spectrum separa tes and measures the amount of variability occurring in different 
wavenumber or frequency bands. When ali or parts of the spectrum follow a 
power law like equations (3) and (4), i.e. E(k) = k-!3, the data are scaling in that 
range, i.e. the scaling regime. 13 is the exponent characterizing spectral scale 
invariance: for instance f3 = 5/3 in homogeneous turbulence. The absence of 
characteristic time scales and the presence of a scaling regime indicate that a 
multifractal analysis may prove to be successful. 

Structure functions. A power spectrum being a second-order moment, it rather 
characterizes a mean variability, i.e. a mean scaling behaviour. Then, the previous 
spectral analysis is generalized with the help of the qth-order structure functions 
(Monin and Yaglom, 1975): 

(20) 

where for a given time lag T the fluctuations of the scalar S are averaged over all 
the available values ('<.>' indicates statistical averaging). For scaling processes, 
one way (Monin and Yaglom, 1975; Anselmet et al., 1984) to characterize inter
mittency statistically is based on the study of the scale invariant structure 
exponent ~(q) defined by: 
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(21) 

where T is the largest period ( external scale) of the scaling regime. The scaling 
exponent ~(q) is estimated by the slope of the linear trends of ((.:lS'l")q) versus Tin 
a log-log plot. The first moment, characterizing the scaling of the average abso
lute fluctuations, corresponds to the scaling 'Hurst' exponent H = ~(1), previously 
introduced in equation (19) to characterize the degree of non-conservation of a 
given field. The second moment is linked to the power scaling exponent !3 by f3 = 
1 + ~(2). For simple (monofractal) processes, the scaling exponent of the struc
ture function ~(q) is linear: ~(q) = qH [~(q) = q/2 for Brownian motion and ~(q) 
= q/3 for Obukhov-Corrsin non-intermittent turbulence]. For multifractal 
processes, this exponent is non-linear and concave. 

Moreover, multifractal processes possessing stable and attractive generators 
(Schertzer and Lovejoy, 1987b, 1989; Schertzer et al., 1995), in the universal multi
fractals framework, the departure from linearity of the scale invariant structure 
function exponent ~(q) is then given by the universal multifractal parameters a 
and C1: 

~(q) = qH- _sj_(qrx- q) 
a-1 

(22) 

with K(q) =_.s._ (qrx- q) [see equation (17)]. The parameter His the degree 
a-1 

of non-conservation of the average field [~(1) = H]: H = 0 and H :;z: 0 mean that 
the fluctuations are, respectively, scale independent and scale dependent [H 
ranges from 0.34 to 0.42, and 0.36 to 0.43, respectively, for temperature and 
passive in vivo fluorescence, see Seuront et al. (1996a,b ), Seuront (1997); and 
H = 0.12 for fluorescence over scales dominated by biological activity, see 
Seuront et al. (1996a)]. The second term expresses a deviation from homogene
ity [in which case '(q) = qH], and represents the intermittency effects. 

Double Trace Moment. The Double Trace Moment analysis technique (Laval
lée, 1991; Lavallée et al., 1992) is a generalization of the expression given by equa
tions (15) and (17) to a quantity ( <I>A)'Il by taking the 11th power of the field 
<!>A-which is the general field <P1 defined by equation (19) at the scale ratio A
and then studying its scaling behaviour at decreasing value of the scale ratio À :5: 
A. Renee, the new generated field bas the following multiscaling behaviour: 

(23) 

where K(q,'YJ) is the double trace moment scaling exponent related to K(q,1) = 
K(1) by: 

K(q,'YJ) = K(q'YJ)- qK('YJ) (24) 
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which gives for universality classes [ using equation (17)): 

K(q,lJ) = ll""K(q) (25) 

The scaling exponent K(q,lJ) is estimated by the slope of the linear trends of 

([<P~.A]qJ versus À in a log-log plot. By keeping q fixed (but different from the 

special values 0 and 1), the slope of iK(q,lJ)i as a function of 'Yl in a log-log graph 
gives the value of the index a and C1 is estimated by the intersection with the line 
lJ = 1. Varying then allows a systematic verification of equation (25), and hence 
the universality hypothesis. 

Case study: tidally turbulent coastal waters of the Eastern English Channel 

Data sampling 

Sampling experiments were conducted during 46 h and 24 min in a period of 
spring tide, from 2 to 4 April 1996, at an anchor station (Figure 12) located in 
inshore waters of the Eastern English Channel (50°47'300 N, 1 °33'500 E). 
Temperature and salinity, regarded as passive scalars under purely physical 
control of turbulent motions, and phytoplankton biomass, estimated from 
measurements of in vivo fluorescence intensity, were simultaneously recorded 
from a single depth (10 rn) with Sea-Bird 25 Sealogger CTD probe and a Sea Tech 
fluorometer, respectively. Our analyses are based on three time series recorded 
at 1 Hz (i.e. 167 040 data), which contain temperature, salinity and fluorescence 
data, labelled A, B and C, respectively. Samples of these data are shawn in Figure 
13. Every hour, samples of water were taken at 10 rn depth to estimate chloro
phyll a concentrations, which appear significantly correlated with in vivo fluor
escence (Kendall's,. = 0.652, P < 0.05). 

Scaling and multiscaling of temperature, salinity and fluorescence fields 

Power spectral analysis. We compute the Fourier power spectra of temperature, 
salinity and in vivo fluorescence fluctuations in order to estima te the mean scaling 
properties of those different fields (Figure 14). The temperature and salinity 
power spectra exhibit very similar scaling behaviours [i.e. E(f) o: fr'>, where fis 
the frequency] over the whole range of studied scales (Figure 14a and b ). Over 
smaller scales (1-1000 s), the observed power law trend gives 13 = 1.72 and 13 = 
1.67 for temperature and salinity, respectively. Over larger scales (>1000 s), 
temperature and salinity power spectra bath exhibit steeper power law trends 
with 13 = 1.98 and 13 = 2.25, respectively. The fluorescence power spectrum 
(Figure 14c) presents a slightly complex behaviour with three scaling tendencies 
for scales ranging from 1 to 20 s with 13 = 1.77, from 20 to 1000 s with 13 = 0.66 
and for scales larger than 1000 s with 13 = 1.96. Those temporal transitional scales 
can be associated with spatial scales using probably the most cited and widely 
used method of relating time and space, 'Taylor's hypothesis of frozen turbulence' 
(Taylor, 1938), which basically states that temporal and spatial averages t and l, 
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Fig. 12. Study area and location of the sampling station (*) along the French coast of the Eastern 
English Channel. 

respectively, can be related by a constant velocity V, l = V · t. Then, using the 
mean instantaneous tidal circulation of -0.541 rn s-1 (0.541 ± 0.126 SE), observed 
during the field experiment, the associated transitionallength scales are around 
12 and 540 rn for in vivo fluorescence, and 540 rn for temperature and salinity. 

At small scales, the relative proximity between the spectral behaviour of 
temperature, salinity and fluorescence seems to confirm the hypothesis of passiv
ity of phytoplankton biomass in a turbulent environment. Indeed, the departure 
from the expected theoretical value (13 = 5/3) associated with the behaviour of a 
passive scalar in full y developed turbulence ( Obukhov, 1949; Corrsin, 1951) is not 
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recorded in the Eastern Engiish Channel. Sharp fluctuations occurring on ail time scales are clearly 
visible, indicating the intermittent behaviour of the dataset. 

significant (modified t-test, P < 0.05; Scherrer, 1984). These results, in agreement 
with previous field studies showing chlorophyll spectra which follow approxi
mately the -5/3 power law (e.g. Platt, 1972; Powell et al., 1975), seem to indicate 
that, over these small scales, the space-time structure of phytoplankton biomass 
is primarily influenced by the dynamics of the physical environment, rather than 
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Fig. 14. The power spectra E(f) (fis frequency) of temperature (a), salinity (b) and in vivo fluor
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regimes for scales ranging from 1 to 1000 s and for scales > 1000 s, whereas in vivo fluorescence power 
spectrum exhibits a more complex behaviour with three scaling regimes for scales ranging from l to 
20 s, 20 to 1000 sand for scales >1000 s. 

the behaviour of the organisms themselves. On the other hand, over larger scales 
(i.e. 20 and 1000 s, or 12 and 540 rn), fluorescence also exhibits a very specifie 
spectral behaviour, independent of the physical forcings, with !3 = 0.66. This 
result roughly fits with theoretical and experimental results (Powell et al., 1975; 
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Denman and Platt, 1976; Denman et al., 1977; Bennett and Denman, 1985; Steele 
and Henderson, 1992; Powell and Okubo, 1994) predicting that the phyto
plankton biomass spectrum will be flatter than the spectrum of a scalar contam
inant of the flow field and indicating that in this region different processes 
contribute to the variance of phytoplankton biomass, i.e. that temporal variabil
ity in the biological parameters such as cell growth and community structure has 
an important role in shaping the phytoplankton biomass distribution. 

On the other hand, for scales larger than 1000 s (or 540 rn), the spectral ex
ponents !3 are obviously larger than the theoretical !3 = 5/3 (modified t-test, P > 
0.05; Scherrer, 1984) and the spectral exponent of salinity appears significantly 
larger than the exponents of temperature and the fluorescence, which cannat be 
distinguished (Tukey multiple comparison test, P < 0.05; Zar, 1996). This scaling 
behaviour, obviously independent of turbulent processes, may th en qualitatively 
(we try a quantification latter) be related to the very specifie structuration of the 
hydrological pattern of the Eastern English Channel. Indeed, the megatidal 
regime and the fluvial supplies distributed from the Bay of Seine to Cape Griz
Nez along the French coast generate a heterogeneous coastal water mass which 
drifts nearshore, separated from the open sea by a frontal area (Brylinski and 
Lagadeuc, 1990; Lagadeuc et al., 1997)-known as the 'coastal flow' (Brylinski 
and Lagadeuc, 1990; Brylinski et al., 1991 )-and characterized by its freshness, 
turbidity (Dupont et al., 1991) and phytoplankton richness (Quisthoudt, 1987; 
Brylinski et al., 1991). The very specifie scaling behaviour previously described 
can then be associated bath with the coastal heterogeneity related to the progres
sive integration of freshwater inputs to marine waters (Brylinski et al., 1991; 
Lagadeuc et al., 1997) and with the influence of a frontal area, as suggested by the 
closeness of the scaling exponent !3 with the theoretical !3 = 2 expected in the case 
of frontal mixing (Kraichnan, 1967; Bennett and Denman, 1985). 

Multifractality of oceanic turbulent fields. The computations of the temperature, 
salinity and in vivo fluorescence structure functions (i.e. <(t::.T"')q>, <(.LlS"')q> and 
<(t::.F.,)q>, respectively) confirm the scaling regimes previously shawn by spectral 
analysis for different orders of moments q (Figure 15). The slopes, fitted to the 
data by least squares over the range of scale values for which the data are scaling 
(i.e. the curves are linear), provide estimates of the exponents ~(q). 

The scaling of the first moment ~(1) [~(1) = H] for temperature, salinity ( over 
scales smaller than 1000 s, or 540 rn) and fluorescence ( over scales smaller than 
20 s, or 12 rn) are not significantly different (Analysis of Covariance, P < 0.05; 
Zar, 1996), with ~(1) = 0.40 ± 0.01, ~(1) = 0.38 ± 0.01 and ~(1) = 0.43 ± 0.01, respect
ively. Here, as bèlow, the error bars come from the different portions of the 
dataset analysed separately: for example, with the scaling of temperature and 
salinity up to 1000 s and a database of 167 040 points, we can estimate the ex
ponents for 167 non-overlapping intervals. For scales larger than 1000 s, the 
scaling exponents H (see Table I) appear significantly different for the tempera
ture, salinity and fluorescence fields (Analysis of Covariance, P > 0.05; Zar, 1996), 
the scaling exponents being significantly larger for salinity than those related to 
temperature and fluorescence, which remain indistinguishable (Tukey multiple 
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Table 1. Empirical estimates of the spectral exponent ~. and the first and second moment scaling 
exponent ~(1) = H and ~(2) for temperature, salinity and in vivo fluorescence for the different scaling 
regimes encountered 

t< 20 s 20<t<1000s t>1000s 

H W) ~ H ~(2) ~ H Ç(2) ~ 

Temperature 0.40 0.71 1.72 0.40 0.71 1.72 0.64 0.97 1.98 
Salinity 0.38 0.67 1.67 0.38 0.67 1.67 0.80 1.22 2.25 
Fluorescence 0.43 0.75 1.77 0.00 -0.35 0.66 0.66 0.97 1.96 

Table II. Empirical estimates of the universal multifractal parameters C1 and a for temperature, 
salinity and in vivo fluorescence for the different scaling regimes encountered 

t < 20 s 20 < t < 1000 s t> lOOOs 

cl a c1 a c, a 

Temperature 0.05 1.90 0.05 1.90 0.24 1.35 
Salinity 0.05 1.90 0.05 1.90 0.27 1.50 
Fluorescence 0.06 1.80 0.20 1.60 0.24 1.37 

comparison test, P < 0.05; Zar, 1996). Over intermediate scales (i.e. from 20 to 
1000 s), in vivo fluorescence structure functions <(l:l.F .. )Cf> for the first arder of 
moment show no slope, i.e. ~(1) = H = 0, indicating a conservative behaviour (i.e. 
fluctuations of fluorescence are scale independent). In the same way, the scaling 
of the second-arder moments confirms the estima tes of 13 from the power spectra 
[i3 = 1 + ~(2)] for each scaling regime (cf. Table II). 

More generally, the non-linearity of the empirical curve ~( q) in Figure 16 shows 
that these different fields can be considered as multifractals; the curves carres
pouding to temperature and in vivo fluorescence (i.e. phytoplankton biomass) are 
very close to each other for scales smaller than 1000 s and 20 s, respectively 
(Figure 16a and b), and for scales lat·ger than 1000 s (Figure 16d ande). Within 
experimental error, they cannat be qualitatively (we try a quantification later) 
showed as being different. On the contrary, the empirical curves ~(q) for salinity 
(Figure 16c and f) are slightly different, showing more convex behaviours, espe
cially on large scales (Figure 16f), whereas in vivo fluorescence ~(q) exhibits a 
very specifie behaviour (Figure 17) over scales between 20 and 1000 s. lt can be 
noticed that the empirical moment scaling exponent K(q), obtained by the esti
mates of the slopes of the linear trend of <(<P1)q> versus lin a log-log plot (Figure 
18a) from equation (15), clearly exhibits multifractal properties previously 
described (Figure 18b; cf. Figure 8) and confirms the link existing between the 
exponents K(q) and ~(q) given by equations (17) and (22) (Figure 18b). 

Universality of turbulent oceanic fields. We realize a quantitative description of 
scale invariant fields computing estimations of universal parameters and using the 
DTM analysis technique (Lavallée, 1991; Lavallée et al., 1992), basically applied 
to a great variety of geophysical data (Schmitt et al., 1992a,b, 1993; Teissier et al., 
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linear, indicating multifractality. 

1993a,b; Chigirinskaya et al., 1994, 1997; Lazarev et al., 1994; Falco et al., 1996), 
based on multiscaling properties of the intermittent fluxes <Pt.. (i.e. obtained by 
fractional differentiation of order H) of temperature, salinity and fluorescence 
fields as defined in equation (19). The scaling of the intermittent fluxes<( <P~.A)q> 
(Figure 19) is shown for q = 2 and different values of 'Yl· The slopes of<( <P~.A)q> 
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versus f.... in a log-log plot, fitted by least squares, are the estima tes of K( q, TJ). The 
linear trends of the curves K(q, TJ) versus TJ, plotted in a log-log graph, show that 
equation (25) is well respected for a wide range of 'Tl values (Figure 20). Their 
slopes and the intercepts give, respective! y, the estima tes of a and C1, wholly 
presented in Table II, and suggest an increasing heterogeneity and a decreasing 
multifractality from small to large scales for both physical and biological 
parameters, globally leading to view the distributions of these parameters as more 
patchy distributed on larger scales. 

To test the validity of the estima tes of a and C1 of the intermittent fields, we fit 
the empirical scaling exponent ~(q) with the theoretical universal multifractal 
expression given by a and C1 (Table II) in equation (22). The universal multifrac
tal and empirical fits are excellent until critical moment of arder qc (Table III), 
after which the empirical curves are linear (Figures 16 and 17). This linear behav
iour of the empirical scaling exponent structure function ~(q) is known for 
sufficiently high-order moments (Schertzer and Lovejoy, 1989) and is due to 
sampling limitations (i.e. second-order multifractal phase transition; Schertzer and 
Lovejoy, 1992) oris associated with a divergence of statistical moments (i.e. first
order multifractal phase transition; Schertzer and Lovejoy, 1992) if substantiated 
by large enough sample size. In both cases, for q :2:: qc, the empirical ~(q) follows: 

~(q) = 1- 'Ymaxq (26) 

where 'Y maxis the maximum singularity associated to qc. In the case of a first-order 
phase transition, qc corresponds specifically to maximum singularity measured, 
which is associated with the occurrence of very rare and violent singularities, 
whereas in the case of a second-order multifractal phase transition, qc corresponds 
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to the maximum singularity effectively measurable from a finite sampling [see 
Schmitt et al. (1994) for further developments]. 

In arder to differentia te between: first and second multifractal phase transitions, 
we then compute the theoretical value of the critical moment qs expected in the 
case of sampling limitations given by (Schertzer and Lovejoy, 1992): 

(27) 

and compare it with the qc estimated from the empirical '(q) (see Figures 16 and 
17). With the values of œ and C1 estimated above (Table II), we obtain qs values 
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trace moment scaling exponent K(q, 11) [cf. equation (23)]. 
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Fig. 20. The curves K(q, TJ) versus TJ in a log-log plot for q = 2.5 and 3 (from bottom to top) for 
temperature (a), salinity (b) and in vivo fluorescence (c), where K(q, TJ) = TJnK(q). The slope of the 
straight !ines then gives the estima tes of a and C1 is estimated by the intercept. 
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very close to the values estimated from the empirical curves '(q) for intermediate 
and large-scale fluorescence, but also for temperature and salinity for scales 
larger than 1000 s (qc = qs)· Those critical moments are therefore only linked to 
sampling limitations (i.e. second-order multifractal phase transition), because we 
had to average the original time series up to the scale of 20 and 1000 s, in order 
to be in the appropriate ranges of scales. On the contrary, on smaller scales, the 
situation is obviously different with qc < q,,., clearly indicating that the critical 
moments qc are independent of sampling and characterizing the occurrence of 
very rare and violent singularities in our dataset (i.e. first-order multifractal phase 
transition). 

Those results, showing the extreme similarity of temperature, salinity and 
fluorescence field on small scales (see Tables I, II and III), can be regarded as a 
quantitative verification of the hypothesis of small-scale fluorescence as being a 
purely passive scalar and generalization of previous works which tested the 
passivity assumption using only power spectra (i.e. a second-arder moment). 
Furthermore, the very specifie non-linear behaviour of the structure functions 
scaling exponent '(q) for in vivo fluorescence over scales ranging from 20 to 
1000 s as the differences perceived in temperature, salinity and fluorescence 
distributions for scales larger than 1000 s indicate that variability can also be 
wholly described in a universal multifractal framework even over scales domi
nated by non-turbulent processes. 

Discussion 

Scales ofpatchiness for intermittent.fields in turbulent coastal waters 

Small scales. The present case study has shown that on small scales (i.e. < 20 s, or 
12 rn, for in vivo fluorescence and < 1000 s, or 540 rn, for temperature and salin
ity), in vivo fluorescence, temperature and salinity spectral behaviours are statis
tically indistinguishable and closely follow the -5/3 power law derived by 
Kolmogorov (1941) for the inertial subrange of turbulent velocity fields. This is 
the region of the turbulence spectrum where energy transferred from larger 
eddies (i.e. large-scale eddies induced by external forcings such as wind and tidal 
patterns) to the smallest eddies which dissipate their energy into beat (i.e. viscous 
dissipation cannat be neglected and smooth out turbulent fluctuations). That 
implies that the distribution of phytoplankton was governed primarily by the 
turbulent environment, and not by the net growth rate (which includes division 
and predation) of cells themselves. One may note here that in the case of inter
acting species (i.e. intra- and interspecific interactions), the power spectrum of 
phytoplankton biomass fluctuations should have exhibited a steeper slope, even 
for the inertial subrange (i.e. 13 = 3; Powell and Okubo, 1994). 

Subsequent multifractal analysis confirms and generalizes these observations. 
Indeed, the relative commonality of the estimates of the three basic universal 
multifractal parameters, H, C1 and a-but also the critical moments qc-of 
temperature, salinity and phytoplankton biomass, then reflects profound 
couplings between space-time structure of phytoplankton populations and the 
structure of their physical environment (see Tables II and III), as previously 
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Table m. Theoretical and empirical estimates of the cri ti cal moment q, for temperature, salinity and 
in vivo fluorescence for the different scaling regimes encountered 

t < 20 s 20 < t < lOOOs t>1000s 

q, (thooretical) q, (empirical) q, (theoretical) q, (empirical) q, (theoretical) q, (ompirical) 

Temperature 4.84 2.50 4.84 2.50 2.88 2.80 
Salinity 4.84 3.20 4.84 3.20 2.39 2.50 
Fluorescence 4.77 2.70 2.73 2.80 2.83 2.75 

suggested by simple representations of the extreme intricacy between the 
space-time scales of physical and biological marine processes (Stommel, 1963; 
Haury et al., 1978; Steele, 1978; Marquet et al., 1993). Furthermore, the universal 
multifractal parameters H, C1 and œ obtained from the present study (cf. Table 
II) appear very similar to those obtained from previous studies conducted in 
different water masses and tidal conditions (Table IV). This suggests that the 
small-scale variability of phytoplankton biomass, wholly characterized in terms 
of multifractality, cannat be regarded as density dependent, as previously found 
by Prairie and Duarte (1996) in a various set of marine and freshwater phyto
plankton distribution. One may also note that the difference between the esti
mates of H, C1 and o: observed during spring and neap tides (cf. Table IV) did 
not suggest any tidal dependence of the distribution of bath physical and 
biological parameters. However, in a recent monofractal study of vertical phyto
plankton variability also conducted in the coastal waters of the Eastern English 
Channel, Seuront and Lagadeuc (1998) showed botha density dependence and 
a tidal dependence of phytoplankton biomass distribution associated with the 
inshore-offshore hydrological gradient and the flood/ebb alternance, respect
ively. This study, involving narrower ranges of spatio-temporal scales, then 
cannat be directly compared with the present results. Further investigations are 
therefore still needed to identify the relative effects of different advection 
processes and hydrodynamics on the structuration of phytoplankton biomass 
variability, for instance by considering shorter datasets differentially distributed 
over a whole tidal cycle, but it was not the aim of this paper. 

The examination of the critical moments qc (Table III) led to further 
conclusions. Indeed, our results showed that during a period of spring tide qc < 
q .. [where qc and q5 are the empirical moments after which the scaling exponent 
' ( q) is linear, and the theoretical critical moment characterizing sampling limi
tati ons, respectively J, while similar studies conducted during a period of neap ti de 
(Seuront et al., 1996a) rather suggest qc = qs [q5 = 6.0, with C1 = 0.04 and o: = 1.80 
in equation (27) for phytoplankton biomass ]. This could, therefore, suggest a 
differentiai intermittent behaviour of physical (i.e. temperature and salinity) and 
biological (i.e. phytoplankton biomass) variability in spring and neap tides. Spring 
tide physical and biological variability are characterized by more violent events 
than during neap tide. Such a difference in the occurrence of extreme events 
between different hydrodynamic conditions may be of prime interest in future 
studies in planktonology following the recent emphasis on understanding 
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Table IV. Values of the universal multifractal parameters H, C1 and a obtained by Seuront et al. 
(1996b) in the Eastern English Channel at the end of March 1995 during a period of spring tide (a), by 
Seuront (1997) and Seuront et al. (1996a) in the Southern Bight of the North Sea in June 1991 during 
periods of neap tide (band c, respectively), and compared to the values obtained in the present study 
( d). The values of the slopes of the Fourier power spectra P are also indicated 

(a) 

t<13s 

p H c1 a 

Temperature 1.65 0.34 0.035 1.70 
Salinity 
Fluorescence 1.66 0.36 0.035 1.80 

(b) 

1 < 100 s lOOs< t < 6 h 

p H c1 ex ~ H c1 a 

Temperature 1.75 0.41 0.05 1.75 1.75 0.41 0.05 1.75 
Salinity 
Fluorescence 1.78 0.43 0.045 1.85 -

(c) 

t < 100 s 100 s < t < 12 h 

p H c1 a 13 H cl a 

Temperature 1.74 0.42 0.04 1.70 1.74 0.04 0.05 1.70 
Salinity 
Fluorescence 1.75 0.41 0.04 1.80 1.22 0.12 0.02 0.80 

(d) 

t<20s 20<t<1000s 1000s<t<48h 

13 H cl a 13 H c1 a 13 H c1 a 

Temperature 1.72 0.40 0.05 1.90 1.72 0.40 0.05 1.90 1.98 0.64 0.24 1.35 
Salinity 1.67 0.38 0.05 1.90 1.67 0.38 0.05 1.90 2.25 0.80 0.27 1.50 
Fluorescence 1.77 0.43 0.06 1.80 0.66 0.00 0.20 1.60 1.96 0.66 0.24 1.37 

detailed mechanisms that determine each individual feature (Yamazaki, 1993; 
Paffenhofer, 1994). Moreover, one may note here that our multifractal approach 
provides a very precise statistical description of the studied processes (i.e. esti
mates of all moments, even non-integers, up to moment of order 5), while the 
characterization of other non-Gaussian empirical data or processes is basically 
limited to their three first moments (average, variance and skewness). 

This demonstrated small-scale structured (i.e. non-random) distribution of 
phytoplankton biomass should therefore constitute an important subset in the 
growing field of determining the influence of turbulence on plankton ecosystems 
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(e.g. Castello et al., 1990; Marrasé et al., 1990; Granata and Dickey, 1991; 
Yamazaki and Kamykowski, 1991; Madden and Day, 1992; Küzlrboe, 1993). 
Indeed, it is noteworthy that the present understanding of turbulence incorpor
ated into most aspects of marine and freshwater biol ogy is that turbulence has an 
essentially random effect on transport. This view is predicated on the assumption 
that transport in a turbulent flow is similar to molecular transport and diffusion, 
and is consequently reflected in plankton transport models (Okubo, 1986; Roth
schild and Osborn, 1988; Yamazaki, 1993), as well as other areas in which turbu
lence is important (McCave, 1984; Davis et al., 1991; Yamazaki and Haury, 1993). 
Moreover, heterogeneous particle distributions, such as the very specifie phyto
plankton distribution analysed here in the universal multifractal framework, may 
also have salient consequences, as demonstrated by Currie (1984) on the basis of 
Taylor approximations of the Michaelis-Menten function, on non-linear concen
tration-dependent processes such as phytoplankton coagulation (Riebesell, 
1991a,b; Ki!Z)rboe et al., 1994; Ki0rboe, 1997), the encounter of a mate during 
sexual reproduction (Waite and Harrison, 1992), the encounter rates between a 
zooplanktonic predator and its prey (Rothschild and Osborn, 1988; Sundby and 
Fossum, 1990; MacKenzie et al., 1994; Raby et al., 1994; Ki!Z)rboe and MacKenzie, 
1995; MacKenzie and Ki0rboe, 1995), and then may provide new perspectives in 
the research on primary and secondary production. 

Another salient consequence suggested by our results is that turbulent 
processes cannat be regarded as log-normally distributed, as propounded by 
many workers (Gregg et al., 1973; Belyaev et al., 1975; Osborn, 1978; Elliott and 
Oakey, 1979; Gregg, 1980; Wasburn and Gibson, 1984; Oakey, 1985; Osborn and 
Lueck, 1985a,b; Baker and Gibson, 1987; Gibson, 1991). Log-normal distribution 
being a particular case of multifractal distribution [i.e. ex = 2 in equations (17) and 
(22)], our universal multifractal characterization of small-scale temperature and 
salinity variability therefore indicates another level of structuration of turbulent 
fluid motions. Universal multifractal and log-normal distributions can be 
regarded as belonging to a particular family of skewed distributions reflecting a 
heterogeneous distribution with a few dense patches and a wide range of low
density patches. This means that occasionally we should expect stronger bursts, 
more often than in the Gaussian case, characterizing intermittent processes. The 
phenomenon of intermittency, which is discussed in more detail elsewhere 
(Jiménez, 1997; Jou, 1997), has recently been shown to be associated with the 
presence of strong coherent vortices, with diameter of the arder of 10 times the 
Kolmogorov scale (i.e. the Kolmogorov length scale ), but with much longer 
lengths and probably long lifetimes (Jiménez et al., 1993; Jiménez and Wray, 
1994). 

Coarse scales. On coarser scales (i.e. 20-1000 s, or 12-540 rn), the power spec
trum of phytoplankton density fluctuations is flatter (i.e. 'whiter') than the -5/3 
energy spectrum, i.e. the intensity of patchiness is less than that of environmental 
turbulence fluctuations. Denman and Platt (1976) and Denman et al. (1977) first 
described these relationships for the inertial subrange. They defined three distinct 
regions in the phytoplankton biomass power spectrum. If 'T (s) represents the time 
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taken for a turbulent eddy to transfer its energy to an eddy half its size, and 11 
(s-1) is the doubling rate of the phytoplankton, then for 11-1 »,.,the growth rate 
of the phytoplankton is insufficient to produce a spatio-temporal distribution that 
is different from that of purely passive quantities such as temperature or salinity. 
The phytoplankton behave as passive tracers; thus, the slope of the power spec
trum of phytoplankton density fluctuations is similar to that for environmental 
fluctuations, both in the inertial subrange (!3 = 5/3) and in two-dimensional turbu
lence (!3 = 3; Gower et al., 1980; Deschamps et al., 1981; Abraham, 1998). 
However, for w1 « T, the phytoplankton are doubling sufficiently quickly for 
their spatio-temporal distribution to be no longer nullified by turbulence. The 
spatio-temporal structure of the community cannat be destroyed by the diffusive 
action of the eddies, and in this case theoretical curves indicate a flattening of the 
phytoplankton biomass spectrum, i.e. !3 = 1, both in the inertial subrange 
(Denman and Platt, 1976; Denman et al., 1977) and in two-dimensional turbu
lence (Bennett and Denman, 1985; Powell and Okubo, 1994). For 11-1 =,.,a tran
sitional regime where neither process dominates occurs, and the spatial patterns 
formed may be the result of a complex interaction between T and Il· This tran
sition zone corresponds to the minimum patch which can maintain itself in the 
face of diffusion, known as the KISS length (Okubo, 1978, 1980). The relation
ship between T and 11 has been further quantified by Denman et al. (1977), who 
proposed a critical patch size for phytoplankton in the open ocean of 5-10 km, 
while other theoretical studies have derived a characteristic patch size of 1-2 km 
for phytoplankton populations in bloom conditions (e.g. Okubo, 1980). 

Y et, the interpretation of the proximal cause of small-scale plankton patchiness 
has then been in terms of population growth rather than aggregation of organ
isms which grew elsewhere. However, one may note here that the characteristic 
time and space scales associated with the flattening of our phytoplankton biomass 
spectrum (i.e. 1000 s, or 540 rn) occurs for scales significantly smaller than the 
generation time ofphytoplankton populations (i.e.= 1 day) and the critical patch 
size found in the literature. In that way, comparisons of our universal multifrac
tal distribution of phytoplankton biomass ~(q) (cf. Figure 17) to the structure 
function scaling exponent ~p(q) = -K(q/2) of a biologically active scalar derived 
by Seuront et al. (1996b) from the previous theoretical results of Denman and 
Platt (1976) and Denman et al. (1977) then lead to further conclusions. Phyto
plankton distributions observed in the Eastern English Channel and in the South
ern Bight of the North Sea, respectively, over time scales ranging from 20 to 1000 s 
(i.e. 12-540 rn) and for time scales >100 s (i.e. 30 rn) (Table IV; Seuront et al., 
1996a), are obviously different from the theoretical curve ~p(q) (Figure 21). This 
suggests that aggregation processes occurring over these ranges of scales cannat 
be strictly associated with phytoplankton growth rates. Indeed, field studies 
frequently suggest that plankton aggregations can also be associated with hydro
dynamic discontinuities such as fronts and eddies (Alldredge and Hamm er, 1980; 
Mackas et al., 1980; Herman et al., 1981; Owen, 1981), whîle sorne theoretical 
studies proposed patch-generating mechanisms associated with Langmuir cells 
(Stommel, 1949; Stavn, 1971), internai waves (Kamykowski, 1974), tidal current 
shear (Riley, 1976), wind-driven currents (Verhagen, 1994) and grazing activity 
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(Evans, 1978). In the present case, plankton patches are obviously too small in 
spatial dimension and too transi tory in duration to be the results of reproductive 
population increase. This suggests another level of complexity in the patch-gener
ating mechanisms, such as complex interactions between the turbulence level of 
fluid motions (e.g. different tidal and wind conditions), the phytoplankton 
biomass concentration and the specifie composition of phytoplankton assem
blages, highly variable all along the year in the Eastern English Channel and in 
the Southern Bight of the North Sea (Martin-Jezequel, 1983; Gentilhomme and 
Lizon, 1998). This seems indeed to be the case following the differences observed 
in the universal multifractal parameters between exeriments conducted in the 
Eastern English Channel during a period of spring tide (i.e. H = 0.00, C1 = 0.20 
and a= 1.60; present study), and the Southern Bight of the North Sea (H = 0.12, 
C1 = 0.02 and a= 0.80; Seuront etal., 1996a). Phytoplankton biomass then appears 
to be more conservative (i.e.low H value, the mean of the fluctuations is then Jess 
scale dependent, indicating a reduced flux from large to small scales), more 
heterogeneously distributed (i.e. high C1 value corresponding to sparse patch es) 
and structured (i.e. high a value indicating a higher multifractality, that is to say 
the occurrence of numerous intermittency levels between maximum and 
minimum concentrations) in the Eastern English Channel than in the North Sea. 
Whatever that may be, further investigations are still needed to estimate the rela
tive importance of hydrodynamic, hydrological, seasonal processes and their 
related populational, biological and physiological effects on the precise structure 
of phytoplankton fields. 

At larger scales (i.e. >1000 s, or 540 rn), the situation is quite different, phyto
plankton biomass variability appearing essentially similar to temperature vari
ability, suggesting a decoupling between phytoplankton and salinity dynamics. 
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Fig. 21. The empirical structure function scaling exponent ~(q) estimated for in vivo fluorescence for 
scales ranging from 20 to 1000 s (continuons curve) compared to the universal multifractal functions 
obtain with C1 and a in equation (22) (open circles) and to the theoretical formulation for ~(q) 
proposed by Seuront et aL (1996b) as an extension of previous spectral and dimension al theoretical 
works by Denman and Platt (1976) and Denman et al. (1977) (dashed curve). 
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Then, over this range of scales, river infiow cannat be directly regarded as a 
source of phytoplankton biomass variability, which seems to be rather controlled 
by mixing processes associated with the frontal area separating inshore and 
offshore waters, as suggested by the very specifie spectral behaviour (i.e. 13 = 2; 
Kraichnan, 1967; Bennett and Denman, 1985) and the extreme similarity existing 
between the universal multifractal parameterization of temperature and in vivo 
fluorescence (cf. Table II). However, both the coastal heterogeneity in salinity 
related to the progressive integration of freshwater inputs to marine waters 
(Brylinski et al., 1991; Lagadeuc et al., 1997) and the haline stratification existing 
at the mouth of estuaries which main tains nu trient-rich waters favouring the initi
ation of phytoplankton blooms (Pingree et al., 1986) can also be regarded as 
potential sources of heterogeneity in the coastal distribution of phytoplankton 
biomass in this area. In that way, one may also note that the occurrence of a joint 
transition zone for these three parameters demonstrates that the scales of the 
physics and biology were nearly coïncident, even when the interactions are not 
necessarily closely coupled. This could suggest a differentiai physical control of 
phytoplankton biomass distribution, the precise nature of these interactions 
remaining unresolved. The values of the universal multifractal parameters, H, C1 

and a (see Table II), nevertheless indicate a more patch y distribution of tempera
ture, salinity and phytoplankton biomass in comparison with the scales domin
ated by tri-dimensional turbulent processes (i.e. the inertial subrange) where 
heterogeneity was very low (i.e. C1 values) and multifractality approached its 
upper limit (i.e. a= 2). 

Multifractal analysis: a new way of looking across scales for intermittent 
pro cesses 

The different transition zones separating the previously described partial scaling 
behaviours indicate characteristic scales where the environmental properties or 
constraints acting upon organisms, or more generally the structure of the vari
ability of a given field, are changing rapidly (Frontier, 1987; Seuront and 
Lagadeuc, 1997). The concepts of 'scale' and 'pattern' being ineluctably inter
twined (Hutchinson, 1953), the identification of scales, which is at the core of our 
thought process, then appears to be essential to the identification and charac
terization of patterns (Legendre and Fortin, 1989; Wiens, 1989; Jarvis, 1995). The 
problem of scale has fundamental applied importance in ecosystem modelling. 
Until now, the study of population variability has required the selection of an 
appropriate region of the space-time domain (Steele, 1988). For instance, the 
general circulation models that provicte· the basis for elima te prediction (Hansen 
et al., 1988), as well as the regional circulation models (Nihoul and Djenidi, 1991; 
Salomon and Breton, 1993), operate on spatial and temporal scales many orders 
of magnitude greater than the scales at which most ecological processes, such as 
physiological and behavioural responses of phytoplankton and zooplankton, 
occur. Moreover, the development of new observation techniques such as remote 
sensing, while providing very exciting images of surface patterns of both chloro
phyll and temperature over a wide range of scales (Abbott and Zion, 1985, 1987; 
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Denman and Abbott, 1988), must also lump functional ecological classes, sorne
times into very crude assemblages, suppressing considerable detail, whereas 
ecological studies require that we sample spatially and temporally as full y as poss
ible (see, for example, Platt et al., 1989). By interfacing individual-based models 
with fiuid dynamics models, therefore, one seeks to interrelate phenomena acting 
on different scales (Billen and Lancelot, 1988; Sharples and Tett, 1994; Zakard
jian and Prieur, 1994), but it is still necessary to have available a suite of models 
of different levels of complexity and to understand the consequences of suppress
ing or incorporating details. Actual key challenges in the study of ecological 
systems therefore involve ways to deal with the collective dynamics of heteroge
neously distributed ensembles of individuals, and to understand how to relate 
phenomena across scales, i.e. to scale from small to large spatio-temporal scales 
(Auger and Poggiale, 1996; Levin et al., 1997; Poggiale, 1998a,b ). 

However, the development of theoretical models which incorporate multiple 
scales and which will guide the collection and the interpretation of data is still 
lacking because of the insufficiency of techniques to look across scales (Steele, 
1991 ). This is the major contribution of fractal geometry (Mandelbrot, 1977, 1983; 
Frontier, 1987; Milne, 1988; Sugihara and May, 1990a), which is recognized to be 
capable of describing how patterns change across scales. Then, basically assum
ing that there is no single scale at which ecosystems should be described, there is 
no single scale at which models should be constructed (Levin, 1992). Further
more, Bellehumeur et al. (1997) showed that an ecological phenomenon spread 
out in space and time does not have discrete spatial scales, but a continuum of 
spatio-temporal structures whose perception depends on the size of the sampling 
units, an assumption which greatly agrees with our multiscale approach. Conse
quently, ecological processes seem to be better described by a continuum of scales 
rather than a hierarchy of overlapped scales (Allen and Starr, 1982; O'Neill, 1989; 
Allen and Hoekstra, 1991; O'Neill et al., 1991). In such a background, universal 
multifractal formalism, leading to a very precise characterization of variability by 
the way of continuous multiplicative processes (with the help of the three basic 
empirical parameters), appears to be an efficient descriptive tool which should 
also allow the modelling of the multiscale detailed variability of intermittently 
fluctuating biological fields as the global properties of their surrounding physical 
environment. Indeed, multifractal approaches are much better than the usual 
approaches which give a description at a very limited range of scales. One may 
note that models or direct numerical simulations possess no way to change the 
scale upward (upscaling) or downward (downscaling). It is natural, on the 
contrary, for multifractal processes. In fact, to evaluate the effects of the statis
tics of the small-scale space-time patterns on the longer time scale global statis
tics, one requires simultaneous simulations of bath. Such simulations are, 
however, now feasible using new multifractal techniques (Wilson et al., 1989; 
Pecknold et al., 1993; Marsan et al., 1996, 1997), leading to the development of 
explora tory studies of zooplankton behaviour within multifractal phytoplankton 
fields (Marguerit et al., 1998) which can be regarded as a new way to investigate 
the trophodynamics of zooplankton. 

Multifractals and, in particular, universal multifractals then appear to be a 
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potential powerful tool in analysing multiscale space-time variability of any inter
mittent processes and improve on previous studies showing the applicability of 
non-linear algorithms (Sugihara and May, 199Gb; Sugihara et al., 1990; Ascioti et 
al., 1993; Strutton et al., 1996, 1997a,b) and multifractal analysis (Pascual et al., 
1995) to bath spatial and temporal planktonic data in severa! ways. First, the use 
of universal multifractals provides three fundamental parameters characterizing 
the organization, or structure, of the whole variability of a given intermittent 
process, and then allows direct comparisons to be made between biological and 
physical fields. That is, universal multifractal analysis can be regarded as a way to 
delineate the relative contributions of the biological and physical processes to the 
patterns observed, a major issue in marine ecology (Haury et al., 1978; Denman 
and Powell, 1984; Legendre and Demers, 1984; Mackas et al., 1985; Daly and 
Smith, 1993). Moreover, even if spectral analysis methods and concepts have 
played a major role in previous work concerning the identification of the scales of 
plankton patchiness (Platt and Denman, 1975; Platt, 1978; Fasham, 1978; Harris, 
1980), they are large! y insufficient to characterize the precise distribution of phyto
plankton biomass, which appears to be essential to provide accurate estimates of 
the magnitude of related key fluxes such as primary, new and export productions 
following the extreme sensitivity of numerical modelling even to min or changes in 
parameter values (Werner et al., 1993). Second, the predictive efficiency of non
linear algorithms, based on interpolations of pre-existing data by a simplex 
procedure [see, for example, Sugihara and May (1990b) for further details on the 
nearest-neighbour algorithm] and essentially aimed to distinguish between deter
minist and stochastic components of a given dataset, is poor in comparison with 
the technique of simulating continuous multifractal cascades (Schertzer and 
Lovejoy, 1987b; Wilson et al., 1991; Pecknold et al., 1993; Schertzer et al., 1998) 
which produce fields which are very good approximations-at ali scales and inten
sities-of the statistics of the measured field, and determine the probability distri
bution of the field values. Finally, using the concept of first- and second-arder 
multifractal phase transitions, we can characterize the strength of the very rare and 
violent events present in a given dataset and quantify the range of statistical 
moments which can be accurately estimated given the finite sample size, respect
ively. In the general background of spatio-temporal intermittency encountered 
in the ocean (Platt et al., 1989), knowledge of the precise statistics of any 
intermittent field may avoid the bias introduced by chronic undersampling of an 
intermittent signal (Bohle-Carbonel, 1992). In that way, universal multifractals 
may have considerable implications for the design and evaluation of potential 
sampling schemes in coastal areas as in open ocean, but also to improve estimates 
of stocks and fluxes associated with heterogeneous distribution of resources and 
exploiters which will not be robust unless ali processes are understood in detail. 

These powerful applications of multifractals, which are still un der development 
in a conceptual and modelling way (Marsan et al., 1996, 1997; Schertzer et al., 
1998), can then provide new application fields to ecological sciences, opening a 
large perspective in understanding ecosystem structure, and then could be 
regarded as a new way to develop individual rather than global approaches in the 
apprehension of any intermittent pattern and process. 
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Résumé : Les concepts relatifs aux fractals et aux multifractals sont à l'heure actuelle encore méconnues et peu 

utilisés en écologie et a fortiori en écologie marine. Cet article propose donc une présentation succincte des 

concepts associés aux fractals et aux multifractales, dans un cadre purement géométrique comme probabiliste, 

et de quelques techniques d'analyses qui s'y rapportent. L'applicabilité et l'utilité de ces concepts en écologie 

marine seront ensuite illustrées à l'aide de quelques exemples tirés de travaux récents en écologie pélagique. 

Fractals and multifractals : new tools to characterize space-time heterogeneity in marine ecology 

Keywords : fractals, multifractals, universal multifractals, homogeneity, heterogeneity, interrnittency, space

time variability, turbulence, mixing, phytoplankton 

Abstract : Concepts related to fractals and multifractals are still misunderstood in ecological sciences and a 

fortiori in marine ecology. In that way, this paper proposed a brief overview of fractal and multifractal 

concepts, and sorne related analysis techniques are also discussed. The applicability and the use:fulness of these 

concepts in marine ecology will then be illustrated using sorne concrete examples from the recent works in 

pelagie ecology. 
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1. Introduction 

Mandelbrot (1975, 1977, 1978, 1983) a introduit le terme .fractal pour désigner les objets 

qui manifestent un aspect extrêmement irrégulier et qui ne possèdent aucune échelle de 

longueur caractéristique. Historiquement, c'est dans les travaux de Cantor (1872) et Peano 

(1890) que l'on trouve les premières références à des ensembles "bizarres", souvent considérés 

comme des "monstres mathématiques" (Mandelbrot, 1975, 1977, 1983), comme les ensembles 

de Cantor (1872) ou de Koch (1904, 1906), le mouvement Brownien (Perrin, 1906) et la 

fonction continue non-différenciable de Weierstrass-Mandelbrot (Berry & Lewis, 1980) dont la 

géométrie est particulièrement complexe et structurée. La description de tels ensembles est très 

vite apparue comme incompatible avec le concept de dimension euclidienne, ou topologique, 

correspondant au nombre de coordonnées nécessaires pour caractériser la position d'un point 

dans cet ensemble. 

En 1919, Hausdorff propose une nouvelle définition de la dimension d'un ensemble qui peut 

prendre des valeurs non-entières et qui permet de rendre compte du degré d'irrégularité de ces 

objets. Un des plus grands mérites de Mandelbrot (1975, 1977, 1978, 1983) est d'avoir su 

reconnaître que "1' exception est souvent la règle" et d'avoir montré que ces structures 

fracturées sont en fait très répandues dans la nature. Les profils de nos montagnes ou les 

découpages côtiers, les diverses géométries ramifiées que constituent les arbres, les rivières ou 

les imbrications des bronches dans les poumons sont autant d'exemples que l'on peut 

appréhender au sein du cadre fédérateur défini par Mandelbrot. 

Dans ce cadre, le concept de fractals et sa généralisation multifractale apparaissent comme 

une alternative entre l'ordre excessif de la géométrie euclidienne et le désordre associé à la 

multiplicité de degrés de liberté des processus chaotiques (Mandelbrot 1989) et sont devenus 

quasi-incontournables dans l'étude des systèmes non-linéaires, dans le cadre de la théorie des 

systèmes dynamiques (Grassberger 1983; Hentschel & Procaccia 1983; Grassberger & 

Procaccia 1983), de la turbulence pleinement développée (Mandelbrot 1974; Frisch & Parisi 

1985; Paladin & Vulpiani 1987), mais ont également trouvé un champ d'application 

considérable dans des domaines aussi variés que la morphologie des paysages terrestres 

(Burrough, 1981; Krummel et al., 1987; Milne, 1988) et martiens (Woronow, 1981), la forme 

des nuages (Lovejoy, 1982), le déferlement des vagues (Longuet-Higgins, 1994), l'érosion des 

profils de côte (Phillips, 1985), les cours de la bourse (Ghashghaie et al., 1996; Mandelbrot, 
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1997), la télédétection (Teissier et al., 1993a, b ), la climatologie (Schmitt et al., 1995) ou 

l'astrophysique (McHardy and Czerny, 1987). 

En écologie, une description détaillée des champs d'application de la théorie fractale a été 

réalisée par Frontier (1987) et Sugihara & May (1990). Ainsi, les fractals ont été utilisés pour 

décrire la complexité de différents habitats benthiques (Bradbury & Reichelt, 1983; Bradbury 

et al., 1984; Gee & Warwick, 1994a, b), la diversité spécifique (Frontier, 1985, 1994), le 

déplacement des invertébrés marins (Bundy et al., 1993; Erlandson & Kostylev, 1995) et 

terrestres (Wiens et al., 1993, 1995), la structure de la neige marine (Li & Logan, 1995; Logan 

& Kilps, 1995) et les processus de croissance (Kandoorp, 1991; Kandoorp & Dekluijver, 

1992). Toutefois en écologie marine, l'utilisation de tels concepts ne s'est développée que très 

récemment dans le cadre d'études de la structuration spatio-temporelle de l'écosystème 

pélagique, tant en terme de physique qu'en terme de biologie (Pascual et al., 1995; Seuront, 

1995, 1997; Seuront & Lagadeuc, 1997, 1998; Seuront et al., 1996a, b). 

Cet article ne prétend pas être un traité sur la géométrie fractale. Son objectif est 

d'introduire les aspects fondamentaux des concepts de fractals et de multifractals et de les 

illustrer par des applications relatives au milieu marin. Tant que faire se peut, cet article a été 

écrit et illustré de manière à être accessible à un lectorat aussi vaste que possible. Toutefois, le 

lecteur désireux d'obtenir plus de détails sur les concepts et les notations mathématiques 

relatifs aux fractals et aux multifractals pourra se reporter aux ouvrages de références de 

Mandelbrot (1975, 1977, 1983, 1997), Feder (1988), Crilly et al. (1991), Gouyet (1992), 

Peitgen et al. (1992), Falconer (1993), Hastings & Sugihara (1993) et Tricot (1993). 

2. Ensembles et mesures fractales : dimensions, codimensions fractales et intermittence 

2.1. Dimension fractale d'un ensemble géométrique: autosimilarité et autoaffinité 

La notion usuelle de dimension coïncide avec le nombre de degrés de liberté qm 

caractérisent la position d'un point dans un ensemble. Cette dimension topologique dr ne peut 

prendre que des valeurs entières strictement positives. D'un point de vue géométrique, cette 

définition est insuffisante dans la mesure où elle ne donne aucune information sur la mesure 

réelle (longueur, surface, volume) d'un ensemble et il est facile de construire des ensembles 

bornés de dimension topologique1 (ou euclidienne) dont la longueur est infinie, par exemple 

1 La dimension topologique est, au sens strict, la dimension d'un objet nécessaire à en diviser une autre en 
deux augmenté d'une unité. Ainsi, une ligne est unidimensionnelle parce qu'elle peut être séparée en deux par 
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une spirale qui s'enroule sur un plan. C'est pour lever cette imprécision et donner une 

caractérisation plus fine d'un ensemble qu'une nouvelle définition de la dimension - la 

dimension fractale- a été introduite (Hausdorff, 1919). 

La géométrie fractale permet de décrire des objets conceptuels ou concrets réalisant un 

certain degré d'occupation bi- ou tridimensionnel d'un espace euclidien, par exemple entre une 

courbe et une surface ou entre une surface et un volume. La dimension fractale doit être 

considérée comme une mesure de ce degré d'occupation, suivant une loi mathématique qui 

identifie les propriétés de cet indice à celle d'une dimension au sens usuel du terme. Une 

dimension entière ne sera ainsi qu'un cas particulier de dimension fractale généralisée. 

L'accès au concept de dimension fractale se fait par analogie avec la dimension d'une 

figure euclidienne qui se présente comme un exposant. Si un segment d'un mètre de longueur 

est divisé en N (1 1 N 1) segments de ( 1 1 N 1
) mètres, un carré d'un m2 le sera en N 2 carré de 

(1/ N 2 )m2 et un cube d'un m3 en N 3 cubes de (1/ N 3)m3
• Les dimensions du segment, du 

carré et du cube correspondent aux exposants mis en jeu, soit respectivement 1, 2 et 3. La 

dimension fractale découle de cette notion d'homothétie interne, une transformation 

géométrique conduisant à 'N objets n fois plus petits', et la dimension fractale d F est telle que: 

(1) 

ou encore 

dF = logN !logn (2) 

Une propriété de base de la géométrie fractale, l'autosimilarité est issue de ces 

considérations. Un objet est autosimilaire s'il peut être considéré comme un ensemble de 

copies de lui-même à différentes échelles, les changements d'échelle étant isotropes (ou 

uniformes) dans toutes les directions. Un objet autosimilaire est donc invariant d'échelle, sa 

structure étant la même quelle que soit l'échelle d'observation à laquelle on se trouve 

(Mandelbrot, 1975, 1977, 1983}, comme la courbe de Koch (Koch, 1904, 1906; Fig. 1). 

Toutefois, la majorité des objets naturels présente une version affaiblie, statistique de 

1' auto similarité, 1' autoaffinité, propriété mise en évidence par la courbe de Koch aléatoire (Fig. 

2). Pour de tels objets, les changements d'échelle entre leurs différentes parties sont 

anisotropes, ou dépendants de la direction de l'espace considérée. L'invariance d'échelle 

devient donc statistique, on ajoute en chaque point à l'image géométrique de l'objet fractal pris 

un point,'zéro-d.imensionnel'; un plan est bidimensionnel parce qu'il peut être séparé en deux par une ligne, 
unidimensionnelle; et ainsi de suite. 
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Replace 

Stage 0 Genera tor 

Stage 1 Stage 2 

Stage 3 Stage 4 

Fig. 1. Construction de la courbe de Koch. Partant d'un segment de droite de longueur 1, à chaque étape, on 

remplace le tiers médian par 2 segments de longueur 1/3 orienté à 60°. Le même processus est répété sur les 4 

segments de longueur 1/3, do1111ant 16 segments de longueur 1/9 et ainsi de suite. A chaque étape, il y a 4 fois 

plus d'éléments 3 fois plus petits, d'où la dimension fractale dF = log4/log3 ""'1,262. 
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Replace 

OR 

Stage 0 Gene rater 

Stage 1 Stage 2 

Stage 3 Stage 4 

Fig. 2. Construction de la courbe de Cantor aléatoire. A chaque étape, on introduit un facteur aléatoire 

permettant de déterminer 1' orientation des 2 nouveaux segments de longueur 1/3. 
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comme modèle un terme aléatoire faisant qu'une partie de l'objet n'est plus un modèle réduit 

du tout mais en possède seulement statistiquement les mêmes propriétés. Une excellente 

illustration de ce concept en écologie se trouve dans les modèles développés à partir du 

mouvement Brownien pour étudier la structure spatiale du déplacement d'un organisme 

(Mandelbrot, 1977, 1983). 

Plus généralement, en considérant un ensemble A (A E 9\n) et N(l) le nombre de boîtes de 

taille l nécessaire pour couvrir A, la dimension fractale de cet ensemble, d F, est définie à partir 

du comportement en loi de puissance de N (!) : 

N(l) ~ zdp(A) (3) 

où le symbole"~" exprime un comportement asymptotique. 

La dimension fractale quantifie donc comment la 'taille' d'un ensemble varie quand on 

prend une unité de mesure de plus en plus petite. En effet, si l'unité de mesure est [P (pour p = 

1, 2 ou 3 on mesure respectivement une longueur, une surface ou un volume), alors;à cette 

échelle l'ensemble 'mesure' N(l)fP ~ lp-dp(A) 'mètres à la puissance p'. Ainsi, on constate que 

A n'aura une surface finie que si dp(A) = 2 alors que sa longueur (p = 1) sera infinie et son 

volume (p = 3) sera nul. Lorsque dp(A) prend des valeurs non entières, la longueur, la 

surface ou le volume ne permettent plus de caractériser l'ensemble A car ces quantités sont 

nulles ou infinies. 

Exemple de construction d'une ensemble.fractal 

Si l'on considère un segment de droite ([0,1]) divisé en trois parties d'égale longueur, dont 

la partie centrale est retirée et que ce processus est répété sur les deux sous-intervalles restants, 

au bout d'un nombre infini d'itérations (Fig. 3), on obtient un ensemble de points ou ensemble 

de Cantor triadique (Cantor, 1883), plus prosaïquement appelé 'poussière de Cantor'. La règle 

de construction de cet ensemble permet un calcul simple des dimensions qui le caractérisent. A 

l'étape n de la construction, l'ensemble est constitué de 2n intervalles de longueur rn : sa 

longueur totale est donc (2 1 3Y. La longueur du Cantor triadique obtenu à la limite n --+ +oo 

est donc nulle et sa dimension topologique dr =O. Pour calculer sa dimension fractale, 

considérons un pavage ( 0,1] par des segments de taille l = rn. Par construction, seuls 

N(l) = 2n de ces segments contiendront une partie du Cantor. TI est alors possible d'introduire 

le rapport d'échelle À, défini comme : 
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(4) 

où ln et ln-I sont respectivement la longueur des segments contenant une partie du Cantor aux 

étapes n et n-1 de la construction (dans le cas de l'ensemble de Cantor considéré tct, 

À= /1 110 = 12 111 = ... =ln 1 ln_1 = 3). A la limite l ~ o+ (n ~ +oo), la relation (3) devient : 

(5) 

La dimension fractale du Cantor triadique devient dF(A) = logN(ln) /logÀn = log2n !log3n 

(soit dF = log2 llog3 = 0,631 2
) et représente un degré d'occupation relativement faible d'une 

ligne (ou ensemble euclidien de dimension 1) par un ensemble infini de points (dF < 1). 

Par la suite, pour plus de généralité dans le cadre d'une approche probabiliste, le rapport 

d'échelle À sera défini comme: 

À= L/l (6) 

où L et l sont respectivement les échelles de résolution minimale et maximale considérées 

dans le cadre d'un processus invariant d'échelle. 

- -
•• •• •• Bill 

Il Il Ill Il Il Il Il Il 

1111 1111 1111 1111 1111 1111 1111 1111 

Fig. 3. Construction de l'ensemble de Cantor. A chaque étape, le tiers médian de chaque segment est supprimé; 

on a donc à chaque'étape 2 éléments 3 fois plus petits, d'où la dimension fractale dF = log2 1 log3,., 0,6309. 

