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Résumé

La détection de la peau dans les images en couleur joue un rôle très important pour de

nombreux problèmes de reconnaissance de formes. Citons la détection de visages ou encore la

détection de corps humain dans une image. La résolution partielle de ces problèmes permet

de faire des progrès dans les applications suivantes: le filtrage de l’internet, afin, par exemple,

de signaler les images pornographiques, l’indexation par le contenu de catalogues d’images, ou

encore la visioconférence, en permettant le suivi des visages dans des séquences d’images.

Nous disposons d’une large collection d’images qui ont été étiquetées manuellement. Ainsi,

chaque pixel de chaque image de cette collection admet un label binaire: “peau” ou “non-peau”.

Nous considérons successivement trois modèles probabilistes de complexité croissante pour

la détection de la peau. Chaque modèle est un modèle de maximum d’entropie sur la moyenne.

Tout d’abord, les contraintes ne portent que sur les lois marginales des couleurs pour chaque

pixels. Puis, nous ajoutons des contraintes sur les lois jointes des labels binaires — “peau” ou

“non-peau” — des pixels voisins. Le modèle obtenu est alors un champs de Markov. Dans

un troisième temps, nous ajoutons des contraintes sur les couleurs des pixels voisins. Le modèle

obtenu est à nouveau un champs de Markov mais contenant un très grand nombre de paramètres.

Afin, aussi bien d’estimer les paramètres de ces modèles que d’effectuer de l’inférence, c’est à

dire, étant donné une image couleur, calculer la probabilité pour chaque pixel qu’il corresponde

à de la peau, nous proposons d’approximer, localement, le graphe associé aux pixels par un

arbre. On dispose alors de l’algorithme “iterative scaling” pour l’estimation des paramètres et de

l’algorithme “belief propagation” pour l’inférence.

Nous avons effectué de nombreuses études expérimentales afin d’évaluer les performances

respectives des différents modèles, en particulier en modifiant la taille et la géométrie des arbres.

Dans le cas du projet européen Poesia, nous avons utilisé notre détecteur de peau en entrée

d’un système de classification utlisant la méthode des réseaux neuronaux pour bloquer les pages

webs indésirable pour les enfants. Nous avons obtenu des résultats extrèmement encourageants.

Mots clefs : maximum d’entropie, détection de la peau, champs de Markov, belief propagation,

filtrage de l’internet



Abstract

Skin detection consists in detecting human skin pixels from a color image. It plays an impor-

tant role in various applications such as face detection, searching and filtering image content on

the web, video segmentation and face/head tracking, . . . . However, skin detection is not an easy

task, especially in the case of web images. First, skin colors may vary from person to person.

Furthermore, since web images are captured under various conditions, they are subject to all

kinds of noise and distortion.

In this thesis, we consider a sequence of three models for skin detection built from a large

collection of labelled images. Each model is a maximum entropy model with respect to constraints

concerning marginal distributions. Our models are nested. The first model is well known by

practitioners. Pixels are considered as independent. It is referred to as the Baseline model in the

thesis. The second model is a hidden Markov model. It includes constraints that force smoothness

of the solution. The third model is a first order model. The constraints are imposed upon the

two-site joint marginal probabilities. Parameter estimation as well as optimization cannot be

tackled without approximations. We use tree approximations of the pixel lattice. Within it, the

models are represented in terms of marginal probabilities on single sites or neighboring sites,

which can be empirically estimated from the training data.

For skin probability inference given input color image, we first experimented with Gibbs sam-

pling method. The experimental results show improved performance of skin detection compared

to that of the Baseline model at the cost of higher computational load. For near-real-time per-

formance we then replace Gibbs sampling with belief propagation algorithm, which permits to

obtain exact and fast solution for skin probability at pixel locations on tree graphs. We show

that the performance of belief propagation is comparable to that of Gibbs sampling.

In the European project Poesia, we apply our skin detection scheme to blocking adult images

from Internet. All features are extracted from the skin detection output. The performance is

quite impressive for such simple features, which is an evidence that skin detection plays a very

important role in adult image detection.

Key words : skin detection, maximum entropy modeling, Markov random fields, belief propa-

gation, Internet filtering.
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Résumé (Chapitre 1)

La détection de la peau consiste à détecter les pixels de peau dans une image couleur pour

obtenir une image binaire. Elle joue un rôle très important dans différentes applications telles

que la détection du visage, la segmentation vidéo et le filtrage d’images adultes.

Cependant, c’est une tâche difficile à réalier à cause de la variation de la couleur de la peau

et la diversité des conditions de prise de vue (lumière, bruit, . . . ). Nous proposons dans cette

thèse d’apprendre ces variations par l’utilisation du principe de maximum d’entropie (MaxEnt).

Dans ce chapitre, nous introduisons le principe de MaxEnt pour la modélisation de la peau. Ce

principe nous permet d’unifier tous les modèles statistiques que nous proposons dans cette thèse.

Nous construisons plusieurs modèles statistiques. Le premier modèle suppose l’indépendance

statistique entre les pixels de peau. Les deux autres modèles sont des champs de Markov. Ils

modélisent les dépendances entre pixels voisins. Le premier modèle peut être résolu analytique-

ment et il ne possède aucun paramètre à estimer. En revanche, les deux autres modèles possèdent

des paramètres à estimer.

Pour l’estimation de ces paramètres nous proposons différentes approches. La première con-

siste à exploiter le concept de “Julesz Ensemble” qui permet de simuler la texture de peau. La

seconde consiste à approximer localement le graphe des pixels par un arbre et de calculer la loi

jointe sur cet arbre sous une forme analytique. Il n’y a alors plus de paramètres à estimer.

Une fois les paramètres estimés, on peut donc passer à l’étape d’inférence. Deux méthodes

sont étudiées, l’une est basée sur l’ “échantillonnage de Gibbs” et l’autre sur l’algorithme de

“belief propagation”.

Les résultats de la détection de la peau des chapitres précédents nous serviront pour construire

un système de filtrage d’images adultes.
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Chapter 1

Introduction

1.1 Skin detection

Skin detection consists in detecting human skin pixels from a color image. The system output is

a binary image defined on the same pixel grid as the input image with one value for skin and the

other value for the background. Fig 1.1 shows a color image and the output of skin detection.

Figure 1.1: Color image with skin and the result of skin detection

Skin detection plays an important role in various applications such as face detection [TSFA00]

[KPS03] [HAMJ02], searching and filtering image content on the web [WLWF98b] [WLWF98a],

video segmentation [SSA04] and face/head tracking [Bir98] [JPCSV99].

However skin detection is not an easy task, especially in the case of web images. First, skin

colors may vary from person to person. As shown in Fig 1.2, there are Caucasians, Africans and
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Asians, etc. Furthermore, since web images are captured with devices of different characteristics

under various conditions, they are subject to all kinds of noise and distortion. Fig 1.3 shows

some examples.

Figure 1.2: Skin colors vary from person to person.

A skin detection system is never perfect and different users use different criteria for evaluation.

General appearance of the skin-zones detected, or other global criteria might be important for

further processing. For quantitative evaluation, we will use false positive rate (FP) and true

positive rate (TP). False positive rate is the proportion of non-skin pixels classified as skin and

true positive rate is the proportion of skin pixels classified as skin. The user might wish to

combine these two indicators his own way depending on the kind of error he is more willing to

afford. Hence we propose a system where the output is not binary but a floating number between

zero and one, the larger the value, the larger the belief for a skin pixel. The user can then apply

a threshold to obtain a binary image. Error rates for all possible thresholding are summarized

in the Receiver Operating Characteristic (ROC) curve.

1.2 The state of the art

Research has been performed on the detection of human skin pixels in color images and on the

discrimination between skin pixels and “non-skin” pixels by use of various color models. There

are mainly two lines of research in this area, first, how to model skin/non-skin so that we can

discriminate skin pixels from non-skin ones, and second, which color space to choose for good
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(1a) (1b) (1c) (1d)

(2a) (2b) (2c) (2d)

Figure 1.3: Web images are captured under very different conditions. Images (1a) and (1b) are

blurred. Images (1c), (1d) and (2b) have too strong or too poor illumination on skin regions.

Image (2d) shows skin regions in the shadow and mixed with the background. Image (2a) shows

the color bias perhaps due to the capturing device. The pilot in (2c) wears a colorful mask on

his face. All these situations creat difficulties for skin detection.

classification performance.

1.2.1 Skin modeling

There is some survey work on skin modeling such as [VSA03] [ZSQ99] [TSFA00] which summarizes

research in this area. The goal of skin modeling is to build a decision rule which seperates skin

pixels from non-skin ones. Following Vezhnevets et al. [VSA03], we split the work in this area

into two main fields: non-parametric modeling and parametric modeling.

Non-parametric skin modeling

The research in this line aims to estimate the distribution of skin colors without explictly giv-

ing functions in parametric formulae. The result of these methods is sometimes referred to as

construction of Skin Probability Map (SPM) [VSA03] [BM00] [Gom02] —assigning a probability

value to each point of a discretized color space.
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Bayesian models based on histograms

In [JR02] [CB00] the authors model the skin and non-skin colors through histograms. They

quantize the color space C to a number of bins c ∈ C and count the number of color pixels in

each bin Nskin(c) for skin class as well as N¬skin(c) for non-skin class. Finally they normalize each

bin to get the discrete conditional skin/non-skin color distribution p(c|skin)/p(c|¬skin). Letting

Nskin denote the number of skin pixels and N¬skin the number of non-skin pixels in the training

set, we have

p(c|skin) =
Nskin(c)

Nskin
(1.1)

p(c|¬skin) =
N¬skin(c)

N¬skin
(1.2)

as well as the priors:

p(skin) =
Nskin

Nskin +N¬skin
(1.3)

p(¬skin) =
N¬skin(c)

Nskin +N¬skin
= 1− p(skin) (1.4)

Then the Bayesian formula is employed to estimate the skin/non-skin probability according to

the color of a given pixel:

p(skin|c) =
p(c|skin)p(skin)

p(c|skin)p(skin) + p(c|¬skin)p(¬skin)
(1.5)

p(¬skin|c) = 1− p(skin|c) (1.6)

The two-class decision is made upon a properly selected threshold Θ, 0 < Θ < 1. The pixel is

said to be a skin pixel if p(skin|c) > Θ, or a non-skin pixel if p(skin|c) ≤ Θ.

Self organizing map (SOM)

Devised by Kohonen in the early 80’s, SOM is now one of the most popular and widely used

types of unsupervised artificial neural networks [VSA03]. Brown et al. [BCL01] applied it to the

detection of skin pixels. The basic SOM consists of a 2-dimensional lattice L of neurons. Each

neuron ni ∈ L is associated with a codebook vector vi ∈ R
m which is initialized randomly at the

beginning. In [BCL01] the authors choose 2-dimensional color space, therefore m = 2 in their

work. The lattice could be either rectangular or hexagonal. In Fig. 1.4 we show examples of

both lattices as well as neighborhood of the center nodes.

In order to train a SOM, we present the training vectors sequentially to all neurons in the

lattice. Each time an input vector v is sent into the SOM, a winning neuron vw is determined

according to

‖vw − v‖ ≤ ‖vi − v‖, ∀i ∈ I (1.7)
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Figure 1.4: The SOM lattices with neighborhood systems [BCL01]. L: the rectangular SOM

lattice; R: the hexagonal SOM lattice.

in which I is the ensemble of all the indices of neurons in the lattice. The Euclidean or Manhattan

distance is generally chosen as the metric. The neurons in the neighborhood then adjust their

codebook vectors according to a learning function. As training progresses, the learning rate

and the size of the affected neighborhood are both decreased. The lattice gradually forms a

topologically ordered mapping (or feature map) of the training data.

If necessary, a calibration phase then takes place, where labelled training data is sequentially

presented to the SOM. The data label and the index of the winning neuron are recorded each

time. Each neuron is then assigned the label which it takes the most. For classification, each

input data just takes the label of the winning neuron.

Brown et al. [BCL01] choose the hexagonal lattice and the size of the lattice is about 16−256.

They showed that the performance of SOM is marginally better than Gaussian mixture model,

while inferior to the histograms-based method in [JR02]. The good side is that it consumes less

resources than histograms-based methods and could be implemented in cheap and fast SOM

hardware.

Several face detection and tracking algorithms [CWY95] [ZSQ99] use a normalized lookup

table(LUT) for skin pixel detection. What is in the table is in fact the conditional probability

p(c|skin) or the likelihood of the color corresponding to skin.

Advantages of non-parametric methods are 1) they are generally fast in both training and

testing; 2) the methods do not care about the shapes of the underlying distributions of the training

data, thus they are less constrained in choosing working color spaces. However these models
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generally need large amount of storage space and lack the ability to interpolate or generalize

the training data. Supposing we choose RGB color space C = {0, · · · , 255}3, we need 224 bins

for storing each skin/non-skin histogram. Jones&Regh [JR02] proposed to reduce the number of

bins in the histograms by resampling the color space. Their experiments have shown that 323

gives almost the best performance among other tested sampling rates.

Parametric skin modeling

Parametric skin models permit to generalize the distributions. They aim to fit the distribu-

tions with some specific parameterized functions. Thus parametric models need far less storage

than non-parametric models. They give more insight into the true shapes or regularity of the

distributions and allow to analyze them conveniently afterwards. They have also the ability to

interpolate the training data when it is sparse. Different functions could be applied according to

the specific problems. The most used ones on skin/non-skin modeling are introduced below.

Single Gaussian

Single Gaussian models skin color distribution with a Gaussian probability density function

(pdf):

p(c|skin) =
1

2π|Σskin|1/2
exp

(

−1

2
(c− µskin)

T Σ−1
skin(c− µskin)

)

(1.8)

where µskin is the expectation and Σskin the covariance matrix of the skin color vectors. They

can be estimated from the training samples as follows:

µskin =
1

Nskin

∑

c∈C

Nskin(c)c (1.9)

Σskin =
1

Nskin − 1

∑

c∈C

Nskin(c)(c− µskin)(c− µskin)
T (1.10)

p(c|skin) can then be used as the likelihood of c belonging to skin. Or we can just generate

another model for non-skin class as well and use the Bayesian formula to get p(skin|c). Single

Gaussian modeling was employed in [HAMJ02] and [ST98].

Mixture of Gaussians

Mixture of Gaussians is an extension of the single Gaussian. It has ability to represent more

complex distributions than those representable with single Gaussian models. The pdf under

mixture of Gaussians is represented as:

p(c|skin) =
k
∑

i=1

wipi(c|skin) (1.11)
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where pi are the Gaussian kernels defined in (1.8), each of which is itself a Gaussian distribution,

k is the number of Gaussian kernels, wi are the weights of corresponding kernels which sum up

to 1. We can build the mixture model for non-skin class similarly. Expectation Maximization

(EM) algorithm is generally applied to estimate the unknown parameters (wi, µi,Σi) as in [JR98]

[TSFA00]. k should be chosen properly so that the model can explain the training data well and

does not over-fit the data.

Elliptical boundary model

Proposed by Lee and Yoo [LY02], elliptical boundary model is claimed to be superior to the

single Gaussian model and the mixture of Gaussians based on the experiments performed on the

Compaq database [JR02]. The motivation of this model is the skewness of the skin distribution

from the Gaussian distribution. In order to account for the true shape of the skin distribution,

which is approximately an ellipse from the observation of the training samples, Lee and Yoo

proposed to separate skin and non-skin color regions by an elliptical boundary. The model is

defined as follows:

Φ(c) = (c− φ)T Σ−1
skin(c− φ) (1.12)

where φ and Σskin are to be estimated from the training skin pixel set. Before parameter estima-

tion, the outliers are removed from the training set first, which are 0 − 5% of the training skin

color samples with low frequency and are assumed to be noise and negligible data. Parameters

are estimated by

φ =
1

|Cskin|
∑

c∈Cskin

c (1.13)

Σskin =
1

Nskin

∑

c∈Cskin

Nskin(c)(c− µskin)(c− µskin)
T (1.14)

where |Cskin| is the number of elements in the skin color set Cskin, Cskin ⊆ C. µskin is the

expectation of the training skin color vectors as defined in (1.9). The decision rule is simply

to compare Φ(c) with a chosen threshold θ: c is skin if Φ(c) < θ and non-skin if not. The

authors tested this model on 6 chrominance color spaces. The experiments conducted by the

authors reveal that this model is better than the single Gaussian and mixture of Gaussians in

terms of skin/non-skin pixel classification rates, and it is fast in classification. A little drawback

of this model is that it can only give the binary decision, which means it lacks the continuous

information provided by the probability density function.

Parametric models have the ability of generalization. However the goodness of fit is much de-

pendent on the shapes of the distributions, and therefore on the colorspaces chosen. Furthermore

their training and testing are much slower since these involve parameter estimation procedure
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such as the EM algorithm and evaluation of the relatively complex model functions such as (1.8),

(1.11) and (1.12).

Other skin models

In specific applications such as video tracking, skin detection is only a very primitive step and

should be fast. Such requirement gives rise to simple explicit skin region definitions, such as:

(R,G,B) is classified as skin if all the following conditions are satisfied:















R > 95, G > 40, B > 20

max{R,G,B} −min{R,G,B} > 15

|R−G| > 15, R > G,R > B

(1.15)

Such schemes were implemented in [KPS03] [FFB96] [JPCSV99]. The main difficulties faced by

the practitioner are the empirical choice of a proper color space and adequate decision rules.

Recently some machine learning algorithms for the automatic construction of the proper color

space as well as the decision rule is proposed [GM02].

Another line of research takes place in the dynamic modeling. That is, the model itself is

adaptable to the changing conditions (person, camera, lighting, background). Such models are

mainly used in special applications such as face tracking [OBP96] [SMHL00] [YA98].

1.2.2 Color spaces for skin modeling

Color is perceived by human being as a combination of so-called tristimuli R (red), G (green)

and B (blue). They are usually called the three primary colors. Some other color representations

(spaces) can be derived through linear/non-linear combinations of R, G and B. Different color

spaces have been proposed for various purposes [CJSW01]. Many of these spaces have been

applied to the problem of skin color modeling.

RGB

RGB color space originated from CRT displaying applications. Color is represented as a

combination of three colored rays (red, green and blue) in this color space. A primary principle

of colorimetry is that any color could be represented by such a combination and that this com-

bination is unique. It is one of the most commonly used color space for image displaying and

processing. However there exists high correlation between these three channels, e.g., when the il-

lumination changes, all three channels will change accordingly. Furthermore it is not perceptually

uniform across the color range. This color space is implemented in [BM00] [JR02].
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Normalized RGB

In light of the high correlation inside RGB color space, researchers have been looking for

methods to decorrelate the channels or to decrease the dimensionality of the color space. A very

simple way is to normalize the three components in the RGB representation according to:

r =
R

R+G+B
, g =

G

R+G+B
, b =

B

R+G+B
(1.16)

The color space defined by the above transform is called normalized RGB color space. Since

we have r + g + b = 1, one of the components is in fact redundant. We can simply represent

the color with the couple (r, g). The dimensionality is reduced to only 2 in this way. Now the

representation is independent of the brightness of the color. This, together with the simplicity

of transformation attracted many researchers [BCL01] [ZSQ99] [SMHL00]. The drawback of the

normalized RGB color space comes from the nonlinear transformation from the RGB color space,

i.e., the representation is very noisy under low intensities.

HSV (Hue Saturation Value)

HSV color space is created by Alvy Ray Smith [Smi78] in 1978. There are many variants

based on similar ideas, e.g., HSL (Hue Saturation Lightness) and HSI (Hue Saturation Intensity).

This class of color spaces stem from artists’ idea of tint, saturation and tone. They try to describe

color intuitively. Hue defines the color type (such as red, blue, or yellow), saturation measures

the colorfulness relative to its brightness [Poy97]. We use the following formulae to transform

the color (R,G,B) to (H,S, V ) [Wika]:

H =















(0 + G−B
MAX−MIN )× 60, ifR = MAX

(2 + B−R
MAX−MIN )× 60, ifG = MAX

(4 + R−G
MAX−MIN )× 60, ifB = MAX

(1.17)

S =
MAX −MIN

MAX
(1.18)

V = MAX (1.19)

where R, G and B are normalized to [0, 1]. MAX = max(R,G,B) and MIN = min(R,G,B).

The HSV color space can be visualized as Fig. 1.5. The resulting H varies from 0 to 360,

indicating the angle in degrees around the color circle where the hue is located. S and V vary

from 0 to 1, with 0 being the least amount and 1 being the greatest amount of saturation or

value, respectively [Wika]. Note that H is undefined when MAX = MIN (i.e., S = 0) and S is

undefined when MAX = 0 (i.e., V = 0).
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Figure 1.5: Visualization of HSV color space (taken from [Wika]). Hue varies along the outer

circumference of a cylinder. Saturation varies with distance from the center. Value varies from

bottom to top.

The intuitiveness and the seperation of chrominance and illuminance make HSV color space

popular in color image segmentation as well as in skin color image segmentation [ZSQ99] [SSA04]

[Bir98] [JPCSV99]. One of the disadvantages of HSV color space is the existence of singularity

in H and S components. A slight change of R, G or B will cause a jump in the tranformed

values near the singular points. The polar coordinate system of Hue-Saturation spaces, resulting

in cyclic nature of the color space, makes it inconvenient for parametric skin color modeling that

need tight cluster of skin colors for best performance [VSA03].

