N° d'ordre : <u>3602</u>

50376 2005 105

Ecole Nationale Supérieure de Chimie de Lille

THESE présentée pour obtenir le grade de Docteur de l'Université de Lille en Structure et Dynamique des Systèmes Réactifs

> par Svetlana DYSHLOVENKO

MODELISATION DES PROCEDES DE PROJECTION PLASMA ET DE TRAITEMENT LASER D'HYDROXYAPATITE

Version définitive Date de soutenance : 20 janvier 2005

Directeur de la Thèse : Prof. Lech PAWLOWSKI, ENSCL, Villeneuve d'Ascq

Rapporteurs: Prof. John H. HARDING, Université de Sheffield, Angleterre Prof. Anne LERICHE, Université de Valenciennes Prof. Igor SMUROV, ENISE, Saint Etienne

Examinateurs: Prof. Jacky LESAGE, USTL, LML UMRCNRS 8107, Villeneuve d'Ascq Prof. Rose-Noëlle VANNIER, ENSCL, Villeneuve d'Ascq Dr. Sébastien BEAUVAIS, Terolab Services Médical, Villeneuve Le Roi

> Janvier 2005 Villeneuve d'Ascq

- Je voudrais remercier Monsieur le Professeur Lech PAWLOWSKI, mon directeur de thèse, qui m'a initié aux problèmes du plasma et m'a toujours témoigné la plus grande amitié.
- Je suis reconnaissant à Monsieur le Professeur Igor SMUROV, qui m'a accordé les codes numériques Plasma2000 et Fusion-2D et qui a accepté d'être un des rapporteurs de ma thèse
- Je voudrais remercier Monsieur le Professeur John H. HARDING, qui m'a donné et expliqué le code Coating 2000 et qui a accepté d'être un de rapporteurs de ma thèse
- Je suis reconnaissant Madame le Professeur Anne LERICHE qui a accepté d'être une des rapporteurs de ma thèse
- Je voudrais remercier les Professeurs Rose-Noelle VANNIER et Jacky LESAGE ainsi que le Docteur Sébastien BEAUVAIS de me faire l'honneur de juger cette thèse
- Je suis reconnaissant à Monsieur Bernard PATEYRON, qui m'a accordé les codes T&TWinner et Jet&Poudres2004.

Je voudrais remercier:

- Monsieur Rafal TOMASZEK qui a réalisé les expériences avec la projection par plasma.
- Monsieur Gilles COURTRAND pour son aide en analyse de porosité des échantillons projetés.
- Monsieur Christel PIERLOT qui m'aidé en l'investigations granulométrique.
- Mesdames Nora DJELAL et Laurence BYRELO pour leur aide en analyse de poudre HA
- Monsieur Pascal ROUSSEL pour son aide en informatique

Je suis reconnaissant à tous les collègues et les amis du Laboratoire de Cristallochimie et Physicochimie du Solide et de l'École Nationale Supérieure de Chimie pour leur hospitalité, aide et leur amitié.

SOMMAIRE	I
INTRODUCTION	1
CHAPITRE 1 Procédé de projection plasma d'Hydroxyapatite	7
 1.1PROJECTION PAR PLASMA. 1.1.1 Accélération des particules dans la flamme du plasma. 1.1.2 Echauffement des particules dans la flamme du plasma. 1.2 PROJECTION PAR PLASMA D'HYDROXYAPATITE. 1.2.1 Description d'un revêtement d'hydroxyapatite. 1.2.2 Décomposition d'HA lors la projection par plasma. 1.2.2.1 Phases de la transformation de l'hydroxyapatite. 1.2.2.2 Diagrammes de phases d'hydroxyapatite. 1.2.3 Dissolution des phases. 1.3 PROTHESES ORTHOPEDIQUES ET DENTAIRES. 	7 8 10 12 12 13 16 17 18 20
CHAPITRE 2 Procédé de traitement laser de dépôt d'Hydroxyapatite	25
 2.1 TRAITEMENT LASER EN 2 ETAPES 2.2 TRAITEMENT PAR LASER : LES FONDEMENTS PHYSIQUES 2.2.1 Chauffage	25 26 26 28 29 30
CHAPITRE 3 Codes de calcul numérique utilisés pour modéliser les phénomènes de projection plasma et traitement laser	35
3.1 MODELISATION DES PROPRIETES THERMOPHYSIQUES DU PLASMA: CODES NUMERIQUES JETS_ET_POUDRES_2004 ET	37
3.2. MODELISATION DU TRANSFERT DE QUANTITE DE MOUVEMENT ET DE CHALEUR ENTRE PLASMA ET PARTICULES: LE CODE <i>PLASMA</i> 2000	37
 3.2.1 Problème dynamique 3.2.2 Problème d'échange de quantité de chaleur entre le gaz et la particule 3.2.3 Problème de la conductance thermique dans une particule	38 38 38 39 40 41
3.2.4 Problème d'évaporation	42 42 43

SOMMAIRE	Π				
3.3 MODELISATION DE CROISSANCE DU DEPOT AVEC LE CODE COATING 2000	44				
3.3.1 Modélisation de la formation de la lamelle	44				
3.3.2 Modélisation de croissance de dépôt	47				
3.3.3 Modélisation de la température de dépôt					
3.4 MODELISATION DU TRAITEMENT LASER AVEC LE CODE FUSION-					
2D					
3.4.1 Description de phénomènes lors du traitement par laser	51				
3.4.2 Méthode numérique	53				
1					
CHAPITRE 4					
Méthodes expérimentales	57				
1					
4.1 POUDRE UTILISEE	57				
4.2 PARAMETRES ET CONDITIONS DE PROJECTION THERMIOUE	57				
4.2.1 Paramètres de projection thermique	57				
4.2.2 Condition de projection	58				
4.3 CONDITIONS EXPERIMENTALES DU TRAITEMENT PAR LASER	60				
DES DEPOTS D'HYDROXYAPATITE	00				
4 4 METHODES D'ANALVSE D'ECHANTILLONS	60				
A A 1 Analyse des tailles de particules	60				
4.4.2 Détermination qualitative et quantitative des phases présentes dans les	61				
4.4.2 Determination quantative et quantitative des phases presentes dans les	01				
4.4.2 Traitement methématique des régultates éside quantitative des featours et	62				
4.4.5 Transministration fractional fractional state 2^{k}	02				
a matrice factorielle complete 2	<i>(</i>)				
4.4.4 Analyse infrarouge	04				
4.4.5 Morphologie des particules	04				
4.4.6 Analyse de la microdurete des echantilions	64				
Desultate avnérimentaux	67				
Resultats experimentaux	07				
5.1 ANALVSES DE POUDRE INITIALE	67				
5.1.1. Mornhologie de la poudre initiale HA	67				
5.1.2 Deses cristellines des particules de poudre	60				
5.1.2 1 ases ensuannes des particules de poudre initiale HA	60				
5.1.5 Analyse granulometrique de la poudre initiale HA	70				
5.2. CADACTEDISTICIES DES ECHANTILIONS DOCIETES DAD	70				
J.2 CARACTERISTIQUES DES ECHANTILLONS PROJETES PAR	/1				
PLASMA	71				
5.2.1 Kesuntais experimentaux de poudre projetes dans l'eau	/1				
5.2.1.1 Morphologie des echantilions projetes dans l'eau	/1				
5.2.1.2 Analyse granulometrique des échantillons projetés dans l'eau.	/5				
5.2.1.3 Identification des phases des échantillons projetés dans l'eau	11				
5.2.1.4 Analyse infrarouge des échantillons projetés dans l'eau	81				
5.2.2 Les résultats expérimentaux des échantillons projetés sur le substrat	82				
5.2.2.1 Morphologie des échantillons projetés sur le substrat	82				

5.2.2.2 Analyse de la mîcrodureté des échantillons projetés sur le substrat	84
5.2.2.3 Identification de phases des échantillons projetés sur le substrat	86
5.2.2.4 Analyse infrarouge des échantillons projetés sur le substrat	89
5.2.3 Détermination quantitative des phases présentes dans les poudres et dé-	91
5.2 DECLUTATE EXDEDIMENTALLY DES ECHANTILLONS TRAITEES	07
DAD LASED	97
5.3.1 Mornhologie des échantillons traités par laser	07
5.3.7 Identification de phases des échantillons traitées par laser	00
5 4 RESUME ET CONCLUSIONS PRINCIPALES	102
	102
CHAPITRE 6	
Résultats de la modélisation	105
6.1 MODELISATION DE L'ECHANGE DE QUANTITE DE MOUVEMENT	106
ET DE CHALEUR ENTRE PLASMA ET PARTICULES	100
D'HYDROXYAPATITE	
6.1.1 Conditions expérimentales de la projection utilisées dans la modélisation.	106
6.1.2 Propriétés de la flamme du plasma	107
6.1.3 Propriétés de l'hydroxyapatite	109
6.1.4 Injection des particules dans un jet de plasma	112
6.1.5 Hypothèses de base sur la transformation de la structure de la particule	114
d'HA lors de la projection plasma	
6.1.6 Résultats de la modélisation de l'échange de quantité du mouvement et	117
du chaleur entre le plasma et les particules d'hydroxyapatite et leur validation	
6.2 MODELISATION DE LA CROISSANCE DE DEPOT	123
6.3.MODELISATION DU TRAITEMENT LASER	125
6.3.1 Propriétés optiques et thermophysiques de l'hydroxyapatite utilisées pour	125
la modélisation	
6.3.2 Résultats de la modélisation du processus de traitement par laser	127
6.4 RESUME ET CONCLUSIONS PRINCIPALES	131
CONCLUSION	135
ANNEXE 1	

ANNEXE 2

ANNEXE 3

LISTE DES TABLEAUX

INTRODUCTION

CHAPITRE 1

Tableau 1.1 Coefficient C_d comme la fonction du nombre de Reynolds	10
Tableau 1.2 Comparaison des méthodes différentes de dépôtt d'HA	14
Tableau 1.3 Caractéristique des phases différentes se formant lors la décomposition d'HA.	17
Tableau 1.4 Equilibre d'HA à haute température sous la pression partielle de vapeurd'eau de 10 mm Hg.	20
Tableau 1.5 Degré de la dissolution des phases de phosphate de calcium	20

CHAPITRE 2

CHAPITRE 3

Tableau	3. I	Paramètre	ξ	pour	décrir	l'écrasement	de	particule	liquide	lors	de	45
		l'impact av	ec l	e subst	rat seld	on Madejski.						
Tableau .	3.2	Règles du n	node	èle de c	lépositi	on						49

CHAPITRE 4

Tableau 4. 1 Tableau récapitulatif des conditions de projection	59
Tableau 4. 2 Paramètres de traitement par laser	61
Tableau 4.3 Tableau récapitulatif des conditions de traitement	61
Tableau 4.4 Domaine expérimental	63
Tableau 4.5 Matrice d'expériences factorielle 2 ⁵	63

CHAPITRE 5

Tableau. 5.1 Matrice d'expériences factorielle 24 (les signes (-1) et (+1) symbolisentles niveaux -1 et +1 des variables) et réponses au pland'expérimentation et les valeurs des effets des différents facteurs sur la	76
taille des particules	
Tableau 5.2 Analyse de la porosité des dépôts	84
Tableau.5.3 Résultats de l'analyse quantitative de composition de phases	92
Tableau.5.4 Effets des variables sur les réponses	93
Tableau 5.5 Résultat de l'analyse quantitative de phase amorphe dans les poudres projetées dans l'eau avec l'injecteur intérieur	96
Tableau 5.6 Effets des variables sur la phase amorphe	96
Tableau 5.7 Tableau des valeurs de profondeur des couches fondues	98
Tableau 5.8 Résultats de l'analyse quantitative	99

Liste des	tableaux
-----------	----------

CHAPITRE 6

.

Tableau 6.1 Conditions expérimentales utilisées dans la modélisation	106
Tableau 6.2 Propriétés d'HA qui ne sont pas fonction de la température	110
Tableau 6.3 Contenu de la phase cristalline et amorphe dans la poudre projetée,	122
obtenu par la modélisation et des expériences.	
Tableau 6.4 Calculs de la diminution de la température de solidification, induit par	
l'effet de la surfusion.	122
Tableau 6.5 Porosité de dépôts projetés avec la puissance d'arc de 24 kW	124
Tableau 6.6 Propriétés thermophysiques d'HA utilisées pour la modélisation	125
Tableau 6.7 Tableau récapitulatif de coefficient d'absorption	125
Tableau 6.8 Plan de la modélisation du traitement du dépôt par laser	126

LISTE DES FIGURES

INTRODUCTION

Fig. 1 Variables dans le système de projection par plasma	2
Fig. 2 Exemples d' implants avec les revêtements d'HA	3
Fig. 3 Techniques diagnostiques pour valider la simulation «on-line» lors la procé- dure de projection par plasma	4
Fig. 4 Techniques diagnostiques pour valider la simulation on-line lors la procédure de traitement par laser	5

CHAPITRE 1

Fig. 1.1 Section d'une torche à plasma typique	8
Fig. 1.2 2 Diagramme schématique du développement d'interaction os-prothèse	15
Fig.1.3 Diagramme des phases de système CaO/P_2O_5 à haute température. Pression	18
partielle de vapeur d'eau: P _{H2O} = 0 mm Hg	
Fig.1.4 Diagramme des phases de système CaO/P_2O_5 à haute température. Pression	18
partielle de vapeur d'eau: P _{H2O} = 500 mm Hg	
Fig. 1.5 Diagramme des phases de système CaO/P_2O_5 à haute température. Pression	19
partielle de vapeur d'eau: P_{H2O} = 10 mm Hg	
Fig. 1.6 Différents types de prothèses	22

CHAPITRE 2

Fig. 2.1 Schéma du procédé de dépôt laser en deux étapes	26
Fig. 2.2 Modèle unidimensionnel du chauffage sans le changement des phases	27
Fig. 2.3 Modèle unidimensionnel du chauffage avec la fusion	29
Fig. 2.4 Projection d'HA par plasma et le traitement par laser	32

CHAPITRE 3

Fig. 3.1 Structure de la modélisation des procédures de la projection par plasma et du	36
Fig. 2.2 Différente étate anneurissent leur du management de la neutisele deur le	40
flg.5.2 Dijjerenis etais apparaissant fors au mouvement de la particule dans la flamme du plasma	40
Fig .3.3 Phases de la formation de lamelle	46
Fig. 3.4 Règles du modèle de déposition	50

Fig. 4.1 Schéma du dispositif de projection par plasma avec les injections intérier	ure 58
et extérieure	
Fig.4.2 Installation expérimentale du laser CO ₂	60

Liste	des	figures
-------	-----	---------

CHAPITRE 5

Fig. 5.1 Micrographie électronique à balayage de poudre HA	68
Fig.5.2 Micrographie électronique à balayage de poudre HA (coupe des particules	68
mettant en évidence les porosités)	
Fig. 5. Diffraction des rayons X en transmission sur la poudre initiale d'HA	69
Fig.5.4 Analyse granulométrique de la poudre initiale HA.	70
Fig. 5.5 Spectre infrarouge de hydrohyapatite initiale HA	71
Fig. 5.6 Photographies réalisées à la loupe binoculaire de la poudre initiale et celles projetées dans l'eau	72
Fig.5.7 MEB des particules projetées dans l'eau : l'échantillon P119731	73
Fig.5.8 MEB des coupes des particules projetées dans l'eau dans différentes condi- tions	74
Fig. 5.9 Schéma de la transformation de la morphologie de la particule d'HA lors de la projection par plasma dans différentes conditions	75
Fig. 5,10 Analyse granulométrique des échantillons projetés dans l'eau	77
Fig.5.11 Dénudage du liquide de la surface des particules demi-fondues.	
Fig. 5.12a Diffraction des ravons X en transmission sur les échantillons projetés	78
dans l'eau avec l'iniecteur intérieur et un débit de gaz porteur de 3 Nl/min	79
Fig. 5.12b Diffraction des ravons X en transmission sur les échantillons projetés	
dans l'eau avec l'injecteur intérieur et un débit de gaz porteur de 3.5 Nl/min	79
Fig. 5.12c. Diffraction des rayons X en transmission sur les échantillons projetés	.,
dans l'eau avec l'injecteur extérieur et un débit de saz porteur de 3 Nl/min	80
Fig 5 12d Diffraction des rayons X en transmission sur les échantillons projetés	00
dans l'eau avec l'injecteur extérieur et un débit de saz porteur de 3.5 Nl/min	80
Fig. 5.13 Etude de la bande d'absorbtion à 3570 cm-1 correspondente à la vibration	
de la liaison OH dans l'hydroxyapatite initiale et dans les échantillons proie-	81
tés dans l'eau	•••
Fig. 5.14 Micrographie électronique à balavage des échantillons projetés sur sur-	
face sablée : a échantillon Sub119731 : b Sub 249531	82
Fig. 5.15 Micrographies électroniques à balavage et les micrographies optiques des	•_
coupes des échantillons projetés sur le substrat dans les différentes condi-	83
tions	0.0
Fig 5 16 Diagrammes de la mîcrodureté dans les distances différentes de la surface	
du substrat dans le dénôt de hydroxyapatite projetées en conditions différen-	85
	02
Fig 5 17 Diagrammes de la mîcrodureté movens des dénôts de hydroxyanatite proje-	
tées en conditions différentes	85
Fig 5 18a Diffraction des rayons X en transmission sur les échantillons projetés sur	00
la surface avec l'injecter intérieur et le déhit du gaz porteur 3 Nl/min	87
Fig 5 18h Diffraction des rayons X en transmission sur les échantillons projetés sur	07
la surface avec l'injecter intérieur et le déhit du gaz norteur 3 5 Nl/min	87
Fig 5 18c Diffraction des rayons X en transmission sur les échantillons projetés sur	0,
la surface avec l'injecter extérieur et le déhit du oaz norteur 3 Nl/min	88
in surface areer injector exteriour eric about an gus porteur o rivinin	00

LISIC UCS HEURS	Liste	des	figures
-----------------	-------	-----	---------

- Fig. 5.18d Diffraction des rayons X en transmission sur les échantillons projetés sur 88 la surface avec l'injecter extérieur et le débit du gaz porteur 3,5 Nl/min
- Fig. 5.19 Etude de la bande d'absorbtion à 3570 cm-1 correspondante à la vibration 90 de la liaison OH dans l'hydroxyapatite initiale et dans les échantillons projetés sur les substrat.
- Fig. 5.20 Contours des constants de la fraction de phase d'HA parmi touts phase 94 cristalline.
- Fig. 5.21 Contours des constants de la fraction de phase décomposition parmi touts 95 phase cristallin.
- Fig. 5.22 Contours des constants de la fraction de phase décomposition parmi touts 96 phase cristallin.
- Fig. 5.23 Micrographies optiques des surfaces des dépôts d'HA traités par laser 97 avec une densité de puissance 6,4x10⁸ W/m² et différentes vitesses de balayage
- Fig. 5.24 Micrographes optiques des microstructures des surfaces fondues (échantillons Sub24973I_22 et Sub249535I_21).
- Fig.5.25 Micrographes optiques des microstructures des couches fondues : a. 99 Sub119731 12, b. Sub119731 22, c.Sub1195351 12.
- Fig 5.26 Echantillons avant (diagrammes noirs) et après le traitement par laser avec 100 les densité de puissances $q=5.9x10^8 W/m^2$ (diagrammes rouges) et $q=6,4x10^8 W/m^2$ (bleues).
- Fig 5.27 Echantillons avant (diagrammes noirs) et après le traitement par laser avec les densité de puissances $q=5.9x10^8$ W/m² (diagrammes rouges) et $q=6,4x10^8$ W/m² (bleues).

CHAPITRE 6

Fig. 6.1 Champs de température et de vitesse du jet du plasma calculés pour le plas-	107
ma généré par la torche SG-100 lors de la projection avec une puissance	
d'arc électrique de 24 kW et une composition du gaz plasmagène de $Ar + 2,5$	
vol. % H_2 à la distance de 10 cm lors de la projection sur le substrat	

Fig. 6.2Champs de température et de vitesse du jet du plasma calculés pour le plas-107 ma généré par la torche SG-100 lors de la projection avec une puissance de l'arc électrique de 24 kW et une composition du gaz plasmagène de Ar + 2,5 vol. % H₂ à la distance de 81 cm lors de la projection dans l'eau

- Fig. 6.3 Viscosité dynamique en fonction de la température de gaz avec les composition suivants: Ar+2,5% vol. H₂ et Ar+ 5 % vol. H₂
- Fig .6.4 Conductance thermique en fonction de la température de gaz avec les composition suivants: Ar+2,5 % vol. H₂ et Ar+ 5% vol. H₂
- Fig .6.5 Densité du gaz en fonction de la température de gaz de compositions suivants Ar+2,5 % vol. H₂ et Ar+ 5 % vol. H₂
- Fig. 6.6 Chaleur spécifique en fonction de la température de gaz de compositions: 109 Ar+2,5% vol. H₂ et Ar+ 5 % vol. H₂
 Fig. 6.7 Demotif de gaz de chaleur de de la la température de gaz de compositions: 110
- Fig.6.7 Densité de poudre de l'hydroxyapatite dense et poreuse
 110

 Fig.6.8 Capacité thermique de l'hydroxyapatite
 111

Fig 6.0. Conductivité thermique de l'huron anatite deuse et noneure	
Fig.0.9 Conductivite inermique de l'hyroxyapatite dense et poreuse	••••
Fig.6.11 Schéma de la conduite au transporte la poudre du distributeur au plasm	a
Fig.6.12 Vitesse de l'injection des particules des diamètres différents en fonction débit du gaz porteur: 3 et 3,5 Nl/min	dı
Fig. 6.13 Champs des température dans la particule de HA (HA a été synthéti avec la pressure partielle de vapeur de l'eau de 500 mm Hg) et les pha qui correspondent à ces températures	sée ses
Fig. 6.14 Champs des température dans la particule de HA (HA a été synthéti avec la pressure partielle de vapeur de l'eau de 10 mm Hg) et les phases correspondent à ces températures	sée qui
Fig. 6.15 Morphologie de la particule de HA à l'impact sur la surface du substru la vue d'en haut et la section	at :
Fig. 6.16 Température moyenne des particules projetées sur le substrat	
Fig. 6.17 Vitesse des particules projetées sur le substrat	
Fig. 6.18 Température moyenne des particules projetées dans l'eau	
Fig. 6.19 Vitesse des particules des poudres projetées dans l'eau	
Fig. 6.20 Contenu des phases cristallines en fonction du diamètre des particu dans les poudres projetées	ıles
Fig. 6.21 Comparaison entre les résultes expérimentales et les résultes de la mod sation de la distribution des particules de la poudre d'HA projetée dans l'a à puissance de 24 kW	éli- eau
Fig. 6.22 Modélisation de la coupe des dépôts de l'hydroxyapatite projetées sur surface de substrat avec la puissance de 24 kW et la différente composition gaz plasmagène et le débit du gaz porteur	· la du
Fig. 6.23a Modélisation de la relation entre la température de dépôt à la d'impulsion $\tau=7,4x10^{-4}s$, profondeur de couche fondue pendent le traitem par laser et l'émissivité et la porosité de dépôt	fin ent
Fig. 6.23b Modélisation de la relation entre la température de dépôt à la d'impulsion τ =7,4x10 ⁴ s, profondeur de couche fondue pendent le traitem par laser et l'émissivité et la porosité de dépôt	fin ent
Fig. 6.23 c Modélisation de la relation entre la température de dépôt à la d'impulsion τ =7,4x10 ⁴ s, profondeur de couche fondue pendent le traitem par laser et l'émissivité et la porosité de dépôt.	fin ent

.

ACRONYMES

CaO	oxyde de calcium
αΤCΡ	phosphate tricalcique α
βΤCΡ	phosphate tricalcique β
ТТСР	phosphate tétracalcique
OAP	oxyapatite
ОНАР	oxyhydroxyapatite
HA	hydroxyapatite

SYMBOLES

A	surface, m ²
a	diffusion thermique, m ² /s
b	distance caractéristique
Bi	nombre de <i>Biot</i>
С	capacité calorifique, J/kg K
с	coefficient de concentration
C_{d}	coefficient
D	diamètre de lamelle liquide
d	diamètre, m
$dN_{ m e}$	quantité des molécules
F_{g}	force gravimétrique, N
Fi	force d'inertie, N
Fd	force aérodynamique de flux, N
F_{p}	force du gradient de pression, N
F_{T}	force de l'effet de thermophorèse, N
F _c	force de Coriolis, N
⊿G°s	énergie standard de formation de Gibbs
g -	accélération de la gravité, m/s ²
h	coefficient de transmission de chaleur , $W/m^2 K$
Н	enthalpie

I _o	intensité de la radiation incidente
I	intensité transmise sur le matériau
K _{sp}	constante de solubilité
k	8,3143 J/moll K – la constante de Boltzmann
L	épaisseur de couche, longueur, m
$L_{ m v}$	chaleur latente de l'évaporation, J/(m ³ K)
$L_{ m f}$	chaleur latente de fusion, J/(m ³ K)
М	nombre de Mach
Nu	nombre de Nusselt
Pr	nombre de Prandtl
Р	pressure, Pa
р	épaisseur de la lamelle,m
Ps	pression du vapeur saturée, Pa
Ро	101,325 kPa - pression atmosphérique
Q	flux d'énergie, J
q	débit du gaz porteur, N l/min
r	radius, m
R	radius de faisceau laser, m
Re	nombre de Reylnolds
R _o	réflectivité
S	position d'interface
Т	température, K
t	temps, s
U_{R}	vitesse relative entre le plasma et la particule, m/s
U	composante de la vitesse dans la direction axiale, m/s
$v_{\rm f}$	vitesse du mouvement du front de fusion, m/s
V	la composante de la vitesse dans la direction radiale, m/s
u	vitesse locale du flux en dehors de la couche de Knudsen, m/s
We	nombre de Weber

INDICES

cg	gaz porteur
d	dépôt
ex	front de la solidification
f	fusion
g	gaz
init	initial
i	injecteur
1	liquide
p	particule
por	poreuse
ps	surface de la particule
r	radius
S	le solide
sub	substrat
t	tuyau
x,y and z	X, Y et Z directions
v	évaporation
vl	interface vapeur-liquide
0	initial ou dense

LETTRES GRECQUE

α	coefficient d'absorption, 1/m
ά	coefficients d'expansion thermique, K ⁻¹
δ	soulèvement, m
β	vitesse adimensionnelle de l'évaporation
Δ	épaisseur de la couche fondue, m
γ	front fondu, m
χ	ratio de la capacité de la chaleur spécifique
φ et ψ	constantes

Е	émissivité
ρ	densité, kg/m ³
$\sigma_{ m B}$	constante de Stefan-Boltzmann, 5,67x10 ⁻⁸ Wm ⁻² K ⁻⁴
σ	coefficient de la tension de la surface,
٤	front d'évaporation, m
λ	conduction de chaleur, W/(mK)
n	viscosité dynamique, kg/m ³
<i>י</i>	mass molaire, kg
μ τ	durée d'impulsion, s
•	

INTRODUCTION

Les méthodes de projection thermique pour fabriquer les revêtements se développent et s'améliorent depuis plus de 30 années. La production des revêtements par les processus de projection thermique offre de multiples applications: les revêtements de protection contre l'usure, la corrosion et les revêtements bioactifs. La méthode de projection par plasma ou à la flamme est capable, grâce à l'application du plasma, d'être appliquée pour les matériaux de genres différents comme les métaux, céramiques, ciments ou les matériaux organiques [1]. Le grand marché pour les applications des revêtements projetés par plasma est l'aéronautique et l'aérospatial, les industries nucléaires, mécaniques et chimiques, l'industrie gazière et pétrolière, l'industrie médicale. La projection du dépôt par plasma peut aussi être associée au traitement laser pour améliorer les propriétés des revêtements, par exemple des revêtements bioactifs [2, 3], antiusure [4] et antirouille [5].

Bien que cette technique de projection par plasma soit développée et utilisée depuis plusieurs années, elle reste encore largement empirique. Elle représente un système complexe qui contient le substrat, le matériau de revêtement et les paramètres de projection (Fig. 1.). Tous ces composants de système et ses interactions doivent être optimisés pour obtenir le revêtement souhaité. Mais, le développement et l'optimisation des processus se basent encore sur des approximations et les essais sont onéreux. La non reproductibilité du revêtement de bonne qualité projetée par plasma est toujours le problème principal qui empêche l'expansion rapide de la technologie. L'autre problème avec la technologie de traitement par laser est qu'elle relativement nouvelle et demande une étude minutieuse et, encore, l'optimisation des procédures.

C'est pourquoi, pour le développement plus effectif de technologies de la projection par plasma et du traitement par laser, il est nécessaire de créer une procédure qui permette de raccourcir le temps de l'optimisation des paramètres et mettre en évidence la corrélation entre les paramètres de procédure et les caractéristiques des revêtements. La modélisation numérique permet de les réaliser. Elle peut prédire les relations entre les caractéristiques de revêtement et les paramètres de la projection par plasma et du traitement par laser choisis. De plus, elle permet d'être associée aux contrôles *en ligne (on-line)* qui font déjà partie des procédures à haute température (pyrométrie, vitesse et température de particules en vol,...).

La modélisation numérique permet la prédiction des caractéristiques de flamme du plasma, de l'interaction entre les particules et la flamme, de la dynamique des particules, des impacts et de la formation de revêtement, et finalement, de la cinétique de chauffage de revêtements lors du traitement par laser. Lors de la projection par plasma, les particules sont injectées et se déplacent dans le jet du plasma avec des tempé-

T . 1	•
Introd	notion
1111100	aonon

rature et vitesse importantes [1]. Lors du traitement par laser le revêtement s'expose à l'influence d'émission laser intense. Dans ce cas, la modélisation doit tenir compte de changement des propriétés physiques des matériaux aux transformations de phases à hautes températures. Les particules fondent et s'évaporent partiellement ou complètement. Mais la vitesse de réchauffement est tellement rapide que le changement des propriétés du matériau ne suit plus les lois de la thermodynamique qui sont applicables pour les conditions avec le réchauffement progressif et lent. Et, malheureusement, il n'y a pas d'étude des propriétés des matériaux dans les conditions similaires à la projection plasma. C'est pourquoi, dans la modélisation numérique, on est forcé d'utiliser les données disponibles, correspondant aux conditions de chauffage lent. L'insuffisance des connaissances des propriétés des matériaux à haute température est une source importante d'erreurs de la modélisation. Les erreurs sont particulièrement importantes pour les matériaux qui sont instables à haute température, qui changent non seulement de propriétés physiques mais aussi de structure cristalline à haute température et se transforment en matériaux différents. Un exemple de ce matériau est l'hydroxyapatite (HA).

Fig. 1. Variables dans le système de projection par plasma [6].

L'hydroxyapatite, $Ca_{10}(PO_4)_6(OH)_2$, est une céramique bioactive qui, grâce à la composition chimique et la structure cristalline similaire à cellule de l'os, s'adapte rapidement à un tissu osseux [7, 8, 9, 10]. C'est pourquoi pendant les 30 dernières années, elle était utilisée dans le domaine médical pour perfectionner les implants chirurgicaux ou pour rétablir les fonctions de corps. Le plus souvent l'HA est utilisée pour former des revêtements sur des implants, par exemple, les prothèses de hanches de Ti-6Al-4V (Fig. 2).

2

Fig. 2. Exemples d' implants avec les revêtements d'HA $[^{11}]$.

Lors de la projection par plasma à haute température, les particules d'HA sont chauffées et HA se décompose en formant plusieurs phases:

- l'oxyde de calcium (CaO);
- le phosphate tricalcique α (α TCP, α Ca₃(PO₄)₂);
- le phosphate tricalcique β (β TCP, β -Ca₃(PO₄)₂);
- le phosphate tétracalcique (TTCP, Ca₄P₂O₉);
- le verre (phase amorphe) de phosphate de calcium.

En plus, les revêtements d'hydroxyapatite obtenus par projection plasma contiennent une proportion importante :

- d'oxyapatite (OAP, Ca₁₀(PO₄)₆O) ;
- d'oxyhydroxyapatite (OHAP, $Ca_{10}(PO_4)_6(OH)_{2-x}O_{x-x}$).

Ces deux phases résultent de la déshydratation à haute température de l'hydroxyapatite [12]. Lors de l'impact des particules chauffées sur la surface froide de la prothèse, la vitesse de refroidissement peut être supérieure à $10^{8\circ}$ C/s [13]. Cela mène à la conservation des phases : cristalline (HA), cristalline métastable (OAP, OHAP, TCP, TTCP, CaO) et non-crystalline dans le revêtement d'HA.

La composition de phases cristallines, c'est-à-dire, la fraction de HA, OAP-OHAP, TTCP, α -TCP... du revêtement est un des facteurs le plus important déterminant sa dissolution dans l'environnement physiologique. Selon la norme ASTM [14], le contenu de phase d'HA dans le revêtement ne doit pas être inférieur à 95%. Cette condition assure un biointégration satisfaisante des implants. Dans ce cas, le problème le plus important dans la réalisation du procédé industriel de projection par plasma

d'HA est l'optimisation des paramètres de projection dans le but de préparer de revêtements avec les propriétés qui correspondent à la norme ASTM. Ce problème peut être résolu, de deux façons :

- Le changement de batch de poudre dont la distribution de particules, la taille des particules et ses morphologies déterminent le flux de particules du distributeur jusqu'au plasma tandis que ses propriétés thermophysiques déterminent la fusion des particules dans le plasma. Par conséquent, la morphologie de revêtement, la composition de phases, la cristallinité et la porosité dépendent des caractéristiques de particules [5].
- Le changement des conditions de la projection : la composition du gaz du plasma, la puissance de l'arc de la torche, les types d'injection et le début du gaz porteur, qui déterminent aussi la composition cristalline, la porosité, la rugosité et l'indestructibilité des revêtements d'HA [15, 16, 17, 18].

Pour permettre la production des revêtements avec des propriétés satisfaisantes, pour bien contrôler les paramètres de projection d'HA, la dynamique et le chauffage des particules lors de la projection, les procédés qui permettent de réaliser le contrôle *online* du procédé plasma et du procédé laser ont été développer. Ces procédés sont des techniques diagnostiques et des techniques de mesure (Fig. 3 et Fig. 4.). Ces procédés sont à associer avec la simulation numérique. Dans cette thèse, la simulation numérique des procédés de projection de dépôt d'HA par plasma et du traitement de dépôt d'HA par laser a été entreposée afin de permettre le contrôle *on-line*. D'autre part, la modélisation numérique réalisée dans cette thèse peut aider à réaliser l'optimisation des procédés de projection par plasma et traitement par laser sans l'implication des techniques diagnostiques et de techniques de mesure, sans les approximations de longue durée et les essais coûteux.

Fig. 3 Techniques diagnostiques pour valider la simulation «on-line» lors la procédure de projection par plasma

Fig.4 Techniques diagnostiques pour valider la simulation on-line lors la procédure de traitement par laser

- 1 L. PAWLOWSKI. The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, 1995.
- 2 L. PAWLOWSKI, H. RAPINEL, F. TOURENNE, M.JEANDIN. Traitement laser des dépôts plasma d'hydroxyapatite, Galvano-Organo-Traitements de Surface, mai (1997) 433-437
- 3 P. CHEANG, K.A. KHOR, L.L. TEOH, S.C.TAM. Pulsed laser treatment of plasma sprayed hydroxyapatite coatings. Biomaterials 17 (1996) 1901-1904
- 4 S.TONDU, T.SCHNICK, L.PAWLOWSKI, B.WIELAGE, S.STEINHAUSER, L.BABATIER. Laser glazing of FeCr-TiC composite coatings. Surface and Coatings Technologies 123 (2003) 243-251
- 5 C.SREEDHAR, G.SANTHANAKRISHNAN, C.V. GOKULARATHNAM, R. KRISHNAMURTHY. Effect of processing parameters on the laser glazing of plasma-sprayed alumina-titania ceramic. Journal of Material Processing Technology 114 (2001) 246-251
- 6 E. LUGSCHNEIDER, M.KNEPPER, K.A. GROSS, Production of Spherical Apatite Powders – The First Step for Optimized Thermal-Sprayed Apatite Coatings. Journal of Thermal Spray Technology, Vol. 1(3) September (1992) 215-222
- 7 L. SUN, C.C. BERNDT, K.A. GROSS, A. KUCUK. Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review. J. Biomed Mater Res (Appl Biomater) 58 (2001) 570-592.
- 8 J. L. LEE, L.ROUBFAR, O.R. BEIRNE. Survival of Hydroxyapatite-Coated Implants: A Meta-Analytic Review. J. Oral Maxillofac Surg 58 (2000) 1372-1379
- 9 S.V. DOROZHKIN, M. EPPLE Biological and Medical Significance of Calcium

Phosphates, Chem. Int Ed. 41 (2002) 3130-3146

- 10 M. OGISO Reassessment of Long-Term Use of Dense HA as Dental Implant : Case Report. J. Biomed Mater Res (Appl Biomater) 43 (1998) 318-320
- ¹¹ site de Terolab Serbices: http://www.terolab.com
- 12 C.-J. LIAO, F.-H. LIN, K.-S. CHEN, J.-S. SUN Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 20 (1999) 1807-1813
- 13 V.V. KUDINOV, Plasma coatings, Nauka, Moscow, 1977 (en Russe).
- 14 Norme ASTM: Standard specification for composition of hydroxyapatite for surgical implants. Designation: F 1185-03
- 15 R.B. HEIMANN O. GRABMANN T. ZUMBRINK, H.P. JENNISSEN Biomimetic processes during in vitro leaching of plasma-sprayed hydroxyapatite coatings for endoprosthetic applications Mat.-wiss.u. Werkstofftech. 32 (2001) 913-921
- 16 R. B. HEIMANN, H. KURZWEG, D. G.IVEY, M.L. WAYMAN Microstructural and In Vitro Chemical Investigations into Plasma-Sprayed Bioceramic Coatings Journal of Biomedical materials Research Vol. 43, Issue 4 (1998) 441-450.
- 17 B.C. WANG, E. CHANG, C.Y. YANG, D.TU, C.H. TSAI Characteristics and osteoconductivity of thee different plasma-sprayed hydroxyapatite coatings. Surface and Coating Technology, 58 (1993) 107-117
- 18 R. MCPHERSON, N. GANE, T.J. BASTOW Structural characterization of plasma-sprayed hydroxyapatite coatings, Journal of Materials Science: Materials in Medicine 6 (1995) 327-34

CHAPITRE 1

PROCEDE DE PROJECTION PLASMA D'HYDROXYAPATITE

1.1 PROJECTION PAR PLASMA

La projection par plasma est un processus de modifications de surfaces. Elle est capable, grâce aux températures élevées du procédé, d'utiliser les matériaux tels que les métaux, les céramiques ou les matériaux organiques pour obtenir des dépôts résistants à l'usure et aux variations de températures, inoxydables et bioactifs [1.1].