2 La dimensions fractales d F de la courbe de Koch présentées (Fig. 1) est dF = log4/log3 = 1,262. L'ensemble 
de Cantor est donc un objet fractal représentant un degré d'occupation partiel d'un espace à 2 dimensions. 
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Généralisation statistique 

Les exemples considérés dans la section précédente portent essentiellement sur des 

ensembles géométriques. Il est toutefois possible d'estimer une dimension fractale d'un point 

de vue purement statistique, par exemple dans le cadre de l'étude de séries temporelles. 

Cette approche est basée sur la répartition de la variance d'un processus donnée à 

différentes échelles d'observations. 

1 NJf:!.) 2 

y(h) = 2N(h) ?:; [Qx+h -Qx] (7) 

où N(h) est le nombre de couples de points séparés par la distance h, et Qx et Qx+h sont les 

valeurs prises par une quantité Q aux points x et x+h. La dimension fractale dF est alors 

estimée comme la pente m de r ( h) vs. h en cordonnées logarithmiques comme : 

d F = ( 4 - m) 12. Ainsi, plus la dimension fractale d F sera élevée (i.e. m faible), moins les 

valeurs observées à 2 instants différents seront différentes. 

Il convient ici de remarquer que la valeur informative du concept de dimension fractale est 

plus liée à la nature intrinsèque d'un objet, ou d'un processus, qu'à son degré de déploiement 

réel dans un espace à n dimensions. En effet, un ensemble de Cantor de dimension fractale 

dF = 0,631 n'occupera pas de la même manière un espace bidimensionnel qu'un espace 

tridimensionnel. Ce type d'information est accessible à partir d'un autre exposant 

caractéristique de la théorie fractale, la codimension fractale. 

2.2. Généralisation statistique : codimension fractale et dimension d'échantillonnage 

2.2.1. Dimension et codimension fractales : dispersions absolue et relative 

Soit un ensemble A de dimension fractale dF(A) inclus dans un espaceE de dimension 

topologique (i.e. euclidienne) dr, la codimension fractale de A, cF(A), s'exprime comme: 

(8) 

La codimension fractale apparaît comme une mesure de la dispersion relative de l'ensemble 

A, sa dimension fractale mesurant sa dispersion absolue. Ainsi, les ensembles de Cantor ou de 

Koch (réguliers ou statistiques) auront la même dimension fractale, qu'ils soient tracés (ou 
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projetés) dans un plan ou que leur structure se développe dans les 3 dimensions. Seule leur 

codimension augmente d'une unité. Le concept de codimension fractale peut donc être 

considéré comme plus fondamental que celui de dimension fractale, tout particulièrement dans 

un contexte probabiliste où il peut être introduit directement. 

Ainsi, en considérant le nombre de boîtes de taille l ( l = L 1 À) nécessaires pour couvrir 

l'ensemble A, la probabilité Pr(B
1 
nA) qu'une boîte B1 a d'intersecter A est: 

(9) 

Cette probabilité variant en raison inverse de la codimension cF (A), de manière générale plus 

un événement sera rare, plus sa codimension fractale cF (A) sera élevée. Les formulations ( 4) 

et ( 5) pouvant être mises en relation par : 

(10) 

où N(B;,_ nA)(N(B;,_ nA)~ _,rdp(A)) est le nombre de boîtes B1 intersectant A et 

N(B;,_)(N(B;J ~ _,rdr) est le nombre total de boîtes BÀ considérées, il apparaît que les 

relations (8) et (9) sont équivalentes lorsque cF (A) s, dr (ou d F (A) è. 0 ). Par contre, la 

relation (9) n'impliquant aucune contrainte sur cF( A), si cF(A) >dT les relations (8) et (9) 

conduisent à dF(A) <O. Ce dernier point est en parfaite contradiction avec le concept de 

dimension fractale définie comme une mesure strictement positive3 (Mandelbrot, 1977, 1983; 

Falconer, 1993; Hastings & Sugihara, 1993). Une définition purement géométrique n'est donc 

plus suffisante dans un contexte probabiliste où la dimension effective de l'espace de 

probabilité est directement fonction de l'effort d'échantillonnage. 

2.2.2. Caractérisation d'ensembles infinis: "dimension d'échantillonnage" 

L'analyse statistique classique nous a habitué à utiliser des échantillons de taille finie. 

Cependant, le fait d'explorer un espace de probabilité en étudiant de plus en plus d'échantillons 

permet d'augmenter la dimension effective de cet espace (Fig. 4). 

Soit Ns échantillons indépendants, tous de dimension dT et /.. le rapport d'échelle tel que 

défini par la relation (6), la quantité d'information tirée de l'échantillonnage sera de l'ordre de: 

3 Ce résultat se retrouve d'ailleurs de manière implicite dans les formulations de base du calcul d'une 
dimension fractale (relations (1) à (3)). 
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(11) 

où la 'dimension d'échantillonnage' ds (Schertzer & Lovejoy 1989, Lavallée 1991) est définie 

comme: 

Physical 
sp e 

Probability 
Space 

Physical 
space 

D 
N - Â. s 

s 

Independent 
Realizations 

(12) 

Fig. 4. Illustration de la manière dont il est possible d'augmenter la dimension effective de 1 'espace (dr) en 

considérant de plus en plus de réalisations indépendantes (N8 ). Quand N
8 
~oo, l'intégralité de l'espace de 

probabilité a été explorée. 

Les relations (11) et (12) montrent ainsi que la dimension effective d'un espace de 

probabilité peut être augmentée au delà de dr (un échantillon unique) et permettent de lever le 

paradoxe introduit au paragraphe précédent en rendant positive une dimension négative. Ainsi, 

en considérant un événement A suffisamment rare pour que cF( A)> dr , la relation (8) 

devient: 

(13) 

Le cas limite dF;s(A) = 0 correspond à la présence de points isolés dans l'échantillon; quand 

ds < cF(A), A n'est pas présent dans l'échantillon, alors qu'ille sera quand ds > cF(A). 

La codimension fractale fournit une caractérisation intrinsèque d'un processus alors que la 

dimension fractale en fournit une caractérisation extrinsèque dépendant de la dimension de 

l'espace euclidien considéré. 
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De nombreux ensembles, ou plus généralement processus, aussi diversifiés que les 

découpages côtiers (Phillips, 198S), la forme des nuages (Lovejoy, 1982) et des reliefs 

(Burrough, 1981; Mandelbrot, 1977, 1983), les mouvements d'invertébrés terrestres (Wiens et 

al., 199S) et marins (Erlandson & Kostylev, 199S) ou encore la diversité spécifique (Frontier, 

1994) peuvent ainsi être caractérisés en terme de dimension fractale et d'invariance d'échelle. 

Toutefois, il apparat"t clairement que la description de champs présentant différents niveaux 

d'intensité, comme c'est par exemple le cas pour les distributions temporelles de la 

température (Fig. Sa) ou de la biomasse phytoplanctonique (fig. Sb) dans l'océan, ne pouvait se 

résumer à une problématique essentiellement géométrique indissociable de la construction 

d'objets fractals 'classiques' tels que les ensembles de Cantor, Sierpinsk:i ou Menger (e.g. 

Peitgen et al., 1992; Falconer, 1993; Hastings & Sugihara, 1993). C'est la prise en compte de 

ces irrégularités, ou intermittences, perceptibles dans de nombreux champs géophysiques ma.ls 

aussi biologiques (cf Fig. S) qui ont conduit à un abandon définitif du concept presque 

dogmatique de l'existence d'une dimension unique dans le contexte de la théorie des systèmes 

dynamiques (Grassberger, 1983; Grasberger & Procaccia, 1983; Henstchel & Procaccia, 1983; 

Halsey et al., 1986) et de la turbulence (Schertzer & Lovejoy, 1983; Frisch & Parisi, 198S), et 

à l'avènement du concept de multifractals. 

14,32 or----------~ 
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f .e e 14,311 
-~ 
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~ 14,29 
!-< 
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14,28 .f-,-..,.-,..--,-,.~,_,..-,.-,-.--,-.,.......,-..,.-,..~....,.--l 

~ 
u 
~ 17,50 
u .., 
e 
= ..= 15,50 
~ 
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13,50 +---.-~--.--..-.--.--,-..,..-,-...,..--,----,--,,.-,-,.--,-..,.--,-i 
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Fig. 5. Echantillons de données temporelles de température (a) et de fluorescence (h) prélevés dans le sud de la 

Mer du Nord. Des fluctuations brutales se produisant à toutes les échelles sont clairement visible, et indiquent 

un comportement intermittent (d'après Seuront, 1997). 

12 



2.3. Intermittence et mesures multifractales 

Reprenons le formalisme développé au paragraphe 2.1 considérant le nombre N(l) de 

boîtes de taille l nécessaire pour couvrir un ensemble A et associons une mesure 114 

quelconque à cet ensemble, la dimension fractale d F de cet ensemble est donnée par la relation 

(3), N(l) ~ ldp(AJ. Toutefois, la dimension dF ne fournit aucune information quantitative 

concernant la distribution de la mesure Il sur l'ensemble A. Dans ce cadre, se limiter à 

l'estimation de la dimension fractale dF reviendrait à compter des pièces de monnaies sans 

prêter la moindre attention à leurs valeurs respectives (Evertsz & Mandelbrot, 1992). 

Ainsi, soit !lune mesure quelconque de l'ensemble A, on appelle exposant de singularité en 

un point x0 de 1' ensemble A : 

(14) 

où B1(x0 ) désigne une boite de taille l centrée en x0 . L'exposant de singularité en un point 

rend compte du degré local de régularité de la mesure considérée. D'après la relation (14), on 

peut écrire : 

(15) 

avec a~ 0 a priori quelconque. Plus la valeur de a(x0 ) est petite, moins la mesure Il est 

régulière autour de x0 . 

Le spectre f (a) des singularités décrit la répartition des exposants a sur le support de la 

mesure. Ainsi, si l'on pave le support de la mesure de boîtes de taille l, alors le nombre de ces 

boîtes dont la mesure varie comme la pour un a donné (cf Eq. 15), se comporte comme: 

ou 

fz(a) == _ logN1(a) 
log/ 

(16) 

(17) 

4 Une mesure permet d'associer des poids relatifs aux différentes parties d'un ensemble. On peut penser par 
exemple à des répartitions de charges, de masses, d'énergie, d'individus ou de toute distribution de probabilité. 
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Par analogie avec la relation (3), f(a) peut donc être considéré comme la fonction qui, à tout 

a, associe la dimension fractale de l'ensemble des points x0 tels que a(x0 ) =a. 

A l'instar de la dimension fractale pour des ensembles irréguliers, le spectre f (a) des 

singularités peut être introduit comme une quantité qui donne une caractérisation relativement 

précise du degré d'irrégularités et d'homogénéité d'une mesure fractale. 

Une mesure sera qualifiée d'homogène5 (Halsey et al., 1986) si son spectre des singularités 

est concentré en un seul point: un seule type de singularité permet de caractériser la mesure. 

Par contre, si le support de f(a) est large, la mesure considérée n'est pas homogène, 

l'exposant a fluctue d'un point à l'autre du support de ~' on parle alors de mesure 

multifractale. 

Dans ce cadre, on comprend que la transition du concept de dimension fractale à celui, 

beaucoup plus général, de multifractals consiste à considérer un processus multifractal comme 

une hiérarchie a priori infinie d'ensembles fractals. Chacun de ces ensembles correspond à la 

fraction d'espace occupée par les parties du processus dépassant un certain seuil, et est donc 

caractérisé par une dimension fractale propre. Un processus multifractal sera ainsi caractérisé 

par un ensemble de relations invariantes d'échelle qui nécessitent un grand nombre (voire une 

infinité; cf Eqs. 16 et 17) d'exposants (ou de dimensions) différents, plutôt que la dimension 

unique des ensembles fractals (cf Eq. 3). Ce concept peut ainsi être parfaitement illustré par 

les modèles de cascades utilisés pour rendre compte de l'infinie hiérarchie de tourbillons de 

différentes intensités présents à une échelle donnée (Fig. 6). 

Exemple de construction d'une mesure multifractale 

Cet exemple consiste à construire une mesure multifractale distribuée sur un ensemble de 

Cantor triadique tel que défini au paragraphe 2.1 (Fig. 7a). A l'étape n = 0 de la construction, 

on affecte à l'intervalle [ 0,1] la mesure Jlo = 1. A l'étape n = 1, on attribue un poids p 1 = p à 

l'intervalle [ 0,11 3] et ~2 = q = 1- p à l'intervalle [ 2 1 3,1] . A l'étape n de la construction, 

l'ensemble En est constitué de 2n intervalles dont la mesure s'exprime comme la mesure 

binomiale: 

(18) 

5 Dans ce cas, la mesure considérée ne présente que des propriétés monofractales. 
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Fig. 6. Processus de cascade fractale (a) et multifractale (b) illustrant comment le concept de dimension fractale 

unique peut être généralisée en introduisant différentes intensités à chaque étape de la cascade (d'après 

Seuront, 1997). 
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Fig. 7. Construction d'un ensemble de Cantor supportant une mesure multifractale (a). A chaque étape, la 

masse de chaque intervalle En, représentée par la surface du rectangle, est divisé en 2 sous-intervalles En+I 

suivant le rapport p: 1-p (ici, p = 11 3). Au bout de n étapes de construction, on aboutit à une distribution de 

masse J..L supportée par l'ensemble de Cantor et caractérisée par le spectre f(a) des singularités (b). 
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où m et n- m représentent respectivement le nombre d'intervalles s'étant vu attribué les 

poids p et q. La longueur de chaque intervalle étant 1 = Tn, d'après la relation (14}, il vient : 

logp+ (ni m-1)log(l-p) 
a= 

(n-m)log(1 /3) 

A l'étape n, a ne dépend donc que du rapport n/m, d'où: 

f(a) = f(n 1 m) = (n 1 mlog(n 1 m -1)- (n 1 m)log(n 1 m) 
(n 1 m)log(l/3) 

(19) 

(20) 

L'élimination de n/m dans les relations (19) et (20) permet alors d'obtenir le spectre f(a). 

Plus particulièrement, la relation (19) permet de calculer les bornes amin et amax du spectre 

f(a) telles que f(a) 2 0 pour a E[amitPamax] : 

. { logp logq } 
amin = mm log(l/3) 'log(l/3) 

(21) 

{ 
logp logq } a = max -....::::....:'-- --=-:::...___ 

max log(1/3) 'log(l 1 3) 

Si p = q = 1 1 2 , la mesure est répartie uniformement sur le Cantor et l'on retrouve le spectre 

d'une mesure homogène (ou monofractale) en a= amin = amax = log2 /log3. D'après la 

relation (19), quelles que soient les valeurs de p et q, on peut vérifier que f(n 1 m) est 

maximale pour nlm=2, et dans ce cas, f(a)=log2/log3. Le maximum de la courbe 

j(a) correspond ainsi à la dimension fractale du support de la mesure (Fig. 7b). 

Généralisation statistique 

Les exemples considérés dans la section précédente portant essentiellement sur des 

ensembles géométriques, nous allons nous intéresser à la manière dont il est possible d'estimer 

les caractéristiques multifractales d'un processus d'un point de vue statistique, par exemple 

dans le cadre de 1' étude de séries temporelles. 

Ainsi, plutôt que de calculer la dimension fractale associée à chaque degré d'intermittence 

d'un processus dans le cadre du spectre f(a) des singularités, il est possible de généraliser 

l'approche statistique monofractale développée plus haut dans le cadre de moments d'ordre 2 
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(i.e. la variance) à des moments statistiques plus élevés. En d'autres termes, le moment 

statistique q permet de sélectionner les sous-ensembles correspondant à des intensités plus ou 

moins fortes du processus considéré : les moments les plus élevés caractériseront ainsi les 

intermittences les plus fortes qui sont aussi les plus rares et donc les plus difficiles à détecter 

(Fig. 8). 
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Fig. 8. Illustration schématique de la généralisation statistique des multifractals géométriques : chaque moment 

q est associé à un niveau d'intermittence. Les moments les plus grands caractériseront donc la distribution des 

intermittences les plus fortes qui sont aussi les plus rares et par conséquent les plus difficiles à détecter (ici, q < 

q' < q"). 

Dans ce cadre, plusieurs approches sont possibles, basées sur les fonctions de partition 

(Halsey et al., 1986), les dimensions fractales généralisées (Hentschel & Procaccia, 1983; 

Grassberger, 1983; Grassberger & Procaccia, 1984) et les fonctions de structure (Anselmet et 

al., 1984). Seule l'approche par les fonctions de structure, qui est utilisée pour caractériser la 

structure de la distribution de la biomasse phytoplanctonique au paragraphe 3. 3, sera 

développée ici (très brièvement), le lecteur désireux d'approfondir le sujet pourra se reporter 

aux références citées ci-avant, mais aussi aux ouvrages plus généraux de Gouyet (1992), 

Falconer (1993) et à l'article d'Evertsz & Mandelbrot (1992). Dans le cadre des fluctuations 

temporelles d'une quantité Q, les fonctions de structure s'expriment comme: 
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((8Q7:)q) = (jQ(t+ r) -Q(r )j) ~ Àç(q) (22) 

où pour un décalage temporel r les fluctuations de la quantité Q sont moyennés pour 

l'ensemble des valeurs disponibles. L'exposant Ç (q) est respectivement linéaire et non-linéaire 

pour les processus mono- et multifractals. 

2.4. Intermittence et multifractals universels 

Malgré l'apparente complexité induite par la multiplicité, voire l'infinité de dimensions 

nécessaires à la description d'un champ multifractal, l'utilisation des multifractals universels 

(Schertzer & Lovejoy, 1987, 1989) permet de décrire la distribution d'un processus 

intermittent à l'aide de seulement trois paramètres- H, C1 et a -qui résument l'intégralité du 

comportement statistique du processus considéré et ce, quels que soient les échelles et le 

niveau de variabilité (Fig. 9) : 

- H caractérise le degré de non-conservation du processus considéré, H = 0 pour un 

processus statimmaire, c'est à dire dont la variabilité moyenne est indépendante de l'espace ou 

du temps (Fig. 9a); 

- C1 est une codimension (comme définie au paragraphe 2.2.1) et caractérise donc 

1 'hétérogénéité du processus : plus cl est fort, plus le processus est dominé par des valeurs 

fortes et faibles, alors que pour un cl plus faible, les niveaux de variabilité intermédiaire entre 

les valeurs les plus fortes et les valeurs les plus faibles sont mieux représentés numériquement. 

Dans ce sens, C1 peut être considéré comme un analogue de la variance mais pour des 

distributions fortement non Gaussienne (Fig. 9b ); 

- a caractérise le degré de multifractalité, soit le degré de structuration du processus, 

c'est à dire le nombre de niveaux de variabilité intermédiaire entre les valeurs maximales et 

minimales du processus (Fig. 9c). 

On remarquera que dans le cadre des multifractals universels, l'exposant Ç(q) des 

fonctions de structure prend la forme suivante : 

Ç(q) = qH -C1(qa -q) 1 (a -1) (23) 

Le premier paramètre multifractal est estimé comme Ç (1) = H, alors que C1 et a sont 

déterminés à partir du meilleur ajustement non-linéaire de la relation (22) au Ç (q) empirique. 
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Fig. 9. illustration des propriétés d'un champ turbulent décrites par les paramètres multi:fractals universels H, 

C1 and a à l'aide d'une simulation unidimensionnelle de longueur 256, avec H variable (a), puis avec H == 0, 

œ == 2 et C1 variable (b) et avec H == 0, C1 = 0,01 et a variable (c). 

3. Applications à la description spatio-temporelle de l'écosystème pélagique 

Par souci de clarté, dans cette partie, l'auteur a volontairement omis toutes formulations 

mathématiques et détails des techniques d'analyses. Toutefois, le lecteur désireux d'obtenir de 

plus amples informations sur le mode de calcul associé aux différentes techniques d'analyses et 

à la détermination des différents paramètres dont il est question par la suite pourra se reporter 

aux nombreuses références bibliographiques qui jalonnent le texte. En outre, les concepts et 

résultats exposés dans ce paragraphe sont essentiellement basés sur les travaux de Seuront 

(1997), Seuront & Lagadeuc (1997, 1998) et Seuront et al. (1996a, b). 
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3.1. Variabilité, homogénéité et d'hétérogénéité 

Ce paragraphe reprend brièvement des concepts développés de manière plus complète par 

Seuront & Lagadeuc (1997, 1998) et est destiné d'une part à lever toute ambiguïté sur 

l'utilisation des concepts associés aux termes "variabilité" et "hétérogénéité", et d'autre part à 

familiariser le lecteur avec la terminologie employée dans la suite du texte. 

TI existe en effet dans la littérature une grande confusion entre les terminologies 

"hétérogénéité" et "variabilité". Ainsi, on parle presque indifféremment de la variabilité ou de 

l'hétérogénéité de la biomasse phytoplanctonique le long d'un gradient côte-large comme celui 

rencontré le long des côtes de la Manche orientale. Il apparaît également que la différence 

entre ces 2 terminologies est souvent liée au type d'approche (on parlera d'hétérogénéité des 

méandres du Gulf Stream alors qu'on parlera de microfluctuations de vitesse et non pas 

d'hétérogénéité à petites échelles pour caractériser les fluctuations associées à un 

enregistrement de vitesse turbulente). Dans la suite, nous ferons une distinction très nette entre 

ces 2 terminologies. La variabilité est ainsi considérée comme une mesure de 1 'amplitude des 

fluctuations d'un descripteur quantitatif autour d'une valeur moyenne, alors que 

l'hétérogénéité fournira une description qualitative et quantitative de la structuration de cette 

variabilité dans le cadre des invariances d'échelle simples et multiples associées respectivement 

aux concepts de fractals et de multifractals. De plus, cette hétérogénéité sera plus ou moins 

forte selon la valeur prise par les paramètres de structuration que sont la dimension fractale et 

les paramètres multifractals universels H, C1 et a . 

3.2. Structuration spatio-temporelle monofractale de l'écosystème pélagique 

Dans ce paragraphe, les dimensions fractales dF sont calculées à partir de la pente m d'un 

sem1vanogramme en coordonnées logarithmiques comme dF = ( 4- m) /2 . Le 

semivariogramme étant défini comme une expression de la variance en fonction de l'échelle 

d'observation, une valeur élevée de la pente m (i.e. une faible valeur de la dimension fractale 

d F ) traduit un processus hétérogène dans le sens où les différences de variabilité perceptibles 

d'une échelle à l'autre sont grandes. Réciproquement, un processus présentant une dimension 

fractale élevée sera beaucoup moins hétérogène (ou plus homogène) dans le sens où les 
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différences perceptibles d'une échelle à l'autre seront beaucoup plus faible (cf Seuront & 

Lagadeuc, 1997, 1998) pour plus de détails). 

3.2.1. Cas du détroit du Pas-de-Calais (Manche orientale) 

A l'échelle de la Manche orientale, considérée comme un modèle de mer mégatidale, le 

régime marégraphique très particulier, constitué de courants alternatifs et parallèles à la côte 

avec une dérive résiduelle se dirigeant vers la Mer du Nord à une vitesse de l'ordre de 2,7 

milles par jour, favorise la création d'une masse d'eau côtière permanente appelée "Fleuve 

côtier", dont l'individualité est sans cesse entretenue par les apports fluviatiles qui 

s'échelonnent de la Baie de Seine au détroit du Pas-de-Calais. La formation de cette structure 

côtière très spécifique se manifeste par un gradient côte-large très net en terme de salinité, 

température, charge particulaire, biomasse phyto- et zooplanctonique. De plus, dans le système 

Manche orientale, où la bathymétrie est faible et les courants de marées particulièrement forts, 

la marée est considérée comme le principal facteur de mélange vertical, responsable d'une 

homogénéisation verticale de la colonne d'eau. Ici, une colonne d'eau est qualifiée 

d'homogène essentiellement par opposition à une colonne d'eau stratifiée, il n'est donc pas 

possible d'en déduire a priori d'information sur la nature de la distribution verticale de la 

biomasse phytoplanctonique ou de la température en terme de variabilité ou d'hétérogénéité. 

Dans ce cadre, nous nous sommes intéressés à la différence pouvant exister entre la 

perception de la variabilité et de l'hétérogénéité verticale de la colonne d'eau au sein d'une 

structure hydrologique hétérogène qu'est le détroit du Pas-de Calais. Nous avons réalisé 4 fois 

une radiale côte-large de 15 stations permettant d'échantillonner la masse d'eau côtière comme 

la masse d'eau du large. Nous nous sommes ensuite intéressés à la structuration spatio

temporelle de la structure verticale des différentes masses d'eau en termes de moyenne, de 

variabilité (caractérisée par un coefficient de variation, défini comme le rapport S/m) et 

d'hétérogénéité (caractérisée par une dimension fractale) de paramètres comme la température, 

la salinité, la fluorescence in vivo (considérée en tant qu'indicateur de la biomasse 

phytoplanctonique) et de la transmission (considérée en tant qu'indicateur de la charge de la 

masse d'eau en particules) échantillonnés à chaque station de la surface au fond. 

L'analyse des semivariograrnmes en coordonnées logarithmiques (Fig. 10) montre que si la 

température, la salinité et la fluorescence présentent une structuration qu'il est possible de 

caractériser en terme de dimension fractale, cette structuration est absente dans le cas de la 
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Fig. 10. Semivariogrammes de la température, la salinité et la fluorescence in vivo (de haut en bas) à la côte (a, 

cet e) et au large (b, d etj) en coordonnées logarithmiques, représentés avec leur meilleur ajustement linéaire 

de pente m (d'après Seuront & Lagadeuc, 1998)_ 

charge particulaire. Ceci suggère que si les mêmes processus ou du moins des processus 

similaires vraisemblablement associés au mélange induit par la marée peuvent être considérés 

comme étant à l'origine de la structuration de paramètres tels que température, salinité et 

fluorescence, il en va tout autrement pour la teneur de la masse d'eau en matière particulaire, 

qui relève à la fois des propriétés physiques, chimiques et biologiques des particules d'origine 

biologique, qu'elles soient vivantes ou inertes, et minérales présentes dans la masse d'eau. 
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Fig. 11. Position des 14 variables (cf. Table 1 pom la signification des symboles) dans le plan principal de 

l'Analyse en Composantes Principales (d'après Seuront & Lagadeuc, 1998). 

Nous avons ensuite introduit les différentes coordonnées spatio-temporelles de notre 

échantillonnage (latitude, longitude, profondeur, direction du courant de marée et hauteur 

solaire) dans une analyse en composantes principales (ACP) dans laquelle nous avons ajouté en 

tant que variables supplémentaires les paramètres relatifs à la moyenne, la variabilité et 

l'hétérogénéité verticale des paramètres physiques et biologiques (Fig. 11; Table 1). S'il 

apparaît que la moyenne verticale de ces paramètres se distribue classiquement dans le plan 

principal selon le gradient côte-large (salinité et température plus faibles à la côte, et biomasse 

phytoplanctonique plus forte à la côte), il en va tout autrement en ce qui concerne leur 

variabilité et leur hétérogénéité verticale. 

Ces résultats nous montrent une organisation différentielle, dans l'espace et le temps, de la 

variabilité et de l'hétérogénéité en fonction de la nature, physique ou biologique, des 

paramètres considérés. 
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Additional data Code PC-1 PC-2 
Mean value 
Temperature T 0.628 -0.259 
Salinity s -0.912 0.244 
Fluorescence F 0.300 0.107 
Transmission Tr -0.789 0.219 
PAR PAR -0.327 0.232 
Standard deviation 
Temperature SDT 0.320 -0.165 
Salinity SDs 0.484 -0.102 
Fluorescence SDF 0.320 -0.559 
Transmission SDTr 0.171 0.419 
Fractal dimension 
Temperature DT -0.267 0.022 
Salinity Ds -0.205 -0.029 
Fluorescence DF -0.729 0.282 
Windspeed Wsp. 0.200 0.180 
Wind direction Wdir. 0.150 0.100 

Table 1. Noms et codes des 14 variables supplémentaires utilisées dans l'Analyse en Composantes Principales, 

et leur corrélation avec les 2 premiers axes principaux. PC-1, premier axe principal; PC-2, deuxième axe 

principal. 

3.2.2. Cas de la Baie des Chaleurs (Canada, Québec) 

A une échelle toute autre (échantillonnage de la structure verticale de la masse d'eau toutes 

les heures pendant 57 heures) et dans un milieu très différent tant en terme d'hydrologie que 

d'hydrodynamisme, Seuront & Lagadeuc (1997) ont montré que la structuration temporelle de 

paramètres physiques et biologiques en terme de dimension fractale pouvait présenter 2 

informations complémentaires. 

La première correspond à la valeur de la dimension fractale, estimée à partir de la pente du 

semivariogramme en coordonnées logarithmiques. Ainsi, la distribution verticale des 

dimensions fractales de la température, la salinité et la fluorescence (Fig. 12) apparaît 

intimement liée à la structure hydrodynamique de la masse d'eau, les dimensions de tous ces 
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paramètres étant maximales aux profondeurs où le nombre de Richardson Ri est maximal 

(Seuront & Lagadeuc, 1997). Ces résultats indiquent donc une structuration temporelle 

différentielle de la colonne d'eau en fonction de l'intensité et de la nature du forçage physique 

qu'elle subit. 
Fractal dimension Dy 
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or-~--~~--~~~~--~-; 
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Fig. 12. Distribution verticale des dimensions fractales DF de la fluorescence in vivo (losange), de la 

température (cercle) et de la salinité (triangle) (d'après Seuront & Lagadeuc, 1997). 

La seconde correspond à la gamme d'échelles pour lesquelles le semivariogramme présente 

un comportement linéaire, donc une structuration fractale de la variabilité du processus 

considéré. Cette gamme d'échelle décroît en raison inverse de la profondeur (Fig. 13) et 

semble associée à la structure verticale de la circulation résiduelle (Seuront & Lagadeuc, 

1997). Ces ruptures d'échelles suggèrent l'existence d'une zone de transition entre différents 

niveaux d'organisation d'un même système, ou entre 2 systèmes d'organisation différents. En 

effet, on peut penser que lorsque la dimension fractale varie brusquement ou, comme c'est la 

cas ici, n'est plus calculable, on passe d'une échelle de phénomènes à une autre. Inversement, 

tant que la dimension fractale ne change pas d'une échelle d'observation à une autre, le 

processus à l'origine de la structuration de la variabilité observée reste le même. 
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Fig. 13. Semivariogrammes de la fluorescence in vivo (losange), de la température (cercle) et de la salinité 

(triangle) en coordonnées logarithmiques, représentés avec leur meilleur ajustement linéaire de pente m 

(d'après Seuront & Lagadeuc, 1997). 

Ces deux paragraphes ont présenté le potentiel des méthodes d'analyses fractales, d'un 

usage relativement récent en écologie et a fortiori en écologie marine, pour devenir un outil de 

description essentiel en écologie planctonique. De plus, la distinction des terminologies 

"variabilité" et "hétérogénéité" autorisée par de telles approches permet d'envisager de 

nouvelles avancées dans la description de la structuration spatio-temporelle du milieu dont la 

compréhension apparaît aujourd'hui essentielle en écologie marine. 

3.3. Structuration multifractale de l'écosystème pélagique 

De part son fort hydrodynamisme tidal, la Manche orientale est généralement considérée 

comme un milieu homogène. Cette homogénéité, remise en question à l'échelle de la colonne 
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d'eau (cf § 3 .1 ), l'a également été à plus petite échelle. En effet, Seur ont et al. ( 1996a, b) et 

Seuront ( 1997) ont démontré que pour des échelles allant de 1 à 1 00 secondes, la distribution 

temporelle de la biomasse phytoplanctonique (exprimée en terme de fluorescence in vivo), bien 

que se comportant comme un scalaire purement passif, ne pouvait être considérée comme 

homogène mais présentait au contraire une structuration extrêmement complexe caractérisée 

en terme de multifractals. Aux échelles supérieures, la distribution de la biomasse 

phytoplanctonique présente une distribution multifractale très spécifique 
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Fig. 14. Fonctions de structure < (.6.S, )q > vs. 't en coordonnées logarithmiques pour q = 1 and 3 (de haut en 

bas) pour la température (symboles noirs) et la fluorescence (symboles clairs). Un seul comportement linéaire 

est visible pour la température alors que la fluorescence présente de comportement invariants d'échelles 

(d'après Seuront et al., 1996a). 

Ainsi, les fonctions de structure de la température et de la biomasse phytoplanctonique 

(Fig. 14) présentent deux comportements distincts. La structuration de la température est la 

même des petites aux grandes échelles quel que soit le moment statistique considéré, suggérant 

qu'un seul et même processus (vraisemblablement ici le mélange turbulent) est à l'origine de la 

structuration de la variabilité observée. Par contre, la distribution de la biomasse 

phytoplanctonique présente deux comportements différents. Aux échelles inférieures à 100 

secondes, la distribution de la biomasse phytoplanctonique est similaire à celle de la 

température, alors qu'aux échelles supérieures à 100 secondes les fonctions de structure de la 

biomasse phytoplanctonique présentent un aplatissement très net. Cet aplatissement n'est 

d'ailleurs pas sans rappeler les travaux de Platt & Denman (1976) et Denman et al. (1977) qui 
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prédisaient un aplatissement du spectre de variance de la biomasse phytoplanctonique aux 

échelles où des processus purement biologiques interféraient voire prenaient le pas sur les 

processus de dispersion turbulente. Dans ce cadre, les résultats de Seuront et al. (1996a) 

présentent une généralisation statistique à des moments d'ordre q de travaux antérieurs basés 

uniquement sur l'analyse spectrale associée à un moment d'ordre 2. 

L'examen de la distribution des exposants ((q) en fonction de q montrent un 

comportement non-linéaire caractéristique d'une distribution multifractale (Fig. 15). Aux 

échelles inférieures à 100 secondes, les distributions de la température et de la biomasse 

phytoplanctonique ne peuvent être différenciées (H = 0,42, C1 = 0,04 et a ~ 1, 75) alors 

qu'aux échelles supérieures à 100 secondes, la biomasse phytoplanctonique présente une 

distribution très spécifique avec des paramètres multifractals nettement différents ( H = 0,12, 

cl = 0,02 et a = 0,8). 
2,5 ...-----------------------, 

2,0 

1,5 

1,0 

0,5 
--·--

0,0 ~r::=:::;::.:....,...-,---,-,.....,r--r--.--.---.-'T""""1r--r----r---r---.--,---,c--l 

0 1 2 3 4 5 

q 

Fig. 15. Courbes empiriques de l'exposant invariant d'échelle des fonctions de structure Ç(q) pour la 

température (trait continu épais), la fluorescence à petite échelle (tirets) et à grande échelle (trait continu fin), 

comparées à la courbe monofractale théorique Ç(q) = qH avec H = 0,42 etH= 0,12. La non-linéarité des Ç(q) 

empiriques révèle un comportement multifractal (d'après Seuront et al., 1996a). 

Ces résultats montrent que la variabilité de la distribution de la température et de la 

biomasse phytoplanctonique peuvent être caractérisée en terme d'hétérogénéité dans le cadre 

des multifractals universels, et ce, quelles que soient les échelles considérées et les intensités du 

processus. De plus, la biomasse phytoplanctonique présente une structuration différentielle 

associée aux échelles considérées. On retrouve ici, une généralisation multifractale du concept 
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de rupture d'échelle discuté au paragraphe 3.2 dans le cadre monofractal. De plus, ces résultats 

nous ont permis de vérifier l'hypothèse de passivité moyenne de la biomasse phytoplanctonique 

en milieu turbulent telle qu'elle a été formulée dans les années 1970 (e.g. Platt, 1972), mais 

aussi et surtout de confirmer sa validité en considérant la distribution de tous les niveaux 

d'intensité quelles que soient les échelles considérées. 

Enfin, l'utilisation des multifractals universels a montré que la variabilité associée à des 

processus stochastiques fortement non-Gaussien pouvait être pleinement caractérisée par 

seulement trois paramètres et ce, quelles que soient les échelles d'espace ou de temps 

considérées. De fait, ces résultats montrent que dans un milieu turbulent, considéré 

classiquement comme générateur d'homogénéité, la distribution de la biomasse 

phytoplanctonique était particulièrement hétérogène. Cette hétérogénéité, inhérente à la 

structure des mouvements turbulents, permet d'envisager, loin des statistiques gaussiennes 

classiques, une description multiéchelle du couplage fortement non-linéaire existant entre 

processus physiques et biologiques. La prise en compte de cette hétérogénéité dans le cadre 

d'une modélisation de la trophodynamique du zooplancton, actuellement en développement, 

semble aujourd'hui essentielle dans l'étude des flux de matière au sein de l'écosystème 

pélagique. 
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Dans le cadre d'un travail de recherche pluridisciplinaire, nous proposons une modélisation 
multi-agents d'un écosystème. Nous discutons d'aspects méthodologiques pour passer d'un modèle 
à base de bilans à une modélisation multi-agents. Nous justifions l'utilisation d'urie modélisation 
multi-agents pour l'étude du comportement d'un organisme vivant ce qu'un modèle analytique ne 
peut rendre compte d'une manière pertinente. Nous présentons également la plate-forme que nous 
avons développé en cherchant la généricité afin de la réutilisée dans d'autres projets en cours. 

Mots-clés 

SMA, modélisation d'écosystèmes, biologie marine, laboratoire virtuel 

1 Introduction les SMA dans les sciences de la nature 

L'objet de nos travaux est la modélisation et la simulation de systèmes naturels à l'aide de 
systèmes multi-agents [4]. Ce travail est pluridisciplinaire : l'informaticien apporte sa connaissance 
de l'informatique, développe des travaux nouveaux pour répondre à des questions que se posent des 
chercheurs d'une autre discipline, une discipline des sciences naturelles dans notre cas. Notre travail 
repose sur un dialogue constant entre les disciplines. 

Le choix des SMA pour l'étude de ce type de systèmes n'est pas un choix académique: c'est un 
choix de raison. En effet, notre objectif n'est pas, comme cela est généralement le but dans 
l'utilisation de l'informatique, de calculer une fonction ; l'objectif est d'étudier la dynamique d'un 
système. La modélisation consiste à transcrire un système dans un certain langage pour pouvoir 
l'étudier plus aisément. Ce peut-être le langage des équations différentielles. Cependant, nous 
pensons qu'il est beaucoup plus judicieux, parce qu'il se prête mieux à l'expression d'objets 
complexes, d'utiliser des agents dont le comportement est décrit algorithmiquement. Aussi, la 
modélisation multi-agents remplit-elle nos attentes. Notons bien que nous ne cherchons pas à 
«rendre tout agent», même s'il est intéressant de voir jusqu'où les SMA peuvent se substituer aux 
équations [7,10]. Si, dans le système que nous étudions, certaines parties de leur dynamique en est 
parfaitement décrite par des équations que l'on sait résoudre, nous l'utilisons. 

D'un point de vue plus global, notre objectif est la réalisation de laboratoires virtuels [6]. Nous 
entendons par là un logiciel dans lequel un système est décrit et la dynamique simulée, les 
paramètres définissant le système modifiés dynamiquement, des capteurs placés à tout endroit du 
système pour collecter des mesures. Le but est de pouvoir tester des hypothèses en faisant jouer des 
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scénarii et d'observer et mesurer l'évolution du système. Cela permet également la visualisation des 
phénomènes émergeants que l'on ne peut pas imaginer/prévoir a priori. Cette visualisation aide à la 
compréhension du système et de sa dynamique. 

1.1 Démarche pour la modélisation 

D'une manière générale, les modèles rencontrés dans les sciences du type biologie, géologie, ... 
décrivent des flux de manière analytique. En modélisation MA, il faut décrire le comportement 
individuel des agents et leurs interactions. C'est un changement complet de perspective. Dans une 
modélisation multi-agents, les bilans sont émergeants : ce sont des résultats, et non plus des 
données. Généralement, le chercheur a un modèle de type bilans et une intuition concernant le 
comportement à un niveau plus fin et seul l'aspect bilan est utilisé effectivement, du fait qu'il est 
analytique. En renversant complètement le point de vue à l'aide d'une modélisation MA en mettant 
en avant le comportement individuel, nous mettons en question la cohérence des deux niveaux de 
« compréhension » du système : normalement, la simulation des comportements individuels doit 
naturellement déboucher sur l'observation des bilans censés décrire la dynamique du système (voir 
infra). 

1.2 Validation 

La validation du modèle est basée sur une comparaison entre les observations et la dynamique de 
la simulation. Après modélisation du comportement des agents et de leurs interactions, on 
paramètre le système et on simule des situations expérimentales connues. En fonction du décalage 
entre l'observation et la simulation, on cale le modèle. 

Une fois calé, on extrapole en faisant jouer des scénarii nouveaux en supposant que le 
comportement du simulateur demeure fidèle à la réalité. 

1.3 Impact des SMA dans un domaine particulier 

Du point de vue de la mise en place d'un modèle multi-agents, la modélisation est intuitivement 
assez facile à réaliser en comparaison avec une modélisation analytique ; elle ne demande pas une 
aptitude pour les mathématiques et leurs applications ; elle évite les problèmes liés à la résolution 
effective d'un système d'équations différentielles. 

Comme on l'a déjà souligné plus haut, elle permet de simuler les lois comportementales 
observées et d'en vérifier leur cohérence par rapport aux modèles de bilans classiques. On renverse 
donc la perspective entre les données et les résultats. 

L'approche permet d'intégrer des modèles du comportement de plusieurs types d'agents dans une 
même simulation et de tester la cohérence de ces modèles entre eux. Cette possibilité est très 
originale et permet de se rendre compte des incohérences entre des modèles décrivant des processus 
différents et interagissants. 

L'aspect visualisation de la dynamique du système est également fondamentale à nos yeux. Par 
essence, une émergence ne peut être prédite ; il est donc important de disposer d'un outil permettant 
de la voir, donc de mieux comprendre le système étudié. 
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1.4 Principes généraux de notre modélisation 

Dans le reste de cet article, nous décrivons la modélisation que nous avons mise en place dans le 
cadre d'une collaboration informatique/biologie marine. Nous utilisons une modélisation multi
agents pour tester une hypothèse proposée par les biologistes sur la modélisation du milieu marin et 
sa pertinence pour rendre compte du comportement du zoo-plancton. Les agents représentant les 
organismes zoo-planctoniques sont des agents situés, réactifs, et percevant leur environnement. 
Ainsi, le modèle de leur environnement et de leur voisinage n'est pas fourni aux agents ; au 
contraire, les agents le construisent à chaque instant via leurs « sens». C'est pour nous très 
important de modéliser la perception des agents sous cette forme « réaliste ». La perception de 
l'agent peut varier en fonction de son état physiologique et de son environnement; sa situation 
(spatiale, dans l'espace des états physiologique ... ) intervient dans la perception qu'il a de son 
milieu. Notons également que le fait que les agents soient réactifs n'impliquent pas qu'ils n'ont pas 
une certaine forme de mémoire. Le comportement passé d'un agent rétro-agît sur son comportement 
à venir; le comportement d'un agent à un instant est donc influencé par son histoire, qui lui est, par 
nature, individuelle. 

Après avoir décrit le problème et le système biologique, nous présentons la modélisation qui a 
été réalisée. Nous montrons les résultats obtenus qui viennent confirmer les hypothèses des 
biologistes. Ce travail remet en cause une bonne partie des modélisations réalisées à ce jour dans ce 
domaine, ce qu'une approche de type analytique n'a pas permis de réaliser. Enfin, nous discutons 
des suites et perspectives de ce travail. 

2 Modélisation multi-agents en biologie marine 

L'objectif de ce travail est d'identifier les règles comportementales du copépode (cf. Figure 1) et 
les influences de l'environnement sur son comportement : l'hypothèse est que le copépode a un 
comportement actif de recherche de nourriture (phytoplanctons). Pour cela, nous nous proposons de 
croiser l'observation sur le vivant, les résultats des modèles analytiques et la modélisation par 
agents. La distribution du phyto-plancton est fortement hétérogène dans le milieu. Les résultats 
actuels [1] montrent que cette hétérogénéité influe sur le bilan énergétique du copépode. En 
mesurant la quantité d'azote absorbée lors de la nutrition, les observations montrent que le 
rendement du comportement du copépode (énergie dépensée/ énergie ingérée) varie en fonction du 
type de distribution de la nourriture [1 ,3]. Par exemple, un milieu perturbé, propice aux échanges, 
favorise le taux de rencontre du copépode avec les particules de phyto-plancton et donc augmente 
son rendement. Il reste maintenant à montrer l'influence du comportement du copépode dans de 
telles situations. L'étude de ce comportement est incompatible avec une approche analytique, 
comme nous allons le voir. Aussi, nous étudions une approche SMA [4]. 

2.1 Le système étudié 

A 1 'heure actuelle, le copépode (cf. Figure 1 ), petit organisme marin appartenant à la famille des 
zoo-planctons, est représenté par des modèles de type « boîte noire » (cf. Figure 2) ou analytiques 
(cf. Figure 3). Ces modèles cherchent à décrire chaque processus intervenant dans la vie de 
l'organisme en identifiant des flux d'entrée, des flux de sortie et une fonction de transfert. 

- 3-



Figure 1. Copépode Centropages hamatus 

Attardons nous sur le processus d'ingestion des proies dans le cas du phytoplancton (cf. Figure 
2). Le copépode capture une proie (une particule de phytoplancton). Après un temps de 
manipulation, celle-ci est stockée dans l'estomac et entre dans le processus de digestion. L'estomac 
transforme son contenu soit en énergie utilisable (proies assimilées) que l'on exprime en azote, ou 
en déchets (pelotes fécales). Cette transformation est continue: à chaque ô.t, une quantité Aq 
transite (cette quantité est proportionnelle à la quantité stockée dans l'estomac). L'énergie utilisable 
est soit consommée (métabolisme, digestion ou nage) soit stockée (pour la production d'œufs chez 
les femelles, par exemple). Quant aux déchets, ils sont éjectés. 

Proies 

Figure 2. Modèle en boîte du processus d'ingestion 

Il existe des modèles analytiques qui ont pour ambition de représenter, au mieux, les processus 
biologiques qui régissent les copépodes. [1] propose un modèle (cf. Figure 3) synthétisant les 
différents modèles développés jusqu'à présent. Il résume, à l'aide de cinq équations différentielles, 
l'activité de capture et de digestion. 

dXl 
(1) 

dX2 C 
(2) -=l-A-F -=A--

dt dt MN 
dX3 (3) 

dX4 (4) -=F-G -=G 
dt dt 

dXs 
dt= est + csda + csw (5) 

Figure 3. Modèle analytique du processus d'ingestion 
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X1 Nombre de proies dans l'estomac 
X2 Nombre de proies assimilées 
X3 Nombre de pelotes fécales 
)4 Nombre de pelotes fécales évacuées 
Xs Energie dépensée exprimée en azote 
I Taux d'ingestion 
A Taux d'assimilation 
F Taux de formation de pelotes fécales 
C Energie dépensée par unité de temps 
MN Masse en azote du copépode 
G Nombre de pelotes fécales évacuées par unité de temps 
Cst Energie dépensée pour le métabolisme par unité de temps 
Csda Energie dépensée pour l'ingestion par unité de temps 
Csw Energie dépensée pour le déplacement par unité de temps (nage+ saut) 

Table 1. Définition des variables et constantes du modèle analytique de la Figure 3 

Prenons, à titre d'illustration, l'équation (1) qui décrit mathématique la variation du nombre de 
proies dans l'estomac de l'animal (Xt). Cette variable dépend de trois autres variables : 

* le taux d'ingestion I qui mesure le nombre de proies rencontrées par le copépode en fonction 
de sa satiété1 et du niveau de turbulence2 du milieu, 

* le taux d'assimilation A, proportion d'azote apporté par les proies qui devient utilisable, 
* le taux de formation des pelotes fécales, proportion d'azote apporté par les proies qui n'est 

pas utilisé mais évacué en pelotes fécales. 

Les deux dernières variables modélisent, a priori de manière correcte, la digestion. En revanche, 
la variable I est. censée décrire le processus de capture du copépode en fonction de sa satiété et de 
l'environnement. A aucun moment, les équations mathématiques ne font mention du comportement 
du copépode. Pour s'en convaincre, développons un peu ce qui se cache sous I. 

I = (Pbehaviour + Pturbulence)N pFA 

I est directement lié à la capacité de rencontre du copépode. Dans le modèle analytique proposé, 
cette capacité de rencontre est fonction de quatre paramètres : 

* Pbehaviour la contribution du« comportement», celle-ci est fonction du rayon de perception du 

* 
* 
* 

copépode, du rayon des proies et la différence de vitesse de nage entre le copépode et les 
prmes, 

P turbulence la contribution de la turbulence, 
Np la densité des proies dans le milieu, 
FA une mesure de 1' activité de nutrition dépendant de la quantité de nourriture dans 
l'estomac du copépode et, selon le mode de prédation (en suspension ou en embuscade), la 
densité des proies dans le milieu. 

Ce modèle rend bien compte du processus de capture mis à part, de notre point de vue, la 
contribution du comportement. En effet, si 1' on peut mettre en équation le fait que 1' activité de 
nutrition du copépode est fonction de la densité des proies, du niveau de turbulence du milieu, du 
mode de prédation et de la quantité de nourriture dans 1' estomac, il est, en revanche, délicat de 

1 Le niveau de satiété est proportionnelle à la quantité de nourriture contenue dans l'estomac. Plus l'estomac du 
copépode est plein, moins il cherche à capturer de nourriture. 
2 Plus le milieu est turbulent, plus la probabilité de rencontre entre le copépode et les cellules de phytoplancton est 
grande. 
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résumer le comportement par une relation qui fait seulement intervenir le rayon de perception, la 
taille des proies et la vitesse de nage du copépode relativement à celle de ses proies. 

2.2 La modélisation mu/ti-agents 

Le système étudié est composé d'une masse d'eau (qui représente le milieu des autres agents) 
dans laquelle sont immergés des « patches3 » de phytoplanctons et des copépodes. Chacun des 
agents est situé et possède ses propriétés parmi lesquelles son comportement. Les patches de 
phytoplanctons ont une certaine dimension et sont soumis aux courants et à la turbulence. Le 
copépode possède différentes caractéristiques (sa masse en azote, le volume de son estomac, sa 
vitesse de. nage ... ). Son comportement, objet de l'étude pour le biologiste, est défini par un réseau 
de Pétri pour permettre la description de comportements sophistiqués avec un outil standard et 
simple. On se place dans une perspective d'agent réactif (cf. Figure 4): l'état interne de l'agent et 
les stimuli auxquels il est sujet à un certain instant entraînent (de manière non nécessairement 
déterministe) un certain comportement et un nouvel état interne. 

Stimuli 

Etat interne de 1' agent 

Comportement 
~ 

Nouvel état interne ... 

Figure 4. Agent réactif 

2.2.1 L'outil de modélisation 

Il existe une multitude d'outils de modélisation plus ou moins généraliste (Swarrn [13], Manta 
[12] ... ). Dans la majorité des cas, ce sont des plates-formes soit adaptées à un ou à une famille de 
problèmes, soit génériques. A notre connaissance, la généricité entraîne, dans tous les cas, une 
dépendance vis à vis d'un environnement informatique ou d'un langage de développement mais 
surtout ces plates-formes sont à base de primitives réutilisables et il faut donc écrire du code ! 
Toutes ces raisons nous ont poussés à concevoir un nouvel outil de modélisation et de simulation 
d'agents réactifs, perceptifs et situés. 

Nous utilisons un langage objet (Java) dans lequel nous retrouvons tous les concepts du 
paradigme objet ainsi qu'une arborescence de classes avancées (thread, stream ... ). Cette 
hiérarchisation des classes nous a permis de définir nos classes d'agents (cf. Figure 5). Dans un 
premier temps, ces classes d'agents ont été accessibles par un langage avec lequel on peut décrire 
une catégorie d'agents par l'intermédiaire de leur comportement, de leurs propriétés et de leurs 
moyens de communication. Un second langage rend possible la description de l'environnement. 
L'ensemble compose une plate-forme où l'on peut décrire les agents, les créer et les activer. 

A 1 'heure actuelle, les deux langages sont partiellement4 en capsulés dans une interface graphique 
écrite en Java (donc portable et accessible sur Internet) et accompagnés d'outils de définition de 
l'environnement, de représentation de déplacements d'agents situés et de tracé des variations des 
propriétés des agents. 

Les familles d'agents 

Notre approche repose sur quatre familles d'agents (cf. Figure 5). Les agents spatiaux sont les 
briques de base pour la construction de 1 'environnement en les juxtaposant et en les connectant. 

3 Agrégat 
4 Les actions sont toujours exprimées à l'aide de ce langage (cf. Figure 6 et Figure 9) 
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Selon le mode de connexion, il est possible de définir des environnements toriques ou bornés. 
Comme nous le verrons par la suite, l'interconnexion des agents spatiaux entre eux est aussi à la 
base des canaux de communication entre agents situés et spatiaux. 

Agent réactif 

Figure 5. Hiérarchie des familles d'agents dans notre simulateur 

Les agents situés constituent la deuxième grande famille. Un agent situé se trouve en relation 
avec un et un seul agent spatial. Cette relation permet de définir sa position dans 1 'espace. On 
distingue deux sous-familles : les agents dynamiques et les agents statiques. La différence 
fondamentale réside dans le fait que les agents dynamiques ont la facu1té de se déplacer par leur 
propre initiative. En revanche, les agents statiques sont fixes ou peuvent être déplacés par d'autres 
agents. 

Les agents globaux, comme leur nom l'indique, sont des entités communes à l'ensemble des 
autres agents. Tous les agents peuvent y faireréférence. 

tes états fnternes 

Malgré leurs différences conceptuelles, tous les agents sont construits autour de l'idée d'agent 
réactif. Les états internes précisent des valeurs telles que masse en azote, volume de 1' estomac, 
vitesse de nage, fréquence des sauts ... , c'est-à-dire toute valeur caractéristique de l'agent susceptible 
d'intervenir dans son comportement. Ces valeurs sont strictement privées à l'agent et donc, lui seul, 
en fonction de ce qu'il perçoit et de son comportement, modifie ces valeurs. On peut imaginer, par 
exemple, qu'après l'absorption d'une cellule de phyto-plancton par un copépode, celui-ci augmente 
sa masse en azote d'une certaine quantité (une fois assimilée). 

La dynamique 

La dynamique, directement liée au comportement que l'on cherche à tester, fait appel aux 
réseaux de Pétri (cf. Figure 6). Celui-ci a pour objectif de modéliser les changements d'état. On 
retrouve dans cet outil mathématique les notions d'état (stable) ou de place et de transition. A un 
état (ou place) est associé un ensemble d'actions (déplacement, mise à jour de l'état interne, envoi de 
message ... ) réalisées lors de l'activation de cet état. L'état est activé à chaque réception de jetons. 
Une transition, quant à elle, marque le passage d'un état stable à un autre. Ce passage s'effectue si le 
nombre de jetons nécessaires est atteint dans les places amonts, si la condition associée à la 
transition est valide et après une durée de temporisation détern1iniste ou stochastique. En d'autres 
termes, pour qu'il y ait changement d'état, il faut que les conditions de franchissement de la 
transition soient validées et, après une certaine attente, le nouvel état stable est activé. 
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Jeton 

Etats ou places 

affectation, energy = energy - swimmingCost 
affectation, duration = duration + 1 

1...,.~1---- Nombre de jetons consommés 

1 , true +-- Temporisation, condition 

Transition 

,._ ___ Nombre de jetons produits 

move, toSpatialAgent(groundView,random) 

Figure 6. Réseau de Pétri temporisé modifié 

Actions 

L'introduction de durée de temporisation rend les modèles dépendant de la variable temps, si 
nécessaire. En effet, 1' exécution des réseaux de Pétri temporisés construit dynamiquement un 
échéancier. 

La perception 

Par analogie avec les entités biologiques, tout agent est doué de sens plus ou moins développés. 
Dans notre modèle, un agent possède plusieurs sens et chacun d'eux est défini par trois paramètres: 
le type d'agents perçu, le secteur (selon l'orientation de l'agent) et la distance jusqu'à laquelle ces 
agents sont perçus. Par ce biais, on peut tester différents scénarii selon les perceptions possibles du 
copépode (par exemple, perception des cellules de phytoplancton situées dans un secteur de 90 
degrés et à une distance inférieure à hnm [2] - cf. Figure 7). De plus, un agent peut ne percevoir 
qu'une partie des caractéristiques d'un autre agent. On précise dans ce cas les caractéristiques 
perçues. Un agent peut aussi disposer de plusieurs sens. C'est lors d'actions que l'agent précisera le 
sens utilisé. 

,..___ Voisinage perçu 

1mm 

Figure 7. Distance de vision= 1 et secteur= 2 

Les sens sont aussi, dans cette approche, à la base du réseau de connaissances des agents. 
Dynamiquement, 1' agent construit son voisinage en fonction de sa position dans 1' espace et de ses 
sens. 
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A titre d'exemple (cf. Figure 8), considérons les agents « croix ». Ils perçoivent totalement leurs 
congénères et les agents spatiaux comme indiqué sur la Figure 8. Les cases grises représentent les 
agent spatiaux perçus (section de 90° et distance de 2). En revanche, les agents «croix» ne 
perçoivent pas les agents « rond ». Il en résulte que 1 'agent situé au centre de la grille ne perçoit 
qu'un seul agent (l'agent« croix» de la première ligne) et l'ensemble des agents spatiaux grisés. 

Indirectement, les sens définissent aussi les possibilités de déplacement des agents dynamiques. 
Si l'environnement se compose de différents types d'agents spatiaux, l'un de ces agents peut ne pas 
être perçu par un agent dynamique. Prenons l'exemple d'un labyrinthe, il est composé de couloirs et 
de murs. Les agents qui se déplace dans ce labyrinthe ne peuvent pas se positionner sur les murs. 
On interdit donc la perception des murs par les agents mobiles. Lors d'une action de déplacement, 
l'agent va construire l'ensemble des futures positions possibles en fonction de ses perceptions et 
choisir parmi elles. 