Other color spaces

There are some other less popular used color spaces for skin detection, e.g., TSL (Tint

Saturation Lightness) in [TSFA00], YCbCr in [HAMJ02] and [CB00], CIE in [ZSQ99] and [YA98],

RGB ratios and YIQ in [BM00], etc.

Lots of strategies in selecting color spaces aim to drop the illuminance component. This is

attractive for training data generalization. Low-dimensional color spaces are easier to handle

than the original 3D spaces. It is especially useful when the training data is sparse or when the

researcher wants to define the skin color region empirically [KPS03] [FFB96] [JPCSV99]. The

choice of color spaces is critical for dimension reduction. Gomez and Morales [GM02] suggested a

way to find both suitable color space and simple decision rules with machine learning algorithms.

The performance of parametric skin color modeling depends heavily on the choice of proper

color spaces. This is visible in [TSFA00] and [LY02]. On the other hand, the non-parametric
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methods, given enough training data, do not show much difference when choosing different color

spaces as has been revealed in [ZSQ99] [BCL01] and [ATD01]. Albiol et al. [ATD01] gave a

theoretical proof that if the transformation between two color spaces are invertible, then perfor-

mance of the optimum skin detection scheme under either color space is the same. The authors

also perfromed experiments to show that the separability of the skin and non-skin classes is

independent of the color spaces chosen.

1.2.3 Performance

Vezhnevets et al. [VSA03] gave an evaluation of some state-of-the-art skin detection methods.

According to their report, we have Table 1.1. As shown in this table, Bayesian modeling based on

RGB histograms gives the best performance in terms of skin/non-skin pixel classification (false

positive rate under the same true positive rate). The performance of Bayesian modeling based

on RGB histograms is followed by that of the mixture of Gaussians in RGB. The other methods

are left behind.

The Bayesian modeling based on RGB histograms proposed by Jones and Rehg [JR02] is in

fact a statistically independent model in the sense that they assume no relationship among neigh-

boring pixels. Thus they classify the pixel one by one, not taking into account the neighboring

influence. However, the skin regions are not totally random, they actually tend to form regular

shapes, the neighboring pixels, especially skin pixels, are much correlated. Better modeling could

be to model the covariation coded in neighboring pixels. Maximum entropy modeling (MaxEnt)

[Jay] is a method for inferring models from a data set. It can incorporate whatever statistical

properties that could be observed from the data into a mathematical model. It opens the pos-

sibility for us to design models that take into account the statistics existing among neighboring

pixels. We shall see this in the following chapter.

1.3 Thesis overview

The remainder of this thesis is organized on a chapter by chapter basis in the following manner:

Chapter 2: From independent model to Markov random fields

This chapter introduces the principle of maximum entropy, which is the basis of our skin

modeling. It unifies all the skin models built in the thesis. We will build a sequence of three

models in this chapter. The first one is called the Baseline model, which is well known to the

practitioners and also implemented in [JR02]. It is an independent model and thus the simplest
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Table 1.1: Performance of different skin detectors reported by the authors

Method TP FP

Bayesian modeling based on RGB histograms

[JR02] 80% 8.5%

[JR02] 90% 14.2%

[BM00] 93.4% 19.8%

SOM in TS

[BCL01] 78% 32%

Single Gaussian in CbCr

[LY02] 90% 33.3%

Mixture of Gaussians in RGB

[JR02] 80% ∼ 9.5%

[JR02] 90% ∼ 15.5%

Mixture of Gaussians in IQ

[LY02] 90% 30%

Elliptical boundary model in CIE

[LY02] 90% 20.9%

Thresholding of I axis in YIQ

[BM00] 94.7% 30.2%

one of all the models we built. The other two models are Markov random fields (MRF) built

by introducing appropriate constraints under the maximum entropy framework. Our first MRF

model is a hidden Markov model (HMM), and the second is called the first-order model (FOM).

The Baseline model can be solved analytically and exactly in terms of the empirically estimated

statistics. The MRF models, however, can only be expressed in parametric forms for now. The

parameter estimation issues will be tackled in the next chapter.

Chapter 3: Parameter estimation

This chapter aims to solve the unknown parameters in the two Markov models. Several

parameter estimation methods are explored. The first method is to build a set of equations from

the local characteristics of the MRF. We can then estimate the local characteristics by sampling

from the MRF according to its constraints and counting the local characteristics or by directly

counting the local characteristics from the training data. This works for the HMM but not for

the FOM, since for FOM the equation system becomes huge and intractable, not to say we do
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not have enough training data to estimate the parameters without overfitting. The problem

is solved by tree approximations for FOM since the MRF takes an analytical formula on tree

graphs in terms of the empirically estimated probabilites from the training set. However, direct

empirical estimation of the FOM parameters from the training set will cause over-fitting since

the orginal parameter space is really huge even for small images. Two methods are studied to

get around the difficulty. The first method is to decrease the dimensionality by assuming the

independence of one-site marginal conditioned on the skin/non-skin label and the gradient of

neighboring colors conditioned on neighboring labels. The other method is more natural. It

estimates the high-dimensional parameters with the maximum entropy principle on the basis of

some low-dimensional empirically estimable parameters from the training set. Now the MRF

models are solved and ready for classification tasks.

Chapter 4: Gibbs sampling

This chapter deals with pixel classification through Gibbs sampling. The MRFs are equivalent

to Gibbs fields. The well-established sampling theory tells us that we can sample these fields

through the inherent local characteristics of the MRFs. Given an input color image, we show how

we sample from the label image space through the Markov chain Monte Carlo method. The skin

probabilities on pixel locations are then easily computed from the sequence of samples. Some

experimental results are shown in this chapter, which reveal that the FOM is superior to the

HMM and in turn to the Baseline model. However the sampling procedure generally takes a long

time and depends seriously on the starting configuration. We have to look for a faster inference

algorithm to meet the time requirement for real environment. This is the issue of Chapter 5.

Chapter 5: Belief propagation on tree graphs

We introduce the belief propagation (BP) algorithm in this chapter. This method aims to

minimize the Bethe free energy, which is an approximation to the real free energy when the

underlying graphs are not trees. This algorithm is well expressed in graphical models. Thus we

begin with the introduction of general graphical models. Of particular interest is the pairwise

MRF. The fixed points of the BP algorithm are the stationary points of the Bethe free energy.

Two sorts of tree approximations, Bethe tree approximation and 4-star tree approximation, are

introduced and exprimented on. We show that the BP algorithm dramatically improved the

speed of skin probability estimation at pixel locations at similar pixel classification performance

to that of Gibbs sampling.

Chapter 6: Blocking adult images

In this chapter we apply the skin detector to adult image detection. We extract several simple

features from the skin probability images. We train a two-layer perceptron on these features.
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The experiments on a large image database show stimulating performance despite the simplicity

of our features based only on skin probability images. This model has been incorporated into

the Poesia system, which is an open-source platform for Internet content scanning. The whole

architecture of Poesia system is introduced in this chapter. We also show that combination of

several images on the same web pages improved the overall performance of pornographic web

page detection.

Chapter 7: Conclusion and perspectives

This chapter concludes the thesis and points out the furture direction of the related work.



Résumé (Chapitre 2)

Nous considerons dans ce chapitre trois modèles de maximum d’entropie respectant différentes

contraintes sur les lois jointes des pixels voisins.

Le principe de maximum d’entropie consiste à trouver la loi de probabilité qui maximise

l’entropie sous certaines contraintes statistiques. Ces contraintes qui sont exprimées sous forme

d’espérance sont calculées à partir de la base d’apprentissage. Ce principe nous dit que la meilleur

décision à prendre est celle la plus uniforme. Cette uniformité est calculée grâce à l’entropie.

Le premier modèle impose des contraintes sur un pixel. La solution obtenue est le modèle

de base qui suppose l’indépendance des pixels de peau. Ce modèle ne tient pas compte de

l’information de voisinage. C’est pour cela que nous introduisons deux autres modèles dit champs

de Markov aléatoire.

A l’exception du premier modèle, les autres modèles nécessitent l’estimation des paramètres.
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Chapter 2

From independent model to Markov

random fields

We consider a sequence of three maximum entropy models with respect to various constraints

concerning marginal distributions. The first model imposes constraints on one-pixel marginals.

The solution is a baseline model in which pixels are considered independent. This model is well

known by practitioners [JR02]. The baseline model is certainly too loose and does not take into

account the fact that skin zones are not purely random but are made of large regions with regular

shapes. Hence, in the second model, we add constraints on the marginals of neighboring labels,

which will hopefully smooth the solution. Finally, the joint probabilities of neighboring colors

and skin labels are included in building the third model. We expect that the increased knowledge

about the statistics of the color images and skin label images would help discriminate skin pixels

from non-skin ones.

2.1 Maximum entropy principle

The maximum entropy concept has a long history. Adopting the least complex hypothesis possible

appears early in the Bible [BPP96]. Laplace might justly be considered the father of maximum

entropy, having enunciated the underlying theme 200 years ago in his “Principle of Insufficient

Reason”: when one has no information to distinguish between the probability of two events, the

best strategy is to consider them equally likely [GS85]. The principle of maximum entropy can

thus be seen as a generalization of the “Principle of Insufficient Reason”. This strategy was first

proposed as a general inference procedure by Jaynes [Jay57a] [Jay57b].
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Suppose we are about to estimate a distribution subject to some constraints, or say, some

known facts about the statistics of the distribution. These constraints could be some statistics we

observed from a lot of samples from the underlying distribution. That is, we constrain our solution

to those distributions conforming with our observations. The solutions could be enormous if we

do not have any prior information. Then, which distribution should we choose? Maximum

entropy principle solves this problem by the policy of honesty, that is, frankly acknowledging

the full extent of its ignorance by taking into account all possibilities allowed by the knowledge

[Jay]. We would not rule out any possibilities except the constraints explictly tell us to do so.

We would accept the solution that is in line with the constraints, and otherwise as uniform as

possible. Under maximum entropy principle, the uniformity of a distribution is measured by the

information entropy [Sha48]. For a discrete random variable X with distribution p, its entropy

is defined as:

H(X) = −
∑

x∈X

p(x) ln p(x) (2.1)

where X is the space of the random variable X. We will use the convention that 0 ln 0 = 0, which

is easily justified by continuity since limx→0 x lnx = 0. Thus adding terms of zero probability

does not change the entropy. Note that entropy is a function of the distribution of X. It does

not depend on the actual values taken by the random variable X, but only on the probabilities.

We shall denote the expectation by E. Thus if X has the distribution p, then the expected value

of the random variable f(X) is written as:

Ep[f(X)] =
∑

x∈X

p(x)f(x) (2.2)

or simply as E[f(X)] when the probability mass function is understood from the context. The

entropy of X can also be interperted as the expected value of − ln p(X), where X is drawn

according to probability mass function p(x). Thus

H(X) = Ep[− ln p(X)] (2.3)

It is very easy to verify that the entropy of a random variable X is always non-negative, i.e.,

H(X) > 0 always holds. Figure 2.1 shows the entropy curve H(X) of a binary random variable

X with respect to its probability mass function Pr(X). X can take two discrete values 0 or 1.

We can see that the entropy H(X) gets maximized when Pr(X = 0) = Pr(X = 1) = 0.5, and

it starts to decrease when Pr(X = 0) and Pr(X = 1) get apart from each other. H(X) has the

minimum value 0 when X assumes one value 0 or 1 with probability 1.

For an arbitrary discrete random variable X, we can verify that H(X) reaches its maximum

when X is uniformly distributed. It follows naturally that under certain constraints, the distri-

bution with the maximum entropy would also be the most uniform one among all distributions
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Figure 2.1: Entropy of a binary random variable X with respect to its probability mass function

Pr(X). The horizontal axis is the probability that X = 1. The vertical axis is the entropy of

X (The picture is originally from Wikepedia [Wikb] for entropy of base 2, and modified by the

author with the natural base.)

subject to the defined constraints. Jaynes [Jay] justified the reason for choosing entropy as the

measurement of uniformity.

[Jay] gives a full account of maximum entropy modeling (MaxEnt). The following introduc-

tion of MaxEnt in discrete case basically follows the idea in that classical text, with some efforts

to make it brief and explore some different point of view. Suppose a random variable X can

take on n different discrete values (x1, x2, · · · , xn) with the distribution p. We measure a line of

m,m < n, features fk(X), k = 1, · · · ,m, from X. The expectation of the corresponding measured

values of these features are Fk(X), k = 1, · · · ,m. The question is: what is the maximum entropy

solution to p while these expections of features are satisfied? The question could be formulated

as: maximizing the entropy Hp(X) subject to the following constraints,

{

∑

i p(xi) = 1

E[fk(X)] =
∑

i p(xi)fk(xi) = Fk(X)
(2.4)

We can introduce as many Lagrange multipliers as the constraints posed on the maximization

problem

L(p) = Hp(X) + (λ0 − 1)
∑

i

p(xi) +
∑

k

λk

(

∑

i

p(xi)fk(xi)− Fk(X)

)

(2.5)
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Take the partial derivative, we get, for i = 1, · · · , n,

∂L(p)

∂p(xi)
=

∂Hp(X)

∂p(xi)
+ (λ0 − 1) +

∑

k

λkfk(xi)

= 0 (2.6)

The solution is then the following:

p(xi) = exp(λ0 +

m
∑

k=1

λkfk(xi)) (2.7)

or equivalently:

p(xi) =
1

Z
exp(

m
∑

k=1

λkfk(xi)) (2.8)

if we define

Z = exp(−λ0) (2.9)

Since p is a distribution, that is,
∑

i p(xi) = 1, we can easily find

Z =
∑

i

exp(
m
∑

k=1

λkfk(xi)) (2.10)

Z is called partition function or normalization function.

The maximum entropy we get is then:

Hmax(X) = −
∑

i

p(xi) ln p(xi) = lnZ −
m
∑

k=1

λkFk(X) (2.11)

For now we have got a maximum entropy solution where the partial derivatives are defined. The

question is, what we get is a global maximum or unfortunately only a local one? Furthermore, is

it possible that we could find a higher entropy somewhere the partial derivatives are not defined,

for example, at a cusp (discontinuity of slope)? The variational method alone we have just

implemented does not answer these questions. In the following we will give a rigorous proof that

the solution we just found does give the maximum entropy among all possible distributions that

satisfy the constraints (2.4).

Before we prove (2.7) is a global maximum entropy solution, we shall introduce the concept

of Kullback-Leibler (KL) distance. It is a measure of distance between two probability mass

function q(x) and r(x). The definition is as follows:

D(q‖r) =
∑

x∈X

q(x) ln
q(x)

r(x)
(2.12)
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Sometimes it is referred to as KL divergence, cross entropy or relative entropy. We can easily

show that the KL distance is always nonnegative and is zero if and only if q = r. We know

lnx ≤ (x − 1), x > 0, with equality if and only if x = 1. Then D(q‖r) =
∑

x q(x) ln q(x)
r(x) =

−∑x q(x) ln r(x)
q(x) ≥ −

∑

x q(x)(
r(x)
q(x) − 1) = 0, with equality if and only if q(x) = r(x), ∀x ∈ X.

Even though KL distance is not a true distance since it is not symetric and it does not satisfy

the triangle inequality, it is still useful to consider it as a measure of “distance” between two

distributions [CT91].

In order to prove (2.7) is a global maximum entropy solution subject to the constraints defined

in (2.4) we need a lemma.

Lemma 1 Supposing r(x) is an arbitrary distribution subject to the constraints (2.4), p is the

maximum entropy solution defined in (2.8) and subject to the constraints (2.4). Then Hp(X)−
Hr(X) = D(r‖p).

Proof: Since r(x) is inside (2.4), i.e., ∀k = 1, · · · ,m:

∑

i

r(xi)fk(xi) = Fk(X)

From (2.11), we have:

Hp(X) = lnZ −
m
∑

k=1

λkFk(X) =
∑

i

r(xi)(lnZ −
m
∑

k=1

λkfk(xi))

= −
∑

i

r(xi) ln p(xi)

It follows from the definition of KL distance that Hp(X)−Hr(X) = D(r‖p). Proof concluded.

Since we know the KL distance D(r‖p) is non-negative with zero if and only if r = p,

it follows naturally from Lemma 1 that among all the distributions r subject to constraints

(2.4), the one r = p has the maximum entropy defined in (2.11). This is a rigorous proof

of our maximum entropy solution. It convinces us that as long as we could find a solution

with the form (2.8) and conforming to the constraints (2.4) at the same time, it must have

the maximum entropy among all distributions subject to these constraints. We now show that

if the maximum entropy solution exists, then it must be unique. Suppose we have found one

maximum entropy distributions p with the form (2.8) subject to the constraints (2.4), which

has the maximum entropy Hp(X) = Hmax. Now a distribution p∗ is given. We are told that

p∗ has also the same maximum entropy Hp∗(X) = Hmax among all distributions subject to the

constraints (2.4). Now we shall show that p∗ = p must hold. We learned from Lemma 1 that

D(p∗‖p) = Hp(X)−Hp∗(X) = 0. This implies p∗ = p. Proof concluded.
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Maximum entropy formalism for the continuous case

Shannon’s entropy though defined for a discrete random variable can be extended to the

continuous case [Tan]. Now let X be a continuous random variable with pdf p, then its entropy

can be defined by

H(X) = −
∫

p(x) ln p(x)dx (2.13)

whenever it exists. It is also called differential entropy in literature. Unlike the entropy of a

discrete random variable, the entropy of a continuous random variable may be infinitely large,

negative or positive [Ash65]. For a continous random variableX ∈ [a, b], the entropy is maximized

when p is a uniform distribution [Mit].

The constraints for a continuous random variable X are defined as:
{

∫ b
a p(x)dx = 1

E[fk(X)] =
∫ b
a p(x)fk(x)dx = Fk(X), ∀k = 1, · · · ,m.

(2.14)

As the discrete case, we find the solution

p(x) = exp(λ0 +

m
∑

k=1

λkfk(x)) (2.15)

A complete description and derivation of these equations can be found in [Sel85].

The principle of maximum entropy is useful whenever our information is testable, i.e., we

can determine whether or not a given distribution is consistent with the information at hand. In

practice the maximum entropy modeling works as follows:

1. choose relevant features. We specialize in colors and skinness for skin detection;

2. compute their histograms on the training set;

3. write down the maximum entropy model within the ones that have the feature histograms

as observed on the training set;

4. estimate the parameters of the model;

5. use the model for classification.

This plan has been successfully completed for several tasks related to speech recognition and

language processing [BPP96]. When working with images, the graph underlying the model is the

pixel lattice. It has many nodes and many loops. Task 4 is much more difficult. A break through

appeared with the work in [ZWM98] on texture simulation where 1, 2, 3 and 4 were performed

for images and 5 replaced by simulation.
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2.2 Notations

In order to tackle skin detection with MaxEnt, we need to fix some notations for easier description

and understanding of the solution procedure. The set of pixels of an image is S. The color of a

pixel s ∈ S is xs. It is a 3 dimensional vector, each component being usually coded on one octet.

C = {0, . . . , 255}3 denotes the RGB color space. The “skinness” of a pixel s, is ys with ys = 1 if

s is a skin pixel and ys = 0 if not. The color image, which is the vector of color pixels, is x and

the binary image made up of the ys’s is denoted by y.

Let’s assume for a moment that we knew the joint probability distribution p(x, y) of the

vector (x, y), then Bayesian analysis tells us that, whatever cost function the user might think

of, all that is needed is the posterior distribution p(y|x). From the user’s point of view, the

useful information is contained in the one pixel marginal of the posterior, that is, for each

pixel, the quantity p(Ys = 1|x), quantifying the belief for skinness at pixel s given the full color

image. Hence we explore a system where the output is a gray-scale image with the gray scales

proportional to the skin probabilities at pixel locations.

In practice the model p(x, y) is unknown. Instead, we have the Compaq Database. It is a

collection of samples

{(x(1), y(1)), . . . , (x(n), y(n))}

where for each 1 ≤ i ≤ n, x(i) is a color image and y(i) is the associated binary skinness image. We

assume that the samples are independent of each other with distribution p(x, y). The collection

of samples is referred later as the training data. Probabilities are estimated by using classical

empirical estimators and are denoted with the letter q.

In what follows, we build models for p(x, y), the joint probability distribution of color and

skinness images, using MaxEnt.

2.3 Baseline model

First, we build a model that respects the one pixel marginal observed in the Compaq Database.

That is, consider the set of probability distributions p(x, y) that verify:

C0 : ∀s ∈ S, ∀xs ∈ C, ∀ys ∈ {0, 1}, p(xs, ys) = q(xs, ys) (2.16)

In (2.16), the quantity on the right side of the equal sign is the proportion of pixels with color

xs and label ys in the training data. The MaxEnt solution under C0 is the independent model:

p(x, y) =
∏

s∈S

q(xs, ys) (2.17)
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The proof is postponed to Appendix B. Using Bayes formulae, one then obtains:

p(y|x) =
∏

s∈S

q(ys|xs) (2.18)

We call the model in (2.18) the Baseline model. It is the most commonly used model in the

literature [TDA98]. It is in fact a realization of the Bayesian modeling based on RGB histograms

in [JR02], as we have introduced in the first chapter.