La section d'une torche à plasma typique est montrée sur la figure 1.1 [1.2]. La torche est composée d'une anode-buse circulaire en cuivre (1) et d'une cathode de tungstène thorié (2). Un courant continu entretenu par le générateur sur les contacteurs (3, 4) alimente un arc électrique. L'arc chauffe les gaz plasmagènes (5) qui augmentent de volume et coulent de la buse dans l'atmosphère en formant un jet (8) à haute vitesse et à haute température. La poudre portée par le gaz porteur est introduite dans le jet du plasma par l'injecteur (6). Dans le jet du plasma les particules de poudre sont soumises à l'accélération rapide et le chauffage intense avant le contact avec la surface de substrat (10). La microstructure et la qualité des dépôts (9) dépendent :

- du plasma (vitesse, température et propriétés de transport) ;
- de la poudre et de la vitesse de son injection ;
- de l'interaction entre plasma et particules ;
- des paramètres de projection ;
- du substrat.

Le gaz plasmagène est typiquement de l'argon, auquel est ajouté de l'hydrogène, de l'hélium ou de l'azote. Parfois on utilise des mélanges d'azote avec l'hydrogène ou des mélanges à trois gaz (par exemple Spral 22^{TM} de la société *Air Liquide*). Le débit de gaz plasmagène est de l'ordre de q=40 à 80 Nl/min. Le jet de plasma a une température maximale de l'ordre de 14 000 K et une vitesse maximale de l'ordre de 800 m/s. Ce jet se caractérise par de forts gradients radiaux de température et de vitesse et par des gradients axiaux qui sont moins forts. Les ajouts de gaz moléculaires (spécia-lement H₂) améliorent la conductivité thermique et la viscosité dynamique du plasma.

Ces deux paramètres déterminent la capacité du plasma à chauffer des particules et les accélérer. Chaque changement de gaz doit être accompagné par un changement de géométrie de la cathode et de l'anode. L'arc électrique est alimenté par une puissance électrique de 60 à 100 kW.

Fig. 1.1 Section d'une torche à plasma typique : 1, anode-buse ; 2, cathode ; 3, sortie de l'eau de refroidissement et connexion électrique de la cathode ; 4, entrée de l'eau refroidissant et connexion électrique de l'anode ; 5, entrée du gaz plasmagène ; 6, injecteur; 7, isolateur électrique ; 8, jet du plasma ; 9, dépôt ; 10, substrat.

La poudre est typiquement d'une taille de 5 à 100 μ m et il est préférable d'utiliser une distribution de tailles bien centrée. La poudre de forme sphérique et de bonne coulabilité est recommandée. Les distributeurs délivrent la poudre avec un débit massique de l'ordre de q=50-100 g/min et, généralement, l'injection est radiale par rapport au jet¹. A la sortie du distributeur, la poudre est suspendue dans le gaz porteur (Ar, N₂) dont le débit volumique est de q=3 à 10Nl/min. Afin de modifier la trajectoire des particules dans le jet, on peut les injecter sous un angle différent de 90° :

- 60° pour avoir une trajectoire longue ;
- 120° pour avoir une trajectoire courte.

1.1.1 Accélération des particules dans la flamme du plasma

Une particule introduite au sein du plasma est soumise à la somme des forces dont la résultante provoque son accélération. Les plus importantes sont la force d'inertie et la force aérodynamique de flux, qui sont déterminées comme:

$$Fi = \frac{\pi d_p^3}{6} \rho_p \frac{dUp}{dt}$$
(1.1)

$$Fd = \frac{\pi d_p^2}{4} Cd \frac{1}{2} \rho_g U_R^2$$
(1.2)

¹ Les torches de type Triplex et Mettech Axial II ont une injection axiale

où $d_{\rm p}$ – le diamètre de la particule;

 $\rho_{\rm p}$ - la densité de la particule;

 $\rho_{\rm g}$ - la densité du plasma;

 C_{d} – le coefficient;

t - le temps;

 $U_{\rm R}$ – la vitesse relative entre le plasma et la particule.

$$U_{R} = \sqrt{(U_{g} - U_{P})^{2} + (V_{g} - V_{P})^{2}}$$
(1.3)

 $U_{\rm p}$ et $U_{\rm g}$ – les composantes des vitesses dans la direction axiale de la particule et du gaz plasmagène ;

 $V_{\rm p}$ et $V_{\rm g}$ - les composantes des vitesses dans la direction radiale de la particule et du gaz plasmagène.

La force gravimétrique, F_{g} déterminée comme:

$$F_g = \frac{\pi d_p^3}{6} \rho_p g \tag{1.4}$$

où g est l'accélération de la gravité, peut être aussi importante dans le cas du flux avec la vitesse basse. Les autres forces, qui peuvent influencer sur la trajectoire de la particule, sont :

- F_p la force du gradient de pression qui peut être importante dans le cas de présence de gradient de pression dans le champ de flux.
- F_T la force de l'effet de thermophorèse qui peut être important pour les particules très fines d_p<0.1μm dans le cas de présence de gradient de température.
- F_c la force de *Coriolis*, qui est le résultat de la rotation des particules dans un axe qui est parallèle à la direction du mouvement.

Si on prend en considération que les forces F_p , F_g , F_T et F_c sont négligeables dans les conditions de la projection plasma, la balance de force agissants sur une seule particule en mouvement dans la flamme du plasma peut être décrite simplement, comme:

$$Fi = F_d + F_g \tag{1.5}$$

Par conséquent les équations (1.1), (1.2) et (1.4) dans équation (1.5) peuvent être écrites dans les axes symétriques de coordonnées cylindriques :

$$\frac{dU_P}{dt} = -\frac{3}{4}C_d(U_P - V_g) \cdot U_R\left(\frac{\rho_g}{\rho_P d_P}\right) \pm g$$
(1.6)

$$\frac{dV_P}{dt} = -\frac{3}{4}C_d(V_P - V_g) \cdot U_R\left(\frac{\rho_g}{\rho_P d_P}\right)$$
(1.7)

Les valeurs de coefficient C_d dépendent du régime de mouvement des particules dans le plasma (Tableau 1.1), donc du nombre de *Reynolds Re*:

$$Re = \frac{\rho_g d_P U_R}{\eta_g} \tag{1.8}$$

où η_g est la viscosité dynamique du gaz.

1.1.2 Echauffement des particules dans la flamme du plasma

Les mécanismes principaux de la transmission de chaleur entre la flamme du plasma et la particule sont les suivants :

- la conduction ;
- la convection ;
- la radiation.

Dans la plupart des cas, la transmission de chaleur par irradiation est négligeable car le plasma est transparent optiquement:

$$Q = Nu\lambda_g \left(\frac{T_g - T_{ps}}{\pi d_p}\right) + \sigma_B \varepsilon_P (T_g^4 - T_{ps}^4)$$
(1.9)

 λ_g – la conduction de chaleur du gaz plasmagène;

 $T_{\rm ps}$ – la température de surface de la particule;

 $T_{\rm g}$ – la température du gaz plasmagène ;

 \mathcal{E}_p – le facteur d'émissivité ;

 $\sigma_{\rm B}$ – la constante de *Stefan-Boltzmann* .

<i>C</i>	Re	Description	
$C_d = \frac{24}{Re}$	<i>Re</i> < 0.2	Décrit le mouvement dans le régime de <i>Stokes</i>	
$C_d = \frac{24}{Re} \left(1 + \frac{3}{16} Re \right)$	0.2 < Re < 2	Décrit le mouvement dans le régime de Oseen.	
$C_d = \frac{24}{Re} \left(1 + 0.11 Re^{0.81} \right)$	2 < Re < 21	Décrit le mouvement dans	
$C_d = \frac{24}{Re} \left(1 + 0.189 Re^{0.632} \right)$	21 < Re < 200	Pruppacher	

Tableau 1.1 Coefficient C_d comme la fonction du nombre de Reynolds

Nu est le nombre de *Nusselt* qui exprime la transmission de chaleur entre le plasma et la particule. Pour la particule sphérique il a la forme suivante :

$$Nu = \frac{hd_p}{\lambda_g} = 2 + 0,66 \, Re^{0.5} \, Pr^{0.33} \tag{1.10}$$

où :

h – et le coefficient de transmission de chaleur ;

Re-le nombre de Reylnolds

Pr – le nombre de Prandtl

$$Pr = \frac{\eta_g C_g}{\lambda_g} \tag{1.11}$$

 $C_{\rm g}$ – la capacité calorifique du gaz.

Le phénomène d'échauffement de particule dans la flamme du plasma peut être divisé en deux phénomènes distinctifs :

- l'échauffement sans le gradient de température dans tout le volume de la particule avec la bonne conduction de chaleur;
- l'échauffement avec le gradient de température dans tout le volume de la particule avec la mauvaise conduction de chaleur.

Pour les matériaux bons conducteurs de la chaleur, l'équation du bilan thermique d'une particule dans un plasma est la suivante :

$$\pi d_{p}^{2} h(T_{g} - T_{p}) = \frac{1}{6} \pi \rho_{p} C_{p} d_{p}^{3} \frac{dT_{p}}{dt}$$
(1.12)

 C_p – la capacité calorifique de la particule. La partie gauche décrit la chaleur transmise de la flamme et la partie droite décrit la chaleur absorbée par la particule. L'équation (1.12) est aussi valable pour la particule de matériau mauvais conducteur de chaleur de petit diamètre.

Pour la particule plus grande et le matériau mauvais conducteur de la chaleur, il y a un gradient de température et, lors de leur trajectoire dans le plasma, il peut arriver qu'elle se solidifie à l'intérieur, fond dans la couche intermédiaire externe et se transforme en vapeur à l'extérieur. Pour ce cas, l'équation thermique dans la phase solide est :

$$C_{p}(T)\rho(T)\frac{\partial T}{\partial t} = \nabla(\lambda(T)\nabla T) + q \qquad (1.13)$$

où q est le densité de flux thermique dans solide. Pour la particule sphérique l'équation (1.13) peut être transformée en :

$$C_{p}(T)\rho(T)\frac{\partial T}{\partial t} = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(\lambda(T)r^{2}\frac{\partial T}{\partial t}\right)$$
(1.14)

Pour cette équation la condition initiale est T(r,0)=300 et la condition de symétrie a la forme suivante : $\frac{\partial T(0,t)}{\partial r} = 0$.

Les conditions aux limites pour ce cas:

• Le matériau de la particule ne sublime pas, la particule considérée possède la température de fusion (T_m) et la température d'évaporation (T_{evp});

• L'évaporation des matériaux de la particule est considérée seulement dans le cas quand la température de la surface est égale de T_{evp}

Plusieurs états peuvent être considérés lors de l'échauffement et le refroidissement consécutif de particules dans la flamme du plasma:

- l'état solide ;
- l'état solide-liquide (avec la surface fondue et évaporée) ;
- l'état liquide (l'évaporation de la surface) ;
- l'état solide-liquide-solide (avec la surface fondue et refroidie) ;
- l'état liquide-solide (avec le refroidissement de la surface).

Chaque état demande la mise en équations et la solution de ces problèmes mathématiques. Ces états sont décrits en détail dans le Chapitre 3.

1.2 PROJECTION PAR PLASMA D'HYDROXYAPATITE

1.2.1 Description d'un revêtement d'hydroxyapatite

L'un des plus importants constituants de l'os est la phase minérale qui compose presque 60-70% d'os et peut être décrite comme le phosphate de calcium avec la structure apatite et la composition proche à l'hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂, HA avec un rapport atomique Ca/P=1,67). L'apatite biologique est connue comme un matériau déficient en calcium (Ca_(10-x)(HPO₄)_x-(OH)_{2-x}) avec le rapport Ca/P inférieur à 1.5. L'hydroxyapatite est biocompatible et bioactif dans le corps humain [1.3, 1.4, 1.5, 1.6]. HA est compatible avec plusieurs types des tissus et peut s'intégrer directement au tissu de l'os, aux tissus mous et musclés sans couche intermédiaire de tissu modifié. HA montre aussi l'osteoconductibilité, c'est-à-dire, l'aptitude du matériau provoque la formation d'os et son union (bonding) à la surface. C'est surtout très important pour les implants quand on demande le rétablissement rapide. En dépit des propriétés excellentes du biomatériau, les propriétés mécaniques intrinsèques d'HA - surtout, la fragilité ; la charge maximale à la rupture et la résistance à l'impact sont faibles [1.7], - limitent donc l'application pour la fabrication de prothèses résistantes et porteuses. En revanche, le concept d'application d'HA dans les prothèses métalliques est apparu, ce qui permet de combiner les bonnes solidité et flexibilité du métal avec la biocompatibilité et la bioactivité excellente d'HA.

Il existe plusieurs techniques pour la déposition d'HA sur la surface de la prothèse [1.19]:

- le dépôt par précipitation (*dip coating*) ;
- le dépôt par électrophorèse (electrophoretic deposition);
- le dépôt par immersion (immersion coating);
- le dépôt de solution (solution deposition);
- le dépôt par pulvérisation cathodique (*sputter coating*),
- le dépôt par projection plasma.

L'analyse par comparaison (Tableau 1.2) montre que la projection par plasma est le plus convenable, abordable et admise plus fréquemment dans les applications cliniques [1.3].

Le revêtement d'HA projeté par plasma peut s'intégrer directement à l'os, protéger l'environnement de la prothèse des ions générés par la prothèse métallique, assurer l'amélioration de l'ostéointegration et provoquer le développement de l'os. Ce sont les facteurs les plus importants qui assurent la fixation de prothèse de façon plus solide et plus rapide. Le revêtement montre l'adhérence très forte avec le tissu du corps dans une période de courte durée, même aux conditions de charge.

Le processus d'osteointegration est accompagné par la dissolution des dépôts après l'implantation et peut être décrit par les étapes suivantes [1.3] :

- La dissolution partielle de dépôt d'HA, les ions de calcium et phosphate se libèrent du dépôt, qui cause l'augmentation de la concentration des ions dans la zone locale autour du dépôt ;
- La précipitation des cristaux de dépôt et l'échange des ions avec des tissus environnants;
- La formation d'une couche de calcium phosphate carbonisé avec les incorporations de matrice de collagène et le développement d'os vers la prothèse ;
- Le rétablissement d'un os : les osteoclastes résorbent l'os sur l'exhalation active des ions d'hydrogène dans l'espace extracellulaire, la création de zone locale avec un *pH*=-4,8, qui mène à la résorption plus rapide d'HA carbonisée dans l'os et d'HA de dépôt ;
- La couche intermédiaire d'os-dépôt provoque le développement et le rétablissement de l'os, la fixation biologique peut être obtenue sur la croissance bilatérale de la couche intermédiaire.

Le diagramme schématique de développement d'interaction os-prothèse est donné sur la figure 1.2.

1.2.2 Décomposition d'HA lors la projection par plasma

La projection par plasma d'HA sur la surface de la prothèse entraîne l'introduction des particules d'HA dans le jet à haute température et haute vitesse (plus que 10 000°C). Les particules fondent partiellement ou complètement. Dans ces conditions HA peut changer de structure : il peut se déshydrater en formant l'oxyapatite (OAP, Ca₁₀(PO₄)₆O) et l'oxyhydroxyapatite (OHAP, Ca₁₀(PO₄)₆(OH)_{2-x}O_{x x}) et il peut se transformer en formant plusieurs oxydes: l'oxyde de calcium (CaO), le phosphate tricalcique α (α -TCP, α -Ca₃(PO₄)₂), le phosphate tricalcique β (β -TCP, β -Ca₃(PO₄)₂), le phosphate tétracalcique (TTCP, Ca₄P₂O₉), le verre (phase amorphe) de phosphate de calcium. Lors de l'impact des particules chaudes sur la surface froide de la prothèse, la vitesse de refroidissement peut être supérieure à 10⁸K/s [1.8]. Cela mène à la formation des phases : cristalline (HA), cristalline métastable (OAP, OHAP, α - TCP, TTCP, CaO) et non-crystalline (phase amorphe) dans le revêtement d'HA. La composition des phases dans le dépôt et la structure de dépôt sont changées par rapport au matériau dans la poudre initiale. Les données expérimentales montrent, que la morphologie du revêtement, la composition de phases, la cristallinité et la porosité dépendent du choix des paramètres de la projection thermique [1.9, 1.10, 1.11, 1.12] mais aussi des caractéristiques de particules [1.13]. Pour obtenir d'un revêtement avec les propriétés souhaitées, il faut donc bien contrôler et bien choisir les paramètres de la projection et les propriétés des particules de matériau. Il a donc nécessaire, pour la modélisation de processus de la projection par plasma de poudre d'HA, de bien connaître les propriétés thermophysiques et structurales d'HA.

Méthode	Caractéristiques
Dépôt par précipitation /frittage	Le frittage à haute température (>1000°C) peut dégrader les propriétés mécaniques de l'implant métallique et mener à l'abaissement d'adhésion et à la contamination du dépôt d'HA.
Dépôt par électrophorèse	Les mêmes problèmes comme avec le <i>dip coa- ting</i> /frittage qui mènent à la formation de revêtement d'épaisseur hétérogène.
Dépôt par immersion	Le processus à haute température (>1500°C) qui résulte de la formation du revêtement qui contient un mélange de matériaux autres que HA et dont l'adhérence est faible.
Dépôt par solution	Le processus à basse température permet de produire un revêtement d'HA pure, avec une bonne cristallisation haute et une bonne adhérence. L'épaisseur maximale ne dépassant pas les $20\mu m$, ne favorise pas l'aptitude à la fixation de la prothèse.
Dépôt par pulvérisation	Le processus est trop lent et la vitesse de dépôt basse. Le rapport de Ca/P en dépôt est plus élevé que le rapport dans l'HA initiale synthétique.
Dépôt par la projection par plasma	Le processus présente une vitesse de déposition élevée. Le revêtement a un bon contrôle chimique et micros- tructural, il est résistant à la corrosion biologique et à la déformation. On peut obtenir le dépôt avec des épais- seurs différentes et la technique peut être utilisée pour la déposition sur des configurations complexes.

Tableau 1.2 Comparaison des différentes méthodes de dépôt d'HA

1. La dissolution partielle de dépôt d'HA induit l'augmentation de la concentration des ions Ca^{2+} et PO_4^{3-} dans une zone locale autour du dépôt.

3. La formation de la couche de calcium phosphate carbonisé avec les incorporations de matrice de collagène et le développement d'os vers la prothèse.

2. La précipitation des cristaux d'HA et l'échange des ions avec les tissus d'environnement

4. Le rétablissement d'os – les osteoclasts résorbent l'os initial, apparition de zone locale avec pH=-4.8, qui mène à la résorption plus rapide d'HA carbonisé dans l'os et d'HA de dépôt.

5. Le développement bilatéral et la formation de couche intermédiaire (bonding layer) entre l'os et le dépôt d'HA sur le rétablissement d'os

Fig. 1.2 Diagramme schématique du développement d'interaction os-prothèse [1.3].

1.2.2.1 Phases de la transformation de l'hydroxyapatite

Nous pouvons distinguer les trois étapes de la transformation de l'hydroxyapatite pendant le chauffage: la déshydratation, la décomposition, la fusion.

La déshydratation : l'hydroxyapatite a deux types de molécules d'eau dans sa structure — de l'eau absorbée et de l'eau structurale [1.14]. L'eau absorbée est caractérisée par la réversibilité, l'instabilité thermale à partir de 25°C jusqu'à 200°C. Dans ce cas l'hydroxyapatite présent une perte de poids sans changement des paramètres de la maille cristalline. L'eau structurale est caractérisée par l'irréversibilité. Elle disparaît à partir de 200-400°C. Ce qui cause la contraction de la maille cristalline pendant le chauffage. A cette haute température le hydroxyapatite est déshydratée, ce qui provoque la libération des ions OH⁻ et la transformation d'HA en oxyhydroxyapatite OHAP. Il y a de multiples trous dans la structure, l'ion d'oxyde bivalent et la lacune remplacent les deux ions monovalents OH⁻ d'HA. OHAP se présente comme: Ca₁₀(PO₄)₆(OH)_{2-2x}O_{x-x}, ou représente les lacunes:

 $T \ge 1100 \ ^{\circ}C$: $Ca_{10}(PO_4)_6(OH)_2 \rightarrow Ca_{10}(PO_4)_6(OH)_{2-2x}O_x \square_x + x H_2O$

A la limite, quand x=1, l'oxyapatite (Ca₁₀(PO₄)₆O, OAP) se forme. La déshydration d'HA dépend de la pression partielle de l'eau lors du chauffage. Lors du chauffage sous vide, HA perd ses ions OH⁻ à basse température, environ à 850°C. Si HA chauffée dans une atmosphère humide, la structure d'HA se conserve jusqu'à 1100°C. Il est difficile d'observer la transformation d'HA à l'OHAP par analyse aux rayons X parce que les pics caractéristiques des deux composants se superposent. Cependant, la présence des OHAP et HA peut être détectée par la spectroscopie infrarouge [1.15, 1.16].

 La décomposition : selon le diagramme de phases du système de CaO/P₂O₅ [1.17, 1.18] HA (les phases déshydratées) se transforme à partir de la température de 1350°C, en phosphate tétracalcique Ca₄P₂O₉ (TTCP), phosphate tricalcique α (α-TCP, α-Ca₃(PO₄)₂), et phosphate tricalcique β (β-TCP, β-Ca₃(PO₄)₂. Toutes ces phases ont les rapport Ca/P différents, qui sont donnés dans le Tableau 1.3.

 $\mathbf{T} \ge \mathbf{1350} \ ^{\circ}\mathbf{C} : Ca_{10}(PO_4)_6(OH)_{2-2x}O_x \Box_x \to 2Ca_3(PO_4)_2 + Ca_4P_2O_9 + (1-x)H_2O_2 + Ca_4P_2O_9 + (1-x)H_2O_2 + Ca_4P_2O_2 + (1-x)H_2O_2 + (1-x)H_2O_2$

Mais le OH- stretching mode d'HA est encore présent à 1350°C (la température de décomposition des phases déshydratées d'HA) ce qui indique que l'HA ne se déshydrate pas complètement avant la décomposition. L'OAP peut se former pendant la déshydratation et certaines phases d'OHAP peuvent rester dans le système malgré les conditions de température supérieure à celle de la décomposition [1.16]. Selon la réaction suivante, OAP se décompose en TTCP et aussi en α - TCP:

 $\mathbf{T} \geq 1350 \ ^{\circ}\mathbf{C}: \ Ca_{10}(PO_4)_6O \rightarrow 2Ca_3(PO_4)_2 + Ca_4P_2O_9$

Sym- bole	Nom	Formule	Ca/P
TTCP	Le phosphate tétracalcique	$Ca_4 P_2 O_9$	2
α-ΤСР	Le phosphate tricalcique	Ca ₃ (PO ₄) ₂	1.5
HA	L'hydroxyapatite (solide)	$Ca_{10}(PO_4)_6(OH)_2$	1.67

 Tableau 1. 3 Caractéristique des phases différentes se formant lors la décomposition d'HA.

Parfois, dans les dépôts d'HA projetés par plasma on trouve des phases comme $Ca_2P_2O_7$, CaO. Selon le diagramme de phases de système de CaO/P_2O_5 et l'étude de décomposition thermique d'HA [1.16], il n'est pas possible que les $Ca_2P_2O_7$, CaO et P_2O_5 apparaissent dans le système. Aucunes phases cristallines, sauf TTCP et TCP, sont détectées dans les températures 1400–1500°C[1.16]. La présence des phases CaO et $Ca_2P_2O_7$ peut être observée seulement dans les conditions hors équilibre comme l'élévation ou l'abaissement soudain de la température, ce qui est typique pour les processus de projection par plasma.

• La fusion : selon le diagramme des phases de système de CaO/P₂O₅, les phases de décomposition d'HA (TCP et TTCP) fondent à 1570 °C. Par la suite, la phase amorphe apparaît lors de la solidification de la phase fondue.

1.2.2.2 Diagrammes de phases d'hydroxyapatite

La synthèse d'HA a lieu entre 800 et 1500 °C, et les phases formées lors de la synthèse dépendent non seulement de la température, mais aussi de la pression partielle en vapeur d'eau dans l'atmosphère de calcination. La température de la stabilisation de l'HA augmente quand la pression partielle de vapeur d'eau augmente, et, en conséquence, l'intervalle des températures où les TCP et TTCP sont stables, diminue.

Riboud [1.17] a proposé les diagrammes des phases du système P_2O_5 /CaO pour les pressions partielles de vapeur d'eau entre 0 et 500 mm Hg (figure1.3 et 1.4). Dans le cas d'une pression de 500 mm Hg, l'HA est très stable et se transforme en TCP et TTCP seulement à T=1550 °C. Mais le suivi par la diffraction rayons X d'HA chauffée dans l'atmosphère ambiante montre que HA se décompose complètement des T=1400 °C [1.16]. Ce qui ne correspond pas au diagramme de phase présenté en figure 1.4.

Fig.1.3 Diagramme des phases de système CaO/P_2O_5 à haute température. Pression partielle de vapeur d'eau: $P_{H2O}=0$ mm Hg

Fig.1.4 Diagramme des phases de système CaO/P_2O_5 à haute température. Pression partielle de vapeur d'eau: P_{H2O} = 500 mm Hg

L'étude [1.18] présente le diagramme des phases du système de CaO/P₂O₅ pour la pression partielle intermédiaire de vapeur d'eau, qui correspond à l'atmosphère ordinaire de calcination de 10 mm Hg (figure 1.5 et tableau 1.4). Dans ce diagramme, le changement polymorphique de TCP et la température de la formation du liquide correspondent aux données annoncées plus tôt dans [1.17], parce que ils ne dépendent pas de la pression partielle de vapeur d'eau. Mais, la décomposition d'HA et la température de réaction d'HA-CaO pour cette pression partielle est plus basse que pour 500 mm Hg, et plus proche des résultats expérimentaux.

1.2.3 Dissolution des phases

La composition cristalline, la proportion HA/OAP-OHAP/TTCP/ α -TCP dans des revêtements est le facteur le plus important qui détermine la dissolution du revêtement dans l'environnement physiologique. Ceci est induit par les propriétés des phases différentes. Par exemple, l'hydroxyapatite, dense et cristalline, est très stable et subit très peu de biodégradation et dissolution. Cependant, cette qualité de faible dissolution peut être altérée par la formation de différentes phases solubles « *in vivo*» telles que le phosphate tricalcique α , le phosphate tricalcique β , le phosphate tétracalcique ou encore une phase amorphe de phosphate de calcium (ACP) [1.3, 1.5, 1.19, 1.20, 1.21]. Les degrés de la dissolution de ces matériaux sont beaucoup plus grands que celui d'HA et se présentent en ordre décroissant comme :

L'oxyde de calcium n'est pas biocompatible et se dissout beaucoup plus rapidement

que le TCP ; c'est pourquoi cette phase doit être exclue entièrement du revêtement. Le tableau 1.5 montre les phases de phosphate de calcium et ses degrés de dissolution, caractérisées par la constante de solubilité K_{sp}. Il permet de déterminer la solubilité des composantes antisolubles de matériau dans l'eau dans différentes conditions. La constante de solubilité K_{sp} peut être calculée à partir de l'énergie standard de formation de Gibbs (ΔG°) grâce à l'équation

$$K_{sp} = exp\left(\frac{\Delta G^{\circ}}{kT}\right) \tag{1.15}$$

k - constante de Boltzmann, T - température

La composition du revêtement de HA dépend du choix des paramètres de processus de dépôt et est le déterminant de la dissolution du revêtement dans l'environnement physiologique. La dissolution rapide provoque la précipitation d'HA biologique dans le revêtement et augmente le développement d'os, mais aussi elle provoque la résorption et la biodégradation rapides du revêtement. Donc, pour obtenir un revêtement avec les propriétés bioactives souhaitables, la composition du revêtement d'HA doit être contrôlée. Pour atteindre la composition souhaitable, les paramètres de la projection et la qualité de poudre d'HA doivent être contrôlés.

Fig. 1.5 Diagramme des phases de système CaO/P₂O₅ à haute température. Pression partielle de vapeur d'eau: P_{H2O} = 10 mm Hg [1.18]

Composition initiale	Température (°C)	Phase
100 % HA	1000	НА
	1100	НА
Γ	1150	НА
	1200	НА
F	1250	НА
Γ	1300	HA
	1325	HA
	1350	HA, TCP, TTCP
	1375	HA, TCP, TTCP
-	1400	TCP, TTCP

 Tableau 1.4 Equilibre d'HA à haute température sous la pression partielle de vapeur d'eau de 10 mm Hg.

Phase	Abbreviation	La constante de solubilité K _s dans 25°C
L'hydroxyapatite	HA	6.62x10 ⁻¹²⁶
Oxyhydroxyapatite	OHAP	10 ⁻⁶⁹
La phase amorphe de phosphate de calcium	АСР	-
Le phosphate tricalcique α	a-TCP	8.46x10 ⁻³²
Le phosphate tricalcique β	β-ΤСΡ	2.07x10 ⁻³³
Le phosphate tétracalcique	TTCP	-

Tableau 1.5 Degré de la dissolution des phases de phosphate de calcium.

1.3 PROTHESES ORTHOPEDIQUES ET DENTAIRES

Le revêtement d'HA est appliqué intensivement dans les prothèses dentaires et aussi dans les prothèses orthopédiques.

Dans les prothèses dentaires, on fait le revêtement sur la surface de la tige de prothèse qui est en contact directement avec l'os de la mâchoire. La gencive couvre l'implant et après 3 mois de rétablissement, l'os nouveau se forme autour de l'implant immobile. Après, la couronne d'os est posée sur le tenon, la prothèse peut ainsi être exposée à la mastication.

Les prosthèses orthopédiques contiennent les pièces temporaires (les vis et les tiges) et les pièces permanentes (les implants fémorals, métacarpiens, métatarsiens, phalangiens, les implants de genou, d'épaule et de pied). Les vis et les tiges, bien qu'elles ne soient pas les applications primaires, sont très importantes et elles permettent la fixation initiale rapide et ses durés d'implantation sont de 3 mois.

Le replacement des épaules, genoux et hanches peuvent être suscités, par exemple, par l'ostéoarthrite et par quelques formes d'endommagement ou de lésion d'os. Les prothèses de type différents sont présentés dans la figure 1.6 [1.22]. La prothèse de hanche contient la cupule pour l'implantation dans le cotyle et la tige fémorale pour
implantation dans la hanche. La cupule est utilisée pour le rétablissement de la fonction de l'articulation, la diminution de la douleur, la protection du tissu d'os et pour le maintien de la stabilité de la prothèse. Il existe plusieurs types de prothèses avec une géométrie qui assure le transfert du stress de la tige fémorale dans l'os d'environnement. On fait le dépôt d'HA sur la surface de la tige fémorale et sur la surface extérieure de cupule. Le revêtement peut couvrir la prothèse entièrement ou partiellement: dans le cas l'infection, il est plus aisé d'enlever la tige (ou la cupule) avec le revêtement partiel.

La prothèse de genou contient les composants fémoraux et tibiaux. Le dépôt d'HA est appliqué pour couvrir la surface du composant tibiale pour renforcer sa fixation. Ce qui est nécessaire parce que ce composant subit des forces de torsion et de charge de cisaillement élevés.

Les conditions nécessaires pour toutes prothèses orthopédiques et dentaires sont la fixation permanente à l'environnement sans la formation de tissu mou intermédiaire, la fixation doit être rapide et stable. Elle est déterminée par l'ostéointégration qui est provoquée par l'interaction entre l'HA et l'os. Ce qui a été décrit plus tôt. La charge mécanique accélère la résorption du revêtement et le rétablissement de l'os. La dissolution/résorption rapide est attrayante pour obtenir la fixation plus rapide et stable dans la période initiale d'implantation. Mais il peut aussi mener à la désintégration du revêtement qui s'accompagne de l'abolition rapide de durabilité du joint et de la fixation mécanique, par l'exfoliation et la production des particules qui peuvent provoquer des complications. Au contraire, la résorption lente permet d'assurer le remplacement du revêtement résorbé par l'os et maintenir une stabilité de longue durée. Le processus de l'union de la prothèse et de l'os est complexe et entraîne différents facteurs : pour l'implant – le matériau, la configuration, la topographie, la chimie de la surface, la charge mécanique, la technique chirurgicale et la procédure [1.19].

Bibliography

- 1.1 L. PAWLOWSKI, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, Angleterre, 1995.
- 1.2 L. PAWLOWSKI, Dépôts Physiques: Techniques, Microstructures et Propriétés. Presses Polytechniques et Universitaires Romandes, Lausanne, Suisse, 2003
- 1.3 L.SUN, C.C.BERNDT, K.A. GROSS, A.KUCUK, Material Fundamentals and Clinical Perfomance of Plasma-Sprayed Hydroxyapatite Coatings: A Review. J. Biomed. Mater. Res. (Appl Biomater) 58 (2001) 570-592

- 1.4 J. L. LEE, L.ROUBFAR, O.R. BEIRNE, Survival of Hydroxyapatite-Coated Implants: A Meta-Analytic Review. J. Oral Maxillofac Surg. 58 (2000) 1372-1379
- 1.5 S.V. DOROZHKIN, M. EPPLE, Biological and Medical Significance of Calcium Phosphates, Chem. Int Ed.41 (2002) 3130-3146
- 1.6 M. OGISO, Reassessment of Long-Term Use of Dense HA as Dental Implant : Case Report. J. Biomed. Mater. Res. (Appl Biomater) 43 (1998) 318-320
- 1.7 W. SUCHANEK, M. YASHIMA, M. KAKIHANA, M. YOSHIMURA. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers. Biomaterials, 17 (1996) 1715-1723.
- 1.8 V.V. KUDINOV, Plasma Coatings, Nauka, Moscow, Russia 1977 (en Russe).
- 1.9 R.B.HEIMANN O.GRABMANN T.ZUMBRINK, H.P.JENNISSEN Biomimetic processes during in vitro leaching of plasma-sprayed hydroxyapatite coatings for endoprosthetic applications Mat.-wiss.u. Werkstofftech. 32 (2001) 913-921
- 1.10 R. B. HEIMANN, H. KURZWEG, D. G.IVEY, M.L. WAYMAN Microstructural and In Vitro Chemical Investigations into Plasma-Sprayed Bioceramic Coatings. Journal of Biomedical Materials Research, 43 (4) (1998) 441-450.
- 1.11 B.C. WANG, E. CHANG, C.Y. YANG, D.TU, C.H. TSAI Characteristics and osteoconductivity of thee different plasma-sprayed hydroxyapatite coatings. Surface and Coating Technology, 58 (1993) 107-117
- 1.12 R. MCPHERSON, N. GANE, T.J. BASTOW Structural characterization of plasma-sprayed hydroxyapatite coatings Journal of Materials Science: Materials in Medicine 6 (1995) 327-334
- 1.13 E. LUGSCHNEIDER, M.KNEPPER, K.A. GROSS, Production of Spherical Apatite Powders – The First Step for Optimized Thermal-Sprayed Apatite Coatings. Journal of Thermal Spray Technology, Vol. 1(3) (1992) 215-222
- 1.14 R.Z. LEGEROS, G. BONEL AND R. LEGROS, Types of H2O in human enamel and in precipitated apatites. Calcif Tiss Res 26 (1978) 111-118.
- 1.15 H. NISHIKAMA Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics. Materials Letters 50 (2001) 364–370.
- 1.16 C.-J. LIAO, F.-H. LIN, K.-S.CHEN, J.-S. SUN Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 20 (1999) 1807-1813
- 1.17 P.V. RIBOUD, Composition et stabilité des phaszs a structure d'apatite dans le système CaO-P₂O₅-oxyde de fer-H2O a haute température. Ann Chim., 8 (1973)381-390

- 1.18 C. SANTOS, A. PAZO, F. GUITIAN. Water vapour pressure influence on CaO-P₂O₅ système phase diagram. Materials in Clinical Applications (1995) 11-18
- 1.19 L. SUN, C.C. BERNDT, C.P.GREY. Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Materials Science and Engineering A 360 (2003) 70-84
- 1.20 S.R. RADIN, P. DUCHEYNE. Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect on in vitro stability. Journal of Materials Science : Materials in Medicine 3 (1992) 33-42
- 1.21 F. FAZAN, P.M. MARQUIS. Dissolution behavior of plasma-sprayed hydroxyapatite coatings. Journal of Materials Science : Materials in Medicine, 11 (2000) 787-792
- 1.22 disponible sur www.jointreplacement.com

CHAPITRE 2

PROCEDE DE TRAITEMENT LASER DE DEPOT D'HYDROXYAPATITE

2.1 TRAITEMENT LASER EN 2 ETAPES

Le dépôt laser en deux étapes consiste à un traitement laser d'un prédépôt (figure 2.1) [2.1]. Le prédépôt peut être obtenu par l'une des techniques de dépôts physiques. Par exemple, les revêtement PVD de Ag, Au, Pd, Sn et Ta sur les substrats de nickel ont été traités par laser Nd :YAG pulsé pour obtenir des alliages intermétalliques par alloying [2.2].