Les messages 

La quatrième caractéristique concerne les communications entre agents. Les agents ont la 
possibilité d'envoyer des messages aux seuls agents qu'ils perçoivent. Ces messages se présentent 
sous la forme d'un vocabulaire que les agents peuvent émettre (ou non) et entendre (ou non) selon 
leur type. La réception d'un message par un agent le conduit à effectuer une ou plusieurs actions. Le 
mécanisme d'envoi de messages est le seul moyen pour un agent de modifier les caractéristiques 
d'un autre agent (à condition que celui-ci l'accepte). L'envoi d'un message est considéré comme 
une action au même titre qu'un déplacement. A titre d'exemple, la place n°3 de la Figure 9 contient 
un exemple d'envoi de message (send,toSpatialAgentWherelslt(lnit)). Ce message est envoyé à 
l'agent spatial où l'agent expéditeur se situe; il se nomme !nit et ne possède pas de paramètres. 
Lorsque le message est reçu par l'agent spatial, destinataire du message, celui-ci effectuera les 
actions associées au message. 

2.2.2 Le modèle 

Nous sommes partis de 1 'hypothèse que le copépode adopte deux comportements distincts : une 
nage orientée à la recherche de nourriture et des sauts aléatoires. Ces comportements ont une 
influence directe sur le processus d'ingestion des cellule de phytoplancton. Nous allons donc nous 
intéresser exclusivement à ce processus et laisser de côté la partie digestion qui, néanmoins, n'est 
pas à négliger pour obtenir un modèle complet. 

Généralités 

Le système se compose de trois entités : la masse d'eau, les cellules de phytoplancton et les 
copépodes. Dans un premier temps, nous ne considérons qu'un seul copépode à la fois. La masse 
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d'eau constitue l'environnement (ou le milieu) dans lequel évolue les autres entités. La taille du 
copépode (1 mm) sert de longueur de base pour la discrétisation de ce milieu. Le milieu est 
considéré, pour l'instant, en deux dimensions et découpé en parcelles d' 1 mnl. Chaque parcelle est 
pris en charge par un agent spatial. Les cellules de phytoplancton sont très nombreuses (de 10 
cellules par litre à 108 cellules par litre soit au maximum 104 cellules par parcelle). Il n'est donc pas 
raisonnable de modéliser chaque cellule par un agent. La solution retenue consiste à définir, au 
niveau des agents spatiaux, une propriété «Nombre de cellules». On délègue la gestion de la 
nourriture aux agents spatiaux c'est-à-dire à l'environnement. Quant au copépode, il est représenté 
par un agent dynamique dont on va décrire la dynamique dans la partie suivante. 

Le pas de temps de la simulation est noté u. t. Celui-ci est fixé par la durée correspondant au 
temps nécessaire à la plus petite action, c'est-à-dire la manipulation d'une cellule de phytoplancton 
par le copépode soit 1/20 s. 

La dynamique du copépode. 

Le réseau de Petri modélisant la dynamique de déplacement du copépode (cf. Figure 9) se divise 
en quatre parties : 

* dès que l'on atteint la fin d'un cycle de 75 u. t.5
, le copépode effectue un saut sans 

considérer ce qu'ill'entoure6
- place n°3, 

* pendant 20 u. t. (le temps de traverser une parcelle du milieu), le copépode explore 
1' espace où il se trouve et si de la nourriture s'y trouve, il peut, à chaque unité de temps, 
capturer une cellule de phytoplancton- place n°9, 

* en revanche, s'il n'y a pas de nourriture, il continue à nager pour atteindre la parcelle 
suivante -place n°8, 

* au bout des 20 u. t. nécessaires à la traversée d'une parcelle, le copépode choisit une 
nouvelle parcelle à explorer et s'y rend- place n°6. 

Intéressons-nous à la phase active de capture de nourriture. A 1' exception des sauts aléatoires 
(place n°3), le copépode nage et parcourt une parcelle toutes les 20 u. t. Lorsqu'il a atteint ce délai, 
il change de parcelle (place n°6). Ce changement est fonction de la stratégie que l'on teste. Dans le 
cas de la Figure 9, la parcelle disposant de plus de nourriture aura plus de chance d'être choisie ce 
qui se traduit par l'instruction move,toSpatia/Agent(groundView,true,random(currentQuantity). 
Cette instruction fait partie de l'ensemble des actions disponibles et permet le déplacement d'un 
agent dynamique vers un des agents spatiaux perçu par un sens, ici groundView, et sélectionné par 
tirage aléatoire proportionnel à la valeur d'une variable (currentQuantity, dans notre cas). 

Localement, le copépode capture les cellules de phytoplancton. S'il n'a pas encore tout 
consommé, on vérifie s'il a «envie» de manger (place n°7). En effet, nous avons vu que le 
copépode diminue la quantité de nourriture qu'il absorbe en fonction de son niveau de satiété, lui
même directement lié, pour l'instant, au nombre de cellules de phytoplancton présentes dans 
l'estomac. La fonction de satiété est la suivante: 

v proie xl 
[ ]

2 

c =1-
g ~ vestomac 

où VproieXl présente le volume des proies non digérées et Vestomac le volume de l'estomac du 
copépode. 

Si le tirage aléatoire de la place n°7 est favorable alors il capture la cellule sinon cette cellule 
disparaît de son champ de vision. 

5 75 u. t. est une valeur moyenne issue d'une campagne d'observations. 
6 pour l'instant, c'est l'hypothèse retenue car on ne sait absolument pas pourquoi il saute. 

- 10-



l,true 

O,energy = 0 

se nd, toSpatia!AgentWherelslt(Jni~ 
jump(1) 
energy=energy-jumpEnergy 
jumpDuration = 0 
duration = 0 

O,jumpDuration < jumpDelay,----"-----, 
and energy > 0 

O,duration < 20 

0, x-> currentQuantity > 0, x -> currentQuantity = 0 

send, toSpatialAgent Wherels1t(Init) 
move, toSpatia!Agent(groundView, 

true,random(currentQuantity)) 
duration = 0 

l,true 

P = uniform(O ;1) 

O,P> Cg 

O,true 

send,toSpatialAgentWherelslt{Eat) 

O,P <Cg 
duration = duration + 1 
energy = energy- swimmingEnergy 
jumpDuration = jumpDuration + 1 

send, toSpatia!AgentWherelslt(Eat) 
gutEnergy=gutEnergy+cel!Energy 
cel!Number=cel!Number+ 1 

Figure 9. Dynamique de déplacement 
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Ce premier modèle est une traduction algorithmique du modèle analytique. On y retrouve des 
valeurs moyennes issues de bilans et des processus aléatoires, tel que celui de la satiété. La même 
remarque est valable pour la partie digestion. Le seul élément nouveau est la prise en compte du 
comportement au niveau de la nage. Il faut néanmoins souligné que la construction des agents est 
nettement plus simple et fait intervenir un nombre réduit de paramètres par rapport au modèle 
analytique. 

Nous nous intéressons maintenant à décomposer les processus «énigmatiques», tels que les 
sauts aléatoires ou la vitesse de nage constante. Il est évident que derrière ces actions se cachent des 
règles de décision ou des processus plus complexes. Par exemple, l'observation montre que la 
vitesse de nage n'est pas constante et que ces variations sont dues à des interactions avec 
1' environnement. Il reste, aux biologistes, à les définir ou à les imaginer. 

2.3 Résultats expérimentaux 

Nous avons défini deux types de copépode en fonction de leur stratégie de nage : aléatoire ou 
orientée. L'environnement se compose d'une grille 2D de 2500 parcelles carrées (50x50). Chaque 
parcelle est un agent spatial et est connectée à ces 8 voisines. Les cellules de phytoplancton sont 
réparties soit par patches (cf. Figure 10- tâches grises) soit uniformément. Dans les deux cas, la 
densité globale est identique (1 cellule par parcelle). Pour les patches, différentes densités sont 
utilisées (représentées par des niveaux de gris différents). 

A l'aide des variables définies au niveau des agents Copépode, on mesure à chaque pas de la 
simulation: l'énergie, exprimée en pg7 d'azote, contenue dans l'estomac (gutEnergy), l'énergie 
utilisable (energy), le nombre de cellules de phytoplancton capturées (cel!Number) et quatre 
variables du modèle analytique (X3, X4, Tg et Ca)· 

Figure 10. Trajectoire du copépode (nage aléatoire) 

Nous disposons d'un outil de visualisation de trajectoire. Il permet de tracer le chemin parcouru 
par un agent situé durant la simulation. En superposant la trajectoire du copépode étudié et la 
distribution des cellules de phytoplancton, on montre que dans le cas d'une distribution des cellules 

7 picogramme 
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de phytoplancton par patch, la stratégie de la nage orientée est plus efficace. La Figure 11 est là 
pour en témoigner. 

Figure 11. Trajectoire du copépode (nage orientée) 

~OOOr-------------------------------------------------~ 

.. 
g ~+---------------~--------------------------------~ 
! .. 
= ~ 25000 +----------+----------------------------~ r--;;-:::::-:=.------, e -Nage orientée 
~ -Nage aléatoire 
"' -Distribution uniforme 
g 20000+---------~-----------------~~~~---~ .. 
'Cl 

:!! 

~ 1&00+-----+--------~~---~-------------~ 
à 

5001 10001 15001 
Terrps 

20001 25001 3DDD1 

Figure 12. Quantité de nourriture (en pg d'azote) dans l'estomac du copépode en fonction du temps 

Si on superpose les courbes représentant la quantité de nourriture dans l'estomac du copépode en 
fonction du temps et selon la distribution des cellules de phytoplancton et la stratégie de nage, il 
apparaît très rapidement que la nage orientée est favorable à l'alimentation du copépode du point de 
vue énergétique. 

Si le copépode est plongé dans un champ homogène, la stratégie de nage n'a aucune influence 
sur l'alimentation puisqu'il trouvera de la nourriture dans toutes les directions en même quantité. En 
revanche, dans un champ hétérogène, la stratégie aléatoire conduit le copépode à tomber par hasard 
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sur un patch de cellules de phytoplancton et surtout d'en sortir sans chercher à en profiter. Donc 
cette stratégie est moins efficace. 

En conclusion, on retrouve les principaux résultats énoncés dans [1] pour une configuration de 
champ uniforme et de nage aléatoire. Il reste à effectuer des comparaisons avec des résultats 
d'expériences in vivo mais qui restent pour l'instant difficile à réaliser. Les seuls points de 
comparaison possible concerne l'aspect des trajectoires selon la densité de nourriture (cf. [3]). 

3 Discussion 

Nous avons présenté la démarche et les premiers résultats d'un travail reposant sur une 
collaboration informatique/biologie qui a pour objectif d'étudier le comportement d'un organisme 
zoo-planctonique, le copépode. Nos résultats sur un champ de phytoplanctons hétérogène sont les 
premiers obtenus. Ils montrent clairement la différence par rapport au champ uniforme, qui aura des 
conséquences importantes sur le comportement, donc sur la dynamique de l'écosystème marin. En 
effet, si le phytoplancton est distribué de manière hétérogène, le copépode a un comportement qui 
tend à les concentrer dans des zones où le phytoplancton se trouve. Le copépode étant lui-même la 
nourriture de certains poissons, ceux-ci auraient à leur tour une répartition différente dans les 
eaux ... 

Ce travail réalisé, de nombreuses voies de poursuite sont possibles. Tout d'abord, le passage à un 
système 3D est envisagé. Ce passage du 2D au 3D ne devrait pas remettre en cause les conclusions 
de ce travail au niveau biologie. Par contre, pour l'informaticien, le passage à la troisième 
dimension soulève des problèmes en terme de charge de calcul. Ce problème lié au nombre d'objets 
et au nombre d'interactions à simuler est plus général que celui du passage au 3D ; c'est un 
problème que l'on rencontre partout, dès que le système est un peu compliqué. Nous travaillons 
actuellement sur l'agrégation d'agents pour faire face à ce problème. 

Les temps de calcul sont également dus au fait que la plate-forme a été développée en Java pour 
permettre, notamment, une compatibilité avec Internet. Par ailleurs, le développement d'une 
application à l'aide d'agents « propres » peut entraîner des surcharges de traitements. 

Ce travail conceptuel et cette plate-forme sont actuellement en cours de réutilisation dans le 
cadre d'une collaboration avec un laboratoire de géologie où l'aspect laboratoire virtuel séduit 
également beaucoup les chercheurs. 

L'utilisation d'un modèle multi-agents nous semble être indispensable pour autoriser l'étude fine 
d'un comportement, ce qu'un modèle analytique ne nous aurait pas permis. 

Au niveau méthodologique de modélisation, nous avons dû étudier le passage d'un modèle 
reposant sur des bilans à un modèle orienté individu ; nous retrouvons le même type de changement 
de paradigme dans notre travail avec des géologues. Les variables habituellement manipulées dans 
les modèles dans ces sciences sont en effet collectives, émergeantes de l'activité des individus. 
Nous pensons que l'approche multi-agents oblige à se concentrer sur les «vraies» questions. Dans 
le travail décrit ici, le comportement en moyenne d'un copépode n'a aucun sens: le copépode n'a 
jamais ce fameux comportement moyen, et ce lissage masque les véritables comportements, altérant 
fmalement l'étude du système en se concentrant sur de faux problèmes et en ignorant les bonnes 
questions. 
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Abstract 

In the Eastern English Channel, characterized by its megatidal regime and the resulting very high 

hydrodynamic conditions, recent studies have demonstrated-on the basis of innovative statistical analyses in 

marine ecology-that phytoplankton biomass but also purely passive scalars such as temperature were 

heterogeneously distributed at small-scale, though basically regarded as homogenized by turbulent fluid 

motions. Thus, we extended these concepts to dissolved nitrogen (NO:i), and we first demonstrated the validity 

of our high resolution (3-sec temporal resolution) procedure of continuously measuring nitrite concentration. 

Second, we described how these time series recorded at different times of four tidal cycles can be characterized 

as heterogeneously distributed using fractal and multifractal parameters, and then can be described in terms of 

small-scale patches. Moreover, these parameters showed very specifie temporal patterns revealing the absence 

of density-dependence of nitrite distribution. In contrast, nitrite distributions clearly appeared to be less 

heterogeneously distributed in higher hydrodynamic conditions, suggesting a physical control of small-scale 

nutrient patchiness. Nevertheless, taking into account the differentiai structure of nitrite distributions between 

high and low hydrodynamic conditions, we suggested that the observed srnall-scale nutrient patches could also 

be the results of complex interactions between hydrodynamic conditions, biological processes related to 

phytoplankton and bacterial populations. 
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The ecological importance of space-time heterogeneity in phytoplankton populations has 

been pointed out by several authors (e.g. Hutchinson 1961; Margalef 1967, 1976; Platt 1975) 

and widely investigated both in marine and freshwater ecolo gy ( e.g. Platt 1972; Powell et al. 

1975; Abbott et al. 1982; Weber et al. 1986; Denman and Abbott 1994). However, in spite of 

the intensive investigations conducted on the nutrient dependence of phytoplankton growth 

(Jickells 1998; McCarthy et al. 1998) that provided direct evidence for nutrient control of 

photosynthesis in the ocean (Platt et al. 1992; Falkowski et al. 1998), studies concerning the 

small-scale heterogeneity of nutrients were still scarce (Estrada and Wagensberg 1977; Steele 

and Henderson 1979). 

The small-scale distribution of nutrient in the sea is nevertheless a particular salient issue in 

marine ecology. Indeed, if small-scale heterogeneity in the distribution of nutrients was really 

more prevalent than previously thought, for instance, new production by phytoplankton might 

have been biased in many environments, especially at the continental margins of the ocean 

where spatio-temporal variability of both physical and biological processes is usually very 

developed (see e.g. Mackas et al. 1985, and references therein). Moreover, while large scale 

studies can provide informations on population dynarnics and regional and global scale 

estimates of primary production ( e.g. Longhurst et al. 1995), and micro-scale data (i.e. 1 o-2
-

lm) might reveal details of nutrient uptake (Lehman and Scavia 1984; Currie 1984), small

scale studies (i.e. 1-103 rn, Mackas et al. 1985) could bridge the gap and provide a better 

understanding of general behavior. The scarcity of studies in this range of scales is, to our 

knowledge, actually evident, especially when hydrodynamic conditions-basically regarded as 

a great factor of homogenization-are high. 

In the Eastern English Channel and the Southern Bight of the North Sea, characterized by 

their megatidal regime and the resulting very high hydrodynamic conditions, recent studies 

have nevertheless shown that phytoplankton biomass was not randomly, nor homogeneously 

distributed but rather exhibited a very structured small-scale patchy distribution similar to the 

one ofpurely passive scalars such as temperature and salinity (Seuront et al. 1996a, b, 1999). 

The question is then now to know whether dissolved nitrogen exhibits a structured distribution 

purely driven by physical forcings (i.e. similar to the one observed in the case of temperature, 

salinity and phytoplankton biomass) or whether exhibits another kind of distribution, 

suggesting an altogether level of complexity in the structuration of nutrient variability. Indeed, 

while sorne studies have been dedicated to spatio-temporal distributions of phyto- and 

zooplankton (Brylinski et al. 1984, 1988; Quisthoudt 1987; Brunet et al. 1993; Seuront et al. 

l996a, b; Seuront and Lagadeuc 1998), results concerning the spatio-temporal distribution of 
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nutrient are still scarce in this area (Bentley et al. 1993; Gentilhomme and Lizon 1998), 

especially on smaller scales. 

However, such studies still rai se many unresolved difficulties, all the more because of both 

technical and statistical limitations. Small-scale patches with elevated nitrogen content then 

cannot be observed with present day techniques, the faster response nutrient analyzer allowing, 

to our knowledge, only a 2-mn temporal resolution (Sakamoto et al. 1996) and was still 

insufficient to work in the coastal ocean where spatio-temporal variability is high relative to the 

open ocean (Mackas et al. 1985). Previous statistical study of plankton patchiness, mainly 

based on spectral analysis (see e.g. Platt and Denman 1975; Fasham 1978), have allowed 

inferences to be made as to when biological processes are likely to be a significant contributor 

of phytoplankton spatial structure, at spatial scales ranging from tens of meters to tens of 

kilometers. However, while able to quantify the variance as a function of both spatial and 

temporal scales, these techniques were able to reveal little concerning both the precise 

variability associated with those scales and the mechanism of the physical-biological 

interactions, particularly at small scales (i.e. meters, and seconds), as this is in the range where 

physical forces obviously dominate biological processes (e.g. Seuront et al. 1996a, b, 1999). 

Herein the goal of this paper is: (i) to demonstrate the validity of a high resolution (i.e. a 3-sec 

temporal resolution) dissolved nitrogen analysis technique; (ii) to show how high resolution 

nitrogen time series can be wholly characterized in terms of structured variability in the 

powerful frame of fractal and multifractal analyses; and (iii) how the organization of this 

structured variability can be regarded as being mainly dependent ofhydrodynamic conditions. 

Materials and methods 

Sampling experiment-Sampling was conducted during 48 h (ca. four tidal cycles) in a 

period of spring tide, from 2 to 4 April 1996, at an anchor station (Fig. 1) located in the coastal 

waters (i.e. the "Coastal Flow"; Brylinski et al. 1991) of the Eastern English Channel 

(50°47'300 N, 1°33'500 E). Measurements ofphysical parameters (temperature and salinity) 

and in vivo fluorescence were taken every hour from the surface to the bottom with a SBE 25 

Sealogger CTD and a Sea Tech fluorometer, respectively. Every 5 minutes, current speed and 

direction were measured at 3, 6 and 9 rn with Anderra current meters. Every hour, wind data 

were collected with the on board anemometer. Every 2 h, water samples were taken at 2, 6, 10 

and 16 rn, using Niskin botties. Dissolved inorganic nitrogen concentrations ( 5 ml frozen 

samples, analyzed using a Technicon autoanalyzer II; Treguer and Le Corre 1971) and 

chlorophyll a concentrations (1 1 filtered frozen samples, extracted with 90% acetone, assayed 
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Fig. 1. Study area and location of the sampling station (*) along the French coast of the Eastern English 

Channel. 

in a spectrophotometer and the chlorophyll a concentration calculated following Strickland and 

Parson 1972) were estimated for each sampled depth. 

High resolution nitrogen sampling design-We focused on nitrite (NO~) rather than 

nitrate (NO~) or ammonium ( NH;) concentration for both conceptual and technical reasons. 

Nitrite is indeed the nutrient which is a priori the most conservative, and then could be 

expected to behave as a purely passive scalar. In that way, one may hope that the observed 

variability would be little or none aliased by biological processes such as phytoplankton uptake 

and release as nitrate and ammonium can be. Moreover, nitrite also allows a higher temporal 

resolution-and then more direct comparisons with the 0.5-sec resolution reached by Seuront 

et al. (1996a, b, 1999)-than nitrate because of the substantial smoothing introduced by the 

reduction process associated with nitrate quantity determination (see Treguer and Le Corre 

1971 for further details). 
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Real time data 
acquisition system 

AutoAnalyzer II 

Fig. 2. Side view shematic diagram of the experimental set-up used to continuously sample subsurface water. 

In order to continuously investigate the small-scale distribution of nitrite ( N02) water was 

continuously taken from a depth of 0.25 rn through a sea-water intake mounted on a 

suspended hose at lm of the hull of the vessel, and directly brought through a Technicon 

autoanalyzer II (Treguer and Le Corre 1971) by means of a railwheel pump with an 

approximate output of0.80 ml.mn-1
, connected to 1.5 mm diameter plastic tubing (Fig. 2). The 

temporal resolution (i.e. 3-sec) has been chosen as the minimum time interval allowed by the 

Technicon autoanalyzer II between two nitrite quantity determinations. One may note here that 

such an approach, while suggested by Treguer and Le Corre ( 1971) has, to our knowledge, 

never been used in that way except by Estrada and Wagensberg (1977) but with a lower 

temporal resolution ( 1 minute) and an important smoothing of the output signal associated 

with the dimension of the pumping apparatus. 

In more practical terms, the Reynolds number associated with our pumping apparatus was 

very low (i.e. Re- 18.75), indicates that no turbulent processes occur during the pumping in 

the plastic tubing. W e then subsequently estimated the characteristic length scale, L , covered 

by the nitrite molecules because of molecular diffusion occurring in the plastic tubing during 
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pumping following L = ..Ji51 (Mann and Lazier 1991), where D is the molecular diffusion 

(D = 10-9 m2.s-1
) and t the diffusion time scale (i.e. the time taken by the water to be brought 

through the Technicon autoanalyzer II; t = 20 min). This led to a characteristic diffusion 

length scale L = 1 o-3 rn which is about five orders of magnitude lower than the intersample 

bubbling used by the a Technicon autoanalyzer II. We can then state that our pumping 

apparatus cannat be responsible for any aliasing associating with turbulent nor molecular 

diffusion. Finally, our sampling cannot be aliased by the boundary layer occurring around the 

hull of the vessel because of the 1-m distance chosen for our sea water intake. Indeed, the 

thickness of a boundary layer, 8, increases with increasing distance from the leading edge (i.e. 

the ship prow) according to 3 =(xv 1 u)112 (Prandtl 1969), where x (m) is the distance from 

the leading edge (i.e. the distance from the ship prow) where water has been continuously 

taken (i.e. x= 15 rn), v the kinematic viscosity (10-6 m2.s-1
) and u (m.s-1

) the free-stream 

velocity. We then estimated 8 for the range of free-stream velocity (i.e. 10-104 cm.s-1
) 

experienced during the sea water pumping experimentas being in the range 0.40-1.20 cm. The 

potential influence of such minute boundary layer thickness in the temporal patterns in the 

nitrite measurements can then be obviously neglected in the present case. 

We then recorded Il time series of nitrite concentrations of approximately one hour 

duration at a sampling frequency of 0.33 Hz; data were directly recorded on a PC by means of 

a data logger system interfaced with the Technicon autoanalyzer II. Between each time series, 

the whole plastic tubing was rinsed with HCl 10%, Milli-Q water and the Technicon 

autoanalyzer II was calibrated using a standardized nitrogen solution. 

Data analysis-The dynamic stability of the water column was calculated using the total 

shear squared (Lizon et al. 1995): 

sz =(!J.u/ !J.z)z+(!J.vl !J.z)z (1) 

where !J.z is depth variation, !J.u and !J.v are variations in the speed of the two orthogonal 

components u (cross-channel) and v (along-channel). One may note here that the vertical 

stability of the water column cannot be estimated by the Richardson number (Ri), or static 

stability (N2
), when there is no vertical gradient of density. 

The dissipation rate ofturbulent energy induced by tide e1 (m2 .s-3
) was calculated following 

MacKenzie and Leggett (1993): 

(2) 
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where <P , u and h are the fraction of the tidal energy which is used for vertical mixing 

( <P = 0.006, Bowers and Simpson 1987), the M2 depth-averaged tidal velocity (m.s-1
) and the 

water column height (rn), respectively. Values of et exceeding 2.4 x 10-5 m2.s-3 (i.e. values of 

(u3 1 h) > 0.004 m2 .s-3
) are typical oftidally mixed area (MacKenzie and Leggett 1991). 

The effect of wind events being of main interest in structuring the whole water column 

(Raby et al. 1994; Lagadeuc et al. 1997; Seuront and Lagadeuc 1997), we especially focused 

on the relative effects of dissipation rates of turbulent energy induced by wind on the sub

surface small-scale distribution of nitrite. Thus, we estimated the dissipation rates of wind

generated turbulent kinetic energy ew (m2.s-3
) using the formulation of the boundary layer 

model used by MacKenzie and Leggett (1991) as: 

&w = (5.82x10-9)W3 1 z (3) 

where W and z are the wind speed (m.s-1
) and the sampling depth (rn), respectively. 

Fractal and multifractal analyses-In this study we have used two related but conceptually 

different analysis methods to investigate the temporal structuration of nitrite concentrations. 

The first method is based on a monodimensional fractal approach, thus assuming that the 

process can be described by a single fractal dimension, D . In general, fractal dimensions 

(Mandelbrot 1977, 1983) characterize patterns remaining similar upon subdivision intime, i.e. 

at each scale, the pattern differs but always shows the same relative variability. A fractal 

dimension may then be interpreted as a characteristic degree of heterogeneity of the series, 

independent of scale, arising from underlying properties of a given process and characterizing 

the distribution of the variability. Thus the dimension of a nitrite time series would be a 

characteristic value of the heterogeneity of the nitrite distribution at ali scales within the series, 

originating from the nitrite generating mechanisms (Seuront and Lagadeuc 1997, 1998). 

Assuming that a process can be described by a single fractal dimension D allows one to use 

power spectral analysis, a widely used method in ecology to separates and measures the 

amount of variability (i.e. the variance, S2
) occurring at different frequencies (Platt and 

Denman 1975; Fasham 1978). When ail or parts of the spectrum E(f) obeys a power-law 

form: 

(4) 

where f is frequency, this indicates absence of characteristic time-scale in the range of the 

power law, i.e. a scaling behavior. Thus fluctuations at ali scales within the range are related to 
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each other by the same scale-dependent relationship. The power law form will manifests itself 

as an approximately straight-lined behavior of the power spectrum when plotted in a double

logarithmic diagram. For time series, the exponent 13 and the fractal dimension D are related 

according to (Feder 1988; Schroeder 1991): 

D = d + 1- (13 -1) 1 2 (5) 

where d is the Euclidean dimension of the observation space ( d = 1 for time series). For time 

series, the fractal dimension D takes values between 1 and 2. A low D value means that the 

heterogeneity is high ( strong autocorrelation both in weak and high values of h ) and there may 

be dominant long-range effects, while high D value indicates that the variable is randomly 

distributed intime (weak or not autocorrelation) and that only weak short-range effects exit 

(see e.g. Seuront and Lagadeuc (1997) for further details). In this paper, the fractal dimension 

is regarded as a measure of the degree of temporal dependence of a variable. So the relation of 

D to the sampling scale indicates the trend of the temporal structure of the variable. 

The second method employed is related to the recently developed universal multifractal 

framework (Schertzer and Lovejoy 1987), which is based on a multidimensional fractal 

approach, i.e. that the variability of the distribution at different scales is connected through a 

dimension function instead of one single dimension. Indeed, contrary to the previously 

described monodimensional approach, based on a power spectrum (i.e. a second order moment 

characterizing a 'mean' variability), the multidimensional approach leads to consider the 

variability of a given process as a hierarchy of sets characterized by different intensity levels, 

each with its own fractal dimension. Multifractal models then require an infinite number of 

parameters for their specification. However, Schertzer and Lovejoy (1987) showed that 

multifractals processes generally lead to universal multifractal characterized by only three 

fundamental parameters. Their so called universal properties arise in part from the generalized 

central limit theorem that applies to stable distribution (Feller 1971; Schertzer and Lovejoy 

1987; Samorodnitsky and Taqqu 1993). Concepts of universal multifractals may be presented 

in different ways. In this communication, we will use the so-called structure functions

recently successfully applied to the small-scale distribution of temperature, salinity and 

phytoplankton biomass (Seuront et al. 1996a, b, 1999)-which can be regarded as a 

generalization in the real domain of the power spectrum (i.e. a second arder moment 

proportional to the square of the amplitude of a given frequency fluctuations). For time series 

of a given quantity Q, l' order structure function can be defined as: 

(6) 
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where <.> indicates · statistical averaging and (ôQ('r))q is the statistical moments of the 

fluctuations of the quantity Q at scale r . For scaling processes, the scale invariant structure 

functions exponents Ç(q) which characterize ali the statistics is defined as: 

< (ôQ( T ))q >;::; T Ç(q) (7) 

The scaling exponent Ç(q) is then estimated by the slope of the linear trends of 

< ( ôQ( r) )q > vs. 't in a log-log plot. The first moment gives the scaling exponent H = Ç (1) 

corresponding to the scale dependency of the average absolute fluctuations: indeed, if H -:~o 0 

the latter will depend on the time scale r , it therefore characterizes the degree of 

nonconservation (i.e. nonstationarity) of the process. The second moment is linked to the 

power spectrum scaling exponent by f3 = 1+ Ç(2). For simple scaling (monofractal) 

processes, the scaling exponent of the structure function Ç ( q) is linear ( Ç ( q) = q 1 2 for 

Brownian motion and Ç(q) = q 13 for Obukhov-Corrsin homogeneous turbulence). For 

multifractal processes, this function is nonlinear and concave. 

Theoretically, the function Ç(q) could depend on a very large number of parameters, 

therefore a very large number of its estimates for different values of q would be necessary. 

However, in the framework ofuniversal multifractals (Schertzer and Lovejoy 1987) Ç(q) can 

be determined by only 3 parameters as: 

c 
Ç(q)=qH--1 (qa -q) 

a -1 
(8) 

cl is the codimension that characterizes the sparseness (i.e. heterogeneity) ofthe process, and 

satisfies 0 s C1 s d ( d is the Euclidean dimension of the observation space, d = 1 for time 

series): cl = 0 for a homogeneous process and cl is ali the more high as the process is sparse, 

indicating that the field values corresponding to any given level of variability are more scarce. 

The Lévy index a is the degree of multifractality, bounded between a = 0 and a = 2 

corresponding to the monofractal case and to the maximum, or log-normal, multifractal case, 

respectively. In other words, the second term ofEq. 8 expresses the multifractal deviation from 

monofractality, in which case Ç(q) = qH. The distance between monofractality and 

multifractality is then of function of a and C1 . The knowledge of these parameters is enough 

to characterize ali the statistics of the field. cl is given by: 

Ç'(1)=H-C1 (9) 

and a is estimated as the best non-linear fit of Eq. 8, for values between 0 and 2, using a 

simplex procedure (O'Neill 1971). More details on the universal multifractal theoretical 
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Fig. 3. Time series of current velocity (A) and direction (B) at 3 rn depth. 
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background can also be found in Schertzer and Lovejoy (1983, 1985, 1987, 1989), and in a 

recent review (Seuront et al. 1999) wholly devoted to the introduction ofmultifractal concepts 

and their related analysis techniques to marine ecology. Finally, for a detailed discussion of 

what can be ecologically conclude from the use of fractal and multifractal algorithms, one may 

respectively refer to Seuront and Lagadeuc (1997, 1998), and Seuront et al. (1999). 

Because an objective criterion is needed for deciding upon an appropriate range of scales to 

include in the regressions to determine both the spectral exponents f3 and the structure 

function scaling exponent Ç(q), we used the values of the frequencies and the time scales 

which maximized the coefficient of determination (r2
) and minimized the total sum of the 

squared residuals for the regression, as proposed by Seuront and Lagadeuc (1997). Before 

performing the calculations, the measured time series must be detrended and normalized. This 

is done, first, by calculating Kendall' s coefficient of rank correlation, -r, between time series 

and the x-axis values in order to detect the presence of a linear trend (Kendall and Stuart 

1966). We thus eventually detrended the time series by fitting linear regressions to the original 

data by least squares and used the regression residuals in further analysis, a common remediai 

procedure in time-series analysis (Fuller 1976). Second, the measured time series were 

normalized (nondimensionalized) by dividing ali values by the average of the total series. 
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Fig. 5. Autocorrelation of salinity at 3 rn depth (A) and cross-correlation between current direction and salinity 

at 3 rn depth (B). Dashed lines indicate 5% confidence limits. 
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Results 

Environmental conditions- The values of the vertical shear activity, S2
, ( 0.005 ± 0.004 s-1 

SD) which can generate turbulence were always greater than 2.4 x 10-4 s-\ a low shear effect 

according to Itsweire et al. (1989), indicating an elevated shear activity in the whole water 

column. At all depths, current vectors showed wide variations (Fig. 3) which were related to 

the semidiumal M2 (12.4 h) tidal component. It resulted in variations of 6 h periodicity in the 

current speed, which ranged from S to 116 cm.s-1 at 3 rn depth (Fig. 3). A moderate NNE wind 

(4.3S ± 0.20 cm.s-1
) blowed during the whole sampling experiment, leading to a dissipation 

rate of S.24x10-7 m2 .s-3 at 1 rn depth (Fig. 4). Moreover, the depth-average mean dissipation 

rate of tidally induced turbulent energy, E1 , was 6. 8S x 1 o-5 m2
. s-3

, significantly higher than the 

wind-generated turbulent dissipation rate 8w ( ew = S.24 x 1o-7 m2
. s-3 at 1 rn depth), 

characterizes a tidally rnixed area and indicates a negligible effect of wind-induced turbulent 

kinetic energy on the water column (Fig. 4). Autocorrelation of salinity (Fig. SA), and cross-

correlation between current direction and salinity (Fig. SB), show that this parameter also 

varied with a periodicity of 12 h, and was negatively correlated with current direction. 
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Fig. 6. Distribution of temperature (up) and salinity (down) during the 48 hours sampling experiment. 
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Temperature exhibit a slightly complex behavior, showing a light-dark cycle (sinusoïdal 

regression, r 2 = 0.678) surimposed on a significantly autocorrelated (p < 0.05) 12 h tidal 

cycle. In both cases, the water column always has no vertical structure (Fig. 6). These 

observations then suggest that horizontal advection associated with the M2 tidal component 

can be responsible for the advection of different water masses through the entire water column 

which was wholly homogenized since salinity and temperature was uniformly distributed 

vertically. 

Nutrients and phytoplankton btomass-The mean nitrite and nitrate concentrations were 

respectively 0.17±0.02 and 0.71±0.14 ~J.mol.r1 , while mean chlorophyll a concentration was 

17.91 ± 1.10 IJ.g.r1
. There were clear systematic variations in nutrient and chlorophyll a 

concentrations (Fig. 7), and no statistical differences between mean values at the four sampled 

depth, as shown by autocorrelation analyses (p < 0.05) and Kruskal-Wallis test (p > 0.05), 

respectively. Nutrients and chlorophyll a concentrations exhibited significant negative 

correlation for the whole water column (Spearman's p, p < 0.001 ). No decrease of in vivo 

fluorescence was observed in the surface layers during the daylight period, indicating the 

absence of photoinhibition (Falkowski and Kiefer 1985), linked to a decrease of primary 

production (Lizon et al. 1995); in vivo fluorescence and chlorophyll a were highly significantly 

correlated over the whole water column (Spearman's p, p < 0.01 ). 

Nitrite time series-The time series of nitrite exhibit a very intermittent behavior, where 

sharp fluctuations occurring on small scales are clearly visible (Fig. 8). Results of descriptive 

analysis, including skewness and kurtosis estimates, for the Il nitrite time series are presented 

in Table 1. The different time series of nitrite concentrations are obviously not normally 

distributed (Kolmogorov-Smimov test, p < 0.01; Lilliefors 1967) and their frequency 

distribution then exhibit a skewed behavior (Table 1 ), reflecting a heterogeneous distribution 

with a few dense patch es and a wide range of low density patches. This last observation agrees 

with the observations realized both at smaller and larger scales concerning the clustering of 

bacteria around phytoplankton cells (Azam and Ammerman 1984), and the log-normal 

distribution of zooplankton (Cassie 1963; Frontier 1973; Fasham 1978), such a distribution 

describing one particular family of skewed variables. 

In order to validate our continuous use ofthe Technicon autoanalyzer II, we compute the 

mean of each time series and plotted them together with the evolution curves of the hourly 
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Channel in low (time series 6 and 11) and high (time series 5 and 8) current speed conditions. 

Nitrite concentration (~ol.r1) 

Time series N T Mean Min Max SD Skewness Kurtosis 

1 999 3 0.10 0.05 0.29 0.03 1.97 5.80 

2 604 6 0.29 0.21 0.41 0.04 0.58 2.85 

3 659 6 0.11 0.03 0.31 0.05 0.39 3.83 

4 613 6 0.26 0.19 0.50 0.03 2.69 17.65 

5 1454 3 0.27 0.21 0.42 0.03 1.94 8.52 

6 1455 3 0.16 0.05 0.43 0.03 0.30 7.18 

7 1167 3 0.20 0.09 0.77 0.07 2.57 11.52 

8 1157 3 0.07 0.03 0.20 0.02 1.86 7.94 

9 1207 3 0.20 0.14 0.27 0.02 0.10 4.89 

10 1241 3 0.20 0.13 0.45 0.02 16.19 45.94 

11 1579 3 0.11 0.04 0.50 0.05 0.17 6.58 

Table 1. Descriptive analysis of the Il nitrite concentration time series. T: temporal resolution; SD: standard 

deviation. 
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estimates of nitrite concentrations (Fig. 9). Thus, means of the continuously recorded time 

series clearly appear to be very well integrated in the 12 h tidal cycle of the nitrite 

concentrations corresponding to our discrete sampling scheme at 2 rn depth. More precisely, 

means of the different time series cannat statistically be regarded as being different from the 

closest discrete estimate of nitrite concentration (Binomial test, p > 0.05; Siegel and Castellan 

1988), except in the case ofthe time series 4. 
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Fig. 9. Time series of nitrite concentrations (open dots) estimated from a 2 rn depth sampling using Niskin 

botties, shown together with the means (black dots) and standard deviations (vertical bar) of the 11 high 

resolution nitrite time series continuously recorded at 0.50 rn depth. Time in local hours. 

The double logarithmic power spectra for the nitrite time series together with their best 

fitting lines are given in Fig. 10. Log-log linearity of power spectra is very strong for the whole 

range of scales considered-with coefficient of determination ( r 2
) ranging from O. 76 to 

0.95-suggesting that the same process could be at the origin of the temporal distribution of 

nitrite. Those temporal scales can be associated with spatial scales using probably the most 

cited and widely used method of relating time and space, 'Taylor's hypothesis of frozen 

turbulence' (Taylor 1938), which basically states that temporal and spatial averages t and l, 

respectively, can be related by a constant velocity V , l = V -t . Then using the mean 

instantaneous tidal circulations observed during the sampling of the different nitrite time series 

(Table 2), the associated spatial resolutions and extents associated with our sampling 

experiments ranges respectively from 0.3 to 4 rn, and from 362 to 4926 rn (Table 2). The 

spectral exponents f3 (i.e. the slope of the power spectra in a log-log plot; f3 = 1.40 ± 0.05 SE) 
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Fig. 10. The power spectra E(f) (f is frequency) of the nitrite time series 5, 6, 8 and 11, shown together with 

their best fitting lines in a log-log plot The clear linearity of the power spectra indicates a scaling behavior 

over the whole range of scales_ 

Time series Cspeed (m.s"1
) Resolution (m) Extent (rn) 

1 0.55 1.65 1648.35 

2 0.10 0.60 362.40 

3 0.33 1.98 1304.82 

4 0.62 3.72 2280.36 

5 0.98 2.94 4274.76 

6 0.30 0.90 1309.50 

7 0.11 0.33 385.11 

8 0.87 2.61 3019.77 

9 0.73 2.19 2643.33 

10 0.18 0.54 670.14 

11 1.04 3.12 4926.48 

Table 2. Mean instantaneous tidal circulations (Cspeed) observed during the sampling of the nitrite time series, 

and the associated spatial resolution and extent 

lead to further conclusions (Fig_ 11A)_ Indeed, an analysis of covariance concluded that the 11 

spectral exponents f3 were not ali equal (p < 0.05). We then conducted a multiple comparison 

procedure based on the Tuckey test (Zar 1984) to determine which f3 was different from the 

others, and showed that the slopes of the series 2, 3, 6, 7 and 11 on the one hand and the 

slopes of the series 1, 4, 5, 8, 9 and 10 on the other hand cannot be statistically distinguished 

(p > 0.05). This result leads to consider two groups of f3 values, with the following mean 
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Fig. 11. Temporal patterns of the spectral exponent ~ (A) and the fractal dimension D (B). Straight broken 

lines correspond to the theoretical cases ~=51 3 and D =51 3 (estimated with ~=51 3 in Eq. 5). Black and 

open dots are respectively associated with the time series 2, 3, 6, 7, 11, and 1, 4, 5, 8, 9, 10 identified by the 

subscript 1 and 2 in the text. 

properties: /31 = 1.55 ± 0.04 SE and /32 = 1.26 ± 0.02 SE. Here as below, the subscripts 1 and 

2 always refer to the time series 2, 3, 6, 7, 11, and 1, 4, 5, 8, 9, 10, respectively. The fractal 

dimensions D (D = 1.80±0.02 SE), estimated from Eq. 5, then exhibit an inverted pattern 

(Fig. liB), where D1 = 1.72 ± 0.02 SE and D 2 = 1.87 ± 0.01 SE are statistically different 

(Wilcoxon-Mann-Whitney U-test, p < 0.05). The generalization of this spectral approach to 

higher orders of moment with the help of the qth order structure functions con:firm the scaling 

previously shown by spectral analysis (i.e. a second order moment). Indeed, the nitrite 

structure functions, < ( mo2 ( r) )q > ' clearly exhibit a linear behavior as a function of scale in 

a log-log plot for different orders of moments (Fig. 12). Their slope, fitted by least squares 

over the range of scale values for which the data are scaling (i.e. the curves are linear), provide 

estimates of the exponents Ç(q), whom nonlinearity (Fig. 13) indicates that the small-scale 

distributions of nitrite can be considered as multifractals. More specifically, the scaling of the 

first moments Ç (1) = H ( H = 0.30 ± 0.04 SE) lead to a behavior very similar to the one 

observed in the case of the spectral exponents f3 (Fig. 14A); an analysis of covariance and an 

appropriate multiple comparison procedure also lead to statistically distinguish two groups of 

H values, with H 1 = 0.42±0.02 SE and H 2 = 0.20±0.01 SE (Wilcoxon-Mann-Whitney U 
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-test, p < 0.05). Moreover, the scaling of the second order moment (i.e. Ç(2)) con:firms the 

estimates of the power spectral exponents fJ ( p = 1 + Ç(2)) for each time series (Table 3). 

One may note here that in the mono :fractal case, H and p are related as H = (fJ -1) 1 2 , 

hence H = 2- D in Eq. 5, which is obviously not the case in our dataset (cf. Table 3). The 

universal multifractal parameters C1 ( C1 = 0.095 ± 0.01 SE) and a (a = 1.87 ± 0.01 SE), 

estimated as the best non-linear fit of Eq. 8, also exhibit a variable behavior from one time 

series to another (Fig. 14B, C), suggesting a differentiai control of the organization of the 

N02 variability over time. However, one may note that C1, and Ch ( C1, = 0.14 ± 0.01 SE and 

C1 = 0.07 ± 0.01 SE) are significantly different, whereas a 1 and a 2 ( a 1 = 1.89 ± 0.02 SE and 
2 

a 2 = 1.84 ± 0.02 SE) cannot be statistically distinguished (Wilcoxon-Mann-Whitney V-test, 

p < 0.05 and p > 0.05, respectively). One may finally note that the observed differences 

between the spectral exponents fJ as the structure function scaling exponents Ç ( q) -and 

consequently between the values of the multifractal parameters H, C1 and a-cannot be 

associated with the different spatial resolutions associated with each nitrite time series (see 

Table 2). In this particular case, we should have observed any scale-breakings (i.e. a transition 

between two different scaling regimes) respectively for high frequencies and small scales of 

power spectra and structure functions log-log plots, which is obviously not the case here (see 

Fig. 10 and 12, respectively). 

Time series 
1 2 3 4 5 6 7 8 9 10 11 

H 0.33 0.48 0.37 0.18 0.23 0.39 0.40 0.17 0.24 0.45 0.20 
( multifractal case) 
H=(/J-1)/2 0.13 0.35 0.29 0.10 0.16 0.25 0.23 0.11 0.17 0.26 0.13 
(monofractal case) 
p 1.25 1.69 1.58 1.20 1.31 1.49 1.45 1.21 1.33 1.51 1.25 

l+Ç(2) 1.28 1.70 1.59 1.22 1.31 1.49 1.52 1.23 1.33 1.70 1.24 

Table 3. Empirical estimates of the spectral exponent ~ , and the frrst and second moment scaling exponents 

Ç(l) = H and Ç(2) for nitrite time series. The frrst moment scaling exponent Ç(l) = H is compared to the 

monofractal estimate H = (~ -1) 12, and the second moment scaling exponent Ç(2) to the power spectra 

exponent estimate following ~ = 1 + Ç(2). 
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In order to determine the factors influencing the magnitude of the differentiai structuration 

levels of nitrite time series represented by the fractal dimension D , and the universal 

multifractal parameters H, C1 and a, we realized correlation analyses between these 

parameters, the sum of the nitrite spectra (i.e. an estimate of the total variation in a given 

record; Bendat and Piersol 1986), the means of the nitrite time series and chlorophyll a 

concentrations estimated from 2 rn depth water samples during each time series recording, and 

the current speed and direction, as an indicator of the physical forcings (Table 4). Then, it was 

found that the structuration of nitrite variability (i.e. fractal dimension, D , and multifractal 

parameters, H, C1 and a) was not correlated with the mean nitrite and chlorophyll a 

concentrations nor with the sum of the nitrite spectra (Spearman's p, two-tailed, 90% level, 

p > 0.05; see Table 4), indicating the absence of density-dependence in the structuration of 

nitrite variability, but also an independence between the concept of variability and 

heterogeneity, as already noticed by Seuront and Lagadeuc (1998) in the case of a monofractal 

analysis of the spatio-temporal structuration of the water column in the Eastern English 

Channel. Moreover, the absence of correlation between fractal and multifractal parameters and 

current direction also indicates that the structuration of nitrite variability cannot be associated 

with the horizontal advection processes associated with the M2 tidal component. On the 

contrary, fractal and multifractal parameters were significantly correlated with current speed 

(Spearman's p, two-tailed, p < 0.05; see Table 4), suggesting a differentiai hydrodynamical 

control of the structuration of nitrite variability. 

Discussion 

Small-scale nutrient patches exist in turbulent coastal waters-The empirical estimates of 

the vertical shear activity ( S 2 
), and the tidal energy dissipation rates 8 1 (Fig. 4), which are 

typically in the range of values occurring in highly energetic coastal environments (i.e. 10"7-10-4 

m2.s-3
; Grant et al. 1962), are a common feature of tidally-energetic shallow seas in which 

water mass properties remain vertically well-mixed (e.g. Schumacher et al. 1979; Bowman et 

al. 1983). Both physical and biological variability is then mainly associated with horizontal 

advection processes associated with the M2 tidal component which can be responsible for the 

advection of different water masses because of the very specifie hydrological structure 

observed in this area, characterized by an inshore-offshore gradient in terms of salinity, 

temperature, turbidity, phytoplankton and zooplankton biomass (Brylinski and Lagadeuc 1990; 

Brylinski et al. 1991 ). 
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Fig. 14. Temporal patterns of the universal multifractal parameters H (A), C1 (B) and a (C). Black and open 

dots are respectively associated with the time series 2, 3, 6, 7, 11, and 1, 4, 5, 8, 9, 10 identified by the subscript 

1 and 2 in the text. 

In such well-mixed environments where turbulent processes are fully developed-as 

indicated by the high values of &t-previous theoretical and empirical works have 

demonstrated that the fluctuations ofbiological parameters (e.g. phytoplankton biomass) could 

follow a spectral power law behavior characterized by a characteristic exponent p ( p = 5 1 3 ) 

over a wide range oftime and space scales (e.g. Platt 1972; Powell et al. 1975; Seuront et al. 

1996a, b, 1999), as theoretically expected in the case ofpurely passive scalars (i.e. temperature 
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or salinity) advected by turbulent processes (Kolmogorov 1941; Obukhov 1941). However, 

except in the case of the time series 2, our empirical estimates of the spectral exponent p are 

signi:ficantly different from the previously defined theoretical value ( f3 =51 3) (modi:fied t-test; 

Scherrer 1984), indicating that the small-scale variability of N02 time series cannot be 

regarded as to be purely passively driven by turbulent fluid motion and that there could exist an 

altogether level of complexity in the origin of the structuration of N02 variability. Moreover, 

fractal dimensions D, as previously suggested by the values of the spectral exponents p, 

appear to be highly variable in tirne (Fig. liA) and significantly positively correlated with 

current speed (cf. Table 4). This suggests that the physical and/or biological forcings 

responsible for the N02 variability are on smaller tirne scales in higher hydrodynamic 

conditions. Indeed, the high fractal dimensions associated with strong current speeds (i.e. that 

range between 55 and 104 cm.s-1
, and lead to tidal energy dissipation rates 5 1 ranging from 

4xl0-5 to 2xl0-4 rri.s-3
) characterize very complex processes where short-range, local 

variability is highly developed and tends to obfuscate long-range trends perceptible from lower 

fractal dimensions, associated with weak current speed (i.e. that range between 10 and 33 

cm.s-1
, and associated with 5 1 ranging from 1 x 10-6 to 6 x 10-6 m2 .s-3

); N02 is thus more 

evenly distributed (i.e. less structured) in space and tirne in high hydrodynamic conditions. 

Furthermore, the negative correlation between H and the fractal dimensions D confirms the 

results of the monofractal analysis. Indeed, the fust universal multifractal parameter H 

characterizing the degree of nonstationarity of the process, the lower is H, the more 

conservative is the corresponding process, i.e. the mean of the fluctuations is less scale 

dependent, indicating a reduced flux of variance from large to smaller scales, and then the 

prevalence of local variability. Moreover, the values of the second universal multifractal 

parameter C1, negatively correlated with current speed (cf. Table 4), show that N02 

distribution is all the more sparse (i.e. higher C1 values) as the current speed is low, indicating 

a potential homogenization (i.e. a decreasing heterogeneity) effect of mixing processes in high 

turbulent conditions. Indeed, the higher values of C1 (i.e. C1 = 0.12 ± 0.01 SE) associated 
1 

with low current speed indicate the occurrence of sparse patches ofhigh NO;: concentrations 

that are several orders of magnitude above the background levels, while in higher 

hydrodynarnic conditions the lower C1 values (i.e. C1 = 0.07 ± 0.01 SE) lead to view the 
2 

different NO;: variability levels as being more regularly distributed. Here the so-called 
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N 
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Table 4. Correlation matrix of variables relative to the structure of nitrite time series. NO;mean and NO; spectral: mean concentration of nitrite time series and sum of the 
nitrite power sepctra; Chl. a: mean chlorophyll a concentration; D: fractal dimension; H, C1 and a: universal multifractal parameters; Cspeed and COllection: current speed 
and direction. 

N02-mean N 02-spectral D H Ct a Cspeed Coirection 

N02-mean 1.000 

N02-spectral -0.150 1.000 
D -0.347 -0.187 1.000 

H 0.489 0.169 -0.927 ** 1.000 

Ct 0.177 0.380 -0.805 ** 0.846 ** 1.000 
a -0.512 0.097 0.690 * -0.648 * -0.509 1.000 

Cspeed -0.305 -0.191 0.724 * -0.815 ** -0.654 * 0.610 * 1.000 

Coirection -0.509 -0.124 0.184 -0.401 -0.370 0.234 0.014 1.000 
* : 5% significance level 
** : 1% significance level 



homogenization effect is then mainly perceptible from the disruption ofthese patches (see Fig. 

8), N02 distribution remaining nevertheless heterogeneous (i.e. structured) whatever the 

hydrodynamic conditions. Finally, the mean value of a (i.e. the hierarchy of variability levels 

present in the N02 distribution; a= 1.87 ± 0.01 SE) indicates that NO; cannot be regarded as 

log-normally distributed, in which case a = 2 . On the contrary, this value is typically in the 

range of a values estimated for phytoplankton biomass, temperature and salinity distribution 

over similar ranges of scales (see Seuront et al. 1996a, b, 1999). The positive correlation 

between a and the current speed nevertheless indicate a differentiai NO; structure 

characterized by a greater complexity in the hierarchy of its variability levels in high 

hydrodynamic conditions. 

Moreover, mean NO; and chlorophyll a concentrations were not correlated to the structure 

of NO; variability (i.e. fractal dimension D, and multifractal parameters H, C1 and a; Table 

4). The organization of NO; variability then cannot be regarded as density-dependent, 

whereas Seuront and Lagadeuc (1998) have found a strong density-dependence of 

phytoplankton biomass structuration ( estimated on the basis of a mono fractal analysis) in 

relation with both the inshore-offshore gradient and the horizontal advection processes 

characterizing the coastal waters of the Eastern English Channel. However, a source of NO; 

in marine waters being its release by phytoplankton populations that are growing on nitrate 

(McCarthy et al. 1984), the observed heterogeneity in the NO;: distributions could be 

connected to the occurrence of the prymnesiophyceae Phaeocystis sp. which reaches high 

concentration during the whole sampling experiment (Truffier et al. 1997). This species being 

known for its highly developed swarming capacities along the English coast of the Eastern 

English Channel (Tyler 1977; Lennox 1979), we could then suggest two non-conflicting 

hypotheses for the observed nitrite heterogeneous distributions: 

(i) The aggregative properties of Phaeocystis and its associated potential release of nitrite 

can then be regarded as a direct source ofheterogeneity for nitrite concentrations. 

(ii) The presence of Phaeocystis aggregates could provide highly favorable microhabitats 

for microplankton populations (Azam and Ammerman 1984; Mitchell et al. 1985; Mitchell and 

Fuhrman 1989) and then represent a source of patchiness for nutrient distributions. 

The observed heterogeneous distributions of nitrite concentrations would then be on the 

one hand a direct consequence ofthe heterogeneous distribution of Phaeocystis (NO; release) 
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and on the other hand the result of the interactions between the heterogeneous distribution of 

phytoplankton cells and the associated clustering of bacteria. In that way, the degradation of 

Phaeocystis can also be regarded as a potential secondary source of nutrient patchiness. 

Indeed, the degradation of phytoplankton cells has been widely shown to be a source of 

patchiness and taxonomie diversity for bacterioplankton populations (Wilcox Silver et al. 1978; 

Blight et al. 1995), and then a likely patchy nutrient resource. In both case, an increase in 

hydrodynarnic conditions leads to the disruption of Phaeocystis aggregates-as suggested by 

previous works on phytoplankton coagulation (Riebesell 1991a, b)-and/or the disruption of 

the bacterial clusters existing around phytoplankton cells (Bowen et al. 1993) and then could 

be regarded as a potential source of homogenization, as previously shown from the values of 

the universal multifractal parameter C1 (see also Fig. 8). Under the previously suggested role 

of nitrifying and/or denitrifying bacteria in the N02 structuration, one may furthermore note 

the absence of any circadian periodicity in the mean nitrite concentration and the structuration 

of nitrite variability. That could indicate that contrary to previous studies which demonstrated 

photoinhibition of nitrification in field samples from marine (Hemdl et al. 1993) and freshwater 

(Lipschultz et al. 1985) environments, N02 nitrifying bacterial production was not 

photoinhibed-as previously demonstrated by Gentilhomme ( 1993) and Gentilhomme and 

Raimbault (1995)-during the whole sampling experiment. 

Comparison of the estimated fractal and multifractal parameters with tho se of other marine 

environmental data leads to further comments. Thus, the fractal dimensions D 

( D = 1. 80 ± 0. 02 SE) are obviously higher than tho se found for phytoplankton biomass 

distribution by Seuront and Lagadeuc (1998) and Seuront et al. (1996a) in neap tide, and by 

Seuront et al. (1996b, 1999) in spring tide (fractal dimensions were estimated using the f3 

values reported by Seuront et al. (1996a, b, 1999) in Eq. 5). That indicates that the processes 

generating the nitrite variability could be associated with smaller-scale variability than the 

processes responsible for the small-scale distribution of phytoplankton biomass, whatever the 

hydrodynamic conditions. These observations are confirmed by the values of the first universal 

parameter H (H = 0.30±0.04 SE) which are slightly smaller than the values reported by 

Seuront et al. (1996a, b, 1999), indicating the prevalence of a more local variability than for 

phytoplankton biomass and passive tracers distributions (i.e. temperature and salinity). 