Each term of the product on the right side of (2.18) can be computed using probabilities

estimated on the training data as follows using Bayes formula:

q(ys|xs) =
1

q(xs)
q(xs|ys)q(ys) (2.19)

with

q(xs) =

1
∑

ys=0

q(xs|ys)q(ys)

Evaluation of the quantities in (2.19) is based on two 3 dimensional histograms, q(xs|ys =

1) and q(xs|ys = 0) describing the one pixel color distribution for skin and non-skin pixels

respectively. Several authors have tried to get a parametric expression for these histograms as

Gaussian distribution or mixtures of Gaussian distributions [JR02] [TSFA00]. Our experience is

that the Compaq Database is large enough so that crude histograms made with 512 color value

per bin uniformly distributed do not over-fit. Each histogram is then made of 323 bins.

2.4 Markov random fields

The other two MaxEnt models are Markov random fields. Before proceeding to the specific mod-

els, we give a brief introduction to Markov random fields and related concepts. The introduction

follows the classical book [Win03], with some notations adjusted for the convention of this thesis.

Let S be a finite set of vertices/sites. A neighborhood system V is a collection of subsets of S

indexed by a vertex s: V = {Vs ⊂ S, s ∈ S} such that

a) ∀s ∈ S, s 6∈ Vs

b) ∀s, t ∈ S, s ∈ Vt ⇒ t ∈ Vs

One can then check that (S,V) is a non oriented graph. The vertices t ∈ Vs are called neighbors

of s. We shall write s ∼ t instead of t ∈ Vs when convenient. For example, we can define the

lattice S = {(i, j); 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}, and V(i,j) = {(u, v) ∈ S; 0 ≤ (u− i)2 + (v − j)2 ≤ a}.
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(a) 4-neighborhood system

(n1 = 3, n2 = 4, a = 1)

(b) 8-neighborhood system

(n1 = 3, n2 = 4, a = 2)

Figure 2.2: Examples of neighborhood systems. S = {(i, j); 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}, V(i,j) =

{(u, v) ∈ S; 0 ≤ (u− i)2 +(v− j)2 ≤ a}, V = {V(i,j); (i, j) ∈ S}. Circles represent the sites. Links

between circles represent their neighborhood relationship

Then if we let V = {V(i,j); (i, j) ∈ S}, (S,V) is a neighborhood system. Figure 2.2 shows two

such neighborhood systems corresponding to different a.

A clique c is a subset of S such that: s ∼ t, ∀s, t ∈ c. Figure 2.3 shows the cliques of the

4-neighborhood system and the 8-neighborhood system defined in Fig. 2.2. The set of cliques

will be denoted by C.

(a) Cliques of 4-neighborhood system

(b) Cliques of 8-neighborhood system

Figure 2.3: Examples of cliques corresponding to the neighborhood systems in Fig. 2.2. ∅ denotes

the empty set

Let Xs ∈ Xs = {1, . . . ,K} be a random variable on the site s ∈ S. Then X = (Xs)s∈S is

a stochastic process defined over the set S and taking a finite number of values. The space of
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configurations x = (xs)s∈S is denoted by X = {1, ..,K}S . So X ∈ X. X is called a random

field if p(X = x) > 0, ∀x ∈ X. For A ⊆ S, let xA = (xs)s∈A denote a configuration on the

subset A of sites and XA =
∏

s∈A Xs the space of all configurations on A. We shall write

A\B = {e ∈ A; e /∈ B} for two sets A and B. The following conditional probatilities

p(xA|xS\A), xA ∈ XA, xS\A ∈ XS\A (2.20)

are called local characteristics. It is the probability that the configuration on A is xA given the

configuration xS\A on the rest of the world.

X is a Markov Random Field (MRF) with respect to (S,V) if and only if ∀x ∈ X, ∀s ∈ S
{

p(X = x) > 0, and

p(Xs = xs|Xt = xt; t 6= s) = p(Xs = xs|Xt = xt; t ∈ Vs)
(2.21)

In words, (2.21) says that in order to guess the value of X at s, it is equivalent to know the

values of the entire field except at s or to know the values at the neighboring locations of s. It

could be extended to arbitrary subsets A of S as the following formula says:

p(xA|xS\A) = p(xA|xVA
), xA ∈ XA, xS\A ∈ XS\A (2.22)

where VA = (
⋃

s∈A Vs)\A is called the neighbors of A.

Remark that any random process X such that p(X = x) > 0, ∀x ∈ X, is a MRF with respect

to (S,V) if we define Vs = S\{s}.

Of particular interest are the so-called pairwise MRFs. These are the simplest and most used

MRFs in computer vision. Their distribution is given by

π(x) = p(Xs = xs; s ∈ S) =
1

Z

∏

s∼t

ψst(xs, xt)
∏

s∈S

φs(xs) (2.23)

where the product over s ∼ t means the product over all the couples of mutual neighbor vertices

and Z is a normalizing constant. We can verify that any random field with the form (2.23) satisfies

the MRF definition (2.21). In the model defined by (2.23), φs(xs) is often called “evidence” for

xs, ψst(xs, xt) is the “compatibility” function of xs and xt.

2.5 Hidden Markov model

The Baseline model is certainly too loose and one might hope to get better detection results by

constraining it to a model that takes into account the fact that skin zones are not purely random
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but are made of large regions with regular shapes. Hence, we fix the marginals of y for all the

neighboring pixel couples. We use 4-neighbor system for simplicity in all that follows. For 2

neighboring pixels s and t, the expected proportion of times that we observe (ys = a, yt = b)

should be q(a, b) for a = 0, 1 and b = 0, 1, the corresponding quantities measured on the training

set. We assume that the model is isotropic, aggregating the cases where s and t are in vertical

position to the cases where s and t are in horizontal position. Hence let us define the following

constraints:

D : ∀s ∼ t ∈ S × S, p(ys = 0, yt = 0) = q(0, 0) and

p(ys = 1, yt = 1) = q(1, 1)
(2.24)

The MaxEnt model under C0 ∩ D is then the following Gibbs distribution:

p(x, y) ∝
∏

s∈S

q(xs|ys) exp

(

∑

s∼t

(a0(1− ys)(1− yt) + a1ysyt)

)

(2.25)

Here and thereafter, the sign ∝ means equality up to a normalization function. a0 and a1 are

constants that must be set up such that the constraints are satisfied. The proof is in Appendix

B. From (2.25) one then obtains the following model:

p(y|x) ∝ p(y)
∏

s∈S

q(xs|ys) (2.26)

with

p(y) =
1

Z(a0, a1)
exp

(

∑

s∼t

(a0(1− ys)(1− yt) + a1ysyt)

)

(2.27)

where Z(a0, a1) is the normalization function. It is defined by the following formula:

Z(a0, a1) =
∑

y

(

exp

(

∑

s∼t

(a0(1− ys)(1− yt) + a1ysyt)

))

(2.28)

The model in equation (2.27) is known as a special case of a Potts model, see [Win95] and

[CJ83]. We can verify that p(x|y) =
∏

s∈S q(xs|ys) =
∏

s∈S p(xs|ys), so it is a HMM if we consider

y to be the hidden layer.

2.6 First-order model

The Baseline model was built in order to mimic the one pixel marginal of the joint distribution of

color and skinness as observed on the database. Then, in building the HMM we added constraints

on the prior skinness distribution in order to smooth the model. Now, we constrain once more
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the MaxEnt model by imposing the two-pixel marginal, that is p(xs, xt, ys, yt), for 4-neighbor

s ∼ t, to match those observed in the training data. Hence we define the following constraints:

C1 : ∀s ∼ t ∈ S × S, ∀xs ∈ C, ∀xt ∈ C, ∀ys ∈ {0, 1}, ∀yt ∈ {0, 1},
p(xs, xt, ys, yt) = q(xs, xt, ys, yt)

(2.29)

The quantity q(xs, xt, ys, yt) is the expected proportion of times we observe the values (xs, xt, ys, yt)

for a couple of neighboring pixels, regardless of the orientation of the pixels s and t in the training

set.

Clearly, C1 ⊂ (C0 ∩ D) ⊂ C0. The solution to the MaxEnt problem under C1 is then, see

Appendix B, the following Gibbs distribution:

p(x, y) ∝ exp

(

∑

s∼t

λ(s, t, xs, xt, ys, yt)

)

(2.30)

where λ(s, t, xs, xt, ys, yt) are parameters that should be set up to satisfy the constraints. From

(2.30), one gets

p(y|x) ∝ exp

(

∑

s∼t

λ(s, t, xs, xt, ys, yt)

)

(2.31)

It contains a huge number of parameters for ordinary-sized images.

2.7 Discussion

This chapter introduced the principle of maximum entropy. It is a fundamental philosophy for

inferring the probabilistic model according to some observed statistics of the samples, which are

the so-called constraints. The maximum entropy principle states that the best decision is to

accept the model in line with the constraints and otherwise as uniform as possible. And the

uniformity of the model is measured by the information entropy.

With the guidance of the maximum entropy principle, we built a sequence of three statistical

models for the distributions of the skin label images conditioned on given color images. The first

model, called the Baseline model in this thesis, has been well established in the literature through

other means. However we showed that under certain assumption (constraints), we can derive

this model through the maximum entropy framework. It justifies the power of this fundamental

principle, and gives more insight into the well-known simplest statistical skin model.

The Baseline model is an independent model that does not take into account the relationship

between neighboring pixels. The observation of the image database tells us that the skin pixels
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are not totally independent. Instead, they tend to appear together and form some regions. A

natural step would be to model the distribution with MRFs. Again we get to MRFs naturally

through the maximum entropy principle. That is, we have a good reason to choose the Markov

random fields—it is the natural solution under certain constraints according to the maximum

entropy principle. Thus, the independent model as well as the Markov random fields models

are all unified into the maximum entropy framework. Our first MRF model is a hidden Markov

model, which puts constraints on the joint probabilities of the pairs of neighboring skin labels

besides the constraints introduced in the Baseline model. In the second MRF model, we go

further to include the joint probabilities of the pairs of neighboring colors and skin labels. This

model is called the first-order model in this thesis.

Except the Baseline model, which can be solved analytically, all the models that we built are

in parametric forms. We shall tackle the issue of parameter estimation in the next chapter.
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Résumé (Chapitre 3)

L’estimation des paramètres dans le context de MaxEnt est un problème difficile, spécialement

quand l’estimateur de maximum de vraisemblance ne peut pas être calculé.

Différentes méthodes ont été proposées [Bes86] [Zha92] [WD95] [You98]. Dans ce chapitre

nous proposons deux méthodes pour l’estimation de ces paramètres. La première exploite le

concept de “Julesz ensembles” permettant de simuler la texture de la peau. La seconde méthode

approxime localement le graphe de pixel par des arbres. Cette approximation nous fournit une

solution analytique à MaxEnt sans paramètres à estimer.

Nous avons pu montrer que les paramètres estimés par les deux méthodes sont sensible-

ment identiques pour un modèle simple. Pour un modèle plus complexe, avec beaucoup plus de

paramètres, l’approximation à l’aide des arbres reste viable alors que la méthode alternative ne

l’est plus.

Quel type d’arbre choisir ? nous présentons les arbres de Bethe ainsi que les arbres “étoilés”.
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Chapter 3

Parameter estimation

Parameter estimation in the context of MaxEnt is still an active research subject, especially

in situations where even the likelihood function cannot be computed for a given value of the

parameters. This is the case here since the partition function cannot be evaluated even for very

small size images. One line of research consists in approximating the model in order to obtain a

formula where the partition function no longer appears: Pseudo-likelihood [Bes86] [DF00], mean

field methods [Zha92] [CFP02], as well as Bethe tree models [WD95] are among them. Another

possibility is to use stochastic gradient as in [You98].

3.1 Parameter estimation through local characteristics

Here we explore a related method based on the concept of Julesz ensembles defined in [WZL00].

We learn from this work that one can sample an image from the model defined in (2.27) without

knowing the parameters a0 and a1. For large lattices, the model defined in (2.27) will concentrate

on the set of images y’s that respects the constraints py(0, 0) = q(0, 0) and py(1, 1) = q(1, 1),

where
{

py(0, 0) = Ny(0, 0)/Ny(., .)

py(1, 1) = Ny(1, 1)/Ny(., .)
(3.1)

with Ny(., .) being the number of cliques in the label image y, Ny(0, 0) being the number of

cliques having labels (0, 0), and Ny(1, 1) being the number of cliques having labels (1, 1). py(0, 0)

and py(1, 1) are in fact the pair-wise marginal probabilities of the samples y. The above principle

is saying that for large lattices, a special set of images will receive most of the probabilities, in

which each image respects the constraints itself. For the infinite lattice, this set of images will

eventually receive the probability 1. Each image in the same set will have the same probabilities.
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So if we sample on the infinite lattice from the model defined in (2.27) that respect the constraints

D, we will always get the set of images each of which respects the constraints D itself. Even

though this is true only in the asymptotic case of an infinite image but we will apply the result

for a large image, say 512 × 512 pixels. In a second step, we use this sample image in order to

estimate the parameters a0 and a1. This is done using the quantity p(Ys = 1|y(s)) which is the

probability to observe the label 1 at pixel s given all the other values yt, ∀t ∈ S and t 6= s. For

the model in (2.27), this quantity can be easily analytically computed as

p(Ys = 1|y(s)) = φ((a1 + a0)ns(1)− 4a0) (3.2)

where φ(x) = (1+e−x)−1 is the sigmoïd (also known as logistic) function and ns(1) is the number

of neighbors of s that take the label 1. The proof is as follows. Recall the formula in (2.27). Now

we have:

p(Ys = 1|y(s)) =
p(Ys = 1, y(s))
∑

ys
p(ys, y(s))

=
exp

(
∑

t∈Vs
a1yt

)

exp
(
∑

t∈Vs
a1yt

)

+ exp
(
∑

t∈Vs
a0(1− yt)

)

=
1

1 + exp
(
∑

t∈Vs
(a0 − (a1 + a0)yt)

)

=
1

1 + exp (4a0 − (a1 + a0)ns(1))

= φ((a1 + a0)ns(1)− 4a0)

This sum can take only five different values since it is a function of ns(1) with ns(1) =

0, 1, 2, 3, 4. For each possible value of ns(1), one quantity p(Ys = 1|y(s)) can be estimated from

the sample image. This will lead to five linearly independent equations from which parameters

a0 and a1 can be estimated. Now, returning to how to obtain a sample from the model in (2.27).

The key idea which originated in statistical physics [ML79], is that the MaxEnt model which we

are looking for is, in an appropriate asymptotic meaning, the uniform distribution over the set of

images that respect the constraints D. Now, in the absence of phase transition, sampling from

this set can be achieved numerically using simulated annealing, see [GG84].

To sample from the uniform distribution of the set of images that verify the constraints

py(0, 0) = q(0, 0) and py(1, 1) = q(1, 1), we construct the following energy function:

H(y) =

(

1

Ny(., .)

∑

s∼t

(1− ys)(1− yt)− q(0, 0)
)2

+

(

1

Ny(., .)

∑

s∼t

ysyt − q(1, 1)
)2
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Remark that






1
Ny(.,.)

∑

s∼t(1− ys)(1− yt) = py(0, 0)

1
Ny(.,.)

∑

s∼t ysyt = py(1, 1)
(3.3)

H(y) is always non-negative. And when H(y) gets minimized, that is, when H(y) = 0, we will

have py(0, 0) = q(0, 0) and py(1, 1) = q(1, 1). We can apply the Metropolis algorithm [Win03] in

order to sample from the associated Gibbs distribution, and to minimize the energy. It produces

a sequence of images y(0), y(1), y(2), . . .. At step n, we select y(n) as follows. Consider y′, the

image obtained by fliping the value at s of y(n−1)

• If H(y′) ≤ H(y(n−1)) then yn ← y′

• If H(y′) > H(y(n−1)) then

* y(n) ← y′ with probability

exp(β(H(y)−H(y′)))

* y(n) ← y(n−1) with probability

1− exp(β(H(y)−H(y′)))

If all the pixels are visited a sufficient number of times and if β increases logarithmically

towards infinity (temperature decreases towards zero), then the sequence y(n) converges to a

sample from the uniform distribution over the images that verify the constraints in (2.24), or

say, over the images with the minimal energy.

Figure 3.1 shows a 512 × 512 sample of the prior model defined in equation (2.27). The

quantities Pr(Ys = ys, Yt = yt), for neighboring pixels s and t are presented in the array below,

first, as estimated from the training data, and secondly, as estimated from the image in figure

3.1.

We see that the constraints are nearly respected. Parameter estimation from this image leads

to the numerical values: a0 = 3.76 and a1 = 3.94. This image is a sample from the prior,

hence one can qualitatively appreciate how well it models skin regions. Notice that vertical

and horizontal borders are preferred. This is a bias of the neighborhood system. Choosing 8

neighbors could improve it at the expense of computational load.
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database values image values

Pr(Ys = 0, Yt = 0) 0.828 0.827991

Pr(Ys = 1, Yt = 1) 0.159 0.151646

Figure 3.1: Top: a sample image from the prior distribution used in the Hidden Markov Model.

Bottom: probabilities estimated from the training set and from the image on the top.

3.2 Parameter estimation through tree approximations

The above-mentioned method works for the HMM, where there are only two parameters to

estimate. For the FOM in (2.31), however, there are enormous parameters, and it is impractical

to build that huge equation system then solve it. Remark that all the models we built with

MaxEnt are MRFs. We learned from [Pea88] that any MRF on tree graphs can be expressed

analytically in terms of the marginal probabilities on single sites and pairs of sites. If we can

approximate the pixel lattice with some trees, then we can solve the parameter estimation issue

through the well-known results about MRFs on tree graphs. In what follows we begin with the

introduction of MRFs on tree graphs.

3.2.1 Markov random fields on tree graphs

In the very special case where the underlying graph is loop free, for example a tree, then the

functions (also called potentials) ψst and φs in (2.23) can be expressed as simple functions of the

marginals of π(.) and moreover when expressed in such a way, the normalizing constant Z equals

to one [Pea88]. Specifically,

π(x) =
∏

s∼t

pst(xs, xt)

ps(xs)pt(xt)

∏

s∈S

ps(xs) (3.4)
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where ps(xs) is the marginal distribution of π(.) for vertex s and pst(xs, xt) is the marginal

distribution of π(.) for neighbor vertices s and t. That is

ps(xs) =
∑

xt;t∈S;t6=s

π(x) (3.5)

pst(xs, xt) =
∑

xu;u∈S;u6=s,t

π(x) (3.6)

1 =
∑

xu;u∈S

π(x) (3.7)

Proof: (3.4) is true for S = {s}. And we can easily check that:

∑

x

π(x) =
∑

xs

ps(xs) = 1

Assume (3.4) and
∑

x π(x) = 1 are true for any tree graph (S,V) where |S| = n, n ≥ 1. Now

suppose we are given a tree graph (S ′,V ′) in which |S ′| = n + 1. We select any leaf v from the

graph, the rest of the graph (S,V) where S = S ′\{v} is a tree graph of n nodes. We denote as

u the node connected with v. Then we have

π(x) = π(xS , xv) = π(xv|xS)π(xS) = π(xv|xu)π(xS)

=
puv(xu, xv)

pu(xu)

∏

s∼t,s,t∈S

pst(xs, xt)

ps(xs)pt(xt)

∏

s∈S

ps(xs)

=
∏

s∼t,s,t∈S′

pst(xs, xt)

ps(xs)pt(xt)

∏

s∈S′

ps(xs)

Moreover,

∑

x

π(x) =
∑

xS

(

π(xS)
∑

xv

puv(xu, xv)

pu(xu)

)

=
∑

xS

π(xS) = 1

So (3.4) and
∑

x π(x) = 1 are true for any tree graph (S,V) where |S| ≥ 1. Proof concluded.

Since
∏

s∼t ps(xs)pt(xt) =
∏

s∈S p
ns
s (xs), where ns is the number of neighbors of site s, we

can put the formula (3.4) in another way:

π(x) =
∏

s∼t

pst(xs, xt)
∏

s∈S

p1−ns
s (xs) (3.8)



44 CHAPTER 3. PARAMETER ESTIMATION

3.2.2 Maximum entropy models on tree graphs

The FOM defined in (2.31) is a Markov random field on the non-oriented pixel graph. Let us

assume for now that this graph was a tree: that is a connected graph without loops. Then, the

Maxent solution under C1 would be

p(x, y) =
∏

s∼t

q(xs, xt, ys, yt)

q(xs, ys)q(xt, yt)

∏

s∈S

q(xs, ys) (3.9)

The proof is as follows: we have proved in the last section that any pairwise MRF on a tree

graph can be written

p(z) =
∏

s∼t

p(zs, zt)

p(zs)p(zt)

∏

s∈S

p(zs) (3.10)

where p(zs) is the one-site marginal of p and p(zs, zt) is it’s two-site marginal.

Applying this result to z = (x, y) and replacing p with q on the right side permits to obtain

the model in equation (3.9). By construction it is in C1. Moreover it has the same form as the

one in equation (2.31) which concludes the proof.

The conditional model given the color image x is then:

p(y|x) ∝
∏

s∼t

q(xs, xt, ys, yt)

q(xs, ys)q(xt, yt)

∏

s∈S

q(xs, ys) (3.11)

It is called tree first-order model in this thesis and denoted by TFOM.