Fig. 2.1 Schéma du procédé de dépôt laser en deux étapes

Les prédépôts sont obtenus le plus souvent par projection thermique. Le traitement laser peut être réalisé en phase:

- solide;
- liquide ;
- gazeuse.

Le traitement laser en phase solide est réalisé pour les dépôts d'HA obtenus par projection par plasma afin d'augmenter le taux d'HA cristallin. Ce taux est réduit considérablement après projection [2.3]. Un autre exemple est le traitement du composite Al + SiC obtenu par HVOF. Ce dépôt a été soumis au traitement par choc laser qui a amélioré sa microstructure mais n'a pas amélioré sa résistance à l'usure [2.2].

Le traitement laser en phase liquide, parfois appelé fusion laser ou vitrification laser (*laser glazing*), est actuellement la technique la plus populaire. Ce traitement a été appliqué aux métaux, alliages, céramiques et composites projetés dans le but d'augmenter la résistance à l'usure, le résistances aux corrosion et friction [2.4, 2.5].

Le traitement laser en phase gazeuse concerne surtout la gravure pour la préparation des *rouleaux anilox* ou pour augmenter de l'émission d'électrons de la surface [2.6].

2.2 TRAITEMENT PAR LASER : LES FONDEMENTS PHYSIQUES

2.2.1 Chauffage

Plusieurs phénomènes se rapportant au transfert de l'énergie de laser à solide apparaissent lors le traitement de la surface par laser. On peut distinguer la réponse thermique et la réponse cinétique du solide à l'énergie laser. Ici, l'attention est focalisée sur les phénomènes thermiques. Dans ce cas, le solide absorbe la radiation de laser comme suit :

$$\varepsilon + R_{\rm o} = l \tag{2.1}$$

où ε est l'émissivité et R_0 est la réflectivité.

Le matériau absorbe la radiation en fonction de la longueur d'onde. Le coefficient d'absorption est défini comme :

$$\alpha = -\frac{l}{x \ln\left(\frac{I}{Io}\right)}$$
(2.2)

où I_o est l'intensité de la radiation incidente et I est l'intensité transmise sur le matériau avec l'épaisseur x. La profondeur nécessaire pour l'affaiblissement de la radiation incidente est

$$l = \alpha^{-1} \tag{2.3}$$

Dans le cas de la radiation infrarouge, l'absorption implique des modes vibrants de la maille cristalline ou des vibrations intermoléculaires dans les solides organiques. Le coefficient d'absorption 10⁴-10⁶ m⁻¹ est typique pour ces bandes. Dans le cas de la radiation visible, l'absorption peut être induite par les impuretés (les ions du métal de transition, les imperfections de réseau cristallin). L'absorption peut être induite par les transitions électroniques discrètes.

L'absorption de la radiation laser par un solide est équivalente à la formation d'une source thermique dans la surface ou dans le volume de matériau. La réponse du matériau peut être calculée sur la solution de l'équation de propagation tridimensionnelle de la chaleur. Dans la plupart des cas, le problème de conductance thermique est unidimensionnelle: c'est-à-dire que les dimensions transversales de la zone affectée thermiquement par le traitement laser sont insignifiantes en comparaison de sa profondeur. Dans ce cas, l'équation de propagation de la chaleur peut être présentée comme :

$$\frac{\partial^2 T(z,t)}{\partial z^2} - \left(\frac{1}{a}\right) \frac{\partial T(z,t)}{\partial t} = -\frac{A(z,t)}{\lambda}$$
(2.4)

où T est la température en fonction de la position z (profondeur) et du temps t, a - la diffusion thermique, $\lambda - la$ conductivité thermique et A - le taux de la production de chaleur par l'unité du volume par l'unité du temps en fonction du temps et de la position. La condition initiale est T(z, 0)=0. Les conditions limites sont : quand $z=\infty$, la température $T(\infty, t)=0$ et il y a pas l'écoulement de chaleur sur la surface z=0.

Pour le laser continu, la perte de la chaleur de la surface induite par la radiation et convection doit être inclue pour bien estimer la distribution de la température. Pour le laser à impulsion, la chaleur est limitée dans la petite aire et les pertes de la surface sont insignifiantes en comparaison de la radiation incidente dans cette aire. Mais après l'absorption de la chaleur de longue durée, la grande aire devient plus chaude ce que assure l'augmentation de la perte de chaleur.

La solution de ce problème devient plus difficile. Pour représenter la perte par la convection, le transfert de la chaleur de la surface peut être calculé par le terme linéaire inséré dans les conditions limites pour l'écoulement de chaleur dans la surface. L'analyse détaillée de tous les problèmes pratiques du traitement par laser demande l'application des calculs numériques.

Fig. 2.2 Modèle unidimensionnel du chauffage sans le changement des phases

Selon l'approximation, la cible peut être admise comme le solide semi-infini qui interagit avec le faisceau incident du laser. L'écoulement de chaleur à z=0 est la fonction du temps. La température initiale est égale à T_o=298 K. Le modèle correspondant est présenté dans figure 2.1. Ici, I_o est la puissance maximale par unité de surface du faisceau incident du laser et τ est la durée d'impulsion [2.7]. La température à $0 < t < \tau$ est

$$T(z,t) = \frac{2\varepsilon I_o}{\lambda} (at)^{\frac{1}{2}} i erfc \left[\frac{z}{2(at)^{\frac{1}{2}}} \right] + T_o$$
(2.5)

Cette température dans la surface (quand z=0) est :

$$T(0,t) = \frac{2\varepsilon I_o}{\lambda} \left(\frac{at}{\pi}\right)^{\frac{1}{2}} + T_O$$
(2.6)

Pour $t > \tau$:

$$T(z,t) = \frac{2Ioa^{\frac{1}{2}}}{\lambda} \left[t^{\frac{1}{2}} ierfc \frac{z}{2(at)^{\frac{1}{2}}} - (t-\tau)^{\frac{1}{2}} ierfc \frac{z}{2(a(t-\tau))^{\frac{1}{2}}} \right]$$
(2.7)

,

où ierfc(x) est la fonction intégré complémentaire de la probabilité de Gauss.

2.2.2 Fusion

La fusion provoquée par traitement laser est intéressante pour le soudage des matériaux différents ou pour leur chauffage. Dans la dernière application, il faut exclure l'évaporation. Le processus avec la fusion sans évaporation peut être réalisé dans les conditions (surtout puissance) de traitement laser très optimisé. La puissance du laser doit être assez grande pour augmenter la température de la surface au-dessus de la température de fusion. Si, la puissance est trop grande, la surface commencera à s'évaporer avant que l'interface entre le matériau fondu et le matériau solide avance en profondeur dans l'échantillon. Ainsi, on peut voir que la puissance est un paramètre clé du processus.

Pour les calculs de l'épaisseur de la couche fondue, en première estimation, on peut utiliser les équations (2.5) et (2.6). Sachant que la chaleur de fusion est absorbée dans le front mobile, cela peut influencer la linéarité du problème et de sa solution. C'est pourquoi, pour la petite valeur de la chaleur latente de la fusion, les calculs simples de la profondeur de la fusion, sont parfois erronés. En plus, pour simplifier les calculs, on admet souvent qu'il n'y a pas de différence dans les propriétés thermiques entre le matériau fondu et solide.

L'équation unidimensionnelle du flux de chaleur peut être résolue dans les deux régions, fondue et solide, avec la conservation d'énergie dans le front mobile :

$$\lambda_s \frac{\partial T_s}{\partial x} - \lambda_f \frac{\partial T_f}{\partial x} = L_f \frac{dX(t)}{dt}$$
(2.8)

où X(t) est la position du front au temps t, L_f est la chaleur latente de fusion par unité de masse, λ est la conduction de chaleur. L'indice s indique le solide et f - la liquide ou fondu. Dans le front, la température est égale à la température de fusion T_f . Quand

la température de la surface atteinte la température de la fusion, la région fondue apparaît et avance en profondeur avec la vitesse

$$v_f = \frac{\varepsilon I_o}{L_f + \rho C T_f} \exp\left(-\frac{v_f \Delta}{a}\right)$$
(2.9)

ici Δ est l'épaisseur de la couche fondue et v_f en *m/sec* la vitesse du mouvement du front de fusion, *C* - sa capacité calorifique et ρ - sa densité. Le modèle est présenté en figure 2.3. Il est possible de remplacer le terme exponentiel par sa valeur approchée. Pour le $v_m \Delta/2k\ll 1$ la vitesse

$$v_f^* = \frac{\varepsilon I_o}{L_f + \rho C T_f} \tag{2.10}$$

où le v_{f}^{*} est la vitesse maximale du front de fusion. L'épaisseur de la couche fondue dans ce cas est

Fig. 2.3 Modèle unidimensionnel du chauffage avec la fusion

Quand le front de fusion avance dans le solide, la température du matériau fondu augmente à cause de l'absorption de la chaleur sur la surface en contact avec la lumière de laser. Si la radiation incidente est suffisante, la température peut atteindre la température d'évaporation, T_v , ou la dépasser. La vitesse d'évaporation pour $T=T_v$ peut être présentée comme :

$$v_{\nu} = \frac{\varepsilon I_o}{L_{\nu} + \rho C T_{\nu}} \tag{2.12}$$

où L_v est la chaleur latente de l'évaporation et tous les composants ont les mêmes unités comme dans l'équation pour $v_f(2.9)$

2.2.3 Evaporation

Les facteurs dominants déterminant l'évaporation du matériau lors du traitement par laser, sont la chaleur latente de l'évaporation et la conductivité thermique du maté-

(2.11)

riau. Le facteur de la chaleur latente de l'évaporation est plus important dans le cas où l'énergie est livrée assez rapidement. Dans ce cas, un peu d'énergie peut être transféré de la région de déposition dans la profondeur de la matière. Dans le cas de faible flux de chaleur, la quantité du matériau évaporée dépend plus de la conductivité thermique que de la chaleur latente d'évaporation. Dans un régime à basse énergie, la conductivité thermique mène à un plus grande extraction de chaleur en profondeur et moins de matériau est évaporé. Comme la densité de flux de chaleur augmente, l'énergie est livrée à la surface trop vite pour être transférée dans la profondeur et la chaleur latente de l'évaporation devient dominante.

L'équation unidimensionnelle du flux de chaleur peut être utilisée pour le calcul de la profondeur d'évaporation. La température de la surface augmente jusqu'à la température d'évaporation au temps t_y :

$$t_{\nu} = \left(\frac{\pi}{4}\right) \left(\frac{\lambda \rho C}{I^2}\right) (T_{\nu} - T_o)^2$$
(2.13)

Quand le matériau est exposé à la radiation laser et commence à s'évaporer après le temps de t_v , l'intensité de l'élimination de matériau atteint l'état stable qui peut être exprimé comme

$$v_{vl} = \frac{\varepsilon I_o}{L_v + \rho C(T_v - T_o)}$$
(2.14)

où le v_{vl} est la vitesse d'interface vapeur-liquide. La profondeur d'évaporation peut être exprimée en fonction du temps par l'équation (2.13). Cette simplification adopte l'impulsion laser homogène en temps. Lors du traitement de longue durée, la vitesse atteint la condition stable.

La profondeur d'évaporation peut être calculée par la méthode numérique par les équations montrées ci-dessus à partir de t_v jusqu'à la fin de l'impulsion. Ce qui donne la quantité de matériau évaporé en fonction de l'énergie totale de laser.

2.3. TRAITEMENT LASER DE DEPOT HA

Le dépôt d'HA projeté par plasma a une microstructure complexe. Il contient la phase cristalline (HA), les phases cristallines métastables (TTCP, TCP, CaO) et la phase amorphe. La formation des phases métastable et la phase amorphe font baisser les propriétés bioactives du revêtement d'HA.

Certaines études montrent que les atomes et les ions de la phase amorphe sont prêts à retourner à l'état cristallin, dans certains conditions [2.8]. Le traitement thermique et, en particulier, le traitement par laser est une de méthodes de la recristallisation de la phase amorphe [2.9, 2.10, 2.11, 2.12]. L'application du laser a l'avantage de traiter thermiquement la couche d'HA sans que le substrat soit chauffé [2.11]. De plus, en faisant varier les paramètres de traitement, il devrait être possible d'obtenir un taux de cristallisation contrôlé [2.3, 2.13], changer la composition de phase dans le dépôt [2.13, 2.14] et la structure de dépôt [2.12].

Le laser peut réaliser deux types de post-traitement. Le premier, c'est le traitement de dépôt avec la puissance de laser suffisamment élevée pour assurer la fusion de sa surface. Dans ce cas, la couche fondue se forme sur la surface du revêtement. Elle solidifie vite et rend la surface lisse. Le traitement dans ces conditions provoque la formation de fissures, qui peuvent affaiblir les propriétés mécaniques de dépôt, et, par la suite, peuvent être néfaste pour tout le revêtement [2.11, 2.12, 2.14]. Ces fissures se forment à cause d'un grand gradient de température et de tension résiduelle thermique qui se développe dans le dépôt après le traitement laser. La profondeur des fissures augmente avec la hausse de la température. De plus, il y a modification du volume, la densification induite par la solidification de la couche fondue et par le frittage. Les pores apparaissent sur la surface traitée par laser à cause de la libération de gaz emprisonné avant la solidification de la zone fondue et ils peuvent assurer la croissance de l'os. Malheureusement, la formation des ces structures s'accompagne par la formation de fissures, qui font baisser la rigidité de dépôt.

L'épaisseur de la couche fondue, qui correspond au bain de matériau fondu, dépend de la puissance de l'impulsion laser, du diamètre de la tache laser et du recoupement de tache.

Le deuxième type du traitement par laser est le traitement de dépôt par laser à puissance faible qui suffit à assurer la transformation des phases. Le traitement dans ces conditions, est caractérisé par la modification minimale de surface. Il assure la transformation des phases sans la formation de pores et de fissures sur la surface, ainsi que l'augmentation de la cristallinité de la couche traitée. Ces modifications ressemblent aux modifications apparues lors du traitement thermique. Mais dans ce cas, la cristallinité du revêtement augmente après le traitement aux températures de 600, 700, 800°C pendant 1 heure [2.15]. De plus, ce traitement agit sur le revêtement entier, alors que le traitement par laser peut modifier les zones sélectionnées avec le contrôle de la résolution spatiale.

Dans la recristallisation de la phase amorphe, l'augmentation de la cristallinité commencent entre 1170 et 1400 K et est accompagnée par la formation de TTCP[2.14]. Si la température de surface atteint 1400°C, la fraction d'HA et la fraction de phase amorphe diminuent. Au contraire, la fraction de phases de décompositions, TCP et TTCP, augmente. Leur augmentation est provoquée par les deux types de processus. Le premier, la décomposition d'HA (ou des ses phases déshydratées) à haute température :

hydroxyapatite : $Ca_{10}(PO_4)_6(OH)_2 \rightarrow 2Ca_3(PO_4)_2 + Ca_4P_2O_9 + H_2O_4$

oxyhydroxyapatite: $Ca_{10}(PO_4)_6(OH)_{2-2x}O_x \square_x \rightarrow 2Ca_3(PO_4)_2 + Ca_4P_2O_9 + (1-x)H_2O_3(PO_4)_2 + (1$

oxyapatite: $Ca_{10}(PO_4)_6 O \rightarrow 2Ca_3(PO_4)_2 + Ca_4P_2O_9$

La deuxième réaction qui détermine l'augmentation des phases de décompositions, est la recristallisation de phase amorphe $(Ca_x(PO_4)_y)$:

$$aCa_x(PO_4)_y \rightarrow bCa_3(PO_4)_2 + cCa_4P_2O_9$$

On peut aussi distinguer le troisième type du traitement par laser : la gravure de la surface de dépôt d'HA qui peut être utilisée pour modifier la morphologie de la surface.

Les avantages du traitement par laser sont les suivants:

- La modification de la structure et de la composition des phases de la surface du revêtement sans l'influence du matériau sous-jacent du revêtement et du matériau de prothèse métallique ;
- Le traitement rapide et efficace;
- Le traitement modifie des zones sélectionnées contrôlées avec une bonne résolution spatiale.

Pour les revêtements d'HA projetés par plasma le processus du traitement par laser peut suivre le processus de déposition de revêtement d'HA par projection. Cela peut être réalisé si la tâche du laser répète les mouvements ou suit la torche plasma (figure 2.4). Ainsi, le revêtement projeté peut être traité entièrement par laser. Espérons que la robotisation du traitement permettra d'appliquer cette technologie en industrie.

Fig. 2.4 Projection d'HA par plasma et le traitement par laser

Bibliography

- 2.1. L. PAWLOWSKI. The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, Angletere, 1995.
- 2.2 L. PAWLOWSKI, Dépôts Physiques: Techniques, Microstructures et Propriétés. Presses Polytechniques et Universitaires Romandes, Lausanne, Suisse 2003
- 2.3 L.PAWLOWSKI, H. RAPINEL, F.TOURENNE, M.JEANDIN. Traitement laser de dépôts plasma d'hydroxyapatite, Galvano-Organo-Traitements de Surface, (676) (1997) 433-9.
- 2.4 S.TONDU, T.SCHNICK, L.PAWLOWSKI, B. WIELAGE, S.STEINHAUSER, L.SABATIER. Laser glazing of FeCr-TiC composite coatings. Surface and Coatings Technology 123 (2000) 247-251

- 2.5 C.SREEDHAR, G.SANTHANAKRISHNAN, C.V. GOKULARATHNAM, R. KRISHNAMURTHY. Effect of processing parameters on the laser glazing of plasma-sprayed alumina-titania ceramic. Journal of Material Processing Technology 114 (2001) 246-51
- 2.6 Z.ZNAMIROWSKI, L.PAWLOWSKI, T.CICHY, W.CZARCZYNSKI. Low macroscopic field electron emission from surface of plasma sprayed and laser engraved TiO₂, Al₂O₃+13TiO₂ and Al₂O₃+40TiO₂ coatings. Surface and Coatings Technology 187 (2004) 37-46
- 2.7 H.S. CARSLAW, J.C.JAEGER. Conduction of Heat in Solids. Oxford University Press, Oxford, Angleterre, II edition, 1953
- 2.8 J. WENG, Q.LIU, J.G.C. WOLKE, K DE GROOT. The role of amorphous phase in nucleating bone-like apatite on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Journal of Materials Science Letters. 16 (1997) 335-337
- 2.9 J. CHEN, W.TONG, Y.CAO, J.FENG, X.ZHANG. Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. Journal of Biomedical Materials Research. 34 (1997) 15-20
- 2.10 Z.ZYMAN, J.WENG, X. LIU, X.LI, X.ZHANG. Phase and structural changes in hydroxyapatite coatings under heat treatment. Biomaterials 24 (1993) 578-82
- 2.11 B. FEDDES, A.M. VREDENBERG, M. WEHNER, J.C.G. WOLKE, J.A. JANSEN. Laser-induced crystallization of calcium phosphate coatings on polyethylene (PE). Biomaterials. Article in press disponible sur le site internet ScienceDirect.
- 2.12 P.CHEANG, K.A.KHOR, L.L. TEOH, S.C.TAM. Pulsed laser treatment of plasma sprayed hydroxyapatite coatings. Biomaterials 17 (1996) 1901-4.
- 2.13 K.A. KHOR, A. VREELING, Z.I. DONG, P.CHEANG. Laser treatment of plasma sprayed HA coatings. Materials Science and Engineering A266 (1999) 1-7
- 2.14 X.RANZ, L.PAWLOWSKI, L.SABATIER, R.FABBRO, T.ASLANIAN Phases transformation in laser treated hydroxyapatite coatings [dans:] Thermal Spray: meeting the challenges of the 21st century, ed. C. Coddet, ASM International, Materials Park, Ohio, USA, 1998, p. 1337-43.
- 2.15 S.W.K.KWEH, K.A.KHOR, P.CHEANG. Plasma-sprayed hydroxyapatite coatings with flame-spheroidized feedstock : microstructure and mechanical properties. Biomaterials 21 (2000) 1223-1234

Codes de calculs

CHAPITRE 3

CODES DE CALCUL NUMERIQUE UTILISES POUR MODELISER LES PHENOMENES DE PROJECTION PLASMA ET TRAITEMENT LASER

La modélisation du procédé de la projection par plasma contient plusieurs problèmes indépendants tels que:

- la détermination des propriétés thermophysiques du gaz plasmagène ;
- l'injection des particules ;
- l'échange de quantité de mouvement et de chaleur entre le plasma et les particules dans la flamme du plasma, ;
- la formation du dépôt sur le substrat.

Les logiciels utilisés dans l'étude présentée permettent de résoudre ces problèmes. Par exemple, les logiciels Jets et Poudres 2004 et T&TWinner, développés dans l'université de Limage dans l'équipe de Professeur B.Pateyron, permettent de résoudre les problèmes se rapportant aux propriétés du gaz plasmagène: la densité, la viscosité, la capacité de chaleur et la conductance thermique du gaz plasmagène et les champs de vitesses et de températures de la flamme du plasma [3.4, 3.8]. A son tour, le logiciel numérique Plasma 2000, développés dans ENISE dans l'équipe de Professeur I. Smurov, permet de résoudre le problème de l'injection des particules et, en utilisant les données reçues des logiciels précédents, les problèmes d'échange de quantité de mouvement et de chaleur entre le plasma et les particules [3.1]. Les résultats de modélisation à l'aide du code Plasma 2000 introduit dans le Coating 2000, développés dans l'université de Shelfield dans l'équipe de Professeur J. Harding, [3.2], permettent de faire la modélisation de la formation du dépôt sur le substrat. Le logiciel Fusion-2D, développés dans ENISE dans l'équipe de Professeur I. Smurov, [3.3] permet de faire la modélisation de la procédure du traitement par laser, ce qui permet d'obtenir les valeurs de l'épaisseur de la couche fondue et de la zone affectée thermiquement. La figure 3.1 présente la structure de la modélisation des procédures de la projection par plasma et du traitement par laser.

Codes de calculs

Fig. 3.1 Structure de la modélisation des procédures de la projection par plasma et du traitement par laser

3.1 MODELISATION DES PROPRIETES THERMOPHYSIQUES DU PLASMA : CODES NUMERIQUES JETS_ET_POUDRES_2004 ET T&TWINNER

Les propriétés du plasma, comme les champs de vitesse et de température, ont été déterminés sur le logiciel numérique $Jets_et_Poudres 2004$ [3.4] développé à la base du code GENMIX [3.5]. Le code GENMIX utilise la méthode de *Patankar-Spalding* [3.6, 3.7]. Le *GENMIX* décrit le flux parabolique dimétrique, qui est libre des recirculations. Ces recirculations sont caractérisées par les nombres de *Reynolds* (*Re*) et de *Peclet* (*Pe*) de valeurs très élevées. Les propriétés du jet du plasma peuvent être modelées par ce flux parabolique. Les données initiales pour le *GEMNIX* sont :

- le débit et la nature du gaz plasmagène;
- la nature de l'atmosphère ambiante autour de la flamme du plasma;
- l'intensité du courant ;
- la puissance de l'arc de la torche.
- L'efficacité du transfert de l'énergie électrique au gaz plasmagène.

Au début, le logiciel calcule l'enthalpie pour le taux d'efficacité du transfert de la puissance électrique et du débit massique. On obtient la température du gaz du plasma. Après, à partir de cette température, le volume spécifique du gaz et sa vitesse moyenne sont déterminés. Le profil radial uniforme de la température et de la vitesse est trouvé dans la sortie de la torche du plasma. Le mélange du plasma avec l'air et le refroidissement par le gaz d'atmosphère ambiante sont utilisés pour obtenir les profils des températures et des vitesses finales.

Les propriétés thermodynamiques et les propriétés de transport du gaz plasmagène (la viscosité, la conductivité thermique, la densité, capacité thermique selon la température à partir 300K jusqu'à 15 000K) proviennent de la base des donnée *T&TWinner* [3.8].

3.2 MODELISATION DU TRANSFERT DE QUANTITE DE MOUVEMENT ET DE CHALEUR ENTRE LE PLASMA ET PARTICULE: CODE *PLASMA 2000*

Le logiciel *Plasma 2000* résout les problèmes dynamiques et le problème du transfert de la chaleur. Il contient deux modèles: le modèle du mouvement de la particule dans le flamme du plasma et le modèle du transfert de la chaleur entre la particule et le gaz plasmagène. Ces modèles résolvent les problèmes suivants:

- Le problème dynamique (le calcul de la trajectoire et de la vitesse);
- Le problème d'échange de quantité de chaleur entre le gaz et la particule;
- Le problème de la conductance thermique dans la particule tenant compte du changement des phases: la fusion et la solidification d'une particule;
- Le problème d'évaporation.

3.2.1 Problème dynamique

Les hypothèses suivantes sont incluses dans le modèle présenté:

- la particule a une forme sphérique;
- il n'y a pas d'interaction ni de collision entre les particules.

Une particule introduite au sein du plasma est soumise à la somme des forces: la force de thermophorése, la force gravimétrique, la force aérodynamique de flux... Dans le logiciel *Plasma 2000*, seules les forces gravimétrique et aérodynamique de flux sont prises en considération parce que les autres forces sont insignifiantes en comparaison des forces indiquées. Dans ce cas, l'équation de dynamique des particules peut être écrite comme par les équations (1.6) et (1.7). Dans notre exemple, le champ des vitesses est pris à partir des résultats de la modélisation exécutée par le *Jets_et_Poudres_2004*. Les expressions pour les calculs de C_D dépendent du nombre de *Reynold* et sont décrites dans un *Chapitre1*. Tableau 1.1. Dans le modèle l'équation (3.1) et C_d ont été résolues sur la méthode de *Runge-Kutta* de quatrième ordre.

3.2.2 Problème d'échange de quantité de chaleur entre le gaz et la particule

Seule un mécanisme d'échange de quantité de chaleur entre le gaz du plasma et la surface d'une particule est admis dans le modèle: le mécanisme convectif. Il se présente comme:

$$Q = Nu \cdot \lambda_g \cdot \frac{T_g - T_{ps}}{\pi d_p}, \qquad (3.1)$$

où *Nu* est le nombre de *Nusselt*; λ_{g} est la conductivité thermique du gaz; T_{ps} – la température de la surface de la particule;

 $T_g(X, Y)$ – la température de l'atmosphère ambiante. Il y a plusieurs approximations du nombre de *Nusselt* pour les différents *Re*:

$$Nu = 2 + 0.6 \, Re^{0.5} \, Pr^{0.33} ; \quad Re < 2 \tag{3.2}$$

$$Nu = 1.05 \ Re^{0.5} \ Pr^{0.3} \ ; \quad 2 < Re < 500 \tag{3.3}$$

où Pr est le nombre de *Prandtl*. L'équation (3.2) est l'expression bien connue de *Ranz-Marshall*. L'équation (3.3) est une approximation expérimentale pour le flux dans la condition de la turbulence.

. .

- -

3.2.3 Problème de la conductance thermique dans une particule

Il y a deux stratégies générales pour résoudre l'équation de la conduction de chaleur avec la transformation des phases dans la particule. La première, base sur la formulation enthalpique du problème du changement des phases [3.9]. La position d'interface n'apparaît pas dans le calcul. La fonction enthalpique est appliquée pour calculer le changement des phases. L'avantage le plus important de cette méthode est sa simpli-

Codes d	le ca	lculs
---------	-------	-------

cité. Il est possible de déterminer la position d'interface sans l'exactitude d'une cellule du calcul. Ce que correspond seulement à un premier degré d'exactitude. La deuxième méthode, réalisée dans le code *Plasma 2000*, base sur la définition explicite de l'interface positions [3.10]. Cette méthode est plus précise, mais elle demande la poursuite d'interface (*interfaces tracking*). Il y a plusieurs états de phases lors du chauffage, du refroidissement et de la solidification de la particule dans la flamme du plasma (figure 3.2): l'état Solide (stades I, IV, VII, X,), l'état Solide - Liquide (avec les interfaces du chauffage et de l'évaporation, stades II, V), l'état Liquide (l'interface d'évaporation, stade VIII), l'état Solide – Liquide - Solide (les interfaces de la fusion et du refroidissement/solidification, stades III et VI), l'état Liquide - Solide (l'interface du refroidissement/solidification, stade IX). Chaque état demande ses propres définitions et solutions mathématiques du problème.

3.2.3.1 Conduction thermique dans la phase solide (S)

Il est possible de désigner les 4 stades de la particule dans l'état solide: le stade I, la particule se chauffe jusqu'à la température de la fusion; le stade IV - la particule refroidit et se solidifie après être partiellement fondue et évaporée – stades VII et X.

Pour résoudre le problème de la conduction thermique, il est plus facile d'utiliser les coordonnées sphériques. Dans ce cas le champ de température dépend seulement des coordonnées radiales et l'équation de la conductance thermique est unidimensionnel (on admet que le flux de chaleur soit uniforme). Pour la phase solide le problème mathématique peut être décrit comme:

$$T(r,0) = T_0 = 300K; \quad r \in [0;r_p]$$
 (3.4)

$$\frac{\partial T}{\partial r} = 0; \quad r = 0 \tag{3.5}$$

$$\frac{\partial \rho_p(T_s)H_p(T_s)}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \lambda_s(T_s) \frac{\partial T_s}{\partial r}) \quad r \in (0; r_p)$$
(3.6)

$$-\lambda_{S} \frac{\partial T_{S}}{\partial r} = Q(T_{S}) \quad r = r_{0} , \qquad (3.7)$$

où t est le temps; r est le radius; $T_{\rm S}(r,t)$ est la distribution de la température dans la phase solide, $H_p(T)$ est l'enthalpie du matériau de la particule $H_p(T) = \int C_p(T) dT$; $C_p(T)$ est la capacité thermique; $\lambda_{\rm S}(T)$ est la fonction de la conductance thermique pour la phase solide; la fonction Q(T) est le flux d'énergie à travers de la surface de la particule, calculée par l'équation (3.1). La conductance thermique et la capacité thermique dépendent de la température à cause de la grande variation de la température lors de la projection par plasma.

Fig. 3.2 Différents états apparaissant lors du mouvement de la particule dans la flamme du plasma [3.11].

L'expression (3.4) représente les conditions initiales. La condition (3.5) part de la symétrie de la particule. L'expression (3.6) est l'équation de la conductance thermique dans la phase solide (on admet que la particule a une forme sphérique). L'équation (3.7) est la condition limite dans la surface de la particule, qui entraîne le flux d'énergie Q sur la surface de la particule (3.1).

3.2.3.2 Conductivité thermique dans la phase solide – liquide (S-L)

Dans le cas de la phase S-L, le problème de Stefan est résolu par la distinction des deux fronts mobiles. Il y a le front fondu γ (qui sépare le phase liquide et le phase solide) et le front d'évaporation ξ . La description du problème dans ce cas peut être écrite comme:

$$T_{S}(r,t_{SLinit}) = T_{SLinit} \quad r \in [0;\gamma]; \quad T_{L}(r,t_{SLinit}) = T_{SLinit} \quad r \in [\gamma;\xi] \quad (3.8)$$

$$\frac{\partial T_s}{\partial r} = 0 \quad r = 0 \tag{3.9}$$

$$\frac{\partial \rho_p(T_s)h(T_s)}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \lambda_s(T_s) \frac{\partial T_s}{\partial r} \right) \quad r \in (0; \gamma)$$
(3.10)

$$T_{S}(\gamma,t) = T_{L}(\gamma,t) = T_{f}$$
(3.11)

$$\frac{\partial \rho_p(T_L)h(T_L)}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \lambda_L(T_L) \frac{\partial T_L}{\partial r} \right) \quad r \in (\gamma; \xi)$$
(3.12)

$$\rho_p L_v \frac{d\xi}{dt} = \lambda_L \frac{\partial T_L}{\partial r} + Q(T_L) \quad r = \xi$$
(3.13)

40

$$\rho_{p}L_{f} \frac{d\gamma}{dt} = \lambda_{s} \frac{\partial T_{s}}{\partial r} \bigg|_{r=\gamma+0} - \lambda_{L} \frac{\partial T_{L}}{\partial r} \bigg|_{r=\gamma-0}$$
(3.14)

$$\frac{d\xi}{dt} = f(T_{SP}) \tag{3.15}$$

où: $T_{\rm S}(r,t)$, $T_{\rm L}(r,t)$ sont les températures des phases solide et liquide; γ, ξ sont les coordonnées des fronts de la fusion et de l'évaporation; $\rho_{\rm p}$ est la densité de la particule dans le point de fusion; $\lambda_{\rm S}$, $\lambda_{\rm L}$ sont la conductance thermique des phases solide et liquide; $L_{\rm v}$ est la chaleur latente de l'évaporation; $T_{\rm f}$ le point de la fusion, la température de la fusion; $T_{\rm sp}$ est la température de la surface; $T_{\rm SLinit}$ le champ de la température de la particule dans le temps initial dans les calculs du schéma de la phase S-L; $t_{\rm SLinit}$ est le temps initial dans les calculs du schéma de la phase S-L.

L'interface d'évaporation $\xi(t)$ et l'interface solide - liquide $\gamma(t)$ divisent le domaine du calcul en deux parties : le calcul dans la partie de la particule avec la phase solide [0; γ] (entre le centre de la particule et le front de la fusion) et le calcul dans la partie de la particule avec la phase fondue [γ ; ξ] (entre le front de la fusion et le front de l'évaporation).

Les expressions (3.10) et (3.12) sont les équations de la conductance thermique dans les phases solide et liquide, décrites dans la géométrie sphérique (on admet que la particule a une forme sphérique). La température dans l'interface solide – liquide est toujours constante et équivalente à $T_f(3.11)$. L'équation (3.14) représente la condition limite de *Stefan* dans l'interface solide – liquide. L'équation (3.13) est la condition limite dans la surface de la particule. L'équation (3.15) représente la loi de l'évaporation selon la température de la surface de la particule. La condition (3.9) vient de la symétrie de la particule. Les expressions (3.8) représentent les conditions initiales pour les équations (3.9)-(3.15).

3.2.3.3 Conductivité thermique dans le cas de phases solide-liquide-solide (SLS)

Le problème de Stefan est résolu pour le cas de la phase S-L-S par la distinction des deux fronts mobiles: le front de la fusion γ (l'interface solide–liquide) et le front de la solidification γ_{ex} (l'interface liquide-solide). Le front extérieur ξ reste fixe. La représentation du problème dans ce cas peut être décrite comme:

$$T_{S}(r, t_{SLSinit}) = T_{SLSinit} r \in [0; \gamma]; \quad T_{L}(r, t_{SLSinit}) = T_{SLSinit} r \in [\gamma; \gamma_{ex}];$$

$$T_{S_{ex}}(r, t_{SLSinit}) = T_{SLSinit} r \in [\gamma_{ex}; \xi]$$
(3.16)

$$\frac{\partial T_s}{\partial r} = 0 \quad r = 0 \tag{3.17}$$

$$\frac{\partial \rho_p(T_S)h(T_S)}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \lambda_S(T_S) \frac{\partial T_S}{\partial r}) \quad r \in (0; \gamma)$$
(3.18)

Codes de calculs

$$T_{\mathcal{S}}(\gamma, t) = T_{\mathcal{L}}(\gamma, t) = T_{m}$$
(3.19)

$$\frac{\partial \rho_{p}(T_{L})h(T_{L})}{\partial t} = \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} \lambda_{L}(T_{L}) \frac{\partial T_{L}}{\partial r}) \quad r \in (\gamma; \gamma_{ex})$$
(3.20)

$$T_{S}(\gamma_{ex},t) = T_{L}(\gamma_{ex},t) = T_{m}$$
(3.21)

$$\frac{\partial \rho_p(T_{S_{ex}})h(T_{S_{ex}})}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \lambda_s(T_{S_{ex}}) \frac{\partial T_{S_{ex}}}{\partial r}) \quad r \in (\gamma_{ex}; \xi) \quad (3.22)$$

$$\lambda_{S} \frac{\partial T_{S_{ex}}}{\partial r} = Q(T_{S}) \quad r = \xi$$
(3.23)

$$\rho_{p}L_{f}\frac{d\gamma}{dt} = \lambda_{s}\frac{\partial T_{s}}{\partial r}\Big|_{r=\gamma-0} - \lambda_{L}\frac{\partial T_{L}}{\partial r}\Big|_{r=\gamma+0}$$
(3.24)

$$\rho_{p}L_{f} \frac{d\gamma_{ex}}{dt} = \lambda_{S} \frac{\partial T_{S}ex}{\partial r} \bigg|_{r=\gamma_{ex}+0} - \lambda_{L} \frac{\partial T_{L}}{\partial r} \bigg|_{r=\gamma_{ex}-0}$$
(3.25)

où $T_{SLSinit}$ le champ de la température de la particule dans le temps initial dans le calcul du schéma de la phase S-L-S; $t_{SLSstart}$ est le temps initial dans le calcul du schéma de la phase S-L-S.