Moreover, the values of the universal multifractal parameters C1 ( C1 = 0.14 ± 0.01 SE and 
1 

C1 = 0.07 ± 0.01 SE) for nitrite time series are always larger than those found for both 
2 
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phytoplankton biomass and passive scalars, such as temperature and salinity, in spring and neap 

tides in the coastal waters of the Eastern English Channel and the Southern Bight of the North 

Sea (Seuront et al. 1996a, b, 1999). The small-scale distribution of nitrite is then always more 

heterogeneous than phytoplankton biomass, temperature and salinity distributions over similar 

ranges of scales. This then indicates the very specifie structure of nitrite variability, whatever 

the external physical and/or biological forcings. In that way, the differences in sampling 

techniques could be important when comparing the variability of temperature, salinity or 

phytoplankton biomass from previous studies (Seuront et al. 1996a, b, 1999) to that of nitrite 

seen here. However, the temporal and spatial resolutions of these studies (i.e. 0.5-1 second, 

and 0.3-1 meter, respectively), as the minute scales of the temperature, conductivity and in 

vivo fluorescence sensors lead to sampling conditions very similar to those reached in the 

present case. 

Whatever that may be, the hypotheses related to the origin of the differentiai temporal 

structure of nitrite variability need to be tested both in the field and by the way of numerical 

experiments. Simultaneous measurements of nitrite and phytoplankton concentration, bacterial 

abundance and activity in different hydrodynamical conditions, known to influence the bacterial 

production rates (Confer and Logan 1991; Logan and Kirchman 1991), could then be helpful 

in determining what are the sources of the nutrient patches. On the other hand, numerical 

simulations of the differentiai aggregative properties of phytoplankton and bacterial 

populations relative to physical forcing of turbulent processes could lead to a better 

understanding of the small-scale patches formation and maintenance. Indeed, while Blackburn 

et al. (1998) demonstrated that spherical patches a few millimeters in diameter could sustained 

swarms of bacteria for about 10 minutes, such informations are, to our knowledge, still not 

available in turbulent environments. 

Small-scale nutrient patchiness: ecological perspectives-The previously demonstrated 

small-scale heterogeneity of nitrite distribution presents several implications concerning the 

structuration of the pelagie food-web. Small-scale nutrient patchiness is indeed of prime 

interest in the estimates of phytoplankton growth. Sorne authors then outlined the importance 

of nutrient 'surge uptake' by phytoplankton in the presence of ephemeral point sources of 

nutrients (McCarthy and Goldman 1979; Glibert and Goldman 1981; Goldman and Glibert 

1982; Collos 1983; Raimbault and Gentilhomme 1990). Indeed, the nitrogen uptake rates for 

marine phytoplankton can exceed the nitrogen uptake required for population growth 

(McCarthy and Goldman 1979). In that way, small-scale patchiness will have a positive effect 
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on phytoplankton growth as so far as a phytoplankton cell need only to be exposed to 

intermittent pulses of nitrogen to acquire its daily ration of nutrient. On the other hand, there 

exists sorne empirical evidence that uptake is less efficient at higher nutrient concentrations 

than at low ones (see e.g. Dugdale 1977), suggesting a negative effect of nutrient patchiness 

on phytoplankton growth. This conclusion was supported by experiments by Lehman and 

Scavia (1982) who compared nutrient uptake under homogeneous and heterogeneous 

conditions and found that the average uptake was lower in the patchy treatment than in the 

homogeneous one. It has also been shown that Michaelis-Menten kinetics-widely used to 

describe uptake rates of both bacteria and phytoplankton as a function of nutrient 

concentration-lead to lower estimates of average uptake rate in a patchy environment than by 

assuming a homogeneous nutrient distribution (Currie 1984), and do not adequately describe 

uptake when nutrient concentrations fluctuate with time (Goldman and Glibert 1982; Harrison 

et al. 1989). Finally, one may note the absence of any adequate model of uptake under non

steady state conditions and of any convergent empirical evidence of the effect of a 

heterogeneous nutrient distribution on phytoplankton uptake and growth. Further extensions 

of these ideas and observations are th en still needed to achieve a more complete understanding 

of the small-scale spatio-temporal couplings between a heterogeneous nutrient supply and 

utilization of the different components of the oceanic nitrogen cycling by phytoplankton 

populations. 

Heterogeneous nutrient distribution, or more generally small-scale heterogeneity of 

resources and consumers in the ocean-which has been widely demonstrated elsewhere ( see 

e.g. Pascual et al. 1995; Seuront et al. 1996a, b, 1999)-could provide a potential 

phenomenological explanation to the persistence of local high phytoplankton diversity in highly 

energetic areas (Hutchinson 1961) referred as the 'paradox of the plankton'. Indeed, 

heterogeneous distributions could be regarded as a source of patchiness for higher and lower 

trophic levels, such as detritus and marine snow for microbial communities (Azam 1998). One 

may also note that the differentiai structuration in time of nutrient distribution-as revealed by 

our fractal and multifractal parameters-indicate that the size of the elemental structures of the 

pattern was very much related to the available energy, as proposed by Margalef (1979), but 

also to the biological response to physical forcing as to the interactions of biological and 

physical processes. 

It is now well-known that primary production is very far from being constant in space and 

time, so that the way it is averaged has a profound effect on the results (Platt and Harrison 

1985; Lizon et al. 1995). Moreover, the results will not be robust unless ail processes are 
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understood in details (Platt et al. 1989; Yamazaki 1993), which is actually clearly not the case, 

especially for small-scale processes (Haury et al. 1978; Davis et al. 1991). Indeed, because of 

the general background of spatial variability and temporal intermittency, chronic undersampling 

is a fact oflife in oceanography (Bohle-Carbonel 1992), and leads to biased estimates ofmeans 

and confidence limits (Baker and Gibson 1987). In that way, the precise knowledge of the 

whole statistics of any intermittent field allowed by fractal and multifractal approaches could 

provide new insights into the apprehension of the variability of any ecological process 

whatever the scales and the intensity. These novative techniques in marine ecology then could 

be regarded as a new way to develop individual rather than global approaches to improve 

estimates of key fluxes, such as primary, new and regenerated productions, which are still 

disputed to within a factor of 10 (see e.g. Platt et al. 1989), mainly because of our limited 

capacity to harmonize the different measurement procedures and their implied time and space 

scales (Berger 1989; Platt et al. 1989) but also because of the extreme sensitivity of actual 

numerical modeling even to minor changes in parameter values (Werner et al. 1993). 
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Abstract. Enhancement of nutrient fluxes by turbulence towards phytoplank:tonic cells is estimated, and values 

computed from mean spectral estimates and instantaneous intermittent distributions of empirical rates of energy 

dissipations are compared. This approach allows speci:fying the frequency distribution of the flux, and show 

that the size of cell potentially influenced by turbulence is lowest than previously indicated The capacity of cell 

to use such intermittent flux is :finally discussed. 

The influence of turbulence on biological production from small to meso scales have been 

widely described since 50 years. However, studies dedicated to the microscales are less 

numerous and essentially published during the last ten years (Peters & Redonda, 1997). 

Indeed, taking into account microscale processes implies both conceptual and technical 

problems (Karp-Boss et al. 1996), and the questions mainly addressed are to de:fine the exact 

or real physical or biological processes implied at this scale. Subsequently, ecologist which 

studied such scales have to consider processes never included in previous studies at small or 

mesoscales such as behavioural components. 

The effects of microscale turbulence on both zooplankton and ichtyoplankton have been 

theoretically investigated and suggested to be the result, in trophodynamics studies, of an 

increased of contact rates between preys and predators (Rothschild & Osborn, 1988). 

Supseque:qt numerous exper~mental, in situ and modelling app:roaches tend to con:firm and 

specify this process (see e.g. s~~by & Fossum 1990, Mac:Kèili:ie & Leggett 1991, Saiz & 

Ki0rboe 1995, Capparoy & Carlotti 1996). For phytoplankton, even if a general relationship 

with turbulence has been widely recognised [see e.g. Estrada & Berdalet (1997) and Margalef 

(1997) for a review], the effects of microscale turbulence on phytoplankton cells is more 

difficult to estimate. Indeed, the size spectra of phytoplankton cells is weil below the 

Kolmogorov scale (i.e. the viscous scale where viscosity effects cannat be neglected and start 

to smooth out turbulent fluctuations). Moreover most of the studies dedicated to 

phytoplankton and turbulence at microscale were conduced in the laboratory, and only few of 

them quanti:fied turbulence levels and Reynolds number (Thomas & Gibson, 1990), which 

make cornparisons difficult (Estrada & Berdalet, 1997). It has nevertheless been observed that 

turbulence could have either positive or negative effects on phytoplankton populations 
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(Pasciale & Gavis 1975, Thomas & Gibson 1990, Berdalet & Estrada 1993). Among the 

· positive effects, increase of nutrient uptake have been observed (Pasciale & Gavis, 1975), 

leading to a turbulence induced increase of nutrient fluxes. 

However, Lazier and Mann (1987) have demonstrated-on the basis of a previous study 

conducted by Purcell (1978) -that the effect of turbulence on nutrient fluxes, is negligible for 

non-motile cell under 1 OO!lm. This conclusion has recently been modified by Karp-Boss et al. 

(1996), and the cell size bring back to 60 !lffi. Those assumptions are based on estimates of the 

increased percentage of nutrient fluxes due to the shear induced-under the Kolmogorov 
-6 2 -3 

scale-by an homogeneous turbulence with an average dissipation rate (e) of 10 rn .s . 

However, an increase of nutrient consumption or an influence on phytoplankton growth has 

been observed for cells smaller than 100 11m (Savidge 1981, Thomas & Gibson 1990). Such in 

vitro observations could nevertheless be unreliable because of the lack of turbulence 

measurements in most of the studies, but we could hypothesise that this contradiction could 

also be due to the erroneous consideration of a homogeneous turbulence. 

Indeed, turbulence is now known to be an extremely intermittent process exhibiting strong 

space-time fluctuations of the dissipation rate (Jimenez, 1997; Jou, 1997). Generally, those 

fluctuations are regarded to be non-efficient on plankton due to their scarcity (Estrada & 

Berdalet 1997, Jimenez 1997). However, Karp-Boss et al. (1996) note that one must know the 

probability distribution of e (which correspond in the literature to a time average value) must 

be known to evaluate the fraction of the time that a cell is exposed to a given shear, and 

Yamazaki (1993) argue that plankton 'experienced the local flow structure of turbulence, not 

the average of the flow field'. 

El ë2 E3 
Average current 0.154 0.292 0.373 
speed (m. s-1

) 

Re_ynolds Number 30800 58400 74600 
Spectral estimation 6.50 10-5 6.78 104 7.09 10-4 

(ml. s-I) 

Table 1. Mean current speed, Reynolds number and turbulent dissipation rate spectral estimates for our three 

empirical turbulent conditions 
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In that way, in the present paper, we investigated the potential increased rate of nutrient 

fluxes induced by fully developed turbulence on the basis ofboth basic mean spectral estimates 

and instantaneous intermittent distributions of turbulent energy dissipation rates of grid 

generated turbulence. Small-scale turbulence has been generated by means of fixed PVC grids 

(diameter 2mm, mesh size lem) in a circular fiume. Considering the dimensions of the fiume 

and the speeds used in the experiment (Tab. 1), we are then dealing with a fully developed 

turbulence (i.e. Re >> 2500, Tab. 1). Instantaneous horizontal turbulent velocity has been 

measured by high frequency (100 Hz) hot film velocimetry, and turbulent energy dissipation 

rate has subsequently been estimated in severa! ways. The average turbulent energy dissipation 

rate has basically been derived following Tennekes & Lumley (1972) from the turbulence 

spectrum obtained from Fourier analysis oftime series data recorded by the hot-film probe: 

E = 15vf
0
"' k 2 E(k)dk (1) 

where E is the turbulent dissipation rate (m2 .s-3
), v the kinematic viscosity (m2.s-1

), k the 

wavenumber (k = 2n 1 Â ), ')...the eddy wavelength (rn), and E(k) the turbulence spectrum 

(m2.s-3
). The spectrum E(k) can be thought of as the mean-square amplitude of velocity 

fluctuations associated with a wavenumber of turbulent motion; these turbulent motions are 

conveniently thought of as eddies of characteristic size corresponding to their wavelength. 

In order to take into account the intermittent nature of turbulence, we now need to consider 

local values, E 1 , of the turbulent dissipation rate following the refined similarity hypothesis 

(Kolmogorov, 1962; Obukhov, 1962) as: 

(2) 

where L1v1 = jv(x + l)- v(x)j is the velocity shear at scale l. Instantaneous values of E 1 were 

then subsequently estimated at the smallest available resolution (i.e. 100 Hz) as a fractional 

differentiation of the local velocity shear L1v1 , raised to the third power [i.e. E1 = (LlV1 1 fl13
)

3
]. 

Let us mention brietly that a fractional differentiation of order 1/3 corresponds to a 

multiplication by k 113 in Fourier space equivalent to power law filtering [see Schertzer and 

Lovejoy (1987), Schertzer et al. (1998) and Seuront et al. (1999) for more discussion and 

more details]. 

We th en used the previous estimates of the turbulent energy dissipation rates ( averaged and 

instantaneous) to derive the related increased rate of nutrient fluxes following the two 

calculations available in the literature: Purcell (1978) and Lazier & Mann (1989), and Karp-
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Boss et al. (1996). Purcell (1978) has shawn that the increased rate of nutrient fluxes is a 

function of a dimensionless value U defined as: 

(3) 

where Q the shear (units??), a the particle diameter (rn), and D the molecular diffusivity 

(D= 10-9 m2 .s-1
). Below the Kolmogorov scale an estimate of the shear n is provided by 

(Lazier & Mann 1989) (hereafter called L & M): 

Q =.JE 1 7.5v (4) 

where vis the kinematic viscosity (v= 10-6 m2.s-1
) andE the turbulent dissipation rate (m2.s-3

). 

When n is respectively equal to 1, 2.8, 8 or 30 the flux increase is equal to 10, 25, 50 or 100% 

(Purcell, 1978). 

Following Karp-Boss et al. (1996) (KP hereafter), the increased rate of nutrient flux can 

also be directly estimated using the Péclet number (Pe) which allows to compare advective 

transport with diffusive transport. In turbulent environments and with non-motile cells the 

Péclet number is then estimated as: 

Pe = r 2 1 D(E 1 v) 112 (5) 

where ris the cell radius (rn), D the diffusivity (D = 10-9 m2.s-1
), Ethe turbulent dissipation rate 

(m2.s"3
) and v the kinematic viscosity (v= 10-6 m2.s-1

). For cell smaller than Tfb (which is equal 

to 11b = (v D2 1 E) 114 
) and corresponds to the smallest length scale where variations of ambient 

concentration could be observed) or Pe <<1, Sh is equal to : 

1n ( ) Sh = 1 +0.29Pe 6 

For celllarger than Tfb and smaller than the Kolmogorov scale (Pe>> 1) Sh is equal to: 

Sh = 0.55Pe
113 

(7) 

For Pe between 0.01 and 100 Karp-Boss et al. (1996) propose an interpolation with lower and 

1. . 1 . b 112 d h 1/3 upper 1mits respective y g1ven y Sh = 1.014+0.15Pe an S = 0.955+0.344Pe . For more 

convenience, we used the average of these two limits as an estimate of Sh. 

Results and discussion 

The average values of E obtained by spectral analysis (Tab. 1) correspond to turbulence that 

could be observed in coastal waters (Estrada & Berdalet 1997). Such values allow to increase 

flux (>25%) toward cells with size over 50J.1m following bath L&M and KB. The sizes 

obtained here are smaller than those noticed in the papers ofL&M or KB, this difference is due 
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to the lower value ofe used by these authors: 10-6 m2.s-3
. Such a value, which corresponds for 

these authors to high value in the open ocean, corresponds to low value in a tidal coastal sea as 

the English Channel. In their study KB found systematically a higher value of flux compared to 

the result of L&M. This difference has been attributed to the Purcell' s experimental result 

which was disturbed by boundary conditions. This lack of difference could be explained by the 

fact that we used an average Sh number using the upper and the lower limits of Sh; if we have 

had only considered the upper limit the difference observed by KB would have been found 

agam. 

The instantaneous e exhibit strong fluctuations (Fig. 1 ), leading to strong fluctuations of 

flux toward cell (Fig. 1). The used of the instantaneous values, in comparison with the average 

values show, first, that the flux is very far from being a constant (Figs. 1 & 2). For instance, 

when the average value corresponds to an increased of25% (Tab. 2), as observed with cells of 

50!lm and turbulence rate el, the flux is greater than 25% during approximately 48% of the 

'Î 
1 
~ 4l<r3 

' 
" !. 
~ 210M3 

1,6 

; l,S 

i 1,4 

1 1,3 

] ],2 

0 1.1 

10 
9 
8 
7 

" 6 

tl 

Sh 

u 
-------- lO% 

Time (lo~J s) 

Fig. 1. Instantaneous distribution of the turbulent dissipation rate e , the Sherwood number Sh and the 

dimensionless value U characterizing the increased rate of nutrient flux. 
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time (Fig. 2). Second, the size of the cell influenced by the turbulence is lowest than those 

previously observed with the average values. With the L&M approach, an increased of the flux 

of 25% at least could be observed for cells of 10 11m diameters during 0,2 % of the time with 

E2 and s3. With the KB approach, the same increasing flux occurs during approximately 

0.08%, 1.5% and 1.6% of the time for cells of 1011m with respectively El, s2 and s3. With 

cells of 20 !lill this flux is greater than 25 % between approximately 2 and 30 % of the time 

(Fig. 2). With the instantaneous values, a slight difference, in the same way that those related 

L&M K-B 
El E2 E3 El E2 E3 

5 um 3 w-z 9 10-2 8 1Q:2 1.03 1.06 1.06 
lOrtm 0.1 0.3 0.3 1.07 1.11 l.ll 
20 _}!_ffi 0.5 1.5 1.4 1.12 1.20 1.19 
50 JA-ffi 3.1 9.3 8.7 1.26 1.42 1.40 
100 }lill 12.3 37.3 34.9 1.46 1.75 1.71 

Table 2. Increased of nutrient flux toward phytoplankton cells for cell size ranging from 5 to lOOJ.l.m and three 

turbulence levels estimated following Lazier & Mann (1987) and K.arp-Boss et al. (1996). 

by KB, could be observed between the frequency distributions of L&M and KB estimations. 

Whatever the existing differences between KB and L&M estimations, it appears that 

instantaneous data lead to show that the effect of turbulence could exist for smaller cells than 

previously described. Subsequently, average value should not correspond to a good descriptor. 

An inadequacy of average estimate has been already shawn if an adaptation of the organism 

took place. For instance, in studies on primary production, experiments conduced on the role 

of high frequencies fluctuations of light on carbon assimilation show that phytoplanktonic cells 

are able to respond to rapid fluctuations. Subsequently, an enhancement of production was 

observed under fluctuated light compared with constant light with the same average irradiance 

(Quéguiner & Legendre 1986). The average value of a variable is also not a good descriptor if 

the response ofthe ce11 is not linear. Indeed, Curry (1984) has shown-on the basis of Taylor 

approximation of Michaelis-Menten equation-that a heterogeneous distribution of nutrient 

was detrimental for phytoplankton cell absorption. This results seems to confirm that 

consideration of turbulence intermittency is a useful approach. However, in his approach 
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Fig. 2. Time frequency (%) of increased nutrient fluxes toward phytoplankton cells estimated following Lazier 

& Mann (1989) and Karp-Boss et al. (1996) for different cell size and turbulence levels. 

Currie (1984) did not take into account the temporal response of cells to newly furnished 

nutrient. It has indeed been shown that in nutrient-depleted environments cells were able to use 

quickly a nutrient pulse. This event corresponds to the "surge uptake" (Collos 1983). The time 

scale of this rapid change in the uptake rate is typically the minute (Raimbault & Gentilhomme 

1990). In the present case the time scale is however probably 1/10 of second or lower. Jou 
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(1997) indicates that such fluctuations induced by turbulence intermittencies are too scarce (1 

second in 5 minutes) and that "the classical Kolmogorov analysis of turbulence cascade is 

enough to analyse most situations of biological interest". However, the techniques actually 

used to study nutrient uptake (transport or assimilation) do not allow to appreciate the effects 

of such short time flux variations. We think that at this scale it is still actually impossible to 

define what is a situation ofbiological interest, e. g. what is the minimal time required-during 

which the flux is increased-to influence cell production? 

Moreover, the response of cells could also be nutrient-dependent: ammomum and 

phosphate (i.e. recycled nutrients), exhibit a rapid utilisation when they are newly furnished, 

while nitrate and silicate (i.e. advected nutrients), may present a lag in uptake rate (Dortch et 

al. 1982, Harrison et al. 1989). Consequently, capability of cells to use the intermittent 

increased flux could be different in regard of these two categories of nutrients, and could also 

conduct to a negative effect. Indeed, Savidge (1981) observed a difference in the response of 

diatoms to an increased of turbulence: nitrate utilisation was enhanced while phosphate 

utilisation was reduced. These results seem nevertheless to be in contradiction with the results 

of Harrison et al. ( 198 9) and the hypothetical effect of turbulence intermittencies: the advected 

nutrient should be quickly used in intermittent field. 

Whatever that may be, if the cell is influenced, positively or negatively, by such high 

frequencies fluctuations, one need to know the precise distribution of the fluctuations. The 

Turbulent dissipation rate distribution is generally described as being lognormal (Baker & 

Œbson 1987). In the present case the instantaneous s is not log normally distributed 

(Kolmogorov-Smimov test, p < 0.05), and the skewness of the log transformed datais negative, 

indicating that low unexpected values exist after the log transformation. Recent empirical and 

theoretical studies indicate very specifie distribution of turbulent dissipation associated with 

scale-dependent structure described in the framework of multifractals (Schmitt et al. 1996, 

Schertzer et al. 1998). 

Finally, one of the questions mainly addressed here is to define at what scale processes 

should be considered to understand the overall function of ecosystems. Numerous studies have 

been devoted to this question and to the knowledge of processes at the scale of individuals 

(Levin 1994). However, such objectives are face to the development and the use of new tools 

and probably new concepts. Effectively, in the present case intermittency of turbulence could 

affect potentially smaller cells than previously considered, but techniques allowing to study 

such scale or consensus n turbulent dissipation distribution are not available. 
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Abstract 

Current widespread use of ecological terrns such as variability, heterogeneity and homogeneity is misleading 

and prevents ecologists from reaching a terminological consensus on what is meant when discussing these 

concepts, in particular with regard to the descriptor 'heterogeneous'. We propose the use of 'inhomogeneity' to 

define patterns or processes exhibiting a scale-dependent structure, whether spatial or temporal. Thus, the 

concept of 'inhomogeneity' can be regarded as a structural ecological entity. A descriptor exhibiting different 

kinds of inhomogeneity, either spatially or temporally, will th en only be qualified as being heterogeneous. 

Basically, 'variability' in ecology indicates changes in the values of a given quantitative or 

qualitative descriptor; it is distinct from 'heterogeneity', which refers to a composition of 

different entities or kinds of elements (Kolasa and Rollo, 1991). However, this distinction is 

not as clear as may appear at first glanee, with meanings essentially dependent on the choice of 

approach (Naeem and Colwell, 1991; Shashak. and Brand, 1991). Even papers devoted to the 

synthesis ofthese concepts (e.g. Kolasa and Rollo, 1991; Dutilleul and Legendre, 1993) are 

generally misleading, in that spatial and temporal heterogeneity are used to describe spatial or 

temporal variability, respectively, irrespective of the basic previous definitions. Moreover, 

definitions themselves appear to be highly variable even within a collective synthetic work on 

the subject (Levin et al., 1993). For instance, van Es (1993) defined spatial heterogeneity as an 

equivalent of spatial autocorrelation, whereas Davis (1993) proposed a clear distinction 

between these two concepts. Furthermore, within the framework of ecological applications of 

fractal geometry (see Frontier, 1987; Sugihara and May, 1990, which are becoming 

increasingly popular in marine ecology (Pascual et al., 1995; Seuront and Lagadeuc, -1997, 

1998), scale-dependent properties leading to fractal dimension estimates have also been 

regarded as a way to characterize space-time heterogeneity (Milne, 1991). In marine systems 

which are now widely recognized to be highly structured in space and time ( e.g. Denman and 

Powell, 1984), there is a real need for additional focus placed on the knowledge of both 

physical and biological patterns and processes (Seuront et al., 1999) which are often referred 

in terms oftemporal intermittency and spatial heterogeneity (Platt et al., 1989). 
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Such ambiguities should be all the more doubtful given the actual tendency for ecologists to 

develop more complicated theoretical frameworks for ecological processes that operate at 

multiple spatial and temporal scales (Maurer, 1998). Indeed, in spite of an impressive body of 

literature on the subject, this field of research still seems in its infancy. Arguably, one of the 

key factors hampering progress is the lack of a consensus on what it means for a given 

descriptor to be, or to be regarded as being, 'heterogeneous'. Consequently, we introduce the 

concept of 'inhomogeneity' which we hope could open up new horizons and help ecologists 

to reach a terminological consensus. The concept of 'inhomogeneity' is then regarded here as a 

way to describe the variability of a descriptor structured in space or in time in terms of scale

dependence. A structured descriptor will then be inhomogeneous in space or intime (Fig. lA), 

whereas a non-structured descriptor cannot be distinguished from observational 'white' noise 

(Fig. lB). Considering that an ecological entity can be basically regarded as patterns bounded 

in space and/or intime (see e.g. Cousins 1988), an inhomogeneous (as a non-inhomogeneous) 

descriptor can then be regarded as a structural ecological entity. Thus, 'heterogeneity' will not 

be applied to the variability of a given descriptor in space or in time as widely done ( see Kolasa 

and Pickett, 1991), but rather to patterns and/or processes exhibiting different levels of 

structure over space or time and bence corresponding to different driving processes. However, 

the proposed terminological approach does not provide an absolute means with which to 

describe ecological patterns and processes, being that the perception, and then the 

characterization, of a given descriptor is intimately intertwined with grain and extent of the 

related sampling scheme (Wiens, 1989; Jarvis, 1995). 

A few examples illustrate sorne ofthese problems. In marine ecology, Seuront et al. (1996) 

have shown on the basis ofmultifractal analyses [see Seuront et al. (1999) for a review in the 

framework of marine ecology] that temporal fluctuations of both phytoplankton biomass and 

temperature could be regarded as inhomogeneously distributed for time scales ranging from 1 

second to 12 hours. Nevertheless, temperature fluctuations are similarly structured (i.e. 

inhomogeneous) over the entire range of available scales, while phytoplankton biomass exhibits 

two distinct scales of inhomogeneity. Thus, inhomogeneous temperature and phytoplankton 

biomass fluctuations can be regarded as being respectively homogeneously and 

heterogeneously distributed in time (Fig. 1 C). Fractal analyses conducted on time series 

simultaneously recorded at different depths leads to further conclusions (Seuront and 

Lagadeuc, 1997). Indeed, the structure of the variables in question (i.e. temperature, salinity 

and phytoplankton biomass) is inhomogeneous over a large range of scales; however, these 
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Fig. 1. Schematic illustration of the concepts of homogeneity, inhomogeneity and heterogeneity based on 

hypothetical power spectra, where E(<I>) is a the spectral density related to either time or space scales <I>. A 

homogeneous descriptor can be either structured (i.e. inhomogeneous; A) or non-structured (i.e. non

inhomogeneous; B) intime or in space. An inhomogeneous descriptor can be heterogeneous intime or in space 

(C), depending on the scales. Finally, an inhomogeneous descriptor over an entire range of scales can be 

heterogeneous either in time or in space, following that its inhomogeneous properties evolves in space S; (D) or 

time T; (E), respectively. Note that f and k are a frequency (Hz) and a wavenumber (m-1
), respectively. 
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temporal inhomogeneous structures are a function of water depth, which gives rise to spatial 

heterogeneity (Fig. lD). Similar analyses conducted on the vertical fluctuations of temperature, 

salinity, light transmission and phytoplankton biomass in tidally mixed waters indicate that 

temperature, salinity and phytoplankton are inhomogeneously distributed, whereas light 

transmission did not exhibit any kinds of spatial inhomogeneity (Seuront and Lagadeuc, 1998). 

Furthermore, the spatial inhomogeneity of temperature and salinity were homogeneous over 

time, whereas the one of phytoplankton biomass indicates a temporal heterogeneity related 

with tidally induced advective processes (Fig. lE). Light transmission, which remains non 

structured over time, also exhibits a form of temporal homogeneity. In summary, these 

previous illustrative statements clearly indicate that a descriptor inhomogeneous (or not) in 

space and/or intime can be either homogeneous or heterogeneous in space and/or intime. 

The previous propositions suggest sorne terminological specifications in comparison with 

basic systemic approaches. For instance, hierarchical approaches, initially developed in the 

framework of landscape analysis, have been devoted to describe "how heterogeneity changes 

with scale" (Allen and Starr, 1982). On the contrary, following our approach, a system 

considered as being hierarchical must be viewed as a heterogeneous system presenting different 

scales of inhomogeneity. In that way, the main point of hierarchical theory should be rather 

regarded as the way to describe how inhomogeneity changes with scales. Moreover, the 

concepts developed in the present paper could also be regarded as a way to complement 

hierarchical approaches in the sense that they allow to describe how the structure of a given 

descriptor, hierarchical (Fig. lC) or not (Fig. lD, E), evolves intime and/or in space. These 

concepts could subsequently provide an efficient framework to reconcile space- and time

oriented approaches. Indeed, a descriptor exhibiting different inhomogeneous structure will be 

regarded as being heterogeneous, the inhomogeneity fluctuating either in space or in time, 

which is still actually not widely done (see e.g., Kolasa and Rollo, 1991; Levin et al., 1993). 

The challenges faced by ecology have pushed the field into a new realm of endeavor, where 

both theoretical and empirical ecologists need to be trained in more sophisticated sampling 

strategies, statistical and modeling techniques. Nevertheless, such developments should be in 

vain without the emergence of a general consensus on what is meant for a given pattern or 

process to be 'heterogeneous', which is at the core ofthe actual ecological thought process. 

One may hope that in the near future, much hard work and a terminological consensus may 

ensure the emergence of an ecological science that will provide effective, unified and 
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scientifically sound tools for analyzing the structure of ecosystems operating on different 

spatial and temporal scales. 
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Abstract 

Much of the work on effect of turbulence on plankton feeding is based on the concept of an increased of the 

contact rates between predator and prey. However, at the scale of mesozooplankton, the preys-the 

phytoplankton cells-are not homogeneously distributed under the effect of turbulence intermittency. Here, we 

argue that the effect of the turbulence could also be the result of the interaction between the zooplankton 

behaviour and the inhomogeneous distribution of the phytoplankton. 

In arder to understand the overall function of eco systems, numero us studies have been devoted 

to the knowledge of processes at the scale of individuals (Levin, 1994). In biological 

oceanography, the influence of small-scale turbulence on predator-prey interactions in plankton 

has received much attention in recent years; this has stemmed from the seminal work of 

Rothschild & Osborn (1988), who proposed an enhanced rate ofpredator-prey contact due to 

small-scale turbulent shear. Thereafter, numerous studies were dedicated to this hypothesis 

(e.g. Dower et al., 1997), and the effect of turbulence does not appear to be so simple. In 

particular, the zooplancton behaviours are influenced by and interact with turbulence induced 

increase ofpredator-prey contact rates. For instance, Saiz & Kiorboe (1985) hypothesized a 

major contribution of small-scale turbulence in the ambush feeding by copepods when 

compared to suspension feeders. 

In general, ali authors recognise the role of behaviour in the interaction between turbulence 

and plankton, and ali the observed changes in behaviours are attributed to fluctuations in water 

motion or the motility of preys. However, no one has considered the spatial or temporal 

distribution of the prey, but rather that the preys, and especially the phytoplankton, are 

homogeneously distributed under the effect of small-scale turbulence. Y et, Yamazaki (1993) 

proposed that "plankton organisms, in fact, experience the local flow structure of turbulence, 

not the average of the flow field" because turbulence presents strong organisation in time and 

space. Consequently, he hypothesized that if plankton is able, with the help of their behaviour, 
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to use such organised flow, then it could derive sorne benefits. Finally, the question mainly 

addressed in the Yamazaki's hypothesis is that we have to know the "world" at plankton scale. 

50 1 00 1 50 200 250 300 350 400 450 500 

Fig. 1. Simulation of phytoplankton distribution using empirical multifractal parameters from Seuront et al. 

( 1999) (arbitrary units). 

In the English Channel, a highly tidally dissipative area, we have observed at microscale 

(Figure 1), an inhomogeneous distribution of phytoplankton (Seuront et al. , 1996, 1999). 

Moreover, the multifractal analysis, conducted on times series, has shown that the distribution 

of phytoplankton under 20 rn is wholly controlled by the intermittency of turbulence. 

Consequently, copepods experience a field in which phytoplankton ditribution is not 

homogeneously distributed but exhibits local dense concentration values induced by 

turbulence. In such a context, if copepods are able to move from one dense patch to another, 

then they experience a local phytoplankonic field more dense than the average. Changes in 

copepod behaviour could thus be the response to the spatial distribution of the prey and not 

only to the fluctuation of turbulent water motions. Indeed, as proposed in the optimal foraging 

theory (Pyke 1984), zooplankton living in highly heterogeneous environments could reveal 

strategies used to exploit high density patches and then to optimise the energy required to 
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capture a given amount of food. This could be achieve, as suggested in a few laboratory 

studies undertak:en in non-turbulent conditions, by increasing the complexity of swimming 

paths with increasing food densities, and/or by reducing motility in food patches ( e.g. Tiselius, 

1992; Bundy et al., 1993; van Duren & Videler, 1995). 

In following to the growing field of both theoretical and empirical studies that regard 

individual behaviour as a key problem to estimate the entire effect of small-scale turbulence on 

plankton feeding ecology, we suggest an alternative-and complementary-hypothesis to the 

one ofRothschild & Osborn (1988): an enhancement offeeding could also be the result of the 

behavioural ability of planktonic organisms to locate and exploit local dense prey patches 

generated by turbulent motions. This hypothesis could provide an alternative explanation to the 

apparent inequality observed by Saiz (1994) between empirical encounter rates and the 

theoretical values expected using the Rothschild & Osborn theory. Consequently, a precise 

description of the behaviour and distribution of both predators and prey appears to be a salient 

issue for the future modelling of plankton trophodynamics in turbulent environments ( e.g. 

Osborn & Scotti 1996), supporting notably the advantage of individual based approaches 

(Yamazaki, 1993). 
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Abstract 

The study of population dynamics is face to the problem of included variations existing at the scale of 

individual on global dynamics observed at mesoscale. The study of the influence of the turbulence, and of the 

intermittency of the turbulence (i.e. local strong fluctuations at ali space or time scales), on the trophodynamics 

of zooplankton deals with this challenge. In the present case, we want to test the hypothesis that an enhancement 

of feeding could also be the result of the behavioural ability of plankton organisms to locate and to exploit local 

dense patches of phytoplankton generated by turbulent intermittent motions and exhibiting local dense 

concentration ranging lü times the mean value. In this goal we have developed an experimental study of the 

behaviour of copepod and an individual-based model. These two kinds of approaches, which allow to study and 

to talee into account the spatial distribution of the phytoplankton and the spatial behaviour of the zooplankton, 

are presented with the first results of validation. 

Keywords : individual-based mode!, visualisation system, trophodynamic, zooplankton behaviour 

Résumé: 

L'étude de la dynamique des populations fait face au problème de la prise en considération des processus 

existants à l'échelle de l'individu dans la dynamique globale caractéristique de la mésoéchelle. L'étude de 

l'influence de la turbulence, et de l'intermittence de la turbulence (i.e. fortes fluctuations locales à toutes échelles 

d'espace et de temps), sur la dynamique trophique du zooplancton est pleinement confrontée à ce problème. 

Dans le cas présent, nous voulons tester l'hypothèse selon laquelle un accroissement du broutage du zooplancton 

peut être le résultat de la capacité comportementale des organisme planctonique à détecter et à utiliser des 

agrégats de phytoplancton induits par l'intermittence de la turbulence et dont la densité est parfois dix fois 

supérieure à la concentration moyenne. Dans ce but, nous avons développé une étude expérimentale du 

comportement du copépode et un modèle multi-agents. Ces deux types d'approches, qui permettent de prendre 

en considération la distribution spatiale du phytoplancton et le comportement spatial du zooplancton, sont 

présentées ainsi que les premiers résultats de validation. 

Mots clés : Modèle multi-agents, système de visualisation, dynamique trophique, comportement du zooplancton 
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Among the objectives, or the recommendations, of the GLOBEC programme, two major 

axes have been underlined. The first one corresponds to a better knowledge of the interactions 

between physical and biological processes, the second one to a multiscale approach. These 

two points are generally intimately coupled because numerous physical or biological 

processes are multiscale [6, 21]. Such goals lead to consider simultaneously the variability or 

heterogeneity at each scale: e.g. from individual to community, or from the Kolmogorov scale 

to residual circulation. However, such objectives are face to the development and the use of 

new tools [14]. 

In such a context, a better knowledge of the population dynamics of zooplankton is 

tributary of a better understanding of processes implied at individual scale [23, 13]: 

turbulence, phytoplankton distribution, behaviour, etc. In that way, We develop studies on the 

effect of microscale turbulence, and more especialy on the effect of the turbulence 

intermittency. Indeed, if turbulence has traditionally been described as a way to create 

homogeneity, it is in fact a source of inhomogenity [9, 10] due to the intermittency of the 

flow (i.e. local strong fluctuations at ali space or time scales). In a tidally dissipative 

environment, it appears that the phytoplankton is inhomogeneously distributed under the 

effect of the turbulence for scales lower than 20 meters [19]. Subsequently, the copepods 

experience a field where the preys, i.e. the phytoplankton cell, are not homogeneously 

distributed but rather exhibit local dense concentration ranging 10 times the mean value. In 

such a context, if copepods are able to move from one dense patch to another, they experience 

a local phytoplankonic field more dense than the average one. Then, We suggest an 

alternative-and complementary-hypothesis to the one of Rothschild & Osborn [17] : an 

enhancement of feeding could also be the result of the behavioural ability of plankton 

organisms to locate and to exploit local dense patches generated by turbulent motions. 

Consequently, if this hypothesis is true the copepod swimming paths should reflect the 

phytoplankton distribution. Numerous authors during these ten last years have studied the 

effect of turbulence on zooplankton, and more specifically on copepods behaviour [3, 4]. 

They described changes in the behavioural sequences, which generally correspond to an 

increased of the frequency of the fast moving behaviour. However, except the work of Bundy 

et al. [1], the technique generally used does not allow to follow the spatial location of the 

copepod. Modelling approach is the other way to test the effects of turbulence on 

trophodynamics of zooplankton [2, 24]. However, the behaviour is introduce, in existing 

madel, by the way of the time budget spent to jump or to swim associated or not with feeding 

activity [2]. The mathematical expression of behaviour could also corresponds to a function 
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of swirnrning activity of bath preys and predators, of the size of the prey and of the perceptive 

distance of the predator [11, 2]. None of these approaches allow to take into account the 

spatial and temporal distributions of the prey and the capacity of the predator to locate and 

identify areas of dense prey concentrations. In arder to palliate these lacks we have developed 

a new technique to study experimentally the behaviour of copepods and an individual-based 

madel. We present here these two approaches and the first results of validation. 

Experimental study of the copepod behaviour 

The experimental set-up was designed to track the three-dimensional displacement of a 

copepod in a cubic glass container (inner side 15 cm, effective volume 3.375 1). Two lamps 

(diffuse cold light 75W) illuminate the tank, one from the top, the other from the bottom to 

ensure homogeneity of the light source and thus to avoid phototropism. Reflections are 

minimised as muchas possible and in arder to produce a good contrast between the "white" 

copepod and the "black" background, two sides of the container were covered with black dull 

plastic film. 

In order to reconstruct the three-dimensional motion of the copepod, two or more 

independent views of the system are required. Thus, two synchronised CCD cameras 

(HITACHI KP Ml; 875*560 pixels; focal distance 17:53 mm) are placed orthogonally around 

the tank at a distance of about 1 m from the experimental container, so that the frame contains 

also a few reference points which allow a better fit of the camera. Those cameras deliver 

white and black frames at a rate of 12.5 frames per second. In the same conditions a grab of a 

ruler provides us the position of the cameras and the relation between pixels and millimetres. 

The heart of the visualisation system is the encoder RGB-PAL (EncllO (For-A)); our idea 

consists in using the decomposition of each colour frame in three components: one red, one 

green and the third blue. We only need two components in our system. Therefore, the encoder 

codes PAL-type colour frames from the instantaneous synchronised monochrome images 

from the camera called R (red) and G (green) (Figure 1). In that way each independent view 

gets an identity (red or green) and may be added to another at the same time t to form one 

single colour PAL-frame. Practically, the same copepod is filmed from two points of view 

and this frames superposition reduces hardware cast and provides perfect synchronisation. 

These colour images are digitised (image size 720*576 pixels), compressed and stored in real 

time thanks to a special acquisition card and an adequate software (PVR-Digital Processing 

Systems) on a PC. The frames-disk is able to store about 40 minutes of a series at 12.5 images 

per second. In this study only short movies were stored (5 minutes duration). 
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Fig. 1. Schematic representation of the visualisation system. 

The three-dimensional components of the copepod motion must then be extracted from 

each frame using frame analysis. Because of the large field of view of the cameras, only the 

windows included the experimental container is kept. A pre-recorded background is removed 

from each frame, that leads to a coloured frame with a few abjects (two, optimally: one for the 

red camera and one for the green camera with the same z coordinate). This later is 

decomposed into grey-level frames giving two binary frames by thresholding. After a 

morphological opening to elirninate small parasitic points, each binary frame is labelled to get 

the coordinates (in the image system) and the surface of the abjects numbered on it. This 

frame processing is carried out on the acquisition PC (Pentium Pro 200 MHz) at a rate of 1.5 

seconds per frame. 

An identification program compares ail abjects found by frame analysis. After an 

elimination of supposed bad abjects (identified as ludicrous discontinuities in the trajectory), 

another program takes into account spatial parallax and diffraction phenomena and gives the 

three coordinates of the copepod as a function of time in the container coordinates system. 
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In this preliminary study, we focused on the calanoid copepod Temora longicomis 

(Müller), a very abundant species in the Eastern English Channel, which is also of great 

ecological significance in many areas. It represent 35 to 70% of the total copepod population 

in the southern Bight of the North Sea [5], and in Long Island Sound, USA, T. longicomis 

bas been shawn to be able to remove up to 49% of the daily primary production [7]. 

Individuals of the copepod Temora longicomis were collected with a WP2 net (200 mesh 

size) in the offshore waters of the Eastern English Channel. Specimens were diluted in 

buckets and transported to the laboratory. To ensure sorne homogeneity in the physiological 

conditions of the copepods, the acclimation consisted of being held in 20 1 beakers filled with 

0.45 )lm filtered seawater to which was added a suspension of the diatom Skeletonema 

costatum to a final concentration of 108 cells.l"1
• Prior to the filming experiment, adult females 

were sorted by pipette, acclimated for 24 hat l8°C and fed on a mixture of Nannochloropsis 

occulata (3 )lm) and Oxyrrhis marina (13 )lm). The larger heterotrophic flagelatte was present 

as an additional food source. Ali experiments were conducted within the same day to avoid 

differences in feeding history. An adult female was sorted by pipette and left in the 

experimental filming set-up to acclimatise for about 15 mn prior to filming. Two different 

concentrations of the mixture of Nannochloropsis occulata and Oxyrrhis marina were tested. 

One experiment (hereafter called A) bas been conducted with Nannochloropsis occulata and 

Oxyrrhis marina at respective! y 107 and 105 cellsX1
, and two experiments (B and C hereafter) 

Nannochloropsis occulata and Oxyrrhis marina at 108 and 106 cells.l"1
, respectively. 

The structure of the motion behaviour of T. longicomis was investigating by the way of 

spectral analysis conducted on the three components of the recorded trajectories. Roughly 

speaking, spectral analysis corresponds to an analysis of variance in which the total variance 

of a given process is partitioned into contributions arising from processes with different 

length scales or time scales in the case of spatially or temporally varying data, respectively. In 

our case (i.e. temporally recorded three-dimensional position), a power spectrum then 

separates and measures the amount of variability occurring in different frequency bands [8]. 

When all part of the spectrum J::!,(J) obeys a power-law form, i.e. E(f)::::: f-!3 (where 1 is 

frequency), the data are scaling in that range, i.e. the scaling regime. f3 is the exponent 

characterising spectral scale invariance. The absence of characteristic time scales and the 

presence of a scaling regime indicate that the same, or at least similar, process may be at the 

origin of the temporal structure of the observed variability. 

In this preliminary results we cannat ascribe any significant effects on swimming pattern to 

food concentration due to the low number of experiments. However, the position plots (Figure 
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2) and the analyses perform show differences that will be briefly presented. In that way, one 

may note that within each experiment, there were significant differences between each 

velocity component (Kruskal-Wallis test, p < 0.05), the horizontal velocities being always 

greater than the vertical one (Dunn test, p < 0.05; [20]). 
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Fig. 2. Three-dimensional visualisation of the copepod location during experiments A, B and C (see text). 
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The spectral analyses conducted on the different velocity components show that the 

spectral exponents f3 (Figure 3) cannot be statistically regarded as being different within a 

given experiment and between experiments (analyses of covariance; p < 0.05 [25]), 

suggesting a relative homogeneity in the structure of the swimming speed fluctuations 

whatever the food concentration. 

On the contrary, power spectra of the three coordinates of the swimrning paths exhibit a 

differentiai behaviour related to food concentration (Figure 3). Thus, in low food 

concentration (experimentA), power spectra exhibit a clear scale breaking for a time scales of 

about one second (Figure 3 A). Moreover, the spectral exponents of the large scale scaling 

regime cannot be statistically distinguished (p > 0.05), while the small scale ones exhibit 

significant differences. W e th en conducted a multiple comparison procedure based on the 

Tuckey test [25] to determine which f3 was different from the others, and showed that the 

spectral exponent characterising the vertical coordinate is significantly greater than the others 

(p < 0.05). In high food concentration (experiments B and C), power spectra of the three 

coordinates of the swimming paths are obviously linear over the whole range of available 

scales (Figures 3B, C). The spectral exponents f3 of the three coordinates cannot be 

distinguished for the experiment B (P > 0.05 ). On the contrary, there are significant 

differences between the spectral exponents for the ex periment C ( p < 0.05), the exponent 

characterising the vertical coordinate being significantly smaller than the others, as indicated 

by a multiple comparison procedure ( p < 0.05). These results suggests, first, a differentiai 

swimrning behaviour of the calanoid copepod Temora longicornis in the horizontal and in the 

vertical dimension, and second, a prey switching behaviour as a function of scales between 

the algae Nannochloropsis occulata and the flagellate Oxyrrhis marina in relation with food 

concentration. While prey switching behaviour related to food concentration bas already been 

observed by Ki!Z}rboe et al. [12] for Acartia tonsa, further studies are still needed to test and 

validate these first observations. 

lndividual-based model 

Until now, the copepod has been represented by models either of the type "black box" or 

analytical models. These models seek to describe in terms of input and output flows, and 

transfer functions each "process" of the organism. In this context, modeling of predation on 

phytoplankton by zooplankton includes the following processes : the copepod captures a prey 
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(a phytoplankton cell); then after a handling time, the prey is stored in the gut and enters the 

process of digestion; the gut transforms its contents in usable energy which one expresses out 

of nitrogen, or faecal pellets. This transformation is continuous: within each iJ.t, a quantity iJ.q 

of caught preys is processed (this quantity is proportional to the quantity stored in the gut). 

Usable energy is consumed (metabolism, digestion, or swimming activity), stored or used for 

reproduction. 

Capparoy & Carlotti [2] proposed a model, synthesizing the various models developed 

until now, in which capture and ingestion processes use five coupled differentiai equations 

(Figure 4; Table I). This model fit weil for the process of capture and metabolism functions. 

However, the contribution of the behaviour is partially considered. Indeed, the expression of 

the behaviour corresponds to a subdivision of the time into two kinds of activities: jumping or 

swimming. The spatial and temporal distributions of preys and predator are ignored, and our 

hypothesis could not be tested. To avoid this drawback we have develop an individual-based 

model which allows on the one hand to consider the spatial behaviour (including distribution) 

of prey and predator, and on the other hand to obtained emergent results without 

mathematical solving of coupled differentiai equations [16]. 

c 
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(MN) IJIIP'I 
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Fig. 4. Conceptual scheme of the physiological mode! (from [2]). X1 to X5 correspond to the state variables; the 

fluxes correspond to the arrows : ingestion (I), assimilation (A), formation of faecal pellets (F), egestion (G), 

and excretion (C). 
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Prey in gut: Xl 

Assimilated prey : X2 

Faecal pellets : X3 

Expelled faecal pellets : X4 

Excretted matter : X5 

dX1 =1-A-F 
dt 

dX2 = A _ (_E_) 
dt MN 

dX3 =F-G 
dt 

dX4 =G 
dt 

dXs =C 
dt 

Table 1. Differentiai equations of the five state variables (from [2]) : X1 (prey in the gut), X2 (assimilated prey), 

X3 (faecal pellets), X4 (expelled faecal pellets), X5 (excreted matter). Processes imply : ingestion (I), assimilation 

(A), formation of faecal pellets (F), egestion (G), excretion (C). MN corresponds to the nitrogen mass of the 

prey. 

The system under study is composed of a mass of water in which phytoplankton patches 

and copepods are immersed. Each of them, which is called agent, is located and has its 

properties among which its behaviour. The patches of phytoplanktons have a certain size and 

density, they correspond to a spatial agent. The copepod has various characteristics (its 

"mass" expressed in nitrogen, the volume of its gut, its swimming and jumping speeds ... ), and 

corresponds to a reactive agent. Practically, that means that its behaviour is governed by its 

perception and its current internai state, which, in turn, eventually induces an action and a 

new internai state after a stimulus. Its behaviour is defined by a Petri network [15, 16] to 

allow the description of sophisticated behaviours with a standard and simple tool. Basically, 

Petri networks specifies the states within which an agent can be, the possible transitions 

between states, and the conditions to fulfill for each transition to occur. Each state is 

associated to a set of actions performed by the agent when the state is activated; actions may 

be a displacement in the space, an update of its internai state, perceiving its environment, etc. 

The state is activated when it is first reached. A transition actually occurs when its condition 

is fulfilled. In the simulation of real processes, it is crucial to take its duration into account. 

Hence, to each transition, a duration is assigned, which is either constant and deterministic, or 

stochastic. Moreover, by analogy with biological entities, any agent is endowed senses more 

or less developed. In this approach, senses are at the base of the network of knowledge of the 

agents. Dynamically, the agent builds its neighbourhood according to its position in space, 
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and to its senses. In our model, an agent has several senses and each them is defined by three 

parameters: the type of perceived agents, the sector (according to the orientation of the agent), 

and the distance within which the perceivable agents are actually perceived. By this way, one 

can test different scenarios according to possible models of perception of the copepod. In 

example, one agent can perceive only a part of the cbaracteristics of another agent following 

specifie perceived characteristics. The perception of an agent could also be modified by 

external factors as sorne environmental effect (turbidity, salinity, etc.) or internai factors 

(development stage, etc.). 

In the present model, and in the case of th ose first simulations, the size of the copepod ( 1 

mm) is used as the basic length for the discretization of the environment. The environment is 

considered as two dimensional and split into 1024 (32x32) chunks of 1mm2
• Bach chunk is 

· dealt with by spatial agent and connected to the 8 neighbours. The number of cells of 

phytoplankton is 106 cells per liter. Thus, it is not conceivable to model each cell with one 

agent. The solution which was adopted consists in defining a property "Number of cells" at 

the level of spatial agents. The number of cells by chunk is defined by the multifractal 

parameters presented in Seuront et al. [18, 19]. The management of food is delegated to the 

spatial agent, which corresponds to the environment. 

The copepod is defined by functions that control the displacement, the ingestion of food 

and the physiological processes. The functions governing the physiological state, or the 

energy budget of the copepod correspond to those used by Caparroy and Carlotti [2]. For 

further explanations and details conceming those functions one may then refer to this paper. 

The behavioural aspect of our model will be developed. 

Here, We started from the assumption that the copepod adopts two distinct behaviours: a 

swimming behaviour associated with the search of food, and random jumps. The Petri net that 

models the dynamics of displacements of the copepod is divided into four parts: 

• as soon as a cycle of 75 u.t.(unit of time for simulation) is elapsed, the copepod carries 

out ajump (one chunk in one u.t.) without considering what surrounds it, during 20 u.t. (time 

to cross a chunk of the environment), the copepod explores the place where it is and if food is 

available there it can capture a cell of phytoplankton. The handling of a cell of phytoplankton 

by the copepodis the quickest action in the model (1/20) and corresponds to unit time of 

simulation (u.t.). The captures of phytoplankton cells occur only if the copepod has not yet 

fed too rouch within the last u.t.. Indeed, the ingestion of food is control by a level of 

satiety, bounded, for 
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A B 

Fig. 5. Visualisations of the paths followed by copepod in oriented (A) and random (B) simulations. The grey 

levels correspond to different phytoplankton densities. 

the moment, by the number of cells of phytoplankton present in the gut. The function of 

satiety is [2]: 

c = 1- vpreyxl 
g 2 v 

3 gut 

where V prey XI represents the volume of the not-yet-digested preys and V gut the volume of the 

gut of the copepod. It captures the cell according to a certain probability and, if it does not, 

the cell disappears from its field of vision. 

• on the other hand, if there is no food, it continues to swim to reach the next chunk, 

• at the end of the 20 u.t. necessary to cross a chunk, the copepod "chooses" a new chunk 

to be explored among the three chunks located in front of it, and proceeds there. 
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This last change is a function of the copepod behavioural strategy. In the case of our 

present work two kind of strategy have been tested. The probability that a chunk is chosen is 

either random or proportional to the amount of food it holds: the more food, the more likely 

the copepod will rn ove to it. In the case of the oriented strate gy, the densities of cells present 

in the three chunks are normed to one, and correspond to the probability for the copepod to 

move in one chunk or in the other. 

U sing the variables defining the internai state of copepod agents, we measure within each 

step of simulation: the energy, expressed in pg of nitrogen, contained in the gut, its usable 

energy, the number of captured phytoplankton cells and two variables of the analytical mo del 

(X3 and X4). 

Visualisations of the paths followed by copepods in the oriented or random simulation 

show strong differences (Figure 5). These differences are well reflected by the ingestion 

budgets; it appears clearly that the directed stroke enhance the feeding of the copepod (Figure 

6). 
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Fig. 6. Quantity of food in the gut. Results for oriented, random and« homogeneous distribution» simulations. 
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If the copepod is located inside a homogeneous field of phytoplankton, the swimming 

strategy does not have any influence on the feeding since it is able to find food in all 

directions in same quantity. Moreover, it will be noticed that, in a heterogeneous field, the 

random strategy leads the copepod to find food as it is in a homogenous field. 

Conclusion 

Actually, due to the low number if experiments conducted, no precise conclusion could be 

proposed on the effect of the turbulence intermittency on trophodynamics of zooplankton. 

However, we have developed two new tools, which could allow to consider the local structure 

of phytoplankton and turbulence on zooplankton as recommended by Y amazaki [23]. 

Moreover, with the double approach developed here, the individual is in the centre of our 

study, and the matter budget will emerge at larger scales. However, taking into account 

microscale and individuals also implies conceptual problems. For example, we are now 

interested to break up the "enigmatic" processes, such as the random jumps or the speed of 

constant stroke. It is obvious that behind these actions are hidden rules of decision, or more 

complex processes [22]. For example, the observation shows that the swimming speed is not 

constant and that it has been hypothesis that these variations are due to interactions with the 

environment. Furthermore, it is obvious that a copepod did not behave in the same way on its 

own, or within a colony of its kind. It remains to imagine the processes implied and 

subsequently specify them precisely. In addition, if one is interested in the rules of decision 

regarding the capture of a cell of phytoplankton, one can wonder whether elements such as 

the physiological state of the copepod do not come into play. For example, a female, carrying 

eggs, could require more food than a male. 

In such context, the confrontation of the experimental observations and the madel, which is 

able to translate simply behavioural component, will be fruitful. The results of the 

experiments will be translated in behavioural hypothesis and tested in the madel. The model 

will be also used to test existing described behaviour as recently done by Kiorboe and Saiz 

[11]. 

The madel could be of course developed, and one of the first step, will be the introduction 

of the flow induced by turbulence [24]. The second step will be the introduction of intra and 

inter-specifie interactions. 
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Abstract. Almost ali regions of the oceans are heavily in:fluenced by the effects of physical processes such as 

turbulence which in turn influence the distribution and ecology of organisms that occupy these regions. There is 

a real need for additional focus placed on the precise knowledge of both physical and biological processes 

which is often difficult using basic time series analysis. In that way, we applied non-linear analysis techniques 

to high frequency time series of temperature, salinity, nutrient and phytoplankton concentrations recorded in 

different hydrodynamical regimes related to tidal forcings in a tidally mixed coastal ecosystem. Techniques 

devoted to the identification of low order deterministic chaos cannot find evidence of chaos. The results rather 

suggest stochastic time series with many degrees of freedom: no obvious attractor in phase space trajectory, 

positive largest Lyapunov exponent close to zero, absence of convergence of the correlation integral. We then 

applied to these data specifie multifractal analysis techniques and showed that these time series clearly exhibit 

high order stochasticity, but also that this stochasticity can be regarded as highly structured intime and space. 

Introduction 

Since the seminal studies of chaos in discrete time models in population ecology (May, 1974, 

1975, 1976), the issue of chaotic dynamic in ecological systems has been widely controversial 

(Hassell et al., 1976; Berryman and Millstein, 1989; Pool, 1989). Chaos in ecology has 

nevertheless been the subject of an increasing amount ofliterature. In theoretical ecology, there 

are many examples of temporal population models which exhibit chaos. The interaction of 

three variables in a predator-prey-nutrient system (Kot et al., 1992) is now a weil studied 

chaotic system, as chaotic dynamics expected through a trophic coupling of three species 

(Hastings and Powell, 1991). Recently, an ocean ecosystem model also exhibits chaotic 

properties related to the extemal seasonal forcings (Popova et al., 1997). In particular, the 

issues raised by chaos theory in ecology have been the subject of several recent reviews (May, 

1980, 1987; Godfrey and Blythe, 1991; Ellner, 1992; Logan and Allen, 1992; Hastings et al., 

1993; Little et al., 1996). 