Assume conditional independence, that is

q(xs, xt|ys, yt) = q(xs|ys)q(xt|yt) (3.12)

The obtained model is then an HMM model, as in equation (2.26). But now we can write

p(y) explicitly as follows:

p(y) =
∏

s∼t

q(ys, yt)

q(ys)q(yt)

∏

s∈S

q(ys) =
∏

s∼t

q(ys, yt)
∏

s∈S

q1−ns(ys) (3.13)

The conditional model of y given x is then:

p(y|x) ∝
∏

s∈S

q(xs|ys)p(y) (3.14)

It is called tree hidden Markov model in this thesis and denoted by THMM.

Hence, tree approximation gives another way to estimate parameters a0 and a1. For the

interior pixels, which have exactly 4 neighbors, we can calculate the local characteristics p(Ys =

1|y(s)) according to the distribution (3.13). The computed quantity is:

p(Ys = 1|y(s)) = φ

((

ln
q(1, 1)

q(0, 1)
− ln

q(1, 0)

q(0, 0)

)

ns(1) + 4 ln
q(1, 0)

q(0, 0)
− 3 ln

q(1)

q(0)

)

(3.15)
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Since this must be true for all the values of ns(1), comparing it with (3.2), we must have






−4a0 = 4 ln q(1,0)
q(0,0) − 3 ln q(1)

q(0)

a1 + a0 = ln q(1,1)
q(0,1) − ln q(1,0)

q(0,0)

(3.16)

Obtained values are a0 = 3.94 and a1 = 4, which are close to the values obtained in Section 3.1.

Bethe tree

Bethe tree has been introduced in computer vision as a way of approximating estimators in

Markov random field models in [WD95]. We shall revisit this work in connection with maximum

entropy models. The key idea is to provide a tree that approximates locally the pixel lattice.

More precisely, for each pixel s, we consider a sequence of trees T (s)
1 , T (s)

2 , . . . of increasing depth.

The construction is as follows: the root node of the tree is associated with s. For each neighbor

t of s in the pixel-graph, a child node indexed by t is added to the root node. This defines T (s)
1 .

Subsequently, for each u, neighbor of a neighbor of s, (excluding s itself), a grandchild node

indexed by u is added to the appropriate child node. This defines T (s)
2 , and so on, see [WD95]

for a detailed account. An important remark is that a single pixel might lead to several different

nodes in the tree! For example T (s)
2 is built with s, the neighbors of s and the neighbors of

these. Using 4-neighbors, and assuming that s is not in the border of the image, this makes up

13 pixels, but the associated tree has 17 nodes, 4 pixels being replicated twice each, see figure

3.2. If the original graph is acyclic, then the Bethe tree representation is exactly the same graph.

Otherwise it is only an approximation.

Figure 3.2: Left: a Bethe tree of depth 1 rooted at s. Right: a Bethe tree of depth 2 rooted

at s, where t is an example of neighbors of s and u is an example of neighbors of t (excluding s

itself)

4-Star tree

The 4-star tree of depth 1 rooted at s, T s
1 , is built by adding to s its 4 neighbors in the

pixel lattice. For the 4-star tree with one more depth, we add one node u for each leaf t of T s
1 ,
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following the direction s → t. We repeat this process until the tree reaches the depth needed.

Figure 3.3 shows the construction of 4-star trees.

Figure 3.3: Left: a 4-star tree of depth 1. right: a 4-star tree of depth 2.

3.3 Implementing the tree first-order model

The quantities q(xs, xt, ys, yt) on the right side of (3.9) cannot be directly extracted from the

database without drastic over-fitting since the histograms involved have a support of high di-

mension. So some kind of dimension reduction is necessary. We have derived two methods to

reduce the dimensions of the histograms as we will see in the following.

3.3.1 Gradient independence assumption

A promising dimension reduction procedure is the following approximation:

q(xs, xt, ys, yt) = q(xs, xt|ys, yt)q(ys, yt)

q(xs, xt|ys, yt) ≈ q(xs|ys)q(xt − xs|ys, yt) (3.17)

That is, we assume that the color gradient at s, measured by the quantity xt − xs, is, given the

labels at s and t, independent of the actual color xs. Evaluation of the right side of the sign

≈ requires to compute 6 histograms with a support of dimension 3 only. We use 323 bins of

512 colors each. The MaxEnt model based on the approximation (3.17) shall be referred to as

TFOM1 later on.

3.3.2 Maximum entropy estimation

Another possibility is to estimate q(xs, xt, ys, yt) with MaxEnt under the constraints of one-site

marginal and gradient distribution. This can be done off-line and will not introduce any extra
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online load to skin detection. To be more precise, denoting by pq(xs, xt, ys, yt) the two-site joint

distribution that we would like to estimate, we define the following constraints:

C∗ : ∀xs ∈ C, ∀xt ∈ C, ∀ys ∈ {0, 1}, ∀yt ∈ {0, 1},














pq(xs, ys) = q(xs, ys)

pq(xt, yt) = q(xt, yt)

pq(xt − xs, ys, yt) = q(xt − xs, ys, yt)

(3.18)

The entropy of the joint distribution is defined as:

H(pq) = −
∑

xs,xt,ys,yt

pq(xs, xt, ys, yt) ln pq(xs, xt, ys, yt)

Our goal is to find the MaxEnt solution

p∗q(xs, xt, ys, yt) = argmaxpq
H(pq)

subject to the constraints C∗. Using Lagrange multipliers, then the MaxEnt solution is

p∗q(xs, xt, ys, yt) = Pλ ∩ C∗

in which

Pλ = { 1

Zλ
exp (λ(xs, ys) + λ(xt, yt) + λ(xt − xs, ys, yt))} (3.19)

where

Zλ =
∑

xs,xt,ys,yt

exp (λ(xs, ys) + λ(xt, yt) + λ(xt − xs, ys, yt))

is a normalizing constant.

The MaxEnt model p∗q(xs, xt, ys, yt) is equivalent to a model p∗λ(xs, xt, ys, yt) ∈ Pλ that max-

imizes the likelihood of the training data [BPP96]. However, the parameters λ∗ that maximize

the likelihood cannot be found analytically. Instead, we have to resort to numerical methods.

From the perspective of numerical optimization, the likelihood function is well behaved since

it is smooth and convex-∩ in λ [BPP96]. An optimization method specifically tailored to the

maximum entropy problem is the generalized iterative scaling algorithm of Darroch and Ratcliff

[DR72]. See Appendix C for details of this algorithm. In the algorithm, we first initialize the

parameters λ’s. Then the iterative scaling process follows. For each iteration that updates the

parameters, the likelihood function will climb a little towards the maximum value. We stop the

iterative scaling when such updating will introduce very little gain in the likelihood.

The generalized iterative scaling algorithm for our solution of λ∗ can be summarized as

follows:
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1. Initialize λ

∀xs ∈ C, ∀xt ∈ C, ∀ys ∈ {0, 1}, ∀yt ∈ {0, 1},

λ0(xs, ys) = λ0(xt, yt) = λ0(xt − xs, ys, yt) = 0

2. Update λ

(1) Calculate Zλ =
∑

xs,xt,ys,yt
exp (λ(xs, ys) + λ(xt, yt) + λ(xt − xs, ys, yt))

(2) Calculate all ∆λ

∆λ(xs, ys) =
1

3
ln
q(xs, ys)

p(xs, ys)

∆λ(xt, yt) =
1

3
ln
q(xt, yt)

p(xt, yt)

∆λ(xt − xs, ys, yt) =
1

3
ln
q(xt − xs, ys, yt)

p(xt − xs, ys, yt)

where,

p(xs, ys) =
∑

xt,yt

(

1

Zλ
exp (λ(xs, ys) + λ(xt, yt) + λ(xt − xs, ys, yt))

)

p(xt, yt) =
∑

xs,ys

(

1

Zλ
exp (λ(xs, ys) + λ(xt, yt) + λ(xt − xs, ys, yt))

)

p(xt − xs, ys, yt) =
∑

x′
s,x′

t,x
′
t−x′

s=xt−xs

(

1

Zλ
exp

(

λ(x′s, ys) + λ(x′t, yt) + λ(x′t − x′s, ys, yt)
)

)

(3) Update λ according to: λ⇐ λ+ ∆λ

3. Goto 2. if λ have not converged.

This algorithm can still be accelarated since there are some duplications of calculation.

exp (λ(xs, ys) + λ(xt, yt) + λ(xt − xs, ys, yt)) are needed by Zλ, ∆λ(xs, ys), ∆λ(xt, yt) and ∆λ(xt−
xs, ys, yt). In the calculation of ∆λ(xt−xs, ys, yt), the summation ranges over x′s, x

′
t that have the

required gradients x′t−x′s = xt−xs, this implies another subscript searching process. Supposing

(xs, xt, ys, yt) can take n values, then Zλ, {∆λ(xs, ys)}, {∆λ(xt, yt)} and {∆λ(xt − xs, ys, yt)}
need about n exponential operations respectively, which does not take into account the computa-

tional load for the searching process in the calculation of ∆λ(xt−xs, ys, yt) yet. The total number

of exponential operations involved for each iteration is about 4n. We can avoid the replication of
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the exponential operations by parallel computation of the marginal array p(xs, ys), p(xt, yt) and

p(xt − xs, ys, yt) and the normalizing constant Zλ. Here is the accelerated algorithm:

1. Initialize λ

∀xs ∈ C, ∀xt ∈ C, ∀ys ∈ {0, 1}, ∀yt ∈ {0, 1},

λ0(xs, ys) = λ0(xt, yt) = λ0(xt − xs, ys, yt) = 0.0

2. Update λ

(1) Calculate marginals and Zλ

(a) Initialize marginals and Zλ to 0.

(b) For each value (xs, xt, ys, yt), we calculate

g(xs, xt, ys, yt) = exp (λ(xs, ys) + λ(xt, yt) + λ(xt − xs, ys, yt))

once and update the normalizing constant and marginal arrays,

Zλ ⇐ Zλ + g(xs, xt, ys, yt)

p(xs, ys)⇐ p(xs, ys) + g(xs, xt, ys, yt)

p(xt, yt)⇐ p(xt, yt) + g(xs, xt, ys, yt)

p(xt − xs, ys, yt)⇐ p(xt − xs, ys, yt) + g(xs, xt, ys, yt)

(c) For all the marginals

p(xs, ys)⇐ p(xs, ys)/Zλ

p(xt, yt)⇐ p(xt, yt)/Zλ

p(xt − xs, ys, yt)⇐ p(xt − xs, ys, yt)/Zλ

(2) Calculate all ∆λ

∆λ(xs, ys) =
1

3
ln
q(xs, ys)

p(xs, ys)

∆λ(xt, yt) =
1

3
ln
q(xt, yt)

p(xt, yt)

∆λ(xt − xs, ys, yt) =
1

3
ln
q(xt − xs, ys, yt)

p(xt − xs, ys, yt)
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(3) Update λ according to: λ⇐ λ+ ∆λ

3. Goto 2. if λ have not converged.

The number of exponential operations involved in the upper algorithm is about n, 3 times

less than the former algorithm. In practice, we observed an acceleration of more than 3 times

in experiments, this is probably due to the avoidance of the subscript searching process in the

calculation of ∆λ(xt − xs, ys, yt).

The TFOM with MaxEnt-estimated two-site marignals shall be referred to as TFOM2 later

on.

3.4 Discussion

In this chapter, we first estimate the parameters of the HMM by establishing equations of local

characteristics of the MRF. This method works for the HMM and for the FOM. In view of the

fact that the distributions of MRFs on tree graphs can be analytically expressed as products of

marginals, we tackle the parameter estimation of FOM through tree approximations. Supposing

the underlying graphs are trees, the parameters can be expressed in terms of empirical marginal

probabilities that can be estimated from the training set. However, direct estimation of the

FOM parameters (the joint probabilities of two sites) from the training set will cause over-fitting

since the orginal parameter space is huge even for small images. Two methods are explored to

get around this difficulty. The first method is to decrease the dimensionality by assuming the

independence of one-site marginal conditioned on the skin label and the gradient of neighboring

colors conditioned on neighboring labels. The other method is to estimate the high-dimensional

parameters from low-dimensional, i.e., empirically estimable, parameters from the training set

with the maximum entropy principle. The later method seems more natural and more promising

since it again lies inside the framework of maximum entropy principle, which assumes no artificial

bias or prejudice on the parameters. Now that we have all the parameters for the MRF models.

We are going to apply these models to skin probability estimation in the following chapters.



Résumé (Chapitre 4)

Lors de chapitres précédents nous avons estimé les paramètres des différents modèles obtenus

par MaxEnt. Nous allons maintenant utiliser ces différents modèles pour l’inférence. C’est à dire

calculer la probabilité qu’un pixel soit un pixel de peau à partir d’une image couleur.

Nous évaluons dans ce chapitre une technique classique d’inférence dans le contexte de

l’imagerie appelée Markov Chain Monte Carlo (MCMC). En effet, comme l’espace d’état est

très grand, de dimension 2n où n est la dimension de l’image, il est impossible de simuler di-

rectement un échantillon issu d’un modèle Markovien. L’algorithme d’échantillonnage de Gibbs

permet de transformer la complexité spatiale en complexité temporelle. Pour une image donnée,

nous générons une séquence d’images de labels. Les probabilités pour “peau” et “non peau” sont

alors estimées en effectuant une moyenne empirique.

Les résultats expérimentaux confirment la supériorité du modèle Markov Caché (HMM) sur

le modèle de référence (baseline) et du modèle “arbre au premier ordre” (TFOM) sur le modèle

HMM.
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Chapter 4

Gibbs sampling

For a new input color image x, skin detection requires to compute for each pixel s the quantity

p(ys|x). Direct summing over all other sites is computationally intractable due to the huge image

space and the large number of terms in the partition function. One can sample from the distrib-

ution p(y|x) instead, to get a sequence of label images y(0), y(1), y(2), . . . , y(n) for the given color

image x. By averaging over the samples, we can get all the marginals which are of our interests.

However direct sampling from the joint distribution is impossbile due once more to the huge im-

age space and the intractable partition function. Notice that all our models are MRF for certain

neighborhood systems, i.e., they are Gibbs field. Now sampling from these fields can be achieved

through Markov Chain Monte Carlo (MCMC) methods. The main idea of MCMC methods is

to turn the intractable spatial complexity into the feasible temporal complexity through Markov

chain. In what follows we will first introduce the Gibbs sampler in brief. For a detailed account

of the Gibbs sampler, please refer to the classical book [Win03].

4.1 Gibbs fields

We can define an energy function H for a random field X. Then the distribution π of the form,

π(x) =
exp(−H(x))

∑

z exp(−H(z))
, ∀x ∈ X (4.1)

is called a Gibbs field induced by H. We notate the denominator in (4.1) as Z, i.e.,

Z =
∑

z

exp(−H(z)) (4.2)

It is often called partition function or normalization function since it ensures
∑

x∈X
π(x) = 1.

The energy function H captures the interaction between sites. In fact, any field can be writen
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in this way since we can always define H(x) = ln(Zπ(x)), ∀x ∈ X, for any specified constant Z.

Gibbs fields have a special role that identify them among all other distributions as stated in the

following theorem.

Theorem 1 (Gibbs variational principle) Let H be an energy function defined on the con-

figuration space X, Z the partition function defined by (4.2), µ any distribution on X, π the

Gibbs distribution as in (4.1), then the following inequality holds:

E(H;µ)−H(X;µ) ≥ − lnZ (4.3)

with equality if and only if µ = π.

The proof is referred to [Win03]. This principle states that among all distributions with the

mean energy E(H;π), the Gibbs field π has the maximum entropy H(X;π) = Hmax and thus

is the most disordered/uniform state. The left side of the inequality in (4.3) is called the free

energy.

It is often convenient to decompose the energy function into some terms defined on subsets of

S. For this purpose, we introduce the concept of potentical. A potential U is a family of functions

{UA;A ⊆ S} on X such that

1. U∅ = 0,

2. UA(x) = UA(y) if xs = ys, ∀s ∈ A.

In other words, UA(X) only depends on the configuration on the subset A and it vanishes when A

is an empty set. The energy functionH of a Gibbs field can always be writen in the potential form:

HU (X) =
∑

A⊆S UA(X). U is called a neighbor potential with respect to a neighborhood system

(S,V) if UA = 0, ∀A ⊆ S,A /∈ C, with C being the set of cliques in (S,V). The corresponding

Gibbs field π is then called a neighbor Gibbs field and takes the following form:

π(x) =
exp(−∑A∈C

UA(x))
∑

z∈X
exp(−∑A∈C

UA(z))
(4.4)

In other words, the energy function only expands on cliques for a neighbor Gibbs field. U is a

pair potential when UA = 0, ∀A ⊆ S, |A| > 2. We can easily check the pairwise MRF in (2.23)

has a pair potential. The neighbor potentials of the 4-neighborhood system on pixel lattices are

also pair potentials.

There exists a very important equivalence between the MRF and neighbor Gibbs fields as

stated in the following theorem.
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Theorem 2 (Equivalence theorem) Let a neighborhood system V be given for S, then a ran-

dom field π is a Markov random field for V if and only if it is a neighbor Gibbs field for V.

The proof is referred to [Win03]. This theorem is also called Hammersley-Clifford theorem.

4.2 Gibbs sampling

The limit theorem of Markov chain (see Appendix D) tells us that if we have a primitive Markov

kernel p whose invariant distribution is µ, then no matter which state it starts with, it should

approach µ in the long run. For Gibbs sampling we would replace µ with the target Gibbs fields

π. Then the aim is to find a primitive Markov kernel p, such that π is invariant to p. Let us

consider the following Markov kernels for each I ⊆ S:

πI(y|x) =

{

π(yI |xS\I) if yS\I = xS\I

0 if not
(4.5)

These Markov kernels are again called local characteristics of π. For a MRF with the neighbor-

hood system V or, say, a neighbor Gibbs field for V, the local characteristics boil down to the

following:

πI(y|x) =

{

π(yI |xVI
) if yS\I = xS\I

0 if not
(4.6)

These take advange of the properties of MRF. The invariation of the Gibbs field π with respect

to its local characteristics is assured by the following theorem [Win03]:

Theorem 3 The Gibbs field π is reversible and invariant for its local characteristics πI , I ⊆ S.

We can now build the primitive transition kernel p whose invariant distribution is the Gibbs

field π. The idea is to use the local characteristics of π. For a finite set S of sites, the enumeration

(s1, . . . , s|S|) is called a visiting scheme. We define the transition kernel for our Markov chain as

p(y|x) = π{s1} . . . π{s|S|}(y|x), ∀x, y ∈ X (4.7)

The Markov chain with the transition kernel (4.7) induces the following algorithm: An initial

configuration x is chosen, or picked at random following the initial distribution ν. Then site

s1 is chosen and the configuration is updated according to the single-site local characteristic

π{s1}(ys1xS\{s1}|xS). This procedure is repeated for each site in S according to the visiting

scheme (s1, . . . , s|S|). When all the sites are visited, we say a sweep is done, which means a

transition according to the kernel p is finished. Since the Gibbs field π is invariant to each
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single-site local characteristic, it is invariant to the transition kernel p. And since each single-site

updating in a sweep is always done with a positive probability, the transition probability p has

to be strictly positive. Following Theorem 6 (see Appendix D), we have the following conclusion:

Theorem 4 For a Gibbs field π with the transition kernel (4.7), we have

νpn −→ π, as n −→∞ (4.8)

for any initial distribution ν.

Following Theorem 7 (see Appendix D), we have

Theorem 5 Let π be a Gibbs field with the transition kernel p defined by (4.7), ν is any initial

distribution, (X(0), X(1), . . . , X(n)) is the generated Markov chain, then we have

Eνpn





(

1

n+ 1

n
∑

i=0

f(X(i))− Eπ(f)

)2


 −→ 0, as n −→∞

for any function f .

If we choose the following functions, ∀s ∈ S, ∀xs ∈ Xs,

δxs(Xs) =

{

1 if Xs = xs

0 if not

according to Theorem 5, we have,

Eνpn





(

1

n+ 1

n
∑

i=0

δxs(X
(i)
s )− Eπ[δxs(Xs)]

)2




= Eνpn





(

1

n+ 1

n
∑

i=0

δxs(X
(i)
s )− π(Xs = xs)

)2




−→ 0, as n −→∞, ∀s ∈ S

where X
(i)
s , 0 ≤ i ≤ n are the random variables at site s after i transitions. Therefore we can

estimate the marginals of the Gibbs field π through simply averaging the δ functions on the

sequence.

In the case of HMM defined in (2.26), we generate, using the Gibbs sampling algorithm, a

sequence of label images

y(0), y(1), . . . , y(n0), . . . , y(n)
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with stationary distribution (2.26). Then, we estimate the quantity p(ys|x) by the empirical

mean

1

n− n0

n
∑

j=n0+1

y(j)
s

The Gibbs sampling algorithm used in our experiments is presented in detail in Algorithm 1.