3.2.4 Problème d'évaporation

3.2.4.1 Evaporation avec la pression inversée

L'évaporation de la particule influe sur le chauffage de la particule. En outre, la diminution du diamètre de la particule à cause de l'évaporation provoque les changements de la trajectoire et de l'accélération de la particule. Dans le code *Plasma 2000*, on utilise le modèle de l'évaporation de la surface avec la pression en sens inverse. Le modèle se base sur la conservation de la masse, du moment et de l'énergie en travers de la couche mince de *Knudsen*. Dans ce cas le changement de la condition pour la couche de *Knudsen* peut être décrit comme:

$$\begin{cases} \frac{P}{P_{S}} = \sqrt{\frac{T}{T_{S}}} \left[\left(\beta^{2} + 0, 5\right) e^{\beta^{2}} \operatorname{erfc}(\beta r - \frac{\beta}{\sqrt{\pi}} \right] + \frac{1}{2} \left(1 - \sqrt{\pi} \beta e^{\beta^{2}} \operatorname{erfc}(\beta r) \right) \\ \frac{T}{T_{S}} = \left[\sqrt{1 + \pi \left(\frac{\chi - 1}{\chi + 1} \cdot \frac{\beta}{2} \right)^{2}} - \sqrt{\pi} \frac{\chi - 1}{\chi + 1} \cdot \frac{\beta}{2} \right]^{2} \end{cases}$$
(3.26)

où χ est la ratio de la capacité de la chaleur spécifique ($\chi = 5/3$ pour le gaz monatomique); P est la pressure du gaz; P_s est la pression du vapeur saturée (elle peut être mesurée ou calculée sur l'équation de *Clausius-Clapeyron* (3.27); β la vitesse adimensionnelle de l'évaporation $M = u/\sqrt{\chi RT} = \beta \sqrt{2/\chi}$; M est le nombre de *Mach*; uest la vitesse locale du flux en dehors de la couche de *Knudsen*. L'équation (3.26) est applicable seulement si le flux en dehors de la couche de *Knudsen* est subsonique. Le nombre de *Mach* ne peut pas être supérieur à 1.

$$P_{s} = P_{0} \cdot exp\left(\frac{Q_{v}}{kT_{v}} - \frac{Q_{v}}{kT_{sp}}\right)$$
(3.27)

Pour la particule sphérique, la diminution du radius à cause de l'évaporation peut être écrit comme:

$$\begin{cases} \frac{dr_p}{dt} = \sqrt{\frac{2R}{T_s}} \frac{\beta P_s \mu}{\rho_p k}, & M \leq 1; \\ \frac{dr_p}{dt} = \sqrt{\frac{R\chi}{T_s}} \frac{P_s \mu}{\rho_p k}, & M = 1 \end{cases}$$
(3.28)

où T et β sont pris de (3.26); ρ_p est la densité du matériau de la particule; μ est la masse moléculaire de la particule, k – la constante de *Boltzmann*.

3.2.4.2 Evaporation dans le vide

Le modèle de l'évaporation réalisé dans le *Plasma 2000* est le modèle d'évaporation dans le vide (loi de *Hertz-Knudsen*). Dans ce cas la vitesse du mouvement du front de l'évaporation est

$$\frac{dr_{p}}{dt} = \frac{V_{*}}{T_{PS}^{0.5}} \exp\left(-\frac{T_{*}}{T_{PS}}\right)$$
(3.29)

$$V_{*} = \frac{P_{\nu}}{2\rho (2\pi k/\mu)^{0.5}} \exp\left(\frac{T_{*}}{T_{\nu} (k/\mu)}\right)$$
(3.30)

$$T_* = \frac{L_\nu}{k\mu} \tag{3.31}$$

où T_v est la température de l'évaporation ; L_v est la chaleur latente de l'évaporation ; T_{ps} est la température de la surface de la particule.

3.3 MODELISATION DE CROISSANCE DU DEPOT AVEC LE CODE COATING 2000

3.3.1 Modélisation de la formation de la lamelle

Le revêtement est construit de particules individuelles qui s'écrasent sur le substrat. Les particules arrivant sur le substrat sont fondues entièrement ou partiellement. Les particules solides sautent de la surface ou restent accrochés faiblement au substrat. Les particules fondues se déforment en lamelles. La formation des lamelles de types différents dépend de la vitesse de particule en impact et du contact de chaleur entre la surface du substrat et la lamelle [3.12,]. La particule fondue ayant une faible vitesse en s'écrasant sur le substrat et forme la lamelle en forme de disque (crêpe). Dans le cas de haute vitesse de la particule fondue, le liquide peut gicler et former la lamelle en forme de fleur. La cause de ce phénomène est une tension insuffisante de la surface pour conserver entièrement la lamelle [3.11].

Pour résoudre le problème de l'impact de la particule liquide avec la surface froide dans la modélisation, le logiciel *Coating 2000* utilise le modèle de la formation de lamelle selon *Madejski*. Dans ce modèle de la formation de lamelle, Madejski a fait plusieurs simplifications [3.12, 3.13]:

- l'énergie cinétique de la particule se transforme en dissipation visqueuse et change la forme de la lamelle selon la tension de la surface;
- la particule forme un disque cylindrique fin;
- le flux de chaleur est partout normal à la surface;
- la distribution simple des vitesses satisfait à l'équation de continuité.

La surface couverte par la particule fondue avec le diamètre d_p peut être calculée par le ratio

$$\varsigma = \frac{2}{d_p} \sqrt{\frac{A}{\pi}} = \frac{D}{d_p}$$
(3.32)

A est la surface couverte par une lamelle liquide avec le diamètre D.

La valeur ς est la fonction du nombre de *Reynolds* et du nombre de *Weber*, déterminées comme:

$$Re = \frac{\rho_l d_p v_p^2}{\eta_l} \tag{3.33}$$

$$We = \frac{\rho_l d_p v_p^2}{\sigma} \tag{3.34}$$

où ν est la vitesse de la particule avant l'impact, η_1 et ρ_1 sont le viscosité et la densité du matériau liquide et σ est le coefficient de la tension de la surface.

Le paramètre ς pour les différents *Re* et *We* dans l'étude de Madejski est montré dans le *Tableau 3.1.* :

Re	We	S		
Optional ∞		1,2941 (Re+0.9517) ^{0,2}		
>100	œ	1,2941 Re ^{0,2}		
>100 >100		$\frac{3\varsigma^2}{We} + \frac{1}{Re} \left(\frac{\varsigma}{1,2941}\right)^5 = 1$		
∞	>100	(We/3) ^{0,5}		

Tableau 3.1 Paramètre ξ pour décrir l'écrasement de particule liquide lors de l'impact avec le substrat selon Madejski

L'épaisseur de la lamelle p peut être trouvée, si on admet que le volume de la lamelle est égal au volume de la particule, selon l'équation:

$$p = \frac{2d_p}{3\varsigma^2} \tag{3.35}$$

Quand la particule s'étale en disque fin, elle se solidifie rapidement. Le refroidissement du disque se contrôle par le nombre de *Biot*, $Bi=p/(h_{rt} \lambda)$ où h_{rt} est la résistance thermique en travers de l'interface, p est l'épaisseur du disque et λ est la conductance thermique. On peut résoudre le problème de la solidification du disque comme le problème de *Stefan*:

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial^2 x} \qquad 0 < x < X(t) \tag{3.36}$$

$$T(0,x)-\psi\frac{\partial}{\partial x}T(0,x)=1; \quad T(X(t),x)=0$$
(3.37)

$$\frac{\partial}{\partial}T(X(t),x) = -\varphi \frac{dX}{dt}; \quad X(0) = 0$$
(3.38)

où x, X, t et T sont la distance adimensionnel, la position du front, le temps et la température. Les deux premiers paramètres sont adimensionnels par la division par la distance caractéristique b ($x=x^*/b$, $X=X^*/b$). Les définitions des deux derniers sont $t=\lambda t^*/\rho C^2$ (λ est la conductivité thermique, ρ - est la densité, C es la capacité thermique du solide) et $T=(T_f T_s)/(T_f T_0)$ (T_f le point de la fusion, T_s est la température du solide, T_0 est la température du substrat). Les constantes φ et ψ sont $L_f/C(T_f T_0)$ (L_f est la chaleur latente de la fusion) et $\lambda h_{rr}/p$, l'inverse du nombre de *Biot* discuté audessus. L'approximation utilisée dans plusieurs cas admis que le front bouge beaucoup moins rapide que la diffusion de la chaleur. Dans ce cas, l'approximation pseudo stationnaire, (3.36) est remplacée par l'équation suivante :

$$\frac{\partial^2 T}{\partial x^2} = 0; \quad 0 < x < X(t)$$
(3.39)

Cod	les	de	cal	lcui	ls

et on obtient :

$$T = \frac{X(t) - x}{X(t) + \psi} \tag{3.40}$$

$$t = \frac{\varphi}{2}X(X + 2\psi) \tag{3.41}$$

L'analyse de la dynamique et le processus thermique au moment de l'impact (figure 3.3a et figure 3.3b), l'aplatissement et la solidification des particules (figure 3.3c), montre que la possibilité d'interférence thermique entre les particules est improbable. Ainsi les calculs supposent que le temps de la solidification est inférieur au temps entre les arrivées des particules à ses endroits. Ce que justifie l'hypothèse de l'indépendance de la formation de chaque lamelle.

Fig. 3.3 Phases de la formation de lamelle: a-b. la déformation de particule au moment de l'impacte avec le surface; c. l'aplatissement de la particule en longueur de la surface et la formation de la lamelle, solidification de la lamelle ; d. déformation de la lamelle ; e. la formation de la dépôt

Quand la particule arrive, elle s'étale en lamelle à la surface du substrat. Mais, lors de son refroidissement elle se rétracte et se déforme. Pour pouvoir tenir compte de cet effet dans le logiciel, deux hypothèses ont été faites :

- La déformation peut être causé par la chute de la température à travers la lamelle quand le front de la solidification atteint le haut de celle ci. On admet ainsi, que juste avant que le front de la solidification puisse atteindre le haut de la lamelle, la lamelle n'est plus sous effet de contraintes et quand la lamelle est entièrement solidifiée, les différentes contractions peuvent commencer (figure 3.3d).
- Lorsque la particule suivante arrive, elle couvre les lamelles précédentes qui sont déformées. Ainsi les pores et les fissures apparaissent pendant la déformation de la lamelle et se couvrent des lamelles des particules suivantes (figure 3.3e).

On peut calculer la déformation de la lamelle comme suit. Si, $\dot{\alpha}$ et ΔT sont les coefficients d'expansion thermique et la température au travers de la lamelle, le dessus se rétracte $\dot{\alpha}\Delta T$ plus que le dessous. Pour la lamelle du diamètre D et d'épaisseur p, le rayon de déformation peut être donné comme $p/(\dot{\alpha}\Delta T)$. La valeur du soulèvement δ est donnée comme (figure 3.3d)

$$\delta = D^2 \dot{\alpha} \Delta T / 4p \tag{3.42}$$

qui ne dépasse pas de quelques micromètres. Cette équation admet que la lamelle conserve la forme cylindrique, et la déformation est une seule réponse en refroidissement. La remarque la plus importante est que la corrélation entre les propriétés de la lamelle et la température du substrat peut déterminer le ΔT par les équations

$$\frac{\partial^2 T}{\partial x^2} = 0; \quad 0 < x < X(t)$$
(3.39)

$$T = \frac{X(t) - x}{X(t) + \psi} \tag{3.40}$$

3.3.2 Modélisation de la croissance de dépôt

L'ensemble des lamelles forme un dépôt. Le code admet plusieurs règles simples pour faire la modélisation de la croissance de dépôt [3.13, 3.14] (figure 3.4 et tableau 3.2):

- 1. Le logiciel admet que la lamelle suit la forme de la surface de la région d'impact de la particule originale et la lamelle se diffuse dans toutes les directions du point d'impact (cas A).
- 2. Si le logiciel détecte une porosité dans le point d'impact de la particule fondue et dans la zone de la formation de la lamelle, la lamelle remplit ce pore (cas B).
- 3. Si la lamelle peut remplir les cavités sans le flux inverse, elle le fait (cas C,D et E). Cet effet est connu comme *interlocking*.
- 4. Quand la lamelle est été déposée sur le substrat ou le dépôt, la partie qui appartient à la surface du contact peut se relever (cas F). Le soulèvement total est calculé en fonction de la distance du point d'impact (l'équation 3.43). Si la surface contient le pic, ça peut crever la lamelle (cas G). Dans ce cas le soulèvement est calculé en respectant la présence du pic.
- 5. Les particules non fondues forment les hémisphères dans la surface du dépôt (cas H). On admet que ces hémisphères sont sur la ligne moyenne de la surface, même, si les cavités sont très larges (plus large que le diamètre de la particule), elles seront remplies (cas I). On admet que les particules non fondues n'adhèrent pas à la surface du substrat (cas J) ou aux autres particules non fondues (cas K).
- 6. La particule fondue partiellement se divise au deux particules (cas L) : la particule fondue suit les règles (1)-(4) et la particule non fondue suit la règle no. 5.

La première et deuxième règle expriment les hypothèses que l'énergie cinétique de la

particule est suffisante pour réaliser l'adhérence de la lamelle à l'impact avec la surface du substrat ou du dépôt.

La troisième règle représente les mécanismes de la diffusion et « interlocking ». Elle admet que la céramique liquide diffuse le long de la surface et remplit tous les cavités qui se trouvent dans la zone de la diffusion. Le flux revers est interdit. Ce qui admet que la céramique diffuse et se solidifie après. Cette règle admet que la céramique est assez fluide pour remplir les cavités.

La quatrième règle représente le torsadage de la lamelle dans la surface lisse et dans la surface rugueuse. Dans le dernier cas, on admet que la hauteur du pic est beaucoup plus haute que le torsadage de la lamelle et on admet que la lamelle soit transpercée par le pic. A partir du pic jusqu'au bord de la lamelle, le torsadage est normal. Entre le pic et le point d'impact, il y a aussi l'effet du torsadage qui permet de soulever la lamelle de la surface.

La cinquième règle exprime les faits observés par les expériences : les particules non fondues forment les hémisphères, qui ne peuvent pas diffuser le long de la surface du substrat ou du dépôt. La porosité peut apparaître dans ce cas sur l'inaptitude de ces particules à remplir les cavités de la surface.

3.3.3 Modélisation de la température de dépôt

Le flux de la chaleur sur la surface du dépôt est la somme de quatre composantes

$$Q = Q_{\text{conv}} + Q_{\text{rad}} + Q_{\text{lat}} + Q_{\text{cool}}$$
(3.45)

ou Q_{conv} est le flux convectif de la chaleur (qui contient aussi la radiation du dépôt), Q_{rad} est la radiation du plasma, Q_{lat} est l'influence de la chaleur latente de la particule et Q_{cool} est l'influence du refroidissement, si cela se présente. Dans la surface du dépôt

$$Q = \lambda_d \frac{\partial T}{\partial x} \Big|_{x = x\dot{a}}$$
(3.46)

où λ_d est la conductivité thermique du dépôt. Dans l'interface entre le dépôt et le substrat, les flux des chaleurs doivent être égaux :

$$\lambda_d \frac{\partial T}{\partial x}\Big|_{x=x} = \lambda_{sub} \frac{\partial T}{\partial x}\Big|_{x=x+}$$
(3.47)

où λ_{sub} est la conductivité thermique du substrat. Si on admet que le substrat est refroidit, le deuxième terme apparaît :

$$C_{dep}\rho_{dep}\frac{\partial T}{\partial t} = \lambda_{dep}\frac{\partial^2 T}{\partial x^2} - \frac{4hT}{d_{sub}}$$
(3.48)

où *h* est le coefficient du transfert de chaleur et d_{sub} est le diamètre du substrat (on admet que le substrat est cylindrique). Le dernier terme dans l'équation (3.48) est le

terme du refroidissement. On admet que le substrat est la barre verticale qui se refroidit d'un côté. Les valeurs pour le coefficient du transfert de chaleur dans les équations (3.46-3.48) sont prises de [3.15].

Cas	Règle
A	La lamelle diffuse dans toutes les directions du point d'impact selon l'équation 3.33
В	La lamelle suit la forme de la surface de la région d'impact de la particule et remplit les pores
C	Si la lamelle diffusée atteint le front de la surface, elle remplit tous les espaces accessibles et se diffuse après sur une autre surface.
D	La lamelle peut couvrir la rugosité créée par les autres lamelles.
Е	Si la lamelle diffusée, atteint le front de la surface, elle remplit tous les espaces accessibles et tombe jusqu'à la surface sous-jacente.
F	Quand la lamelle est été déposée sur le substrat ou le dépôt, la partie qui appar- tient à la surface du contact peut se relever.
G	Si la surface contient le pic, cela peut crever la lamelle. Dans ce cas le relevage est calculé en respectant la présence du pic
H	Les particules non fondues forment les hémisphères dans la surface du dépôt
I	On admet que ces hémisphères sont sur la ligne moyenne de la surface, même, si les cavités sont très larges (plus large que le diamètre de la particule) elles seront remplies.
J,K	On admet que les particules non fondues n'adhèrent pas à la surface du substrat ou aux autres particules non fondues.
L	La particule fondue partiellement se divise au deux particules: la particule fondue suit les règles A-G et la particule non fondue suit les règles I-J.

Tableau 3.2 Règles du modèle de déposition

Fig. 3.4 Règles du modèle de déposition. Toutes les images de la particule et du substrat sont les représentées en section

3.4 MODELISATION DU TRAITEMENT LASER AVEC LE CODE *FUSION-2D*

La logiciel numérique *Fusion-2D* a été décrit et appliqué avec succès pour les calculs des champs de température et des fronts de fusion dans les échantillons de graphite irradiés par CO_2 laser [3.16,3.17]. Dans cette étude le code a été adaptée pour les calculs des champs des températures et des fronts de fusion dans les échantillons d'HA.

3.4.1 Description de phénomènes lors du traitement par laser

La modélisation concerne la transmission d'énergie du laser au disque solide d'épaisseur et de diamètre finis. Le modèle mathématique décrit:

- l'échauffement ;
- la fusion ;
- l'évaporation ;
- le refroidissement ;
- la solidification des échantillons sous l'irradiation du laser.

Il y a deux étapes de processus modelées pendant la durée d'impulsion laser. L'étape première correspond à la fraction effective d'impulsion, l'énergie du laser est absorbée par le matériau de surface d'échantillon. L'énergie optique se transforme en énergie thermique qui chauffe, fond et vaporise le matériau de surface. La perte de la radiation thermique de la surface de l'échantillon, les phénomènes de fusion et d'évaporation ont été analysés. Au contraire, le modèle ne tient pas compte du transfert de chaleur par la convection dans le matériau fondu. En outre, la déformation de surface fondue par l'évaporation est aussi négligeable car il est supposé que la surface de fusion est plate. C'est-à-dire, que la quantité de la masse évaporée a été supposée être insignifiante et la pression de vapeur ne déforme pas la surface de fusion. Au deuxième stade, qui se termine avec la fin de l'impulsion de laser, l'énergie du laser est absorbée par la vapeur sorti de la surface d'échantillon. Ce stade commence à moment déterminé par l'utilisateur du code.

Le modèle mathématique peut être décrit par l'équation suivante [3.18] :

$$\frac{\partial H}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(\lambda r \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right)$$
(3.49)

pour t > 0, $0 < r < r_{\infty}$, 0 < z < x.

L'équation (1) a été résolue selon la température d'équation (3.51) :

$$H(t,r,z) = \int_{T_0}^{T} \rho C(T') dT' + \rho L_f F(T)$$
(3.50)

 $T(t=0, r,z) = T_0 = constant.$

F(T) est la fraction de fluide en fonction de la température. Il prend la forme de fonction binaire de *Heaviside* [3.18]. Le champ thermique dépend de la puissance absorbée sur l'équation suivante :

$$-\lambda \frac{\partial T}{\partial z}\Big|_{z=0} = I_0(t,r) - I_1[T(t,r,z=0)]$$
(3.51)

ou les conditions limites :

$$-\lambda \left. \frac{\partial T}{\partial z} \right|_{z=L} = I_l \left[T(t, r, z = L) \right], \quad \left. \frac{\partial T}{\partial z} \right|_{r=0} = 0$$
(3.52)

Io - la puissance par unité de surface absorbée dans la surface d'échantillon :

.

$$Io(t, r) = \begin{cases} I(t)e^{-cr^{2}}, pour \quad 0 \leq r \leq R; \\ 0, pour \quad r > R \\ I(t) = \begin{cases} I_{0} = const, pour \quad 0 \leq t \leq \tau \\ 0, pour \quad t > \tau. \end{cases}$$
(3.53)

ou c est le coefficient de concentration. Si, la distribution radiale d'énergie de laser est constante, c=0. En autre cas, la distribution radiale d'énergie de laser est la fonction Gaussienne.

La perte d'énergie est déterminée par l'irradiation et l'évaporation de surface. La puissance par unité de surface, I_1 , selon ce phénomène, peut être décrite comme:

$$I_{I}(T) = \begin{cases} \rho L_{v} \frac{v^{*}}{\sqrt{T}} e^{-T^{*}/T} + \varepsilon \sigma_{B} T^{4}, \text{ pour } T > T_{f};\\ \varepsilon \sigma_{B} T^{4}, \text{ pour } T \leq T_{f}. \end{cases}$$
(3.54)

où

$$\upsilon^{*} = \frac{P_{\upsilon}}{2\rho(2\pi k/m)^{1/2}} \exp\left[\frac{L_{\upsilon}}{T_{\upsilon}(k/m)}\right],$$

$$T^{*} = \frac{L_{\upsilon}}{(k/m)}$$
(3.55)

Les deux termes v^* et T^* correspondent à la loi de *Hertz-Knudsen* d'évaporation. Dans notre cas, la perte d'énergie sur évaporation commence à partir de la température de fusion. Le terme exponentiel inclut la valeur d'évaporation maximale à la température d'évaporation, où la perte d'énergie est maximale.

La transformation du solide ou du liquide en l'état gazeux peut être décrite comme le phénomène macroscopique ou comme le phénomène atomistique. Le phénomène macroscopique base sur la thermodynamique d'évaporation. Selon la théorie cinétique

du gaz, l'interaction entre la collision des molécules du gaz et sa pression partielle, P, peut être décrite comme :

$$\frac{dN_e}{A_e dt} = \alpha_v \sqrt{2\pi m k T} \left(P^* - P \right)$$
(3.56)

La quantité des molécules (dN_e) évaporées de la surface A_c _dans le temps dt est proportionnelle au rapport de l'intensité réelle d'évaporation (α_v) dans le vide et la valeur théorique, (la valeur α_v dépend de la propreté de la surface d'évaporation et peut varier de la valeur faible dans la surface sale jusqu'à 1 pour la surface propre), et à la différence entre la pression d'équilibre à la température $T(P^*)$ et la pression hydrostatique (P). L'évaporation maximale correspond au p=0 et $\alpha_v=1$.

3.4.2 Méthode numérique

La méthode numérique utilisée dans le logiciel *Fusion-2D* pour discrétisation du temps dans l'équation (3.49) se base sur le schéma inverse à deux états d'*Euler*. Pour la discrétisation spatiale on utilise la méthode de différence finie contrôlée spatialement (*control-volume finite difference*) [3.18].

Dans ce modèle unidimensionnel de l'échauffement par laser, on admet que l'énergie est absorbée dans la surface de la cible et la fuite de chaleur induite par la convection. La fusion et la solidification sont décrites par les conditions classiques aux limites de *Stefan*. Le modèle est décrit par les équations suivantes :

$$I_{o}(t) - \alpha_{v} [T_{L}(x,t) - T_{v}] - \sigma_{B} \Big[\varepsilon_{L} T_{L}^{4}(x,t) - \varepsilon_{v} T_{v}^{4} \Big] = -\lambda_{L} \frac{\partial T_{L}}{\partial x} + \rho_{L} L_{v} \frac{dS_{v}}{dt} \quad (3.57)$$
$$\frac{\partial^{2} T_{L}}{\partial x^{2}} = \frac{1}{a_{L}} \frac{\partial T_{L}}{\partial t} \quad (3.58)$$

Pour $S_v(t) \le x \le S_f(t)$ $t_f \le t \le \infty$ ou S_v et S_f – position des interfaces d'évaporation et de fusion

$$\frac{dS_{\nu}}{dt} = \frac{\nu^*}{\sqrt{T_L(S_{\nu}(t),t)}} \exp\left[-\frac{T^*}{T_L(S_{\nu}(t),t)}\right]$$
(3.59)

Pour
$$x = S_{v}(t)$$
: $\lambda_{L} \frac{\partial T_{L}}{\partial x} = \lambda_{s} \frac{\partial T_{s}}{\partial x} - \rho_{s} L_{f} \frac{dS_{f}}{dt}$ (3.60)

Pour
$$T_L = T_S = T_f$$
, $x = S_f(t)$, $S_f(t_f) = 0$ (3.61)

$$\frac{\partial^2 T_s}{\partial x^2} = \frac{1}{a_s} \frac{\partial T_s}{\partial t} \quad \text{pour } S_{\text{f}}(t) \le x \le L \tag{3.62}$$

$$-\lambda_{S} \frac{\partial T_{S}}{\partial x} = \alpha_{v} \left[T_{s}(x,t) - T_{v} \right] + \sigma_{B} \left[\varepsilon_{I} T_{s}^{4}(x,t) - \varepsilon_{v} T_{v}^{4} \right]$$
(3.63)

pour
$$x=L$$
, $T(x, t=0)=T_o$ $V^* = \frac{mP_v}{4\pi a \rho_L} exp\left[\frac{mL_v}{kT_v}\right]$, $T^* = \frac{mL_v}{a}$ (3.64)

$$\lambda_s = a_s \rho_s C \tag{3.65}$$

Bibliography

- 3.1 S. KUNDAS, V.GEREVICH, I.SMUROV, M.IGNATIEV. Mathematical models and program facilities for the integrated simulation of spraying. Processing of Material 2001, Proceedings of the European Conference of thermal plasma Processes, 6th, Strasburg, France, May 30 June, 2000
- 3.2 I.ST.DOLTSINIS, J.HARDING, M.MARCHSE. Modelling the production and performance analysis of plasma-sprayed ceramic thermal barrier coatings. Archives of Computational Methods in Engineering. Vol.5, 2, 59-166 (1998)
- 3.3 L.PAWLOWSKI, I.SMUROV, Modeling of high power laser interaction with APS deposited FeCr-TiC. Surface and Coating Technology, 151-152 (2002) 308-315
- 3.4. Jets_et_Poudres_2004 est disponible sur site: http://jets.poudres.free.fr
- 3.5. GENMIX est disponible sur site:

http://www.cham.co.uk/website/new/genmix/genmix.htm

- 3.6. S.V. PATANKAR, D.B. SPALDING. Heat and Mass Transfer in Boundary Layers, 2nd edition, Morgan-Grampian, London, 1970
- 3.7. D.B.SPALDING, GENMIX. A General Computer Program for Two-dimensional Parabolic Phenomena, Pergamon Press, Oxford, 1977
- 3.8 T&TWinner est disponible sur site: http://ttwinner.free.fr
- 3.9 D.A. KNOLL, D.B. KOTHE, B. LALLY: A new nonlinear solution method for phase-change problems/ Numerical Heat Transfer, Part B, 35 (1999) 439-459
- 3.10 A.A.UGLOV, I.YU.SMUROV, A.M.LASHIN, A.G.GUSKOV Modelling of thermo-physical processes of impulse laser influance on metals Moscow: Nauka, 1991 (in Russian).
- 3.11. L. PAWLOWSKI. The Science and Engineering of Thermal Spray Coatings, WILEY, Chichester, 1995
- 3.12. J.MADEJSKI, Solidification of droplets on a cold surface, Int.J.Heat Mass Transfer N19 pp 1009-1013 1976
- 3.13. S. CIROLINI, J.H. HARDING, G. JACUCCI. Computer simulation of plasmasprayed coatings 1. Coating deposition model. Surface and Coating Technology, 48 (1991) 137-145
- 3.14. J.H. HARDING, P.A. MULHERAN, S.CIROLINI, M. MARCHESE AND G.JACUCCI. Modeling the deposition process of thermal barrier coatings.

Journal of Thermal Spray Technology. Vol. 4 (1) March 1995

- 3.15. L. PAWLOWSKI, M. VARDELLE AND P.FAUCHAIS, Thin Solid Films, 94 (1982) 307
- 3.16. L. PAWLOWSKI, I. SMUROV, Modeling of high power laser interaction with APS deposited FeCr-TiC. Surface and Coating Technology, 151-152 (2002) 308-315
- 3.17. M. SKRZYPCZAK, P.BERTRAND, J. ZDANOWSKI, L. PAWLOWSKI. Modeling of temperature fields in the graphite target at pulsed laser deposition of CNx films, Surface and Coating Technology, 138 (2001) 39-47
- 3.18. I. SMUROV, A. LASHIN, M. POLI, Peculiarities of pulse laser melting: Influence of surface evapration, in: D. Farson, W. Steen, I. Miyamoto (Eds.), Proceedings ICALEO'92, Laser Institute of America, 75 (1992) 121-129.
CHAPITRE 4

METHODES EXPERIMENTALES

4.1 POUDRE UTILISEE

L'hydroxyapatite utilisée a été produit par la société *Tomita* (lot numéro HA-11244). Elle a été élaborée par le procédé de projection séchage (projection par buse et séchage par air chaud), puis calcinée à 800°C pendant 4 heures. La poudre d'hydroxyapatite est constituée de petites particules sphériques. Elle ne contient pas de phases étrangères et est essentiellement cristalline.

4.2 PARAMETRES ET CONDITIONS DE PROJECTION THERMIQUE

4.2.1 Paramètres de projection thermique

La poudre d'hydroxyapatite a été projetée avec une torche à plasma SG-100 de la société *Praxair*. Elle contient une anode type 02083-730 et une cathode type 01083A-720. La formation du jet est obtenue par une décharge électrique dans un mélange gazeux d'argon et d'hydrogène (gaz primaire et secondaire). L'hydroxyapatite est acheminée au sein du jet par un injecteur de poudre. On a utilisé deux type d'injecteurs: l'injecteur intérieur ou l'injecteur extérieur (Fig. 4.1). Le gaz porteur est l'argon. Les débits de gaz porteur sont 3 et 3,5 Nl/min. Le débit de poudre est de 17 grammes par minute. La tension et l'intensité de l'arc électrique ont été ajustées aux puissances souhaitées (11 kW et 24kW). Pour chaque puissance, deux mélanges gazeux ont été utilisés pour former le jet (argon + 2,5 % vol. d'hydrogène) et (argon + 5 % vol. d'hydrogène). Le débit de gaz plasmagène est constant et égal à 50 Nl/min. La poudre a été projetée à deux distances différentes (10 cm et 81 cm).

Méthodes expérimentales

Fig. 4.1 Schéma du dispositif de projection par plasma avec les injections intérieure et extérieure. Pour l'injection interne, l'injecteur est dedans de la torche, à 12mm de la sortie ; pour l injection externe, l'injecteur est placé dehors de la torche à 5mm de la sortie. Différents angles d'injection sont utilisés (70° et 90° par rapport l'axe de la torche pour les injections interne et externe).

4.2.2 Conditions de projection

Des particules sphériques d'hydroxyapatite ont été obtenues en projetant la poudre dans un réservoir rempli d'eau distillée. La torche à plasma a été inclinée d'un angle de 90 degrés par rapport au plan horizontal. La surface de l'eau et le bout du jet sont maintenus à une distance de 50 centimètres.

Des dépôts ont été réalisés sur des substrats métalliques en aluminium faisant 15x15x3 mm. La distance entre la surface du substrat et la torche est de 10 cm. Plaques ont été sablées par projection de corindon (taille des particules $125-250\mu$ m) dans un flux d'air comprimé afin d'augmenter la rugosité du substrat et donc l'adhérence du dépôt.

Les conditions expérimentales de projection sont récapitulées dans le tableau 4.1.

Méthodes expérimentales

Nº	Composition du gaz du plasma (fraction volumique de H ₂)	Puissance de l'arc	Type de projection	Débit de gaz porteur	Type d'injecteur	Code d'expérience
1	Ar 97,5% +H ₂ 2,5 %	11 kW	dans l'eau	3 Nl/min	Intérieur	P11973I
2	Ar 95% +H ₂ 5 %	11 kW	dans l'eau	3 Nl/min	Intérieur	P11953I
3	Ar 97,5% +H ₂ 2,5 %	24 kW	dans l'eau	3 N1/min	Intérieur	P24973I
4	Ar 95% +H ₂ 5 %	24 kW	dans l'eau	3 Nl/min	Intérieur	P24953I
5	Ar 97,5% +H ₂ 2,5 %	11 kW	sur la substrat	3 Nl/min	Intérieur	Sub11973I
6	Ar 95% +H ₂ 5 %	11 kW	sur la substrat	3 Nl/min	Intérieur	Sub11953I
7	Ar 97,5% +H ₂ 2,5 %	24 kW	sur la substrat	3 Nl/min	Intérieur	Sub24973I
8	Ar 95% +H ₂ 5 %	24 kW	sur la substrat	3 Nl/min	Intérieur	Sub249531
9	Ar 97,5% +H ₂ 2,5 %	11 kW	dans l'eau	3,5 Nl/min	Intérieur	P119735I
10	Ar 95% +H ₂ 5 %	11 kW	dans l'eau	3,5 Nl/min	Intérieur	P119535I
11	Ar 97,5% +H ₂ 2,5 %	24 kW	dans l'eau	3,5 Nl/min	Intérieur	P249735I
12	Ar 95% +H ₂ 5 %	24 kW	dans l'eau	3,5 Nl/min	Intérieur	P249535I
13	Ar 97,5% +H ₂ 2,5 %	11 kW	sur la substrat	3,5 Nl/min	Intérieur	Sub119735I
14	Ar 95% +H ₂ 5 %	11 kW	sur la substrat	3,5 Nl/min	Intérieur	Sub119535I
15	Ar 97,5% +H ₂ 2,5 %	24 kW	sur la substrat	3,5 Nl/min	Intérieur	Sub249735I
16	Ar 95% +H ₂ 5 %	24 kW	Sur la substrat	3,5 Nl/min	Intérieur	Sub249535I
17	Ar 97,5% +H ₂ 2,5 %	11 kW	dans l'eau	3 Nl/min	Extérieur	P11973E
18	Ar 95% +H ₂ 5 %	11 kW	dans l'eau	3 Nl/min	Extérieur	P11953E
19	Ar 97,5% +H ₂ 2,5 %	24 kW	dans l'eau	3 Nl/min	Extérieur	P24973E
20	Ar 95% +H ₂ 5 %	24 kW	dans l'eau	3 Nl/min	Extérieur	P24953E
21	Ar 97,5% +H ₂ 2,5 %	11 kW	sur la substrat	3 Nl/min	Extérieur	Sub11973E
22	Ar 95% +H ₂ 5 %	11 kW	sur la substrat	3 Nl/min	Extérieur	Sub11953E
23	Ar 97,5% +H ₂ 2,5 %	24 kW	sur la substrat	3 Nl/min	Extérieur	Sub24973E
24	Ar 95% +H ₂ 5 %	24 kW	sur la substrat	3 Nl/min	Extérieur	Sub24953E
25	Ar 97,5% +H ₂ 2,5 %	11 kW	dans l'eau	3,5 Nl/min	Extérieur	P119735E
26	Ar 95% +H ₂ 5 %	11 kW	dans l'eau	3,5 Nl/min	Extérieur	P119535E
27	Ar 97,5% +H ₂ 2,5 %	24 kW	dans l'eau	3,5 Nl/min	Extérieur	P249735E
28	Ar 95% +H ₂ 5 %	24 kW	dans l'eau	3,5 Nl/min	Extérieur	P249535E
29	Ar 97,5% +H ₂ 2,5 %	11 kW	sur la substrat	3,5 Nl/min	Extérieur	Sub119735E
30	Ar 95% +H ₂ 5 %	11 kW	sur la substrat	3,5 Nl/min	Extérieur	Sub119535E
31	Ar 97,5% +H ₂ 2,5 %	24 kW	sur la substrat	3,5 Nl/min	Extérieur	Sub249735E
32	Ar 95% +H ₂ 5 %	24 kW	sur la substrat	3,5 Nl/min	Extérieur	Sub249535E

 Tableau 4. 1
 Tableau récapitulatif des conditions de projection .