The compelling reasons for the emerging chaos theory to ecology is based on the hope that 

complex systems could be explained by relatively low-order processes. This leads to the 

development of a suite of algorithms aimed at the detection of chaotic behaviour and the 

classification of system dynamics (see Hastings et al., 1993; Ellner and Turchin, 1995 for 
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reviews). While such approaches have been applied to a wide variety of time series (Farmer 

and Sidorowich, 1987; Ellner, 1992; Theiler et al., 1992), asto detect dynamic spatial chaos 

(Rubin, 1992; Rand, 1994; Solé and Bascompte, 1995), the development ofnon-linear thinking 

to marine ecology has a more recent history. Only a few studies have been devoted to detect 

chaotic signature in both marine time series and transects, and led to controversial results. 

Thus, Sugihara and May (1990) found evidence for chaotic dynamics intime series ofweekly 

dia tom counts, and Scheffer ( 1991) argued that chaotic deterministic dynamics should be 

commonplace in plankton communities. On the contrary, Ascioti et al. (1993) as Strutton et al. 

(1996, 1997) did not find any evidence of chaotic dynamics in both zooplankton and 

phytoplankton time series and phytoplankton transects, respectively. 

More recently, a new field of marine research has been devoted to the stochastic 

characterization of intermittent processes in the framework of multifractals (Pascual et al., 

1995; Seuront et al., 1996a, b, 1999; Seuront, 1997, 1999). Multifractals, which has been 

recently reviewed by Pascual et al. (1995) and Seuront et al. (1999), can be regarded as a 

generalization of fractal geometry (Mandelbrot, 1983) initially introduced to describe the 

relationship between a given quantity and the scale at which it is measured. While fractal 

geometry describes the structure of a given descriptor with the help of only one parameter (i.e. 

the so-called fractal dimension), multifractals characterize its detailed variability by an infinite 

number of sets (roughly speaking, each of them corresponds to the fraction of space where 

data exceed a given threshold), each with its own fractal dimension. Such approaches, which 

do not require any statistical preconception on the data, provide very good approximations-at 

all scales and all intensities-of the statistics of an intermittently fluctuating descriptor, and 

determine the probability description of the descriptor values (see Pascual et al. (1995) and 

Seuront et al. (1999) for further details). Moreover, the statistical consequence of 

intermittency being a strong departure from Gaussianity (Baker and Gibson, 1987), 

multifractals thus provide a powerful alternative to basic random walk models explicitly based 

on Gaussian statistics (see e.g. Peitgen et al., 1992). Thus, considering that in the general 

background of spatio-temporal intermittency encountered in the ocean ( e.g. Plait et al., 1989), 

knowledge of the precise statistics of any intermittent fields may a void the bias introduced by 

chronic undersampling of an intermittent signal (Bohle-Carbonel, 1992), a stochastic 

multifractal framework is particularly weil suited to describe the structure of quantities that 

vary intermittently (Pascual et al., 1995; Seuront et al., 1996a, b, 1999). 
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Severa! misconceptions about chaos precisely pertain to its relationship to stochastic 

behaviour (Hastings et al., 1993). Chaos and stochasticity are nevertheless not equivalent: not 

only do the underlying mechanisms differ, but the consequences for observers are very 

different. In purely deterministic systems, predictions made from the governing equations will 

be perfect. Chaotic systems are predictable over short time scales because they are 

deterministic; the lack of predictive power over long time scales stems from the lack of 

complete information about the exact location of initial conditions. In contrast, purely 

stochastic systems are unpredictable over any time scales because of their probabilistic nature. 

In such approaches, the variability of a given descriptor is driven by 'news' events, which 

represent exogenous variables-exogenous in the sense that they are not a part of an internai 

mechanism which drives the descriptor fluctuations. The branches of a tree move because of 

the wind, which is 'exogenous' to the tree, and therefore 'news' toit, whereas a chaotic model 

of the motion oftrees would assume the existence of a simple deterministic 'non-linear' engine 

within the tree (i.e. endogenous) which generates chaotic motion by a simple mechanism of 

feedback of the motion of the tree upon itself Finally, the distinction between stochastic and 

deterministic dynamics has important practical implications. For instance, if fluctuations in 

population sizes are driven primarily by deterministic factors, and if those factors are 

understood, then the dynamics are predictable over short time scales. Management of such 

populations is feasible. On the other hand, if fluctuations are driven primarily by exogenous 

stochastic forces, then prediction and management become much more difficult. 

Thus, given that deterministic equations in a small number of variables can generate 

complicated behaviour, the question arises: how much of the complicated behaviour observed 

in nature can be describe by a small number of variables? This question has been widely 

addressed in the framework ofturbulence. Ruelle and Takens (1971) indeed showed that near 

the transition to turbulence, the many degrees offreedom of turbulence are coupled coherently, 

and lead to an enormous reduction in dimension (i.e. low order deterministic chaos). However, 

both empirical and theoretical studies have demonstrated that fully developed turbulence 

(Schertzer and Lovejoy, 1983; Parisi and Frisch, 1985; Benzi et al., 1984) was rather 

characterized by its multifractal properties (i.e. high order stochasticity). Moreover, let us 

recall that in previous empirical studies of phytoplankton patchiness in turbulent environments, 

Seuront et al. (1999) suggested a potential effects of both hydrodynamic and advective 

processes on the multifractal structure of both physical (i.e. temperature and salinity) and 

biological (i.e. phytoplankton biomass) parameters. 
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Herein, the goal of this paper is, first to find out whether time senes of physical 

(temperature and salinity) and biological (phytoplankton biomass) parameters recorded in 

different tidal conditions during about four tidal cycles in the well-mixed waters of the Eastern 

English Channel are chaotic or not, and second, to test the potential effects of differentiai tidal 

forcings on the chaotic and/or stochastic nature of the variables in question. In order to identify 

potential chaotic signature, severa! complementary techniques of phase-space reconstruction 

were used, for the first time to our knowledge, to temporal data from the marine environment. 

On the other hand, the universal multifractal formalism [see Seuront et al. (1999) for a review 

in the framework of marine ecolo gy] has been devoted to characterize the detailed stochastic 

structure of the data sets. 

The data 

Sampling experiment was conducted during 48 h (ca. four ti dai cycles) in a period of spring 

ti de, from 2 to 4 April 1996, at an anchor station (Fig. 1) located in the coastal waters of the 

Eastern English Channel (50°47'300 N, 1°33'500 E), a hydrodynamically dominated area 

characterized by its megatidal regime. Temperature, salinity and in vivo fluorescence intensity 

were simultaneously recorded at 1 Hz from a single depth (10 rn) with a SBE 25 Sealogger 

CTD, and a Sea Tech fluorometer, respectively. Every hour, samples ofwater were taken at 10 

meters depth to estimate chlorophyll a concentrations, which appear significantly correlated 

with in vivo fluorescence (Kendall's r = 0.652, P < 0.05; Seuront et al., 1999). In the 

following, the latter parameter will then be regarded as a direct estimate of phytoplankton 

biomass. While the structure of the whole resulting temperature, salinity and in vivo 

fluorescence data sets (i.e. 167040 data points) have already been investigated in the 

framework of universal multifractal [see Seuront et al. (1999)], the main objective of this 

contribution is to investigate the potential effect of varying tidal forcings on the local structure 

of physical· and biological parameters. Thus, the data analyzed here consist in 24 time series 

(labelled from S1 to S24) of one hour duration (ca. 3600 data points) re-sampled from the 

original dataset in order to be representative of the different conditions of tidal current speed 

and direction, taken every 5 minutes, from the sampling depth (Table 1). 
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Method 

Data pre-processing 

Time series analysis requires the assumption of at least reduced stationarity, i.e. the mean and 

the variance of a time series depend only on its length and not on the absolute time (Legendre 
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Fig. 1. Study area and location of the sampling station (*) along the French coast of the Eastern English 

Channel. 

Tidal current Depth T s F 
Sl!eed (nu'1! Dir ~0) 

Sl 0.55 240 21.56 6.55 34.60 18.32 
S2 0.45 220 22.49 6.53 34.60 15.20 
S3 0.10 60 27.38 6.51 34.62 10.90 
S4 0.95 15 28.28 6.50 34.66 9.39 
S5 0.90 10 26.21 6.49 34.70 8.23 
S6 0.15 10 23.25 6.51 34.65 10.25 
S7 0.32 260 21.52 6.53 34.61 15.02 
S8 0.62 230 22.21 6.52 34.62 17.24 
S9 0.10 85 27.19 6.50 34.65 11.45 
S10 0.98 10 28.47 6.49 34.72 6.80 
Sll 1.00 JO 26.53 6.49 34.67 7.29 
S12 0.30 10 23.66 6.50 34.64 Jl.OO 
S13 0.35 290 21.38 6.53 34.62 17.40 
S14 0.30 200 21.72 6.55 34.62 15.82 
S15 0.11 140 26.19 6.52 34.66 13.46 
S16 0.80 10 28.65 6.5 34.69 10.75 
S17 1.10 JO 27.15 6.49 34.70 6.64 
S18 0.40 10 24.15 6.51 34.68 7.35 
S19 0.35 260 21.75 6.53 34.63 12.64 
S20 0.87 250 21.68 6.55 34.62 17.69 
S21 0.73 230 25.23 6.55 34.61 15.J6 
S22 0.18 10 28.65 6.53 34.71 8.30 
S23 1.04 10 27.50 6.50 34.66 5.37 
S24 0.60 10 25.95 6.50 34.62 3.87 

Table I. Tidal conditions, water column depth and mean values of temperature, salinity and in vivo 

fluorescence for the 24 studied data sets. 
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and Legendre, 1984). The existence and the significativity of any potential linear trends was 

testing calculating Kendall's r autocorrelation which does not require any hypothesis about the 

characteristics of the original dataset distribution [Kendall' s coefficient of correlation was used 

in preference to Spearman's coefficient of correlation p because Spearman's p gives greater 

weight to pairs of ranks that are further a part, while Kendall' s r weights each disagreement in 

rank equally, see Sokal and Rohlf (1995) for further developments]. We then eventually 

detrended time series fitting linear regressions to the original data by least squares and used the 

regression residuals in further analysis, a common remediai procedure in time-series analysis 

(Fuller, 1976). The purpose of this is to eliminate aliasing in further analysis due to large scale 

structures present in the data sets, such as in monotonically increasing or decreasing trends. 

In order to provide direct comparisons between the different parameters, the time 

observations, yi, were converted into normalized, dimensionless descriptors, xi , following: 

Y;- Ymin 
x = 1 

Yma:x-Ymin 
(1) 

where Y max and Y min are the maximum and minimum values of the series, respectively (Gower, 

1971). Samples of the resulting time series are given in Figure 2. 

Fig. 2. Normalized temperature (A), salinity (B) and in vivo fluorescence (C) time series recorded in the 

Eastern English Channel, shown for data set S 1. 
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The search for deterministic chaos 

In the following our datasets are regarded as finite sets of time observations, xi , taken at 

regular intervals, !1t = 1 second for temperature, salinity and in vivo fluorescence time series: 

Xi= {x(1),x(2),x(3), ... ,x(Nobs)} (2) 

where Nobs is the total number of observations in each set. The time length of any observed 

period, T, is related to Nobs as: 

T = Nobs!1t (3) 

More specifically, the three methods used here to investigate the properties of our sets, i.e. 

the Packard-Takens method (Packard et al., 1980; Takens, 1981), Lyapunov exponents 

estimates (Wolf et al., 1985), and the correlation integral method (Grassberger and Procaccia, 

1983), are based on the assumption that the dynamics of any underlying dynamical systems can 

be described in sorne multidimensional phase-space from the knowledge of the time series of a 

single observation x(t) by constructing E-dimensional vectors defined by: 

X(t) = (x(t),x(t -1:), ... ,x(t- (E -1)1:) (4) 

where E is the embedding dimension (i.e. the dimension ofthe vectors), and 1: =pM is the lag 

(i.e. the number of data points separating each of the vector's elements). As an example, one 

can observed that for E = 3 and 1: = 1, the vector X(t) consists of x(t) and the E -1 

immediately preceding points ofthe time series (i.e. the set ofvectors {X(3),X"(4), ... ,X"(n)} 

is denoted as {(x(3),x(2),x(1)),((x(4),x(3),x(2)), ... ,((x(n),x(n -1),(x(n- 2))} ). 

In the above case, the delay time r must be chosen so as the result in points that are not 

correlated to previously plotted points. Thus, a first choice of r should be in terms of the 

decorrelation time of the time series (Tsonis et al., 1993). A straightforward procedure is to 

consider the decorrelation time equal to the lag at which the autocorrelation function for the 

first time attains the value of zero. One may also note here that no averaging nor filtering have 

been employed since it is known that such data manipulations can obscure the presence of 

chaos (Ellner, 1992). 

The Packard-Takens method (P1M). Dissipative dynamical systems which exhibit chaotic 

behaviour often have a strange attractor in phase-space (Grassberger and Procaccia, 1983). It 

is for instance the case for the movements of atmospheric flows which produce a specifie 

phase-space trajectory now widely known as the Lorentz's attractor (Lorenz, 1963). More 
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precisely, a strange attractor bas orbits that lies within a defined region of phase-space but the 

orbits never intersect and never follow the same trajectory twice. 

The phase-space attractor of a system is then a map of the changing conditions in the 

system: each point on the attractor is a summary of all the variables affecting the system at a 

moment in time. As the system evolves, changes in the variables result in a different location of 

the point in phase-space. The points in phase-space trace a trajectory that summarizes the 

changes of the system. Three-dimensional phase-space diagrams of the attractor describing the 

time series were produced using the 'time delay' method ofPackard et al. (1980). In practice, 

the one-dimensional time series, and thus ali the factor affecting it, can be represented by the 

trajectory of points in three-dimensional phase-space. The attractor is created by plotting each 

value as a function of its preceding value, or in other words, from the plot of x(t + 1) vs. x(t), 

where x is the actual value (in our case the normalized, dimensionless descriptors) and t the 

index of the point. It can be noticed here that an attractor with a regular shape will also emerge 

in plots using x(t+2) or x(t+3) for example, or x(t+n), with many n. This procedure was 

repeated for each successive point in the time series and the resultant points were connected 

producing the phase-space trajectory. 

Largest Lyapunov exponents (LLE). The limits of predictability are set by how fast the 

trajectories diverge from nearby initial conditions. This feature is quantified by Lyapunov 

exponents which are the average exponential rates of divergence or convergence of nearby 

orbits in phase-space. Any systems containing at least one positive Lyapunov exponent is 

defined to be chaotic, with the magnitude of the exponent reflecting the time scale at which the 

system dynamics become unpredictable. In other words, the larger the positive exponent, the 

more chaotic the system, and the shorter the time scale of system predictability (Wolf et al., 

1985). 

T o define the Lyapunov exponents, imagine an infinitesimal hypersphere of initial conditions 

in the n-dimensional phase-space. There is one Lyapunov exponent for each degree of freedom 

of the system. We observe the evolution of the hypersphere as time progresses. The 

hypersphere will be deformed into a hyper-ellipsoid because the evolution of the system. Then 

the ith Lyapunov exponent can be defined in terms of the length of the ith principal axis, Pi, of 

the ellipsoid as: 

(5) 
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where the f...L are ordered from largest to smallest in an algebraic sense (Wolf et al., 1985; 

Mundt et al. 1991). A minimum condition for chaos is that the largest Lyapunov exponent, 

f...L, is positive. 

In practice, we used an algorithm developed by Wolf et al. (1985) to estimate the largest 

Lyapunov exponent, f...L, from a time series by using a relatively simple procedure, and which 

has been demonstrated to be robust over a large range of input parameters and relatively 

accurate for small, noisy data sets (Mundt et al., 1991). The delay time -r was chosen as the 

decorrelation time of the time series, as previously mentioned. We carried the embedding 

dimension E from 2 to 10. 

Correlation integral algorithm (CIA). As demonstrated by Tak:ens (1981), an attractor 

topologically equivalent to the attractor of the system producing the data is obtained for every 

value of 't and forE sufficiently greater than the fractal dimension, i.e. E ::::: (2D + 1) . 

From the new multidimensional time series defined by equation (4), the correlation integral 

(Grassberger and Procaccia, 1983) is defined as: 

1 NN~ ,- -,) C(r) = lim N2 L L r- xi - xj 
N-+«J J=l•=;+l 

(6) 

where N = Nabs - p(n -1) is the number of distinct pairs in the embedding space, lxi -X1 1 is 

the Euclidean distance operator between the ith andjth sample, ris an arbitrary time called 'lag 

time' (distance between vectors), and 8(1;) is the Heaviside function, defined as follows: 

{
0 for /;< 0 

8(1;) = 1 for Ç::::: 0 (7) 

The correlation integral C(r) represents the probability that the distance between a pair of 

randomly chosen points on the E-dimensional reconstruction will be less than a distance r apart 

(Grassberger and Procaccia, 1983). In the case of random processes, the phase-space 

trajectory is directly linked to the volume of the considered E-dimensional space as: 

C(r) oc:. rE (8) 
r~O 

while for an attractor the phase-space trajectory is more compact and the correlation integral is 

then characterized by its following scaling properties: 

(9) 
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where the exponent v is the correlation exponent (or correlation dimension); it can be 

estimated as the slope of the log-log plot of C(r) vs. r, using a simple least square method. 

For chaotic data, v will approach a constant value as the embedding dimension E is 

increased. That constant value is an estimate of the correlation dimension which measures the 

local structure of the strange attractor. The dimension v of the strange attractor indicates at 

least how many variables are necessary to describe evolution in time. For instance, v= 2.5 

indicates that a given time series can be described by a system equation containing three 

independent variables. 

High dimensionality and mult~fractal structure 

As was implied in the introduction, high frequency fluctuations in the tidally mixed coastal 

waters of the Eastern English Channel are far from Gaussian. Multifractal distributions have 

this property, and they apply to signais with scaling characteristics (e.g. Feder, 1988; Frisch, 

1995), as the one studied here may well have, see e.g. Seuront et al. (1996a, b) for studies of 

the multifractal properties of temperature, salinity and phytoplankton biomass in similar areas. 

Moreover, recent studies have demonstrated that multifractal processes generally lead to 

universal multifractals with generators characterized by only three parameters H, C1 and a 

(Schertzer and Lovejoy, 1987, 1989). H (0 s,H-:::;, 1) characterizes the degree of non

conservation of the process (i.e. H = 0 for stationary process). C1 is the codimension that 

characterizes the sparseness of the process, and satisfies 0-:::;, cl -:::;, 1 for time series: cl= 0 for a 

homogeneous process and C1 is ali the more high as the process is sparse, indicating that the 

field values corresponding to any given level of variability are more scarce. The index a , 

called the Lévy index, is the degree of multifractality bounded between a = 0 and a = 2 

corresponding to the monofractal case and to the maximum, or log-normal, multifractal case, 

respectively. As a increases, the more numerous are the variability levels bounded between 

lower and higher values of the descriptor [see, for example, Seuront et al. (1999) for further 

details]. 

There are severa! ways to estimate the universal parameter values. The parameters li, C1 

and a can thus be estimated considering different derivation of the qth order structure 

functions, which can be regarded as a statistical generalization of the power spectral analysis to 

higher order of moments (see Schmitt et al., 1995, 1996a, b, 1998; Seuront et al., 1996a, b, 

1999), but also from the Double Trace Moment technique (Lavallée et al., 1992; Schmitt et 

al., 1992, 1993, 1994), a very specifie data analysis technique which has been extensively 
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explained elsewhere (Seuront et al., 1999). In the following, we only report the results of the 

analysis process, for further explanations and details one may refer to the recent review by 

Seuront et al. (1999) wholly devoted to the introduction ofuniversal multifractal concepts and 

their related analysis techniques to marine ecology. More details on the universal multifractal 

theoretical background can also be found in Schertzer and Lovejoy (1983, 1985, 1987, 1989). 

Finally, for a detailed discussion of what can be ecologically concluded from the use of 

multifractal algorithms, one may refer to Seuront et al. (1999). 

Results 

Phase-space diagrams 

The delay time T has been chosen as the decorrelation time ofthe time series (Tsonis et al., 

1993) as 75, 105 and 25 seconds for temperature, salinity and in vivo fluorescence time series, 

respectively (Figure 3). This delay time was also used for the following calculations of 

Lyapunov exponents and correlation dimensions. 

Fig. 3. Autocorrelation function for temperature (A), salinity (B) and in vivo fluorescence (C) time series, 

shown for data set S8. 
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The phase-space portraits of the attractors produced by the Packard-Takens method did not 

clearly exhibit any attractor (Figure 4). Nevertheless, one may note clear differences between 

the phase-space trajectories of in vivo fluorescence on the one hand and temperature and 

salinity on the other hand. Indeed, the phase-space trajectories for temperature and salinity 

appear as somewhat elongated and relatively narrow spatial distribution (Figure 4a, b ). On the 

contrary, phase space trajectories of in vivo fluorescence did not exhibit any characteristic 

shape, suggesting a more space :filling-or 'random'-behaviour (Figure 4c). Moreover, 

comparison of phase-space trajectories obtained from time series recorded in high and low 

hydrodynamic conditions leads to further results. Phase-space trajectories of temperature and 

salinity then appear clearly more structured in lower hydrodynamic conditions (Figure 4d, e), 

while the apparent randornness of in vivo fluorescence phase-space trajectories remains 

whatever the hydrodynamic conditions (Figure 4f). 

A D 

----------- ~ . -,::r:· .... ,"'·" 

B E 

c F 

Fig. 4. Three-dimensional phase-space trajectories for temperature, salinity and in vivo fluorescence in low (A, 

B, C; S9) and high (D, E, F; Sll) hydrodynamic conditions. 
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LargestLyapunovexponen~ 

The largest Lyapunov exponents, LLE, Â.L, calculated over a range of embedding dimensions 

E exhibit clearly different behaviours (Figure 5). By embedding dimension 8, the temperature 

and salinity LLE converge to positive values which are ali the more large that the 

hydrodynarnic conditions are high (Figure Sa, b ). In other words, the higher are the 

hydrodynarnic conditions, the larger the positive exponent, the more chaotic the system, and 

the shorter the time scale of system predictability (Wolf et al., 1985). This is con:firmed by the 

significant negative correlation between largest Lyapunov exponents of both temperature and 

salinity, and tidal current speed direction (Spearrnan's p, P < 0.05). The largest Lyapunov 

exponents and the associated time scale ofpredictability are shown in Table II. 

On the contrary, whatever the hydrodynamic conditions, in vivo fluorescence LLE remain 

significantly higher than temperature and salinity LLE (Wilcoxon-Mann-Whitney U-test, 

P < 0.05), indicating more chaotic behaviour and less predictability, but never converge to any 

constant value, even when the embedding dimension E is increased up to 10 (Figure 5c). 
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Fig. 5. The largest Lyapunov exponent Â L estimates for temperature (A), salinity (B) and in vivo fluorescence 

(C) in high (black circles; Sl5) and low (open circles; S23) hydrodynamic conditions. 
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Â.L Predictability (second) 
T 8 F* T 8 F 

81 0.048 0.045 0.212 20.83 22.22 4.72 
82 0.044 0.043 0.223 22.73 23.26 4.48 
83 0.012 0.009 0.225 83.33 lll.l1 4.44 
84 0.098 0.105 0.243 10.20 9.52 4.12 
85 0.092 0.094 0.172 10.87 10.64 5.81 
86 0.021 0.023 0.221 47.62 43.48 4.52 
87 0.031 0.035 0.236 32.26 28.57 4.24 
88 0.055 0.057 0.198 18.18 17.54 5.05 
89 O.Oll 0.009 0.217 90.91 lll.l1 4.61 
810 0.091 0.088 0.171 10.99 11.36 5.85 
811 0.095 0.084 0.223 10.53 11.90 4.48 
812 0.038 0.039 0.181 26.32 25.64 5.52 
813 0.041 0.039 0.234 24.39 25.64 4.27 
814 0.042 0.039 0.182 23.81 25.64 5.49 
815 0.012 0.016 0.234 83.33 62.50 4.27 
816 0.076 0.079 0.172 13.16 12.66 5.81 
817 0.121 0.133 0.228 8.26 7.52 4.39 
S18 0.038 0.041 0.196 26.32 24.39 5.10 
819 0.032 0.034 0.253 31.25 29.41 3.95 
820 0.085 0.088 0.228 11.76 11.36 4.39 
821 0.076 0.074 0.234 13.16 13.51 4.27 
S22 0.025 0.017 0.254 40.00 58.82 3.94 
823 0.097 0.096 0.174 10.31 10.42 5.75 
824 0.071 0.075 0.187 14.08 13.33 5.35 

Mean 0.056 0.057 0.212 28.53 30.06 4.79 
SD 0.032 0.033 0.027 24.36 28.84 0.64 
Min 0.011 0.009 0.171 8.26 7.52 3.94 
Max 0.121 0.133 0.254 90.91 111.11 5.85 

Table II. The largest Lyapunov exponents Â. L estimates for temperature, salinity and in vivo fluorescence from 

the 24 available data sets, and the related time scale of system predictability. * Following the absence of 

convergent be havi our for the fluorescence Lyapunov exponents, we reported here the Â. L estimated for E = 10. 

Correlation integral 

Figure 6 show the correlation integral C(r) on logarithmic scales as a function of distance r 

by varying embedding dimension E from 1 to 1 0. Estimates of the correlation dimension v [ see 

equation (9)] for temperature and salinity did not converge to any constant value whatever the 

hydrodynamic conditions (Figure 7a, b), and indicate the lack of empirical evidence for 

deterministic chaos. Moreover, no significant differences can have been observed between 

temperature and salinity correlation dimensions (Wilcoxon-Mann-Whitney U-test, P > 0.05), 

nor between the different time series for either parameter (Kruskal-Wallis test, P > 0.05), 

suggesting very similar behaviours of temperature and salinity time series in phase-space. 
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Fig. 6. Log-log plots of correlation integral C(r) versus distance r for various embedding dimensions E for 

temperature (A), salinity (B) and in vivo fluorescence (C), shown together with their best regression !ines for 

database S8. The slopes of the linear fits provide estimates of the correlation dimensions v. 

The results for in vivo fluorescence time series are very similar with those of temperature 

and salinity. Cl earl y no saturation, and therefore no evidence of law order deterministic chaos, 

exist whatever the hydrodynamic conditions (Figure 7c). As previously shawn for temperature 

and salinity time series, no significant differences exist between the correlation dimensions v 

(Kruskal-Wallis test, P > 0.05). These results confirm the previous lack of convergence of the 

LLE (see Figure Sc), and indicate that there is no evidence for deterministic chaos in the 

temporal fluctuations of phytoplankton biomass time series. 
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Fig. 7. Correlation dimensions v versus embedding dimensions E for temperature (A), salinity (B) and in 

vivo fluorescence (C) in high (black circles; Sl5) and low (open circles; S23) hydrodynarnic conditions. The 

dotted first bissectrix provides theoretical evolution of the correlation dimensions v in case of a random noise. 

Multifractal structure 

Values of the universal multifractal parameters H, C1 and a estimated for temperature, salinity 

and in vivo fluorescence time series are shown in Table III. More precisely, there were 

significant differences between temperature, salinity, nitrite and fluorescence H values 

(Kruskal-Wallis test, P < 0.05). A subsequent multiple comparison procedure (Dunn test; 

Siegel and Castellan, 1988) has shown that fluorescence parameters were significantly greater 

than temperature and salinity H values (P < 0.05) which remain indistinguishable (P > 0.05). 

The fractal codimensions C1 lead to different results: temperature, salinity and in vivo 

fluorescence codimensions C1 thus cannot be statistically distinguished (P > 0.05). Finally, the 
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parameters a also cannot be distinguished for temperature, salinity and in vivo fluorescence 

(P > 0.05; Table III). 

Temperature 8alinity ln vivo fluorescence 
H c, a H c, a H c, a; 

81 0.38 0.040 1.90 0.37 0.049 1.88 0.38 0.042 1.84 
82 0.36 0.040 1.85 0.35 0.050 1.84 0.43 0.059 1.80 
83 0.35 0.056 1.87 0.32 0.070 1.86 0.61 0.137 1.76 
84 0.34 0.050 1.86 0.32 0.050 1.86 0.45 0.056 1.90 
85 0.37 0.050 1.84 0.36 0.060 1.85 0.45 0.052 1.88 
S6 0.37 0.060 1.84 0.36 0.050 1.89 0.58 0.135 1.75 
87 0.38 0.050 1.87 0.40 0.060 1.88 0.46 0.087 1.79 
88 0.36 0.060 1.86 0.38 0.050 1.87 0.37 0.052 1.83 
89 0.38 0.050 1.83 0.39 0.060 1.85 0.50 0.098 1.76 
810 0.35 0.040 1.88 0.40 0.031 1.88 0.46 0.073 1.92 
811 0.40 0.050 1.84 0.40 0.060 1.86 0.46 0.071 1.93 
812 0.36 0.048 1.86 0.40 0.057 1.89 0.45 0.058 1.79 
S13 0.35 O.ü40 1.86 0.37 0.050 1.88 0.45 0.054 1.79 
814 0.36 0.050 1.85 0.35 0.060 1.86 0.46 0.068 1.79 
SIS 0.28 0.053 U6 0.29 0.062 1.89 0.49 0.096 1.76 
S16 0.37 0.060 1.85 0.36 0.060 1.86 0.40 0.077 1.78 
817 0.38 0.040 1.84 0.36 0.050 1.87 0.38 0.068 1.96 
S18 0.36 0.050 1.88 0.36 0.060 1.88 0.43 0.073 1.78 
819 0.35 0.050 1.85 0.36 0.060 1.84 0.45 0.064 1.79 
820 0.42 0.060 1.89 0.34 O.û70 1.91 0.40 0.054 1.88 
S21 0.41 O.û70 1.91 0.39 0.060 1.90 0.41 0.055 1.86 
S22 0.36 0.057 1.90 0.35 0.070 1.85 0.60 0.120 1.75 
823 0.30 0.032 1.87 0.30 0.052 1.9 0.49 0.081 1.90 
S24 0.34 0.050 1.89 0.36 0,040 1.89 0.55 0.091 1.76 

Mean 0.36 0.050 1.86 0.36 0.056 1.87 0.46 0.076 1.82 
SD 0.03 0.008 0.02 0.03 0.009 0.02 0.07 0.026 0.06 
Max 0.42 O.û70 1.91 0.40 0.070 1.91 0.61 0.137 1.96 
Min 0.28 0.032 1.83 0.29 0.031 1.84 0.37 0.042 1.75 

Table m. Empirical e8timates of the univer8al multifractal parameters H, C1 and a for temperature, salinity 

and in vivo fluorescence for the 24 studied data sets. 

N evertheless, correlation analyses conducted m or der to infer any potential causality 

between the structure of temperature, salinity and in vivo fluorescence time series and both 

physical (i.e. current speed and direction) and biological (i.e. in vivo fluorescence means and 

standard deviations) parameters (Table IV) lead to further results. It was then found that the 

universal parameters (i.e. H, C1 and a) estimated for temperature and salinity time series were 

neither significantly correlated with current speed nor direction, indicating a relative 

homogeneity in the small-scale temporal structure of these purely passive scalars. On the 

contrary, the universal multifractal parameters characterizing in vivo fluorescence variability 

were significantly correlated with both current speed and direction. More precisely, 

phytoplankton biomass distributions are more conservative (i.e. low H values) and less sparse 

(i.e. low C1 values) both during ebb ti de and in high hydrodynamic conditions, while the Lévy 
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Table IV. Correlation matrix of variables relative to the structure of temperature, salinity and in vivo fluorescence time series. Cspeed and Cvu: current speed and direction; 

SDT, SDs and SDF: standard deviation of temperature, salinity and fluorescence time series; the subscript T, S and F associated to the parameters H, C1 and a respectively 

identify temperature, salinity and fluorescence universal multifractal structures. 

Cspeed Cnlr Depth T s F SDT SDs SDF HT Hs HF clT Cts c,F aT as a y 

Cspeed 1.000 

Cn1r -0.251 1.000 
Depth 0.315 -0.787 ** 1.000 
T -0.350 0.824 ** -0.672 ** 1.000 
s 0.351 -0.746 ** 0.728 ** -0.660 ** 1.000 
F -0.330 0.893 ** -0.734 ** -0.734 ** -0.689 ** 1.000 
SDT 0.576 ** -0.496 * 0.440 * -0.455 * 0.026 -0.746 ** 1.000 

SDs 0.690 ** -0.185 0.009 -0.213 -0.260 -0.416 * 0.833 ** 1.000 

SDF 0.110 -0.140 -0.135 0.100 -0.360 -0.073 0.539 ** 0.649 ** 1.000 

HT 0.202 0.223 -0.252 0.267 -0.149 0.291 -0.398 -0.028 -0.475 * 1.000 

Hs 0.048 0.102 -0.214 -0.040 -0.034 0.095 -0.306 O.Dl5 -0.376 0.636 ** 1.000 

HF -0.520 ** -0.405 * 0.336 -0.187 0.123 -0.415 * 0.043 -0.330 -0.120 -0.329 -0.242 1.000 

clT -0.235 0.086 0.006 0.274 -0.107 0.230 -0.150 -0.213 -0.320 0.405 * 0.115 0.102 1.000 

C,s -0.360 0.135 -0.037 0.330 -0.075 0.243 -0.079 -0.108 -0.146 0.240 -0.211 0.165 0.500 1.000 

CtF -0.529 ** -0.408 * 0.378 -0.210 0.189 -0.364 0.174 -0.204 0.058 -0.246 -0.250 0.881 ** 0.241 0.248 1.000 

aT 0.048 0.201 -0.058 0.492 * -0.204 0.142 0.103 0.204 0.104 0.109 0.048 -0.019 0.212 -0.005 -0.118 1.000 

as 0.141 0.059 -0.174 0.171 -0.196 0.067 0.391 0.168 0.089 0.012 -0.021 -0.078 0.088 -0.114 -0.047 0.507 * 1.000 

IIF 0.901 ** -0.155 0.233 -0.287 0.313 -0.219 0.294 0.566 ** 0.139 0.246 0.092 -0.501 * -0.324 -0.296 -0.517 * -0.021 0.118 1.000 

* : 5% confidence leve!; ** : 1% confidence leve! 



index a (i.e. the hierarchy of variability levels present in the phytoplankton biomass 

distribution) increases with current speed. Moreover, the multifractal parameters (i.e. H, C1 

and a) are not correlated to means and standard deviations (i.e. variability) for phytoplankton 

biomass time series. 

Discussion 

Searching for determinism and stochasticity in ecological time series: where do we go from 

here? 

The Packard-Takens method The PTM method is probably the faster and most direct method 

to infer the potential existence of deterministic chaos. Creating the phase-space attractor of a 

system with a computer is indeed a very simple task. Ali that is needed is the copy of the data 

file, paste it shifted by one, two or more places, and plot the data. Thus, a subjective 

assessment ofthe 'degree ofrandomness' can be reached almost instantaneously from this kind 

of plot. It is nevertheless evident from figure 4 that the characteristic shape of the attractor is 

not easy to describe in simple terms. In that way, one may note here that figure 4 shows 

projections of phase-space trajectories onto three-dimensional space, so that the fact that no 

attractors can be seen does not imply that they do not exist when embedding in higher 

dimensional space. However, a strange attractor of higher-dimensional space often reflects its 

shape onto the lower dimensional space as well. For instance, the trajectory onto the two

dimensional phase-space [ embedding dimension E = 2 in equation ( 4)] reconstructed from the 

time series ofvariable x ofthe Lorenz equations (Lorenz, 1963; Kawamura et al., 1994a, b), a 

well-known set of chaotic differentiai equations with three variables, shows a clear strange 

attractor. These results can then rather be regarded as a qualitative prerequisite analysis and 

demonstrate that inferring the existence of any deterministic structure beyond the highly 

fluctuating behaviour exhibiting by temperature, salinity and in vivo fluorescence time series 

(figure 2) is a far more difficult task. 

Largest Lyapunov exponents. The LLE estimates quantitatively confirm the subjective 

results ofthe Packard-Takens method, i.e. a low dimensional behaviour in low hydrodynamic 

conditions for temperature and salinity time series, and a higher dimensional behaviour for 

phytoplankton biomass time series which did not exhibit any convergent behaviour of their 

LLE for values of the embedding dimension E up to 10 whatever the hydrodynamical 

conditions. Moreover, what may be regarded as being very important for ecologists is that, 

unlike fractal dimensions, Lyapunov exponents remain well defined in the presence of 

dynamical noise and can be estimated by methods that explicitly incorporate noise (Ellner et 
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al., 1991; Nychka et al., 1992). This leads to consider that estimating Lyapunov exponents is 

the best approach for detecting chaos in ecological systems (Hastings et al., 1993). One may 

nevertheless note sorne limitations of Lyapunov exponent estimates to detect deterministic 

chaos, lying both in estimates accuracy and the minimum number of data points required in the 

analysis. First, although the algorithm used in this paper (Wolf et al., 1985) provides a good 

estimation ofthe largest Lyapunov exponents for noise-free synthetically generated time series 

from chaotic dynamics, the estimation for experimental time series is still relatively imprecise 

(Rodriguez-Iturbe et al., 1989). Second, according to Wolf et al. (1985) to detect a chaotic 

attractor of dimension 3, at least 1000 to 30000 data points are needed, while Ramsey and 

Yuan (1989) found that 5000 data points is a lower bound for the detection of chaos on sorne 

simple dynamical systems known to display chaotic behaviours in certain regimes. Moreover, 

Vassilicos et al. (1993) demonstrated how the tests for chaos can give positive answers, e.g. 

positive Lyapunov exponents, when subsamples with smaller number of data points are used, 

and how these Lyapunov exponents converge to zero when the number of data points is 

increased. In order to confirm these results, we estimated the largest Lyapunov exponents of 

the larger original time series (i.e. 167040 data points) of temperature, salinity and in vivo 

fluorescence, extensively studied elsewhere in the framework of universal multifractals 

(Seuront et al., 1999). Subsequent results (Figure 8) then indicated that LLE of temperature, 

salinity and phytoplankton biomass time series remain positive, but converge to zero (Binomial 

test, P > 0.05; Siegel and Castellan, 1988). As previously mentioned, positive largest 

Lyapunov exponent indicates chaotic dynamics, but values quite close to zero should therefore 

only be interpreted as an arder of magnitude. Whatever that may be, the positive convergent 

values of the different LLE estimated for temperature and salinity time series in high and low 

hydrodynamic conditions could nevertheless suggest any phenomenological shift between low 

dimensional chaos and high dimensional stochasticity as the one observed by Ruelle and 

Takens (1971) near the transition to turbulence. One may also note here, as mentioned by 

Jeong and Rao (1996), that a positive largest Lyapunov exponents close to zero can be 

interpreted as having been derived from a stochastic time series with many degrees of freedom. 

More generally, one may note that systems with a Lyapunov exponent of zero are associated 

with a state called the edge of chaos, where complex behaviour is the rule. The exact meaning 

of the edge of chaos depends on the context within which it is used, but roughly speaking, it 

describes the vicinity of sorne instability point separating a region of more ordered (or less 

random) behaviour, from a region of less ordered (or more random) behaviour. The edge of 
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Fig. 8. The largest Lyapunov exponent 'A.L estimates for temperature (continuons line), salinity (dashed line) 

and in vivo fluorescence (dotted line) from the original 167040 data set. 

chaos has indeed attracted considerable interest among biologists and ecologists in the last few 

years because processes such as evolution or adaptative behaviour have been precisely shown 

to be just at the edge of chaos (Kauffinan and Johnsen, 1991; Kauffman, 1993; Langdon, 

1992). Such a critical state would increase the adaptative efficiency of a given system, for 

instance in response to fluctuating environmental conditions, and could then be of prime 

interest in the future understanding of ecosystems functioning. 

Correlation integrais. While Smith (1988) has showed that if the data set is small, the 

correlation dimension v [see equation (9)] appears to converge towards a finite value even in 

the absence of chaos, this is obviously not the case in our case (Figure 7). Moreover, 

correlation dimension v estimates for the 167040 data points time series (Figure 9) did not 

converge to any constant value, and confirm the lack of empirical evidence for deterministic 

chaos previously shown with smaller time series (Figure 7). Our results then cannot be 

associated with sampling limitation. In that way, Ibanez (1986) found a correlation dimension 

of 2 on the basis of a 1200 values chlorophyll transect recorded in the central waters of the 

Ligurian Sea (NW Mediterranean Sea). This result then confirms the e:fficiency of the 

correlation algorithm to detect low deterministic chaos when applied to small data sets. 

Moreover, this also suggests-as previously done in this paper-that different hydrodynamical 

conditions might be at the origin of differentiai space-time structures, in terms oflow order 

deterministic chaos or high order stochasticity. Then, high hydrodynamic conditions, as those 

occurring in the Eastern English Channel, could be at the origin of temperature, salinity and 
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phytoplankton biomass distributions characterized by their high order stochasticity, while in 

low hydrodynamic conditions, as those encountered in the stable waters of the Ligurian Sea, 

phytoplankton distribution could be rather characterized by a low order deterministic 

behaviour. 

Whatever that may be, while our results suggest that temperature, salinity and 

phytoplankton biomass exhibit a higher dimensionality in high hydrodynamic conditions, we 

cannot conclude, on the basis on the three previously used analysis techniques, to the existence 

of low order deterministic chaos, but only to a lower dimensionality in low hydrodynamic 

conditions. In that way, the differentiai multifractal structures (Table III) exhibited by 

temperature, salinity and phytoplankton biomass time series confirm and generalize the results 

suggested by the analysis techniques devoted to the identification of deterministic chaos. 

Towards a stochastic parametrization of turbulent processes. One needs first to note that 

the universal multifractal analysis techniques used in this paper have widely been shown to 

provide valid estimates of the whole stochastic behaviour of a given time series or transect, 

even when performed on small data sets (i.e. less than 1000 data points; Teissier et al., 1993a, 

b; Schmitt et al., 1995; Seuront et al., 1996a, b, 1999). The multifractal parameters estimated 

for temperature, salinity phytoplankton biomass in this study (Table III) then clearly appear to 

be in the range of values previously obtained for a wide variety of tidal conditions in the 
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Southern Bight of the North Sea and the Eastern English Channel [see Seuront et al. (1999), 

their Table IV]. This shows that similar processes could be at the origin of bath physical (i.e. 

temperature and salinity) and biological (phytoplankton biomass) temporal structure, and 

consequently that small-scale phytoplankton biomass distribution can be regarded as being 

passively advected by turbulent fluid motions, at least at the scale of the whole tidal cycle. 

However, correlation analyses have shawn that temperature and salinity multifractal structures 

remain the same whatever the tidal conditions, while phytoplankton biomass exhibits very 

specifie temporal patterns (Table IV). This then indicates that even in highly turbulent 

environments as the one experienced in the Eastern English Channel, phytoplankton biomass 

cannat be regarded as being a purely passive scalar even on smaller scales, but rather exhibit an 

altogether level of small-scale temporal structure related to the space-time scales of the tidal 

forcings. In particular, the observed significant negative correlation between multifractal 

structure of phytoplankton biomass and current speed indicate that the phytoplankton 

assemblages sampled in the present study are more heterogeneously distributed (i.e. high H 

and C1 values) in law hydrodynamic conditions. Moreover, the values of the third multifractal 

parameter a (a= 1.82 ± 0.06 SD; Table III) indicates that phytoplankton biomass cannat be 

regarded as log-normally distributed-in which case a = 2 -even in high hydrodynamic 

conditions. On the contrary, this value is typically in the range of a values estimated for 

phytoplankton biomass distribution over similar ranges of scales (Seuront et al., 1996a, b, 

1999; Seuront, 1997). The positive correlation between a and the current speed nevertheless 

indicate a differentiai phytoplankton biomass structure characterized by a greater complexity in 

the hierarchy of its variability levels in high hydrodynamic conditions. On the other hand, 

multifractal parameters (i.e. H and C1; Table IV) are significantly correlated to current 

direction, but do not exhibit any significant correlation with mean phytoplankton biomass. This 

suggests that phytoplankton biomass structure cannat be regarded as resulting from any 

density-dependent process associated with tidal advection, but rather from the qualitative 

nature of phytoplankton assemblages occurring during ebb and flood, as previously suggested 

by Seuront et al. (1999). While many phenomenological hypotheses could be proposed to 

explain these differentiai temporal distributions of phytoplankton biomass-such as the 

differentiai effects of turbulence and phytoplankton composition on the formation, maintenance 

and structure of phytoplankton aggregates (Riebesell, 1991a, b; Ki0rboe et al., 1994, 1998; 

Ki0rboe, 1997)-the resolution of this particular issue is beyond the scope of this contribution. 
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One can nevertheless refer to Seur ont et al. (1 999) for further comments on the potential 

causes and consequences of small-scale heterogeneous phytoplankton distributions. 

Finally, one may note that the universal multifractal formalism can be related to the 

dimension formalism developed to study strange attractors. Especially, one may write (Halsey 

et al., 1986): 

v=d-K(2) (10) 

where v is the correlation dimension defined above [see equation (9)], d is the Euclidean 

dimension of the observation space ( d = 1 for time series, therefore the corresponding v 

estimate is for embedding dimension E = 2) and K(2) is the second order scaling moment 

K(q) defined as (Schertzer and Lovejoy, 1987, 1989, 1997; Lovejoy and Schertzer, 1990; 

Schertzer et al., 1991): 

(11) 

where K(q) is the scaling moment function which describes the multiscaling of the statistical 

moments of order q [see Seuront et al. (1999) for further details of equation (11) in a more 

general statistical framework]. Correlation dimensions v estimated from the correlation 

integral algorithm [see equation (9)] and from equation (10) where K(2) is reached with C1, 

a (Table III) and q = 2 in equation (11) (Figure 1 0) are then very sirnilar for temperature, 

salinity and in vivo fluorescence. The dimension formalism having been developed to describe 

attractors exhibiting a very high dimensionality, this result then confirms that the time series 

studied in the present paper are rather characterized by their high order stochasticity rather 

than by any kind oflow order behaviour. 

Non-linear dynarnical systems being capable of such a variety of behaviours, these results 

then indicate that the use of a single technique of time series analysis should not be relied on 

too heavily (Casdagli, 1991). In particular, the emphasis of this paper is on supplementing 

techniques, rather than competing with them. When only one technique is used to analyze a 

time series, the results are expected to be at best incomplete, and at worst rnisleading. For 

instance, the infinite number of dimensions characterizing strange attractors (Grassberger, 

1983; Grassberger and Procaccia, 1983; Hentschel and Procaccia, 1983) when specifie 

mathematical tests, su ch as the correlation integral algorithm, fail to find any signs of low order 

deterministic behaviour could be advantageously described in the framework of universal 

multifractals, i.e. high order stochastic behaviour. Finally, following the behaviour of the 
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largest Lyapunov exponents estimates and the related concept of the edge of chaos, this study 

did not clearly rule out the possibility of the occurrence of both low dimensional deterministic 

chaos and high dimensional stochasticity in a given time series, opening very large perspectives 

for future modelling of marine systems. 

Fig. 10. Plots of the correlation dimensions v estimated following Eq. (9) and Eq. (10), shown together with 

their best linear fit. The first bissectrix ( dotted line) is shown for comparison. 

25 



Dealing with determinism and stochasticity: a challenge for marine ecological modelling 

Following the great deal of attention recently devoted to detect and analyze chaos in plankton 

ecology (Sugihara and May, 1990; Scheffer, 1991; Ascioti et al., 1993; Strutton et al., 1996, 

1997; Popova et al., 1997), the results concerning the multifractal (i.e. stochastic) structure of 

plankton populations (Pascual et al., 1995; Seuront et al., 1996a, b, 1999), and more generally 

the increasing amount of literature providing evidence for nonlinearity in population growth 

and ecological interactions ( e.g. Bjôrnstad et al., 1998; Grenfell et al., 1998; Stenseth et al., 

1998) distinguishing between low dimensional deterministic chaos and high dimensional 

stochasticity then seems to be at the core of an emerging ecological thought process. Thus, as 

emphasized by Hastings et al. (1993), 'the study of chaos is important for ecology because the 

lessons of non-linear dynamics will provide very different answers than the linear models 

traditionally emphasized by ecologists'. 

As developed above, the central tenet of deterministic chaos and stochasticity lies in their 

related predictive ability. Chaotic systems are predictable over short time scales because they 

are deterministic; the lack of predictive power over long time scales stems from the lack of 

complete information about the exact location of initial conditions. In contrast, systems that are 

stochastic are unpredictable over any time scale because of the probabilistic nature of their 

components. Nevertheless, systems can have endogenous dynamics that are chaotic in the 

presence of exogenous stochastic perturbation. Such interactions between systems with chaotic 

dynamics and stochasticity leads to new and interesting behaviours (Crutchfield et al., 1982; 

Rabinovitch and Thieberger, 1988; Rand and Wilson, 1991). The number of investigations of 

chaos in modelling ecological systems with stochasticity has nevertheless still been quite small. 

Thus, investigations of a logistic model with additive noise showed that chaotic dynamics 

persisted (Schaffer et al., 1986; Rabinovitch and Thieberger, 1988). Rand and Wilson (1991) 

emphasized how the interaction between the deterministic dynamics and noise can lead to a 

case where the average Lyapunov exponent is positive, even though the purely deterministic 

system with the same parameters is not chaotic. While these works provide further evidence 

for the ubiquity of chaos by showing that individual-based models can appear deterministic and 

chaotic at the level of the population, actual key challenges in the study of ecological systems 

involve ways to deal with the collective dynamics of various ensembles of individuals, and to 

understand how to relate phenomena across scales (Auger and Poggiale, 1996; Levin et al., 

1997; Poggiale, 1998a, b). While Denman and Powell (1984) emphasized that ecological 

responses could not be linked to a particular physical scale, transfers of variability across scales 
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have indeed been found in models for predator-prey interactions that can display variability at 

frequencies other than that ofthe periodic (i.e. seasonal) forcings (Kot et al., 1992; Rinaldi et 

al., 1993; Pascual and Caswell, 1997a, b). In that way, a direction offuture research could be 

to focus on the responses to more realistic stochastic forcings (i.e. multifractal) of such 

modelling approaches in terms of determinism and/or stochasticity. 

Distinguishing between chaos and stochastic processes could also have considerable 

implications for the design and evaluation of sampling schemes in the coastal ocean. We indeed 

demonstrated here that the degree of stochasticity and/ or determinism exhibited by 

phytoplankton populations varies with both hydrodynamical and advective conditions. It has 

also been demonstrated over a wider range of scales (i.e. from 1 second to 48 hours) that the 

stochastic structure of phytoplankton biomass varies with the sampling scale (see Seuront et 

al., 1996a, 1999). In that way, Rand and Wilson (1995) theoretically demonstrated that the 

optimal scale at which to measure a given process is described as the one that 'maximizes the 

ratio of deterministic information to stochastic fluctuations', while Pascual and Levin ( 1999) 

developed a determinism test from non-linear data analysis to describe and to identifY a 

characteristic length scale at which to average spatio-temporal systems. Finally, one may note 

here that like most oceanographie data, the data analyzed here contain both spatial and 

temporal components, because sampling has been accomplished in the Eulerian sense, that is, 

in a reference frame fixed with respect to the moving fluid. While Seuront et al. ( 1996b) 

demonstrated that the stochastic structure of a given signal is wholly dependent on the scale of 

the sampling (i.e. Eulerian/Lagrangian transition), Eulerian sampling of spatially heterogeneous 

populations have also been suggested to obscure any deterministic signal beyond the resolving 

capabilities of presently available non-linear signal processing techniques (Little et al., 1996). 

Thus, as previously suggested in a more general ecological frame (Wiens, 1989; Jarvis, 1995), 

the grain and extent of a given sampling experiment, as the way the samples are taken, should 

be regarded as being essential components to the understanding of a given time series, as 

precise numerical values of Lyapunov exponents, correlations dimensions and multifractals 

parameters might be. 

Thus, in the general background of spatio-temporal intermittency encountered in the ocean 

(Platt et al., 1989), future studies investigating the magnitude of keys fluxes such as primary 

production should take a great advantage to focus on the deterministic/stochastic duality to 

reach robust estimates and modelling of stocks and fluxes, all the more since numerical 
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modelling are extremely sensitive even to minor changes in parameter values (W ermer et al., 

1993). 
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Abstract. In the Eastern English Channel, a tidally mixed coastal ecosystem, the multifractal nature of physical 

and biological parameters such as temperature, salinity, light transmission and in vivo fluorescence have been 

investigated on the basis of 22 high frequency time series randomly recorded both in space and time adrift 

during a 30 months sampling experiment. Time series analysis have been conduced both on the resulting 

Eulerian and Lagrangian scales (i.e. the lengths scales respectively smaller and greater than the size of the 

sampling boat) in the spectral and multifractal frameworks. Over Eulerian scales, temperature and salinity 

exhibit very similar behaviours, mainly associated with the gradients characterizing the studied area. 

Phytoplankton biomass exhibits a clear density-dependence related with biological seasonal cycle, while 

particles distributions is wholly dependent on the qualitative nature of the suspended sediment. Over 

Lagrangian scales, the structure of temperature and salinity appear quite constant both in space and time, 

whereas phytoplankton biomass and particles distributions are wholly dependent on the seasonal phytoplankton 

concentration. The results show that the whole structure of the studied coastal ecosystem can be viewed as the 

result of multiplicative cascade processes which exhibit very specifie features both in space and time in relation 

with sampling scales, but also with the biological and physical nature of the studied parameters. The 

implications of these space-time patterns on sampling processes and ecosystem functioning are also discussed. 

Introduction 

The perception and the understanding of the space-time structure of marine plankton set the 

priority ofthe biological oceanographers ofthe early 20th century, so that by about 1930 many 

investigators have shown that planktonic organisms are neither uniformly nor randomly 

distributed in the ocean (Hardy, 1926, 1939; Hardy and Gunther, 1935). Subsequently, marine 

systems have been shown to exhibit intimate relationships between physical and biological 

processes (Legendre and Demers, 1984 ), as shown by the coup ling between the distribution of 

phytoplankton populations and the structure of their physical environment over a wide range of 

spatial and temporal scales (Haury et al., 1978). However, in spite of an impressive body of 

literature on the subject (e.g. Mackas et al., 1985 ; Daly and Smith, 1993), little is finally 
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known about the multiscale space-time couplings between physical and biological processes, 

especially on smaller scales (Seuront et al., 1999) and, as recently stated by Pascual et al. 

(1995), this field of research still seems in its infancy. Two major interrelated limitations 

hampering progress are indeed associated to the intermittent nature of turbulent pro cesses and 

to sampling schemes. 

Thus, in the ocean, strong intermittency has been found in physical quantities such as the 

dissipation rates of turbulent velocity and temperature fluctuations (Baker and Gibson, 1987), 

and leads to biased estimates of means and confidence limits (Bohle-Carbonel, 1992). 

Moreover, while the intermittent distributions of phytoplankton and zooplankton have also 

been described (Pascual et al., 1995; Seuront et al., 1996a, b, 1999), such results are still too 

scarce to lead to sorne generalizations, even in a given ecosystem which needs to be sampled as 

fully as possible both in space and time (Platt et al., 1989). In that way, the implications of 

such distributions for sampling strategy still remain to be explored. In particular, sampling is 

most easily accomplished in the Eulerian sense, that is, in a reference frame fixed with respect 

to the moving fluid, such as moored buoy or a pier. For an extemally advected population, this 

effectively means that temporally successive samples are not taken from the same spatial 

location with respect to the spatial pattern of the population, so that the data contain both 

spatial and temporal components. However, the environment is sampled not on1y by 

oceanographers but by the organisms that live in the ocean. The small-scale variability 

experienced by individual organisms may indeed have important implications for foraging, 

growth and populations dynamics, leading to the development of Lagrangian concepts (e.g. 

Yamazaki, 1993). 

In that way, in a preliminary study, Seuront et al. (1996b) have shown that both 

intermittency of Eulerian and Lagrangian turbulence of ocean temperature and plankton fields 

simultaneously recorded from a drifter in the mixed coastal waters of the Eastern English 

Channel, a hydrodynamically dominated ecosystem, could be efficiently characterized in terms 

of multifractals. Thus, these results lead to very specifie features of turbulent processes when 

viewed as being Eulerian or Lagrangian. However, these results are based on an unique high 

resolution time series, and then cannot provide precise informations on the space-time 

structure ofboth Eulerian and Lagrangian small-scale physical and biological structures. Thus, 

in the Eastern English Channel, the fluvial supplies, distributed from the Bay of Seine to Cape 

Griz-Nez, generate a coastal water mass drifting nearshore, separated from the open sea by a 

frontal area (Brylinski and Lagadeuc, 1990; Lagadeuc et al., 1997a). This coastal flow ('fleuve 
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côtier'; Brylinski et al., 1991) is characterized by its freshness, turbidity (Dupont et al., 1991) 

and phytoplankton richness (Brylinski et al., 1984; Quisthoudt, 1987). Moreover, in this 

coastal ecosystem, phytoplankton populations are known to be highly fluctuating both in time 

and space, from a quantitative as qualitative point of view ( e. g. Truffier et al., 1997; Peta et 

al., 1998). In that way, the knowledge of such a coastal ecosystem functioning obviously 

requires informations relevant to the space-time scales of both biological and physical 

processes occurring in its waters. 