Note that u and y are matrices defined on the pixel lattice S and

p(Ys = 1|y(s), x) =
p(Ys = 1, y(s)|x)
∑

ys
p(y|x) = φ(U(x; y)) (4.9)

with

U(x; y) =
∑

t∈Vs

(a1yt − a0(1− yt)) + ln
q(xs|Ys = 1)

q(xs|Ys = 0)
(4.10)

where φ is the logistic function and Vs are the neighbors of s. The algorithm is consistent in the

sense that as n→∞, ∀s ∈ S, us → p(Ys = 1|x), according to Theorem 5.

Algorithm 1 Gibbs sampling algorithm
u⇐ 0

randomly initialize the binary image y(0)

for j = 0 to n− 1 do

y ⇐ y(j)

for all s ∈ S do

sample Y
(j+1)
s according to p(Ys = 1|y(s), x)

end for

if j + 1 > n0 then

u⇐ u+ y(j+1)

end if

end for

u⇐ u/(n− n0)

In the case of TFOM, as for the HMM, the same algorithm leads to the following conditional

distribution, ∀s ∈ S,

p(Ys = 1|y(s), x) = φ(U(x; y)) (4.11)

with

U(x; y) =
∑

t∈Vs

ln
q(xs, xt, Ys = 1, yt)

q(xs, xt, Ys = 0, yt)
− (n(s)− 1) ln

q(xs, Ys = 1)

q(xs, Ys = 0)
(4.12)



56 CHAPTER 4. GIBBS SAMPLING

4.3 Experiments

All experiments are made using the following protocol. The labeled Compaq database contains

about 13, 562 photographs, in which there are 4, 649 photographs with skin and 8, 913 pho-

tographs without skin. Each photograph with skin is accompanied with a binary mask image

indicating skin and non-skin regions. These masks were obtained by manual labeling, see Ap-

pendix A for a detailed account. This database is split into two almost equal parts randomly.

The first part, containing nearly 674 million pixels is used as training data while the other one,

the test set, is left aside for ROC curve computation. We use 32 bins per RGB channel in the

following experiments. In what follows in the current section, the TFOM refers to TFOM1,

the reason is that the associated project Poesia [SDT+02], which aims to develop an Internet

content filtering platform, requires real-time processing of different media including images. We

developed TFOM1 first with the Gibbs sampling method. We found this scheme somehow too

slow and not practical for usage under real environments. Later we turned to a faster algorithm

—belief propagation—which we will introduce in the next chapter. The TFOM2 was developed

after we adopted the belief propagation scheme.

Our working parameters for the Gibbs sampling algorithm are n0 = 0 and n = 99. Some

examples are presented in Figure 4.1, where first column displays test input images. The other

columns display gray level output of different models. The gray-level is proportional to the

evaluated quantity p(Ys = 1|x). HMM compares favorably with the Baseline model. The skin

zones detected with the baseline model are generally blended with background false alarms in

complex images. The HMM outputs are cleaner with real skin zones emphasized. In the first

image, the Baseline model does not detect part of skin on the neck of the right person. In the

second image, the Baseline model detects some skin pixels on the monitor and on the diskette

package, which is false. The Baseline model gives very low probabilities to the hands of the

operator sitting before the monitor, which could be easily ignored when the output is binarized

with respect to some threshold. In the third image, a lot of background objects are marked with

high skin probabilities, such as the wall, the poster, hair, etc. On the contratry, such problems

are much alleviated by HMM. As for TFOM, one can visually appreciate the improvement in

localization of the skin zones compared to the HMM. The detected skin regions are more precise.

It is easier to recognize the shapes of the faces and hands than the HMM. In the first image,

TFOM gives more precise contour of the glasses and the left hand of the right person. In the

second image, the shape of the faces of the operator is obviously improved with respect to HMM.

In the third image, we can see more details of hands, faces with TFOM than with HMM.

However, there is obvious misclassification of non-skin pixels as skin pixels on the dog of the
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Figure 4.1: First column: original color images. From top to bottom, the sizes of the images are respectively 225 × 180 pixels,

300 × 200 pixels and 800 × 599 pixels. Second column: Baseline model. Third column: hidden Markov model. Fourth

column: first order model. In the computed images, the grey level is proportional to the skin probability evaluated with the

specified model.
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third image for all three models. This is generally due to the similarity of its color to skin color.

High-level features such as the shape of the skin regions might help discriminate it from real

skin. Detailed examination of the pictures reveals that the discussed models are still far from

reaching human performances. For example, the left arm of the right-most person in the first

image of Figure 4.1 is visible in the Baseline model and not in the subsequent ones. Remark

that the gray values indicating the probabilities for skin are very low. A zoom is provided in

Figure 4.2. It is understandable that the regularizing models, HMM as well as the First Order

Model, operating at the level of pixels, have produced a posterior probability that put very low

likelihood for skin in this region. Indeed, the local evidence for skin is low and the neighboring

values are also indicating low evidence. A high level model of limbs might be able to overcome

these difficulties.

Figure 4.2: Zoom of first image, second column in Figure 4.1. Result of the Baseline model

Bulk results in the ROC curves are shown in Figure 4.3, which are calculated from 100

images (around 10 million pixels), randomly extracted from the test set. The Baseline model

(with crosses) permits to detect more than 80% of the skin pixels with less than 10% of false

positive rate. The ROC curve of HMM indicates an increase close to 2% in detection rate for the

same false positive rate as the Baseline model, or a drop of about 1% in false positive for the same

detection rate as the Baseline model. For example, setting 10% of flase positive rate, the Baseline

model permites to detect 81% of skin pixels in average, while the HMM permits to detect 83%

in average. We show now that this is significative. The test set is made of 100 images disjoint

from the training set. This amounts to about 107 pixels, out of which about 6% are labeled

as skin. These 6 × 105 pixels cannot be considered as independent since the color values of the

images are correlated at small distance. Hence, we choose one out of ten of these pixels leading

to a sample size of 6× 104. For the Baseline model, the output label y(i)
. , ∀i = 1, 2, . . . , 6× 104

has a binary distribution (also known as Bernoulli distribution) b(0.81), with probability 0.81 for

the label being 1 and probability 1 − 0.81 for the label being 0. Its variance is 0.81(1 − 0.81),

or equivalently, its standard deviation is
√

0.81(1− 0.81). Now consider the random variable

y. = 1
6×104

∑6×104

i=1 y(i)
. . It is a random variable with the same mean value 0.81, but with the
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variance 0.81(1−0.81)
6×104 , or with the standard deviation

√

0.81(1− 0.81)× (
√

6× 104)−1 ≤ 2×10−3.

The hypothesis that the proportion of 83% was due to random fluctuations is then rejected with

a p-value close to 0. The ROC curve of TFOM shows an improvement of performance of around

1% over that of HMM. At 10% of false positive rate, the TFOM permits to detect around 84%

of skin pixels. With a sample size of 6 × 104 pixels, the standard deviation around the HMM

value is then
√

0.83(1− 0.83) × (
√

6× 104)−1 ≤ 2 × 10−3. The hypothesis that the proportion

of 84% was due to random fluctuations is then rejected with a p-value close to 0.

0.76

0.78

0.8

0.82

0.84

0.86

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

Figure 4.3: Receiver Operating Characteristics (ROC) curve for each model. x-axis is the false

positive rate, y-axis is the detection rate. Baseline model is shown with crosses, HMM model

with triangles, while the first order model is shown with squares.

The running time of both HMM and TFOM is proportional to the number of loops and the

size of the input images. Letting T being the elapsed time for an input image with pixel lattice

S, then T ≈ n×|S|×Tφ, where Tφ is the time consumed to evaluate the sigmoïd function defined

in (4.9) or in (4.11). For a PC with a Pentium 4 processor at 1.7 Ghz and 256 MB memory, the

Baseline model takes about 0.088 second per image, HMM about 13.03 seconds per image, and

TFOM1 about 23.25 seconds per image.

For many applications involving skin detection as an intermediate stage, processing time is of

major importance. Much of our work is associated with Poesia [SDT+02] project. This project
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aims to filter Internet content including images, text, etc., under real environment. So it has

a requirement for real-time processing of all kinds of media, including images. The running

time required by Gibbs sampling is clearly at a distance from the real-time requirement. In

the following sections we replace the stochastic sampling algorithm by a deterministic scheme

—belief propagation [YFW02]—in order to meet the required time constraints.

4.4 Discussion

In this chapter, we applied the models we built in the precedent chapters to estimating skin

probabilities at pixel locations of given input images. The method we explored in this chapter is

Gibbs sampling. Due to the high dimensionality of general images, it is impossible to sample di-

rectly from the image space according to the MRFs. We turned to the Markov chain Monte Carlo

method. We showed that the MRFs are equivalent to Gibbs fields, which can be sampled with

the local characteristics of the MRFs. Thus we transformed the intractable spacial complexity

to the tractable temporal complexity with Gibbs sampling. For a given input image, we sample

from its label image space according to the local characteristics of the Markov models. We build

a sequence of label images for the given image. The skin probabilities on pixel locations are then

easily computed from the samples. Experimental results reveal the superiority of the FOM to

the HMM, and in turn to the Baseline model. However, one drawback of Gibbs sampling is that

it generally takes a long time to get enough samples. And the method depends seriously on the

starting configuration of the label image. In real environment we have the requirement to classify

pixels quickly. Next chapter will explore a fast algorithm—the belief propagation algorithm—for

probability inference.



Résumé (Chapitre 5)

Nous supposons que les graphes sont localement approximés par des arbres T s
k . Nous souhaitons

calculer les marginales p(ys|xt, t ∈ T s
k ). Un calcul direct de cette quantité est très gourmand au

temps de calcul. Un algorithme élégant et efficace appelé en anglais belief propagation (BP) et

en français propagation de croyance permet de calculer les marginales en un temps linéaire en

fonction de la taille des images. Son applicaition à la détection de la peau en temps réel montre,

à travers la courbe ROC, les performances de cet algorithme.

Nous explorons deux types d’approximation par des arbres du graphe des pixels. La première,

classique, se nomme les arbres de Bethe. La seconde, que nous introduisons, consiste à choisir

des arbres en étoile. Nous montrons que l’algorithme BP accélère de manière très importante

la vitesse de l’algorithme d’inférence en comparaison avec les algorithmes du chapitre précédent

pour une mème qualité de résultat.
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Chapter 5

Belief propagation on tree graphs

Supposing the graphs under the MRF are trees, our aim is to compute for each pixel s, the quan-

tity p(ys|xs, s ∈ Tk), for p being the THMM or the TFOM we built previously and for k ranging

from 1 to say 5. This computation can be done exactly. Moreover, it can be done efficiently

using the belief propagation (BP) algorithm [YFW02]. This algorithm has been discovered in

different scientific communities. It is called BP in A.I., Viterbi algorithm in the special case of

line graphs and dynamic programming in combinatorial optimization. It is a method to infer

marginals from the joint probability models based on their local characteristics in a way called

messages on directed graphs.

5.1 Graphical models

Inference problems can often be guided by graphical models, in which we represent variables and

their relationship with nodes/vertices and edges. Inference on graphical models are implemented

in many disciplines like AI, computer vision, statistical physics and error-correcting coding theory

[YFW02], thus it is not surprising to see many variants of graphical models. In the following we

shall introduce these models with Bayesian networks and pairwise Markov random field stressed.

5.1.1 Bayesian networks

Bayesian networks are directed graphs where the states or distributions of some nodes are depen-

dent only on some causal nodes, so-called parents of these nodes. Let us take a simple example

from [Pea88]. Consider an experiment with two coins and a bell. We toss the coins indepen-

dently, and the bell rings whenever the outcomes of these two coins are the same. We can depict
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this experiment by Fig. 5.1. As shown in this figure, the state of the bell b depends on those of

the two coins c1 and c2. This relationship in a formula is p(b|c1, c2). c1 and c2 are both parents

of b. So b is their child accordingly. In the graph, the relationship is shown with arrows pointing

from the parents to their child. Their joint probability is given by

p(c1, c2, b) = p(c1)p(c2)p(b|c1, c2)

A Bayesian network defines an independent structure, where the states of nodes are only de-

pendent on their direct parents and independent of other nodes given their parents. Generally

a Bayesian network is a directed acyclic graph of n random variables xi which are related by

arrows, whose joint probability takes the following form:

p(x1, . . . , xn) =
n
∏

i=1

p(xi|par(xi)) (5.1)

where par(xi) denotes the parent(s) of xi. For nodes without any parent, p(xi|par(xi)) are

replaced by the marginals p(xi).

Our goal in general is to evaluate some marginal probabilities. For example, we might want

to know the probability that the bell rings p(b = “ringing”). In order to do this, we need to sum

out all the other variables in general:

p(b = “ringing”) =
∑

c1

∑

c2

p(c1, c2, b = “ringing”)

If we can observe the state c1 but not c2, then we say c1 is observable and c2 hidden. For example

we know c1 = “head” by observation, then we need not sum over the state c1 in order to know

the probability that the bell rings, we have instead

p(b = “ringing”|c1 = “head”) =

∑

c2 p(c1 = “head”, c2, b = “ringing”)

p(c1 = “head”)

For simple networks like the “coins and bell” example, direct summation is still doable. But

for some large Bayesian networks which frequently emerge in image processing, the numbers of

hidden nodes are generally too huge to sum up the hidden states directly since the number of

summations increase exponentially with the number of nodes. The virtue of belief propagation is

that we can calculate the marginal probabilities, at least in an approximate way, in a time that

only grows linearly with the number of nodes in the network, as we shall see in the following

sections. The calculated (approximate) marginal probabilities are called beliefs.
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Figure 5.1: The Bayesian network for the “coins and bell” example. c1, c2 and b denote the states

of the two coins and bell respectively.

5.1.2 Pairwise Markov random fields

Pairwise MRFs provide attractive models for computer vision problems such as image segmenta-

tion or image restoration [GG84]. They are undirected graphs in which there exist only pairwise

relationship between nodes. There is no causal node in such graphs like those in the Bayesian

networks where there are causal nodes called “parents” of other nodes. Our MRFs fit well with

such graphical models. The graph for the HMM is shown in Fig. 5.2 for a lattice of 4 × 4. The

label image y is the hidden layer with nodes ys represented by empty circles. The color image x

is the observed layer with nodes xs represented by filled-in circles. The links between neighbor-

ing nodes represent the potential functions of the corresponding nodes. Two sorts of potentials

are concerned here: the local evidence φs(xs, ys) of ys from xs and the compatibility ψst(ys, yt)

between the states ys and yt of neighboring sites s and t, which are defined as the following

according to our setting,

{

φs(xs, ys) = q(xs|ys)

ψst(ys, yt) = exp(a0(1− ys)(1− yt) + a1ysyt)
(5.2)

φs(xs, ys) give the clue for the underlying image y based on our observation of the color image

x. ψst(ys, yt) represent our prior “structure” knowledge about y. This Markov random field is

called “pairwise” since all compatibility functions only depend on pairs s ∼ t of nodes. Our goal

is the same as in Bayesian networks: to compute the beliefs b(ys) on individual nodes so that

we can infer something, the skin/non-skin label in our case, about the underlying scene y. Once
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again a direct computation of marginal probabilities will take exponential time with respect to

the number of nodes to be summed up, which is generally impossible to conduct in the case of

images. Thus we have to fall back on some fast algorithm such as belief propagation.

Figure 5.2: The graphical model of the pairwise Markov random field corresponding to the HMM

in Section 2.5. The empty circles are the nodes of the label image y. They compose the hidden

layer. The filled circles are the nodes of the color image x. They are the observable variables.

The links between nodes represent the potential functions of the linked nodes

5.1.3 Other graphical models

Another problem for which the BP algorithm has given excellent results is the iterative decoding

of error-correcting codes [YFW02]. BP is the decoding algorithm used to decode some of the

best practical codes, including turbocodes [BGT93] and Gallager codes [Gal63]. Both of these

codes can be formulated as parity-check codes and repersented by Tanner graphs [Tan81]. A

Tanner graph is a pictorial representation of the parity-check constraints on the codewords (legal

configurations of bits) of an error-correcting code. Inferring the initial transmitted codeword y

based on the received word x leads to computing the marginal probability for each bit. For large

coding system we resort to the BP algorithm. Besides Tanner graphs, there are factor graphs

[KFL01] which are generalization of Tanner graphs.

As shown in [YFW02], every Bayesian network or pairwise MRF can be converted to a factor

graph and vice versa. Thus all the graphical models that we have discussed are equivalent.

Without losing generality, we shall focus our discussion about the BP algorithm on pairwise
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MRF.

5.2 Belief propagation (BP) algorithm

“Inference” problems arise in statistical physics, computer vision, error-correcting coding theory,

and AI. The BP algorithm is an efficient way to solve inference problems based on passing local

messages [YFW02]. It consists in iterative updating of messages that are sent between nodes.

The message mts(xs) is explained as how much the node t would consider the node s to be in

the state xs. The belief bs(xs) at the node s is proportional to the local evidence φs(xs) at s and

the product of all messages getting to s, mts(xs), t ∈ Vs,

bs(xs) ∝ φs(xs)
∏

t∈Vs

mts(xs) (5.3)

The messages are determined self-consistently by the following updating rules,

mts(xs)←−
∑

xt



φt(xt)ψst(xs, xt)
∏

u∈Vt\{s}

mut(xt)



 (5.4)

That is, in order to compute the message mts(xs), we summarize all the messages from the neigh-

bors of t, except s, to t, then scale the product by the local evidence of t and the compatibility

between s and t. Finally, we should sum up all the possibilities of xt so that the final result is the

average tendency that t thinks s should have to be in the state xs. In a practical computation,

we start with the nodes at the edges of the graphs. The initial messages are generally set to be

unbiased. A message is calculated only when all necessary messages are available. Figure 5.3

shows the message passing routes for an example. It is easy to see that each message need only

be computed once for a loop-free graph. Thus the whole computation takes a time proportional

to the number of links in the graph, which is dramatically less than the time needed to compute

the marginal probabilities naively.

The BP algorithm, as defined in terms of equations (5.3) and (5.4), does not depend on

the topology of the graphs it runs on. Thus it can be applied on graphs with loops, too. We

simply start from unbiased initial messages, and use the message updating rules (5.4) to iterate

the messages until possibly they converge. We can then use (5.3) to read off the beliefs we are

interested in. However we can never ignore the loops existing in the graphs since the algorithm

is not guaranteed to converge for graphs with loops. As Pearl warned, “if we ignore the existence

of loops and permit the nodes to continue communicating with each other as if the network were

singly connected, messages may circulate indefinitely around these loops, and the process may
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not converge to a stable equilibrium” [Pea88]. One can indeed find examples of graphical models

with loops, where, for certain parameter values, the BP algorithm fails to converge, or predicts

beliefs that are inaccurate [YFW02]. On the other hand, the BP algorithm has been successful

as a decoding algorithm for error-correcting codes defined on Tanner graphs that have loops,

and also for some computer vision problems where the underlying MRF is full of loops [FPC00]

[YFW02].
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Figure 5.3: Messages on a simple graph

Remark that both the THMM defined in (2.26) and the TFOM defined in (3.11) can be

represented by the following generic pairwise model expressed in terms of potentials:

p(yT s
k
|xT s

k
) ∝

∏

u∼v;u,v∈T s
k

ψ(xu, xv, yu, yv)
∏

u∈T s
k

φ(xu, yu) (5.5)

For the THMM, the potentials are:

{

ψ(xu, xv, yu, yv) = a0(1− yu)(1− yv) + a1yuyv

φ(xu, yu) = q(xu|yu)
(5.6)

In the case of TFOM, the potentials are then:

{

ψ(xu, xv, yu, yv) = q(xu,xv ,yu,yv)
q(xu,yu)q(xv ,yv)

φ(xu, yu) = q(xu, yu)
(5.7)

In order to get the marginal probability p(ys|xT s
k
) from the model in (5.5), the BP algorithm

consists in computing the messages mts(ys), t ∈ Vs, then the marginal probability is computed

according to

p(ys|xT s
k
) ∝ φ(xs, ys)

∏

t∈Vs

mts(ys) (5.8)
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This in turn leads to computing iteratively all the messages required by mts(ys), t ∈ Vs:

mvu(yu)←
∑

yv

φ(xv, yv)ψ(xu, xv, yu, yv)
∏

w∈Vv ,w 6=u

mwv(yv) (5.9)

The initial messages from the leaves of the tree graphs are initialized with the value 1.

There is a close connection between the BP algorithm and the Bethe approximation of sta-

tistical physics. In particular, BP can only converge to a fixed point that is also a stationary

point of the Bethe approximation to the free energy [YFW02]. We shall show the equivalence of

BP algorithm and the minimization of Bethe free energy in the following sections. The demon-

stration basically follows the idea in [YFW02], with deduction and some notations adapted to

the context of this thesis.

5.3 Bethe free energy

Recall the free energy defined in (4.3). We rewrite it in the following:

F = E(H;µ)−H(X;µ) (5.10)

where E(H;µ) is the average energy and H(X;µ) the entropy. By Gibbs variational principle, for

a given energy function H defined on the configuration space X, the free energy gets minimized

only when the distribution µ is exactly the Gibbs field π, which is defined as:

π(x) =
1

Z
exp(−H(x)), ∀x ∈ X (5.11)

with Z =
∑

z∈X
exp(−H(z)) being a normalization constant. Now for the pairwise MRF model

defined in (2.23):

π(x) =
1

Z

∏

s∼t

ψst(xs, xt)
∏

s∈S

φs(xs) (5.12)

suppose it is a Gibbs field, then its energy function is given by:

H(x) = −
∑

s∼t

lnψst(xs, xt)−
∑

s∈S

lnφs(xs) (5.13)

Now we would like to find out a distribution µ with marginal probabilities bs(xs) and bst(xs, xt),

s ∼ t, such that the free engergy is minimized. Then we will have µ = π with bs(xs) and

bst(xs, xt) being the marginal probabilities of the target distribution π.