		P24 95 35 I		
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H₂2,5% Ar 95%+H₂5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.

59

4.3 CONDITIONS EXPERIMENTALES DU TRAITEMENT PAR LASER DES DEPOTS D'HYDROXYAPATITE

Le traitement laser est effectué à l'aide d'un laser CO_2 . Le laser CO_2 a un faisceau monomode TEM₀₀, de longueur d'onde égale à λ =10,6 µm, la durée d'impulsion est de 7,4x10⁻⁴s et la fréquence d'impulsions de 47 impulsions/min. Cette installation permet d'effectuer le traitement avec des puissances d'impulsion de 41,6 et 45,3 W. La figure 4.1 présente l'installation expérimentale. La lentille ZnSe focalise le faisceau émis par un laser sur la surface des dépôts. La taille du faisceau laser est de 300µm (Fig. 4.2.) ce qui correspond aux puissances par unité de surface de 5,9 et 6,4x10⁸W/m². Le système de balayage permet de déplacer le faisceau laser sur la surface entière de dépôt en n X-Y avec des vitesses différentes. Ce qui assure un traitement de la surface avec le différent recoupement de taches. Les paramètres de traitement sont donnés dans le tableau 4.2.

Pour le traitement des échantillons on a choisi deux densités de puissance différentes. Pour chaque puissance, deux vitesses on été utilisées pour traiter les surfaces des échantillons. Au total, 32 traitements ont été réalisés. Le tableau 4.3 présente le récapitulatif des conditions de traitement.

Fig.4.2 Installation expérimentale du laser CO_2 (1,8,9 – laser (1 – irradiateur, 8 – source d'alimentation, 9 – système de refroidissement); 2 – lentille ZnSe; 3 – échantillon; 4 – porte-objet; 5 – système de balayage; 6 –système de contrôle; 7 – bloc d'alimentation du commutateur mécanique à l'intérieur de la cavité; 10 – ordinateur – pilote; 11 – commutateur mécanique à l'intérieur de la cavité; 12 – indicateur de la puissance moyen du laser; 13 – séparatrice; 14 –laser pour le contrôle de l'alignement; 15 – miroir.

4.4 METHODES D'ANALYSE D'ECHANTILLONS

4.4.1 Analyse des tailles de particules

Le granulomètre laser de type Master Sizer X de la société Malvern a été utilisé pour déterminer la distribution granulométrique de l'hydroxyapatite initiale et des poudres projetées dans l'eau. Le liquide vecteur est l'eau et aucun agent dispersant n'a été introduit dans la solution contenant la poudre. L'appareil mesure les tailles des particules en utilisant le principe de la diffraction de *Fraunhoffer* [4.1]. Les rayons lumineux sont formés par une source laser He-Ne et la lumière diffractée par les particules est analysée par une série de 30 capteurs photosensibles placés dans l'appareil.

Paramètres	Valeurs
Durée d'impulsion	7,4x10 ⁻⁴ s
Fréquence d'impulsion	47 impulses/s
Dimension de la tache laser	300 µm
Vitesse de balayage	6,4 – 9,6 mm/s
Puissance moyenne	1,5 – 1,6 W
Puissance d'impulsion	41,6–45,3 W
Puissance par unité de surface	$5,9-6,4x10^8$ W/m ²
Recouvrement des tâches	32-50%

Tableau 4. 2 Paramètres de traitement par laser

Echantillon	Puissance par u 5.9x10	inité de surface) ⁸ W/m ²	Puissance par u 6.4x10	Puissance par unité de surface $6.4 \times 10^8 W/m^2$		
	Vitesse de	e balayage	Vitesse de balayage			
	6,4 mm/s	9,6 mm/s	6,4 mm/s	9,6 mm/s		
Sub11973I	Sub11973I_11	Sub11973I_12	Sub11973I_21	Sub11973I_22		
Sub11953I	Sub11953I_11	Sub11953I_12	Sub11953I_21	Sub11953I_22		
Sub24973I	Sub24973I_11	Sub24973I_12	Sub24973I_21	Sub24973I_22		
Sub24953I	Sub24953I_11	Sub24953I_12	Sub24953I_21	Sub24953I_22		
Sub119735I	Sub119735I_11	Sub119735I_12	Sub119735I_21	Sub119735I_22		
Sub119535I	Sub119535I_11	Sub119535I_12	Sub119535I_21	Sub119535I_22		
Sub249735I	Sub249735I_11	Sub249735I_12	Sub249735I_21	Sub249735I_22		
Sub249535I	Sub249535I_11	Sub249535I_12	Sub249535I_21	Sub249535I 22		

Tableau 4.3 Tableau récapitulatif des conditions de traitement

4.4.2 Détermination qualitative et quantitative des phases présentes dans les

poudres et dépôts

Un diffractomètre de rayons X de type Guinier 670 HUBER a permis d'effectuer des analyses en transmission sur les échantillons. L'appareil fonctionne en géométrie *Guinier de Wolf.* Un monochromateur avant constitué de deux lames permet de sélectionner la raie $K_{\alpha l}$ de l'anticathode de cuivre. L'échantillon est déposé sur un film du mylar et le porte échantillon oscille de façon à améliorer la statistique de répartition de grains. Le détecteur est un «image plate» qui permet de faire la mesure sur tout la domaine angulaire (0 à 100 degrés).

		S	24 95 35 1			
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	l - Intérieur E - Extérieur Type de l'injection.	1 5,9x10 ⁸ W/m ² 2 - 6,4x10 ⁸ W/m ² Densité de puissance	1 – 6,4 mm/s 2 – 9,6 mm/s Vitesse de balayage

L'enregistrement des diagrammes a été effectué conformément aux recommandations de la norme AFNOR S 94-066 : l'analyse a été réalisée avec une résolution et une reproductibilité d'au 0,005 degré 2 θ et quoi permet faire l'enregistrement des position et des intensités des rais de diffraction.

Dans le cas des dépôts projetés par plasma et dépôts traités par laser, une séparation préalable du substrat a été effectuée par grattage (préparation d'échantillon en dépôt selon AFNOR S 94-066).

L'identification de phase a été réalisée selon la norme AFNOR S 94-067 à l'aide du logiciel informatique EVA (Bruker, Socabiun) qui permet de superposer les diffractogrammes expérimentaux à ceux de la base de données PDF. Les phases cristallisées ont été identifiées grâce à leur fiche PDF:

- par JCPDS 09-348 -le phosphate tricalcique α;
- par JCPDS 25-1137 le phosphate tétracalcique;
- par JCPDS 09-169 le phosphate tétracalcique ß;
- par JCPDS 04-0777 l'oxyde de calcium;
- par JCPDS 09-432 l'hydroxyapatite.

La quantification des phases présentes dans les poudres et les dépôts a été effectuée par affinement du profil en utilisant la méthode de Rietveld à l'aide du logiciel *PowderCell*.

Pour l'affinement par la méthode de Reitveld, les structures des phases cristallines sont introduites. La base de données ICSD (Inorganic Crystal Structure Database) regroupe les structures des nombreux composés. Nous avons utilisé les modèles structuraux suivant :

- pour le phosphate tétracalcique [4.2]
- pour l'oxyde de calcium [4.3]
- pour le phosphate tricalcique α [4.4]
- pour le phosphate tricalcique β [4.5]
- pour l'apatite [4.6]

Pour quantifier la phase amorphe présente dans les poudres projetées dans l'eau, les mélanges 90% échantillons 10% Si bien cristallisé ont été utilisés.

Une fonction de type pseudo-*Voigt* a été utilisée par le calcule le profil des pics du diffractogramme. Une fonction polynomiale d'ordre 8 a été utilisée pour modéliser le bruit de fond. En plus des 8 paramètres de bruit de fond, le facteur d'échelle, le décollage de zéro, et les paramètres des mailles cristallines ont été affinés.

4.4.3 Traitement mathématique des résultats: étude quantitative des facteurs et

matrice factorielle complète 2^k

Pour définir l'influence de différent facteur en composition de phases dans la poudre projetée dans l'eau et sur le substrat nous utilisons la méthode des plans d'expérience. Cette méthode associe la construction d'une matrice d'expériences, qui permet de calculer l'effet moyen, les effets principaux des facteurs et leurs interactions.

Une matrice factorielle complète, notée 2^k, est obtenue en formant toutes les combi-

naisons des deux niveaux (-1 et +1) de chacun des k facteurs.

Cinq facteurs ont été retenus pour cette étude, dont les niveaux extrêmes et moyens qui définissent le domaine expérimental, sont reportés dans le tableau 4.4.

Variables	Footours	Niveaux		
variables	racieurs	-1 2,5 %	+1	
X1	Composition du gaz plasma (contenu en H ₂)	a gaz plasma en H ₂) 2,5 %		
X2	Puissance de la torche	11 kW	24 KW	
X3	Type de projection	sur le substrat	dans l'eau	
X4	Débit du gaz porteur	3 Nl/min	3,5 Nl/min	
X5	Type d'injection	Intérieure	Extérieure	

Tableau, 4.4	l Domaine	expérimental
--------------	-----------	--------------

La matrice d'expérience factorielle complète utilisée ici, notée 2^5 , est formée des 32 combinaisons décrites dans le tableau 4.5.

Expé-	X ₁	X ₂	X3	X4	Xs	Y]	Expé-	X ₁	X ₂	X3	X4	X ₅	Y
Tience		<u> </u>			ļ		4	rience	l	I			ļ	I
1	1	-	-	-	-	Y1		17	-	-	-	-	+	Y ₁₇
2	+	-	-	-	-	Y ₂	1	18	+	-	-	-	+	Y ₁₈
3	-	+	-	-	-	Y3]	19	-	+	-	-	+	Y19
4	+	+		-	-	Y4]	20	+	+	-	-	+	Y ₂₀
5	-	-	+	-	-	Y5]	21	-	-	+	-	+	Y ₂₁
6	+	-	+	-		Y ₆		22	+	-	+	-	+	Y ₂₂
7	-	+	+	-	-	Y ₇]	23	-	+	+	-	+	Y ₂₃
8	+	+	+	1	-	Y ₈]	24	+	+	+	-	+	Y ₂₄
9	-	-	-	+	-	Y ₉	1	25	-	-	-	+	+	Y ₂₅
10	+	-	-	+	-	Y ₁₀	1	26	+	-	-	+	+	Y ₂₆
11	-	+	-	+	-	Y11	1	27	-	+	-	+	+	Y ₂₇
12	+	+	-	+	-	Y ₁₂]	28	+	+	-	+	+	Y ₂₈
13	-	-	+	+	-	Y ₁₃	1	29	-	-	+	+	+	Y ₂₉
14	+	-	+	+	-	Y14]	30	+	~	+	+	+	Y ₃₀
15	-	+	+	+	-	Y ₁₅]	31	-	+	+	+	+	Y ₃₁
16	+	+	+	+	-	Y ₁₆	1	32	+	+	+	+	+	Y ₃₂

Tableau 4.5 Matrice d'expériences factorielle 2^5 (les signes (-1) et (+1) symbolisent les niveaux -1 et +1 des variables)

Le plan d'expérimentation est obtenu en remplaçant dans la matrice d'expérience les niveaux extrêmes des variables codées (-1 et +1) par les valeurs réelles des facteurs associés (tableau 4.1.).

Les différents effets peuvent être calculés en utilisant la méthode de régression linéaire dite «des moindres carrés», en postulant le modèle mathématique suivant :

 $y_u = b_o + \sum b_i X_{ui} + \sum b_{ij} X_{ui} X_{uj} + \sum b_{ijk} X_{ui} X_{uj} X_{uk} + \sum b_{ijkl} X_{ui} X_{uj} X_{uk} X_{uf} + \varepsilon_u$ (4.1)

où u désigne la u^{ième} expérience.

Le coefficient b_0 représente la valeur moyenne de la réponse Y aux 32 expériences. Le coefficient b_i représente l'effet principal de variable X_i . Les coefficients b_{ii} .

 $b_{ijk,} b_{ijkf}$ représentent l'effet d'interaction entre les variables $X_i X_j$, $X_i X_j X_k$, $X_i X_j X_k X_f$. Les coefficients b_i , $b_{ij,}$, $b_{ijk,}$ peuvent être obtenus en calculant la demi différence entre la moyenne arithmétique des valeurs de la réponse quand la variable associée est au niveau +1 et la moyenne arithmétique des valeurs de la réponse quand la variable associée est au niveau -1 [4.7].

4.4.4 Analyse infrarouge

Un analyseur infrarouge *Impact 400s* de la société *Nicolet* a été utilisé pour caractériser le pic correspondant à la vibration de la liaison OH sur les échantillons de poudre HA initiale, les échantillons de poudre projeté dans l'eau, les échantillons projetés sur les substrats et les dépôts projetés sur les substrats et traites par laser. Pour l'analyse infrarouge les échantillons des dépôts ont été détachés de substrat. Le spectromètre infrarouge réalise des séries de 32 passages sur le domaine spectral suivant 4000 – 400 cm⁻¹ (résolution 4cm⁻¹). Les échantillons ont été préalablement mis sous forme de pastilles en compressant un mélange contenant 80% de bromure de potassium (KBr) et 20% de poudre étudiée. Le mélange a été placé dans un moule métallique puis soumis à une pression de 10 tonnes afin de former de très fines pastilles qui peuvent être introduites directement dans l'appareil.

4.4.5 Morphologie des particules

Les particules sphériques de poudre projeté dans l'eau on été visualisées à l'aide d'une loupe binoculaire de type *Nikon SMZ-2T* équipée d'une caméra *Sony* permettant de prendre des photographies au grandissement souhaité. Les particules et les coupes de particules ont été visualisées par microscope électronique à balayage. Dans ce cas, parce que la poudre est constituée d'une céramique isolante, les échantillons ont été rendus conducteurs par dépôt d'une couche atomique d'or par la pulvérisation cathodique.

Les surfaces et les coupes des dépôts projetés sur substrat ont été également analysées par microscope électronique à balayage. Comme pour les poudres, un dépôt d'or a été réalisé sur les dépôts. Les surfaces et les coupes des dépôts projetés sur substrat et traités par laser ont été également visualisées à l'aide d'une loupe binoculaire.

4.4.6 Analyse de la mîcrodureté des échantillons

L'appareil de mîcrodureté LECO avec l'indenteur *Knoop* a été utilisé pour mesurer la mîcrodureté des échantillons projetés sur les substrats. La mîcrodureté a été mesurée sur les coupes de dépôts projetés sur substrat à différentes distances de substrat. La charge est de 50 grammes. Le temps d'application de la charge est de 15 secondes. La mesure de la diagonale se fait à l'aide de deux réglettes mobiles. La valeur se lit au dixième de micron prés.

Bibliography

- 4.1 G.ESIN, G.ERDOGAN. Determination of particle size distribution by light scattering techniques. Materials Science and Engineering, 53 (1985) 137-141
- 4.2 B. DICKENS, W.E. BROWN, G.J. KRUGER, J.M. STEWART, Ca₄(PO₄)₂O, tetracalcium diphosphate monooxide. Crystal structure and relationships to Ca₅(PO₄)₃OH and K₃Na(SO₄)₂. Acta Crystallogr., Sec.B, Vol. 29, page 2046 (1973)

http://icsdweb.fiz-karlsruhe.de/index.php?action=Details&id%5B%5D=6652

- 4.3 W. PRIMAK, H. KAUFMAN, R.J. WARD, X-Ray Diffraction Studies of Systems Involved in the Preparation of Alkaline Earth Sulfide and Selenide Phosphors J. Am. Chem. Soc., 70, 2043 (1948) http://icsdweb.fiz-karlsruhe.de/index.php?action=Details&id%5B%5D=13247
- 4.4 M. Mathew, L.W. Schroeder, B. Dickens, W.E. Brown, The crystal structure of alpha-Ca₃(PO₄)₂ Acta Crystallogr., Sec. B, vol. 33, page 1325 (1977) http://icsdweb.fiz-karlsruhe.de/index.php?action=Details&id%5B%5D=6652
- 4.5 M. YASHIMA, A. SAKAI, T. KAMIYAMA, A. HOSHIKAWA. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. Journal of Solid State Chemistry 175 (2003) 272-277. http://icsdweb.fiz-karlsruhe.de/index.php?action=Details&id%5B%5D=82123
- 4.6 K. TOMITA, M. KAWANO, K. SHIRAKI, H. OTSUKA Sulfatian apatite from the Katanoyama formation in Nishina-omote City, Kagoshima prefecture J. Min. Petr. Econ. Geol. (1996) 91, 11-20 http://icsdweb.fiz-karlsruhe.de/index.php?action=Details&id%5B%5D=43567
- 4.7 R. PERRIN, J.P. SCHAFF. Chimie industrielle, Dunod, Paris 1999, 259-310

CHAPITRE 5

RESULTATS EXPERIMENTAUX

5.1 ANALYSE DE LA POUDRE INITIALE

5.1.1 Morphologie de la poudre initiale HA

Les figures 5.1a et b présentent la morphologie de la poudre initiale telle qu'elle est livrée par la société *Tomita*. Les particules sont sphériques et il apparaît deux populations distinctes. Des grandes particules d'une taille moyenne de 100 μ m et des plus petites d'environ 10 μ m. Petites et grandes particules ont été formées au cours du procédé d'élaboration par projection séchage (l'atomisation de la poudre est réalisée par une buse).

Les particules de la poudre ont une forme sphérique avec des petites déformations et dépressions sur les surfaces, ce sont les conséquences de la méthode de production de la poudre [5.1]. Ces déformations sont formées lors de l'étape de séchage. Sous l'action de la chaleur, les grains de poudre se contractent engendrant ainsi des contraintes surfaciques et volumiques. Les images (Fig. 5.1c et 5.1d) de ces surfaces confirment que les particules forment des agglomérats apparus lors de l'atomisation. La macrostructure des particules après projection séchage n'est pas modifiée lors de l'étape de calcination.

Les coupes de grain d'hydroxyapatite initiale sont présentées sur la figure 5.2. Il apparaît clairement la présence de pores, ces derniers pouvant se situer aussi bien à l'intérieur des grains qu'à la surface. Le taux de porosité à l'intérieur des grains diffère d'une particule à l'autre. Certaines particules ne possèdent cependant que très peu de pores. Cette densité assez importante de la poudre est expliquée par les conditions moins sévères du traitement thermique en projection séchage avec atomisation par buses comparées à celles de l'atomisation rotative.

L'analyse des images réalisées par le Centre Commun de Mesures Imagerie Cellulaire (Université Lille 1) a permit de définir la porosité des particules d'HA. La porosité moyenne des particules, établie par analyse des images, était égale à P=12%.

Fig.5.1 Micrographie électronique à balayage de poudre HA

Fig. 5.2 Micrographie électronique à balayage de poudre HA (coupe des particules mettant en évidence les porosités)

5.1.2 Les phases cristallines des particules de poudre

Le diffractogramme de la poudre d'hydroxyapatite est présenté dans la figure 5.3. L'analyse du diffractogramme révèle que la poudre initiale HA est constituée uniquement d'hydroxyapatite

Fig. 5.3 Diffraction des rayons X en transmission sur la poudre initiale d'HA

5.1.3 Analyse granulométrique de la poudre initiale HA

L'analyse granulométrique de la poudre initiale de hydroxyapatite est présentée sur la figure 5.4. Les tailles des particules sont toutes inférieures à 300 μ m. Des particules d'un diamètre moyen compris entre 100 et 170 μ m constituent la majeure partie de la poudre en volume. Il apparaît néanmoins une légère déformation de la courbe dans la zone des petits diamètres.

Les petites particules précédemment observées par microscope électronique à balayage apparaissent clairement sur l'analyse granulométrique de la figure 5.4 zone encadrée. Ces petites particules, formées lors du procédé de projection séchage, ne représentent qu'un très faible volume de la poudre mais sont très nombreuses.

Fig.5.4 Analyse granulométrique de la poudre initiale HA. La zone encadrée présente l'analyse granulométrique dans la zone des petits diamètres

5.1.4 Spectre infrarouge de la poudre initiale HA

La figure 5.5 présente le spectre infrarouge de la hydroxyapatite initiale HA. Typiquement, dans l'hydroxyapatite deux bandes d'absorption caractéristiques de OH peuvent être détectées [5.2]:

- une bande à 3572 cm⁻¹ qui correspond à l'eau de structure ;
- une bande à 630 cm⁻¹ qui correspond à l'eau absorbée.

Dans la poudre HA-11244 livrée par la société *Tomita*, uniquement la bande de l'eau de structure a été détectée. Outre les bandes de l'eau, les phosphates (bandes v_3 et v_4 , Fig. 5.5) et les carbonates (bandes v_3 , Fig. 5.5) ont été détectés. Les larges pics entre le 1190 et 976 cm⁻¹ correspondent aux phosphates. La réponse de phosphate (bande v_4) se trouve dans l'intervalle 660-520 cm⁻¹. Les pics entre 1650 et 1300 cm⁻¹ correspondent aux carbonates et révèlent la présence de carbonates à la surface.

Fig. 5.5 Spectre infrarouge de hydrohyapatite initiale

5.2 CARACTERISTIQUES DES ECHANTILLONS PROJETES PAR PLASMA

5.2.1 Résultats expérimentaux de poudre projetés dans l'eau

5.2.1.1 Morphologie des échantillons projetés dans l'eau

La figure 5.6 présente la morphologie des poudres projetées dans l'eau. Dans toutes les expériences réalisées, les particules ont conservé leur forme sphérique. On peut cependant noter que certains grains sont formés de particules plus petites. Les turbulences du jet du plasma de la torche augmentent la probabilité de chocs entre particules [5.3] Celles-ci coalescent à haute température conduisant à la formation de particules anguleuses. Les photographies montrent également la disparition des petites particules initiales qui se sont:

- soit totalement vaporisées ;
- soit unies et ont formé les particules anguleuses dans le jet du plasma.

Fig. 5.6 Photographies réalisées à la loupe binoculaire de la poudre initiale et celles projetées dans l'eau : poudre initiale (a) l'échantillon P11973I (b) ; l'échantillon P24953I (c)

Il apparaît, d'autre part, la formation de quantités plus ou moins importantes de bill transparentes et vitrifiées qui correspondent probablement à de phase amorphe. La phase amorphe est formée au sein du jet. Les figures 5.6 (b) et (c) montrent que l'augmentation de la puissance de l'arc électrique augmente le taux de phase amorphe.

Les morphologies des surfaces et des coupes des particules projetées dans l'eau ont été étudiées par le Microscope Electronique à Balayage (MEB). L'analyse des images faites par MEB montre que les surfaces des particules projetées dans l'eau contiennent beaucoup de pores ouverts (Fig. 5.7). Cela peut être induit par la libération du gaz emprisonné dans les pores à l'intérieur des particules lors de la fusion partielle ou complète des particules dans le plasma.

Fig. 5.7 MEB des particules projetées dans l'eau : l'échantillon P11973I.

Lors de la projection par plasma, les particules changent également de structure en surface.

L'analyse par microscopie électronique à balayage des coupes des particules de la poudre initiale montre que les particules contiennent les pores (Fig. 5.8). Lors de la projection, la structure interne des particules change en fonction des conditions de projection. Lors de la projection à basse puissance, les grandes particules conservent leur structure poreuse et leur partie intérieure a la même structure que celles de particules de poudre initiale. Seulement la fine couche de la surface des particules a été fondue et a changé leur structure. La couche fondue a été densifiée et la surface contient des pores ouverts. Toutes les petites particules ont été complètement fondues. La microscopie électronique à balayage montre la présence de particules couplées ce qui confirme le phénomène de coalescence entre les particules lors de la projection par plasma (Fig. 5.8a).

Les particules projetées à plus grande puissance d'arc contiennent uniquement des grands pores dans le centre des particules (fig. 5.8b). Dans cette condition les particules de poudre d'HA ont été complètement fondues. Elles ont une structure plus dense que celle de la poudre initiale et que celle des poudres projetée dans l'eau à faible puissance. Les larges pores se forment par la réunion des pores préexistants dans le matériau fondu. Selon la dynamique des bulles de gaz dans le liquide, les petites bulles de gaz coalescent pour former la grande bulle dans la particule complètement fondue [5.4]. Dans certain cas on peut observer la formation des grands pores ouverts sur la surface des particules, ce qui peut être causé par le déplacement d'un grand pore intérieur vers la surface de particule.

Fig.5.8 MEB des coupes des particules projetées dans l'eau dans différentes conditions : la zone marqué dans l'échantillon P11973I montre la présence des particules couplées dans la poudre projetée (a); la zone marquée dans l'échantillon P24953I montre la présence des particules avec les grands pores ouverts dans la poudre projetée (b).

La figure 5.9 représente le schéma de la transformation de la morphologie des particules d'HA lors de la projection par plasma. Les particules de poudre initiale contiennent les pores intérieurs et extérieurs (Fig. 5.9a). Lors de la projection à faible puissance, il y a fusion partielle des particules (Fig. 5.9b). Dans ce cas, il y a un mouvement des bulles de gaz dans la couche liquide vers la surface et il y a formation des nouveaux pores ouverts. La partie centrale des grandes particules conserve sa structure poreuse qui ressemble à la structure de la poudre initiale. Lors de la projection à haute puissance (Fig. 5.9c) les particules sont complètement fondues et contiennent uniquement les grands pores formés par la coalescence des pores préexistants dans les particules de poudre initiale.

Fig. 5.9 Schéma de la transformation de la morphologie de la particule d'HA lors de la projection par plasma dans différentes conditions

5.2.1.2 Analyse granulométrique des échantillons projetés dans l'eau.

La figure 5.10 représente la distribution des particules d'hydroxyapatite après projection dans l'eau. La distribution granulométrique des poudres projetées dans l'eau est étudiée selon le plan des expériences précédemment définies. La matrice des effets et des valeurs des diamètres modes (abscisse du maximum de la courbe) est donnée tableau 5.1. Pour la matrice nous avons pris quatre facteurs qui influencent la distribution des particules (voire le chapitre 4) :

Fig. 5.10 Analyse granulométrique des échantillons projetés dans l'eau.

		P24 95 35 I		
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.

Les valeurs des effets sont résumées dans le tableau 5.1

Le paramètre b_0 correspond à la moyenne de différentes réponses obtenues par les expériences. Le paramètre b_2 caractérise l'effet de la puissance de l'arc électrique sur les tailles des particules. Sa valeur est plus grande, ce que signifie que la puissance a une plus grande influence sur la distribution des particules dans la poudre projetée. La valeur négative du paramètre signifie, qu'en faisant varier le facteur X_2 du niveau -1 (qui correspond de 11 kW) au niveau +1 (qui correspond de 24 kW), c'est-à-dire en augmentant la puissance de l'arc électrique on diminue considérablement la taille des particules de poudre projetées.

Le deuxième facteur qui a une grande influence sur la distribution des particules dans la poudre projetée, est la composition du gaz plasmagène. Elle est caractérisée par la valeur b_1 =-3,8. En augmentant le contenu de gaz H₂ dans le gaz plasmagène on diminue considérablement la taille des particules de poudre projetées.

Les facteurs X_4 et X_5 , qui caractérisent le débit de gaz porteur de et le type d'injection, ont les coefficients b_4 et b_5 , ils ont peu d'influence sur la valeur du diamètre mode. On peut remarquer que le coefficient b_5 est positif. C'est-à-dire qu'en changeant le type d'injection, de l'intérieur vers l'extérieur, on augmente la taille des particules de poudre projetées.

Expé-		Fact	teurs		Abréviation	Réponses,	Eff	ote
rience	X ₁	X2	X4	X5	d'échantillon	mode (µm)	EII	ets
1	-	-	-	-	P11973I	112,5	bo	101,6
2	+	-	-	-	P11953I	92,4	b1	-3,8
3	-	+	-	-	P24973I	112,5	b ₂	-8,4
4	+	+	-	-	P24953I	92,4	b4	-3,3
5	-	-	+	-	P119735I	112,5	b5	3,3
6	+	-	+	-	P119535I	112,5	b ₁₂	-1,3
7	-	+	+	-	P249735I	75,8	b ₁₄	3,8
8	+	+	+	-	P249535I	75,8	b15	1,3
9	-	-	-	+	P11973E	112,5	b ₂₄	-5,9
10	+	-	-	+	P11953E	112,5	b ₂₅	0,8
11	-	+	-	+	P24973E	112,5	b45	0,8
12	+	+	-	+	P24953E	92,4	b124	1,3
13	-	-	+	+	P119735E	112,5	b ₁₂₅	-3,8
14	+	-	+	+	P119535E	112,5	B ₁₄₅	-1,3
15	-	+	+	+	P249735E	92,4	b ₂₄₅	3,3
16	+	+	+	+	P249535E	92.4	b ₁₂₄₅	1.3

Tableau. 5.1 Matrice d'expériences factorielle 2^4 (les signes (-1) et (+1) symbolisent les niveaux -1 et +1 des variables) et réponses au plan d'expérimentation et les valeurs des effets des différents facteurs sur la taille des particules

		P24 95 35 I		
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.

Les diamètres des particules obtenues par projection plasma de particules hydroxyapatite poudre initiale dans l'eau sont beaucoup plus influencés par la puissance de l'arc électrique que par la composition du gaz plasmagène (dans les domaine testé) ou par le débit de gaz porteur de et par le type d'injection. La projection avec une grande puissance cause la formation préférentielle des petites particules dans la poudre et le déplacement de la courbe de la distribution relativement à gauche de la courbe de la distribution de la poudre initiale. Au contraire, la projection à basse puissance cause le déplacement de la courbe de la distribution relativement à droite de la courbe de la poudre initiale. Ce qui caractérise l'augmentation de la taille des particules. Ces phénomènes sont expliqués par:

- La fusion et l'évaporation intenses des particules lors de la projection avec la plus grande puissance de l'arc, c'est-à-dire, dans le jet du plasma de plus grande température ;
- La formation des grands agglomérats des particules semi-fondues est causée par la collision entre les particules induites par la turbulence du gaz plasmagène, lors de la projection à basse puissance (Fig. 5.6 et 5.8).

Certains auteurs [5.5] expliquent la diminution de la taille des particules lors de la projection par le phénomène de dénudage des particules semi-fondues par l'influence de la haute vitesse du gaz plasmagène du jet. Le liquide se sépare de la particule semi-fondue en formant deux particules plus petites (Fig. 5.11).

Cela peut aussi être expliqué par la division de la particule partiellement ou entièrement fondue lors de l'impact avec la surface de l'eau.

Fig.5.11 Dénudage du liquide de la surface des particules demi-fondues.

5.2.1.3 Identification des phases des échantillons projetés dans l'eau

Les diffractogrammes des échantillons projetés dans l'eau sont présentés sur la figure 5.12. Le traitement informatique à l'aide du logiciel EVA a permis d'identifier les phases en présence. Les phases susceptibles de se former à partir de l'hydroxyapatite initiale sont les phosphates tricalcique α et tétracalcique, la chaux et le phosphate de calcium amorphe. Ces différents composés, à l'exception de l'amorphe, sont répertoriés dans la base de données PDF.

Dans tous les diffractogrammes des échantillons projetés avec l'injecteur intérieur on peut suivre la formation de phosphate tétracalcique et de phosphate tricalcique α . Les diffractogrammes des échantillons projetés avec la puissance plus haute présentent les pics des phases de décompositions plus intenses, ce qui confirme la décomposition plus importante dans ces conditions de projection (Fig. 5.12 a et b).

Dans les diffractogrammes des échantillons projetés avec l'injecteur extérieur et à basse puissance, la phase de phosphate tétracalcique est absente (Fig. 5.12 c et d). Dans le cas de la projection avec l'injecteur extérieur les pics des phases de décomposition se développent plus faiblement que dans le cas de la projection avec l'injecteur intérieur. Ce qui indique une décomposition plus importante de l'hydroxyapatite de la poudre initiale injectée par injecteur intérieur dans la zone la plus chaude du plasma.

Fig. 5.12a Diffraction des rayons X en transmission sur les échantillons projetés dans l'eau avec l'injecteur intérieur et un débit de gaz porteur de 3 Nl/min

Fig. 5.12b Diffraction des rayons X en transmission sur les échantillons projetés dans l'eau avec l'injecteur intérieur et un débit de gaz porteur de 3,5 Nl/min

Fig. 5.12c Diffraction des rayons X en transmission sur les échantillons projetés dans l'eau avec l'injecteur extérieur et un débit de gaz porteur de 3 Nl/min

Fig. 5.12d Diffraction des rayons X en transmission sur les échantillons projetés dans l'eau avec l'injecteur extérieur et un débit de gaz porteur de 3,5 Nl/min

5.2.1.4 Analyse infrarouge des échantillons projetés dans l'eau

La figure 5.13 représente les spectres infrarouges de l'hydroxyapatite initiale HA ainsi que des échantillons projetés dans l'eau. Il est important de noter que les lignes de bases ont été ramenées à zéro afin de pouvoir comparer les bandes d'absorption. Il apparaît clairement que les poudres ayant subi la projection thermique sont fortement deshydroxylées puisque l'on constate une nette diminution du pic correspondant à la vibration de la liaison OH des molécules d'hydroxyapatite. Ce qui induit la déshydratation de l'hydroxyapatite et la formation d'oxyhydroxyapatite et d'oxyapatite (vois chapitre 2) :

Fig. 5.13 Etude de la bande d'absorption à 3570 cm⁻¹ correspondante à la vibration de la liaison OH dans l'hydroxyapatite initiale et dans les échantillons projetés dans l'eau

La présence du groupement OH⁻ est fortement perturbée par les conditions de projection thermique. L'intensité des pics diminue avec l'augmentation de la puissance de l'arc électrique. Ceci est induit par le chauffage et la déshydratation des particules plus intenses dans ces conditions de projection. Le jet à plus haute température favorise le départ des groupements hydroxyles.

Les particules de poudre projetées dans l'eau avec le débit de gaz porteur le plus grands, ont des pics moins intenses. Dans ces conditions d'injection, les particules ont une vitesse initiale assez importante pour assurer le mouvement des particules sur la zone la plus chaude du jet du plasma.

Les particules projetées par l'injecteur extérieur sont moins déshydratées. Cela peut être expliqué par l'échauffement moins intense et la présence relativement brève des particules dans le jet du plasma lors de la projection dans ces conditions.

5.2.2 Les résultats expérimentaux des échantillons projetés sur substrat

5.2.2.1 Morphologie des échantillons projetés sur substrat

La figure 5.14 présente la morphologie des dépôts réalisés sur les surfaces sablées. L'adhérence du revêtement est favorisée par l'opération de sablage qui augmente la rugosité de la surface, créant ainsi de nombreux points d'accrochage de dépôt. La morphologie des échantillons projetés avec des puissances différentes n'est pas semblable. La surface des dépôts projetés à la puissance de 11kW contient des particules partiellement fondues Ces particules s'écrasent et s'émiettent au contact de la surface. Certaines zones, ont la même structure que les surfaces des particules projetées dans l'eau (Fig. 5.7). La surface du revêtement projeté à la puissance de 24kW est plus homogène. Il n'y a pas de particules émiettées, seulement des lamelles complètement fondues. On note d'autre part la présence de fissures sur les dépôts qui peuvent être expliquées par le brusque refroidissement des particules à leur arrivée sur la cible à température ambiante. Les contraintes thermiques générées sur la céramique favorisent le départ des fissures [5.6]

Fig. 5.14 Micrographie électronique à balayage des échantillons projetés sur surface sablée : échantillon Sub11973I (a) ; Sub249531 (b)

		P24 95 35 I		
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.

Résultats expérimentaux

La figure 5.15 représente les micrographies électroniques à balayage et les micrographies optiques des coupes des échantillons projetés sur le substrat dans les différentes conditions. On note la présence d'une multitude de particules non fondues dans les dépôts projetés avec la puissance de 11kW par l'injecteur intérieur (Sub11973I) et avec la puissance de 24 kW par l'injecteur extérieur (Sub249735E). Ces conditions de projection assure la conservation de la phase d'hydroxyapatite initiale dans le cœur des particules et leur adhésion sur la surface du substrat. Bien que la projection à la puissance de 24 kW par l'injecteur intérieur (Sub24953I) assure une bonne adhésion de dépôt, il ne contient pas beaucoup de particules avec la structure initiale. Le dépôt est plus amorphe et moins poreux. Le tableau 5.2 présente le résultat d'analyse de porosité des dépôts projetés avec l'injecteur intérieur. Le dépôt obtenu par une projection de faible puissance (Sub119735E) est fin et n'a pas une bonne adhésion avec la surface du substrat: les particules partiellement fondues rebondissement sur la surface et seulement quelques une y restent.

Figure 5.15 Micrographies électroniques à balayage et les micrographies optiques des coupes des échantillons projetés sur le substrat dans les différentes conditions.

Echantillon	Porosité, %	
Sub11973I	18,1	
Sub11953I	8,4	
Sub119735I	15,0	
Sub119535I	17,2	
Sub24973I	11,4	
Sub241953I	8,6	
Sub249735I	6,4	
Sub249535I	5.1	

Tableau 5.2 Analyse de la porosité des dépôts

5.2.2.2 Analyse de la mîcrodureté des échantillons projetés sur le substrat

L'analyse de la mîcrodureté dans les différentes épaisseurs de la surface du substrat dans le dépôt d'hydroxyapatite projetés est présentée dans la figure 5.16. Les dépôts ont des structures hétérogènes et ils présentent :

- des pores ;
- des particules non fondues ;
- des phases différentes ;
- des structures des dépôts endommagées par les fissures.