Herein, the goal of this paper is to focus on the space-time structure of both Eulerian and 

Lagrangian variability on the basis ofhigh resolution time series ofboth physical and biological 

parameters simultaneously recorded in a Lagrangian frame in order to generalize previous 

results by Seuront et al. (1996b). In that way, our computations required (i) a comprehensive 

data set representing as fully as possible the different physical (i.e. both inshore/offshore and 

spring/neap tide tidal conditions) and biological (phytoplankton seasonality) conditions 

occurring in the coastal waters of the Eastern English Channel, (ii) analysis techniques that 

allow to describe the precise structure of the variability present in the dataset and (iii) an 

efficient algorithm to discriminate between the extreme intricacy of space-time scales in our 

sampling experiment and then to resume the space-time organization of the system under 

considerations. Moreover, these requirements had to be met regularly both in time and space at 

a sufficient number of data points to capture the details of the small-scale variability revealed in 

the data sets. 

Physical-biological data, multiscale and spatio-temporal analysis 

Study area and sampling 

Sampling was carried out between March 1995 and December 1996 adrift in the coastal waters 

of the Eastern English Channel (Figure 1) at different depths, and in different ti dai and 

meteorological conditions (Table I) aboard the N/0 'Sepia II (CNRS-INSU), and on the 2 of 

April 1998 aboard the N/0 'Côte de la Manche' (CNRS-INSU). During each sampling 

experiment (Table I), physical parameters (temperature, salinity and light transmission) and in 

vivo fluorescence (i.e. an index of phytoplankton biomass) were simultaneously recorded at 

high frequency (see Table I) from a single depth with a SBE 25 Sealogger CTD and a Sea 

Tech fluorometer, respectively. Our analysis are based on 22 time series labeled from S 1 to 

S22 (Table I), which contain temperature, salinity, light transmission and in vivo fluorescence 

data, i.e. 1431084 data points. 
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Every 15 minutes, measurement of physical parameters (temperature and salinity) were 

taken from the surface to the bottom with a SBE 19 Seacat Profiler to ascertain the structure 

of the water column, except for the sampling experiment S22. Moreover, water samples were 
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Fig. 1. Study area and location of the drifting experiments along the French coast of the Eastern English 

Channel; the arrows indicate the direction of the drift. 

taken from the sampled depth with Niskin botties and chlorophyll a concentrations were 

estimated following Strickland and Parson (1972) on the basis of 1 1 filtered frozen samples, 

extracted with 90% acetone and assayed in a spectrophotometer. 

Multiscale time series characterization 

Spectral analysis. Roughly speaking, a spectral analysis corresponds to an analysis of variance 

in which the total variance of a given process is partitioned into contributions arising from 

processes with different time scales. A power spectrum then separates and measures the 

amount ofvariability occurring in different frequency bands. When ail or parts of the spectrum 

. follow a power law: 

(1) 

where f is frequency, and f3 is the exponent characterizing spectral scale invariance ( e.g. 

f3 = 5 1 3 and f3 = 2 in Eulerian and Lagrangian turbulence, respectively; see Seuront et al. 
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Code Date Latitude Longitude f Depth Tidal current Wind 
Speed Direction Speed Direction 

S1 March 30, 1995 50°40'00 1 °31'00 2 15.7 1.00 180 7 120 
S2 November 29, 1995 50°48'56 1°29'45 2 14.7 0.22 90 5 22 
S3 January 19, 1996 50°52'24 1 °34'93 1 7.6 1.12 0 6 230 
S4 F ebruary 1, 1996 50°42'73 1 °27'49 1 15.8 0.60 0 3 220 
ss F ebruary 22, 1996 50°43,09 1 °32'30 1 6.2 0.88 180 4 90 

S6 March 28, 1996 50°45'56 1 °33'82 2 10.4 0.28 180 8 90 
S7 April26, 1996 50°55'26 1 °32'64 2 16.8 0.45 90 3 170 
S8 May 28, 1996 50°49'93 1 °32'93 2 15.6 0.75 0 3 90 
S9 June 3, 1996 50°49'35 1 °31'62 2 16.1 1.50 0 6 130 
S10 June 19, 1996 50°42'42 1 °28'51 2 10.5 1.01 180 1 260 

Sll June 25, 1996 50°51'21 1 °29'65 2 21.2 0.91 180 1 330 
S12 September 4, 1996 50°40'53 1 °30'63 2 5.9 0.99 180 5 310 
SB September 25, 1996 50°44'73 1 °33'05 2 6.2 0.39 0 5 210 
S14 September 25, 1996 50°44'91 1 °33'19 2 11.2 0.39 0 5 210 

SIS September 25, 1996 50°45'39 1 °33'45 2 15.8 0.39 0 5 210 

S16 October 2, 1996 50°42'08 1°32'90 2 6.6 0.69 180 1 100 
S17 October 2, 1996 50°42'08 1 °32'90 2 6.0 0.69 180 1 100 
S18 October 2, 1996 50°42'08 1 °32'90 2 6.2 0.69 180 4 40 

S19 October 8, 1996 50°47'79 1 °33'68 2 6.3 0.50 0 1 220 

S20 December 5, 1996 50°45'50 1 °32'85 2 6.6 0.30 0 2 190 

S21 December 18, 1996 50°45'46 1 °32'87 2 5.9 0.60 0 6 210 
S22 April 2, 1998 50°45'00 1 °33'50 2 6.0 0.60 0 2 100 

Table 1. Summary of the date, locations, sampling frequency f (Hz) and environmental variables of the 22 sampling experiments. 
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1996b for further details), the data are scaling in that range, that is, the scaling regime. The 

absence of characteristic time scales and the presence of a scaling regime indicate that a 

multifractal analysis may prove to be successful. One may note here that for time series, the 

exponent f3 and the fractal dimension D can be related according to D = 2 - (/3 - 1) 1 2 

(Feder, 1988; Schroeder, 1991). In that way, following the terminology defined by Seuront and 

Lagadeuc (1997, 1998) in the monofractal frame, low and high fractal dimensions D (i.e. high 

and low f3 values) then characterize patterns exhibiting strong and weak temporal 

dependence, respectively. 

Multifractal analysis. Since a multifractal process is characterized by a (fractal) dimension that 

varies continuously ( e.g. Feder, 1988; Falconer, 1993), this quantity ceases to be a unique 

parameter that characterizes the scaling behaviour. However, recent studies have shown that 

multifractal processes generally lead to universal multifractals with generators characterized by 

three basic parameters (see e.g. Schertzer and Lovejoy, 1987, 1989). This greatly simplifies the 

analysis and modeling of multifractals by replacing the infinite number of dimensions by a few 

dynamically significant parameters. We will follow this line of reasoning in the present study 

and determine the whole statistical structure of our empirical time series with the help of only 

three basic parameters, H, C1 and a in the framework of universal multifractals. In this 

paper, we only briefly present the analysis techniques used to estimate the universal multifractal 

parameters, for further details one may refer to a recent review devoted to the introduction of 

these concepts and their related analysis techniques to marine ecology (Seuront et al., 1999). 

The previous power spectral approach (i.e. based on a second order moment) is then 

generalized with the help ofthe qth order structure functions ([~Q('r)Jq) = (jQ(t+-r)-Q('r)jq) 

where for a duration -r the fluctuations of the quantity Q are averaged over all the available 

values, angle brackets indicating a statistical average. For multifractal processes the scale 

invariant structure function exponent Ç(q) is defined by: 

(2) 

More precisely, in the universal multifractal framework, the Eulerian relation for structure 

function exponent Ç ( q) is given by ( Seuront et al., 1996b): 

Ç(q) = qH _ _s_(qa -q) 
a-1 

(3) 
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where K ( q) = ~ ( qa - q) , K ( q) being the scaling function describing the multiscaling 
a-1 

properties of the statistical moments of arder q [see Seuront et al. (1999) for a detailed 

derivation of equation (3) in a more general statistical framework]. The first moment gives the 

scaling exponent H = Ç(l) corresponding to the degree of non-conservation of the process 

(i.e. H = 0 for stationary process), and the second moment is linked to the power spectrum by 

f3 = 1 + Ç(2). The second term expresses a deviation from homogeneity (in which case 

Ç ( q) = qH ), and represents the intermittency corrections. C1 is the fractal codimension that 

characterizes the sparseness of a given descriptor, and satisfies 0:::; C1 :::; 1 for time series: 

cl = 0 for a homogeneous descriptor and cl is ali the more high as the descriptor is sparse, 

indicating that the values corresponding to any given level of variability are more scarce. The 

Lévy index a is the degree of multifractality bounded between a = 0 and a = 2 

corresponding to the monofractal case and to the maximum, or log-normal, multifractal case, 

respectively. As a increases, the more numerous are the variability levels bounded between 

lower and higher values of the descriptor (i.e. the more complex is the structure of the 

descriptor; see Seuront et al., 1999, their figure 15 for more details on the precise meaning of 

C1 and a). Let us recall that in the Lagrangian frame, equation (3) writes (Seuront et al., 

1996b): 

q Cl ((q)a q] Ç(q)=--- - --
2 a-l 2 2 

(4) 

The parameters C1 and a can be estimated considering different derivation of equations (3) 

and (4) (see e.g. Schmitt et al., 1995; Seuront et al., 1996a, b, 1999), but also from the Double 

Trace Moment Technique (Lavallée, 1991; Lavallée et al., 1992), a very specifie data analysis 

technique which has been extensively explained elsewhere (Seuront et al., 1999). More details 

on the universal multifractal theoretical background can be found in Schertzer and Lovejoy 

(1983, 1985, 1987, 1989) and related analysis techniques such as Double Trace Moment and 

structure functions have been extensively described respectively in Lavallée et al. (1992), 

Schmitt et al. (1992, 1993, 1994), and in Schmitt et al. (1995, 1996a, b, 1998) and Seuront et 

al. (1996a, b, 1999). 

Because an objective criterion is needed for deciding upon an appropriate range of scales 

to include in the regressions to determine both the spectral exponents f3 and the structure 

function scaling exponents Ç(q) respectively from equations (1) and (2), we used the values of 
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the frequencies and the time scales which maximized the coefficient of determination (r2) and 

minimized the total sum of the squared residuals for the regression, as proposed by Seuront 

and Lagadeuc (1997). Before performing the calculations, the measured time series must be 

detrended and normalized. This is clone, first, by calculating Kendall' s coefficient of rank 

correlation, t, between time series and the x-axis values in order to detect the presence of a 

linear trend (Kendall and Stuart, 1966). We thus eventually detrended the time series by fitting 

linear regressions to the original data by least squares and used the regression residuals in 

further analysis, a common remediai procedure in time series analysis (Fuller, 1976). Second, 

the measured time series were normalized (nondimensionalized) by dividing all values by the 

average of the total series. 

Spatio-temporal analysis (STA) 

In order to estimate the space-time properties of the who le sampling experiment, we applied a 

spatio-temporal analysis (STA) initially introduced by Ibanez (1973) to characterize sampling 

processes in plankton ecology, and recently used by Seuront and Lagadeuc (1998) to describe 

the space-time structure of a coastal ecosystem. We selected variables related to the space-time 

scales of our sampling experiment and a principal component analysis (PCA) was performed 

on the observations (Q mode) and the variables (R mode, sensu Legendre and Legendre, 

1984). These variables are latitude, longitude, depth, tidal current speed and direction, nature 

of the superficial sediment, mean chlorophyll a concentration and temperature. We take as an 

arbitrary origin for latitude and longitude a point located at the entrance of the fishing port of 

Boulogne/Mer (Figure 1). Depth is expressed in meters, current speed is estimated as the mean 

drift speed during each sampling experiment, and current direction is expressed as an 

Superficial sediment Code 
Bedrock 0 
Gravels and pebbles 1 
Coarse sand 2 
Bioclastic medium sand 3 
Medium sand 4 
Grey fine sand 5 
Muddy sediment 6 

Table II. Codes used in the PCA to represent the qualitative nature of the bottom super:ficial sediment. 
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alternance between northerly and southerly drifts during flood and ebb tides, respectively. The 

nature of the superficial sediment (Table II) is coded following the classification of Augris et 

al. (1995). Chlorophyll a and temperature estimated from the sampling depth were averaged 

over the whole dataset for each sampling experiment. While the effect of wind events have 

been demonstrated to be of main interest in structuring the whole water column (Raby et al., 

1994; Lagadeuc et al., 1997b; Seuront and Lagadeuc, 1997), one may note here that we did 

not introduce wind speed and direction as variables in our analysis because the effect of wind 

on turbulent kinetic energy dissipation rates is clearly smaller than the effect of tide. Indeed, 

the dissipation rates of wind-generated turbulent kinetic energy, estimated for each sampled 

depth following the boundary layer mo del used by MacKenzie and Leggett ( 1991) as 

ew = 7.4 x 1 o-8 ± 8.1 x 1 o-8 m2
. s-3 (x± SD ), were al ways about one arder a magnitude lower 

than the dissipation rate of turbulent energy induced by ti de expected in shallow coastal waters 

which are typically in the range 10-6-10-4 m2
. s -3 (MacKenzie and Leggett, 1991 ). Furthermore, 

the identification of the components of the multivariate analysis was carried out using the 

factor loadings of the variable in the R mode of PCA analysis since the factor loadings of a 

given factor could be related to the variance explained by such a factor (Legendre and 

Legendre, 1984). Because a criterion is needed for deciding upon appropriate observations to 

group in the data space, a cluster analysis based on an unweighted centroid algorithm (Sokal 

and Michener, 1958) has been carried out on a (Euclidean) distance matrix calculated from the 

first three principal components of the multivariate analysis. Afterwards, we introduced 

additional variables related to mean, variability ( expressed as the sum of a given power spectra, 

i.e. an estimate of the total variation in a given record; Bendat and Piersol, 1986) and structure 

(i.e. spectral exponent p, and the universal multifractal parameters H, C1 and a) of 

temperature, salinity, light transmission and in vivo fluorescence in arder to characterize their 

organization in the spatio-temporal space associated with the whole sampling experiment. The 

concentration of Prymnesiophyceae Phaeocystis sp.-known for its highly developed 

swarming capacities in the coastal waters of the Eastern English Channel (Tyler, 1977; 

Lennox, 1979)-has also been introduced as a potential source of increased patchiness for 

phytoplankton populations. Wind speed and direction were also introduced as additional 

variables related to extemal (atmospheric) physical forcing. 
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Results 

Environmental conditions 

In the Eastern English Channel, characterized by its megatidal regime, the dissipation of tidal 

energy is basically regarded to be responsible for the vertical homogenization of inshore and 

shallow water masses (50 rn maximum depth), except in very specifie tidal conditions (i.e. a 

vertical stratification associated to a moving of the coastal lighter waters over heavier offshore 

waters during ebb tide in neap tide conditions; Brylinski and Lagadeuc, 1990; Lagadeuc et al., 

1997a) which has never been reached during our sampling experiment. In that way, one may 

note that a density gradient has never been observed in any sampling experiment, indicating 

vertical homogeneity of the water column. Thus, our sampling experiments can be regarded as 

having been conducted in well mixed waters. 
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Fig. 2. Mean values of temperature (a), salinity (b), in vivo fluorescence (c) and light transmission (d) for the 

22 sampling experiments. 

Mean values and variability of temperature, salinity, in vivo fluorescence and light 

transmission did not show any characteristic temporal patterns (Figure 2), except in the case of 

mean temperature data which exhibit a clear seasonal cycle (Figure 2a). A correlation analysis 

(Table III) nevertheless leads to further conclusions. Indeed, while mean values of the studied 

parameters did not exhibit significant correlations, standard deviations of in vivo fluorescence 

and light transmission were respectively correlated (P < 0.05) and non correlated (P > 0.05) 

with standard deviations ofphysical parameters (i.e. temperature and salinity). Considering the 

space-time scales of the whole sampling experiment, this suggests a potential 
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phenomenological link between phytoplankton biomass distribution and small-scale physical 

variability. Moreover, the highly significant positive and negative correlations (P < 0.01) 

occurring respectively between means and standard deviations of in vivo fluorescence and light 

transmission indicate a differentiai density-dependent control of small-scale variability for these 

parameters. Finally, chlorophyll a concentration and in vivo fluorescence being highly 

correlated (Spearman's p = 0.870, P < 0.01 ), in vivo fluorescence fluctuations can be related 

to the fluctuations of phytoplankton bi ornas s. 

Chloro s T Trans SDF SDs SDT SDTr 

Chloro 1,00 
s 0,29 1,00 
T -0,02 0,18 1,00 
Trans -0,17 0,34 -0,40 1,00 
SDF 0,82 ** 0,21 0,04 -0,34 1,00 
SDs -0,55 ** -0,39 -0,26 0,15 -0,42 * 1,00 
SDT -0,65 ** -0,19 -0,19 0,09 -0,50 * 0,88 ** 1,00 
SDTr -0,01 -0,45 * -0,02 -0,57 ** 0,05 -0,12 -0,03 1,00 

*: 5% significance level 
** : 1% significance level 

Table m. Correlation matrix of mean values and standard deviations (SD) of temperature, salinity, in vivo 

fluorescence and light transmission. 

Spectral analysis and Eulerian!Lagrangian scale breaking 

Samples of the double logarithmic power spectra for the studied time series together with their 

best fitting lines are given in figure 3. The power spectra present a mixed behaviour with two 

scaling tendencies, the change of behaviour of the power spectra occurring for frequencies 

franging from 0.02 to 0.11 Hz (i.e. i±SD: 0.06±0.03 Hz) which are associated with 

characteristic time scales t ranging from about 9 to 54 seconds (i.e. x ±SD: 23.3 ± 12.9 sec). 

Withîn each data set, the transition scales are very similar whatever the variables in question, as 

shown by the weak dispersion of the estimates of the transition frequencies f 

(SD1 =0.005±0.001 SD). 

Those temporal transition scales can be associated with spatial scales using probably the 

most cited and widely used method of relating time and space in the frame of turbulence 

studies, 'Taylor' s hypothesis of frozen turbulence' (Taylor, 193 8), which basically states that 

temporal and spatial averages t and l, respectively can be related by a constant velocity V , 
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Fig. 3. The power spectra E(f) ifis frequency) of temperature (a), salinity (b), in vivo fluorescence (c) and light 

transmission (d), shown in log-log plots, for time series S22. The power spectra exhibit a mixed behaviour with 

two scaling tendencies, the change ofbehaviour of the power spectra occurring for frequency f= 2.5 10·2 Hz. 

1 =V· t. Then, using the mean tidal drift observed during each field experiment (Table I), we 

estimate that the associated length scales were -12 meters ( i ± SD : 12.1 ± 1. 6 rn) for sampling 

experiments S1 to S21 and 24.6 meters for sampling experiment S22. These length scales are 

close to the size of the ships used during the sampling experiment, i.e. 12.5m and 24.9m for 

N/0 'Sepia II' and N/0 'Côte de la Manche', respectively. These results thus con:firm and 

generalize the results obtained by Seuront et al. (1996b) from a single sampling experiment 

conducted at the end ofMarch 1995 during a period ofspring tide (Table IV; Figure 4). 

In order to interpret this change of behaviour of the power spectra, let us recall that the 

measurements were taken from a boat adrift in the Channel. This means that for the high 

frequency range of the measurements we can consider the boat as not moving, so the 

measurements correspond to a fix-point procedure, i.e. Eulerian sampling. This is con:firmed by 

the slopes of the small-scale temperature, salinity and in vivo fluorescence power spectra 

(Table V) which were not significantly different (Kruskal-Wallis test, P > 0.05 ), and cannot be 

statistically distinguished from the theoretical spectral value p = 513 (Binomial test, 
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Time series Time (si Time (si Space (m)1 Space(mi 
* 12.30 12.70 12.30 12.70 

SI 12.59 12.70 12.59 12.70 
S2 53.70 54.00 11.81 11.88 
S3 10.23 10.50 11.46 11.76 
S4 21.38 21.00 12.83 12.60 
S5 12.88 44.50 11.34 39.16 
S6 44.67 44.00 12.51 12.32 
S7 25.70 26.00 11.57 11.70 
S8 16.22 16.50 12.16 12.38 
S9 8.91 9.00 13.37 13.50 

S10 12.30 12.00 12.43 12.12 
S11 14.13 14.00 12.85 12.74 
S12 12.30 12.50 12.18 12.38 
S13 33.33 33.50 13.00 13.07 
S14 30.90 31.00 12.05 12.09 
SIS 33.88 34.00 13.21 13.26 
S16 18.62 19.00 12.85 13.11 
S17 17.78 18.00 12.27 12.42 
818 19.50 20.00 13.45 13.80 
819 26.92 27.00 13.46 13.50 
820 40.74 41.00 12.22 12.30 
S21 19.50 19.50 11.70 11.70 
S22 44.68 44.50 24.58 24.48 

Mean 23.62 25.08 12.96 14.25 
SD 12.81 13.24 2.61 6.00 

*: 8euront et al . ( 1996b ), 1
: spectral analyses and 2: structure functions 

Table IV. Temporal and spatial transition scales obtained from power spectra and structure functions. The 

association between temporal and spatial transition scales has been done via the 'Taylor's hypothesis offrozen 

turbulence' (see text). 
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transition scale from the power spectra of temperature, salinity, in vivo fluorescence and light transmission. 

The result obtained by Seuront et al. (1996b) is shown for comparison (black dot). 

13 



P > 0.05; Siegel and Castellan, 1988) expected in the case of an isotropie three-dimensional 

homogeneous turbulence (Obukhov, 1949; Corrsin, 1951). Nevertheless, for each sampling 

experiment, an analysis of covariance (Zar, 1984) has been conduced for the slopes of the 

power spectra for temperature, salinity and in vivo fluorescence. It is found that the 

chlorophyll a concentration exhibits highly significant positive correlation (P < 0.01) with the 

F-statistic, used here as a measure of any significant difference between the slope of 

temperature, salinity and fluorescence power spectra for a given sampling experiment. 

Subsequent multiple comparison procedures based on the Tuckey test (Zar, 1984) conducted 

to determine which p was different from the others then confirm and specify the previous 

results. Thus, these analyses indicate that rejection of the null hypothesis was always due to p 

values for in vivo fluorescence significantly higher than those for temperature and salinity. On 

Eulerian scales 
H c1 a 

Temperature 1.70 (0.05) 0.39 (0.03) 0.042 (0.005) 1.75 (0.05) 
Salinity 1.72 (0.06) 0.40 (0.03) 0.044 (0.006) 1.74 (0.04) 
Fluorescence 1.69 (0.03) 0.38 (0.02) 0.038 (0.003) 1.84 (0.03) 
Transmission 1.31 (0.36) 0.30 (0.09) 0.162 (0.1102 1.73 (0.13) 

Lagrangian scales 
H cl a 

Temperature 2.03 (0.05) 0.52 (0.02) 0.052 (0.001) 1.86 (0.04) 
Salinity 2.03 (0.04) 0.52 (0.02) 0.052 (0.001) 1.86 (0.04) 
Fluorescence 1.03 (0.24) 0.27 (0.15) 0.343 (0.067) 1.62 (0.13) 
Transmission 1.02 (0.242 0.27 (0.15) 0.301 (0.056) 1.63 (0.12) 

Table V. Mean values and standard deviation of the spectral exponent f3 universal multifractal parameters H, 

C1 and a estimated from the 22 time series considered in the Eulerian frame and the 13 time series considered 

in the Lagrangian frame. 

the contrary, light transmission power spectra (Table V) appear significantly smaller than the 

theoretical p = 5/3 value (P < 0.05 ). Finally, one may also note here that analyses of 

covariance showed that the 22 spectral exponents p were not ail equal for each parameter, 

indicating potential differentiai spectral structure of the variables in question at the space-time 

scales of the wh ole sampling experiment. 

On the other hand, for frequencies smaller than the observed scale breakings, the inertia of 

the boat becomes negligible and the measurements are effectively taken following the flows, 

i.e. in a Lagrangian framework. One may note here that we had to average the original time 
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senes up to the Eulerian/Lagrangian transition scale (Table IV), in order to be in the 

Lagrangian scales. In that way, our characterization of the Lagrangian behaviour oftime series 

of temperature, salinity, light transmission and in vivo fluorescence is based on time series 

exhibiting at least 256 data points (i.e. the lower bound for a dataset to lead to efficient 

multifractal analysis; Teissier et al., 1993a, b; Seuront et al., 1999). In the following, we then 

focused on 13 time series S1-S3, S5, S7, S9, S10-S12, S14, S19 and S21-S22. The previously 

described transition is also confirmed by the similar scaling behaviours exhibited by 

temperature and salinity time series (Table V), which cannot be statistically distinguished from 

the theoretical slope f3 = 2 (Binomial test, P > 0.05) expected in the case of purely passive 

scalars advected by Lagrangian tluid motions (Monin and Yaglom, 1975). On the contrary, in 

vivo fluorescence and light transmission spectral exponents show very specifie behaviours 

(Table V) which cannot be statistically distinguished (Wilcoxon-Mann-Whitney U-test, 

P > 0.05 ). Moreover, analyses of covariance concluded that the 13 spectral exponents f3 

were not ali equal (P < 0.05) for both light transmission and fluorescence power spectra. 

Eulerian scales 

Multifractal analysis. The computations of the temperature, salinity, in vivo fluorescence and 

light transmission structure functions [i.e. ([AT(r)r), ([AS(r)r), ([AF('r)r), and 

([ATr(-r)r)] confirmand generalize to higher orders of moment the scaling regimes previously 

shown by spectral analysis (Figure 5; Table IV). We subsequently plotted the structure 

function scaling exponent Ç(q) whose non-linearity indicate that the variables in question can 

be considered as multifractals. Figure 6 shows that within a given time series (here time series 

S22), the three curves corresponding to temperature, salinity and in vivo fluorescence are 

always very close to each other, and cannot be qualitatively considered as being different. On 

the contrary, light transmission exhibit a very specifie behaviour for time series S1-S5, S7-S11, 

S 18 and S22 (Figure 6). Finally, one may note that the correspondence between the empirical 

estimates and the theoretical curves is excellent until critical moment order after which the 

empirical curves are linear (Figure 6). This linear behaviour of the structure function scaling 

exponent Ç(q) is well-known for sufficiently high order moments (Schertzer and Lovejoy, 

1989) and, as demonstrated and studied by Seuront et al. (1996b, 1999), is due to sampling 

limitations. In particular, this problem has been extensively studied in Seuront et al. (1999) in 

the general framework defined by equation (3). 
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Estimates of the three universal multifractal parameters H , C1 and a provide a 

quantitative confirmation of the previously described multifractal statistics. We then showed 

that there were significant differences between temperature, salinity, fluorescence and 

transmission exponents H (Table V; Kruskal-Wallis test, P < 0.05 ), the light transmission 

exponents being significantly smaller than the others (Dunn test, P < 0.05 ). Moreover, as 

previously shown for the spectral exponents f3 , analyses of covariance indicated that the H 

values were not ali equal for each parameter (P < 0.05 ). The fractal codimensions C1 lead to 

similar results: temperature, salinity and in vivo fluorescence codimensions cannat be 

statistically distinguished ( p > 0.05 ), while light transmission codimension cl is significantly 

smaller than the others (P < 0.05; Table V). Finally, the parameters a cannot be statistically 

distinguished for temperature, salinity and light transmission ( P > 0.05; Table V), but the Lévy 

index of in vivo fluorescence is significantly greater than the others (P < 0.05 ). 

Eulerian scales Lagrangian scales 
Code PC-1 PC-2 PC-3 PC-1 PC-2 PC-3 

Latitude À. -0.43 -0.82 -0.08 -0.93 -0.14 0.23 
Longitude <p 0.57 -0.62 -0.33 0.20 -0.90 -0.25 
Depth Depth -0.87 -0.20 0.18 -0.79 0.36 0.31 
Tidalcurrentspeed Cspeed -0.44 0.49 -0.12 -0.03 0.20 -0.40 
Tidal current direction Cn;r 0.18 0.56 -0.47 0.41 0.66 -0.11 
Sediment quality Sed 0.93 -0.04 0.23 0.73 -0.27 0.34 
Chlorophyll a Chi. a 0.20 -0.08 -0.86 0.21 0.14 -0.71 
Temperature T 0.55 0.04 0.53 0.43 0.11 0.72 

Table VL The first three spatio-ternporal eigen vectors (standard.ized after multiplication by the square root of 

the eigen vector's correspond.ing eigen values) associated with the eight spatio-ternporal variables. 

Spatio-temporal analysis. The results of the PCA showed that three components explain 

72.58% of the total variance. The first component (hereafter called PC-1), which explains 

3 3. 8 7% of the variance is positively correlated to longitude, temperature and superficial 

sediment quality, and negatively correlated to latitude, depth and tidal current speed (Figure 

7a, b; Table VI). This component can nevertheless be mainly considered representative of 

superficial sediment quality and depth. The second component (PC-2 hereafter), which 

explains 20.52% of the total variance, was positively correlated to current speed and direction, 

and negatively correlated to latitude and longitude (Figure 7a; Table VI). This component can 

then be considered representative oftidal and geographical effects. The third component (PC-3 

hereafter) explaining 18.19% of the total variance is positive! y correlated to temperature, and 

negatively correlated to chlorophyll a concentration and tidal current direction (Figure 7b; 
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Table VI). The significance of the latter component is first linked to the seasonal physical 

forcing of temperature and, second, to the biological features of chlorophyll a concentrations 

and tidal current direction, the association of these two variables being related to the increase 

in chlorophyll a concentration occurring during ebb tide. 

The projections of the observations in the two-dimensional planes defined by the three first 

components seem to indicate that the observations are mainly distributed following the first 

two principal components (Figure 7c, d). Nevertheless, the unweighted centroid clustering 

showed five groups of observations (Table VII; Figure 7c, d). These clusters (numbered from 

C-I to C-V) were indeed related to the space-time discrimination shown by the PCA: C-I 

characterizes high current speed and ebb ti des sampling, C-II deeper and northem position, C

III highest chlorophyll a concentration, C-IV the association of fine sediment and ebb tide 

sampling, while C-V only characterizes fine superficial sediment. 
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The additional variables (Table VIII), shown in the space defined by the three fust 

components, have been plotted considering their correlation with these axes as coordinates; a 

central square indicates the 95% confidence limits (Figure 8). The coordinates of the initial 

eight spatio-temporal variables were also plotted considering the values of their corresponding 

eigen vectors (Table VI). 

The observed means, variability (i.e. sums of power spectra) and spectral exponents p 

exhibit very specifie behaviours (Figure 8a, b; Table VIII). Mean values of salinity and light 

transmission are negatively correlated with PC-2 and PC-1, respectively. This indicates an 

increase in salinity from southern to northem locations, and an increase in light transmission in 

deeper locations, whatever the tidal current directions. The mean concentration of Phaeocystis 

is positively correlated with PC-3, indicating a seasonal effect of climatic forcing rather than 

any biological density-dependent effect. Temperature and salinity spectral sums both exhibit 

positive and negative correlation with PC-1 and PC-3. This indicates an increased variability in 

coastal waters and during ebb tide. The spectral sum of light transmission is positively 

correlated with PC-1 (fine sediment), while the one of in vivo fluorescence is negatively 

correlated with PC-3 (high chlorophyll a concentration). 

Temperature and salinity spectral exponents f3 exhibit very similar spatio-temporal 

patterns. Thus, their significant negative correlation with PC-2 indicates an increase temporal 

dependence (i.e. high f3 values) in northem and coastallocations. As previously shown for 

their spectral sums, spectral exponents of fluorescence and light transmission are respectively 

negatively and positively correlated with PC-3 and PC-1. These results then indicate that in 

vivo fluorescence temporal dependence (i.e. p value) is greater when the chlorophyll 

concentration is high, while light transmission temporal dependence is greater when the bottom 

sediment is finer. One may nevertheless note the positive and negative correlation of in vivo 

fluorescence with PC-1 and PC-2, suggesting an increase in the f3 values in coastal waters 

(Figure 8a). 

The space-time structuration of the universal multifractal parameters H , C1 and a lead to 

further results (Figure 8c, d; Table VIII). First, as previously demonstrated in the case of the 

spectral exponent p , temperature and salinity multifractal parameters exhibit very similar 

behaviours. In particular, H and C1 are negatively correlated with PC-2, indicating an 

increased non stationarity (i.e. high H value) and sparsity (i.e. high C1 value) of temperature 

and salinity fields both in northem and coastallocations. On the contrary, the Lévy index a do 
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not exhibit any significant correlation in the space defined by the three principal components. 

This parameter can then be regarded as remaining constant in the space-time of the whole 

sampling experiment. Second, the space-time structure of light transmission appears to be 

wholly characterized by the first principal component. The parameters H , C1 and a are then 

positively correlated with PC-1, indicating an increased non stationarity, sparsity and 

complexity of the light transmission field as the superficial bottom sediment becomes finer. 
; 

Finally, the space-time structure of in vivo fluorescence exhibit a more complex behaviour. 

Thus, the parameter H , C1 and a are positively correlated with PC-1 and negatively 
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Fig. 8. Position of the additional variables (for codes, see Table 8) in the bidimensional spaces of the three :first 

principal components in the Eulerian frame. The coordinates are the correlation coefficients with these axes. 

The eight initial variables are placed with the corresponding elements of the eigen vectors (standardized after 

multiplication by the square root of the corresponding eigen values). Factors signi:ficantly correlated with the 

principal components are located outside the central square, corresponding to the 95% confidence interval. 
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correlated with both PC-2 and PC-3. This leads to consider a differentiai space-time structure 

of phytoplankton population associated with inshore-offshore gradient and chlorophyll a 

concentration (i.e. higher values of H, C1 and a in coastal waters and in high chlorophyll a 

concentration). 
(a) 

(b) 

Eulerian scales 
C-I C-Il 

Sl-S2 
Sll 

S3-S5 
S8-SIO 

Sl2 

Lagrangian scales 
C-I C-Il 

S2-S3 
S7-S9 
Sll 

S12-Sl4 
Sl9-S21 

C-III 

S6-S7 

C-III 

SI 
SlO 

C-IV 

813 
S17-S19 

C-IV 

S5 
822 

C-IV 

S14-S16 
S20-S22 

Table Vll. Clusters of stations using the first three components of the PCA. Cluster analysis has been carried 

out on a Euclidean distance matrix calculated from the three first components of the PCA. C, cluster; Si, time 

series number (i). 

Lagrangian scales 

Multifractal analysis. As with Eulerian data above, we estimated the scaling exponent Ç(q) 

from the structure function of the Lagrangian temperature, salinity, in vivo fluorescence and 

light transmission which also exhibit a characteristic nonlinear behaviour (Figure 9). In that 

way, one may note here that while temperature and salinity multifractal parameters H, C1 and 

a have been estimated in the theoretical Lagrangian frame of equation ( 4 ), this framework 

appears unsuited in the case of fluorescence and light transmission. Thus, following the very 

specifie behaviours shown by fluorescence and light transmission scaling exponents Ç(q) (Fig. 

9c, d), which significantly differ from the expected behaviour for purely passive scalars 

advected by Lagrangian turbulence [in which case equation (4) holds, with in particular 

f3 = 1 + Ç (2) = 2.0 and H = Ç (1) = 0.5], the parameter H, C1 and a for fluorescence and 

light transmission have then been estimated in the general frame provided by equation (3). This 

relation is indeed not specifie to the Eulerian frame, but can be applied to characterize any 

multifractal processes in the absence of well defined theoretical framework [ see Seuront et al. 

(1999) for further details]. As shown in the Eulerian frame, the linear behaviour exhibited by 

the empirical scaling exponent Ç(q) can be associated with sampling limitations [see Seuront 

et al. (1996b, 1999) for further details]. 
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Eulerian scales Lagrangian scales 
Additional data Code PC-1 PC-2 PC-3 PC-1 PC-2 PC-3 
Mean value 
Salinity s -0.38 -0.65 0.04 -0.62 -0.08 0.21 
Light transnùssion Tr -0.74 -0.06 0.16 -0.53 0.16 0.39 

Standard deviation 
T ernperature SDT 0.42 -0.29 -0.52 0.22 -0.70 0.30 
Salinity SDs 0.39 -0.24 -0.46 -0.08 -0.65 0.31 
Fluorescence SD, -0.25 -0.30 -0.76 -0.10 -0.30 -0.76 
Light transmission SDTr 0.74 -0.08 0.06 0.30 -0.08 -0.61 

Spectral e.xponent (3 
T ernperature 13T 0.17 -0.67 0.13 -0.07 0.41 0.18 
Salinity 13s 0.23 -0.59 0.24 -0.18 0.46 0.24 
Fluorescence (3. 0.41 -0.48 -0.73 -0.19 -0.36 0.75 
Light transnùssion 13Tr 0.85 -0.19 0.12 -0.26 -0.19 0.62 

Scaling exponent H 
T ernperature Hy 0.06 -0.61 0.11 -0.09 0.36 0.41 
Salinity Hs 0.09 -0.75 0.19 -0.18 0.42 0.32 
Fluorescence H• 0.62 -0.54 -0.76 -0.35 -0.09 0.83 
Light transnùssion Hy, 0.81 -0.21 -0.18 -0.28 0.10 0.71 

Codimension C 1 

Temperature clT 0.23 -0.51 0.06 -0.16 0.36 0.26 
Salinity c,. 0.24 -0.43 0.23 -0.04 0.44 0.40 
Fluorescence c,. 0.41 -0.41 -0.70 -0.08 -0.12 0.78 
Light transnùssion c,Tr 0.81 0.08 0.04 0.24 -0.13 0.64 

Uryindex a 
Temperature ay -0.17 -0.29 -0.27 0.08 -0.34 -0.41 
Salinity as -0.22 -0.22 -0.27 0.22 -0.22 -0.32 
Fluorescence a• 0.53 -0.43 -0.64 0.34 0.27 -0.64 
Light transnùssion aT, 0.62 -0.08 -0.05 0.42 0.36 -0.57 

Phaeocystis Phaeo -0.10 0.10 0.10 0.12 0.30 0.10 
W"mdspeed Wsp. -0.12 -0.10 -0.10 0.11 -0.39 -0.10 
W"md direction Wdir. -0.05 -0.12 -0.12 0.36 -0.36 -0.12 

Table VIII. Names and codes of the 25 additional variables used in the PCA, together with their correlation 

with the three first components of the PCA. The codes are used on the graphs. 

PC-1, first principal component; PC-2, second principal component; PC-3, third principal component. 

Temperature and salinity scaling exponents H are not significantly different (Wilcoxon-

Mann-Whitney U-test, P > 0.05) for the whole dataset, and cannot be distinguished from the 

theoretical value H = 0.5 expected in the Lagrangian frame (Binomial test, P > 0.05 ). On the 

contrary, in vivo fluorescence and light transmission scaling exponents H remam 

indistinguishable (Wilcoxon-Mann-Whitney U-test, P > 0.05 ), but are significantly smaller that 

the H = 0.5 value (Binomial test, P < 0.05 ). Moreover, analyses of covariance indicated that 

the H values were indistinguishable for temperature and salinity (P > 0.05 ), while there are 

significant differences between the H values for both light transmission and in vivo 

fluorescence (P < 0.05 ). Finally, both fractal codimension C1 and Lévy index a for 

temperature and salinity time series in the one hand, and for in vivo fluorescence and light 

transmission on the other hand are indistinguishable ( P > 0. 05 ) for the who le dataset. Light 

transmission and fluorescence fractal codimension and Lévy index are nevertheless respectively 

greater and smaller than those oftemperature and salinity (P < 0.05 ). 
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Fig. 9. The Lagrangian structure function scaling exponent Ç(q) empirical curves (dots), compared to the 

monofractal curves Ç(q) = q 12 (dashed line), and to the universal multifractal curves (continuons curve) 

obtained with C1 and a in equation (4) for temperature (a) and salinity (b) for time series 22. The Lagrangian 

exponent Ç(q) empirical curves (dots), compared to the monofractal curves Ç(q) = qH (dashed line), and to the 

universal multifractal curves (continuons curve) obtained with C
1 

and a in equation (3) for in vivo 

fluorescence (c) and light transmission (d) for time series 22. 

Spatio-temporal analysis. The results of the PCA showed that three components explain 75.50 

% ofthe total variance. The first component (PC-1), which explains 32.51% ofthe variance is 

positively correlated to superficial sediment nature, and negatively correlated to latitude and 

depth (Figure 10a, b; Table VI). The meaning of this component is then slightly different from 

the one displayed in the Eulerian case where the first principal component was representative 

of superficial bottom sediment quality and water column depth. In the present Lagrangian 

frame, it is also representative of a geographical etfects associated to latitude (i.e. northem 

locations). The second component (PC-2), which explains 22.72% of the total variance, is 

respectively positively and negatively correlated to tidal current direction and longitude (Figure 

1 Oa; Table VI). This component can then be related to the tidal etfects associated with 

advective processes-while in the Eulerian frame it was also representative of hydrodynamical 

forcing (i.e. current speed)-and to the geographical effects associated with sampling 

conducted in coastal waters. The third component, which explains 20.27% of the total 

variance, is positively and negatively correlated to temperature and chlorophyll a 

concentration, respectively (Figure 1 Ob; Table VI). As previously shown in the Eulerian case, 

this axe is th en mainly representative of physical and biological seasonal forcings. 
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Fig. 10. Correlation plots showing the position of the initial variables (a, b), and the projection of the 

observations in the bidimensional spaces defined by the three first principal components ( c, d) in the 

Lagrangian frame. 

The projections of the observations in the two-dimensional planes defined by the three first 

components exhibit a clearer space-time patterns than in the Eulerian case (Figure 1 Oc, d). 

Indeed, the observations are mainly distributed following the fust principal component. This is 

confirmed and specified by the unweighted centroid clustering which showed four clusters of 

observations (numbered ·from C-I to C-IV): C-I characterizes deeper and northem sampling 

experiments, C-II fine superficial sediment, C-III ebb ti de sampling and C-IV high chlorophyll 

a concentration (Table VII). 

While the space-time pattern exhibited by the variables of the PCA is similar to those 

displayed in the Eulerian case, the additional variables leads to further comments in the 

Lagrangian frame (Figure 11; Table VIII). Thus, mean values of salinity and light transmission 

are both negatively correlated with PC-1 (Figure 11 a, b ), indicating an increased salinity and 
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Fig. 11. Position of the additional variables (for codes, see Table 8) in the bidimensional spaces of the three 

first principal components in the Lagrangian frame. The coordinates are the correlation coefficients with these 

axes. The eight initial variables are placed with the corresponding elements of the eigen vectors (standardized 

after multiplication by the square root of the corresponding eigen values). Factors significantly correlated with 

the principal components are located outside the central square, corresponding to the 95% confidence interval. 

light transmission in northem and deeper locations. On the contrary, the mean concentration of 

Phaeocystis exhibit no significant correlation to any principal component. Temperature and 

salinity spectral sums are both negatively correlated to PC-2 (i.e. increased variability in coastal 

waters; Figure 11 a, b ), while tho se of light transmission and fluorescence are both negatively 

correlated to PC-3 (i.e. high chlorophyll concentration). 
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Finally, the space-time patterns exhibited by the monofractal parameter fJ, and the 

multifractal parameters H , C1 and a can be described in very simple terms when compared 

with the Eulerian case. Thus, one may note that none of these parameters exhibit any 

significant correlation in the two-dimensional planes defined by the three first principal 

components in the case of temperature and salinity (Figure 11). On the contrary, light 

transmission and phytoplankton biomass space-time structure exhibits a slightly more complex 

behaviour (Figure 10) which is nevertheless wholly related to PC-3. Then, contrary to what has 

been observed in the Eulerian case (Figure 8), parameters p and H exhibit a very similar 

space-time pattern for both light transmission and phytoplankton biomass. They are indeed 

both positively correlated with PC-3 (Figure 11b, d). Furthermore, C1 and a are positively 

and negatively correlated with PC-3 (Figure lld), respectively. Phytoplankton and light 

transmission then exhibit greater temporal dependence (i.e. high p values), lower stationarity 

(i.e. high H values), more sparse (i.e. high C1 values) and complex (i.e. high a values) 

distributions when chlorophyll concentration is high. This suggests that the space-time 

structural homogeneity of the Lagrangian turbulent processes, while light transmission and 

phytoplankton biomass structures rather seem to be wholly density-dependent. 

Discussion 

Eulerian and Lagrangian multiscale structures in the coastal ocean 

The values of both spectral exponents p and universal multifractal parameters H, C1 et a 

obtained in the Eulerian frame (Table V) are in the range of values previously estimated from 

temperature, salinity and in vivo fluorescence time series in the Eastern English Channel 

(Seuront et al., 1996a, b, 1999; Seuront, 1997). Furthermore, the weak dispersion of both 

spectral and multifractal parameters values (cf Table V) suggests that the same process, or at 

least similar processes, can be regarded as being responsible for the observed variability. On 

the other hand, the spectral and multifractal parameters estimated for the very first time to our 

knowledge for light transmission time series clearly indicate that particles distributions were 

most of the time characterized by smaller values of the parameters p , H and a , and higher 

values of the parameter cl than temperature, salinity and in vivo fluorescence distributions. 

More precisely, this shows that light transmission is less scale-dependent (lower p values), 

more conservative (lower H values), more sparse (higher C1 values) and less complex (lower 

a values) than simultaneously recorded temperature, salinity and fluorescence. Light 
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transmission could then be mainly linked to very specifie phenomenons related to the 

qualitative nature of particles, but also to their quantitative properties such as their size, 

sedimentation speed, density or stickiness. All these properties are now recognized to play a 

major role in aggregation processes of marine particles ( e.g. Li et al., 1998; Milligan and Hill, 

1998), and can then be regarded as a potential source of small-scale variability leading to flatter 

power spectra for light transmission distributions (Table V; Figure 3). More generally, the fact 

that 22 time series recorded in different water masses, in different hydrodynamical conditions 

and during a sampling experiment conducted over a period of 3 years can be characterized in 

terms of multifractals then could indicate that such structure could be the rule in turbulent 

coastal ecosystems such as the Eastern English Channel. 

Such a general conclusion can also be drawn in a Lagrangian frame following the 

multifractal structure shown for the 13 analyzed time series of temperature, salinity, in vivo 

fluorescence and light transmission. However, one may note that contrary to the Eulerian 

frame, fluorescence and light transmission-which have been characterized in a Lagrangian 

frame for the very first time in this study-both exhibit very similar structure, in terms of 

spectral and multifractal parameters (Table V). In particular, the distribution of phytoplankton 

biomass and partiel es are always less scale-dependent (lower p values), more conservative 

(lower H values), more sparse (higher C1 values) and less complex (lower a values) than 

temperature and salinity. Such structures could be related, as previously shown by Seuront et 

al. (1996a, 1999) for phytoplankton biomass, to any aggregative behaviours of both 

phytoplankton cells and suspended particles leading to very specifie "active" distribution as 

revealed by the flattening of the power spectral exponents p when compared to those of 

temperature and salinity (Table V). In that way, one may note here that the general multifractal 

formalism Ç ( q) used in the Lagrangian frame for in vivo fluorescence and light transmission 

[equation (3)] can be compared to the structure function scaling exponent theoretical 

expression ÇAq) derived by Seuront et al. (1996b) from the previous theoretical results of 

Denman and Platt (1976) to describe the scales ofphytoplankton biological activity: 

Cl ~(qJa qJ ( (q)=-K(q/2)=-- - --
F a-l 2 2 

(5) 

In that way, we show that equation ( 5) does not provide good estimates of the empirical 

function Ç(q) (Figure 12a) except for the time series characterized by spectral exponents p 

which cannot be distinguished from the theoretical value p = 1 (Binomial test, P > 0.05) 

proposed by Denman and Platt (1976) to characterize the scaling behaviour of phytoplankton 
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for scales where the biological activity has time to develop and is not destroyed by turbulent 

motions (Figure 12b). The se results th en provide the first empirical validation of the theoretical 

expression ÇF ( q) [cf equation ( 5)] proposed by Seuront et al. (1996b) as a multifractal 

generalization ofthe early work ofDenman and Platt (1976) in a Lagrangian framework. 
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Fig. 12. Comparisons between the empirical structure function scaling exponents Ç(l) = H and the theoretical 

exponents ÇF (1) obtained with C1 and a in equation (5) for the 13 time series used in the Lagrangian frame 

(a), and for the time series which presents a spectral exponent statistically indistinguishable from the 

theoretical value ~ = 1 proposed by Denman and Platt (1976) (b). The central square represents the median of 

the distribution, the upper and lower limits ofthe box the first and third quartiles, and the upper and lower bars 

the maximum and minimum of the distribution. 

Space-time patterns of Eulerian and Lagrangian multiscale structures 

In the Eulerian frame, mean values of salinity and light transmission appear to be higher 

respectively in northem and in deeper locations. This suggests fust a progressive integration of 

the fluvial supplies distributed from the Bay of Seine to Cape Griz-Nez in the marine waters of 

the Eastern English Channel, and second that particles concentrations depend on the water 

column depth, whatever the tidal current directions. In particular, this could be linked with 
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both resuspension processes and hydrodynamical conditions which can be regarded as main 

factors in regulating the particles abundance in the water column, but also to a pure dilution 

process if we consider that the processes responsible for the quantity of suspended partiel es in 

the water column can be regarded as being equivalent in both inshore and offshore waters. On 

the other hand, the space-time pattern of the variability (i.e. the spectral sum) of the studied 

parameters exhibit two distinct patterns. First, the variability of temperature and salinity are 

always higher in coastal waters, while in vivo fluorescence variability is higher in coastal 

locations and during periods ofhigh phytoplankton concentrations. These results then con:firms 

and generalizes in space and time first the basic space-time pattern shown by Seuront and 

Lagadeuc (1998) for the vertical structure of temperature and salinity expressed in terms of 

fractal dimension, and second the density-dependence hypothesis of phytoplankton biomass 

variability. On the contrary, light transmission variability being ali the more high since the 

bottom sediment is finer, this suggests a qualitative control of particles distribution variability 

by the nature of the superficial bottom sediment. Finally, we demonstrated that the spectral and 

multifractal structures of purely passive scalars (i.e. temperature and salinity) are both 

associated with South-North and inshore-offshore gradients (Figure 8). This indicates that the 

structure of these parameters could not be regarded as being purely driven by three

dimensional turbulence but also by larger scale mixing processes occurring between different 

waters masses corresponding to a progressive integration of fluvial supplies in marine waters 

along a South-North gradient and to a progressive integration of offshore waters in the coastal 

flow along a inshore-offshore gradient. On the other hand, phytoplankton biomass structure 

appears to be dependent on both inshore-offshore gradient and phytoplankton concentrations 

(Figure 8). This leads to view phytoplankton biomass structure as being mainly density

dependent. In particular, the spectral exponents f3 being linked to fractal dimension D as 

D = 2- ({3 -1) 12 (Schroeder, 1991), the higher spectral exponent values as the higher 

multifractal parameters H, C1 et a observed for inshore waters and during periods of high 

phytoplankton concentrations con:firms the hypothesis of a density-dependent control of 

phytoplankton biomass structure in both fractal (Seuront and Lagadeuc, 1998) and multifractal 

frames (Seuront et al., 1999). The space-time pattern of light transmission spectral and 

multifractal structure appears to be very specifie. Thus, the spectral exponent f3 and the 

multifractal parameters H, C1 et a are wholly dependent on the nature of the superficial 

sediment (Figure 8). Particles distributions in the water column, expressed in terms of 
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multifractal structure, are then dependent on the qualitative nature of the bottom superficial 

sediment resulting of the differentiai properties of qualitatively different suspended sediments. 

In the Lagrangian frame, while the space-time patterns exhibited by salinity and light 

transmission means values and temperature and salinity variability confirm the results shown in 

the Eulerian frame (Figure 8), the space-time patterns of both spectral and multifractal 

structures leads to further comments. Thus, temperature and salinity structures do not exhibit 

any significant space-time pattern at the space-time scales relevant to our analyses (Figure 11). 

In that way, the perception of its surrounding physical environments is constant in space and 

time for pelagie organisms. On the contrary, both in vivo fluorescence and light transmission 

structures only exhibit a temporal pattern related to phytoplankton concentrations. Then, in a 

Lagrangian frame, phytoplankton and particles distributions are clearly density-dependent 

(Figure 11). However, this density-dependence is expressed differently foilowing the 

parameters considered. Thus, the spectral exponent f3 and the multifractal parameters H et C1 

are ail the more high since the phytoplankton concentrations are low, whereas the multifractal 

parameter a is ail the more high since the phytoplankton concentrations are high. In particular, 

considering the importance of food particles distributions for foraging (e.g. Davis et al., 1991; 

Rothschild, 1992), these results have considerable implications for future studies devoted to 

estimate key fluxes such as carbon or nitrogen fluxes between primary and secondary 

producers, which shou1d take advantage to focus on the ecological consequences of the 

Lagrangian structure of resources in the ocean. 

Finally, the different space-time patterns shown in the Eulerian and Lagrangian frames, 

especially the shift between a control by superficial sediment nature and a control by 

phytoplankton density for light transmission, should nevertheless be interpreted with caution 

following the differences in terms of input data points in the Eulerian and Lagrangian spatio

temporal analysis (STA), i.e. 22 time series in the Eulerian frame and only 13 in the Lagrangian 

frame. Thus, the absence of temporal heterogeneity in the biological structure at the scales of 

both highllow and spring/neap tidal cycles in the Lagrangian frame-demonstrated elsewhere 

(Seuront and Lagadeuc, 1998) in the same area-could then also be associated with the 

weaker number of time series used in the spatio-temporal analysis and not only to pure 

phenomenological differences between Eulerian and Lagrangian frames. 

Whatever that may be, the ramification of these results to uncovering space-time dynamics 

in the ocean are severe. They imply that the usual Eulerian sampling of the ocean may be a 

very po or method to collect data for analyzing the structure of the pelagie environment, both in 
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terms of physical and biological processes. A more general conclusion may also be drawn for 

experiments in for related oceanographie fields. When it is not possible to compensate for the 

movement of a spatio-temporal system in relation to the measurement point-as it is usually 

the case-it may be better to take fixed spatial averages rather than moving individual point 

samples. For oceanographie data, this amounts to obtaining spatial averaging of large sections 

of populations, for example using remote sensing images of plankton populations. 

Altematively, Lagrangian measurements should be obtained, where the sample is always taken 

from approximately the same point in the population at each time step. 

Acknowledgements 

We thank the captain and the crew of the N/0 'Sepia II' and N/0 'Côte de la Manche' for their assistance 

during the whole sampling experiment. We also thank those who contributed to the work at sea and the 

extraction of chlorophyll a: Stéphanie Courty, Natacha Esquerre, Ludovic Férrière, Vincent Pêcheux and 

Didier Saïu. Valérie Gentilhomme o:ffered very helpful suggestions, we also enjoy very constructive discussions 

with Shaun Lovejoy and Daniel Schertzer and we are grateful to them for their assistance. 

References 

Augris,C., Clabaut,P., Tessier,B. and Carré,D. (1995) The coastal area of Nord-Pas de Calais (France) 

superficial geology map. Ifremer, Plouzané. 

Baker,M.A. and Gibson,C.H. (1987) Sampling turbulence in the stratified ocean: statistical consequences of 

strong intermittency. J Phys. Oceanogr., 17, 1817-1836. 

Bendat,J.S. and Piersol,A.G. (1986) Random Data: Analysis and Measurement Procedures. Wiley. 

Bohle-Carbonel,M. (1992) Pitfalls in sampling, comments on reliability and suggestions for simulation. Cont. 

ShelfRes., 12, 3-24. 

Brylinski,J.M. and Lagadeuc,Y. (1990) L'interface eau côtière/eau du large dans le Pas-de-Calais (côte 

française): une zone frontale. C. R. Acad. Sei. Paris Sér. II, 311, 535-540. 

Brylisnki,J.M., Dupont,J. and Bentley,D. (1984) Conditions hydrologiqes au large du cap Griz-Nez (France): 

premiers résultats. Oceanol. Acta, 7, 315-322. 

Brylinski et al. (1991) Le 'fleuve côtier': un phénomène hydrologique important en Manche orientale. Exemple 

du Pas-de-Calais. Oceanol. Acta, 11, 197-203. 

Corrsin,S. (1951) On the spectrum of isotropie temperature in an isotropie turbulence. J Appl. Phys., 22, 469. 

Daly,K.L. and Srnith,W.O. (1993) Physical-Biological interactions influencing marine plankton production. 

Annu. Rev. Eco/. Syst., 24, 555-585. 

Denman,K.L. and Platt,T. (1976) The variance spectrum ofphytoplankton in a turbulent ocean. J Mar. Res., 

34, 593-601. 

Dupont,J.P., Lafite,R., Huault,M.F., Lamboy,M., Brylisnki,J.M. and Guéguéniat,P. (1991) La dynamique des 

masses d'eau et matière en suspension en Manche orientale. Oceanol. Acta, 11, 177-186. 

Falconer,K. (1993) Fractal Geometry. Mathematical Foundations and Applications. Wiley. 

31 



Feder,J. (1988) Fractals. Plenum. 

Fuller,W.A. (1976)An Introduction to Probability Theory and its Application. Wiley. 

Hardy,A.C. (1926) A new method ofplankton research. Nature, 18, 630-632. 

Hardy,A.C. (1939) Ecological investigation with Continuous Plankton Recorder: object, plan and methods. 

Hull. Bull. Mar. Eco/., 1, 1-57. 

Hardy,A.C. and Gunther,E.R. (1935) The plankton of the South Georgia whaling grounds and adjacent waters, 

1926-1927. Discovery Rep., 11, 1-456. 

Haury,L.R., McGowan,J.A. and Wiebe,P.H. (1978) Patterns and processes in the time-space scales of plankton 

distributions. In Steele,J.H. (ed.), Spatial pattern in plankton communities. Plenum, New York, pp. 277-

327. 

Ibanez,F. (1973) Méthode d'analyse spatio-temporelle du processus d'échantillonnage en planctonologie, son 

influence dans l'interprétation des données par l'analyse en composantes principales. Ann. lnst. Océanogr., 

49,83-111. 

Kendall,M. and Stuart,A. (1966) The Advanced Theory ofStatistics. Hafner. 

Lagadeuc,Y., Brylinski,J.M. and Aelbrecht,D. (1997a) Temporal variability of the vertical stratification of a 

front in a tidal Region ofFreshwater Influence (ROFI) system. J Mar. Syst., 12, 147-155. 

Lagadeuc,Y., Boulé,M. and Dodson,J.J. (1997b) Effect of vertical mixing on the vertical distribution of 

copepods in coastal waters. J Plankton Res., 19, 1183-1204. 