We are now trying to express the free energy in terms of the marginal probabilities, or say,

beliefs, bs(xs) and bst(xs, xt). There are mainly two terms in the free energy: the average energy



68 CHAPTER 5. BELIEF PROPAGATION ON TREE GRAPHS

and the entropy. We begin with the average energy, which is:

E(H;µ) =
∑

x

µ(x)H(x)

= −
∑

s∼t

∑

x

µ(x) lnψst(xs, xt)−
∑

s∈S

∑

x

µ(x) lnφs(xs)

= −
∑

s∼t

∑

xs,xt

bst(xs, xt) lnψst(xs, xt)−
∑

s∈S

∑

xs

bs(xs) lnφs(xs) (5.14)

The entropy cannot be expressed in terms of marginal probabilities except for very special

cases. Generally we have to settle for approximations. We know that under tree graphs the

joint distribution of MRFs can be expressed by marginal probabilities, as has been shown in

Section 3.2.1. So under tree approximations we can represent µ explicitly in terms of beliefs:

µ(x) =

∏

s∼t bst(xs, xt)
∏

s∈S bs(xs)ns−1
(5.15)

where ns is the degree (number of neighbors) of the site s. For cases where the underlying graphs

have loops, (5.15) is only an approximation. We then get the Bethe approximation to the entropy

[YFW02],

H(X;µ) = −
∑

x

µ(x)

(

∑

s∼t

ln bst(xs, xt)−
∑

s∈S

(ns − 1) ln bs(xs)

)

= −
∑

s∼t

∑

xs,xt

bst(xs, xt) ln bst(xs, xt) +
∑

s∈S

(ns − 1)
∑

xs

bs(xs) ln bs(xs) (5.16)

For tree (loop-free) graphs, the calculation of the entropy is exact and minimization of the

Bethe free energy with respect to the marginal beliefs leads to the exact marginal probabilities.

However for the graphs with loops, this is only an approximation.

5.4 Equivalence of BP to Bethe free energy minimization

For loop-free graphs, the Bethe free energy gets minimized if and only if the beliefs are exactly

the marginal probabilities of the corresponding Gibbs field. For graphs with loops, however, the

beliefs are only approximate. The belief propagation algorithm is related to the minimization of

the Bethe free energy. In fact, the fixed points of the belief propagation algorithm are equivalent

to the local stationary points of the Bethe free energy. Recall the Bethe free energy in the

following form:

FBethe = −
∑

s∼t

∑

xs,xt

bst(xs, xt) lnψst(xs, xt)−
∑

s∈S

∑

xs

bs(xs) lnφs(xs)

+
∑

s∼t

∑

xs,xt

bst(xs, xt) ln bst(xs, xt)−
∑

s∈S

(ns − 1)
∑

xs

bs(xs) ln bs(xs) (5.17)
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We shall minimize the Bethe free energy FBethe with respect to the beliefs under the following

constraints: ∀s ∼ t, s, t ∈ S, ∀xs ∈ Xs, ∀xt ∈ Xt,
{

∑

xt
bst(xs, xt) = bs(xs)

∑

xs
bst(xs, xt) = bt(xt)

(5.18)

and ∀s ∈ S,
∑

xs

bs(xs) = 1 (5.19)

in order to get the stationary points of FBethe. We introduce the Lagrange multipliers λts(xs)

and λst(xt), ∀s ∼ t, s, t ∈ S, ∀xs ∈ Xs, ∀xt ∈ Xt to enforce (5.18), γs, ∀s ∈ S to enforce (5.19),

and construct the Lagrangian L.

The equation ∂L
∂bs(xs)

= 0 gives:

(ns − 1)(ln bs(xs) + 1) = − lnφs(xs) +
∑

u∈Vs

λus(xs) + γs (5.20)

∂L
∂bst(xs,xt))

= 0 gives:

ln bst(xs, xt) = lnψst(xs, xt) + λst(xt) + λts(xs)− 1 (5.21)

These are the stationary points of the Bethe free energy in parametric forms.

Now suppose we run the BP algorithm till it converges. That is, we get the fixed point for

the messages mst(xt), mts(xs), ∀s ∼ t, s, t ∈ S, ∀xs ∈ Xs, ∀xt ∈ Xt. Let us define
{

λst(xt) = lnφt(xt) +
∑

u∈Vt\{s}
lnmut(xt)

λts(xs) = lnφs(xs) +
∑

u∈Vs\{t}
lnmus(xs)

(5.22)

Using BP fixed-point conditions (5.3) and (5.4), it is easy to check that the constraints (5.18) and

(5.19), the stationary conditions (5.20) and (5.21) are all satisfied. So the fixed point of the BP

algorithm is the stationary point of the Bethe free energy function. Similarly, given the beliefs

and the parameters that satisfy the stationary equations (5.20) and (5.21), and the constraints

(5.18) and (5.19), we can define messages according to (5.22), and it is easy to show that the

messages and beliefs must satisfy the BP fixed-point equations (5.3) and (5.4). These show the

equivalence between the BP fixed points and the Bethe free energy stationary points.

The BP algorithm for graphical models with loops is not garanteed to converge. But since

the BP fixed points correspond to the minimum Bethe free energy, one can simply choose to

minimize the free energy. Such free energy minimizations are slower than the BP algorithm,

but they are at least guaranteed to converge [WT01] [YFW02]. On the other hand, empirical

exploration indicates that when BP fails to converge, it is a clue that the results from minimizing

the Bethe free energy will also be quite inaccurate [YFW02].
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5.5 Experiments

All experiments are made using the labeled Compaq database introduced in Section 4.3. We use

32 bins per RGB channel in the following experiments.

5.5.1 Tree hidden Markov model

Bethe tree approximation

Figure 5.4 shows outputs of Bethe THMM on several test images. The outputs of Bethe tree

approximations with depths one and four are presented as well as those of the Baseline model. All

the skin mask outputs are gray-level images. For the Baseline model, the gray-level is proportional

to p(Ys = 1|xs). For THMM, the gray-level is proportional to p(Ys = 1|xt, t ∈ T s
k ), k = 1, 4. The

Bethe THMM easily gets messages overflowed for k > 4. We remark that the beliefs of THMM

are almost binary, especially when deeper trees are applied. As can be seen from the images,

Bethe THMM gives higher probabilities to detected skin pixels than the Baseline model does.

Most skin pixels are detected. Let us look at the third column of Fig. 5.4 first. The first two

images compare favorably to the outputs of the Baseline model since real skin pixels are given

very strong response. However for the third image, some false alarms are also strengthened,

which is not what we want to see. The output of the second image compares also favorably

to that of Fig. 4.1, where the left arm of the right person is not detected. The Bethe THMM

with belief propagation here detects this part correctly. The detected skin regions are also more

precise than those of HMM in Fig. 4.1. With higher depths, Bethe THMM begins to lose some

details of detected skin regions, and some small false skin regions existing in depth-1 tree output

are removed a bit, too.

Figure 5.5 shows ROC curves of Bethe THMM and Baseline model computed from the test

set. The Baseline model permit to detect 80.5% of the skin pixels with 10% of false positive

rate. Bethe THMM has a uniform improvement over the Baseline model. Depth-1 Bethe THMM

permits to detect 82.3% of the skin pixels for the same false positive rate. In Chap. 4, when using

a Gibbs sampler to estimate the probability for skin at pixel locations, we obtained comparable

results with the ones reported here, but with a running time increased by a factor of more than

ten, we shall report the time issues later in this section. Deeper Bethe THMM’s make the ROC

curves more concentrated with little increase on the pixel classification performance.
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Figure 5.4: Bethe THMM outputs compared to the Baseline model outputs. First column: input color images. Second column:

Baseline model. Third column: Bethe tree hidden Markov model, depth one. Fourth column: Bethe tree hidden Markov model,

depth four. In the computed images, the gray level is proportional to the skin probability evaluated with the specified model. The

image in the first row has 583× 375 pixels, the one in the second row 225× 180 pixels, the one in the third row 800× 599 pixels
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Figure 5.5: Bethe THMM ROC curves compared with that of the Baseline model

4-star tree approximation

Figure 5.6 shows outputs of 4-star THMM on several test images. The depth-1 4-star tree

approximation is equivalent to the depth-1 Bethe tree approximation. One can simply refer to

Fig. 5.4 for depth-1 4-star tree results. For the sake of comparison, the outputs of depth-4 and

depth-8 4-star THMM as well as those of the depth-4 Bethe THMM are presented in Fig. 5.6.

All the skin mask outputs are gray-level images as in Fig. 5.4. As Bethe THMM, the beliefs

of 4-star THMM are also almost binary, especially when deeper trees are applied. The 4-star

THMM can run on deeper trees than the Bethe THMM since the number of nodes is only linear

to the depths in 4-star trees while exponential in Bethe trees. Comparing the third column to

the second column, we can see that false alarms are a little less in 4-star THMM than Bethe

THMM. For example, the pixels on the monitor in the first image are less labeled as skin by 4-star

THMM. And in the second image, Bethe THMM labels some pixels on the T-shirt of the right

person as skin. But these false alarms are removed by 4-star THMM. The skin regions output by

depth-4 4-star THMM are also a little more precise than those output by Bethe THMM of the

same depth. 4-star THMM of depth eight outputs less detailed skin regions than that of depth

four for given examples. The comparison is clearer by ROC curves which give the quantitative

evaluation of the models.
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Figure 5.6: 4-star THMM outputs compared to Bethe THMM outputs. First column: input color images. Second column:

Bethe tree hidden Markov model, depth four. Third column: 4-star tree hidden Markov model, depth four. Fourth column:

4-star tree hidden Markov model, depth eight. In the computed images, the gray level is proportional to the skin probability

evaluated with the specified model. The image in the first row has 583 × 375 pixels, the one in the second row 225 × 180 pixels,

the one in the third row 800× 599 pixels
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Figure 5.7 shows ROC curves of Bethe and 4-star THMM computed from the test set. The

ROC curve of depth-4 Bethe THMM is more concentrated than that of depth-4 and depth-8 4-

star THMM maybe due to more nodes included and highly overlaped in Bethe trees (remark that

there are 161 nodes in a depth-4 Bethe tree while only 17/33 nodes in a depth-4/8 4-star tree).

Apparently depth-8 4-star THMM has a better ROC curve than depth-4 Bethe THMM. At a first

look, the superiority of much simpler 4-star tree approximations to Bethe tree approximations is

somehow amazing. But taking into account the fact that more and more nodes get overlapped

with the expansion of Bethe trees, this might be understandable.

Figure 5.7: Bethe/4-star THMM ROC curves

All the experiments are performed on a PC with a Pentium 4 processor at 1.7 Ghz and 256

MB memory. The execution time for the depth-1 Bethe THMM is about 1 second per image.

It is about 0.29 second per image for the depth-1 4-star THMM. The execution time of both

models increases almost linearly with the depth of the THMM.

5.5.2 Tree first-order model

Results for depth-1 Bethe/4-star TFOM1 and TFOM2 are presented in Fig. 5.8. Note that

depth-1 Bethe tree is equivalent to depth-1 4-star tree. For the sake of comparison, the outputs of

depth-1 THMM are also put together. More iterations do not improve the performance of TFOM.
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The reason could be that the tree graphs built for the classification are only approximations to the

real pixel lattice, and even the pairwise MRFs are only approximations to the true distributions.

We do not know the exact distribution p(x, y) of the color images and their labels. All that we

have done is to try to find models on tree graphs to approximate the underlying true distribution

p(x, y) based on the observed features. We have been trying to mimic some aspects of the ground-

truth distribution by building all the MRF and tree graphs. When some models work, we can

say that model seems to grab the true properties. When other models fail, it might be that the

true distribution does not expose those properties. The TFOM outputs are not so binary as their

THMM counterparts. At a first glance they look more like the outputs of the Baseline model.

The shapes of the detected skin regions are more precise than THMM. If we compare the TFOM

outputs to the Baseline model outputs in Fig. 5.4, we will find that the former model detects the

glasses racks of the people in the first image, while the latter model failed to do that. The left

arm of the right person in the second image is also assigned higher probablities by TFOM than

by the Baseline model. When comparing TFOM2 (fourth column) to TFOM1 (third column), we

will see that more skin pixels are assigned high skin probabilities by TFOM2 than by TFOM1.

This is obvious in the first and second images.

We show the bulk results in Fig. 5.9. Only ROC curves of depth-1 Bethe/4-star TFOM are

computed in this figure. We can see from the figure that TFOM2 performs uniformly better than

TFOM1. For example, TFOM2 can detect 83.1% of the skin pixels when 10% of false positive

rate is allowed. While TFOM1 can only detect 81.5% of skin pixels at the same false positive rate.

The reason could be that the approximation (3.17) made in TFOM1 is too empirical and not as

good as the more natural maximum entropy estimation made in TFOM2. The performance of

TFOM2 also compares favorably to that of THMM which permits to detect 82.3% of the skin

pixels at the false positive rate of 10% for depth-1 Bethe/4-star trees.

The elapsed time is about 0.66 second per image for depth-1 4-star TFOM1, and about 0.70

second per image for depth-1 4-star TFOM2.

5.6 Discussion

Instead of temporally expensive Gibbs sampling strategy, we used BP algorithm for probability

inference at pixel locations. This algorithm is well expressed with graphical models. Thus we

began with the introduction of general graphical models. Of particular interests is the pairwise

MRF. We showed that the distribution that we were tring to find is the Gibbs field, which is

the distribution with the least free energy under certain energy function. For pairwise MRF on
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Figure 5.8: TFOM outputs compared to THMM outputs. First column: input color images. Second column: tree hidden

Markov model. Third column: tree first-order model 1. Fourth column: tree first-order model 2. In the computed images, the

gray level is proportional to the skin probability evaluated with the specified model. Bethe/4-star trees of depth one are used in

all experiments. The image in the first row has 583× 375 pixels, the one in the second row 225× 180 pixels, the one in the third

row 800× 599 pixels
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Figure 5.9: ROC curves of TFOM1 and TFOM2

tree graphs the free energy has special pairwise form in terms of marginal probabilities on single

sites and pairs of sites. The free energy is called Bethe free energy in this case. For graphs

with loops, however, the Bethe free energy is only an approximation of the true free energy. We

showed that the fixed points of the BP algorithm are the stationary points of the Bethe free

energy. Two sorts of tree approximations to pixel lattice, Bethe tree approximation and 4-star

tree approximation, are explored. We showed that the BP algorithm dramatically improved the

speed of skin probability inference at pixel locations, while it still exhibited comparable pixel

classification performance to that of Gibbs sampling.
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Résumé (Chapitre 6)

Un algorithme de détection de la peau peut être appliqué pour détecter ou reconnaître un

humain dans une image. Dans ce chapitre, nous présentons une application de l’algorithme

de détection de la peau pour détecter les images à caractère pornographique. Le résultat de

l’algorithme de détection de la peau est une image constituée, en chaque pixel, de la probabilité

pour que ce pixel soit un pixel de peau. Dans un premier temps, nous calculons des descripteurs

de formes pour cette image. Dans un second temps, nous utilisons un perceptron à deux couches

pour construire une décision — image à caractère pornographique ou non — à partir des valeurs

des descripteurs de forme.

Nos expériences menée sur une large collection d’images provenant de l’internet confirment

l’importance de la bonne détection de la peau pour détecter les images pornographiques.

Nous présentons dans ce chapitre le projet POESIA qui signifie — Public Open-source En-

vironment for a Safer Internet Access — un logiciel public et libre pour un acces plus sûr à

l’internet. Notre système de détection des images pornographiques est utilisé afin de filtrer les

images. Les essais conduits par les utilisateurs ont montré que les performances peuvent être

améliorées en combinant les résultats de plusieurs images apparaissant sur une même page.
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Chapter 6

Blocking adult images

Images are an essential part of today’s World Wide Web. The statistics of more than 4 million

HTML webpages reveal that 70.1% of webpages contain images and that on average there are

about 18.8 images per HTML webpage [SDT+02]. These images are mostly used to make at-

tractive Web contents or to add graphical items to mostly textual content, such as navigational

arrows.

However, images are also contributing to harmful (e.g. pornographic) or even illegal (e.g.

paedophilic) Internet content. So effective filtering of images is of paramount importance in an

Internet filtering solution.

To block adult content, some representative companies as NetNanny and SurfWatch, operate

by maintaining lists of URL’s and newsgroups and require constant manual updating. Abundant

literature is available, but the Internet is very rapidly evolving, not only quantitatively. Each

day, 3 million pages are appearing on the Web. Detection based on image content analysis has

the advantage to process equally all the images without the need for updating, so will produce

more effective filtering.

By taking advantage of the fact that there is a strong correlation between images with large

patches of skin and adult images, the work on blocking adult images will benefit from skin

detection. There is already a large amount of work on this track.

The WIPE [WLWF98b] system developed by Wang, Li, Wiederhold and Firschein uses a

manually-specified color histogram model as a prefilter in an analysis pipeline. Input images

whose average probability of skin is low are accepted as non-offensive. Images that contain

considerable skin pass on to a final stage of analysis where they are classified using wavelet

features. The algorithm uses a combination of Daubechies wavelets, normalized central moments,
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and color histograms to provide semantically-meaningful feature vector matching.

Forsyth’s [FFB96] research group has designed and implemented an algorithm to screen

images of naked people. Their algorithms involve a skin filter and human figure grouper. The

skin color model used by Fleck, Forsyth and Bregler consists of a manually specified region in

a log-opponent color space. Detected regions of skin pixels form the input to a geometric filter

based on skeletal structure. As indicated in their paper, 52.2% true positive rate and 3.4% false

positive rate have been obtained for a test set of 138 images with naked people and 1401 assorted

benign images. However, it takes about 6 minutes on a workstation for the figure grouper in

their algorithm to process a suspect image passed by the skin filter.

Jones and Rehg [JR02] propose techniques for skin color detection by estimating the distri-

bution of skin and non-skin color in the color space using labeled training data. To detect adult

images, some simple features are extracted. The discrimination performance based solely on skin

is rather good for such simple features.

Bosson et al. [BCCH02] propose a pornography detection system which is integrated in a

commercial system. This system is also based on skin detection. They compared the generalised

linear model, the k-nearest neighbor classifier, the multi-layer perception (MLP) classifier and

the support vector machine and found that the MLP gives the best classification performance.

Our approach is based on the TFOM skin detection. The output of skin detection is a

grayscale skin map with the gray levels being proportional to the skin probabilities. We extract

some simple features from the skin map which compose a feature vector. We train a MLP

classifier on 5, 084 patterns from the training set. In the test phase, the MLP classifier takes a

quick decision on the input pattern in one pass.

6.1 Feature extraction

There are propositions for high-level features based on grouping of skin regions [FFB96] that

might distinguish adult images from those not, but here we have a requirement to process the

images speedily. The project associated with our work, Poesia [SDT+02], works under real

environments. It requires real-time processing of all kinds of media, including images and text.

So, along with [JR02] [WLWF98b], we are interested to try simpler features.

Since skin distribution is of the paramount importance for the detection of adult images [JR02]

[BCCH02], all our current features are based on the skin map. For the sake of practicality, the

features should be simple and easy to calculate.
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We first binarize the skin map by simple thresholding. We then implement morphological

open/close operations to remove noise and connect broken regions. Small skin regions are con-

sidered insignificant and discarded. Many of our features are based on the fit ellipses calculated

on the skin map, since they could meet our requirement for simplicity and capture some impor-

tant shape information. For a detailed account of the formulae used to calculate fit ellipses for

gray-scale regions, see Appendix E. We observed from experiments that for approaches based on

skin detection, portraits have a tendence to be detected as adult images since generally portraits

expose plenty of skin as adult ones. The fit ellipses will hopefully at least help discriminate

portraits from adult images. We will calculate two fit ellispes for each skin map—the Global Fit

Ellipse (GFE) and the Local Fit Ellipse (LFE). The GFE is computed on the whole skin map,

while the LFE only on the largest skin region in the skin map. The GFE and LFE capture most

of the skin distributions in the whole image and in the largest skin region respectively. Figure 6.1

shows the GFE as well as the LFE for a skin map.

Figure 6.1: First: the original input image. Second: the Global Fit Ellipse (GFE) on the skin

map. Third: the Local Fit Ellipse (LFE) on the skin map

With the skin map, we extract 9 features from the input image. The first 3 features are

global:

• the average skin probability of the whole image

• the average skin probability inside the GFE

• number of skin regions in the image

The other 6 features are computed on the largest skin region of the input image.

• distance from the centroid of the largest skin region to the center of the image

• angle of the major axis of the LFE from the horizontal axis
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• ratio of the minor axis to the major axis of the LFE

• ratio of the area of the LFE to that of the image

• average skin probability inside the LFE

• average skin probability outside the LFE

All these features compose a simple feature vector. No effort was done to find the correlation

between features.