Tous ces composants, dont la formation dépend de la condition de projection, induisent l'inhomogénéité de la mîcrodureté dans les différentes zones du dépôt. La puissance de l'arc de la torche, la composition du gaz plasmagène, la distance de la projection, tous ces paramètres de la projection déterminent la propriété de la structure du dépôt et influencent la microdurté du dépôt [5.6, 5.7].

L'analyse de l'influence des paramètres sur la mîcrodureté du dépôt se présente dans la figure 5.17. La projection à haute puissance cause la fusion plus intense des particules et le dépôt qui se forme dans ces conditions est plus homogène et a une mîcrodureté plus importante [5.6]. La présence de la porosité qui accompagne la projection à basse puissance, baisse les propriétés mécaniques du dépôt. D'autre part, la projection avec l'injecteur intérieur, qui entraîne l'injection des particules dans la zone la plus chaude du jet du plasma et la fusion de particules plus intense, cause la formation d'un dépôt plus dur.

P 24 95 35 I						
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.		

Résultats expérimentaux

Fig.5.16 Diagrammes de la mîcrodureté dans les distances différentes de la surface du substrat dans le dépôt de hydroxyapatite projetées en conditions différentes.

Fig.5.17 Diagrammes de la mîcrodureté moyenne des dépôts de hydroxyapatite projetées en conditions différentes.

P24 95 35 I						
Sub - sur le substi P - dans l'eau Type de la projection	at 11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de Pinjection.		

85

5.2.2.3 Identification de phases des échantillons projetés sur le substrat

Les diffractogrammes des échantillons projetés sur des substrats sont présentés figure 5.18. Le traitement informatique à l'aide du logiciel EVA a permis d'identifier les phases en présence. Les phases susceptibles de se former à partir de l'hydroxyapatite initiale sont le phosphate tétracalcique, le phosphate tricalcique α , la chaux et le phosphate de calcium amorphe. Ces différents composés, sauf l'amorphe, sont répertoriés dans la base de données PDF.

De la même façon que les échantillons projetés dans l'eau, dans tous les diffractogrammes des échantillons projetés avec l'injecteur intérieur on peut suivre la formation de phosphate tétracalcique et de phosphate tricalcique α . Un échantillon Sub24953I contient CaO. Les diffractogrammes des échantillons projetés à haute puissance présentent les pics des phases de décomposition plus intenses, ce qui confirme la décomposition plus importante dans ces conditions de projection (Fig. 5.18 a et b).

Dans les diffractogrammes des échantillons projetés avec l'injecteur extérieur et à basse puissance, la phase de phosphate tétracalcique est absente (Fig. 5.18 c et d). Dans le cas de la projection avec l'injecteur extérieur les pics des phases de décomposition se développent plus faiblement que dans le cas de la projection avec l'injecteur intérieur. Ce qui indique la décomposition plus intense d'hydroxyapatite de la poudre initiale injectée par injecteur intérieur dans le plus chaude zone du plasma.

P24 95 35 I						
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H22,5% Ar 95%+H2 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.		

Fig. 5.18a. Diffraction des rayons X en transmission sur les échantillons projetés sur la surface du substrat avec l'injecteur intérieur et un débit de gaz porteur de 3 Nl/min

Fig. 5.18b. Diffraction des rayons X en transmission sur les échantillons projetés sur la surface du substrat avec l'injecteur intérieur et un débit de gaz porteur de 3,5 Nl/min

Fig. 5.18c. Diffraction des rayons X en transmission sur les échantillons projetés sur la surface du substrat avec l'injecteur extérieur et un débit de gaz porteur de 3 Nl/min.

ig. 5.18d Diffraction des rayons X en transmission sur les échantillons projetés sur la surface du substrat avec l'injecteur extérieur et un débit de gaz porteur de 3,5 Nl/min

5.2.2.4 Analyse infrarouge des échantillons projetés sur le substrat

La figure 5.19 présente les spectres infrarouges de l'hydroxyapatite initiale HA ainsi que ceux des échantillons projetés sur le substrat. Comme dans le cas d'analyse infrarouge des échantillons projetés dans l'eau, les lignes de bases ont été ramenées à zéro afin de pouvoir comparer les bandes d'absorption. La bande OH est fortement perturbée par les conditions de projection thermique. Dans le cas de la projection avec l'injecteur intérieur, l'intensité du pic diminue et il y a pas plus de différence entre les différentes poudres projetées. Ce qui peut être expliqué par le chauffage et la déshydratation intense des particules plus petites et par le rebondissement des plus grandes particules qui conservent la phase d'hydroxyapatite initiale à l'intérieur. Mais les résultats d'analyse des échantillons projetés par l'injecteur extérieur sont bien différents. Les particules injectées par l'injecteur extérieur, se déplacent dans la zone du jet du plasma moins chaud et moins rapide. Les particules n'ont pas une vitesse assez grande pour assurer leur rebondissement sur la surface du substrat ou du dépôt. Dans ce cas, plus de particules contenant la phase d'hydroxyapatite adhérent à la surface et le dépôt contient plus de particules contenant la phase de hydroxyapatite initiale. Les photos (Fig.5.15) confirment ce phénomène.

Les pics correspondant à la vibration de la liaison OH⁻ des molécules d'hydroxyapatite, des poudres projetées dans l'eau sont plus importants que les pics des dépôts. Cela est induit par deux causes:

- Le rebondissement des plus grandes particules qui conservent la phase d'hydroxyapatite à l'intérieur, sur la surface du substrat ou du dépôt ;
- Les réactions qui sont opposée à la réaction de déshydratation, entre de l'eau et des phases présentées dans les particules projetées :

 $Ca_{10}(PO_4)_6(OH)_{2-2x}O_x\Box_x + x H_2O \to Ca_{10}(PO_4)_6(OH)_2$ $2Ca_3(PO_4)_2 + Ca_4P_2O_9 + (1-x) H_2O \to Ca_{10}(PO_4)_6(OH)_{2-2x}O_x\Box_x$

Fig. 5.19 Etude de la bande d'absorption à 3570 cm⁻¹ correspondante à la vibration de la liaison OH dans l'hydroxyapatite initiale et dans les échantillons projetés sur les substrat.

5.2.3 Détermination quantitative des phases présentes dans les poudres et dépôts.

Etude quantitative des facteurs

Les résultats quantitatifs des calculs des phases sont répertoriés dans un tableau 5.3. Ce tableau a été construit selon la matrice factorielle d'expériences 2^5 montré dans le chapitre 4 (tableau 4.5). Les données de ce tableau ont été converties en une équation linéaire dégressive basée sur la méthode des moindres carrés) des données [5.8]. Cette équation se présente ainsi :

 $Y_{iu} = b_o + \sum b_i X_{ui} + \sum b_{ij} X_{ui} X_{uj} + \sum b_{ijk} X_{ui} X_{uj} X_{uk} + \sum b_{ijkf} X_{ui} X_{uj} X_{uk} X_{uf} + \epsilon_u$ (4.1)

où u est le numéro de l'expérience, X_i est le facteur de Tableau 4.4. et Y est une des réponses suivantes :

Y1 est la fraction de phase d'HA parmi toutes les phases cristallines ;

 Y_2 est la fraction de phase de TTCP parmi toutes les phases cristallines ;

Y₃ est la fraction de phase de α-TCP parmi toutes les phases cristallines ;

Y₄ est la fraction de phase de CaO parmi toutes les phases cristallines ;

 Y_5 est la fraction de toutes les phases de décomposition (TTCP+ α -TCP+CaO) parmi toutes les phases cristallines;

Le coefficient b_0 représente la valeur moyenne de la réponse Y aux 32 expériences. b_i représente l'effet de Xi variable. Les autres coefficients, b_{ij} , b_{ijk} , b_{ijkf} représentent les effets de l'interaction des variables $X_i X_j$, $X_i X_j X_k$, $X_i X_j X_k X_f$ correspondants. Les valeurs des coefficients sont répertoriées dans le Tableau 5.4. Les contours des constants de la fraction de phase d'HA parmi toutes les phases cristallines sont montrés dans la figure 5.20 et les contours des constants de la fraction de phase cristallines sont montrés dans la Figure 5.21.

Le coefficient b_2 est la plus grande valeur pour les réponses Y_1 et Y_4 ce que indique, que le facteur de la puissance a une influence plus forte sur la composition des phases dans les dépôts ou dans les poudres projetées dans l'eau. La valeur négative du coefficient pour la réponse Y_1 indique que l'augmentation de la puissance d'arc électrique provoque la diminution du contenu de la phase cristalline d'HA. Une plus grande puissance provoque une formation du jet du plasma avec une température plus importante, ce qui provoque le chauffage plus intense des particules injectées dans le jet et une décomposition des phases des particules plus intense. Dans ce cas il y a augmentation des phases de décomposition avec l'augmentation de la puissance et le coefficient b_2 est positif.

Le deuxième effet est le type d'injection des particules. Il est caractérisé par le coefficient b_5 qui est positif pour la réponse Y_1 et négatif pour la réponse Y_4 . C'est-à-dire, le changement du type de l'injection, l'injection intérieure en l'injection extérieure, provoque l'augmentation du contenu d'HA dans les dépôts et les poudres projetées dans l'eau. Les particules injectées par l'injecteur extérieur se déplacent dans la zone moins chaude du plasma. Elles sont chauffées moins intensément et, en conséquence, la décomposition d'HA des particules est aussi moins intense. Dans ce cas il y a diminution des phases de décomposition et le coefficient b_5 est négatif. Résultats expérimentaux

Le troisième effet est la composition du gaz plasmagène qui détermine la modification de la conductance calorifique et la viscosité du gaz plasmagène, le transfert de la chaleur et du moment entre le plasma et les particules. La valeur négative du coefficient pour la réponse Y_1 (contenu d'HA) montre, que l'augmentation du contenu de H_2 dans le gaz plasmagène provoque la diminution du contenu d'HA dans les dépôt et les poudres projetées.

N⁰	Expérience		Fraction des phases (%)			
		НА	ТТСР	α-ΤСΡ	CaO	
1	P11973I	83	5	12	0	
2	P11953I	68	18	14	0	
3	P24973I	72	13	15	0	
4	P24953I	63	19	18	0	
5	Sub11973I	73	8	19	0	
6	Sub11953I	71	16	13	0	
7	Sub24973I	69	20	11	0	
8	Sub24953I	65	20	15	0	
9	P119735I	89	0	11	0	
10	P119535I	69	16	15	0	
11	P249735I	67	14	19	0	
12	P249535I	54	29	17	0	
13	Sub119735I	74	17	9	0	
14	Sub119535I	73	17	10	0	
15	Sub249735I	63	26	11	0	
16	Sub249535I	64	26	8	2	
17	P11973E	94	0	6	0	
18	P11953E	95	0	5	0	
19	P24973E	81	8	11	0	
20	P24953E	75	12	13	0	
21	Sub11973E	88	0	12	0	
22	Sub11953E	83	0	17	0	
23	Sub24973E	76	8	16	0	
24	Sub24953E	76	9	15	0	
25	P119735E	96	0	4	0	
26	P119535E	96	0	4	0	
27	P249735E	74	17	9	0	
28	P249535E	68	15	17	0	
29	Sub119735E	89	0	11	0	
30	Sub119535E	85	0	15	0	
31	Sub249735E	78	6	16	0	
32	Sub249535E	71	17	12	0	

Tableau 5.3 Résultats de l'analyse quantitative de composition de phases.

P 24 95 35 I							
	Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H₂2,5% Ar 95%+H₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.		
Effet des	Réponse Y ₁	Réponse Y ₂	Réponse Y ₃	Réponse Y ₄	Réponse Y ₅		
---	------------------------	------------------------	------------------------	------------------------	------------------------------		
variables	НА	ТТСР	a TCP	CaO	Phases de décom- position		
b ₀	76,3125	11,125	12,5	0,0625	23,6875		
		Effets	orincipaux				
b ₁ /composition du gaz plasma- gène	-2,8125	2,25	0,5	0,0625	2,8125		
b ₂ /la puis- sance de l'arc	-6,5625	5,0625	1,4375	0,0625	6,5625		
b ₃ /type de la projection	-1,4375	0,75	0,625	0,0625	1,4375		
b₄/le débit du gaz porteur	-0,6875	1,375	-0,75	0,0625	0,6875		
b5/ type de l'injection	6,5	-5,375	-1,0625	-0,0625	-6,5		
		Effets des	interactions				
b12	0,0625	-0,0625	-0,0625	0,0625	-0,0625		
b ₁₃	1,4375	-1	-0,5	0,0625	-1,4375		
b ₁₄	-0,3125	0,25	0	0,0625	0,3125		
b15	1,125	-1,375	0,3125	-0,0625	-1,125		
b ₂₃	1,9375	-0,4375	-1,5625	0,0625	-1,9375		
b ₂₄	-1,6875	1,1875	0,4375	0,0625	1,6875		
b ₂₅	-1,375	0,6875	0,75	-0,0625	1,375		
b ₃₄	0,4375	0,375	-0,875	0,0625	-0,4375		
b35	-0,625	-1,5	2,1875	-0,0625	0,625		
b45	0	-0,25	0,3125	-0,0625	0		
b ₁₂₃	0,0625	0,3125	-0,4375	0,0625	-0,0625		
b124	-0,0625	0,5625	-0,5625	0,0625	00625		
b ₁₂₅	-0,75	0,9375	-0,125	-0,0625	0,75		
b ₁₃₄	0,3125	-0,125	-0,25	0,0625	-0,3125		
b135	-1,75	1,625	0,1875	-0,0625	1,75		
b ₁₄₅	-0,125	0	0,1875	-0,0625	0,125		
b ₂₃₄	0,6875	-0,6875	-0,0625	0,0625	-0,6875		
b ₂₃₅	0,5	-0,3125	-0,125	-0,0625	-0,5		
b ₂₄₅	0,25	-0,0625	-0,125	-0,0625	-0,25		
b ₃₄₅	0,25	-0,75	0,5625	-0,0625	-0,25		
b ₁₂₃₄	-0,1875	0,5625	-0,4375	0,0625	0,1875		
b ₁₂₃₅	0,875	0,3125	-1,125	-0,0625	-0,875		
b ₂₃₄₅	0	0,3125	-0,25	-0,0625	0		
b3451	-0,625	1,125	-0,4375	-0,0625	0,625		
b4512	-0,375	-0,3125	0,75	-0,0625	0,375		
b ₁₂₃₄₅	-0,375	0,4375	0	-0,0625	0,375		

Tableau.5.4 Effets des variables sur les réponses

Fig. 5.20 Contours des constants de la fraction de phase d'HA parmi toutes phases cristallines.

Les effets du type d'injection et du débit de gaz porteur sont caractérisés par les coefficients négatifs pour la réponse Y_1 . Le changement du type de la projection, (projection dans l'eau en projection sur le substrat) et l'augmentation du débit du gaz porteur provoque la diminution d'HA dans les dépôts et dans les poudres projetées.

Pour les poudres qui ont été projetées dans l'eau avec l'injecteur intérieur, l'analyse quantitative de phase amorphe a été faite. Les résultats sont présentés dans le tableau 5.5. Les effets des variables sur la phase amorphe représentent dans le Tableau 5.6. Les contours des constant de la phase amorphe sont montrés sur la figure 5.22. Comme dans le cas précédent, la puissance de l'arc électrique est l'effet le plus important. Sa valeur positive montre que l'augmentation de la puissance provoque l'augmentation du contenu de la phase amorphe dans les poudres projetées. Le facteur de débit du gaz porteur avec la valeur de b₄ négative montre, que l'augmentation du débit provoque la diminution du contenu de la phase amorphe. La valeur positive de b₁ montre que l'augmentation du contenu de H₂ dans le gaz plasmagène est favorable à la formation de phase amorphe.

Echantillon	Phase amorphe (%)
P11973	12
P11953	21
P24973	46
P24953	52
P119735	0
P119535	20
P249735	31
P249535	26

Effets des variables	Réponse Y5 Phase amorphe		
bo	26		
Effe	ts principaux		
b ₁	3,75		
b ₂	12,75		
b₄	-6.75		
Effets	des interactions		
b ₁₂	-3,5		
b ₁₄	0		
b ₂₄	-3,5		
b ₁₂₄	-2,75		

Poudre projetée sur le substrat avec l'injecteur intérieur et un débit de gaz porteur de 3NI/min

Tableau 5.6 Effets des variables sur la phase amorphe.

Poudre projetée sur le substrat avec l'injecteur intérieur et un débit de gaz porteur de 3,5Nl/min

Fig. 5.22 Contours des constants de la fraction de phase de décomposition parmi toutes phases cristallines.

5.3 RESULTATS EXPERIMENTAUX DES ECHANTILLONS TRAITEES PAR LASER

5.3.1 Morphologie des échantillons traités par laser

La surface et la profondeur de la couche fondue lors du traitement par laser, dépendent de l'énergie de l'impulsion, de la dimension de la tache et de la vitesse de balayage de faisceau laser et du recoupement des taches.

Le traitement avec des vitesses de balayage différentes assure les différents recoupements des taches (Fig. 5.23). Les micrographies optiques amplifiées montrent la formation de crevasses et de pores sur les surfaces traitées. On peut observer les mêmes structures sur les surfaces de tous les échantillons. Les pores sur les surfaces traitées se forment à cause de la libération des gaz pendant la fusion et la resolidification complète. La formation de crevasses est induite par le grand gradient de température et par la tension résiduelle thermique qui se développe sur la surface traitée après l'impulsion laser.

b

Fig. 5.23 Micrographies optiques des surfaces des dépôts d'HA traités par laser avec une densité de puissance $6,4x10^8$ W/m² et différentes vitesses de balayage : avec une vitesse 6,4 m/s qui correspond au recoupement des taches à 36% (échantillon Sub11953I_21) (a) ; avec une vitesse 9,6 m/s qui correspond au recoupement des taches à 50% (échantillon Sub11953I_22) (b).

S24 95 35 112						
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.	1 - 5,9x10 ⁸ W/m ² 2 - 6,4x10 ⁸ W/m ² Densité de puissance	1 – 6,4 mm/s 2 – 9,6 mm/s Vitesse de balayage

Résultats expérimentaux

L'analyse de la surface traitée a montré le développement de cristaux (Fig. 5.24). L'apparition de cristaux peut être due à la recristallisation de phase amorphe en phases de décomposition lors de la solidification du matériau fondu après le traitement laser.

Fig. 5.24 Micrographies optiques des microstructures des surfaces fondues (échantillons Sub24973I_22 et Sub249535I_21).

Le traitement laser des dépôts projetés par APS crée la couche fondue qui se solidifie rapidement. La profondeur de la couche fondue dépend de la puissance de l'impulsion laser et de la dimension de la tache du faisceau laser sur la surface traitée. Ces caractéristiques définissent la puissance par unité de surface. Dans le tableau 5.7 sont présentés les résultats de l'examen de la profondeur des couches fondues observées sur les micrographies des coupes des dépôts traités. Les exemples des micrographies de coupes des dépôts traités se présentent dans la figure 5.25. On peut observer, comme sur la figure 5.24, la formation de cristaux dans la couche fondue. C'est-àdire, la recristallisation qui se développe aussi bien sur la surface de dépôt traité, que dans la profondeur.

	Puissance par unité de surface				
Echantillons	5,9x10 ⁸ W/m ²	6,4x10 ⁸ W/m ²			
Sub11973I	22,5 μm	35,8 μm			
Sub11953I	28,3 μm	34,8 μm			
Sub24973I	24,6 μm	32,6 µm			
Sub24953I	22,9 μm	32,0 μm			
Sub119735I	29,0 μm	38,6 µm			
Sub119535I	29,7 μm	30,5 µm			
Sub249735I	25,7 μm	36,8 µm			
Sub249535I	30,5 µm	32,9 μm			

Tableau 5.7 Tableau des valeurs de profondeur des couches fondues.

		S	24 95 35 1	12		
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	 I - Intérieur E - Extérieur Type de l'injection. 	1 – 5,9x10 ⁸ W/m ² 2 - 6,4x10 ⁸ W/m ² Densité de puissance	1 – 6,4 mm/s 2 – 9,6 mm/s Vitesse de balayage

Résultats expérimentaux

Fig.5.25 Micrographies optiques des microstructures des couches fondues : Sub11973I 12 (a), Sub11973I 22 (b), c.Sub119535I 12(c).

5.3.2 Identification de phases des échantillons traitées par laser

Les résultats d'analyse par rayons X qualitative et quantitative montrent que les surfaces des dépôts d'HA qui ont été traitées par laser contiennent plus de phases de décomposition, comme α -TCP et TTCP. Cela peut être induit par la recristallisation de la phase amorphe en phases de décomposition pendant la solidification après le traitement laser et par la décomposition d'HA en α -TCP et TTCP à haute température. Dans les figures 5.26 et 5.27 sont montrés les diagrammes de diffraction X de 24 échantillons :

- projetés sur le substrat en condition différentes ;
 - traitées par laser avec les différentes densités de puissances.

On peut voir que les échantillons traités par laser avec une puissance élevée contiennent plus de phases de décomposition (c'est-à-dire la profondeur de la couche fondue). Le tableau 5.6 présente les résultats de l'analyse quantitative.

Echantillon	Phase composition des revêtement avant le			Phase composition des revêtement après traitement par laser avec les différentes puissance par unité de la surface, %						
	HA a TCP TTCP		, 70	70 P=5		=5,9x10 ⁸ W/m ²		P=6,4x10 ⁸ W/m ²		
			HA	a TCP	ТТСР	HA	a TCP	ТТСР		
Sub971131	73	19	8	60	13	27	56	16	28	
Sub95113I	71	13	18	63	19	18	58	9	33	
Sub97243I	69	11	20	59	17	24	43	20	37	
Sub952431	65	15	20	56	14	30	43	21	36	
Sub971135I	74	9	17	53	19	28	47	22	31	
Sub951135I	73	10	17	56	16	28	52	24	24	
Sub972435I	63	11	26	60	13	27	59	17	24	
Sub952435I*	64	8	26	40	14	44	37	16	45	

* Tous les échantillons de Sub952435I traités dans les conditions différentes et non traité contentent 2% de CaO.

 Tableau 5.8 Résultats de l'analyse quantitative

		S	24 95 35 I	12		
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.	1 – 5,9x10 ⁸ W/m ² 2 - 6,4x10 ⁸ W/m ² Densité de puissance	1 – 6,4 mm/s 2 – 9,6 mm/s Vitesse de balayage

99

Fig. 5.26 Echantillons avant (diagrammes noirs) et après le traitement par laser avec les densité de puissances $q=5,9x10^8$ W/m² (diagrammes rouges) et $q=6,4x10^8$ W/m² (bleues).

P 24 95 35 I						
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H₂2,5% Ar 95%+H₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.		

Fig. 5.27 Echantillons avant (diagrammes noirs) et après le traitement par laser avec densité de puissances $q=5,9x10^8$ W/m² (diagrammes rouges) et $q=6,4x10^8$ W/m² (bleues).

P24 95 35 I						
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.		

5.4 RESUME ET CONCLUSIONS PRINCIPALES

Dans ce chapitre nous avons étudié la sensibilité des propriétés le plus importantes d'hydroxyapatite projeté sur le substrat et dans l'eau, comme :

- la composition des phases ;
- le contenu d'eau structurelle ;

en fonction de paramètres de la projection plasma. On a déterminé, que la puissance de l'arc électrique a une influence la plus forte sur la composition des phases dans les dépôts ou dans les poudres projetées dans l'eau. Une puissance plus grande résulte en jet du plasma avec une température plus élevée, ce qui provoque le chauffage des particules injectées plus intense et une décomposition des phases des particules plus soutenue.

L'augmentation de la puissance d'arc électrique provoque également l'évaporation et dénudage de particules. Par conséquente, la taille de particules diminue. La projection avec la puissance plus faible résulte en une augmentation de la taille des particules de poudre projetée. Cet effet est causé par la coalescence et l'interaction entre les particules.

Les analyses de la morphologie et de la microdurté des dépôts projetés montre que l'augmentation de la puissance cause la formation de revêtement plus homogène, moins poreux et plus dur.

Le deuxième effet le plus important est le type d'injection des particules. Son changement de l'injection intérieure à extérieure, provoque l'augmentation du contenu d'HA dans les dépôts et les poudres projetées dans l'eau. Les particules injectées à l'extérieur se déplacent dans la zone moins chaude du jet. Elles sont chauffées moins intensément et, en conséquence, la décomposition d'HA des particules moins intense.

Le troisième effet le plus important est la composition du gaz plasmagène qui détermine :

- la conductivité thermique et la viscosité du gaz plasmagène ;
- le transfert de la chaleur et du moment entre le plasma et les particules.

L'augmentation du contenu de H_2 dans le gaz plasmagène provoque également la diminution de l'eau structurelle dans les dépôts et les poudres projetées.

Le traitement laser en 2 étapes des dépôts projetés provoque le changement structurel et la recristallisation de la surface fondue. Les surfaces des dépôts traités sont plus lisses et contiennent les crevasses et les pores. La profondeur de couche fondue dépend de la densité de la puissance de laser d'une telle façon que le traitement avec puissance élevée induit la formation de couche plus épaisse. Le traitement avec la puissance élevé induit aussi la recristallisation de la phase amorphe et la décomposition d'HA dans les dépôts. Bibliography

5.1 E.LUGSCHEIDER, M. KNEPPER, K.A. GROSS. Production of spherical apatite powder – the first step for optimized thermal-sprayed apatite coatings. Journal of Thermal Spray Technology 1(3) September (1992) (212-222)

5.2 C.J.LIAO, F.H.LIN, K.S.CHEN, J.S.SUN. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 20 (1999) 1807-1813

5.3 P.H. DUNDAS, Agglomeration in large scale plasma spheroidization processes. In: C Bonet, ed., International Round Table on Study and Applications of Transport Phenomena in Thermal Plasmas, CNRS, Odeillo, France, 1975, paper I.2.

5.4 H. LI, K.A. KHOR, P.CHEANG. Thermal sprayed hydroxyapatite splats: nanostructures, pore formation mechanisms and TEM characterization Biomaterials, 25 (2004) 3463-3471.

5.5 R. MCPHERSON, N. GANE, T.J. BASTOW. Structural characterization of plasma-sprayed hydroxylapatite coatings Journal of Materials Science : Materials in Medicine 6 (1995) 327-334.

5.6 L.SUN, C.C. BERNT, C.P.GREY. Phase, structural and microstructural investigation of plasma sprayed hydroxyapatite coatings, Materials Science and Engineering A 360 (2003) 70-84

5.7 S.W.K.KWEH, K.A.KHOR, P.CHEANG. Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock : microstructure and mechanical properties. Biomaterials 21 (2000) 1223-1234.

5.8 R.PERRIN, J.P.SCHAFF. Chimie Industrielle, Dunod, Paris 1999, 259-310

1 ı. I 1 I. 1

. 1 I. I.

CHAPITRE 6

RESULTATS DE MODELISATION

La simulation numérique de l'interaction entre les particules d'hydroxyapatite et le jet du plasma Ar-H₂ et de la formation du revêtement à la surface du substrat a été réalisée dans cette étude. Les particules HA ont été injectées dans un jet du plasma. Le modèle balistique du code *Plasma_2000* a été utilisé pour décrire le phénomène de l'échange de la quantité de mouvement et de la chaleur entre plasma et particules d'hydroxyapatite. La simulation a été exécutée en utilisant des champs de température et de vitesse du jet du plasma déterminés par le code numérique *Jets_et_Poudre_2004*. Les simulations des projections expérimentales en modifiant la puissance de l'arc électrique, le débit du gaz porteur, la composition du gaz plasmagène et la distance de la projection, ont été également modélisées. Une courte distance de projection a été utilisée pour la simulation de la projection d'HA sur le substrat tandis qu'une distance longue choisie pour la simulation de la projection à courte distance de projection ont été appliqués pour la modélisation de la projection à courte distance de projection ont été appliqués pour la modélisation de la projection à courte distance de projection numérique a été validée de deux façons :

- la fraction de la phase amorphe dans le matériau projeté a été calculée et comparée avec les résultats expérimentaux des analyses quantitatives par diffraction X.
- la porosité des dépôts modélisés par la simulation numérique a été comparée avec la porosité des dépôts projetés. La distribution des particules dans la poudre projetée dans l'eau a été comparée avec les résultats numériques.

La simulation numérique de l'influence de la radiation du laser sur le dépôt d'hydroxyapatite a été exécutée. La profondeur de la couche fondue obtenue par la simulation numérique a été comparée avec les résultats expérimentaux.

6.1 MODELISATION DE L'ECHANGE DE QUANTITE DE MOUVEMENT ET DE CHALEUR ENTRE PLASMA ET PARTICULES D'HYDROXYAPATITE

6.1.1 Conditions expérimentales de la projection utilisées dans la modélisation

Les conditions expérimentales et les paramètres de l'injecteur pris pour la modélisation, sont représentés dans le tableau 6.1. Tous les paramètres pris pour la modélisation, correspondent aux paramètres des projections expérimentales avec l'injection intérieure, qui sont décrits dans le chapitre 4 (voire Tableau 4.1). Cependant, la condition de la projection à la puissance de 11 kW est hors des conditions admises dans la modélisation de la croissance de dépôt car le modèle ne peut pas encore décrire l'écrasement de particules solides. C'est pourquoi, la simulation numérique a été réalisée uniquement pour les projections à une puissance de 24 kW.

Les substrats d'aluminium de taille 15x15x3 mm ont été utilisés pour la projection des dépôts. Avant la déposition les surfaces des substrats ont été sablées par projection de corindon, taille +125-250 μ m, dans un flux d'air comprimé afin d'augmenter la rugosité du substrat et donc l'adhérence du dépôt.

Les paramètres de la poudre d'HA : la distribution des diamètres des particules, les propriétés thermophysiques et structurelles, qui sont admise dans la modélisation, correspondent aux paramètres de la poudre d'HA utilisé dans la projection expérimentale. La distribution, la structure et la porosité de la poudre sont décrites dans le *Chapitre* 5.

Paramètres	Valeur
La géométrie de la torche, de l'i	injecteur et du tuyau
Torche diamètre, mm	8
Position de l'injecteur	A l'intérieur de la torche, 12 mm de la
	sortie
L'angle de l'injection	70°
Diamètre de l'injecteur, D _i mm	2
Longueur de l'injecteur, L _i mm	11
Diamètre du tuyau, D_p , mm	3
Longueur du tuyau, L_p , m	4,38
Projection	
Distance de la projection, cm	10 cm pour la projection sur substrat/
	81 cm pour projection dans l'eau
Puissance électrique, kW	24
Débit du gaz plasmagène, Nl/min	50
Composition du gaz plasmagène Ar +H ₂ , vol%	95 +5 et 97,5 + 2,5
Débit du gaz porteur (Ar), Nl/min	3 et 3,5
Débit de la poudre, g/min	17

Tableau 6.1 Conditions expérimentales utilisées dans la modélisation

6.1.2 Propriétés du jet du plasma

Les profils des champs de température et de vitesse dans le jet du plasma ont été calculés par le logiciel numérique *Jets_et_Poudres_2004* pour le plasma généré par la torche SG-100 lors la projection avec la puissance de l'arc électrique de 24 kW et la composition du gaz plasmagène de Ar + 2,5 vol. % H₂. Les profils calculés pour les différentes distances de la projection sont représentés dans les figures 6.1 et 6.2.

Fig. 6.1 Champs de température et de vitesse du jet du plasma calculés pour le plasma généré par la torche SG-100 lors de la projection avec une puissance d'arc électrique de 24 kW et une composition du gaz plasmagène de Ar + 2,5 vol. % H_2 à la distance de 10 cm lors de la projection sur le substrat

Fig. 6.2 Champs de température et de vitesse du jet du plasma calculés pour le plasma généré par la torche SG-100 lors de la projection avec une puissance de l'arc électrique de 24 kW et une composition du gaz plasmagène de Ar + 2,5 vol. % H_2 à la distance de 81 cm lors de la projection dans l'eau

Ces profils ressemblent aux profils du jet du plasma générée avec la composition du gaz plasmagène de Ar + 5 vol. % H_2 . La viscosité dynamique, la conductivité thermique, la densité et la capacité thermique selon les différentes températures des gazs utilisés, ont été obtenues sur le logiciel *T&TWinner* et sont représentées dans les figures de 6.3 à 6.6. Les diagrammes montrent que les propriétés de transport des différentes compositions des gaz utilisés se ressemblent.

Fig. 6.3 Viscosité dynamique en fonction de la température de gaz avec les composition suivants: Ar+2,5% vol. H_2 et Ar+5% vol. H_2

Fig. 6.4 Conductance thermique en fonction de la température de gaz avec les composition suivants: Ar+2,5 % vol. H_2 et Ar+5% vol. H_2

Fig .6.5 Densité du gaz en fonction de la température de gaz de compositions suivants Ar+2,5% vol. H_2 et Ar+5% vol. H_2

Fig .6.6 Chaleur spécifique en fonction de la température de gaz de compositions: Ar+2,5% vol. H_2 et Ar+5% vol. H_2

6.1.3 Propriétés de hydroxyapatite

Lors de la projection par plasma les particules d'HA sont chauffées à très hautes températures. C'est pourquoi il faut connaître les propriétés thermophysiques du matériau utilisé. Dans le code *Plasma_2000* on utilise deux types de données pour la modélisation de l'échange de la quantité du mouvement et de la chaleur entre le plasma et la particule de HA :

- les données qui caractérisent les propriétés de l'hydroxyapatite qui dépendent du changement de température (dans le code elles sont représentés comme diagramme et s'appellent 2D Fonction);
- les données qui caractérisent les propriétés de l'hydroxyapatite qui ne dépendent pas du changement de température (elles s'appellent les *Constants*).

Les constantes sont représentées dans le Tableau 6.2. Les données qui caractérisent les propriétés d'HA en fonction de la température (*2D Fonction*) contiennent la densité, la capacité thermique, la conductivité et la pression de la vapeur saturée.

Propriétés	Valeur	Unité	Source
Chaleur de la fusion	15,5	kJ/mole	[6.1][6.2]
Température de la fusion	1843	K	[6.3]
Température d'évaporation	3500	K	[6.4]
Chaleur d'évaporation	458,239	KJ/mole	[6.5]
Masse moléculaire	1,667707x10 ⁻²⁴	kg	

Table 6.2 Propriétés d'HA qui ne sont pas fonction de la température

La densité d'hydroxyapatite en fonction de la température est donnée par l'équation (6.1) :

$$\rho(T) = \frac{\rho_o}{1 + 3\alpha(T - T_o)} \tag{6.1}$$

où : $\rho_0 = 3,156 \text{ g/cm}^3$ est la densité de hydroxyapatite dense [6.6], [6.7], [6.8] ; $\dot{\alpha} = 13.3 \times 10^{-6} \text{ K}^{-1}$ est l'expansion thermique (la moyenne de [6.9],[6.10],[6.11]) ; *T* est la température de la particule ; $T_0 = 300 \text{ K}$ est la température initiale de la particule.

La figure 6.7 représente la densité de l'hydroxyapatite dense et de l'hydroxyapatite poreuse. La densité de l'hydroxyapatite poreuse a été calculée selon l'équation (6.2) pour la porosité P=0,12 obtenue de l'analyse de poudre HA-11244 :

Fig.6.7 Densité de poudre de l'hydroxyapatite dense et poreuse.

La capacité thermique de hydroxyapatite qui est représente dans la figure 6.8, dépend de la température et des données qui ont été trouvées dans les articles [6.6] et [6.12]

Fig.6.8 Capacité thermique de hydroxyapatite, c_{p1} (selon [6.6]) et c_{p2} (selon [6.12]), c_p est la capacité thermique moyenne, extrapolée selon l'équation $c_p=269,55 \text{ x } \ln(T)-748,22$ avec le coefficient de régression $R^2=0.99$

La conductivité thermique pour le matériau dense, λ , a été calculée selon l'équation (6.3)

$$\lambda = \rho_p a_p C_p \tag{6.3}$$

où ρ_p et C_p sont la densité et la capacité thermique qui ont été déterminées auparavant, et a_p est la diffusivité thermique prise de [6.8] et corrigée pour le matériau dense. Ensuite, la conductivité thermique du matériau poreux, λ_p , a été calculée selon l'équation de *Maxwell* (6.4)

$$\lambda_p = \lambda \frac{1 - P}{1 + 0.5P} \tag{6.4}$$

Les courbes des conductivités calorifiques pour l'hydroxyapatite dense et poreuse (P=0,12) sont représentée sur la figure 6.9

La pression de vapeur saturée a été calculée selon l'équation de *Clausius-Clapeyron* (6.5) et montrée sur la figure 6.10.

$$P_s = P_0 \cdot exp(\frac{Q_v}{kT_v} - \frac{Q_v}{kT_{ps}})$$
(6.5)

où T_v est la température de l'évaporation à la pression normale ; T_{ps} est la température de la surface de la particule ; Q_v est la chaleur de l'évaporation Po=101,325 kPa est la pression atmosphérique ; k = 8,3143 J/mole/K est la constante de Boltzmann

Fig.6.10 Pression de vapeur saturée.