Lavallée,D., Lovejoy,S., Schertzer,D. and Schmitt,F. (1992) On the determination of universal multifractal 

parameters in turbulence. In Moffat,K., Tabor,M. and Zaslavsky,G. (eds), Topological aspects of the 

dynamics ofjluid and plasmas. Kluwer, Boston, pp. 463-478. 

Legendre,L. and Demers,S. (1984) Towards dynamic biological oceanography and limnology. Can. J. Fish 

Aquat. Sei., 41, 2-19. 

Legendre,L. andLegendre,P. (1984) Ecologie numérique, Vol. 2. Masson, Paris. 

Lennox,A.J. (1979) Studies of the ecolo gy and physiology of Phaeocystis.PhD Thesis, University of Wales. 

Li,X., Passow,U. and Logan,B.E. (1998) Fractal dimensions of small (15-200 J1111) particles in Eastern Pacifie 

coastal waters. Deep-Sea Res. 1, 45, 115-131. 

MacKenzie,B.R. and Leggett,W.C. (1991) Quantifying the contribution of small-scale turbulence to the 

encounter rates between larval fish and their zooplankton prey : effects of wind and tide. Mar. Eco/. Prog 

Ser., 73, 149-160. 

Mackas,D.L., Denman,K.L., Abbott,M.R. (1985) Plankton patchiness: biology in the physical vernacular. Bull. 

Mar. Sei., 37, 652-674. 

Milligan,T.G. and Hill,P.S. (1998) A laboratory assessment of the relative importance of turbulence, particle 

composition, and concentration in limiting maximal floc size and settling behaviour. J. Sea Res., 39, 227-

241. 

Obukhov,A.M. (1949) Structure of the temperature field in a turbulent flow. lzv. Akad. Nauk. SSSR Geogr. 1 

Geofiz., 13, 55. 

Pascual,M., Ascioti,F.A. and Caswell,H. (1995) Intermittency in the plankton: a multifractal analysis of 

zooplankton biomass variability. J. Plankton Res., 17, 1209-1232. 

32 



Peta,O., Hitier,B., Olivesi,R., Delesmont,R., Morel,M. & Loquet,N. (1998) Suivi régional des nutriments sur le 

littoral nord/Pas-de-Calais/Picardie. Bilan de l'année 1997. IFREMER, Boulogne-sur-Mer. 

Platt,T., Harrison,W.G., Lewis,M.R., Li,W.K.W., Sathyendranath,S., Smith,R.E. and Vezina,A.F. (1989) 

Biological production of the oceans: the case for a consensus. Mar. Eco/. Prog. Ser., 52, 77-88. 

Quisthoudt,C. (1987) Production primaire phytoplanctonique dans le détroit du Pas-de-Calais (France): 

variations spatiales et annuelles au large du cap Griz-Nez. C. R. Acad. Sei. Paris Sér. II, 304, 245-250. 

Raby,D., Lagadeuc,Y., Dobson,J.J., Mingelbier,M. (1994) Relationship between feeding and vertical 

distribution ofbivalve larvae in stratified and mixed waters. Mar. Eco/. Prog. Ser., 103, 275-284. 

Scherrer,B. (1984) Biostatistiques. Morin, Boucherville. 

Schertzer,D. and Lovejoy,S. (1983) The dimension and intermittency of atmospheric dynamics. In Launder,B. 

(ed.), Turbulent Shear Flows 4, Springer-Verlag, Karlsruhe, pp. 7-33. 

Schertzer,D. and Lovejoy,S. (1985) Generalised scale invariance in turbulent phenomena. Physico-Chem. 

Hydrodyn. J., 6, 623-635. 

Schertzer,D. and Lovejoy,S. (1987) Physically based rain and cloud modeling by anisotropie multiplicative 

turbulent cascades. J. Geophys. Res., 92, 9693-9714. 

Schertzer,D. and Lovejoy,S. (1989) Nonlinear variability in geophysics: multifractal analysis and simulation. 

In Pietronero,L. (ed.), Fractals: physical origin and consequences. Plenum, New York, pp. 49-79. 

Schertzer,D. and Lovejoy,S. (1992) Hard and soft multifractal processes. Physica A, 185, 187-194. 

Schmitt,F., Lavallée,D., Shertzer,D. and Lovejoy,S. (1992) Empirical determination of universal multifractal 

exponents in turbulent velocity fields. Phys. Rev. Le tt., 68, 305-308. 

Schmitt,F., Schertzer,D., Lovejoy,S. and Brunet,Y. (1993) Estimation of universal multifractal indices for 

atmospheric turbulent velocity fields. Fractals, 1, 568-575. 

Schmitt,F., Schertzer,D., Lovejoy,S. and Brunet, Y. (1994) Empirical study of multifractal phase transitions in 

atmospheric turbulence. Non/in. Proc. Geophys., 1, 95-104. 

Schmitt,F., Lovejoy,S. and Schertzer,D. (1995) Multifractal analysis of the Greenland ice-core project climate 

data .. Geophys. Res. Lett., 22, 1689-1392. 

Schmitt,F., Schertzer,D., Lovejoy,S. and Brunet, Y. (1996a) Multifractal temperature and flux of temperature 

in fully developped turbulence. Europhys. Lett., 34, 195-200. 

Schmitt,F., Schertzer,D., Lovejoy,S. and Brunet, Y. (1996b) Multifractal properties of temperature fluctuations 

in turbulence. In Giona,M. and Biardi,G. (eds), Fractals and Chaos in Chemical Engineering. World 

Scientific, Singapore, pp. 464-475. 

Schmitt,F., Schertzer,D. and Lovejoy,S. (1998) Multifractal modeling of turbulent fluctuations in finance. In 

Marsella,F. and Salvadori,G. (eds), Chaos, Fractals and Mode/s. Italian University Press di Giovanni 

Iuculano, Pavia, pp. 150-157. 

Schroeder,M. (1991) Fractals, Chaos power laws. Freeman San Francisco. 

Seuront,L. (1997) Distribution inhomogène multiéchelle de la biomasse phytoplanctonique en milieu turbulent. 

J. Rech. Océanogr., 22, 9-16. 

Seuront,L. (1999) Fractals et multifractals: nouveaux outils de caractérisation de l'hétérogénéité spatio

temporelle en écologie marine. Océanis, in press. 

33 



Seuront,L. and Lagadeuc,Y. (1997) Characterisation of space-time variability in stratified and mixed coastal 

waters (Baie des Chaleurs, Québec, Canada): application of fractal theory. Mar. Eco/. Prog. Ser., 259, 81-

95. 

Seuront,L. and Lagadeuc,Y. (1998) Spatio-temporal structure of tidally mixed coastal waters: variability and 

heterogeneity. J. Plankton Res., 20, 1387-1401. 

Seuront,L., Schmitt,F., Lagadeuc,Y., Schertzer,D., Lovejoy,S. and Frontier,S. (1996a) Multifractal analysis of 

phytoplankton biomass and temperature in the ocean Geophys. Res. Lett., 23, 3591-3594. 

Seuront,L., Schmitt,F., Lagadeuc,Y., Schertzer,D. and Lovejoy,S. (1996b) Multifractal intermittency of 

Eulerian and Lagrangian turbulence of ocean temperature and plankton fields. Non/in. Proc. Geophys., 3, 

236-246. 

Seuront,L., Schmitt,F., Lagadeuc,Y., Schertzer,D. and Lovejoy,S. (1999) Universal multifractal analysis as a 

tool to characterise multiscale intermittent patterns. Example of phytoplankton distribution in turbulent 

coastal waters. J. Plankton Res., in press. 

Siegel, S. and Castellan,S.J. (1988) Nonparametric Statistics for the Behavioural Sciences. McGraw-Hill, New 

York. 

Sokal,RR and Michener,C.D. (1958) A statistical method for evaluating systematic relationships. Univ. 

Kansas Sei. Bull., 38, 1409-1438. 

Strickland,J.D .H. and Parson, T.R. (1972) A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Can., 

167, 1-311. 

Taylor, G.I. (1938) The spectrum of turbulence. Proc. R. Soc. London Ser. A, 164, 476-490. 

Truffier,S., Hitier,B., Olivesi,R., Delesmont,R, Morel,M. & Loquet,N. (1997) Suivi régional des nutriments 

sur le littoral nord/Pas-de-Calais/Picardie. Bilan de l'année 1996. IFREMER, Boulogne-sur-Mer. 

Tyler,P.J. (1977) Microbiol and chemical studies of Phaeocystis. PhD Thesis, University ofWales. 

Yamazaki,H. (1993) Lagrangian study ofplanktonic organisms: perspectives. Bull. Mar. Sei., 53,265-278. 

Zar,J.H. (1984) Biostatistical Analysis. Prentice-Hall. 

34 



A17 

Turbulence intermittency, small-scale phytoplankton patchiness and encounter 

rates in plankton: where do we go from here? 

Seuront L, Schmitt F & Lagadeuc Y 

Deep-Sea Research 1 (soumis) 



Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in 

plankton: where do we go from here? 

Laurent Seuront1
, François Schmite and Y van Lagadeuc1

'
3 

1 Station Marine de Wimereux, CNRS UPRES-A 8013 ELICO, Université des Sciences et Technologies de 

Lille, BP 80, F-62930 Wimereux, France 
2 Department offluid Mechanics, VUB, Pleinlaan 2, B-1050 Brussels, Belgium 
3 Present adress: Université de Caen, IUT, Bd du Maréchal Juin, F-14032 Caen cedex, France 

Abstract. Turbulence is widely recognized to enhance contact rates between planktonic predators and their 

preys. However, previous estimates of contact rates are implicitly based on homogeneous distributions of both 

turbulent kinetic energy dissipation rates and phytoplanktonic preys, while turbulent processes as 

phytoplankton cells distributions have now been demonstrated to be highly intermittent even on smaller scales. 

Moreover, turbulent kinetic energy dissipation rates and phytoplankton intermittent (i.e. patchy) distributions 

can be wholly parametrized in the frame of universal multifractals. In that way, we propose to evaluate the 

effect of turbulence intermittency on predator-prey encounter rates in an intermittent frame, and to investigate 

conceptually the potential effects on encounter rates of zooplankton behavioral responses to the related small

scale phytoplankton patchiness. Our results then indicate that the effects of turbulence on predator-prey 

encounter rates is about 30-35% less important when considering intermittently fluctuating turbulent 

dissipation rates instead of a mean dissipation value, and that taking into account zooplankton behavioral 

adaptations to phytoplankton patchiness can increased encounter rates of a factor that can go up to a value of 

60. 

INTRODUCTION 

The influence of small-scale turbulence on predator-prey interactions in plankton has received 

a great deal of attention in recent years. Mu ch of this attention stems from the seminal work of 

Rothschild and Osborn (1988), who proposed an enhanced rate of predator-prey contact due 

to small-scale turbulent shear. Subsequently, much has been written about the positive 

influences of turbulence on predator-prey encounter and the potential negative influences of 

turbulence on organism behavior (MacKenzie et al. 1994, Dower et al. 1997). In any cases, 

small-scale turbulent processes being basically regarded as a great factor of homogenization, 

modeling approaches of predator-prey contact rates under turbulent conditions, and 

subsequent studies of plankton trophodynamics, implicitly assumed that both zooplanktonic or 

phytoplanktonic preys are randomly distributed in space and time (e.g. Sundby and Fossum 

1990, MacKenzie and Leggett 1991, Ki0rboe and Saiz 1995, Caparroy and Carlotti 1996). 

1 



However, an intriguing aspect of small-scale turbulence is that it may promote small-scale 

patchiness rather than uniformity (Jimenez 1997, Jou 1997). Instantaneous gradients of scalar 

such as temperature, salinity or nutrients are indeed greatest at scales similar to the 

Kolmogorov microscale, i.e. the viscous scale where viscosity effects cannot be neglected and 

start to smooth out turbulent fluctuations ( Gargett 1997, Sanford 1997). Th us we occasionally 

should expect stronger bursts, more often than in the Gaussian case, leading to skewed 

distributions reflecting heterogeneous distributions with a few dense patches and a wide range 

of low density patches (Seuront et al. 1999). Recent empirical studies conducted in highly 

turbulent environments have thus shown that both physical and biological parameters such as 

temperature, salinity, and phytoplankton biomass were nor homogeneously nor randomly 

distributed but rather exhibit very specifie heterogeneous distributions, even on smaller scales 

(Seuront et al. 1996a, b, 1999). 

Such heterogeneous distribution could be a salient issue for the general understanding of 

pelagie ecosystem functioning. Davis et al. (1991) thus showed that the feeding and growth 

rates of larval fish increased when the larvae were capable of finding and remaining in food 

patches, perhaps via sorne kind of area-restricted searching strategy (i.e. increased rate of 

turning once food has been encountered). Subsequently, Yamazaki (1993) propounded that 

"plankton organisms experience the local flow structure of turbulence, not the average of the 

flow field" because turbulence presents strong organization both in space and time. In such a 

context, if copepods are able to move from one dense patch to another, then they experience a 

local phytoplanktonic field more dense than the average. Changes in copepod behavior could 

thus be the response to the spatial distribution of the prey and not only to the fluctuation of 

turbulent water motions. Indeed, as proposed in the frame of optimal foraging theory (Pyke 

1984), zooplankton living in highly heterogeneous environments could reveal strategies 

devoted to exploit high density patches and then to optimize the energy required to capture a 

given amount of food. This could be achieve, as suggested in a few laboratory studies 

undertaken in non-turbulent conditions, by increasing both the swimming speed and the 

complexity of swimming paths with increasing food densities, and/or by reducing motility in 

food patches (e.g. Tiselius 1992, Bundy et al. 1993, van Duren and Videler 1995). 

Consequently, in order to estimate an average encounter rates between predators and preys, 

one needs first to consider very carefully the distributions of both physical and biological 

parameters we are dealing with, and second the potential effect of these distributions on the 

average encounter rate, and thus, on zooplankton behavior. 
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Herein, in this study we derive in the multifractal frame simple equations from classical 

encounter theory that take into account both turbulence and behavior contributions to the 

encounter rates between predator and prey. Our conceptual approach is somewhat similar to 

that of Ki0rboe and Saiz ( 1995), but our results are more general in that they provide for the 

very first time an objective way to examine direct and indirect effects of an intermittent 

turbulence on predator-prey encounter rates. We then first evaluate the effect of turbulence on 

predator -prey encounter rates in an intermittent frame and, finally we conceptually investigate 

the potential effects of zooplankton behavioral responses to the related small-scale 

phytoplankton patchiness. 

TURBULENCE AND ENCOUNTER RA TES IN PLANKTON: MO DEL 

FORMULATION 

Following the theory ofRothschild & Osborn (1988), the encounter rateE (encounters.s-1
) 

between planktonic predators and preys is expressed as (Evans 1989): 

(1) 

where C is the number ofpreys per unit volume (preys.m-3
), Ris the perceptive distance of the 

predator (rn), u (m.s-1
) and v (m.s-1

), are respectively the velocity of preys and predators, and 

w (m.s-1
) is the root-mean-square turbulent velocity contributing to enhance the relative 

motion between predator and prey. The rms turbulent velocity w is directly related to the 

intensity ofturbulence, characterized by the turbulent kinetic energy dissipation rate E (m2.s-3
), 

and the following Rothschild & Osborn (1988): 

w = 1.9(w)113 (2) 

where d is the separation distance between predator and prey when the encounter takes place, 

i.e. d = R (Denman & Gargett 1995, Ki0rboe & Saiz 1995, Ki0rboe & MacKenzie 1995, 

MacKenzie & Ki0rboe 1995). Because water motion differs below and above Kolmogorov 

length scale Àk (Àk =(Y: IE)0
·
25

) where v is the kinematic viscosity, ca 10-6 m2.s-1
), the scale 

where viscous effect cannat be neglected and start to smooth out turbulent fluctuations, the 

equations relating turbulent velocity w and E are different, and the encounter rates due to 

turbulence also differ. The rms velocity w should then be expressed as w = 1.37(ER)113 for 

R>Àk (Delichatsios and Probstein 1975), and w=0.42(Eiv)ll2 for R<Àk (Jackson and 

Lochman 1993), where (E/v)112 is the sub-Kolmogorov scale shear fluid rate (y, s-1
). In an 

intermittent turbulence, this distinction is, however, not as sharp as may appear at first glanee, 
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and the Kolmogorov length scale cease to be a reference frame (Frisch 1995). Moreover, Hill 

et al. (1992) have demonstrated that Eq. (2) is valid well below the Kolmogorov length scale. 

Thus in the following, we will consider that application of Eq. (2) is warranted at the spatial 

scales relevant to planktivorous predators such as copepods. 

In order to evaluate for what types of predators turbulence is likely to be of importance, 

Ki0rboe & Saiz (1995) rewrite Eq. (1) as: 

E = Ebehaviour + Eturbulence (3) 

where Ebehaviour and Eturbulence are the encounter rates due to the behavior of the organisms and 

to turbulent water motions, respectively. Considering that both predators and preys swim along 

straight lines in random directions, the behavioral encounter rate Ebehaviour is defined as 

(Gerritsen and Strickler 1977): 

2(u2 +3v2J Ebehaviour = C reR 
3 

V (4) 

Assuming that u = 0 for phytoplankton cells, Eq. ( 4) can be simplified as: 

(5) 

On the other hand, the encounter rate due to turbulence is expressed following Rothschild & 

Osborn (1988) as: 

(6) 

Inserting the expression for therms turbulent velocity w (Eq. 2) yields: 

E 1 9c-v7/3 I/3 
turbulence = · 1 U. \. ê (7) 

Different expressions of the previous equations that yield slightly different results have 

been widely applied to both copepods and fish larvae (e.g. Sundby & Fossum 1990, 

MacKenzie & Leggett 1991, Saiz 1994, Ki0rboe & Saiz 1995, Ki0rboe & MacKenzie 1995, 

Caparroy & Carlotti 1996). All these approaches implicitly assumed that both zooplanktonic or 

phytoplanktonic preys are randomly-with random we mean independent random variables 

expressing a lack of correlation between successive fluctuations-distributed in space and 

time, and we are not aware of any theoretical nor empirical attempt to deal simultaneously with 

the potential effects of microscale turbulence intermittency and the associated phytoplankton 

patchiness on encounter rates in plankton. This is ,however, now feasible following the recent 

advent ofmultifractal concepts in marine ecology (Pascual et al. 1995, Seuront et al. 1996a, b, 

1999). 
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INTERMITTENCY AND MULTIFRACTAL FORMALISM 

A new field of marine research has recently been devoted to the stochastic characterization 

of marine intermittent processes in the framework of multifractals (e.g. Pascual et al. 1995, 

Seuront et al. 1996a, b, 1999). In particular, Seuront et al. (1996a, b, 1999) empirically 

demonstrated on the basis oftemperature, salinity and in vivo fluorescence high resolution time 

series recorded in the Eastern English Channel and the Southem Bight of the North Sea, bath 

highly dissipative areas, that these parameters cannat be regarded as homogeneously 

distributed, but rather exhibit a very specifie kind of skewed distribution-far from the 

Gaussian hypothesis-wholly characterized in the frame of multifractals. 

Multifractals, which have been recently reviewed by Pascual et al. (1995) and Seuront et al. 

(1999) in the marine ecological framework, can be viewed as a generalization of fractal 

geometry (Mandelbrot 1983) initially introduced to describe the relationship between a given 

quantity and the scale at which it is measured. While fractal geometry describes the structure of 

a given descriptor with the help of only one parameter (i.e. the so-called fractal dimension), 

multifractals characterize its detailed variability by an infinite number of sets (roughly speaking, 

each of them corresponds to the fraction of space where data exceed a given threshold), each 

with its own fractal dimension. More precisely, multifractal approaches, which do not require 

any statistical preconception on the data, provide very good approximations-at all scales and 

all intensities-of the statistics of an interrnittently fluctuating descriptor, and determine the 

probability distribution of the descriptor values (see Pascual et al. (1995) and Seuront et al. 

(1999) for further details). Moreover, the statistical consequence of interrnittency being a 

strong departure from Gaussianity (Baker and Gibson, 1987), multifractals thus provide a 

powerful alternative to basic random walk and spectral methods implicitly based on Gaussian 

statistics (see e.g. Peitgen and Saupe 1988). Thus, considering that in the general background 

of spatio-temporal interrnittency encountered in the ocean ( e.g., Platt et al., 1989), knowledge 

of the precise statistics of any intermittent fields may avoid the bias introduced by chronic 

undersampling of an intermittent signal (Bohle-Carbonel, 1992), a stochastic multifractal 

framework is particularly well suited to describing the structure of quantities that vary 

intermittently (Pascual et al. 1995, Seuront et al. 1996a, b, 1999). 

Under fairly general conditions, the properties of the probability distribution of a random 

variable are equivalently specified by its statistical moments. In the multifractal frame, the 

probability distribution of a (multifractal) variable can thus be conveniently described 
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introducing the function K(q) depending on the statistical moment q of the variable that 

describes how the statistical properties of each moment behave under isotropie dilatations and 

contractions; K(q) is non-linear and concave with in particular, K(O) = 0 and K(1) = 0 (see 

Seuront et al. (1999) for further details on the properties of the function K(q) ). That is, given 

a multifractal quantity Q at a scale ratio À, the statistical properties of Q are given by 

(Schertzer and Lovejoy 1987): 

(8) 

where '(.)' indicates statistical or spatial averaging, and Q0 = (Q) is the mean of the 

multifractal quantity Q. The scale ratio À is the ratio between the larger outer scale L and the 

smallest resolution of the measurements l over which the data exhibit any scaling behavior, 

i.e. À= L Il (Fig. 1). 

;;; Injection 
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Fig. 1. Schematic representation showing the form of the frequency spectrum of turbulent velocity cascade, 

where E ( k) is the spectral density and k is a wavenumber (m-1 
). The kinetic energy generated at large-scale 

L cascades through a hierarchy of eddies of decreasing size to the viscous subrange where it is dissipated into 

beat. Practically, this cascade is observed between the outer scale L , and the resolution scale, l , of the 

measurements (often limited by the size of the sampling apparatus), leading to the scale ratio À= L 11. 
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Finally, Eq. (8) can be used to consider the average value of a function /(Q) of a 

multifractal variable Q when considering a Taylor development of this function: 

N 

/(Q) = LarQP (9) 
p=O 

where ar are constants, Q is a multifractal variable as defined above and p the order ofthe 

Taylor development. Then, inserting the expression for the statistics of the variable Q (Eq. 8) 

yields: 

N 

f(Q) = LarQtÂK(p) (10) 
p=O 

Finally, for a detailed discussion of what can be ecologically conclude from the use of 

multifractal algorithms, one may refer to the recent review by Seuront et al. (1999) wholly 

devoted to the introduction of multifractal concepts and their related analysis techniques to 

marine ecology. 

SIGNIFICANCE OF INTERMITTENCY FOR EN CONTER RA TES 

To evaluate the potential significance of intermittency for predator-prey encounter rates we 

need to compare the encounter rates expected in the case of homogeneous and intermittent 

(i.e. multifractal) turbulence and phytoplankton fields, i.e. introducing the precise statistical 

distributions of turbulent dissipation rates and phytoplankton biomass in predator-prey 

equations defined above instead of their average values. In the following we shall apply the 

concepts related to the statistical properties of intermittently distributed turbulence k:inetic 

energy dissipation rate and phytoplankton biomass to the encounter rates due to turbulence 

and behavior. 

Effect of turbulence intermittency 

Let the phytoplankton cell concentration C and the turbulent k:inetic energy dissipation rate E 

be multifractal variables characterized by the scaling moment functions Kc(q) and K 8 (q) 

defined above, and by their means (C) = C0 and (e) = E0 , respectively. Here as below, 

Eturbulence and Ebehaviour will be regarded as estimates of encounter rates due to turbulence and 

behavior under the hypothesis of homogeneous turbulence and prey distributions, i.e. 

Eturbuzence =E(C0 ,E 0 ) and Ebehaviour =E(C0 ). On the other hand, E~rbuzence and E~ehaviour will 
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estimate encounter rates due to turbulence and behavior when C and e are regarded as 

multifractal variables, i.e. E~rbulence = E(C,e) and E~ehaviour = E(C). The scale ratio A 

introduced to describe the statistical behavior of a multifractal variable in Eqs. (8) & (1 0) will 

be denoted as Àe and Ac for turbulence and phytoplankton distributions, respectively. 

Under the general hypothesis of independence of the variables C and e, Eq. (7) 1s 

rewritten as: 

(11) 

and then: 

E , _ (E(C )) _ 1 9_v713C !13').K,(!13) 
turbulence - 'E - · Al\ oEo ""e (12) 

now [ E (CO' Eo) = Eturbulence Îé.013
) ], and 

therefore: 

E~rbulence < Eturbulence (13) 

This yield to consider that taking into account the intermittent nature of turbulent energy 

dissipation rates E leads to smaller estimates of the encounter rates between zooplankton and 

phytoplankton due to turbulence than previous estimates. 

In order to quantif)r the demonstrated negative effect of the intermittent nature of turbulent 

energy dissipation rates E on the encounter rate due to turbulence, we need to compare the 

relative magnitudes of Eturbulence and E~urbulence· First, one need to note that this effect depends 

on the scale ratio Ae of large and small turbulent scales. Nevertheless, the power K e (1 1 3) acts 

as a moderator of this effect, since it is usually quite small, e.g. K(1 1 3) = -0.05, as 

extrapolated from atmospheric turbulence (Schmitt et al. 1992a, b, 1993, 1994) with a scale 

ratio Àe = 1000, this would yield E'mrbulence = 0.70Eturbuienc•. More specifically, we investigated 

this potential decrease in the encounter rate due to turbulence induced by fully developed 

intermittent turbulence on the basis of both basic spectral estimates and instantaneous 

intermittent distributions of turbulent energy dissipation rates of grid generated turbulence. 

Micro-scale turbulence has been generated by means of fixed PVC grids ( diameter 2mm, mesh 

size 1 cm) in a circular fiume. Instantaneous horizontal turbulent velocity has been measured 

by high frequency (1 00 Hz) hot-film velocimetry, and turbulent energy dissipation rate has 

subsequently been estimated in several ways. The average turbulent energy dissipation rate has 

basically been derived following Tennekes and Lurnley (1972) from the turbulence spectrum 

obtained from Fourier analysis oftime series data recorded by the hot-film probe: 
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(14) 

where e is the turbulent dissipation rate (m2.s-3
), v the kinematic viscosity (m2.s"1

), k the 

wavenumber (k = 2n 1 ')...),')...the eddy wavelength (rn), and E(k) the turbulence spectrum 

(m2.s-3
). The spectrum E(k) can be thought of as the mean-square amplitude of velocity 

fluctuations associated with a wavenumber of turbulent motion; these turbulent motions are 

conveniently thought of as eddies of characteristic size corresponding to their wavelength. 

In order to take into account the intermittent nature of turbulence, we now need to 

consider local values, E 1, of the turbulent dissipation rate following the refined similarity 

hypothesis (Kolmogorov, 1962; Obukhov, 1962) as: 

(15) 

where C is a constant nearly equal to 1 (Table 1), Av1 =lv( x+ 1)- v(x)l is the velocity shear 

at scale l . Instantaneous values of e 1 were then subsequently estimated at the smallest 

available resolution (i.e. 100 Hz) as a fractional differentiation of the local velocity shear Av1 , 

raised to the third power (i.e. E1 = (Av1 1 l113r ). Let us mention briefly that a fractional 

differentiation of arder 1/3 corresponds to a multiplication by k 113 in Fourier space equivalent 

to power law filtering (see Schertzer and Lovejoy (1987) and Schertzer et al. (1998) for more 

discussion and more details). We then estimated both Eturbulence and E;urbulence on the basis of 40 

v (cm.s-1
) E ez (SD) ele1 (Ec- EcJ 1 Ec 

10 9.12E-07 9.55E-07 (2.40E-07) 0.95 32.26 
20 1.31E-06 1.26E-06 (3.12E-07) 1.04 36.52 
30 2.01E-06 2.11E-06 (4.89E-07) 0.95 39.87 
40 4.87E-06 4.79E-06 (1.38E-06) 1.02 35.59 
50 8.08E-06 7.80E-06 (2.12E-06) 1.03 38.59 
60 1.14E-05 9.62E-06 (2.49E-06) 1.19 33.48 
70 1.40E-05 1.31E-05 (3.37E-06) 1.07 33.88 
80 2.35E-05 2.28E-05 (6.12E-06) 1.03 36.59 
90 7.50E-05 7.11E-05 (2.18E-05) 1.05 37.68 
100 1.05E-04 9.28E-05 (2.45E-05) 1.13 38.12 

Table 1. Comparison between the turbulent energy dissipation rates estimated from power spectra ( ê ) and 

from fractional differentiation of order 1/3 ( s1 ), and the related differences in the estimated predator-prey 

encounter rates due to turbulence. 

experiments conducted for mean velocity fields ranging from 10 to 100 cm.s-1 (Table 1). Thus, 

considering a mean value of the turbulent kinetic energy dissipation rates E instead of the 
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instantaneous values s 1 (Fig. 2) leads to overestimate the encounter rates due to turbulence of 

about 36.3±2.5% (a value similar to the 30% estimated above) for values of the kinetic 

energy dissipation rate ranging between from 10-6 to 10-4 m2.s-\ values characterizing highly 

turbulent areas such as coastal and frontal areas (MacKenzie & Leggett 1991). 
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Fig. 2. Comparison between the instantaneous distribution of turbulent energy dissipation rates ( s 1 ) estimated 

from fractional differentiation of order 1/3 and the mean value ( E ) estimated from power spectra. 

Effect of small-scale phytoplankton intermittent distribution 

Consider a situation with a planktonic predator searching for phytoplanktonic preys 

intermittently distributed in a multifractal frame; in this simple situation, following the 

parametrization described by Seuront et al. (1996a, b, 1999) a copepod will experience a very 

heterogeneous phytoplankton field exhibiting local concentrations reaching up to 1 0 time the 

average field value (Fig. 2). Moreover, previous laboratory experiments-while conduced in 

non-turbulent conditions-have suggested sorne zooplankton behavioral adaptations related to 

food densities and/or food patchiness. Thus, sorne studies have shown a reduced motility in 

high food concentrations and in food patches, both for ciliate ( e.g. Buskey and Stoecker 1988, 

Fenchel and Jonsson 1988, Jonsson 1989, Jonsson & Johansson 1997) and copepods (e.g. 

Tiselius 1992, Bundy et al. 1993, Saiz et al. 1993, Tiselius et al. 1993), while others indicated 

an increasing swimming speed with increasing food densities (Bundy et al. 1993, van Duren & 

Videler 1995). 
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W e then examine here the relative importance of phytoplankton patchiness for the 

behavioral component of the predator-prey encounter rate defined by Eq. (5). Four type of 

behavioral adaptations have been considered: (i) a constant swimming speed basically used to 

mimic the straight swimming behavior of cruising predators, (ii) an increasing swimming speed 

with increasing food concentration, (iii) both a constant swimming speed and an increasing 

swunrrung path complexity with increasing food concentration, and finally (iv) both an 

increasing sw1mrrung speed and swimming path complexity with increasing food 

concentrations. 

Case 1: Constant swimming speed. 

As stated above, the phytoplankton distribution is regarded as a multifractal variable 

characterized by its mean density (C) = C0 , and the scaling moment function Kc(q). In this 

case, Eq. (5) is simply rewritten as: 

E~ehaviour = (E(C)) = Jt!?. 2VCoÀ~c(l) 

now E(C0 ) = 1tR2vC0 , and Kc(1) = 0 as defined above, therefore: 

E~ehaviour = Ebehaviour 

(16) 

(17) 

This clearly demonstrate that small-scale phytoplankton patchiness cannot have any effect 

on the behavioral predator-prey encounter rate if predator are basically regarded as 'passive' 

particles only characterized by their swimming velocity, unable to adapt their behavior to the 

ambient conditions. This is, however, ali the more unlikely following the large amount of 

literature demonstrating the great chemo- and mecanoreception abilities of planktonic 

copepods (e.g. Buskey 1984, Strickler 1982, 1985, Paffenhoffer and Lewis 1990, Yen and 

Fields 1992, Bundy et al. 1998). We then consider a more likely hypothesis based on a 

differentiai swimming speed regarded as a function of food density. 

Case 2: Density-dependent swimming speed 

For simplicity, we will assume that the swimming speed of the predator, v, is a linear function 

of the phytoplankton density C following v = aC+ b, where a and b are constants, with a> 0 

and b > 1. Thus, Eq. (16) yield (Eqs. 8, 9 & 10): 

E~ehaviour = (E(C)) = 1tR 2 (aC~À~c(2) + bC0 ) 

Considering E(C0 ) = 1tR 2 (aC~ +bC0 ), Eq. (18) yields: 

E~ehaviour > Ebehaviour 

(18) 

(19) 
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In both cases, we find that such a simple behavioral adaptation to phytoplankton patchiness 

can have salient consequences on the behavioral encounter rate initially defined by Eq. (5). 

Thus, a positive effect could be expected when the swimming speed increases with increasing 

phytoplankton densities, which has been experimentally demonstrated on two copepod species, 

Centropages velificatus (Bundy et al. 1993) and Temora longicornis (van Duren & Videler 

1995) for phytoplankton concentrations within the range of cell densities found in waters 

where those species are abundant. On the other hand, a negative effect could be expected when 

the swimming speed decreases with increasing phytoplankton densities. This particular 

situation has, however, on1y been observed to our knowledge in one laboratory experiment 

conduced on female Temora longicornis at very high food concentrations (van Duren & 

Videler 1995). Moreover, from this particular point of view, the effect of phytoplankton 

patchiness is most significant for cruising than for ambush feeding predators, and also for fast 

swimming predators (high v). ln any case, the effect of phytoplankton patchiness is here quite 

important. Indeed, K(2) = ~ is usually denoted as the intermittency parameter which has 

already been estimated as being in the range 0.1-0.3 for passive scalars-as phytoplankton cells 

are-distributions in turbulent flows (Prasad et al. 1988, Seuront et al. 1996a, b, 1999). Scale 

ratios of Àc = 100(Seuront et al. 1996a) and Àc = 20 (Seuront et al. 1999) thus respectively 

give enhancing factors of 1.6-4 and 1.4-2.5 of the encounter rate due to intermittency of 

phytoplankton distribution. In the two previous empirical studies, phytoplankton cells have 

been shawn to behave as a purely passive scalar over spatial scales ranging from 0.2 rn (the 

smallest resolution of the measurement) and 20 m. One may thus hypothesize that such a 

behavior could still be observed to the smallest scales (i.e. Batchelor scales) and a potential 

scale ratio of Àc = 1 000 can be reasonably suggested for phytoplankton distribution in the 

ocean, leading to enhancing factors of the behavioral encounter rate defined in Eq. 18 in the 

range 2.0-8.0. 

Case 3: Constant swimming speed and patch exploitation 

This hypothesis has been drawn following empirical results demonstrated the ability of 

zooplanktonic organisms to detect and to remain in food patches. This could be achieve 

following different strategies such as an increase in the swimming path complexity ( e.g. Bundy 

et al. 1993), but can be generally summed up considering that the time spend by a copepod in a 

food patch is all the more important that the associated food density is elevated. 
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So, let emin be an hypothetical minimal food patch density in which case the time, t, spent 

in the considered patch is set to be unity (i.e. t = 1 ). For a given food quantity C, such as 

C > Cmin, the time spent in a food patch will be expressed as t = CC. . Finally, the biological 
mm 

encounter rate E~ehaviour is expressed as an addimensional expansion ofEq. (5) as: 

(20) 

E~ehaviour > Ebehaviour (21) 

Thus, predators able to develop strategies to remain in a given high food density patch will 

substantially increase-up to a factor c;'A~c(Z) 1 emin -their effective encounter rate with 

phytoplankton cells. F ollowing the previously chosen formalism, this effect will be ali the more 

important that the prey density is high (see Eq. 20). Finally, this could be the most likely 

behavioral adaptation to resources patchiness, because this strategies has been found for a wide 

variety of organisms and prey patchiness (Coughlin et al. 1992, Larsson & Kleiven 1996, 

Bascompte & Vila 1997, Jonsson & Johansson 1997, Kostylev et al. 1997, Ritchie 1998). 

Case 4: Density-dependent swimming speed and patch exploitation 

The equation is now obtained introducing the previous density-dependent swimming speed, 

v= aC +b, in Eq. (20) yielding: 

E' . = (E(C)) = rrR
2 

(aC3
ÀKcC

3> + bC2'AKc(z)) 
behavwur C . 0 C 0 C 

mm 

(22) 

With E(C0 ) = rtR2 /(Cmin (aC~+ bC;)), and as previously stated when we tested the effect of a 

density-dependent swimming speed alone, b > 0 , it cornes: 

E~ehaviour > Ebehavioour (23) 

This particular situation can be regarded as a generalization ofEq. (18) to a more complete 

and complex behavioral response to phytoplankton patchiness. In particular, for a> 0, we have 

Eq. (18) < Eq. (22), indicating an increased behavioral contribution to predator-prey encounter 

rates. The effect is here becoming very important. Indeed, the scale ratio Àc is usually quite 

large and Kc(3) is in the range 0.3-0.6 for passive scalars advected by fully turbulent flows 

(Schmitt et al. 1996, Seuront et al. 1996a, b, 1999), giving for Àc = 100 and Àc = 20 
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enhancing factors in the range 3.0-16 and 2.5-6.0, respectively. Here our test-case Àc = 1000 

would lead to an enhancing factor in the range 8.0-63.0. 

While further investigations could have been conduced in order to provide further insight 

into the analytical properties of the previous equations, the resolution of this particular issue is 

beyond the scope of this contribution. Let us nevertheless recall that, as demonstrated by 

Ki0rboe & Saiz (1995) and Ki0rboe & MacKenzie (1995), the swimming speed of planktonic 

predators is very dependent on their size, suggesting that the previously demonstrated effect of 

behavior will be all the more important that the predators are large (i.e. high v values in Eqs. 

16 & 18, and high b values in Eqs. 18 & 23). Moreover, Eqs. (16, 18, 21 & 23) are also 

sensitive to the perceptive distance of the predator ( R ), which is decreased in high 

hydrodynamic conditions (Ki0rboe & Saiz 1995), leading to a an increase in the behavioral 

contribution to the predator-prey encounter rates in low hydrodynamic conditions. Moreover, 

these features could also provide an alternative explanation to the apparent inadequation 

observed by Saiz (1994) between empirical encounter rates and the theoretical values expected 

following the basic particle encounter theory. 

CONCLUSIONS 

The general result here-based on multifractal parametrisation of intermittent distributions of 

both turbulent kinetic energy dissipation rates and phytoplankton biomass-is first that the 

effect of turbulence on predator-prey encounter rates is less important than previously thought 

on the basis of the basic hypothesis of homogeneous turbulence. Nevertheless, a numerical 

estimate of this effect in a test-case with /..& = 1000 leads to a moderate effect of intermittency, 

due to small value of the exponent Ke(1/3). Afterwards, the contribution of behavioral 

components is obviously more developed than when phytoplankton preys are regarded as being 

homogeneously distributed. An increase in encounter rates cannot thus be any longer regarded 

as a simple direct consequence of an increase in the relative velocity of the predator and the 

prey induced by turbulent velocity, but rather as both direct and indirect consequences of 

intermittent small-scale turbulence which generates very heterogeneous phytoplankton 

distributions. Indeed, the scale ratio of the turbulent cascades (cf Fig. 1) is here of salient 

importance. With a test-case of Àc = 1000, an intermittent (i.e. multifractal) phytoplankton 

distribution can thus lead to enhance the behavioral component of the predator-prey encounter 

rate of a factor that can go up to a value of 60 in our last case study. Since this enhancing 
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factor depends on the scale ratio Àc, it appears to be a determinant factor for the encounter 

rate estimates. 

The previous approaches have been developed with copepods in mind, but the equations 

can be easily generalized so that they apply to other planktivorous predators as weil. Indeed, 

considering the recently demonstrated very specifie heterogeneous distribution of zooplankton 

(Pascual et al. 1995, Tsuda 1995), similar approaches could be conduced on the effects ofboth 

turbulence and intermittent zooplankton distributions on the larval fish feeding behavior, which 

bas widely been shown to exhibit very complex patterns [see e.g. Dower et al. (1997) for a 

review]. This also suggests reconsidering the effects of small-scale turbulence on estimates of 

plankton food requirements, and energy gain-and-loss for foraging. Indeed, following studies 

related to optimal foraging theory (Pyke 1984), zooplankton living in highly heterogeneous 

environments could develop strategies to exploit high density patches and then to optimize the 

energy required to capture a given amount of food. This could be achieved, as previously 

suggested, by increasing the complexity of swimming pathes with increasing food densities, 

and/or reducing motility in food patches. Recent papers (Marguerit et al. 1998) dealing with 

grazing in heterogeneous (i.e. multifractal) phytoplankton fields have thus demonstrated that 

very simple behavioral strategies related to food quantity perceived by a predator could lead to 

very specifie results in terms of swimming behavior and ingestion rates in comparison with 

what would have been obtained in homogeneous environments. A precise description of the 

behavior of both predators and preys then appears to be a salient issue for the future modeling 

of plankton trophodynamics in turbulent environments (Browman and Skiftesvik 1996, Osborn 

and Scotti 1996), propounding notably the advantage of individual based approaches 

(Yamazaki 1993, Levin 1994). 

In reviewing the available literature on turbulence and larval fish feeding, Dower et al. 

(1997) pointed out that future research would do weil to include non-homogenous prey 

distributions and predator behaviors that more realistically mimic field conditions. Indeed, in 

the field patchiness is present at both temporal and spatial scales. Systematic studies of 

simplified mimics and real plankton organisms of widely varying nature and behavioral 

properties in a diversity of steady and unsteady flows are then still needed to dissect the 

multiple adaptative strategies of real organism in a real ocean. In that way, both the analytical 

model and the multifractal frame [see Seuront et al. (1999) for a review], may be a starting 

point to investigate the precise effects of the real nature of the physical and biological 

surrounding environments on both plankton behaviors and distributions. 
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Abstract. Within the framework of a pluridisciplinar research project 
gathering biologists, mathematicians, and computer scientists, we pro
pose a multi-agent modeling of an ecosystem. We justify the use of a 
multi-agent modeling for the study of the behavior for such a system 
which can not be suitably modeled analytically ta guarantee its relevancy. 
Such a modeling focusses on the behavior of the living being rather than 
on emergent properties of the dynamics of the system. By the way, we 
present the concepts (such as Petri networks [11), perception of agents, 
simulation of concurrent living pro cesses) and the platform that we have 
developed in a generic way, using the application in ecology as a case 
study. 

1 Introduction 

The main objective of this work is to identify the behavioral rules of a small 
crustacean, part of the family of zooplanktons named "copepod" ( see Fig. 1). 
A keypoint in this modeling is the study of the influence of the environment 
on its behavior: our assumption is that the copepod has an active behavior of 
search for food (phytoplanktons). By "active", we mean th at the copepod has 
an individual behavior rather than being merely transported as a particule by 
the turbulences of water. (At its millimetric scale, the oceans are extremely tur
bulent.) We aim at showing that the fact that the behavior of the copepod is 
active implies important consequences on its viability and its success for sur
vival, and reproduction. Being a very important link within the food chain in 
oceans, a more accurate knowledge of the copepod will finally bring us a more 
accurate and sounder understanding of the way the marine eco-system works, 
as well as its dynamics. To that purpose, the project develops itself along three 
complementary directions that are continuously interacting with each others: in 
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vivo observations, analytical models, and modeling of the individual behavior 
of copepods using agents. Our research has shawn that the distribution of phy
toplankton is strongly heterogeneous in the environment of the copepod [1 0]. 
Current results show that this heterogeneity influences the energy assessment of 
the copepod. By measuring the quantity of nitrogen absorption during nutrition, 
the observations show that the output of the behavior of the copepod (the ratio 
of the energy that is spent and the energy that is ingested) varies according to the 
type of distribution of food. For example, a turbulent environment, favourable 
to an overall mixing, increases the rate of meeting of the copepod with the par
ticles of phytoplankton and thus increases the energetic ratio. It now remains to 
study the influence of the behavior of the copepod in su ch situations. The study 
of this behavior is incompatible with an analytical approach, as we will see it. 
So, we use a multi-agent system (MAS) approach [4]. 

Fig. 1. Copepode Centropages hamatus 

Using a MAS approach is a considerable change in the mode of thinking in 
biology which relies on models using equations, statements, and statistical anal
yses [5]. The researcher, in our case the biologist, has to formulate the studied 
individual behavior and its interactions with its environment. ln section (2), we 
state the problem (just to give its flavor!). Section (3) is devoted to the presenta
tion of our modeling tool. We show how the dynamics of agents is formalized with 
Petri nets, as weil as the modeling of agents' perception of their environment. 
Sorne results are then presented in section ( 4). 

2 The system under study 

At present, the copepod is represented by models either of the type "black box" 
(see Fig. 2), or analytical models [1]. These models seek to describe in terms of 
input flow, output flow and transfer function each "process" of the organism. 

Let us describe the pro cess of ingestion of preys in the case of the phytoplank
ton (see Fig. 2). The copepod captures a prey (a particle ofphytoplankton). After 



Multi-agent modeling of the physical/biological coupling 3 

Prey• 

Fig. 2. Model of the process of ingestion 

a handling time, the prey is stored in the gut and enters the process of digestion. 
The gut transforms its contents in usable energy (comparable preys) which one 
expresses out of nitrogen, or wastes (fecal halls). This transformation is contin
uous: within each L1t, a quantity L1q of caught preys is processed (this quantity 
is proportional to the quantity stored in the gut). Usable energy is either con
sumed (metabolism, digestion, or stroke), or stored ( egg production for females, 
for example). As for wastes, it is expelled. 

There are analytical models which have the ambition to represent, as weil 
as possible, the biological processes which govern the copepods. [1] proposes 
a madel synthesizing the various models developed until now. It captures the 
activities of capture and ingestion using five coupled differentiai equations. 

This mo del suits for the process of capture. However, from our point of view, 
the contribution of the behavior is partially neglected. Indeed, one can put into 
equations the fact that the activity of nutrition of copepod as a function of the 
density of preys, the leve! of turbulence of the environment, the mode of hunting 
and the quantity of food in the gut; however, it is mu ch more difficult to take into 
account various factors within the behavior such as the way copepods perceive 
their environment, the size of preys, and the speed of stroke of copepod relative! y 
with that of its prey. 

3 The multi-agent modeling 

The system under study is composed of a mass of water in which "patches" 
of phytoplankton and copepods are immersed. Each agent is located and has 
its properties among which its behavior. The patches of phytoplanktons have a 
certain size and are subject to currents and turbulence. The copepod has various 
characteristics (its "weigth" expressed in nitrogen, the volume ofits gut, its speed 
of stroke ... ). Its behavior, abject of the study for the biologist, is defined by a 
Petri network to allow the description of sophisticated behaviors with a standard 
and simple tool. Agents are reactive which means that their behavior is governed 
by their perception and their current internai state, which, in turn, eventually 
induces an action and a new internai state (see Fig. 3). 
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Fig. 3. Reactive agent 

3.1 Modeling tool 

There is a large number of modeling tools more or less general (Swarm [9], Mant a 
[8] ... ). In the majority of the cases, they are platforms either adapted to one or 
a family of problems, or generic. To our knowledge, the generics involves, in ali 
the cases, a dependence with respect to a data-processing environment or of a 
language of development but especially these platforms is containing reusable 
primitives and thus should be written code ! Ail these reasons pushed us to 
design a new tool of modeling and simulation of reactive, perceptive and located 
agents. 

Fig. 4. Hierarchy of agent familly 

We use an abject language (Java) in which we find ali the concepts of the 
paradigm object as weil as a set of advanced classes ( thread, stream ... ). These 
classes enabled us to define our classes of agents. Initially, these classes of agents 
were accessible by a language with which one can describe a category of agents 
via their behavior, their properties and their means of communication. A second 
language rnakes possible the description of the environrnent. These two languages 
composes a platform where one can describe the agents, to create them and 
activate them. At present, these two languages are encapsulated in a graphie 
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interface written in Java (thus portable and accessible on Internet- http:/ /www
lil.univ-littoral.fr/ ramat) and are accompanied by tools for the definition of the 
environment, tools for the representation of moves of located agents and layout 
of the variations of the properties of the agents. 

Dynamics. The dynamics of agents is modeled using Petri networks. Bach agent 
can have severa! Petri networks and each net perform, in parallel with others, 
a process. The Petri networks can model process including changes of states, 
moves, message exchanges ... Basically, Petri networks specifies the states within 
which an agent can be, the possible transitions between states, and the condi
tions to fulfill for each transition to occur. To each state is associated a set of 
actions performed by the agent when the state is activated; actions may be a 
displacement in the space, an update of its internai state, perceiving its envi
ronment ... The state is activated when it is first reached. A transition actually 
occurs when its condition is fulfilled. 

In the simulation of real processes, it is crucial to take its duration into 
account. Renee, each transition is assigned a duration which is either constant 
and deterministic, or stochastic.The introduction of the time allows to construct 
dynamically a schedule. At every time t, each active Petri net checks if it has 
activable transitions. If it is the case then they are occur. Two cases of figure 
are then to consider : either the crossed transitions are not temporized or they 
are it. In the second case, the activation of following states put in the schedule. 
This mechanism supposes that ail active Petri nets reach either a temporized 
transition or a state from which no transition can be activated. 

Perception. By analogy with biological entities, any agent is endowed senses 
more or less developed. In our mode!, an agent has several senses and each one 
of them is defined by three parameters: the type of perceived agents, the sector 
( according to the orientation of the agent), and the distance within which the 
perceivable agents are actually perceived. By this way, one can test different 
scenarios according to possible models of perception of the copepod. Moreover, 
one agent can perceive only a part of the characteristics of another agent. One 
specifies in this case the perceived characteristics. Furthermore, an agent per
ception of a certain feature of an other agent may not be a carbon copy of the 
perceived agent actual feature but somehow blurred by sorne perception bias, or 
sorne environmental effect (turbulence ... ). An agent can also have severa! senses. 
The sense to be used as a certain stage of the behavior of the agent has to be 
specified. 

In this approach, senses are at the base of the network of knowledge of the 
agents. Dynamically, the agent builds its neighborhood according to its position 
in space, and to its senses. 

3.2 The mode! 

We started from the assumption that the copepod adopts two distinct behaviors: 
a stroke directed in the search of food and random jumps. These behaviors have 
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a direct influence on the process of ingestion of the cell of phytoplankton. Th us, 
we focus exclusively on this process and we leave aside the digestion which IS 

not to disregard to obtain a complete mode!. 

General information. The system is composed of three entities: a mass of water, 
cells of phytoplankton and copepods. Initially, we consider only one copepod at a 
time sin ce the aim of this study is the hunting behavior of copepods. The mass of 
water constitutes the environment in which evolves and moves the other entities. 
The size of the copepod (1 mm) is used as the basic length for the discretization 
of this environment. For the moment, the environment is considered as two 
dimensional and split into chunks of 1mm2. Each chunk is dealt with by spatial 
agent. The cells of phytoplankton are very numerous (from 10 cells per liter 
to 108 cells per liter which yields a maximum of 102 cells per chunk). Thus, it 
is not conceivable to mode! each cell with one agent. The solution which was 
adopted consists in defining a property "Number of cells" at the leve! of spatial 
agents. One delegates the management of food to the spatial agents, that is to 
the environment. As the copepod, the environment is represented by a dynamic 
agent which behavior is described in the subsequent part. 

The unit of time of simulation is noted u.t. It is fixed by the duration corre
sponding to the time necessary to perform the quickest action, i.e. the handling 
of a cell of phytoplankton by the copepod, 1/20 s. 

The dynamics of the copepod. The Petri network that models the dynamics of 
displacements of the copepod is divided into four parts: 

- as soon as a cycle of tl u.t., for example 75 u. t., is elapsed, the copepod 
carries out a jump without considering what surrounds it, 

- during t2 u.t. (time to cross a chunk of the environment), the copepod ex
plores the place where it is and if food is available there; within each unit of 
time, it can capture a cell of phytoplankton, 
on the other hand, if there is no food, it continues to swim to reach the next 
chunk, 
at the end of the t2 u.t. necessary to cross a chunk, the copepod "chooses" 
a new chunk to be explored and proceeds there. 

Let us take a doser look at the active phase dealing with the capture of food. 
With the exception of the random jumps, the copepod strokes and traverses a 
chunk at each t2 u.t. When this time amount of time has elapsed, the copepod 
changes its location. This change is a function of the copepod behavioral strat
egy. In the case of our present work, the probability that a chunk is chosen is 
proportional to the amount of food it holds: the more food, the more likely the 
copepod will move to it. 

Locally, the copepod captures the cells of phytoplankton if it has not yet 
eaten too much within the last u.t. Indeed, the copepod decreases the quantity 
of food which it absorbs according toits leve] of satiety, itself directly bounded, 
for the moment, with the number of cells of phytoplankton present in the gut. 
The function of satiety is: 
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Cg = 1 _ Yl;reyXl (l) 
3Vgut 

where VpreyX1 represents the volume of the not-yet-digested preys and Vgut 
the volume of the gut of the copepod. It captures the cell according to a certain 
probability and, if it does not, the cell disappears from its field of vision. 

4 Experimental Results 

We define two types of copepods according to their strategy of stroke: random 
or directed towards food. The environment is composed of a 2D grid of 1024 
square chunks (32x32). Each chunk is a spatial agent and is connected to its 8 
neighbors. The cells ofphytoplankton are distributed either by patches (see Fig. 5 
and Fig. 6 - the distribution is multifractal [10]), or uniformly. In bath cases, 
the total density is identical (2 cells by chunk). For patches, various densities of 
phytoplankton are used ( represented by different levels of gray). 

Using the variables defining the interna! state of copepod agents, we measure 
within each step of simulation: the energy, expressed in pg of nitrogen, contained 
in the gut, its usable energy, the number of captured cells of phytoplankton and 
two variables of the analytical model (X3 and X 4 , see Fig. 2). 

Fig. 5. Path of the copepod swimming at random 
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Fig. 6. Path of the copepod swimming towards food 

We use a graphical tool to visualize the paths followed by copepods. By 
superimposing the path of the studied copepod and the distribution of cells of 
phytoplankton, one shows that in the case of a non homogeneous distribution of 
the cells of phytoplankton, the strategy of the directed stroke is more effective. 

If one compares the curves representing the quantity of food in the gut of the 
copepod along the time (see Fig. 7), according to the distribution of the cells 
of phytoplankton and the strategy of stroke, it appears clearly th at the directed 
stroke is favorable to the feeding of the copepod from the point of view of energy. 

If the copepod is located inside a homogeneous field of phytoplankton, the 
strategy of stroke does not have any influence on the feeding since it is able to 
find food in all directions in same quantity. On the other hand, in a heteroge
neous field, the random strategy leads the copepod to find food at random, and 
especially to leave chunks with food without seeking to benefit from it. Therefore 
this strategy is less effective. 

In conclusion, we find the principal results stated in [1] for a uniform config
uration of field and random stroke. It remains to carry out comparisons in vivo 
with results of experiments. However, these in vivo rem ain di:fficult to realize for 
the moment. The only points of possible comparison relates to the aspect of the 
paths according to the density of food [3]. 
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Fig. 7. Quantity of food (pg of nitrogen) in the gut of the copepod against time 

5 Conclusion 

As part of a joint project gathering biologists, mathematicians, and computer 
scientists, we have presented the modeling of the behavior of an animal pertain
ing to the family of zooplanktons, namely the copepod. The goal of our work is 
to study the coupling between the behavior of the animal and its environment. 
We use multi-agent systems to obtain an executable model with which a wide 
variety of behavioral dynamics can be expressed. Using MAS, we are also able to 
make the behavior of agents evolved during time, and co-adapts to its changing 
environment. We obtain results of simulation that are compatible with in vivo 
observations and which are based on a model of the behavior of the copepod 
rather than an analytical description using abstract quantities and parameters. 
Owing to this behavioral madel, we are able to assess many assumptions about it, 
something which does not seem to be able to be clone within the usual analytical 
framework. 

Basically, the model presented in this paper is a translation of the analytical 
madel into algorithm. Thus, we end-up with averaged measures resulting from 
assessments and random processes, such as that of satiety. The same remark 
is valid for the digestion part. The only new element is taking into account the 
behavior at the level of the stroke. We emphasize that the definition ofthe agents 
is definitely simpler and uses a reduced number of parameters compared to the 
analytical madel. 

We are now interested into breaking up the "enigmatic" processes, such as 
the random jumps, and the speed of constant stroke. It is obvious that these 
actions hides complex processes. For example, the observation shows that the 
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speed of stroke is not constant and that these variations are due to interactions 
with the environment. It remains to imagine them and subsequently specify them 
precisely. 

In addition, if one is interested in the rules of decision regarding the capture 
of a cel! of phytoplankton, one can wonder whether elements such as the phys
iological state of the copepod does not come into play. For example, a female, 
carrying eggs, has significantly more requirements in food than a male. Further
more, it is obvious that a copepod did not behave in the same way on its own, 
or within a colony of its kind. 
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Abstract. In the tidally mixed coastal waters of the Eastern English Channel, the vertical structure of 

temperature, salinity and in vivo fluorescence have been characterised in terms of fractal dimensions, while 

light transmission did not exhibit such structures. Thus, on the basis of a sampling strategy conduced during 

five years in both offshore and inshore waters of the Eastern English Channel, we showed that, while 

temperature and salinity fractal structure is tidally and geographically independent, fluorescence fractal 

dimensions are (i) significantly higher in offshore locations, (ii) dependent on the current direction at the scale 

of the high-low tidal cycle, (iii) dependent on the current speed at the scale of the neap-spring tidal cycles, and 

(iv) dependent on phytoplankton concentration at the biological annual cycle. Finally, a fractal modelling 

approach showed that the impact of this space-time structure of phytoplankton biomass vertical structure on 

primary production estimates could be potentially very important, essentially for inshore waters and in high 

phytoplankton density conditions. Moreover, the relative importance of vertical phytoplankton distribution on 

primary production estimates has been demonstrated to lie in the occurrence and persistence of srnall-scale 

phytoplankton layers, opening new perspectives on the understanding of structure and functioning of marine 

systems. 