6.2 Pattern Recognition

The feature extraction steps described in the previous subsection produce a feature vector for

each image. The task is then to find the decision rule on this feature vector that optimally

separates adult images from those not.

Evidence from [BCCH02] shows that the MLP classifier offers a statistically significant perfor-

mance over several other approaches such as the generalized linear model, the k-nearest neighbor

classifier and the support vector machine.

The semilinear feedforward net as reported by Rumelhart, Hinton, and Williams has been

found to be an effective system for learning discriminants for patterns from a body of examples

[Pao89]. The multi-layer perceptron used in this work is introduced in detail in [Pao89]. For

the sake of integrity, this network is introduced briefly here with the specific information of our

application.

This network is composed of an input layer, indexed by i, a hidden layer, indexed by j,

and an output layer, indexed by k. There are 20 nodes at the hidden layer, 1 node at the

output layer since we need only one indication for the adult content. The number of hidden

nodes is chosen empirically. Each node at the hidden layer and the output layer is associated

with an activation function, which is a sigmoïdal function that operates on the corresponding

net input of that node. The links between the input layer and the hidden layer are associated

with weights denoted by wji, links between the hidden layer and the output layer with weights

denoted by wkj . The learning procedure starts off with a random set of weight values. In the

feedforward procedure, each training pattern p is fed into the network to evaluate the output op.

In the backpropagation procedure, the error at the output Ep necessitates changes ∆pwkj in the

weights between the hidden layer and the output layer. This procedure goes on backward, the

net calculates ∆pwji for all the wji between the input layer and the hidden layer in the net for the
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pattern p based on ∆pwkj . This procedure is repeated for all the patterns in the training set to

yield the resulting ∆wkj and ∆wji for all the weights for that one presentation. The corrections

to the weights are then made. The training patterns are then fed into the network again and the

outputs are again evaluated in a feedforward manner. Weight changes are again evaluated using

the backpropagation procedure. We iterate the feedforward and backpropagation procedures for

the training set of patterns. In a successful learning exercise, the system error will decrease with

the number of iterations, and the procedure will converge to a stable set of weights, which will

exhibit only small fluctuations in value as further learning is attempted [Pao89].

For an input pattern p, the output of this net op is a real number between 0 and 1. The

nearer the number is to 1, the more possibly the input pattern corresponds to an adult image.

We then set a threshold T , 0 < T < 1, to get the binary decision. In the test phase, the net

takes a quick decision on the input pattern in one pass.

6.3 Experiments

All experiments are made using the following protocol. The database contains 10, 168 pho-

tographs, which are imported from the Compaq database [JR02] and the Poesia database [SDT+02].

It is split into two equal parts randomly, with 1, 297 adult photographs and 3, 787 other pho-

tographs in each part. Then these two parts are used as the training set and the test set respec-

tively. In Fig. 6.2 we show some examples of the results for adult images and non adult images

from the test set. The outputs of the MLP are shown just below the corresponding images.

There are some cases where our detector does not work well. In Fig. 6.3 several such examples

are presented. The first adult image is not detected since the skin appears almost white due to

over-exposure. We see that most of the skin is not detected on the skin map. The second adult

image contains two connected big frames. The LFE of this image will then be very big, and the

average skin probability inside this LFE will be very small. The third image is benign, but it is

detected adult since the toy dog takes a skin-like color and the average skin probabilities inside

the GFE and the LFE are very high. The fourth image is a portrait but it is detected as an

adult image since it exposes a lot of skin and even the hair and the clothes take skin-like colors.

We believe skin detection based solely on color information cannot do much more, so maybe

some other sorts of information is needed to improve the adult image detection performance. For

example, some kind of face detector could be implemented to improve the results. Moreover,

generally adult images in web pages tend to appear together, and are surrounded by text, which

could be an important clue for the adult content detector.
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op = 0.932656 op = 0.941662 op = 0.916510 op = 0.941662

op = 0.001452 op = 0.000000 op = 0.000000

op = 0.000119 op = 0.111755 op = 0.015253 op = 0.000000 op = 0.000000

Figure 6.2: First row: Experimental results on adult images. Second and third rows: Experi-

mental results on non adult images. Below the images are the associated outputs of the MLP
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op = 0.006828 op = 0.000005 op = 0.899044 op = 0.938251

Figure 6.3: First row: original images. Second row: the corresponding skin maps. Below the

skin maps are the corresponding outputs of the MLP. The first two columns are adult images

with low responses, while the other two columns are benign images with high responses
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By varying the threshold T , a ROC curve is achieved as shown in Fig. 6.4. The elapse time

is about 1.51× 10−5second/pixel, i.e., about 1 second for a 256× 256 image.

Figure 6.4: ROC curve of the TFOM-MLP adult image detector

6.4 Poesia system—content-based Internet filtering

The adult image detector developed in the former sections has been incorporated into the Poesia

system [SDT+02]. The Poesia project is funded by the European Commission and takes place in

the Information Society and Technology Safer Internet Action Plan 1. The Safer Internet Action

Plan (IAP) promotes safety on the Internet by tackling the controversial issue of illegal, harmful

and racist content. Poesia means a Public Open-source Environment for a Safer Internet Access.

Poesia seeks to develop, test, evaluate and promote a fully open-source, and extensible, state

of the art, filtering and catching software solution. It filters harmful content in several channels

(Web, Email, News) combining innovative technologies to achieve more effective filtering than

existing products. The filtered categories of contents include pornography, racism, violence and

gross language. Filtering covers a range of modes, including image filtering, natural language

text filtering, URL (Universal Resource Locator), PICS (Platform for Internet Content Selection)

and JavaScript filtering. The filter was initially deployed in English, Italian and Spanish. To

cover other European languages additional work is required and should be effectively possible

1http://www.saferinternet.org/filtering/poesia.asp
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because of the open-source model and the portability of the technical solutions. Poesia aims to

become the standard filtering solution deployed by educational institutions and for home use.

Figure 6.5 shows the architecture of the Poesia system. For Web content filtering, HTTP

(HyperText Transfer Protocol) is processed by Shweby proxy server, which is an open source

software with support of ICAP (Internet Content Adaptation Protocol). So the Poesia system

has to interface through the ICAP protocol to Shweby. The Poesia system is organized around

a central monitor, which deals with external information sources (web, email, . . . ) and pre-

processes and distributes the information to be filtered to specialized filters (eg for NLP (Natural

Language Processing), images) and decisors. For Email filtering, the Poesia system contains an

external Exim mail filter which delegates the filtering to the Poesia monitor. The monitor

communicates with Shweby (using ICAP), with Exim via a Poesia exim filter (using a specific

poesia mail protocol), with other information sources (NNTP (Network News Transfer Protocol),

IRC (Internet Relay Chat), . . . ) and with specialized filters (NLP in spanish, english, french;

language detectors; image filters; Javascript and URL filters; . . . ) and decisors. Filters and

decisors communicate directy only with the Poesia monitor.

The Poesia monitor starts, schedules and communicates with Poesia specific filters (e.g. image

or NLP filters) and subprocesses (like the decision mechanism). It communicates with these filters

with a specific protocol. Filters do not communicate directly with each other or with decision

mechanisms. All such communication goes to the monitor. The monitor is able to continue

processing from one filter to another. A given filter can produce a temporary result which is

redirected to other filter(s).

The Poesia filtering system has been tested by the end user group. A set of pages and images

were acquired using a Spider to randomly sample the WWW. The spider traverses links within

identified sites to retrieve pages at varying depths. The final corpus consists of approximately

20, 000 pages (10, 000 non-pornographic pages, 10, 000 pornographic pages). The end users tested

the individual image filter as well as the whole Poesia system on the test corpora. As a conclusion,

the incorporation of filters in Poesia generally improves the performance of the individual image

filter. For the image test corpus, the true positive rate of pornographic web pages is raised from

0.952 to 0.972, while the false positive rate is decreased from 0.106 to 0.054. This is basically

due to the fact that when testing the image filter individually, a single image was used whilst in

the Poesia system the image filter produces its classification based on multiple images in a page,

thus the increased information improved its accuracy.
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Figure 6.5: Poesia overall architecture [SDT+02]
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6.5 Discussion

We applied our skin detector in this chapter to adult image detection. The general use of adult

image detection is Internet content inspection. Thus it is generally required to transact the

images as quickly as possible. So the implemented skin detection adopted the BP algorithm. We

extract several simple features from the skin map, which is a gray-scale skin probability image.

We trained a two-layer perceptron on these features. We did a lot of experiments on a large

image database, which showed stimulating performance despite the simplicity of the features we

extracted. In this chapter we also explained Poesia—a Public Open-source Environment for a

Safer Internet Access. Poesia adopts the previously introduced adult image detector in the image

filtering module. It also incorporates some other advanced state-of-the-art techniques, e.g. NLP,

Javascript filtering, etc., to filtering the potentially harmful web pages or content from Internet.

It provides the platform for us to show that the combination of several images on the same web

page improved the overall pornographic web page detection considerably.
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Résumé (Chapitre 7)

Dans ce chapitre, nous donnerons un résumé de notre travail. Les principales contributions

sont les suivantes :

1. Nous appliquons la méthode du maximum d’entropie sur la moyenne (MaxEnt) pour la

détection de la peau dans les images en couleur. C’est, à notre connaissance, la première

étude de la sorte. Nous construisons ainsi le “modèle indépendant” ainsi que deux modèles

Markoviens. Nos résultats expérimentaux démontrent les accroissements de performances

qui résultent de l’utilisation de ces nouveaux modèles par rapport au modèle indépendant.

2. Nous démontrons l’unification des différents modèles à travers l’approche MaxEnt. Nous

démontrons d’autre part que cette approche permet de construire des modèles qui ont des

bonnes performances empiriques.

3. Pour l’estimation des paramètres, ainsi que pour l’inférence, nous approximons, localement,

le graphe des pixels, contenant de nombreuses boucles, par un arbre. Ceci donne lieu à une

variété de modèles, chacun indexé par un type d’arbre. Nous montrons que l’algorithme

de “belief propagation” permet alors d’effectuer l’inférence de manière particulièrement

efficace.

4. Nous utilisons notre détecteur de peau pour détecter les images pornographiques. Nous

obtenons des résultats très encourageants.

5. Les meilleurs algorithmes issus de cette thèse sont incorporés dans le logiciel public et libre

POESIA de filtrage de l’internet.

Même si nous avons fait de notre mieux pour découvrir des algorithmes performants pour la

détection de la peau et pour le filtrage de l’internet, il reste de nombreuses pistes et questions

ouvertes pour de futures recherches. Ces recherches sont utiles car la détection de la peau est

une étape fondamentale pour de nombreuse applications.

Nous donnons dans ce chapitre les pistes de recherches suivantes :

1. Des contraintes différentes pour le maximum d’entropie sur la moyenne qui mèneront à de

nouveaux modèles Markoviens. Nous illustrerons à l’aide de modèles graphiques.

2. Nous suggérons d’implémenter d’autres représentations des couleurs que le traditionel RGB

(rouge, vert, bleu) afin de réduire la complexité des modèles.



3. Nous avons, dans cette thèse effectué des expériences avec les arbres de Bethes et les arbres

étoilés. Nous proposons de considérer les arbres couvrants ainsi que les quadtrees.

4. Une alternative prometteuse à l’algorithme de Belief Propagation dans le cas de graphes

contenant des boucles est le Generalized Belief Propagation.

5. Pour mieux détecter les images pornographiques, il pourrait être utile de détecter les visages

et/ou les membres (bras, jambes). Nous présenterons aussi des applications possibles de

notre détecteur de peau.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

The goal of skin modeling is to build a decision rule which seperates skin pixels from non-skin

ones. Skin detection plays an important role in various applications such as face detection,

searching and filtering image content on the web, video segmentation and face/head tracking,

. . . . However, skin detection is not an easy task, especially in the case of web images. First,

skin colors may vary from person to person. Furthermore, since web images are captured under

various conditions, they are subject to all kinds of noise and distortion.

In this thesis, we have shown that the nowadays popular MaxEnt method can lead to efficient

models for skin detection, which is a supervised image segmentation problem. The Baseline model

has been developed by Jones and Rehg by simply assuming pixel independence. However we

showed that under certain constraints, we can derive this model through the maximum entropy

framework. The Baseline model is in fact a MaxEnt model that puts constraints on one-site

marginal probabilities. This gives us more insight into the well-known simple statistical skin

model. Performance, measured by the ROC curve on the Compaq database is impressive for

such a simple model. The observation of the image database tells us that the skin pixels are not

totally independent. Instead, they tend to appear together and form some regions. A natural

step would be to model the distribution with MRFs. Again we showed that the constructed MRF

models, the HMM as well as the FOM, are both MaxEnt models under respective constraints.

Thus, we witnessed that the independent model as well as the MRF models are all unified into

the maximum entropy framework. The HMM includes constraints that force smoothness of the

label image, while the FOM put constraints on colors and labels of neighboring pixels.
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Except the Baseline model, which can be solved analytically, all the models that we built are

in parametric forms. We tackled parameter estimation in Chapter 3. We explored a method to

estimate the parameters of the HMM based on equations of local characteristics of the MRF.

This method is effective for MRF models that do not have many unknown parameters. For the

FOM, which has a lot of unknown parameters, we approximate the pixel lattice with tree graphs.

With tree approximations, the FOM is expressed in terms of empirical marginal probabilities on

neighboring pixels. Direct estimation of these empirical probabilities from the training set will

cause over-fitting since the orginal parameter space is huge for ordinary images. Two methods are

explored to reduce dimensionality. The first method is to decrease the dimensionality by assuming

conditional independence of one-site color and two-site color gradient. The resulting model is

TFOM1. The other method is to estimate the high-dimensional parameters from some low-

dimensional histograms of the training set with MaxEnt. This model is TFOM2. In estimating

parameters for TFOM2, we devised a variant of the generalized iterative scaling algorithm by

rearranging calculation, which accelarates the parameter estimation process drastically.

In order to compute skin probabilities at pixel locations for given color images with the con-

structed MaxEnt models, we first implemented a stochastic sampling scheme, Gibbs sampling.

Experiments revealed that HMM performs better than the Baseline model. The performance

is once more improved when we replace the HMM with the TFOM. However, Gibbs sampling

scheme is quite time consuming and not suitable for real-time applications, such as Internet filter-

ing. Remark that all the MRF models built in our context are pairwise MRFs. By approximating

the pixel lattice with tree graphs, we can compute the marginal probabilities efficiently with the

BP algorithm. This algorithm is closely related to the minimization of the Bethe approximation

of the free energy. We explored two sorts of tree approximations to the pixel lattice, the Bethe

tree approximation and the 4-star tree approximation. The experimental results seem to favor

the latter a bit. Experiments showed that BP scheme is much faster than Gibbs sampling scheme

with comparable performance and it matches the real-time requirement.

In Chapter 6, we exhibited an application of the TFOM-BP skin detection scheme to adult

image filtering of Internet. We extracted several simple features from the skin map. We trained

a two-layer perceptron on these features. The experiments on a large image database showed

stimulating performance despite the simplicity of the features based only on skin maps, which

provides an evidence that skin detection plays a very important role in adult image detection.

In this chapter we also introduced Poesia, a project associated with much of our research. The

experiments conducted by end users of the Poesia project show that combination of images in

one web page improves the performance of adult image detection for Internet filtering.
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7.2 Perspectives

Skin detection is of paramount importance for a variety of applications related to computer

vision and pattern recognition. In this section, we would like to give some suggestions for furture

research on this subject and the related models and methods.

New constraints

The HMM has two sets of potentials ψst(ys, yt) and φs(xs, ys). ψst(ys, yt) force smoothness of

the label image and φs(xs, ys) force compatability between the observed image x and the label

image y. The graphical model for HMM is then Fig. 7.1(a). In FOM, we go further to include

the full compatability between (xs, xt, ys, yt) for s ∼ t ∈ S × S. Letting z = (x, y), the graphical

model of FOM is then the left one of Fig. 7.1(b). The introduced new variable z hides the full

interaction between x and y. The potentials ψst(xs, xt, ys, yt) imply cliques on four nodes xs, xt,

ys and yt. So the full graphical model expanded on x and y would be the right one of Fig. 7.1(b),

which seems complex already. Parameter estimation for FOM is hard since ψst(xs, xt, ys, yt)

involve a huge parameter space. Most of the difficulty comes from the product subspace of xs

and xt. We then have to fall back on some approximations such as color gradient conditional

independence in TFOM1 or introducing new variables dst = xt−xs and establishing connections

between corresponding nodes in TFOM2.
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Figure 7.1: Graphical models of HMM and FOM

Our feeling is that the compatabilities between xs and xt are not as important as those

between ys and yt, since generally image x is given, the structure is already implied. Out of this

motivation, we can remove the links between xs and xt, which gives us the model in Fig.7.2.

Each maximal clique for the model in Fig. 7.2 contain three nodes xs, ys and yt, or xt, ys and
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Figure 7.2: New graphical model

yt, for s ∼ t ∈ S × S, which implies potentials on (xs, ys, yt) and (xt, ys, yt). In order to obtain

such a model through MaxEnt, we can apply the following constraints:

∀s ∼ t ∈ S × S, ∀xs ∈ C, ∀xt ∈ C, ∀ys ∈ {0, 1}, ∀yt ∈ {0, 1},
{

p(xs, ys, yt) = q(xs, ys, yt)

p(xt, ys, yt) = q(xt, ys, yt)
(7.1)

Then the solution is:

p(x, y) ∝ exp
∑

s∼t

(λ(s, t, xs, ys, yt) + λ(s, t, xt, ys, yt)) (7.2)

with λ(s, t, xs, ys, yt) and λ(s, t, xt, ys, yt) being the parameters to be estimated subject to the

constraints (7.1). It is not hard to show that the model in (7.2) fulfills the following conditional

independence:

p(x|y) =
∏

s∈S

p(xs|yt, t ∈ {s} ∪ Vs) (7.3)

Since p(x, y) = p(x|y)p(y), we need only to estimate parameters for p(y), which should be easier

to do.

Other color spaces for the TFOM

The main difficulty that we face for TFOM is the high dimensionality of q(xs, xt, ys, yt) in the

RGB color space. Supposing 32 bins per color channel, there are 323 × 323 × 2× 2 = 4.29× 109

bins in the histogram. But there are only 6.74 × 108 training pixels in the Compaq database.

Thus direct empirical estimation of the parameters q(xs, xt, ys, yt) will cause drastic over-fitting.

That is why we reduce the dimension by assuming conditional independence of color gradients

with color on one site, or by estimating the parameters with maximum entropy principle as
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introduced in Section 3.3.2. We could also try other means to reduce the dimension. One

possibility is to replace RGB color space with normalized RGB space or HSV space. In this way

we can drop one channel of the color space to have an approximated two-dimensional color space.

Still supposing 32 bins per color channel, q(xs, xt, ys, yt) will then require to fill a histogram of

322 × 322 × 2× 2 = 4.19× 106, which is tractable now.

Spanning tree approximations to the pixel lattice

In this thesis we have experimented with Bethe tree approximation and 4-star tree approximation.

As we have shown, Bethe tree approximation involves a considerable number of overlaped vertices

when the trees grow. There are 41 real pixels out of 161 tree nodes in a Bethe tree of depth-4,

that is, there are 161−41 = 120 nodes which are only repeated pixels. On the other hand, 4-star

trees are so simple that they ignore many pixels that could have important interaction with the

root nodes. For example, the 4-star tree of depth-2 in Fig. 7.3 ignores the pixels a, b, c and d,

which may have more influence on s than u. When this tree grows, such ignorance may make it

far from the real pixel lattice.

Figure 7.3: A 4-star tree of depth-2. It does not include the pixels a, b, c and d, which may be

more important to s than the pixel u

Instead of Bethe trees or 4-star trees, we may consider tree approximations such that all the

pixels in the lattice are contained without overlap, which are so-called spanning trees. For a

pixel lattice of 3 × 3, we show some examples of spanning trees in Fig. 7.4. They are local tree

approximations to the 3× 3 pixel lattice centered at s.

Remark that each tree has exactly 8 edges. In fact, it is not hard to prove that a tree with n

nodes must have n−1 edges based on the iterative nature of trees. On the contrary, a connected

graph with n nodes and n− 1 edges must be a tree. Therefore it is equivalent to find spanning
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Figure 7.4: Spanning tree approximations to the 3× 3 pixel lattice centered at s

trees on an n× n pixel lattice or to find the connected graphs with n× n− 1 edges on the pixel

lattice. Apparently there are so many possibilities even for a small pixel lattice. But we can

restrain the solution to those spanning trees with certain properties. For example, we can limit

the spanning trees to those invariant to rotations of 90 ◦ and 180 ◦. We may also assign weights

to edges in the spanning trees, which increase when the distances from the edges to the root site

get larger. We can then focus on those spanning trees with the minimum total weights. In fact,

this opens the connection to the minimal spanning tree research. To eliminate the subjective

factors in choosing spanning tree approximations, we can even average the outputs of different

spanning trees to get the final result. In building such a mixture model of trees, the particular

bias of individual trees will hopefully be removed.

Quadtree models

All the tree models considered by now are on the same plane. Laferté et al. [LPH00] proposed

MRF on the quadtree for image classification. The construction of their tree models are illustrated

in Fig. 7.5. The set of nodes of the tree is notated as S, and its root is referred to as site r.