6.1.4 Injection des particules dans un jet de plasma.

Pour la modélisation des propriétés des particules dans le jet du plasma il est nécessaire d'étudier les conditions initiales de l'injection des ces particules. Pendant l'injection, les particules sont caractérisées par la distribution des diamètres et par la distribution des vitesses initiales. La distribution des diamètres dépend de la méthode de fabrication. La distribution des vitesses initiales dépend de la configuration du pipe-line [6.13] qui porte la poudre du ditsributeur au plasma, et du débit du gaz porteur (Fig. 6.11).

La conduite inclut l'injecteur (le diamètre D_i , longueur L_i) qui est connecté à la torche et de tuyau (le diamètre D_t , longueur L_t) qui est connecté au distributeur de la poudre. La vitesse du gaz porteur (avec le débit q_{cg}) dans le tuyau est donnée par:

$$U_{t_cg} = \frac{4 \cdot q_{cg}}{\pi \cdot D_t^2} \tag{6.6}$$

Le temps du déplacement de la particule dans le tuyau et t_1

$$t_{I} = \sqrt{\frac{2 \cdot L_{t}}{k \cdot U_{t_{-}cg}}} \tag{6.7}$$

où L_t est la longueur du tuyau de la conduite, elle connecte l'injecteur avec le distributeur de la poudre. Le coefficient k est égal à

$$k = \frac{l \delta \eta_{cg}}{\rho_p \cdot d_p^2}.$$
(6.8)

où η_{cg} est la viscosité du gaz porteur ;

 $\rho_{\rm p}$ est la densité de matériau de la particule ; $d_{\rm p}$ est le diamètre de la particule

Fig.6.11 Schéma de la conduite qui transporte la poudre du distributeur au plasma.

A l'extrémité du tuyau la vitesse de la particule est

$$U_{t_p} = U_{t_cg} \left(l - e^{-kt_1} \right)$$
(6.9)

La connaissance de cette vitesse permet de calculer le temps de déplacement de la particule dans un injecteur de diamètre D_i :

$$t_{2} = \frac{\sqrt{U_{t_{p}}^{2} + 2 \cdot (U_{i_{c}cg} - U_{t_{p}})L_{i}k} - U_{t_{p}}}{k(U_{i_{c}cg} - U_{t_{p}})}$$
(6.10)

 t_2 est le temps du séjour de la particule dans l'injecteur ; U_{i_cg} est la vitesse du gaz porteur dans l'injecteur ; Li est la longueur de l'injecteur

$$U_{i_cg} = \frac{4 \cdot q_{cg}}{\pi \cdot D_i^2} \tag{6.11}$$

k est le même coefficient que dans l'équation (6.8).

La vitesse de la particule à l'extrémité de l'injecteur, qui correspond à la vitesse initiale de la particule dans le jet du plasma, est déterminée comme U_{ip}

$$U_{i_p} = U_{i_cg} - (U_{i_cg} - U_{t_p}) \cdot e^{-kt_2}$$
(6.12)

Les équations (6.6)-(6.12) permettent de déterminer la vitesse de l'injection des particules de diamètres différents du débit du gaz porteur (Fig. 6.12).

Fig.6.12 Vitesse de l'injection des particules des diamètres différents en fonction du débit du gaz porteur: 3 et 3,5 Nl/min

6.1.5 Hypothèses de base sur la transformation de la structure de la particule d'HA lors de la projection plasma

La projection par plasma d'HA sur la surface d'un substrat de la prothèse entraîne l'introduction des particules d'HA dans le jet du plasma à haute température et à vitesse élevée. Les particules fondent partiellement ou complètement. Les diagrammes des phases représentées dans le chapitre 1, montrent que dans ces conditions l'HA peut modifier sa structure, il peut se déshydrater en formant :

- l'oxyapatite (OAP, $Ca_{10}(PO_4)_6O$) et l'oxyhydroxyapatite (OHAP, $Ca_{10}(PO_4)_6(OH)_{2-x}O_{x-x}$);
- plusieurs oxydes: l'oxyde de calcium (CaO), le phosphate tricalcique α (α -TCP, α -Ca₃(PO₄)₂), le phosphate tricalcique β (β -TCP, β -Ca₃(PO₄)₂), le phosphate tétracalcique (TTCP, Ca₄P₂O₉);
- le verre (phase amorphe) de phosphate de calcium.

Lors de l'impact des particules chaudes sur la surface froide de la prothèse, la vitesse de refroidissement peut être supérieure à 10^8 K/s [6.14]. Cela mène à la formation des phases : cristalline (HA), cristalline métastable (OAP, OHAP, TCP, TTCP, CaO) et non-crystalline (phase amorphe) dans le revêtement d'HA.

Pour les besoins de la modélisation de la transformation des phases dans la particule lors de la projection par plasma, il était nécessaire d'admettre quelques hypothèses. L'hydroxyapatite a la conductivité thermique très faible. Ceci cause la formation du gradient de la température à l'intérieur de la particule lors de l'échauffement. Donc les différentes distances du centre de la particule, différentes phases correspondent suivant la températures. Selon les différentes températures dans la particule nous pouvons distinguer les trois différentes phases qui apparaissent due à la transformation d'hydroxyapatite pendant le chauffage: la phase de la déshydratation, la phase de la décomposition et la phase de fusion. Selon l'étude [6.16] la stabilité et la décomposition de l'hydroxyapatite dépendent de la pression partielle de la vapeur d'eau. C'est pourquoi, pour le diagramme des phases de système de CaO/P_2O_5 avec la pression partielle de la vapeur d'eau de 10 mm Hg et de 500 mm Hg, il a été décider de suivre hypothèses suivantes :

- Dans le cas de la haute pression partielle de vapeur d'eau de 500 mm Hg. l'hydroxyapatite est plus stable. Si pendant le chauffage, la température du centre de la particule ne dépasse pas la température de 1100 °C, il reste encore la phase de hydroxyapatite cristalline danse cette région de la particule. Dans la couche qui présente une température entre 1100°C et 1550 °C, la particule contient la phase de déshydratation avec l'oxyhydroxyapatite et l'oxyapatite Dans la couche qui présente une température entre 1550°C et 1570°C, la particule contient la phase de décomposition avec le phosphate tétracalcique et le phosphate tricalcique. Bien que l'hydroxyapatite se décompose complètement à ces températures, la particule reste encore solide. Quand la température de la surface atteint la température de la fusion et le front de la fusion commence avancer dans la particule, il apparaît la couche avec la phase fondue. Lorsque la température de la surface est de 3227°C l'évaporation commence (Fig. 6.13). Cette hypothèse était retenue initialement (Annexe I) mais elle a été abandonnée par la suite et l'hypothèse suivante a été retenue.
- Dans le cas de la pression partielle de vapeur d'eau de 10 mm Hg, l'hydroxyapatite se décompose plus tôt, à partir de la température de 1360°C. Dans ces conditions, la couche de phase de décomposition est plus épaisse. Mais, l'épaisseur de la couche fondue ne se distingue pas, parce que la température de fusion ne dépend pas de la pression partielle de la vapeur d'eau (Fig. 6.14)
- Lors de l'impact sur la surface du substrat, la particule se transforme en lamelle. La vitesse de refroidissement et de la solidification sont tellement rapides que les phases sont « figées». , nous admettons que la composition des phases dans la lamelle est la même que dans la particule avant l'impact sur la surface. (Fig. 6.15) La validité de cette hypothèse a été vérifiée par les résultats obtenues par [6.15]

Fig. 6.13 Champs des température dans la particule de HA (HA a été synthétisée avec la pressure partielle de vapeur de l'eau de 500 mm Hg) et les phases qui correspondent à ces températures

Fig. 6.14 Champs des température dans la particule de HA (HA a été synthétisée avec la pressure partielle de vapeur de l'eau de 10 mm Hg) et les phases qui correspondent à ces températures

Fig. 6.15 Morphologie de la particule de HA à l'impact sur la surface du substrat : la vue d'en haut et la section

6.1.6 Résultats de la modélisation de l'échange de quantité du mouvement et du chaleur entre le plasma et les particules de l'hydroxyapatite et leur validation

Les calculs ont été exécutés pour la distance de projection courte (10 cm) et pour la distance longue (81 cm):

- Pour la distance courte, la poudre d'hydroxyapatite a été projetée sur un substrat. La modélisation permet d'obtenir la température et la vitesse des particules d'hydroxyapatite. La simulation a été validée par comparaison de la porosité obtenue par la modélisation et expérimentalement.
- Dans le cas de la distance longue, la poudre d'hydroxyapatite a été projetée dans l'eau. La modélisation permet de calculer la température à l'intérieur de la particule pour un diamètre déterminé, au contact avec l'eau. Les températures qui correspondent aux phases cristallines, sont représentées dans la figure 6.14. Selon l'hypothèse, nous admettons qu'au contact de l'eau, il y a refroidissement et solidification rapides. Toutes les phases cristallines, présentés dans les particules aux différentes températures, sont figées au refroidissement et solidification rapides et la phase liquide se transforme en phase amorphe.
- Lors de la projection à distance longue, les poudres projetées dans l'eau ont été séchées et ses distributions ont été déterminées. La modélisation permet de déterminer la réduction des tailles des particules induites par l'évaporation et de les comparer avec les résultats expérimentaux.

La température moyenne calculée dans les particules d'hydroxyapatite à l'impact sur la surface du substrat déplacé à la distance de 10 cm de la torche est présentée sur les figures 6.15 et 6.16. Ces données ont été utilisées pour la modélisation de la croissance du dépôt.

La température moyenne des particules d'HA à l'impact avec la surface de l'eau est présentée sur la figure 6.18. La fig. 6.19 présente la vitesse de particule au moment de l'impact avec l'eau. La température moyenne dans les grandes particules ($d_{\rm p}$ >100µm) ne dépasse pas de 1700K à l'impact avec l'eau. Les petites particules ont les températures les plus faibles. La température à la surface des ces particules s'approche à la température du gaz plasmagène à cette distance. La distribution de la vitesse des particules de HA a le caractère analogique à la distribution de la température. La distribution de la température dans un volume d'une particule permet de prédire le contenu des phases cristallines. Les résultats des calculs des phases cristallines en fonction du diamètre des particules, se représentent sur la figure 6.20. La comparaison des résultats des calculs du contenu des phases cristallines dans la poudre projetée et les résultats obtenus expérimentalement est présentée dans le tableau 6.3. L'élément le plus important dans cette comparaison est le fait, que les expériences montrent la présence de la phase amorphe dans la poudre projetées dans l'eau. Cependant, selon les résultats de la modélisation la phase amorphe est absente. On peut expliquer cette divergence entre les résultats de la modélisation et les résultats des expériences par l'effet d'undercooling ou la surfusion.

	P24 95 35 I						
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.			

118

Résultats de modélisation

L'hypothèse utilisée dans la modélisation, admet que la transformation des phases cristalline correspond à la température indiquée dans le diagramme des phases du système de CaO/P2O5 avec une pression partielle de vapeur d'eau de 10 mm Hg [6.16] (Fig. 6.14). Mais l'échauffement et le refroidissement des particules dans le jet du plasma sont trop rapides à cause de la température et de la vitesse du gaz plasmagène élevées. Dans ce cas la divergence avec le diagramme des phases est possible. Cette divergence est plutôt importante pour l'étape du refroidissement et de solidification de la particule. Les photos des coupes des particules projetées à haute puissance (Chapitre 5), confirment le phénomène d'agglomération des pores dans la particule fondue et la formation d'un grand pore dans le centre de cette particule. Selon [6.17], la solidification hétérogène est accompagnée par la formation des pores plus petits. La solidification ici, lors la projection de la poudre de l'hydroxyapatite aux conditions à haute puissance, est homogène. Dans ce cas, l'effet de la surfusion provoque la diminution relative de la température de la solidification $\Delta T/T_s$ entre 0,15 et 0,25 [6.18, 6.19]. La différence entre la température effective de la transformation de la phase liquide super refroidi (supercooled) en phase solide, et la température de solidification du diagramme des phases (1843 K), peut être égale ⊿T=276 et 460 K. La conséquence de la diminution de la température de solidification dans la modélisation, est l'augmentation du contenu de phase amorphe. Dans notre cas, la diminution relative de la température de solidification à été trouvé entre $\Delta T/T_s=0,12$ et 0,14 Dans le tableau 6.4 l'effet de la diminution de la température de la solidification ΔT provoqué par la surfusion est indiqué. Les données de la diminution relative de la température de solidification, obtenues pour les différents paramètres de projection sont ressembles, ce que justifient que l'hypothèse sur l'effet de la surfusion et leur influence sur la contenu de phase amorphe est valable. En plus, la température de réaction en état solide: TCP +TTCP→HA peut aussi être différente de la température donnée dans le diagramme des phases. En réalité, le diagramme de phases dans le système CaO-P2O5 aux températures dépassant la température de fussion n'existe pas. Dans la plupart des cas, la transformation et recristallisation de l'hydroxyapatite sont étudiées aux températures qui ne dépassent pas la température de la fusion [6.3, 6.16, 6.20, 6.21].

Fig. 6.18 Température moyenne des particules projetées dans l'eau

	P24 95 35 I					
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.		

120

Fig. 6.19 Vitesse des particules des poudres projetées dans l'eau

Fig. 6.20 Contenu des phases cristallines en fonction du diamètre des particules dans les poudres projetées

P24 95 35 I					
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.	

Résultats de modélisation

Référence de poudre	Les résultats de la modé- lisation			Les résultats expérimentaux				
	HA, %	a-TCP +TTCP, %	ACP ,%	HA, %	α -TCP, %	TTCP, %	Phase cristalline totale, %	ACP,%
P24973I	49,75	50,25	0	72	15	13	54	46
P249735I	63,19	36,81	0	67	19	14	69	31
P24953I	67,58	32,42	0	63	18	19	48	52
P249435I	61,56	38,44	0	54	17	29	74	26

 Tableau 6.3 Contenu de la phase cristalline et amorphe dans la poudre projetée, obtenu par la modélisation et des expériences

Référence de poudre	ΔΤ,Κ
P24973I	232,34
P249735I	246,83
P24953I	212,47
P249535I	220,77

 Tableau 6.4 Calculs de la diminution de la température de solidification, induit par

 l'effet de la surfusion

Les résultats des calculs de la distribution des diamètres de particules sont représentés sur la figure 6.21. Les résultats montrent que les diagrammes sont déplacés vers la direction des particules plus petites. C'est une influence de l'évaporation partielle des particules dans le jet du plasma à haute puissance. La comparaison entre les résultats de la modélisation et des expériences (Fig. 6.21), montre une bonne convergence pour les distributions de poudres projetées avec le débit du gaz porteur de 3 Nl/min. Les données expérimentales de la distribution de la poudre projetées dans l'eau avec le débit du gaz porteur de 3,5 Nl/min montre une plus grand décalage. Dans cette condition d'injection, les particules se déplacent dans la zone du jet du plasma avec les vitesse et température du gaz plasmagène élevées. La diminution des tailles des particules dans ce cas, est provoquée par la coalescence entre les particules et par le dénudage de la phase liquide de surface des particules (*Chapitre 5*). Ces effets ne peuvent par être prédites par la modélisation.

P24 95 35 1						
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de l'injection.		

Fig. 6.21 Comparaison entre les résultes expérimentales et les résultes de la modélisation de la distribution des particules de la poudre d'HA projetée dans l'eau à puissance de 24 kW

6.2 MODELISATION DE LA CROISSANCE DE DEPOT

Les résultats de la modélisation de la vitesse, de la distribution des diamètres des particules et de la température moyenne calculée dans les particules d'hydroxyapatite à l'impact sur la surface du substrat placé à une distance de 10 cm de la torche ont été utilisés pour la modélisation de la croissance du dépôt. Les résultats de la modélisation de la croissance du dépôt sont représentés dans la figure 6.22. La comparaison de la porosité des dépôts modulés et des dépôts projetés est présentée dans le tableau 6.5.

Sub249531

Sub249535I

Sub 24973I

Sub 249735I

Fig. 6.22 Modélisation de la coupe des dépôts de l'hydroxyapatite projetées sur la surface de substrat avec la puissance de 24 kW et la différente composition du gaz plasmagène et le débit du gaz porteur

La description des dépôts	Porosité ex- périmentale, %	Porosité cal- culée, %
Sub 24973I	12,9	12,9
Sub 249735I	7,7	13,3
Sub 24953I	6,7	13
Sub 249535I	8	12,53

Tableau 6.5 Porosité de dépôts projetés avec la puissance d'arc de 24 kW

		P24 95 35 I		
Sub - sur le substrat P - dans l'eau Type de la projection	11/24 kW Puissance de l'arc	Ar 97,5%+H ₂ 2,5% Ar 95%+H ₂ 5% Composition du gaz plasmagène	3/3,5 Nl/min Débit du gaz porteur	I - Intérieur E - Extérieur Type de Pinjection.

6.3. MODELISATION DU TRAITEMENT LASER

6.3.1 Propriétés optiques et thermophysiques d'hydroxyapatite utilisées pour la modélisation

La comparaison entre les propriétés thermophysiques du dépôt d'hydroxyapatite [6.22] et HA pure [6.23,6.1,6.6] montre qu'il n'y a pas une grande différence. C'est pourquoi pour la modélisation avec le logiciel *Fusion2D* du traitement laser on a utilisé les données des propriétés thermophysiques d'HA pure (Tableau.6.6).

		V٤	Unité	Sauraa		
Propriétés	Poreuse Poreuse					Source
	Dense	5%	10%	15%		
Temperature de fusion	1843	-	1	-	K	[6.3]
Temperature d'évaporation	3500		-	-	к	[6.23]
Chaleur de fusion	4,87 x10 ⁷	4,63 x10 ⁷	4,16 x10 ⁷	3,54 x10 ⁷	J/m ³	[6.1] [6.2]
Chaleur d'évaporation	1,44x10 ⁹	1,37 x10 ⁹	1,23 x10 ⁹	1,05 x10 ⁹	J/m ³	[6. 3]
Densité	2,95 x10 ²⁷	2,8 x10 ²⁷	2,52 x10 ²⁷	2,14 x10 ²⁷	m ⁻³	[6. 3]
Capacité thermique						
moyen pour solide	3,34 x10 ⁶	3,17 x10 ⁶	2,85 x10 ⁶	2,42 x10 ⁶	J/m ³ /K	[6. 3]
moyen pour liquide	4,25 x10 ⁶	4,04 x10 ⁶	3,64 x10 ⁶	3,09 x10 ⁶	J/m ³ /K	
Conductivité thermique						
moyen pour solide	1,867	1,866	1,865	1,863	W/m/K	[6. 3]
moyen pour liquide	2,259	2,257	2,256	2,254	W/m/K	

Tableau 6.6 Propriétés thermophysiques d'HA utilisées pour la modélisation

Par contre les données sur les propriétés optiques, par exemple l'émissivité d'HA et dépôt d'HA peut varier de 10^4 1/m \div 10^5 1/m. Dans la tableau 6.7 sont présentées les données des différentes sources.

Matériau	Valeur x 10 ⁴ m ⁻¹	Source
Dépôt d'HA	1,00 ±0,25	[6.24]
Dépôt d'HA	2,01±0,16	[6.22]
Email (85% d'HA, 12%		
d'eau, 3% protéine et	8,02	[6.25, 6.26]
lipides)		
Hydroxyapatite	8,25	[6.27]
Dépôt d'HA	10	[6.28]

Tableau 6.7 Tableau récapitulatif de coefficient d'absorption

6.3.2 Résultats de la modélisation du processus de traitement par laser

L'émissivité et le coefficient d'absorption sont les deux paramètres optiques du matériau le plus importants, qui déterminent l'efficacité du traitement par laser. Ils déterminent la capacité du matériau à absorber l'énergie du laser et la profondeur de pénétration de la radiation dans le matériau (Chapitre 2). Pour la modélisation de la procédure de traitement par laser il est donc nécessaire de bien connaître ces propriétés du matériau.

Les propriétés optiques d'HA et de dépôt d'HA ne sont pas bien étudiées, elles varient selon les sources bibliographiques (Tableau 6.7). Pour obtenir les résultats de l'épaisseur de la couche fondue les plus proches aux données expérimentales, nous avons fait la modélisation avec les différentes valeurs de l'émissivité et du coefficient d'absorption. Pour la modélisation nous avons pris les porosités de différents dépôt, parce que les dépôts obtenus par la projection plasma aux condition qui ont été décrite dans le Chapitre 2, ont des porosités qui varient entre 5% et 18% (Tableau 5.2 du Chapitre 5). Les dépôts ont été traitées par laser avec les deux densités de puissance : 5,9 et $6,4x10^8$ W/m². Le tableau 6.6 présente le plan de la modélisation.

N°	Densité de	Coefficient	Porosité	Emissivité	Résultats
	puissance	de l'absorp-			
		tion			
1	$5,9x10^8 W/m^2$	$2,1x10^4$ 1/m	5%	50%	Fig. 6.23 a
2	$5,9x10^8 W/m^2$	$2,1x10^4$ 1/m	5%	75%	
3	$5,9x10^8 W/m^2$	$2,1x10^4$ 1/m	5%	100%	
4	$5,9x10^8 W/m^2$	$2,1x10^4$ 1/m	10%	50%	
5	$5,9x10^8 W/m^2$	$2,1x10^4$ 1/m	10%	75%	
6	$5,9x10^8 W/m^2$	$2,1x10^4$ 1/m	10%	100%	
7	$5,9x10^8 W/m^2$	$2,1x10^4$ 1/m	15%	50%	
8	$5,9x10^8 W/m^2$	$2,1x10^4$ 1/m	15%	75%	
9	$6,4 \times 10^8 W/m^2$	$2,1x10^4$ 1/m	15%	100%	
10	6,4 x10 ⁸ W/m ²	$2,1x10^4$ 1/m	5%	50%	
11	$6,4 ext{ x10}^8 ext{ W/m}^2$	$2,1x10^4$ 1/m	5%	75%	
12	$6,4 \times 10^8 W/m^2$	$2,1x10^4$ 1/m	5%	100%	
13	$6,4 \times 10^8 W/m^2$	$2,1x10^4$ 1/m	10%	50%	
14	$6,4 \times 10^8 W/m^2$	2,1x10 ⁴ 1/m	10%	75%	
15	$6,4 \times 10^8 W/m^2$	2,1x10 ⁴ 1/m	10%	100%	
16	$6,4 ext{ x10}^8 ext{ W/m}^2$	2,1x10 ⁴ 1/m	15%	50%	
17	6,4 x10 ⁸ W/m ²	$2,1x10^4$ 1/m	15%	75%	
18	6,4 x10 ⁸ W/m ²	$2,1x10^4$ 1/m	15%	100%	
19-28	$5,9x10^8 W/m^2$	$5x10^4$ 1/m	-	-	Fig.6.23 b
29-38	$6,4 ext{ x10}^8 ext{ W/m}^2$	5x10 ⁴ 1/m	-	_	-
39-48	$5,9x10^8 W/m^2$	8x10 ⁴ 1/m	-	-	Fig.6.23 c
49-58	$6.4 \times 10^8 W/m^2$	$8 \times 10^4 \ 1/m$	-	_	-

Tableau 6.8 Plan de la modélisation du traitement du dépôt par laser

Initialement, nous avons fait la modélisation avec le coefficient d'absorption $a=8x10^4$ 1/m et avec les différentes émissivités et porosités de dépôt. Les résultats sont présentés dans la figure 6.23 c. On peut voir que le traitement par laser provoque le chauffage, la fusion et l'évaporation du dépôt. La température des dépôts dépasse la température d'évaporation. A la fin du traitement modelé, il reste uniquement la fine couche fondue pour la modélisation avec une émissivité $\Delta T/T_s \epsilon=50\%$ et 75%. Dans le cas de l'émissivité de $\epsilon=100\%$, presque tous le couche fondue ont été évapore. Mais selon l'analyse de la morphologie du dépôt traitée par laser, aucune trace d'évaporation de la surface du dépôt n'a été détectée. Les épaisseurs des couches fondues donnés par la modélisation ne correspondent pas aux résultats obtenus expérimentalement. Ces deux raisons, l'absence de traces d'évaporation dans l'expérience et la divergence entre les épaisseurs modelées et mesurées, nous ont fait rejeter l'hypothèse q'un le coefficient d'absorption égal à $a=8 \times 10^4 1/m$.

La modélisation avec le coefficient d'absorption de $a=5x10^{4}1/m$, malgré la présence de l'évaporation, a donné les résultats comparables avec les résultats de l'expérience à condition du traitement avec une densité de puissance de $5,9x10^{8}W/m^{2}$. L'épaisseur de couche fondue est entre le 22 et 30 µm (ce qui correspond aux résultats expérimentaux du traitement avec la densité de puissance de $5,9x10^{8}W/m^{2}$) a été obtenue pour le dépôt avec une émissivité entre $\varepsilon = 70\%$ et 85% et une porosité P=5-15%. Mais pour les mêmes propriétés du matériau la modélisation avec une densité de puissance de $6,4x10^{8}W/m^{2}$ montre l'évaporation intense et les épaisseurs de couche fondue simulées ne correspondent pas aux résultats expérimentaux. Ceci ne nous permet pas d'accepter ce coefficient d'absorption.

La modélisation avec le coefficient d'absorption de $a=2,1\times10^41/m$ a donné des résultats comparables à l'expérience avec les densités de puissance de $5,9\times10^8$ W/m² et de 6.4×10^8 W/m². Il n'y a pas d'évaporation. Dans la modélisation avec la densité de puissance de $6,4\times10^8$ W/m² l'épaisseur de la couche fondue est calculée entre 30 et 39 µm pour le dépôt avec l'émissivité entre 83% et 100% et la porosité entre 5% et 15%. Pour la modélisation avec la densité de puissance de 5,9 $\times10^8$ W/m², une épaisseur de la couche fondue entre 22 et 30 µm a été trouvée pour les mêmes paramètres du dépôt. L'absence d'évaporation du dépôt et la convergence avec les résultats expérimentaux nous permettent d'accepter les résultats de la modélisation du traitement laser du dépôt avec une porosité entre 5 et 15%, une l'émissivité de 85-100% et un coefficient d'absorption de 2,1 $\times10^4$ 1/m.

Les zones de convergence des résultats des expériences et des modélisations sont encadrées sur les figures 6.23 a.

127

Résultats de modélisation

La modélisation de la relation entre la température de dépôt à la fin d'impulsion $\tau=7,4x10^{-4}s$ et l'émissivité et la porosité de dépôt: densité de puissance $P=5,9x10^8$ W/m², le coefficient d'absorption $\alpha=2,1x10^4$ l/m.

La modélisation de la relation entre la température de dépôt à la fin d'impulsion $\tau = 7,4x10^{-4}s$ et l'émissivité et la porosité de dépôt: densité de puissance $P=6,4x10^8$ W/m², le coefficient d'absorption $\alpha = 2,1x10^4$ l/m.

La modélisation de la relation entre la profondeur de couche fondue pendant le traitement par laser et l'émissivité et le porosité de dépôt: densité de puissance $P=5,9x10^8$ W/m², le coefficient d'absorption $\alpha=2,1x10^4$ l/m.

La modélisation de la relation entre la profondeur de couche fondue pendant le traitement par laser et l'émissivité et le porosité de dépôt: densité de puissance $P=6,4x10^8$ W/m², le coefficient d'absorption $\alpha=2,1x10^4$ l/m.

Fig. 6.23a
h, µm

La modélisation de la relation entre la température de dépôt à la fin d'impulsion $\tau=7,4x10^{-4}s$ et l'émissivité et la porosité de dépôt: densité de puissance $P=5,9x10^8$ W/m², le coefficient d'absorption $\alpha=5x10^41/m$.

La modélisation de la relation entre la profondeur de couche fondue pendant le traitement par laser et l'émissivité et le porosité de dépôt: densité de puissance $P=5,9x10^8$ W/m², le coefficient d'absorption $\alpha=5x10^4$ 1/m.

La modélisation de la relation entre la température de dépôt à la fin d'impulsion $\tau=7,4x10^{-4}s$ et l'émissivité et la porosité de dépôt: densité de puissance $P=6,4x10^8$ W/m^2 , le coefficient d'absorption $\alpha=5x10^41/m$.

La modélisation de la relation entre la profondeur de couche fondue pendant le traitement par laser et l'émissivité et le porosité de dépôt: densité de puissance $P=6,4x10^8$ W/m², émissivité $\varepsilon=5x10^4$ 1/m.

Fig. 6.23b.

50 55 60 65 70 75 **80 8**5 90 95 100

d'absorption $\alpha = 8x10^4 1/m$

La modélisation de la relation entre la tempéra- La modélisation de la relation entre la profondeur de ture de dépôt à la fin d'impulsion $\tau = 7,4x10^{-4}s$ et couche fondue pendant le traitement par laser et l'émissivité et la porosité de dépôt: densité de l'émissivité et le porosité de dépôt: densité de puis-puissance $P=5,9x10^8$ W/m², le coefficient sance $P=5,9x10^8$ W/m², le coefficient d'absorption $\alpha = 8 \times 10^4 1/m$.

55 60 65

puissance $P=6,4x10^8$ W/m², le coefficient sance $P=6,4x10^8$ W/m², émissivité $\varepsilon=8x10^41/m$. d'absorption $\alpha = 8x10^4 1/m$.

La modélisation de la relation entre la tempéra- La modélisation de la relation entre la profondeur de ture de dépôt à la fin d'impulsion $\tau = 7,4x10^{4}s$ et couche fondue pendant le traitement par laser et l'émissivité et la porosité de dépôt: densité de l'émissivité et le porosité de dépôt: densité de puis-

Fig. 6.23c.

6.4 RESUME ET CONCLUSIONS PRINCIPALES

La comparaison de résultats des modélisations avec ceux des expériences montre une importante divergence dans la composition des phases cristallines. Cette divergence peut être un effet de la surfusion qui provoque l'abaissement de la température de la solidification dans les conditions de la projection plasma. Dans notre cas, la diminution relative de la température de solidification à été estimé d'être comprise entre $\Delta T/T_s=0,12$ et 0,14. Les valeurs de cette diminution, obtenues pour les différents paramètres de projection se ressemblent. Ceci justifie l'hypothèse de l'effet de la surfusion sur la contenu de phases cristallines.

La comparaison des résultats de la modélisation de la porosité des dépôts projetés avec une puissance élevée montre une convergence raisonnable avec les résultats des expériences. Cependant, le code ne permet pas faire de la modélisation des dépôts projetés avec une faible puissance. Afin d'en tenir compte, il faudrait y considérer les effets de l'écrasement des particules chauffées et fondues faiblement sur la substrat ou de dépôt, c'est-à-dire de la fragilité de matériaux sous un choc mécanique.

Lors de la modélisation du traitement de dépôt par laser nous avons bien déterminé la zone de la convergence des résultats de la modélisation avec les résultats obtenus expérimentalement pour le coefficient d'absorption $\alpha=2,1\times10^4$ m⁻¹ et $\epsilon=83-100\%$. Pour obtenir les résultats plus précis de la modélisation on aurait besoin d'une bonne connaissance des propriétés optique de HA, surtout en forme d'un dépôt. Il faudrait bien étudier comment les différents propriétés du dépôt, c'est-à-dire :

- la rugosité de la surface du dépôt;
- la proportion des phases d'HA;
- la décomposition et la formation d'une phase amorphe;
- la porosité;

influencent le coefficient d'absorption et l'émissivité du dépôt.

Bibliography

6.1 S.J.YANKEE, B.J.PLETKA Effect of plasma spray processing variations on particle melting and splat spreading of hydroxyapatite and alumina Journal of Thermal Spray Technology 2 (3)(1993) 271-81

6.2 Y.C. TSUI, C. DOYLE, T.W. CLYNE. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1 : Mechanical properties and residual stress levels, Biomaterials 19 (1998) 2015-29

6.3 P.V. RIBOUD, Composition et stabilité des phases a structure d'apatite dans le système CaO-P₂O₅-oxyde de fer-H₂O a haute température Ann. Chim. 8 (1973) 381-390

6.4 O. GUILLOT-NOEL, R. GOMEZ-SAN ROMAN, J. PERRIÈRE. Growth of apatite fils by laser ablation : Reduction of the droplet areal density, J. Appl. Phys. 80 (3) (1996) 1803-8

6.5 G.V. SAMSONOV, Physico-Chemical Properties of Oxides, Metallurgija, Moskva, 1978 (en Russe)

6.6 S.BEST, W.BONFIELD. Processing behaviour of hydroxyapatite powders with contrasting morphology Journal of Materials Science: Materials in Medicine 5 (1994) 516-521

6.7 R. HALOUANI, D. BERNACHE-ASSOLANT, E. CHAMPION, A.ABABOU. Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics, Journal of Materials Science: Materials in Medicine 5 (1994) 563-68

6.8 T. KIJIMA, T. MASAYUKI. Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite, Journal of the American Ceramic Society, 62 (9-10) (1979) 445-60

6.9 V. SERGO, O. SBAIZERO AND D.R. CLARKE Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings, Biomaterials 18 (1997) 477-82

6.10 X.B. ZHENG AND C.X. DING. Characterization of plasma-sprayed hydroxyapatite/TiO2 composite coatings, Journal of Thermal Spray Technology 9(4) (2000) 520-25

6.11 S MARUNO, K. HAYASHI, Y. SUMI, Y.F. WANG AND H. IWATA « CRC Handbook of bioactive ceramics» Vol. II edited by T.Yamamuro, L.L. Hench and J.Wilson (CRC Press, Boca Raton, 1991) p. 187-193

6.12 E.P. EGAN JR., Z.T. WAKEFIELD, L. KELLY. High-Temperature heat content of Hydroxyapatite, Journal of the American Ceramic Society 73 (1951) 5581-2

6.13 L. PAWLOWSKI, Surf. J. 11 (3) (1980) 8-16

6.14 V.V. KUDINOV, Plasma Coatings, Nauka, Moscow, Russia 1977 (en Russe).

6.15 H.LI, B.S.NG, K.A.KHOR, P.CHEANG, T.W.CLYNE, Raman spectroscopy determination of phases within thermal sprayed hydroxyapatite splats and subsequent in vitro dissolution examination. article in press dans Acta Materialia, disponible sur le site internet ScienceDirect

6.16 C. SANTOS, A. PAZO, F. GUITIAN, Water vapour pressure influence on CaO-P2O5 system phase diagram. Materials in Clinical Applications (1995) 11-18

6.17 W.KURZ, D.J.FISHER, Fundamental of solidification, 4th edition, Trans Tech Publ., Zurich, Switzerland, 1998

6.18 W.KINGERY, H.K.BOWEN, D.R.UHLMANN. Introduction to Ceramics, Wiley, New York, 1976

6.19 K.A.GROSS, C.C.BERNDT. Thermal processing of hydroxyapatite for coating prodution. J. Biomed Mater Res, 39 (1998) 580-7.

6.20 H.NISIKAWA. Thermal behaviour of hydroxyapatite in structural and spectrophotometric characteristics, Materials Letters 50 (2001) 364-70

6.21 C.-J. LIAO, F.-H. LIN, K.-S.CHEN, J.-S. SUN Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 20 (1999) 1807-1813

6.22 A.C. BENTO, D.P. ALMOND, S.R. BROWN, I.G. TURNER. Thermal and optical characterization of the calcium phosphate biomaterial hydroxyapatite, J. Appl.Phys., 79 (9) (1996) -6848-6851

6.23 S. DYSHLOVENKO, B. PATEYRON, L. PAWLOWSKI AND D. MURANO, Numerical simulation of hydroxyapatite powder behaviour in plasma jet. Surf. Coat. Technol. 179 (2004) 110-117.

6.24 A.C. BENTO, D.P. ALMOND, The accuracy of thermal wave interferometry for the evaluation of Thermophysical properties of plasma-sprayed coatings. Meas. Sci. Technol. 6 (1995) 1022-27

6.25 D. FRIED, M. ZUERLEIN, J.D.B. FEATHERSTONE, W. SEKA, C. DUHN, S.M. MCCORMACK. IR laser ablation of dental enamel: mechanistic dependence on the primary absorber. Applied Surface Science 127-129 (1998) 832-56.

6.26 M. ZUERLEIN, D.FRIED, W. SEKA, J.D.B. FEATHERSTONE, Modeling thermal emission in dental enamel induced by 9-11 μm laser light, Applied Surface Science 127-129 (1998) 863-68

6.27 A.VILA VERDE, M.M.D. RAMOS, R.M.RIBEIRO, M.STONEHAM, Mesoscopic modelling of enamel interaction with mid-infrared sub-ablative laser pulses. Thin Solid Films 453-454 (2004) 89-93

6.28 M.COUROUBLE, E.LAMBLIN, L.PAWLOWSKI, Modeling of High Power Laser Interaction With The APS Deposited Hydroxyapatite Coatings. 10th CIMTEC 2002, july 14-18 (2002) Florence, Italy

CONCLUSION

Dans cette thèse nous avons réalisé la simulation numérique des procédés de projection de dépôt d'HA par plasma et de traitement de dépôt d'HA par laser. La modélisation est une première étape pour atteindre une possibilité de contrôle de ce procédé en temps réel (*on-line*). D'autre part, la modélisation numérique réalisée dans cette thèse peut aider à réaliser l'optimisation des procédés de projection par plasma et traitement par laser au niveau industriel. Elle peut être appliqué dans l'industrie de la production des revêtements avec des propriétés désirées, c'est-à-dire, la contenu de phases cristallines et leur type ainsi que celui de phase amorphe ou encore de porosité contrôlée du dépôt. Dans le procédé de traitement par laser, ces propriétés incluent aussi la composition des phases dans la couche fondue par laser et l'épaisseur des dépôts.