Introduction 

Marine systems exhibit intimate relationships between physical and biological processes 

(Legendre & Demers 1984, Mackas et al. 1985), as shown by the coupling between the 

distribution of phytoplankton populations and the structure of their physical environment over 

a wide range of spatial and temporal scales (Haury et al. 1978). 

In particular, in tidally mixed coastal waters such as the Eastern English Channel, the 

dissipation of tidal energy is basically regarded to be responsible for the vertical 

homogenisation of the shallow (50 rn maximum depth) inshore and offshore water masses. 

However, recent investigations have shown that the variability perceived in temperature, 

salinity and phytoplankton biomass fluctuations can be wholly characterised in terms of 

heterogeneity over a wide range of scales (Seuront et al., 1996a, b, 1999) and that this 

heterogeneity cannot be neglected (Seuront et al., 1999). In particular, Seuront & Lagadeuc 
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( 1998) demonstrated that the vertical distribution of phytoplankton biomass, basically regarded 

as vertically homogenised by vertical mixing-and then characterised by a mean concentration 

and its associated variability (i.e. the variance S2)-should also be regarded as being vertically 

structured in terms of fractal dimension. Moreover, this fractal structure appears to be both 

space and time-dependent, in relation respectively with the inshore-offshore hydrological 

gradient and the tidal advective pro cesses. However, these results, based on the analysis of the 

data recorded along an inshore-offshore transect, and characterised by an extreme intricacy of 

space-time scales and processes and to severe limitations in terms of sampling temporal 

resolution, led to a lack of generality concerning the processes responsible for the observed 

structure for both inshore and offshore locations. 

Herein, the goal of this paper is to provide a precise quantification of the vertical structure 

of phytoplankton distribution at the scale of the high-low tidal cycles and at the scale of neap

spring tidal cycles for both inshore and offshore waters of the Eastern English Channel in order 

to specify and generalise preliminary results by Seuront & Lagadeuc (1998). Moreover, 

considering that vertical mixing could control daily primary production rates at the scale of the 

high-low tidal cycles at spring tide and at the scale of neap-spring tidal cycles in shallow 

coastal waters, leading to increased primary production estimates from 40 to 100% (Lizon et 

al. 1995, Lizon 1997, Lizon & Lagadeuc 1998), we also explore a modelling hypothesis based 

for the very first time on fractal simulations of the vertical fractal structure of phytoplankton 

biomass on primary production estimates. 

Sampling date Tidal conditions Sampling site Chi. a (f.lg.r1
) Profiles 

Sl 29/04/93 - 01/05/93 NT ow 1.50 36 
S2 20/03/94 - 21/03/94 NT cw 1.50 36 
S3 07/09/94 - 08/09/94 ST cw 7.50 24 
S4 02/04/96 - 04/04/96 ST cw 13.80 47 
S5 06/04/1996 sr cw 15.00 15 
S6 07/04/1996 ST ow 3.00 13 
S7 21/06/1998 ST cw 8.40 24 

Table 1. Main characteristics of the seven sampling experiments considered in the present study including tidal 

conditions (NT: neap tide; FT: flood tide), sampled water masses (lW: inshore waters; OW: offshore waters), 

mean chlorophyll a concentration (averaged over the who le water column) and the number of recorded profiles 
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Material and methods 

The data. The data set studied in this paper consists in hourly measurements of physical 

parameters (temperature, salinity and light transmission) and in vivo fluorescence (i.e. an index 

ofphytoplankton biomass) taken from the surface to bottom with an SBE 25 Sealogger CTD 

and a Sea Tech fluorometer during seven sampling experiment (numbered from SI to S7) 

conduced between 1993 and April 1997 in different tidal conditions both in offshore and 

inshore waters of the Eastern English Channel (Fig. 1; Table 1 ). Current speed and direction 

were recorded with Aanderaa current meter every 5 minutes at different depths (Table 1). 

Water samples were collected from each sampled depth at 2 h intervals for data sets S 1 to S4 

and at 1 h intervals for data sets S5 to S7, and chlorophyll a concentrations [1 1 filtered frozen 

samples, extracted with 90% acetone, assayed in a spectrophotometer and the chlorophyll a 

concentration calculated following Strickland & Parson (1972)] were estimated for each 

sampled depth. 

' 
( 
... 

Fig. 1. The study area showing the two sampling stations, and the inshore and offshore waters of the Eastern 

English Channel 

Fractal analysis. Fractal dimensions, whose applicability to planktonology has recently been 

demonstrated (Seuront & Lagadeuc 1997, 1998), were estimated using a method based on 

geostatistics and regionalised variables (RV) theory (Joumel & Huijbregts 1978). The 

variations between measurements ofRV is expressed by the semivariogram y(h), defined as: 

1 ~) 2 

y(h) = 
2

N(h) b[Z(xJ- Z(xi + h)] (1) 
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where z(x1 +h) is the value of the observation z(x;) at a point separated from point i 

(i = 1,2, ... ,N) by distance, or lag, h, and N(h) is the number of pairs of observations 

separated by the lag h . The function z( xi) is said to be intrinsically stationary if its expectation 

E{z(xJ} is constant (i.e. J..t(x) = J..l), and the variance of the difference between z(xJ and 

z( xi + h) is finite. At the same time both the expectation and the variance are assumed to be 

independent of the position x (i.e. for a vertical profile, expectation and variance depend only 

on its length and not of the absolute location). In this paper stationarity was not intrinsically 

assumed, but was tested by calculating Kendall's coefficient of rank correlation, r, between 

the profile and the x-axis values in order to detect the presence of a linear trend (Kendall & 

Stuart 1966; see Seuront & Lagadeuc (1997) for further details). We thus eventually detrended 

the time series by fitting linear regressions to the original data by least squares and used the 

regression residuals in further analysis, a common remediai procedure in time series analysis 

(Fuller 1976). 

The fractal dimension D can thus be estimated from the slope m of a log-log plot of the 

semivariogram of z( xi) as: 

D=(4-m)/2 (2) 

Furthermore, the appropriate range of h values to include in the regression was determined 

using the values of h which maximised the coefficient of determination (r) and minimised the 

total sum of the squared residuals for the regression (Seuront & Lagadeuc 1997). For vertical 

profile, the fractal dimension D takes values between 1 and 2. A low D value means that the 

heterogeneity is high ( strong autocorrelation both in weak and high values of h) and there may 

be dominant log-range effects, while high D value indicates that the variable is randomly 

distributed in space (weak or no autocorrelation) and that only weak short-range effects exist 

[e.g. Seuront & Lagadeuc (1997) for further details]. In this paper, the fractal dimension is 

regarded as a measure of the degree of spatial dependence of a variable. So the relation of D 

to the sampling scale indicates the trend of the spatial structure of the variable. 

Primary production estimates and fracatl mode!. Primary production rate can be predicted by 

the empirical model of Platt et al. (1980), as a function of the light incident 1, photosynthetic 

parameters P:, as and ps, and chlorophyll a concentration B: 

P(I;P!;aa;j3a) = B·P!(l- e<-aai/P~))_e<-~ai,P~) (3) 

where P: is the photosynthetic capacity [maximum of the photosynthesis-irradiance curve ], a.B 

is the photosynthetic efficiency ( slope of the photosynthesis-irradiance curve at low light 

4 



intensity, and I3B a photoinhibition indice (slope of the photosynthesis-irradiance curve at high 

irradiance) [see Lizon et al. (1998) for further details]. 

Rather than considering the chlorophyll a concentration B of a single cell or a vertical mean 

value of phytoplankton biomass as usually done (Montagnes & Berger 1994, Lizon et al. 

1998), we simulate heterogeneous vertical distributions of phytoplankton biomass B(z) (z is 

the depth) on the basis of a random midpoint displacement algorithm (Saupe 1988) based on 

our previous empirical estimates of fluorescence fractal dimension. While this algorithm have 

been shown to diverge slightly from a true fractional Brownian motion (Mandelbrot 1982), it 

has nevertheless been included as a part of sorne computer graphies reference text books 

(Hearn & Baker 1986, Harrington 1987). Moreover, we preferred this algorithm to the straight 

forward spectral methods (Y aglom 1962, Priestley 1981) because, due to the nature ofF ourier 

transforms [see e.g. Peitgen & Saupe (1988) for further details], the generated samples are 

periodic. 
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Fig. 2. Double logarithmic semivariograms of temperature, salinity and in vivo fluorescence (from top to 

bottom) for sampling experiment SI, shown together with their best :fitting line. mis the slope of the empirical 

semivariance y(h) versus the lag h, in a log-log plot 
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Results 

Fractal dimensions were estimated for in vivo fluorescence, temperature and salinity which 

exhibited a scaling behaviour over the whole range of studied scales, for the whole data set 

(Fig. 2). Their linearity over the whole range of spatial scales illustrates spatial dependence, 

suggesting that the same process, or at least similar processes, can be regarded as the source of 

physical and biological patterns, whatever the sampling locations or the hydrodynamical 

conditions. However, the mean fractal dimensions of temperature, salinity and in vivo 

fluorescence, estimated for the whole data set as 1.52 (±0.02 SD), 1.53 (±0.02 SD) and 1.63 

(±0.14 SD), respectively, were significantly different (Kruskal-Wallis test, p < 0.05), the 

temperature and salinity fractal dimensions being not significantly different (Dunn test, 

p > 0.05; Siegel & Castellan 1988). At the scale of the whole sampling experiment, the vertical 

distribution of phytoplankton cells then cannot be regarded as being wholly driven by vertical 

mixing. Finally, as previously shown by Seuront & Lagadeuc (1998), it must be added that 

light transmission did not exhibit even a partial scaling behaviour (i.e. its variability is 

independent of scale), and therefore could not have been subjected to fractal analysis. 

Temperature Salinity In vivo fluorescence 
Sl 1.50 (0.05) 1.52 (0.04) 1.82 (0.07) 
S2 1.52 (0.06) 1.53 (0.05) 1.63 (0.09) 
S3 1.54 (0.03) 1.50 (0.04) 1.57 (0.09) 
S4 1.52 (0.04) 1.54 (0.06) 1.46 (0.12) 
S5 1.53 (0.05) 1.53 (0.04) 1.54 (0.10) 
S6 1.49 (0.03) 1.52 (0.05) 1.82 (0.06) 
S7 1.53 (0.04) 1.55 (0.06) 1.56 (0.10) 

Table 2. The mean fractal dimension of temperature, salinity and in vivo fluorescence for the seven sampling 

experiments, shown together with their standard deviation 

The mean empirical estimates of the fractal dimensions D of temperature, salinity and in 

vivo fluorescence estimated for each sampling experiment lead to further results (Table 2). 

Thus, we showed that there were no significant differences between salinity and temperature 

between each sampling experiment (Kruskal-Wallis test, p > 0.05). On the contrary, in vivo 

fluorescence fractal dimensions were significantly different (p < 0.05) and exhibited very 

specifie behaviours. Thus, fluorescence fractal dimensions were significantly lower for inshore 

than for offshore locations (Wilcoxon-Mann-Whitney U-test, p < 0.05), with values ranging 
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from 1.54 (±0.12 SD) to 1.82 (±0.07 SD), respectively. Moreover, correlation analysis 

demonstrated that fluorescence fractal dimensions were significantly correlated (p < 0.05) with 

current direction for each sampling experiment (i.e. at the scale of the high-low tidal cycle) for 

bath inshore and offshore waters (Table 3), except for sampling experiment S 1 and S2 

characterised by their very low chlorophyll a concentrations (cf Table 1 ). On the contrary, 

there were no significant correlations between fluorescence fractal dimension and current 

speed, nor between fluorescence fractal dimension and phytoplankton biomass at the scale of 

the high-low tidal cycles. 

D 1 C Direction 

Sl 0.22 
S2 0.19 
S3 0.76 ** 
S4 0.79 ** 
S5 0.95 ** 
S6 0.80 ** 
S7 0.89 ** 
*: 5% significance levet 

**: 1% significance leve! 

D 1 Cspeed DIChl.a 
0.22 0.10 

-0.10 0.20 
-0.33 0.01 
-0.14 -0.19 
-0.12 0.36 
-0.20 -0.37 
-0.13 0.28 

Table 3. Spearman's rank correlation coefficients between in vivo fluorescence fractal dimensions D and 

current direction (D 1 CDirection), current speed (D 1 Cspeed), and mean chlorophyll a concentration (D 1 Chi. a) 

However, at the scale of the neap-spnng tidal cycles, fluorescence fractal dimension 

exhibited highly significant (p < 0.001) and significant (p < 0.05) positive correlations with 

current speed for inshore and offshore waters, respectively. ln vivo fluorescence fractal 

dimensions were then ali the more high as the hydrodynamical conditions were high. 

Moreover, there was also a significant (p < 0.05) correlation between mean fractal dimensions 

and mean chlorophyll a concentrations (Fig. 3), suggesting a density-dependent control of the 

vertical fractal structure of phytoplankton biomass distribution. 
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Fig. 3. Mean values of in vivo fluorescence fractal dimension DF versus mean chlorophyll a concentrations, 

estimated for sampling experiments conduced both in offshore (open dots) and inshore (black dots) waters 
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In arder to test the effect of the previously demonstrated space-time variability of the fractal 

phytoplankton distributions on primary production estimates, we simulated the vertical 

distributions of phytoplankton biomass for fractal dimensions ranging from 1.27 to 1. 75 for 

inshore waters and from 1.70 to 1.95 for offshore waters (i.e. the lower and upper bounds of 

our empirical estimates) in arder to reproduce the conditions encountered in the seven 

sampling experiments considered here. The resulting simulations were then systematically 

subrnitted to sernivariogram analysis to ensure that their efficiency was optimal. Thus, the 

simulated heterogeneous phytoplankton distributions were very sirnilar to the empirical ones 

(Fig. 4; Table 4). The primary production rates were subsequently estimated on the basis of 

D DRMD 

1.25 1.22 (0.03) 
1.30 1.31 (0.05) 
1.35 1.36 (0.04) 
1.40 1.42 (0.02) 
1.45 1.47 (0.02) 
1.50 1.54 (0.06) 
1.55 1.52 (0.04) 
1.60 1.58 (0.03) 
1.65 1.64 (0.06) 
1.70 1.70 (0.02) 
1.75 1.72 (0.02) 
1.80 1.81 (0.03) 
1.85 1.85 (0.02) 
1.90 1.89 (0.03) 
1.95 1.98 (0.05) 

Table 4. Comparisons between the fractal dimension inputs of our simulations (D) and the fractal dimension 

estimated from our random midpoint displacement (RMD) simulations on the basis of sernivariogram analysis 

(DRMD). The mean dimension DRMD results from 100 simulated phytoplankton distribution for each of the 15 

conditions considered here and are shown together with their standard deviation 

100 phytoplankton distributions B(z) for each conditions (i.e. fractal dimension) considered. 

Finally, the primary production outcomes have been estimated as the percentage difference 

between primary production estimates obtained with homogeneous and heterogeneous (i.e. 

fractal) phytoplankton distribution, i.e. respectively PHomo and ~ (Fig. 5). Thus, whatever the 

water masses and the tidal conditions considered, the primary production outcomes cannat be 

statistically regarded as being different (Kruskal-Wallis test, p < 0.05), nor statistically 

distinguished from a zero value (Binomial test, p > 0.05; Siegel & Castellan 1988). However, 

the amplitude of primary production outcome obtained in flood conditions for inshore waters is 

significantly higher than those obtained both for offshore waters and inshore waters ebb 

conditions (Siegel-Tuckey test for scale differences, p < 0.01; Siegel & Castellan 1988). 
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Discussion 

Biological-physical vertical structure 

The empirical fractal dimensions, estimated over the whole range of available spatial scales 

suggest that the scales of spatial dependence are very similar for in vivo fluorescence, salinity 

and temperature, indicating similar sources of physical and biological patterns. However, the 

differences shown between fractal dimensions of temperature, salinity and fluorescence fractal 

dimensions suggest that the vertical distribution of phytoplankton cells is very specifie and 

cannet be regarded as being passively advected by mixing processes, even when chlorophyll a 

concentrations are very low as it is the case for sampling experiment S 1 and S2 (cf Table 2). 

Thus, as shown by the correlation analysis, fractal dimension of temperature and salinity are 

tidally and geographically independent, in opposition to fluorescence fractal dimensions which 

are (i) significantly higher in offshore locations, (ii) dependent on the current direction at the 

scale of the high-low tidal cycle, (iii) dependent on the current speed at the scale of the neap

spring tidal cycles, and (iv) dependent on phytoplankton concentration at the biological annual 

cycle. The vertical structure of phytoplankton biomass is then more homogeneous, or less 

structured, in offshore locations and during flood, but also when hydrodynamical conditions 

are high and phytoplankton concentrations are low, showing that the structure of the vertical 

distribution of phytoplankton biomass is determined by different processes following the 

implied temporal scales. 

These results then confirm and generalise prevwus studies conduced in the same 

environment (Seuront & Lagadeuc, 1998). In particular, fluorescence fractal dimensions being 

higher for offshore than for inshore waters, these differences could be associated to a purely 
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density-dependent effect (Seuront & Lagadeuc, 1998), to a qualitative effect relative to the 

specifie composition ofphytoplankton assemblages (Truffier et al. 1997, Peta et al. 1998), or 

to a combination of the two previous hypothesised phenomenologies. Whatever that may be, 

an increased in fluorescence fractal dimensions should have been expected during flood, 

because of the offshore waters advection associated with the semidiumal M2 tidal component, 

instead of the significant decrease general! y observed. At the scale of the high-low tidal cycles 

it can then be suggested that the observed differentiai tidal structure of phytoplankton 

distribution could be rather associated to the differentiai mixing occurring during a tidal cycle 

between water masses qualitatively and quantitatively different in terms of phytoplankton 

populations which could then be regarded as a secondary source ofheterogeneity. On the other 

hand, at the scale of the neap-spring ti de cycles phytoplankton distributions appear controlled 

by hydrodynamical conditions, high hydrodynamical conditions leading to more homogeneous 

distributions characterised by high fractal dimensions. Finally, comparisons between mean 

fractal dimensions of fluorescence and mean chlorophyll a concentrations for each sampling 

experiment confirm the density-dependent control of phytoplankton structure proposed by 

Seuront & Lagadeuc (1998) as a potential explanation of the different fractal dimensions 

observed for the vertical distribution of phytoplankton biomass between inshore and offshore 

waters. In particular, this means that the heterogeneity of phytoplankton is ail the more high as 

its density is high, and the observed density-dependence could be a consequence of the 

aggregation processes of phytoplankton cells, mainly driven by phytoplankton density and 

hydrodynamism ( e.g. Ki0rboe 1997). 

Whatever that may be, given the previously demonstrated control of phytoplankton 

distribution at the scales of the high-low and neap-spring tidal cycles and at the seasonal scale, 

the question is now to estimate the effect of these vertical phytoplankton distribution variations 

on the primary production rates. 

Primary production rates versus vertical heterogeneity 

While the previously estimated primary production outcomes were very similar and close to 

zero whatever the water masses and the tidal conditions, the highly fluctuating primary 

production outcome obtained in flood conditions for inshore waters nevertheless implies sorne 

comments on the approaches used in the present paper. Thus, if one considers two vertical 

phytoplankton distributions obtained from the same fractal dimensions, the related primary 

production estimates will be extremely dependent on the depth at which high and low 
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Fig. 6. The non-linear function of the photosynthetic parameters P,:, a.B and ~B (a) [shown here at solar 

midday for the typical coastal waters values of P,:, a.B and ~B given by Lizon et al. (1998), their table 1] 

multiplied by homogeneous and heterogeneous distributions of phytoplankton B and B(z) (b, c) [ see Eq. (3)] 

can lead to very different primary production outcomes ( e, t) depending on the depth at which the high and low 

phytoplankton concentration layers occurs (b, c). Heterogeneous phytop1ankton distributions B(z) leading to 

different primary production estimates have nevertheless exactly the same fractal characteristics, shawn here by 

open and black dots and compared with the empirical slope (dashed line) of the empirical semivariance y(h) 

versus the lag h, in a log-log plot (d) 

concentration phytoplankton layers occur, leading to significant differences in the primary 

production outcome which range from a 25% decrease to a 25% increase when compared with 

the results obtained with a homogeneous distribution of phytoplankton biomass from surface 

to bottom (Fig. 6). This approach is conceptually different from previous works devoted to 

estimate primary production rates on the basis of Lagrangian simulations of individual 

phytoplankton cells photoadaptation processes in relation with vertical mixing intensity (Lizon 

et al. 1998). Our results are nevertheless roughly compatible with the high-low tide and neap

spring tide control of primary production via vertical mixing intensity (Lizon et al. 1998). In 

that way, such approaches could be advantageously coupled with sorne Lagrangian model of 

aggregation (Yamazaki & Haury 1993, Yamazaki & Okubo 1995) in order to provide a more 

precise phenomenological basis to the existing mo del of fractal simulations, su ch as the random 

midpoint displacement algorithm used in the present paper, and then to deal with more realistic 

features of phytoplankton distributions. 

More generally, these results raised a critical problem for primary production estimates in 

turbulent coastal waters. Thus, following the potential importance of small-scale phytoplankton 

layers in primary production estimates, the question is now to estimate the number of 

persistent layers and how long they persist. Both being dependent on physical and biological 

processes (Cowles et al. 1998), this opens very large perspectives for future studies devoted to 

the understanding of the formation and persistence of phytoplankton layers, and more generally 

to the understanding of the physical-biological couplings in the ocean. 

Concluding remarks 

Recent studies have revealed that the phytoplankton and zooplankton distributions are 

particularly complex and structured even in high hydrodynamic conditions ( e.g. Pascual et al. 

1995, Seuront et al. 1996a, b, 1999, Seuront & Lagadeuc 1997, 1998). Moreover, the 
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knowledge of the precise distribution of organisms in the ocean is now widely recognised to be 

a critical problem in understanding ecosystems structure and functioning, and in obtaining 

robust estimates of stocks and fluxes (Platt et al. 1989). In that way, our data demonstrate that 

the vertical distribution of phytoplankton biomass can be regarded as being highly structured 

(in terms of fractal structure), and is far from being homogenised by vertical ti dai mixing in the 

coastal ocean. Furthermore, our simulations show the potential importance of the vertical 

distribution of phytoplankton biomass in the primary production estimates, especially for 

inshore waters at the scale of the high-low tidal cycles and at the scale of the neap-spring tidal 

cycles and when phytoplankton density is high. 

The present work finally demonstrated that primary production in coastal seas-such as the 

Eastern English Channel-would not be only a function of light intensity and nutrient 

concentrations (e.g. Moloney et al. 1986, Hoch & Ménesguen 1995, Ménesguen & Hoch 

1995), or photoadaptation processes related with vertical mixing intensity (Lizon et al. 1995, 

Lizon & Lagadeuc 1998), but also of phytoplankton biomass vertical distribution. ln that way, 

the scheme proposed in the present work could not be only limited to the Eastern English 

Channel but following recent results concerning the microscale vertical structure of 

phytoplankton (e.g. Cowles et al. 1998, Jaffe et al. 1998) would also be applicable to aquatic 

systems over wide geographical range, and then have considerable applications on primary 

production rates estimation procedures. 
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d'Aquitaine' and 'Côte de la Manche' for their assistance during the sampling experiments. 
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Abstract. We present the evidence that intermittent variability in zooplankton abundance can be characterized 

in terms of multifractals. A 3-min resolution time series of the abundance of the calanoid copepod Temora 

longicornis, taken from a fixed mooring on the coastal waters of the Eastern English Channel during 66 hours, 

provided the data for our analysis. The multifractal nature of the abundance distribution of T. longicornis 

appears to be very specifie in comparison with those of purely passive scalars (i.e. temperature and salinity), or 

phytoplankton biomass over similar range of scales in similar environments. Finally, we show that the 

multifractal distribution of T. longicornis can be wholly parametrized with the help of only three basic 

parameters in the frame of universal multifractals, opening very large perspectives for future modeling of 

pelagie ecosystem structures and functions. 

Introduction 

Heterogeneity in the distribution of zooplankton has been recognized for many years ( e.g. 

Hardy, 1936) and has received considerable amount of attention since (Mackas et al., 1985; 

Davis et al., 1991). The phenomenon, however, has seldom been described precisely, although 

zooplankton patchiness is relevant to many aspects of biological oceanography (Daly and 

Smith, 1993). Quantitative analyses of zooplankton spatial patterns in the ocean using time 

series analysis and power spectral analysis (Mackas and Boyd, 1979 ; Tsuda et al., 1993) and 

more recently fractal analysis (Tsuda, 1995) have generated a large body of observational and 

theoretical works (e.g. Powell and Okubo, 1994). However, a new field ofmarine research bas 

recently been devoted to the characterization of marine intermittent patterns in the frame of 

multifractals (Pascual et al., 1995; Seuront et al., 1996a, b, 1999). 

Multifractals can be viewed as a generalization of fractal geometry (Mandelbrot, 1983) 

initially introduced to describe the relationship between a given quantity and the scale at which 

it is measured. While fractal geometry describes the structure of a given pattern with the help 

of only one parameter (i.e. the so-called fractal dimension), multifractals characterize its 

detailed variability by an infinite number of sets, each with its own fractal dimension. More 
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precisely, multifractal approaches, which do not require any statistical preconception on the 

data, provide very good approximations-at ali scales and ali intensities-of the statistics of 

intermittently fluctuating patterns, and determine the probability distribution of the pattern 

values [see Pascual et al. (1995) and Seuront et al. (1999) for further details]. Moreover, the 

statistical consequence of intermittency being a strong departure from Gaussianity (Baker and 

Gibson, 1987), multifractals thus provide a powerful alternative to basic random walk and 

spectral methods implicitly based on Gaussian, or quasi-Gaussian, statistics (see e.g. Peitgen et 

al., 1992). Thus, considering that in the general background of spatio-temporal intermittency 

encountered in the ocean (e.g. Platt et al., 1989), knowledge of the precise statistics of any 

intermittent fields may avoid the bias introduced by chronic undersampling of an intermittent 

signal (Bohle-Carbonel, 1992), a stochastic multifractal framework is particularly weil suited to 

describing the structure of quantities that vary intermittently such as phytoplankton and 

zooplankton distributions (Pascual et al. 1995, Seuront et al. 1996a, b, 1999). 

The knowledge of the distribution of particles is thus essential in understanding the trop hic 

transaction mechanisms that regulate the flows of energy and matters in the ocean (Davis et al., 

1991). Indeed, both phytoplankton and zooplankton biomass are concentrated in numerous 

zones of continuously varying sizes and concentrations, and the food-signal generated by such 

complex structures has characteristics that traditional approaches using statistics based on 

spatial or temporal homogeneity are unable to resolve (Rothschild, 1992). Moreover, previous 

observations conducted on zooplankton distributions indicate that generaliy, larger life forms 

show more extreme spatial scale aggregations than do smaller and less mobile organisms 

(Mackas and Boyd, 1979; Mackas et al., 1985; Daly and Smith, 1993). The understanding of 

pelagie eco system structure and function then requires the precise estimates of both predators 

and preys, i.e. phytoplankton and zooplankton, spatial patterns. 

In particular, the calanoid copepod Temora longicornis, which is very abundant in 

temperate waters of the northem hemisphere, also appears to be of great ecological 

significance. Indeed, it represents 3 5 to 70% of the total population in the Southem Bight of 

the North Sea (Daan, 1989), and in Long Island Sound (USA), T. longicornis is able to 

remove up to 49% of the daily primary production (Dam and Peterson, 1993). In that way, 

following the recent empirical investigations conduced on phytoplankton distributions in the 

highly dissipative waters of the Eastern English Channel and the Southern Bight of the North 

Sea (Seuront et al., 1996a, b, 1999), the aim of this paper is to investigate the distribution of 

the calanoid copepod Temora longicornis-a dominant species in these waters-in order to 
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provide further insights into the trophic interactions occurring m such turbulent coastal 

eco systems. 

Method 

Study area and sampling 

Sampling was conducted from 1 to 3 April 1997 in the Eastern English Channel during 66 

hours (ca. 5.5 tidal cycles). The tidal range in this system is one of the highest in the world 

(ranging from 3 to 9 rn). Tides generate a residual circulation parallel to the coast, drifting 

nearshore coastal waters from the English Channel to the North Sea. Coastal waters are 

influenced by freshwater runoff from the Seine estuary to the Strait of Dover, and then 

separated from offshore waters by a tide-controlled frontal area (Brylinski and Lagadeuc, 

1990; Lagadeuc et al., 1997; Figure 1 ). Sampling location has been chosen because its physical 

and hydrological properties are representative of the coastal water flow encountered in the 

Eastern English Channel (Lizon et al., 1995; Lizon and Lagadeuc, 1998) where Temora 

longicomis is known to be very abundant and dominate zooplankton composition (Brylinski 

and Lagadeuc, 1988). 

Fig. 1. Study arca and location of the sampling station (*) along the French coast of the Eastern English 

Channel. 

Since our aim was to investigate the horizontal distribution of Temora longicomis, water 

was continuously taken from a depth of 10 meters through a weighted dawn sea-water intake, 

and directly brought through a 200 f.lffi mesh size plankton net by means of a Flight pump with 
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an output of 300 l.mn-1
, connected to 10 cm diameter plastic tubing. Every 3 minutes, filtered 

organisms were collected and immediately preserved in a 10% formaldehyde solution. The 

adult males and females were subsequently counted under a dissecting microscope from the 

1321 collected samples. Figure 2 shows the resulting time series of the abundance of adults 

Temora longicornis which shows a significant 12.5 hours cycles, but exhibits a very 

intermittent 'background'. 

Data analysis 

After detrending, the scaling properties of empirical fields are usually tested using Fourier 

power spectral analysis, leading to a characteristic power-law form: 

(1) 

where f is frequency. This indicates absence of characteristic time-scale in the range of the 

power-law, i.e. a scaling behavior. The power-law form will manifests itself as an 

approximately straight-lined behavior of the power spectrum when plotted in a double

logarithmic diagrarn. One may note that for time series, the exponent 13 and the fractal 

dimension D are relating according to (Feder, 1988): 

D = d + 1- (13 -1) /2 (2) 

where d is the Euclidean dimension of the observation space (i.e. d = 1 for time series). 

However, power spectral analysis, implicitly assuming "quasi-Gaussian" statistics and limited 

to a second order statistic (i.e. the variance) characterizes very poorly quantities that vary 
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Fig. 2. Time series of Temora longicornis abundance (indm-3
) recorded at 10 rn depth in the Eastern English 

Channel, shown together with the best tidal sinusoïdal fit. 
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intermittently (i.e. occasional and unpredictable large peaks separated by very low values). We 

then adopt an empirical generalization of the widely used power spectral approach with the 

help of the qth order structure functions: 

((11ZooJ) ~ 'tç(q) (3) 

where !1Zoo, is the fluctuations of the abundance of Temora longicornis at scale 't and angle 

brackets "< . > " indicate a statistical average, which is performed for all points of the T. 

longicornis abundance time series separated by a distance 't [i.e. ((11Zoo,f) are the statistical 

moments ofthe fluctuations (!1Zoo,)=1Zoo(t+'t)-Zoo(t)ll The scaling exponent Ç(q) is 

estimated by the slope of the linear trends of ((11Zoo,f) vs. r in a log-log plot. Eq. (3) gives 

the scale invariant structure functions exponent Ç ( q), which characterizes all the statistics of 

the field. In particular, the first moment gives the scaling exponent H = Ç (1) corresponding to 

the scale dependency of the average fluctuations (!1Zoo~) : if H * 0 the latter will depend on 

the time scale r , it therefore characterizes the degree of stationarity of the process. The 

second moment is linked to the slope, 13, of the power spectrum by 13 = 1 +Ç(2). For simple 

scaling (fractal) processes, the scaling exponent of the structure function Ç ( q) is linear 

[Ç(q)=q/2 for Brownian motion, and Ç(q)=q/3 for non-intermittent turbulence]. For 

multifractal processes, this function in nonlinear and concave (Seuront et al., 1999). 

A priori, the function Ç ( q) could depend on a very large number-even an infinity-of 

parameters, therefore a very large number of its estimates for different values of q would be 

necessary. However, in the frame of universal multifractals (Schertzer and Lovejoy, 1987, 

1989), Ç ( q) is determined by only three parameters: 

Ç(q) = qH -~(q"' -q) 
a-1 

(4) 

where H is still given by H = Ç(1); the second term [i.e. the scaling moment function K(q) 

characterizing the statistical behavior of a given intermittent process]: 

c 
K ( q) = a ~ 1 ( qa - q) (5) 

expresses the intermittent correction from homogeneity [in which case Ç ( q) = qH] of the 

process. cl is a codimension that characterizes the sparseness of the process, and is bounded 

between cl = 0 for a homogeneous space-filling process and cl = d (dis the dimension of the 

space supporting the considered process, d = 1 for time series). With low C1 value (i.e. close to 
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0), the field is almost everywhere close toits mean value; a large C1 is characteristic of a field 

that has very low values almost everywhere except in sorne rare and sparse locations where it 

takes large values much greater than its mean value. The Lévy index a varies between 0 (a 

minimum value corresponding to a monofractal pattern) to a maximum of 2 (log-normal 

multifractal case) and indicates the degree of multifractality. As a increases, the more 

numerous are the variability levels bounded between lower and higher values of the process. 

There are several ways to estimate the universal multifractal indices C1 and a ( see Seuront 

et al., 1996a, b, 1999). However, we can easily estimate C1 and a from Eq. (4): ifEq. (4) is 

differentiated and evaluated at q = 0, simple algebra shows that: 

qÇ'(O)-Ç(q)= Clqa (6) 
a -1 

Thus a log-log plot of [ qÇ' (0)- Ç ( q)] vs. q will yield a straight line. The slope of the line is 

given by a and the corresponding C1 value can be estimated by the intercept (Schmitt et al., 

1995). Once we know the parameter values, we can completely characterize the underlying 

multifractal process in a spatial or temporal variation. Finally, for a detailed discussion ofwhat 

can be ecologically conclude from the use of multifractal algorithms, one may refer to Seuront 

et al. (1999). 

Results 

The estimation of the zooplankton power spectrum E(f) ~ j-P with f3 = 1.42 in a log-log 

plot shows an unique scaling regimes from smaller to larger scales (Figure 3). This indicates 

that the same process, or at list similar processes can be regarded as responsible for the scaling 

structure of the abundance of Temora longicornis from time scales ranging from 6 minutes to 

66 hours. This range of temporal scales can be converted into spatial scales using the 'Taylor's 

hypothesis of frozen turbulence' (Taylor, 1938), which basically states that temporal and 

spatial averages t and l , respectively, can be related by a constant velocity v, l = v. t. Th en 

using the mean instantaneous tidal circulation of 0.509 m.s·1 observed during the field 

experiment at the sampling depth, the associated spatial scales ranges between 92 meters and 

120 kilometers. Finally, the estimated power spectral exponent f3 estimated over this range of 

scales can be converted to a fractal dimension following Eq. (2) as D = 1.79. 

This result can be confirmed and generalized in the frame of the q"' order structure functions 

(Figure 4 ). Th us, it cl earl y appears that for values of q ranging from 1 to 3, \ ( tJ.Zoo, V) 
exhibits linear trends over the whole range of available time scales. The different 
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values of the empirical exponent Ç ( q) were estimated for a range of q values from 0 to 3 with 

a 0.1 increments. The empirical curve is clearly nonlinear, even for moments q < 1, showing 

that the abundance fluctuations of T longicornis can be regarded as multifractal over the time 

scales ranging from 6 min to 66 h (Figure 5). In particular, the scaling of the first moment gives 

H = Ç (1) = 0.58, indicating that the temporal distribution of T. longicornis is far from 

conservative, or stationary (in which case H = 0). The scaling of the second order moment 

confirms the estima te from the power spectrum: Ç ( 2) = 0.41 (i.e. f3 = 1 + Ç(2)). 

We now estimate the universal parameters a and C, from Eq. (6). Figure 6 shows that 

a= 1.6±0.1 and~= 0,44 ±0.02, the error bars come from comparison between these a and 

C, estimates and those obtained from the Double Trace Moment technique (Lavallée, 1991; 

Lavallée et al., 1992), which we also applied to the data and which has extensively been 

described elsewhere (see Seuront et al., 1999). The theoretical curve corresponding to these 

values in Eq. (4) is shown in Figure 4 by a thick continuous line. The universal multifractal fit 

is excellent until moment arder qmax = 1.7 after which the empirical curve (dots) is linear. This 

linear behavior of the empirical scaling exponent structure function Ç( q) for sufficient high 

arder moments is well-known (Schertzer & Lovejoy, 1989) and is due to sampling limitations. 
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Fig. 5. The scaling exponent structure fonction Ç(q) empirical curves (dots) compared to the monofractal curve 

Ç(q) = qH (dashed line), and to the universal multifractal fonction (thick continuons line) obtained with 

ex.= 1.6 and C1 = 0.44 in Eq. (4). The universal multifractal fit is excellent until moment order qmax = 1.7, 

corresponding to a multifractal phase transition occurring because of sample limitations. 
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therefore ex ~ 1.6 and cl ~ 0.44. 

Discussion 

The recognition of patchiness is hardly new to plankton ecology; it was described within 

zooplankton communities over a century ago (Hackael, 1891). However, if a distribution is 

patchy, then conventional statistical methods become less useful as analytical tools due to 

violations in basic assumptions such as randomness. In that way, the main point of our 

multifractal approach is that it does not require any preconception on the data. In an 

intermittent framework, it should then be regarded as an alternative to the widely used spectral 

methods, implicitly based on Gaussian statistics (e.g. Platt and Denman, 1975), but also to the 

more recently developed one-dimensional neighbor techniques devoted to estimate 

zooplankton patch size and based on an untenable assumption of a regular distribution of 

patches (Shiyomi and Yamamura, 1993; Currie et al., 1998). In particular, both the fractal and 

universal multifractal frames used here characterize the structure of the whole variability of a 

given intermittent pattern with respectively one and three basic parameters, and then allow 

direct comparisons to be made between biological and physical fields. 

Our fractal dimension estimates of the Temora longicomis distribution can then be 

compared with those estimated from oceanic turbulence and both phytoplankton and 

zooplankton distributions. Reported fractal dimensions of two dimensional oceanic turbulence 
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then range from 1.2 to 1.4 (Osborne et al., 1989; Osborne and Caponio, 1990; Sanderson and 

Booth, 1991 ), while the theoretical spectral exponent p = 3 (Kraichnan, 1967) of two 

dimensional turbulence leads to a fractal dimension D = 1.50. On the other hand, in three 

dimensional turbulence, the fractal dimension related to the theoretical spectral exponent 

13 = 51 3 expected in the case of purely passive scalar (Kolmogorov, 1941) is D = 51 3. 

Therefore, the estimated fractal dimensions for T. longicornis distribution (D = 1. 79) are 

significantly higher than those of oceanic turbulence. This fractal dimension is also higher than 

those of phytoplankton distributions estimated from in vivo fluorescence time series in the 

Southern Bight of the North Sea and the Eastern English Channel which range between 1.61 

and 1.67 (Seuront et al., 1996a, b, 1999). Higher fractal dimension corresponds with weaker 

wavenumber dependence in the power spectrum. Indeed, copepods and zooplankton differ in 

their size and motility. We then speculate that copepod behaviors such as diel migration, 

phototaxis, rheotaxis, and social behaviors should cause the larger fractal dimensions (i.e. 

flatter power spectrum) in comparison with phytoplankton. Indeed, Steele and Henderson 

(1992) suggested that a zooplankton mortality term given as a stochastic variant and random 

redistribution associated with diel vertical migration combined with vertical shear could lead to 

a flatter spectrum for zooplankton in a numerical experiment based on the Lotka-Volterra 

equations with diffusion terms. In other words, because zooplankton are subjected to more 

stochastic processes determining their distribution than phytoplankton, zooplankton show a 

more fragmented and space-filling distribution. Finally, one may note that the fractal 

distribution estimated here from the distribution of T longicornis is very similar to the one 

estimated for the oceanic copepod Neocalanus cristatus abundance transects from the 

subarctic Pacifie, i.e. D = 1.80, over a similar range of scales (i.e. between tens of meters and 

over 100 kilometers ), suggested that the distribution of zooplankton species could be very 

similar whatever their surrounding environments. 

Comparisons of the universal multifractal parameters estimated in the present study with 

tho se of other phytoplankton and zooplankton dataset lead to further results. The values of the 

parameter H (H = 0.58) and C1 (C1 = 0.44 ), are then obviously higher than those of 

phytoplankton biomass over similar ranges of scales, 1.e. HE [0.12- 0.34] and 

cl E [0.02- 0.05] (Seuront et al., 1996a, b). That leads to view zooplankton distribution as 

being less conservative and more sparse (i.e. characterized by low values except in sorne rare 

and sparse location where it takes large values mu ch greater than its mean value) than tho se of 

phytoplankton. On the contrary, the parameter a= 1.60 is within the range of a values 
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estimated for phytoplankton distributions (Seuront et al. , 1996a, b, 1999). These high values 

indicate that singularities of all magnitudes contribute significantly to the multifractal processes 

underlying our measured T longicornis abundance. In other words, we are very far from the 

monofractal case. The differences found between the values of the parameters H and C, for 

zooplankton and phytoplankton then confirms the observations conducted in the monofractal 

frame concerning the influence of mobility of zooplankton on their spatial distribution. These 

differences also confirm that generally, larger life forms show more extreme spatial scale 

aggregations than do the smaller and less mobile organisms, which in the multifractal sense 

corresponds to larger C, values. One may also note that the Dq multifractal formalism used by 

Pascual et al. (1995) can be related with our scaling moment function K(q) formalism as: 

(7) 

where d is the Euclidean dimension of the observation space (i.e. d = 1 for time series and 

transects) . In particular, we have D2 = 1-K(2) , leading to D2 ~ 0.38 from Pascual et al. 

(1995) and D2 = 0.24 from the present study. This suggests that the intermittency perceptible 

in the present dataset is higher than in the former dataset. However, this difference rnight be 

due to the better quality and resolution of the present dataset as so far as the acoustic data 

analyzed by Pascual et al. (1995) were constructed by averaging measurements vertically and 

hourly, and corresponds to a multispecies zooplankton biomass. 

3.0 

2.0 

1.0 

0 

Fig. 7. A two dimensional simulation of T. /ongicornis abundance using the empirical estimates of the 

universal multifractal parameters H = 0.58 , C, = 0.44 and a = 1.6 (arbitrary units). 
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Multifractals, and in particular universal multifractals, leading to a very prectse 

characterization of the whole statistical structure of any given intermittent pattern (with the 

help of the three basic empirical parameters), appears to be an efficient descriptive tool which 

should also allow the modeling of the multiscale detailed variability of intermittently fluctuating 

biological fields as the global properties of their surrounding environment [ see Seuront et al. 

(1999) for further discussions]. In particular, using the modeling techniques detailed in 

Pecknold et al. (1993), a simulation of the copepod horizontal distribution based on the 

estimated multifractal parameters H = 0.58, C1 = 0.44 and a= 1.60 has been performed 

(Figure 7). Figure 7 shows a two dimensional simulation of the Temora longicornis 

distribution which clearly exhibits a very intermittent behavior associated with the occurrence 

of a few high density patches over a wide range of low density patches. Multifractal modeling 

should then be suggested as a potential powerful alternative to physical models of turbulence 

which lead to the parametrisation of the effects of turbulence on plankton distribution. Indeed, 

these models, incorporating diffusive processes (e.g. Okubo, 1980), non diffusive advection 

(Abraham, 1998), or coupling fluid-dynamic models of quasi-geostrophic turbulence, multi

compartment ecosystem dynamics and seasonal forcing (Smith et al., 1996), can describe 

certain, but not all, aspects of turbulence and are often far from comprehensive (Visser, 1997). 

The advantages of universal multifractal simulation techniques are essentially the weak number 

of input parameters ( only the three basic parameters H, C1 and a), the low computation time 

involved ( only a few seconds on a Pentium II for a 512x512 field) and their stochasticity, 

allowing to avoid numerical artifacts linked for instance to the sensitivity to initial conditions as 

encountered with models dealing with Navier-Stockes equation or with systems of differentiai 

equations. 

The precise knowledge of the distribution of pelagie organisms is indeed of main importance 

to understand the trophic relationships between organisms and then the related matter fluxes. 

For instance, the distribution of preys is very important for predators, because the food 

availability changes depending on the dimension. Low fractal dimension means smooth and 

predictable distribution of particles gathered in small number of patches, and high dimension 

means rough, fragmented, space-filling and unpredictable distribution. Therefore, when a 

predator has sorne information on the location of the preys and can remotely detect them, 

foods with low dimension should be more efficient. In contrast, when a predator has no 

information or detection ability, foods with high dimension should be relatively better, because 

available food quantity or encounter rate approaches proportional to searched volume with 
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increase of fractal dimension. Moreover, the very complex patchy structure related with a 

multifractal distribution may also change the nature of the food signal, usually regarded as 

homogeneously distributed in space and time in models of predator-prey encounter rates [see 

Dower et al. (1997) for a review]. Indeed, planktonic animais have been shown to remain 

within patches when feeding (Priee, 1989), or exhibit more fine-scale movements in areas of 

higher food concentration (Bundy et al., 1993). Thus encounter rates might be very different 

when organisms feed within patches (intensive search) and during the search for new patches 

(extensive search) as has been described in the foraging behavior ofbeetles (Ferran and Dixon, 

1993). In that way, foraging models willlikely to incorporate switching between feeding and 

searching behaviors as scaled to the organism size, in order to effectively simulate these 

complex physical-biological relationship (Noda et al., 1992). 

Heterogeneity of zooplankton distribution has been a complicated problem to study and 

patchy distributions are often very difficult to parametrize. The descriptive analysis and 

modeling tools shown in the present study, however, demonstrates that only three parameters 

are sufficient for accurately describing and reconstructing the patchy structure of the horizontal 

distribution of copepods. As shown by recent studies in different fields of geophysical sciences 

(Schertzer et al., 1997~ Schmitt et al., 1998~ Seuront et al., 1999), we believe that multi:fractals 

are the most accurate expression of irregular distribution of sorne objects in ecological models. 

Acknowledgments 

We thank J. Harlay, A Lefebvre and D. Saïu for their help during the sea experiment, and F. Berreville, O. 

Borot, S. Coulomb, J. Harlay, D. Hilde and S. Jaskulski for their help in copepods countings. Thanks are also 

extended to the captain and the crew of the NO 'Côte de la Manche' for their assistance, and to V 

Gentilhomme for nice discussions during the emise. 

References 

Abraham,E.R. ( 1998) The generation of plankton patchiness by turbulent stirring. Nature, 391, 577-580. 

Baker,M.A and Gibson,C.H. (1987) Sampling turbulence in the stratified ocean: statistical consequences of 

strong intermittency. J Phys. Oceanogr., 17, 1817-1836. 

Bohle-Carbonel,M. (1992) Pitfalls in sampling, comments on reliability and suggestions for simulation. Conf. 

ShelfRes., 12, 3-14. 

Brylisnk:i,J.M. and Lagadeuc,Y. (1988) Influence du coefficient de la marée sur la répartition côte-large d'une 

espèce planctonique à affinités côtières: temora longicornis (Crustacé, Copépode). C. R. Acad. Sei. Paris 

Sér. Il, 307, 183-187. 

Brylinski,J.M. and Lagadeuc,Y. (1990) L'interface eau côtière/eau du large dans le Pas-de-Calais (côte 

française): une zone frontale. C. R. Acad. Sei. Paris Sér. 2, 311, 535-540. 

13 



Bundy,M.H., Gross,T.F., Coughlin,D.J. and Strick:ler,J.R. (1993) Quanti:fying copepod searching efficiency 

using swimming pattern and perceptive ability. Bull. Mar. Sei., 53, 15-28. 

Currie,W.J.S., Claereboudt,M. and Roff,J.C. (1998) Gaps and patches in the ocean: a one-dimensional 

analysis ofplanktonic distributions. Mar. Eco!. Prog. Ser., 171, 15-21. 

Brylinski,J.M. and Lagadeuc,Y. (1988) Influence du coefficient de marée sur la répartition côte/large d'une 

espèce planctonique à affinités côtières: Temora longicornis (Crustacés, Copépode). C. R. Acad. Sei. Paris 

Sér. 3, 307, 183-187. 

Bundy,M.H., Gross,T.F., Coughlin,D.J. and Strick:ler,J.R. (1993) Quantifying copepod searching efficiency 

using swimming pattern and perceptive ability. Bull. Mar. Sei., 53, 15-28. 

Currie,W.J.S., Claereboudt,M. and Roff,J.C. (1998) Gaps and patches in the ocean: a one-dimensional 

analysis ofp1anktonic distributions. Mar. Eco!. Prog. Ser., 171, 15-21. 

Daan,R. (1989) Factors controlling the surnmer development of the copepod populations in the southem bight 

of the North Sea. Neth. J. Sea Res., 23, 305-322. 

Dam,H.G. and Peterson,W.T. (1993) Seasonal contrasts in the diel vertical distribution feeding behavior and 

grzing impact of the copepod Temora longicornis in Long Island Sound. J. Mar. Res., 51, 561-594. 

Davis,C.S., Flierl,G.R., Wiebe,P.H. and Franks,P.J.S. (1991) Micropatchiness, turbulence and recruitment in 

p1ankton. J. Mar. Res., 49, 109-151. 

Daly, K. L. and Smith, W. O. (1993) Physical-Biological interactions influencing marine plankton production. 

Annu. Rev. Eco!. Syst., 24, 555-585. 

Dower, J.F., Miller, T.J. and Leggett, W.C. (1997) The role of microscale turbulence in the feeding ecology of 

larval fish. Adv. Mar. Biol., 31, 169-220. 

Feder,J. (1988) Fractals. Plenum, New York. 

Ferran,A. and Dixon,A.F.G (1993) Foraging behaviour of ladybird larvae (Coleoptera: Coccinellidae). Eur. J. 

Entomol., 90, 383-402. 

Hardy,A.C. (1936) Observation on the uneven distribution of oceanic plankton. Discovery Rep., 11, 511-538. 

Haeckel,E. (1891) Plankton studien. Jena Zt. Naturwissensch, 25, 232-336. 

Kolmogorov,A.N. (1941) The local structure of turbulence in incompressible viscous fluid for very large 

Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 299-303. 

Kraichnan,R.H. (1967) Inertial ranges in two-dimensional turbulence. Phys. Fluids, 9, 1937-1943. 

Lagadeuc,Y., Brylinski,J.M. and Aelbrecht,D. (1997) Temporal variability of the vertical stratification of a 

front in a tidal Region ofFreshwater Influence (ROFI) system. J. Mar. Syst., 12, 147-155. 

Laval1ée,D. (1991) Multifractal techniques: ana1ysis and simulation of turbulent fields. Ph.D. thesis, McGill 

University, Montréal, Canada. 

Lavallée,D., Lovejoy,S., Schertzer,D. and Schmitt,F. (1992) On the determination of universal multifractal 

parameters in turbulence. In Moffat,K., Tabor,M. and Zaslavsky,G. (eds.), Topological aspects of the 

dynamics offluid and plasmas. Kluwer, Boston, pp. 463-478. 

Lizon,F. and Lagadeuc,Y. (1998) Comparisons of primary production values estimated from different 

incubation times in a coastal sea. J. Plankton Res., 20, 371-381. 

Lizon,F., Lagadeuc,Y., Brunet,C., Aelbrecht,D. and Bentley,D. (1995) Primary production and photoadaptation 

ofphytoplankton in relation with tidal mixing in coastal waters. J. Plankton Res., 17, 1039-1055. 

14 



Mackas,D.L. and Boyd,C.M. (1979) Spectral analysis of zooplankton spatial heterogeneity. Science, 204, 62-

64. 

Mackas,D.L., Denman,K.L. and Abbot,M.R. Plankton patchiness: biology in the physical vernacular. Bull. 

Mar. Sei., 37, 652-674. 

Mandelbrot,B. (1983) The Fractal Geometry of Nature. Freeman, New York. 

Noda,M., Kawabata,K., Gushima,K. and Kakuda,S. (1992) Importance of zooplankton patches in foraging 

ecology of the planktivorous :fish Chromis chrysurus (Pomacentridae) at Kuchinoerabu Island, Japan. Mar. 

Eco!. Prog. Ser., 87, 251-263. 

Okubo,A (1980) Diffusion and ecological problems: mathematical mode/s. Springer-Verlag, New York. 

Osborne,AR. and Caponio,R. (1990) Fractal trajectories and anomalous diffusion for chaotic pattern motions 

in2Dturbulence. Phys. Rev. Lett., 64, 1733-1736. 

Osborne,AR., Kirwan,AD., Provenzale,A and Bergamasco,L. (1989) Fractal drifter trajectories in the 

Kuroshio extension. Tel/us, 41A, 416-435. 

Pascual,M., Ascioti,F.A and Caswell,H. (1995) Intermittency in the plankton: a multifractal analysis of 

zoop1ankton biomass variability. J. Plankton Res., 17, 1209-1232. 

Pecknold,S., Lovejoy,S., Schertzer,D., Hooge,C. and Malouin,J.F. (1993) The simulation of universal 

multifractals. In Perdang,J.M. and Lejeune,A (eds.), Cellular automata: Prospects in Astrophysical 

Applications. World Scienti:fic, Singapore, pp. 228-267. 

Peitgen,H.O., Jürgens,H. and Saupe,D. (1992) Chaos and Fractals. New Frontiers of Science. Springer-Verlag, 

New York. 

Platt,T. and Denman,K.L. (1975) Spectral analysis in ecology. Ann. Rev. Eco/. Syst., 6, 189-210. 

Platt,T., Harrison,W.G., Lewis,M.R., Li,W.K.W., Sathyendranath,S., Smith,R.E. and Vezina,A.F. (1989) 

Biological production of the oceans: the case for a consensus. Mar. Eco!. Prog. Ser., 52, 77-88. 

Powell,T.M. and Okubo,A (1994) Turbulence, diffusion and patchiness in the sea. Phil. Trans. R. Soc. Lond. 

B, 343, 11-18. 

Price,H.J. (1989) Swimming behavior of krill in response to algal patches: a mesocosm study. Limnol. 

Oceanogr., 34, 649-659. 

Rothschild,B.J. (1992) Applications of stochastic geometry to problems in plankton ecology. Phil. Trans. R. 

Soc. Lond. B, 336, 225-237. 

Sanderson,L.F. and Booth,D .A ( 1991) The fracatal dimension of drifter trajectories and estimates of horizontal 

eddy-di:ffusivity. Tel/us, 43A, 334-349. 

Schertzer,D. and Lovejoy,S. (1987) Physically based rain and cloud modeling by anisotropie multiplicative 

turbulent cascades. J. Geophys. Res., 92, 9693-9714. 

Schertzer,D. and Lovejoy,S. (1989) Nonlinear variability in geophysics: multifractal analysis and simulation. In 

Pietronera,L. (ed.), Fractals: Physical Origin and Consequences. Plenum, New York, pp. 49-79. 

Schertzer,D., Lovejoy,S., Schmitt,F., Chigirinskaya,Y. and Marsan,D. (1997) Multifractal cascade dynamics 

and turbulent intermittency. Fractals, 5, 427-471. 

15 



Schmitt,F., Lovejoy,S. and Schertzer,D. (1995) Multifractal analysis of the Greenland ice-core project climate 

data .. Geophys. Res. Lett., 22, 1689-1392. 

Schmitt,F., Vannitsem,S. and Barbosa,A. (1998) Modeling of rainfall time series using two-state renewal 

processes and multifractals. J. Geophys. Res., 103,23181-23193. 

Seuront,L., Schmitt,F., Lagadeuc,Y., Schertzer,D., Lovejoy,S. and Frontier,S. (1996a) Multifractal analysis of 

phytoplankton biomass and temperature in the ocean. Geophys. Res. Lett., 23, 3591-3594. 

Seuront,L., Schmitt,F., Lagadeuc,Y., Schertzer,D. and Lovejoy,S. (1996b) Multifractal interrnittency of 

Eulerian and Lagrangian turbulence of ocean temperature and p1ankton fields. Non/in. Proc. Geophys., 3, 

236-246. 

Seuront,L., Schmitt,F., Lagadeuc,Y., Schertzer,D. and Lovejoy,S. (1999) Universal multifractal analysis as a 

tool to characterise multiscale intermittent patterns. Example of phytoplankton distribution in turbulent 

coastal waters. J. Plankton Res., 21, 877-922. 

Shiyomi,M. and Yamamura,K. (1993) Spatial pattern indices based on distances between individuals on a tine

segment with finite length. Res. Popul. Eco!., 34, 321-330. 

Smith,C.L., Richards,K.J. and Fasham,M.J.R. (1996) The impact ofmesoscale eddies on plankton dynamics in 

the upper ocean. Deep Sea. Res.l, 43, 1807-1832. 

Steele,J.H. and Henderson,E.W. (1992) A simple model for plankton patchiness. J. Plankton Res., 14, 1397-

1403. 

Taylor, G.I. (1938) The spectrum ofturbulence.Proc. R. Soc. Land. A, 164, 476-490. 

Tsuda,A. (1995) Fractal distribution of the oceanic copepod Neocalanus cristatus in the subarctic Pacifie. J. 

Oceanogr., 51,261-266. 

Tsuda,A., Sugisaki,H., Ishimaru,T., Saino,T. and Sato,T. (1993) White-noise-lik.e distribution of the oceanic 

copepod Neocalanus cristatus in the subarctic North Pacifie. Mar. Eco!. Prog. Ser., 97, 39-46. 

Visser,A.W. (1997) Using random walk mode1s to simulate the vertical distribution of particles in a turbulent 

water column. Mar. Eco/. Prog. Ser., 158, 275-281. 

16 