Any node s different from r has a unique parent node denoted s− with “-” recalling the decrease

of resolution. Conversely, the set of the four children of any non-leaf node s is denoted s+. A

descendant of s is a node t such that s belongs to the unique chain that joins t to the root r. The

set of descendants of s and s is denoted as d(s). The nodes belonging to the same “generation”

n from the root form the n-th resolutional level Sn of the tree. The coarsest level reduces to the

root node: S0 = {r}. The finest level is SN for some positive integer N . The authors applied the

quadtree models for image classification problem on both synthetic and natural images. Their

conclusion is that such hierarchical tree-based models dramatically reduce the computational

load, and improve the estimation quality. Our feeling is that such multiresolutional tree models

will give us the possibility to include the influence of farther pixels into the tree models efficiently.

For example, for the TFOM, we can attach the variable set (xs, ys) at node s of the quadtree

model.



7.2. PERSPECTIVES 97

Figure 7.5: The construction of the quadtree and notations. The resolution increases from S0 to

SN . Here is an example of three resolutions, N = 2. The right graph shows a dyadic tree for

ease of illustration [LPH00]

Generalized belief propagation

In the BP algorithm that we implemented in this thesis, all messages are from single nodes to

single nodes. It is natural to expect that messages from groups of nodes to other groups of nodes

could be more informative, and thus lead to better inference. That is the basic intuitive idea

behind generalized belief propagation (GBP) [YFW02]. Yedidia et al. claimed that their exper-

iments showed GBP algorithms can significantly out-perform ordinary BP on two-dimensional

pairwise MRFs, and for decoding error-correcting codes, especially when the graphical models

under consideration have short loops [YFW02].

Applications of skin detection

The application to adult image detection for Internet filtering, which we show in the thesis, is

based on very simple features extracted from only the skin map. In fact we could also design

higher level features. One possibility is to design a face detector, then most of the false alarms

caused by portraits could be eliminated since generally adult images expose considerable skin

regions other than faces. We could also follow the idea of Fleck [FFB96] to design some kind

of geometrical analysor of limbs to catch higher-level features of people in photographs. But we

should also take care that such schemes may take considerable running time.

We can also implement skin detection to face detection, face/head tracking or video segmen-

tation in the future work.
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Appendix A

The Compaq image database

The compaq image database used in our work is acquired from the authors in [JR02]. The

authors obtained a large set of image files from a parallel crawl of the world wide web from

multiple starting points. This image set was pruned by manually removing all files that were not

photos. The authors sampled randomly from this large set and got a smaller dataset.

The dataset contains 13, 562 photos. Each photo in this dataset was processed in the following

manner: The photo was examined to determine if it contained skin. If no skin was present, it was

placed in the non-skin group. If it contained skin, regions of skin pixels were manually labeled

using the software tool shown in Fig. A.1. This tool allows a user to interactively segment regions

of skin by controlling a connected-components algorithm. Clicking on a pixel establishes it as

a seed for region growing. The threshold slider controls the Euclidean distance in RGB space

around the seed that defines the skin region. By clicking on different points in the photo and

adjusting the slider, regions of skin with fairly complex shapes can be segmented quickly. In

labeling skin the authors excluded the eyes, hair, and mouth opening. The result is a binary

mask which is stored along with each photo that identifies its skin pixels.

However, we should mention that it is difficult to get a perfect segmentation of the skin in

any given image. Some photos contain skin patches of such a small size (e.g. crowd scenes)

that segmentation was problematic. Even in photos with large regions of skin it is often hard to

precisely define their boundaries (e.g. on the forehead where skin is obscured by hair) [JR02].

Figure A.2 shows some samples from the Compaq image database. There are images with

skin and their labeled mask images as well as images without skin pixel.
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Figure A.1: Snap shot of the tool for segmenting the skin regions of an image. The left image

shows the completed manual segmentation with the skin pixels highlighted in red. The right

image shows the original image [JR02]
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(a) Images with skin and their mask images

(b) Images without skin

Figure A.2: Samples from the Compaq image database
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Appendix B

Proofs of the maximum entropy

solution

Proof of the Baseline model

Here we shall derive a MaxEnt solution for the joint distribution p(x, y) under the constraints

C0. See (2.16).

Remark that the constraints in (2.16) are expectations with respect to p. Indeed,

p(xs, ys) = Ep[δxs(Xs)δys(Ys)] (B.1)

with

δa(b) =

{

1 if a = b

0 if a 6= b

Then, following Section 2.1, the MaxEnt solution under C0 can be obtained using Lagrange

multipliers. One gets:

p(x, y) = exp(λ0 +
∑

s∈S

λ(s, xs, ys)) (B.2)

where the parameters λ should be set up such that the constraints are satisfied. From Section 2.1

we know that if such a solution exists, it must be the unique maximum entropy solution under

these constraints. Now if

∀xs ∈ C, ∀ys ∈ {0, 1}, q(xs, ys) > 0 (B.3)

then one can choose

λ0 = 0 and λ(s, xs, ys) = ln q(xs, ys) (B.4)
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which leads to the unique solution of the MaxEnt problem:

p(x, y) =
∏

s∈S

q(xs, ys) (B.5)

It is not hard to check that the constraints C0 are satisfied.

Condition in (B.3) is saying that there is no empty bin in the empirical joint histogram

q(xs, ys). This will be our case. MaxEnt solutions still exist when (B.3) is not verified.

Proof of the hidden Markov model

Here we shall obtain a MaxEnt solution for the joint distribution p(x, y) under C0 ∩D, see (2.16)

and (2.24).

As for C0, the constraints in D are expectations. Indeed,

∀ys ∈ {0, 1}, ∀yt ∈ {0, 1}, p(ys, yt) = Ep[δys(Ys)δyt(Yt)] (B.6)

Using once more Lagrange multipliers, one obtains that the MaxEnt solution, if it exists, is

p(x, y) = expH(x, y, λ0, λ1, λ2, λ3) with

H(x, y, λ0, λ1, λ2, λ3) = λ0 +
∑

s∈S λ1(s, xs, ys)+
∑

s∼t∈S×S λ2(s, t)(1− ys)(1− yt)+
∑

s∼t∈S×S λ3(s, t)ysyt

(B.7)

where s ∼ t is a couple of 4-neighbors pixels and λ0, λ1, λ2, λ3 define parameters that should be

set up such that the constraints are satisfied. Starting from (B.7),remark that

p(xs, ys) =
∑

xt;t∈S,t6=s

∑

yt;t∈S,t6=s

p(x, y) = exp (λ0 + λ1(s, xs, ys)) g(s, ys) (B.8)

with g(s, ys) a function that doesn’t depend on xs. Now,

p(ys) =
∑

xs

p(xs, ys) = exp(λ0)g(s, ys)
∑

xs

exp (λ1(s, xs, ys)) (B.9)

hence

p(xs|ys) =
p(xs, ys)

p(ys)
=

exp (λ1(s, xs, ys))
∑

xs
exp (λ1(s, xs, ys))

(B.10)

Since p(x, y) lies in C0, it verifies: p(xs|ys) = q(xs|ys). Assuming positivity (B.3), we can

choose

λ1(s, xs, ys) = ln q(xs|ys) (B.11)

Now, constraints in D, see (2.24), do not depend on the location s ∼ t. Hence, one can reduce

to translation invariant models as in (2.25).
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Proof of the first-order model

Constraints in C1, see (2.29) are also expectations. Indeed,

p(xs, xt, ys, yt) = Ep[δ(xs)(Xs)δ(xt)(Xt)δ(ys)(Ys)δ(yt)(Yt)] (B.12)

Using Lagrange multipliers, one obtains (2.30).
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Appendix C

Iterative scaling algorithm

Suppose a random variable X can take on n different discrete values (x1, x2, · · · , xn) with the

unknown distribution p. Now we observed a sequence of samples x(1), . . . , x(N), N > 1 from

p. We measure a line of m,m < n, features fk(X), k = 1, · · · ,m, for X. The expectation of

these features E[fk(X)] should be set equal to those measured from the training set Ê[fk(X)] =
1
N

∑N
j=1 fk(x

(j)), i.e., E[fk(X)] = Ê[fk(X)]. We learned from Section 2.1 that the maximum

entropy solution to p while these constraints are satisfied is the following parametric form

pλ(xi) =
1

Zλ
exp(

m
∑

k=1

λkfk(xi)), ∀1 ≤ i ≤ n (C.1)

where the partition function

Zλ =
∑

i

exp(
m
∑

k=1

λkfk(xi)) (C.2)

Theoritically the parameters λk, k = 1, . . . ,m should be solved by the following equations:

E[fk(X)] =
n
∑

i=1

pλ(xi)fk(xi) = Ê[fk(X)], 1 ≤ k ≤ m (C.3)

However the above equation system involves a huge number of equations even for small images.

We have to get around it through other means. Stick to the parametric form pλ defined by (C.1).

We learned from [BPP96] that the MaxEnt model p∗ is equivalent to a distribution pλ∗ where

λ∗ maximize the likelihood of the empirical distribution predicted by the model pλ. That is,

λ∗ = arg max
λ
L(λ)

in which

L(λ) =
N
∏

j=1

pλ(x(j))
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By monotonity of the log function, we shall maximize the log likelihood function L(λ) with

respect to λ, where

L(λ) =
1

N

N
∑

j=1

ln pλ(x(j)) =
1

N

N
∑

j=1

(

m
∑

k=1

λkfk(x
(j))− lnZλ

)

=
m
∑

k=1

λkÊ[fk]− lnZλ (C.4)

Now the maximum of the log likelihood function could be done numerically with the iterative

scaling algorithm. In this algorithm, a sequence of parameter set λ(0), . . . , λ(t), . . . is generated.

The likelihood is augemented a little after each updating of the parameters. It goes to the

maximal value in the long run. In the following we shall give a brief derivation of this algorithm.

Supposing
m
∑

k=1

fk(xi) = c, 1 ≤ i ≤ n,

where c > 0 is a constant. [Sch03] gives the deduction for the case of c = 1. Here we shall

extend it to the general case of any positive c. We write ∆λ
(t)
k = λ

(t+1)
k − λ(t)

k , 1 ≤ k ≤ m. The

augmentation of the log likelihood function from λ(t) to λ(t+1) is calculated as follows.

∆(t)L = L(λ(t+1))− L(λ(t))

=
m
∑

k=1

∆λ
(t)
k Ê[fk]− ln(

Zλ(t+1)

Zλ(t)

) (C.5)

Now

Zλ(t+1)

Zλ(t)

=
n
∑

i=1

exp(
∑m

k=1 λ
(t+1)
k fk(xi))

Zλ(t)

=
n
∑

i=1

exp(
∑m

k=1 λ
(t)
k fk(xi)) exp(

∑m
k=1 ∆λ

(t)
k fk(xi))

Zλ(t)

=
n
∑

i=1

pλ(t)(xi) exp(
m
∑

k=1

∆λ
(t)
k fk(xi)) (C.6)

Since the exponential function is convex and
∑m

k=1
fk(xi)

c = 1, by Jensen’s inequality, we have

exp(
m
∑

k=1

∆λ
(t)
k fk(xi)) = exp(

m
∑

k=1

c∆λ
(t)
k

fk(xi)

c
) ≤

m
∑

k=1

fk(xi)

c
exp(c∆λ

(t)
k )

Plug the above result into (C.6) then (C.5), we have

∆(t)L ≥
m
∑

k=1

∆λ
(t)
k Ê[fk]− ln

(

m
∑

k=1

exp(c∆λ
(t)
k )Eλ(t) [fk]

)

+ ln c = B
(t)
λ (C.7)
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This inequality defines the lower bound of the increasement of the log likelihood. We shall

choose the ∆λ(t) such that B
(t)
λ is maximized, so that the sequence λ(0), . . . , λ(t), . . . increases the

likelihood in the fastest possible direction. By taking partial derivatives of B
(t)
λ with respect to

∆λ
(t)
k , 1 ≤ k ≤ m, and setting them to 0, we get:

∂B
(t)
λ

∆λ
(t)
k

= Ê[fk]−
c exp(c∆λ

(t)
k )Eλ(t) [fk]

∑m
l=1 exp(c∆λ

(t)
l )Eλ(t) [fl]

= 0 (C.8)

Remark that whenever we find a solution ∆λ
(t)
k , 1 ≤ k ≤ m, then ∆λ

(t)
k + a with a being an

arbitrary constant will also be the solution to equations (C.8). We can choose the set of ∆λ
(t)
k

such that
∑m

l=1 exp(c∆λ
(t)
l )Eλ(t) [fl] = c. With this choice, we have the solution:

∆λ
(t)
k =

1

c
ln

Ê[fk]

Eλ(t) [fk]
(C.9)

The lower bound B
(t)
λ of the increasement of log likelihood is then:

B
(t)
λ =

m
∑

k=1

∆λ
(t)
k Ê[fk] =

m
∑

k=1

Ê[fk]

c
ln

Ê[fk]

Eλ(t) [fk]
= D

(

Ê[f ]

c
‖Eλ(t) [f ]

c

)

≥ 0

where D
(

Ê[f ]
c ‖

E
λ(t) [f ]

c

)

is the KL distance between the two distributions Ê[f ]
c and

E
λ(t) [f ]

c .

D
(

Ê[f ]
c ‖

E
λ(t) [f ]

c

)

is always positive unless Ê[f ] = Eλ(t) [f ], where the constraints (C.3) are ful-

filled. So the updating of the parameters according to (C.9) will increase the log likelihood

function (C.4) until the equations (C.3) hold, and the likelihood function gets maximized.

The algorithm starts from an arbitrary intial set of parameters λ(0). Then these parameters

are updated iteratively according to (C.9). We write the updating rule explictly as follows:

λ
(t+1)
k = λ

(t)
k +

1

c
ln

Ê[fk]

Eλ(t) [fk]
, 1 ≤ k ≤ m (C.10)

for t = 0, 1, . . .

The sequence of distributions will then be updated following

pλ(t+1)(x) =
1

Z
pλ(t)(x)

m
∏

k=1

(

Ê[fk]

Eλ(t) [fk]

)fk(x)/c

Let us try to understand this intuitively. Assume that Eλ(t) [fl] < Ê[fl], ∀l ∈ I, where I ⊂
{1, . . . ,m} is the subset of indices of features. The corresponding ratios inside the product above

will be greater than 1, therefore after the iteration, the distribution will concentrate more on the

points with higher feature values fl, and the expected values of the features fl are brought closer

to the empirical average [Sch03].
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Appendix D

Markov chains

This introduction follows [Win03] with notations adjusted to the convention of this thesis and

some efforts to make it more condensed. Let X be a finite set. The family of conditional

distribution (p(X|X = x), x ∈ X) is called a transition probability or a Markov kernel. X is

called the state space. One can imagine a Markov kernel to be a matrix of |X| × |X| in which

each row is the distribution p(X|X = x) corresponding to a x ∈ X.

A Markov chain on the finite state space X is a stochastic process that starts from some

initial distribition ν on X and transits according to a sequence of Markov kernels p1, p2, . . . on

X. If pi = p, ∀i ≥ 1, then it is a homogeneous Markov chain. A Markov chain fulfills the following

property:

π(xn|x0, x1, . . . , xn−1) = π(xn|xn−1), ∀n ≥ 1, ∀x0, x1, . . . , xn−1 ∈ X (D.1)

For a Markov chain on the finite state space X with kernels pi, i ≥ 1, given the initial state

x0, the probability of its ending up with the state xn after n transitions is

p1p2 . . . pn(xn|x0) =
∑

x1∈X

. . .
∑

xn−1∈X

p1(x1|x0) . . . pn(xn|xn−1) (D.2)

If the Markov chain starts with the intial distribution ν then its probability of being in the state

xn after n transitions is:

νp1p2 . . . pn(xn) =
∑

x0∈X

∑

x1∈X

. . .
∑

xn−1∈X

ν(x0)p1(x1|x0) . . . pn(xn|xn−1) (D.3)

Note that νp1p2 . . . pn corresponds to matrix multiplication if we consider ν as a row vector. All

the rules of matrix multiplication carry over to the composition of kernels. In particular, we

have the associative law: (p1 . . . pi)(pi+1 . . . pn) = (p1 . . . pj)(pj+1 . . . pn), 1 ≤ i, j ≤ n − 1. For
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a homogeneous Markov chain, we have pi = p, ∀i ≥ 1, then we can simply write pn instead of

p1p2 . . . pn. If there exists a positive integer τ such that pτ (x, y) > 0, ∀x, y ∈ X, then p is a

primitive kernel. In what follows, we limit the discussion to the homogeneous Markov chain.

If a probability distribution µ satisfies µp = µ, then we have µpn = µ for each n ≥ 0. Such

a distribution is said to be invariant or stationary for p. The primitive kernel is linked to the

invariant distribution through the following theorem.

Theorem 6 (Limit theorem) Suppose p is a primitive Markov kernel on a finite space. Then

it must have a unique strictly positive invariant distribution µ. Moreover, uniformly for any intial

distribution ν,

νpn −→ µ as n −→∞

The proof is referred to [Win03].

For any Markov kernel p and any distribution µ, we notate µp(x1, x2) = µ(x1)p(x2|x1). It is

the probability of the sequence (x1, x2) given the initial distribution µ and the Markov kernel p.

We say p and µ satisfy the detailed balance equation if

µp(x, y) = µp(y, x), ∀x, y ∈ X (D.4)

Then the Markov chain with the initial distribution µ and transition kernel p is called reversible

in time, and p is called reversible with respect to µ. An important conclusion follows that if p is

reversible with respect to µ, then µ is invariant with respect to p, the proof of which is referred

to [Win03].

In what follows we are going to introduce the law of large numbers for Markov chain. Before

that, we shall explain some terminology. For two distributions µ and ν, the norm of total

variation of the difference µ− ν is defined as

‖µ− ν‖ =
∑

x∈X

|µ(x)− ν(x)|

The contraction coefficient of a Markov kernel p is defined by

c(p) =
1

2
max
x,y∈X

‖p(·|x)− p(·|y)‖

Note that c(p) ≤ 1 always holds since p(·|x) and p(·|y) are probability distributions. For a strictly

positive Markov kernel p we have c(p) < 1. The law of large numbers for a Markov chain is stated

as follows:
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Theorem 7 (Law of large numbers) Let p be a Markov kernel on the finite space X with an

invariant distribution µ, c(p) < 1. Then for any initial distribution ν and any function f on X,

we have

Eνpn





(

1

n+ 1

n
∑

i=0

f(Xi)− Eµ(f)

)2


 −→ 0, as n −→∞
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Appendix E

Fit ellipses for gray-scale regions

Here we shall detail the formulae used in Chapter 6 to calculate the fit ellipses for gray-scale

regions in images. Let S be the set of pixels of a normalized gray-scale image y. For a given pixel

s ∈ S, ys is the gray-scale value at s, which is a real number in the interval [0, 1]. rs is the row

coordinate and cs is the column coordinate of pixel s. Let R be a subset of S, that is, R ⊆ S.

Centroid of R: The centroid (r, c) of R in the image y is defined as:

{

r = 1
A

∑

s∈R rsys

c = 1
A

∑

s∈R csys

(E.1)

where A =
∑

s∈R ys.

Second-order Moments of R:

Second-order row moment:

µrr =
1

A

∑

s∈R

(rs − r)2ys =
1

A

∑

s∈R

r2sys − r2 (E.2)

Second-order column moment:

µcc =
1

A

∑

s∈R

(cs − c)2ys =
1

A

∑

s∈R

c2sys − c2 (E.3)

Second-order mixed moment:

µrc =
1

A

∑

s∈R

(rs − r)(cs − c)ys =
1

A

∑

s∈R

rscsys − rc (E.4)

Fit ellipse of R: Let lminor be the length of the minor axis of the fit ellipse of R, and lmajor

be the length of the major axis of the fit ellipse of R. Let θ ∈ [− π
2 ,

π
2 ] be the angle of the major
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axis of the fit ellipse of R counterclockwise from the column axis. There are four cases for the

calculation of lminor, lmajor and θ [HS92]:

1. µrc = 0 and µrr > µcc














lmajor = 4
√
µrr

lminor = 4
√
µcc

θ = −90 ◦

(E.5)

2. µrc = 0 and µrr ≤ µcc














lmajor = 4
√
µcc

lminor = 4
√
µrr

θ = 0 ◦

(E.6)

3. µrc 6= 0 and µrr ≤ µcc



























lmajor =

√

8
(

(µrr + µcc) +
√

(µrr − µcc)2 + 4µrc
2
)

lminor =

√

8
(

(µrr + µcc)−
√

(µrr − µcc)2 + 4µrc
2
)

θ = arctan −2µrc

(µcc−µrr)+
√

(µcc−µrr)2+4µrc
2

(E.7)

4. µrc 6= 0 and µrr > µcc



























lmajor =

√

8
(

(µrr + µcc) +
√

(µrr − µcc)2 + 4µrc
2
)

lminor =

√

8
(

(µrr + µcc)−
√

(µrr − µcc)2 + 4µrc
2
)

θ = arctan
(µrr−µcc)+

√
(µrr−µcc)2+4µrc

2

−2µrc

(E.8)

Let Ae be the area of the fit ellipse, then we have [HS92]:

Ae = 4π
√

µrrµcc − µrc
2,
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