La thèse se focalise sur la modélisation de la température et de la vitesse des particules dans le procédé de la projection assurée par la simulation de la croissance de dépôt et du traitement du dépôt par laser. Les résultats de la modélisation sont validés par les propriétés des dépôts obtenus expérimentalement, telles que la porosité, contenu de phase amorphe et de phase cristallines.

La comparaison des résultats de la modélisation avec les caractéristiques expérimentales des poudres projetés dans l'eau montre une divergence importante entre la composition des phases obtenues par le modèle et expérimentalement. Nous croyons que la cause de cette divergence est l'effet de la *surfusion*. La présence de cet effet a pu être identifiée dans l'étude des structures des particules projetées dans l'eau. L'*undercooling* provoque l'abaissement de la température relative de la solidification entre $\Delta T/T_f = 0.12$ et 0.14 par rapport à la température de la solidification du diagramme des phases de système CaO/P₂O₅ à haute température. En plus, la température de la recristallisation dans l'état solide selon la réaction suivante

$TCP + TTCP \rightarrow HA$

peut également être différente de la température donnée par le diagramme des phases. L'étude présente prouve la nécessité de définir le diagramme de la transformation des phases dans le système de CaO/P₂O₅ pendent le chauffage et la solidification (T-T-T diagramme - Temps-Température-Transformation). D'autant plus que le procède se caractérise par le temps très bref entre l'injection de particule à température ambiante et les points de sa trajectoire où sa fusion ou son évaporation sont atteintes (moins d'une milliseconde). En plus, l'évaporation sélective peut engendrer la modification de la composition chimique du matériau. Tout ça rend difficile et parfois impossible l'utilisation des diagrammes de phases qui sont faits dans les conditions d'équilibre thermique.

Conclusion	136

La comparaison des résultats de la modélisation de la porosité de dépôt projetés à haute puissance de 24 kW montre une bonne convergence avec les résultats obtenus expérimentalement. Cependant le code ne peut pas faire la modélisation des dépôts projetés avec une puissance faible de 11 kW. Pour la modélisation dans cette condition, il faudrait ajouté l'effet de l'écrasement des particules chauffées et fondues faiblement, sur la surface du substrat ou du dépôt.

Lors de la modélisation du traitement de dépôt par laser nous avons bien déterminé la zone de la convergence des résultats de la modélisation avec les résultats obtenus expérimentalement. Pour obtenir les résultats plus précis, la modélisation demanderait une bonne connaissance des propriétés optique de HA, surtout forme de dépôt. Il faudrait bien étudier l'influence des différentes propriétés du dépôt:

- la rugosité de la surface du dépôt;
- la proportion des phases d'HA;
- la décomposition et la formation d'une phase amorphe;
- la porosité

sur le coefficient d'absorption et l'émissivité du dépôt.

Il faudrait également étudier la dépendance des propriétés optiques du dépôt de la longueur d'onde de la radiation laser. L'information disponible actuellement n'est pas suffisante pour obtenir les résultats précis.

Annexe

ANNEXE 1

S. Dyshlovenko, B. Pateyron, L. Pawlowski and D. Murano

Numerical simulation of hydroxyapatite powder behaviour in plasma jet.

Surface and Coating Technology 179 (2004) 110-117.

Available online at www.sciencedirect.com

Surface and Coatings Technology 179 (2004) 110-117

Numerical simulation of hydroxyapatite powder behaviour in plasma jet

S. Dyshlovenko^a, B. Pateyron^b, L. Pawlowski^{a,*}, D. Murano^c

^aLaboratoire de Cristallochimie et Physicochimie du Solide, UMR CNRS 8012, ENSCL, USTL, BP 108, Villeneuve d'Ascq F-59652, France ^bLaboratoire de Science des Procédés Céramiques et de Traitement de Surface, Université de Limoges, 123, av. A. Thomas, Limoges 87060,

France

°Terolab Services SNMC, BP 3, Villeneuve-le-Roi F-94290, France

Received 26 March 2003; accepted in revised form 23 May 2003

Abstract

The paper deals with numerical simulation of hydroxyapatite (HA) coating deposition by plasma spraying. The velocity and temperature fields of $Ar + N_2$ plasma generated by a commercial plasma torch of given power at atmospheric pressure are calculated in three-dimensional with the use of GENMIX numerical code. The HA powder particles granulometry and internal morphology were characterized with the use of laser sizer and scanning electron microscope, respectively. The image analysis enabled to determine the internal porosity of powder particles manufactured by the spray-drying method. The physical and thermophysical data of HA as a function of temperature were collected from literature sources. The HA particles injection velocity into the plasma jet was calculated analytically. The trajectories and temperatures fields inside these particles were calculated numerically using Plasma 2000 code. These fields determined at experimental spray distance, were used to predict the crystal phases composition of the sprayed coating.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Plasma spraying of hydroxyapatite; Numerical modeling; Coatings phase composition; Porous powder particles processing

1. Introduction

The availability of sophisticated numerical codes makes it possible to simulate complicated coating manufacturing processes, including high temperature plasma techniques. An example of such a process is plasma spraying of HA powder on hip prosthesis. As the coatings enter in a contact with a human body, the control of their quality has to be particularly severe. One of the coating properties that must be controlled and, on the other hand, is difficult to determine experimentally, is crystal phase composition. X-ray diffraction can easily determine the crystalline HA and its decomposition phases, such as $Ca_4P_2O_9$ (TP) or α -Ca₃(PO₄)₂ $(\alpha$ -TCP) [1]. Amorphous calcium phosphate is known to be present in deposits but is difficult to quantify. The method that may be use for this quantification is Raman microscopy [2,3]. However, the numerical simulation can help in determination of phase content. The calculations allow the determination of temperature fields

inside powder particles during their flight in the plasma jet. At their impact with a substrate (or previously deposited coating) rapid solidification and cooling take place. Cooling rates of 10⁶ K/s and more were observed experimentally [4]. Such solidification freezes liquid that transforms into an amorphous solid. High temperature phases are similarly frozen instead of being transformed to equilibrium ones. The phase diagram predicts a phase transformation of HA at approximately 1823 K to α -TCP+TP and a melting at the temperature of T_m = 1843 K.¹ Consequently, one may assume that the total volume of any powder particle before impact would transform after solidification and cooling into the volumes of:

• α -TCP and TP, in those parts of a particle where the temperature is in the range between 1823 and 1843 K;²

^{*}Corresponding author. Tel./fax: +33-3-20-33-61-65.

E-mail address: lech.pawlowski@ensc-lille.fr (L. Pawlowski).

¹ This is the liquidus temperature of a mixture of α -TCP and TP with the chemical composition of HA and it is assumed to be a melting point of HA.

 $^{^2}$ Solid state decomposition of HA starts already at approximately 1400 K.

 $^{0257\}text{-}8972/04/\$$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0257-8972(03)00799-0

Fig. 1. Temperatures fields inside powder particle before impact and their transformations into crystal phases after rapid solidification and cooling. Oxyhydroxyapatite (OHA) and oxyapatite (OA) are the products of the solid-state decomposition of HA (dehydratation).

• amorphous calcium phosphate, in those parts of a particle where the temperature exceeds $T_{\rm m}$.

Fig. 1 shows a sketch visualising these transformations. The present study focuses on modelling of temperature fields inside the particles at the spraying distance where above transformations take place.

2. Experimental spray conditions

The torch used to spray was a F4 model manufactured by *Sulzer Metco* (Wohlen, Switzerland). The processing parameters, optimised by Terolab Services (Villeneuve Le Roi, France), are shown in Table 1. These parameters were simulated numerically. The HA powder was manufactured by Tomita (Japan) using spray-drying method. The sizes of the particles were determined experimentally as described elsewhere [1]. The distributions of diameters and volume of the particles is shown in Fig.

Table 1

Selected plasma spray and powder injection parameters^a

Plasma spraying	
Plasma gas composition, vol.%	Ar+37.5 N ₂
Anode-nozzle diameter, mm	6
Spray distance, mm	80
Powder injection	
Carrier gas composition	Ar
Carrier gas flow rate, N1/min	3.25
Injection angle, °	90
Injection distance from nozzle, mm	5
Length of hose from powder feeder to injector, m	5
Internal diameter of hose, mm	3
Length of injector, mm	3.5
Injector internal diameter, mm	1.8

^a Other parameters were known at modeling but remain proprietary of Terolab Services and are not disclosed.

2. This figure also shows the results of calculation of the injection velocities of particles with different diameters. These velocities were found for the dimensions of the powder feeder hose presented in Table 1, following a model described elsewhere [5]. The internal morphology of powder is shown in Fig. 3. Image analysis, carried out for particles in this figure, yielded an estimated porosity of P=12%.

3. Simulation of temperature and velocity of plasma jet

The plasma gas properties such as velocity and temperature were determined with the software Jets and Poudres [6] developed on the basis of GENMIX computer code [7]. The latter was improved in such a way that the properties of gases are closely related to the local temperature and local composition. Thermodynam-

Fig. 2. Distributions of HA powder particles sizes (diameters and volumes) as well as their injections velocities in function of the powder diameter.

Fig. 3. SEM (secondary electrons) of cross section of HA powder particles.

ic and transport properties of the gases are obtained from the T&TWinner database [8]. The GENMIX code uses Patankar-Spalding method [9,10]. The GENMIX code handles two-dimensional parabolic flows, free of recirculations that are characterized by high Reynolds (Re) and Peclet (Pe) numbers. The plasma jet can be simulated by such a parabolic flow. The inputs to GENMIX data are:

- Flow rate and nature of plasma gas.
- Nature of gas atmosphere surrounding the jet.
- Electric current intensity.
- Electric power.
- Efficiency of electrical energy transfers plasma gas.

The code calculates initially the specific enthalpy from the ratio of efficient power to the mass flow rate, from which the plasma gas temperature is obtained. From this temperature the specific volume of the gas and its mean velocity are determined. A uniform radial profile of temperature and velocity (corrected by the kinetic energy) is assumed at the exit of the nozzle. The

Fig. 4. Calculated profiles of temperatures and velocities of plasma jet used for spraying of HA powder.

Table 2 Thermophysical constants of HA

Constant	Value	Ref.	
Heat of melting, kJ/mol	15.5	[11,12]	
Melting point ^a , K	1843	[13]	
Heat of evaporation ^b , kJ/mol	458.24	[14]	
Boiling point ^e , K	3500	[15]	
Molecular mass, kg	1.668×10^{-24}	[15]	
Density, kg/m ^a	3156	[16-18]	
Thermal expansion	13.3×10 ⁻⁶	[19-21]	
coefficient ^d , 1/K			

^a Strictly speaking, HA does not have a melting 'point' but decomposes on reaching 1843 K (incongruent melting).

^b The value was calculated as a weighted sum of evaporation heats of CaO, H_2O and P_2O_5 .

^c Again, this is not a boiling 'point' of HA since HA does not exist anymore in this temperature. In fact this is an evaporation loss of P₂O₅ from the liquid phase consisting initially of α -TCP and TP following the reactions: Ca₄P₂O₉ \rightarrow Ca₃(PO₄)₂ + CaO and Ca₃(PO₄)₂ \rightarrow 3CaO+P₂O₅ \uparrow .

^d Mean value from three references.

mixing and cooling by atmospheric gas will be used to find the final profiles of temperature and velocity. These profiles, calculated for the present experimental conditions, are shown in Fig. 4

4. Thermophysical data of HA

Some thermophysical constants of HA are collected in Table 2. The density of the HA particles, ρ_p depends on temperature, T and on porosity, P, according to:

$$\rho = \frac{\rho_0}{1 + 3\alpha (T - T_0)}$$
(1)

$$\rho_p = \rho(1 - P) \tag{2}$$

where ρ_0 is the theoretical density of dense material at

Fig. 5. Specific mass of dense and porous HA vs. temperature.

Fig. 6. Specific heat of HA vs. temperature, c_{p1} (after [22]) and c_{p2} (after [23]), averaged and extrapolated following a regression equation $c_p = 269.55 \ln (T)$ -748.22 with a regression coefficient $R^2 = 0.99$.

 $T_0 = 300$ K and α is the thermal expansion coefficient. The density of porous particles is shown in Fig. 5. Specific heat, c_p , depends only on temperature and the pertinent data were found in the literature [22,23] are presented in Fig. 6. The thermal conductivity of dense material, λ , was calculated from a well-known formula:

$$\lambda = \rho_p a_p c_p \tag{3}$$

where c_p and ρ_p data are defined as above. The data of the thermal diffusivity, *a*, were taken from Kijima and Tsutsumi [18] and corrected for theoretical density. Then, the thermal conductivity of a material with a porosity of P = 12% (see Fig. 3) was calculated. Thermal conductivity in solid and in liquid phase was supposed to depend on porosity in a way described by the Maxwell equation:

$$\lambda_p = \frac{\lambda(1-P)}{1+0.5P} \tag{4}$$

where λ is the parameter related to the fully dense material. The conductivity is calculated up to melting point and the values above that temperature are extrapolated. The final curve of the thermal conductivity as a function of temperature is shown in Fig. 7.

5. Heat and momentum transfer from plasma to particle

The model incorporated in Plasma 2000 code allows the calculation of the trajectories and temperatures of the particles during flight in the plasma under the assumption that they are non-interacting spheres (ballistic model). The drag force and force of gravity was considered for the movement of particles [24]. The drag coefficients depend on Reynolds number (Re) number as follows:

$$C_{D} = \frac{24}{\text{Re}} \quad \text{Re} < 0.2$$

$$C_{D} = \frac{24}{\text{Re}} (1 + 0.187) \quad 0.2 < \text{Re} < 2$$

$$C_{D} = \frac{24}{\text{Re}} (1 + 0.11 \text{Re}^{0.81}) \quad 2 < \text{Re} < 21$$

$$C_{D} = \frac{24}{\text{Re}} (1 + 0.189 \text{Re}^{0.62}) \quad 21 < \text{Re} < 500 \quad (5)$$

The particle temperatures were calculated under the assumption of convective heat transfer from plasma to particles described by the Nusselt number (Nu). This number depends on the Reynolds number (Re) and the Prandtl number (Pr) in the following way:

$$Nu = 2 + 0.6 Re^{0.5} Pr^{0.33}$$
 Re < 2

Fig. 7. Thermal conductivity of dense and porous HA vs. temperature.

(6)

$$Nu = 1.05 Re^{0.5} Pr^{0.33}$$
 2 < $Re < 500$

The radiation from (or to) the plasma to the particles was neglected. The temperature inside the particles was calculated using the heat conduction equation with the coefficients depending on temperature. The equation is associated with boundary conditions corresponding to the following situations that may occur during flight [24]:

- Solid particle.
- Solid core of particle with liquid outer part.
- Solid core of particle, liquid intermediate shell, vapour outside.
- Solid core of particle, liquid intermediate shell, solid outside.
- Liquid core of particle, solid outer part.

Each boundary is described by an appropriate equation. The initial condition is that the temperature of the particle is $T_p(r,0) = 300$ K and the symmetry condition, in centre of the particle it has the following form:

$$\frac{\partial T(0,t)}{\partial r} = 0 \tag{7}$$

6. Numerical code description

The trajectories of powder particles are calculated by the Plasma 2000 code by integration of ordinary differential equation using Runge-Kutta method. The particle trajectory was divided into elementary parts in which no variation of particle temperatures takes place. For each of these parts the equation of heat conduction was solved numerically (assuming constant gas and particles properties) using appropriate boundary conditions by a finite difference in method [25]. Initial calculations were made with different time steps and number of nodes inside the particle. Stable results were obtained for a time step shorter than $\Delta t = 10^{-8}$ s and for a number of nodes equal to at least n = 150 for each phase (solid, liquid). The results of particles trajectory calculation with the code Plasma 2000 were compared with those of the Jets and Poudres code [6] under the same plasma jet and powder particles data conditions. The latter uses different values for C_D and the results of trajectory calculations diverged initially (Fig. 8). After introduction into the code Jets and Poudres of the drag coefficients given by the Eq. (5), the trajectories calculated using the two codes become comparable.

7. Results of calculation

Simulations of the plasma spraying process of HA powder were carried out under the experimental conditions shown in Table 1. The powder particles diameters

Fig. 8. Trajectory of a 100 μ m diameter HA particle calculated: (a) with the code Jets and Poudres with initial values of C_D ; (b) with this code and the values of C_D given by Eq. (5); and (c) with the code Plasma 2000

are in the range from 30 to 160 µm. The results of particles dynamics show that the maximal velocity of approximately 150 m/s is reached by a particle with a diameter of $d_p = 30 \ \mu m$ (Fig. 9). The surface temperature of a particle of this size is close to the boiling point at spray distances greater than x = 30 mm (Fig. 10). The calculation were stopped when the particles reached the experimental spray distance of x = 80 mm. Then, the volumes inside the particles having temperatures in the ranges: $T_p < 1823$ K, $1823 < T_p < 1843$ K and $T_p > 1843$ K were calculated. These volumes are attributed, following to the HA phase diagram, to crystalline HA, α -TCP+TP and liquid calcium phosphate of a chemical composition of HA. It was supposed that the phase content of solid material under rapid solidification condition remains unchanged and that liquid calcium phosphate transforms into amorphous phase as shown in Fig. 1. The results of the calculation are shown in Fig. 11. This figure shows the phase composition of HA powder particles of different diameters processed under simulated experimental conditions. Finally, knowing the initial size distribution of powder, the volume fraction of the phases in the total powder volume being deposited on the substrate was calculated. This, in turn, allows to predict the crystal phases composition in the coating. The results of these calculations show that, under the present experimental conditions, the fraction of crystalline HA is approximately 85 vol.% and the fraction of amorphous phase is approximately 13 vol.%. The content of HA decomposition phases (α -TCP+TP) is slightly lower than 2% (Table 3).

8. Discussion

Porous HA powders, manufactured by the spraydrying method, are frequently used in industrial practice. The powder particles, during their flight in the plasma jet, sinter only weakly in solid state but sinter rapidly in the liquid state [25]. The particles' dynamics and

Fig. 9. Simulated velocities of HA powder particles.

their trajectories are hardly affected by the porous nature of the powders. Inversely, heating of porous material is less intensive. The theoretical description of heating includes a modification of the thermal conductivity as shown in the Eq. (4). The numerical simulations serve to predict the temperature fields inside the porous particles. These fields, found in powder particles at the distance equal to the experimental spray distance, make it possible to calculate the volume of each phase (solid HA phase, solid decomposition phase, liquid phase, vapour phase) inside every particle. Knowing the powder size distribution, it is consequently possible to predict the crystal phases composition in the sprayed coating. The predicted phase composition can be verified by X-ray diffraction (XRD) and differential thermal analysis (DTA) studies of sprayed deposits. In fact, the

Fig. 10. Simulated surface temperatures of HA powder particles.

Fig. 11. Volume content of crystal phases in processed powder at spraying distance vs. HA powder particles diameters.

DTA results published elsewhere [1,26], indicate the presence of a small quantity of the HA decomposition phases α -TCP and TP. These phases are hardly visible by X-ray diffraction, which means that their content is lower than 5 vol.%. The XRD allows to discover crystalline HA in sprayed coatings, but do not allow to quantify the amorphous phase content. This may become possible using Raman microscopy. The recent results obtained in our laboratory show, in fact, a strong influence of amorphous phase content on a width of the peak at 960 cm⁻¹ in the sprayed coating Raman spectrum [27]. Further studies will hopefully make it possible to quantify the amorphous calcium phosphate fraction in these deposits. However, it is foreseen to validate obtained results of particle velocities and temperatures with the available sensors such as DPV-2000 or similar.

9. Conclusions

A numerical simulation of the industrial process of HA powder spraying was carried out. The numerical code Jets and Poudres allows the simulation of twodimensional axisymmetric fields of velocities and temperatures of the plasma jet generated by a torch of given geometry, gas flow rates and depending on the electrical power. These are prerequisite conditions to simulate the dynamics and trajectories as well as the temperatures of HA powder particles of known thermophysical properties. The simulation was carried out with a Plasma 2000 numerical code. The validation of obtained results shows a fair agreement between experimentally determined

Table 3

Crystal phases fractions in sprayed coating in vol.%

НА	85.4
α -TCP + TP	1.7
Amorphous calcium phosphate	12.9

content of α -TCP and TP phases and numerical predictions. Furthermore, experimental studies should be carried out to determine quantitatively the amorphous phase content. However, experimental verification of HA powders velocities and surface temperatures can be carried out with optical sensors such as DPV-2000. Finally, the numerical simulation of sprayed coating growth would refine the prediction of phase content and would hence allow the prediction of coating porosity.

Acknowledgments

The study of Miss S. Dyshlovenko was financed by Egide within the frame of French-Russian universities exchange. Prof. I. Smurov from ENISE in St. Etienne and M.N. Maubec from the French Embassy in Moscow helped in obtaining financial support. Mr V. Hurevich of University of Aachen helped to overcome the initial problems with Plasma 2000 numerical code. Finally, the assistance of Mr G. Courtrand of University Lille1 to determine the porosity of HA powder is kindly acknowledged.

References

- V. Deram, C. Minichiello, R.-N. Vannier, A. Le Maguer, L. Pawlowski, D. Murano, Surf. Coat. Technol. 166 (2003) 153–159.
- [2] K.A. Gross, M.R. Phillips, J. Mater. Sci.: Mater. Med. 9 (1998) 797–801.
- [3] R. Cusco, F. Guitian, S. De Aza, L. Artus, J. Europ. Ceram. Soc. 18 (1998) 1301–1305.
- [4] C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, J.C. Krapez, M. Vardelle, Surf. Coat. Technol. 46 (1991) 173-187.
- [5] L. Pawlowski, Surf. J. 11 (3) (1980) 8-16.
- [6] J.S.H. Wang. Jets and Poudres can be downloaded from http:/ /jets.poudres.free.fr.
- [7] J. Zhao, X. Ai, Y.H. Zhang. GENMIX can be downloaded from CHAM's web-site by clicking: http://www.cham.co.uk/ website/new/genmix/genmix.htm.

- [8] W.H. Chen, Z.H.Y. Qin, L. Wang. T&TWINner can be downloaded from http://ttwinner.free.fr.
- [9] S.V. Patankar, D.B. Spalding, Heat and Mass Transfer in Boundary Layers, 2nd ed, Morgan-Grampian, London, 1970.
- [10] D.B. Spalding, GENMIX: a General Computer Program for Two-dimensional Parabolic Phenomena, Pergamon Press, Oxford, 1977.
- [11] S.J. Yankee, B.J. Pletka, J.Therm. Spray Technol. 2 (3) (1993) 271–281.
- [12] Y.C. Tsui, C. Doyle, T.W. Clyne, Biomaterials 19 (1998) 2015-2029.
- [13] P.V. Riboud, Ann. Chim. 8 (1973) 381-390.
- [14] G.V. Samsonov, Physico-Chemical Properties of Oxides, Metallurgija, Moskva, 1978, (in Russian).
- [15] O. Guillot-Noel, R.G.-S. Roman, J. Perrière, J. Appl. Phys. 80 (3) (1996) 1803–1808.
- [16] S. Best, W. Bonfield, J. Mater. Sci.: Mater. Med. 5 (1994) 516–521.
- [17] R. Halouani, D. Bernache-Assolant, E. Champion, A. Ababou, J. Mater. Sci.: Mater. Med. 5 (1994) 563–568.
- [18] T. Kijima, M. Tsutsumi, J. Am. Ceram. Soc. 62 (9–10) (1979) 445–460.

- [19] V. Sergo, O. Sbaizero, D.R. Clarke, Biomaterials 18 (1997) 477-482.
- [20] X.B. Zheng, C.X. Ding, J. Therm. Spray Technol. 9 (4) (2000) 520–525.
- [21] S. Maruno, K. Hayashi, Y. Sumi, Y.F. Wan, H. Iwata, in: T. Yamamuro, L.L. Hench, J. Wilson (Eds.), CRC Handbook of Bioactive Ceramics, 2, CRC Press, Boca Raton, USA, 1991, pp. 187–193.
- [22] G.A. Sharpataya, A.D. Fedoseev, V.V. Bogacheva, V.P. Orlovski, Zh. Inorg. Chimii 40 (4) (1995) 612–615.
- [23] E.P. Egan Jr, Z.T. Wakefield, L. Kelly, J. Am. Ceram. Soc. 73 (1951) 5581–5582.
- [24] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, England, 1995.
- [25] V. Hurevich, I. Smurov, L. Pawlowski, Surf. Coat. Technol. 151-152 (2002) 370–376.
- [26] S. Binutti, H. Bulté, C. Contremoulin, A. Le Maguer, L. Pawlowski, C. Boyaval, et al., Galvano-Organo-Traitements de Surface 712 (2001) 400-403.
- [27] A. Didot, V. Gueu, R.-N. Vannier, J.Laureyns, L. Pawlowski, unpublished data, March 2003.

Available online at www.sciencedirect.com

Surface & Coatings Technology 187 (2004) 408-409

www.elsevier.com/locate/surfcoat

Corrigendum

Corrigendum to "Numerical simulation of hydroxyapatite powder behaviour in plasma jet" [Surf. Coat. Technol. 179 (2004) 110–117]

S. Dyshlovenko^a, B. Pateyron^b, L. Pawlowski^{a,*}, D. Murano^c

^aLaboratoire de Cristallochimie et Physicochimie du Solide, UMR CNRS 8012, ENSCL, USTL, BP 108, Villeneuve d'Ascq F-59652, France ^bLaboratoire de Science des Procédés Céramiques et de Traitement de Surface, Université de Limoges, 123, av. A. Thomas, Limoges 87060, France ^cTerolab Services SNMC, BP 3, Villeneuve-le-Roi F-94290, France

Fig. 2 of the above paper should show the values' of particle diameter. The corrected values are shown in Fig. 1 of the present Corrigendum.

The modelling part of the published study used the P_2O_5/CaO phase diagrams proposed for water partial pressure 500 mm Hg [1]. In these conditions, HA is very stable and transforms to TCP and TP at T=1823 K. The more recent XRD analyses show, however, that HA decomposes completely at about T=1633 K and that OH⁻ ions start to be lost above 1273 K [2]. The appropriate phase diagram must consider these phenomena such as does the one made for 10 mm Hg of water [3]. According to the diagram, one of the hypotheses related to the phase content in a sprayed HA particle upon impact on a substrate will be changed as follows:

• α -TCP and TP, in the part of the particle where the temperature is between 1633 and 1843 K.

The sketch visualising this hypothesis is shown in Fig. 2. Consequently, the calculation of the volume crystal phases present in sprayed coating shown in Fig. 11 and Table 3 of our paper must be corrected. The results after correction are shown in Fig. 3 and Table 1, respectively.

DOI of original article 10.1016/S0257-8972(03)00799-0.

E-mail address: lech.pawlowski@ensc-lille.fr (L. Pawlowski).

Finally, Refs. [6-8] of our paper were deformed at editing. Their correct form follows:

[6] Jets and Poudres can be downloaded from http://jets.poudres.free.fr.

[7] GENMIX can be downloaded from CHAM's website by clicking: http://www.cham.co.uk/website/new/genmix/ genmix.htm.

[8] T&TWINner can be downloaded from http://ttwinner. free.fr.

The authors and publisher apologize for the imperfections.

References

- P.V. Riboud, Composition et stabilité des phases a structure d'apatite dans le système CaO-P₂O₅-oxyde de fer-H₂O à haute température, Ann. Chim. 8 (1973) 381-390.
- [2] C.-J. Liao, F.-H. Lin, K.-S. Chen, J.-S. Sun, Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, Biomaterials 20 (1999) 1807-1813.
- [3] C. Santos, A. Pazo, F. Guitian, Water vapour pressure influence on CaO-P₂O₅ system phase diagram, in: P. Vincenzini (Ed.), Materials in Clinical Applications, Techna, Faenza, Italy, 1995, pp. 11-18.

Table 1 Crystal phase fractions in sprayed coating in vol.%

HA	71.5
α-TCP+TP	15.6
Amorphous calcium phosphate	12.9

^{*} Corresponding author. Tel./fax: +33 3 20 33 61 65.

^{0257-8972/\$ -} see front matter 0 2002 Elsevier B.V. All rights reserved. doi:10.1016/j.surfcoat.2004.06.030

Fig. 1. Distribution of HA powder particle sizes (diameters and volumes) as well as their injection velocities in function of the powder diameter.

Fig. 2. Temperature fields of HA powder particle at impact and assumed phase transformations.

Fig. 3. Volume content of crystal phases in processed powder at spraying distance versus HA powder particle diameters.

Annexe

ANNEXE 2

S. Dyshlovenko, L. Pawlowski, P.Roussel, D. Murano, A. Le Maguer

Relationship between plasma spray operational parameters and microstructure of hydroxyapatite coatings and powder particles sprayed into water

> Accepté par Surface and Coating Technology

microstructure of hydroxyapatite coatings and powder particles sprayed into water

S. Dyshlovenko^a, L. Pawlowski^{a,*}, P. Roussel^a, D. Murano^{b,*} A. Le Maguer^a

^aEcole Nationale Supérieure de Chimie de Lille, BP 108, Villeneuve d'Ascq F-59652, Fr. ^bTerolab Services SNMC, BP 3, Villeneuve-le-Roi F-94290, France

Received 9 September 2004; accepted in revised form 22 November 2004

10 Abstract

3

4

5

7

8 9

A full factorial design of 2^4 experiments was used to determine the effects of four principal plasma spray parameters (i.e., plasma forming gas composition, electric power, spraying distance, and carrier gas flow rate on the microstructure of hydroxyapatite (HA) coatings and powders). The granulometry of powders was tested after spraying into water and compared to the initial one. The crystal phase content of powders and coatings was determined using quantitative X-ray diffraction (XRD) analysis. The morphologies of coatings surfaces, crosssections, and particles sprayed into water were characterized using scanning electron microscopy (SEM). The mapping of elements inside plasma-treated powders was carried out using electron microprobe analysis (EMPA). Infrared spectroscopy (FTIR) allowed determination of the dehydration of HA under different spray conditions.

18 © 2004 Published by Elsevier B.V.

19 Keywords: Plasma spraying; Hydroxyapatite coating; Statistical design of experiments; Ceramics structure; XRD; FTIR

20

21 1. Introduction

In the plasma spraying process many interdependent variables influence the properties of coatings and their performance in practical service [1]. As far as the performance of HA coatings deposited onto prosthesis shafts is concerned, the following properties appear to play a major role:

- 28
- 29 O Crystal phase composition that renders the coatings
 30 more or less biocompatible (e.g., [2]);
- O Porosity that may influence the kinetics of osteointegra tion [3].

These microstructural features depend, in turn, on the 34parameters of plasma spray processing. The ways of testing 35the dependencies diverge. In many cases, researchers select 36 one parameter and test its influence onto HA coating 37 properties. An example of such an approach is the study by 38 McPherson et al. [4] in which the coatings' phase 39 composition was tested at different electric power inputs. 40 41 In a more careful approach, one should take into account a few, most significant, process parameters. This way was 42chosen in a study by Heimann et al. [5] in which a statistical 43plan of experiments was considered including five process 44 parameters such as electric power, plasma forming gas 45composition and flow rate, carrier gas flow rate, and 46spraying distance. These authors tested, resulting from the 47 spray experiments, phase composition, adhesion, and 48 porosity of their deposits. The present study adopts a 49similar approach but with some improvements. Firstly, the 5051resulting coatings' properties were presented in graphical 52form using a response surface methodology that simplifies

³³

^{*} Corresponding author. Tel.: +33 320 33 65 65; fax: +33 32 33 61 65. *E-mail address*: lech pawlowski@ensc-lille fr (L. Pawlowski)

E-mail address: lech.pawlowski@ensc-lille.fr (L. Pawlowski). * Sadly, Mr. Donato Murano passed away before this paper was published.

 $^{0257\}text{-}8972/\$$ - see front matter © 2004 Published by Elsevier B.V. doi:10.1016/j.surfcoat.2004.11.037

TICLE IN PRESS

53optimization of the spray process [6]. Moreover, one spray 54parameter (spray distance) was correlated with the mode of 55spraying. Consequently, coatings were sprayed onto a 56substrate using a short distance and powders were sprayed 57into water using a long one. The spraying of powder into 58water can be used to modify HA properties, such as internal

59 porosity or flowability [7].

60 2. Experimental

612.1. Plasma spraying

62Plasma spraying was carried out using a Praxair 63 installation including a SG100 torch with anode type P/N 64 2083-730 equipped with internal powder injector, cathode 65 type 01083A, manual console type 3710, and powder feeder type 1264. The spraying was carried out onto 66 67 aluminium or stainless steel plates with dimensions 68 $15 \times 15 \times 3$ mm. Although titanium alloy Ti₆Al₄V is used 69 typically for prostheses the coating properties tested in 70present paper (phase composition and water content) should 71not be affected by the application of different substrates. 72The substrates were blasted prior to processing using 73alumina grit with size in the range 125-250 µm. In some 74experiments, hydroxyapatite powder was sprayed into 75distilled water. Later, the powder was collected and dried. 76Argon was used as carrier gas. Argon and hydrogen were used to form plasma and their total flow rate was constant 77 and equal to 50 slpm. The powder was pure HA prepared 78by spray drying and commercialized by Tomita. XRD 79 analysis of the powder enabled to detect only the HA phase. 80 The powder has a mean diameter of $d_{50\%}$ = 120 µm, internal 81 porosity of about 12%, and other characteristics that are 82

shown elsewhere [2,8]. The powder feed rate, controlled by 83 the rotation of a stirrer, was kept constant. The factorial 84 design of experiments, following the Yates order, is shown 85 in Table 1 [9,10]. 86

2.2. Powder and coating characterizations

2.2.1. Microscopy

The morphology of powders and coatings was observed 89 using a SEM equipment of JEOL type JSM-5300. The 90 cross-sections were prepared metallographically using 91 Struers equipment after embedding the samples in epoxy 92resin. The sections were coated with thin gold films prior to 93 SEM observations. Coating porosity was estimated with an 94 95 image analyser described elsewhere [2]. Some powders 96 were also observed using an optical microscope. The microprobe testing was made using a Cameback-97 Microbeam device, Cameca type 1SI-2S2, working with a 98 wavelength dispersive spectrometer (WDS). The mass 99 concentrations of elements were calculated as described 100 elsewhere [2]. 101

2.2.2. XRD 102 Diagrams were collected with a Guinier Huber 670 103 104 imaging camera plate (Ge monochromator, Cu K α_1 radia-105 tion of λ =0.154056 nm). The stepwise 2 Θ angle increase was set to 0.005° and step time to 1 s. This resulted in a scan 106 rate of about 0.3° min⁻¹. The samples were prepared 107 following the recommendations of French norms [11,12]. 108 Following the norms, the coatings were detached from the 109 substrate and crushed prior to the diffraction experiments. 110 Also, the powders obtained by spraying into water were 111 slightly crushed before being mixed with silicon powder. 112Crystal phases were initially identified using the following 113

t1.1	Table

t1.3	Sample number	Variable X ₁	Variable X_2	Variable X_3	Variable X_4	
t1.4		Content of H ₂ in the composition of plasma forming gas [vol.%]	Electric arc power [kW]	Distance of spraying [cm]	Mode of spraying: on substrate (S) and into water (W)	Carrier gas flow rate [slpm]
t1.5	1	97.5Ar+2.5H ₂	11	10	S	3
t1.6	2	95Ar+5H ₂	11	10	S	3
t1.7	3	97.5Ar+2.5H ₂	24	10	S	3
t1.8	4	95Ar+5H ₂	24	10	S	3
t1.9	5	97.5Ar+2.5H ₂	11	81	W	3
t1.10	6	95Ar+5H ₂	11	81	W	3
t1.11	7	97.5Ar+2.5H ₂	24	81	W	3
t1.12	8	95Ar+5H ₂	24	81	W	3
t1.13	9	97.5Ar+2.5H ₂	11	10	S	3.5
t1.14	10	95Ar+5H ₂	11	10	S	3.5
t1.15	11	97.5Ar+2.5H ₂	24	10	S	3.5
t1.16	12	95Ar+5H ₂	24	10	S	3.5
t1.17	13	97.5Ar+2.5H ₂	11	81	W	3.5
t1.18	14	95Ar+5H2	11	81	W	3.5
t1.19	15	97.5Ar+2.5H ₂	24	81	W	3.5
t1.20	16	95Ar+5H ₂	24	81	W	3.5

2

87

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2004) xxx-xxx

2.1 Table 22.2 Crystal data used in quantitative phase analyses

Crystal phase	Crystal system	Space group	Unit cell parameters [nm]
α-ΤСΡ	Monoclinic	P21/c	$a=1.2887, b=2.728, c=1.5218, \beta=126.2^{\circ}$
TTCP	Monoclinic	P21	a=0.7023, b=1.1980 $c=0.9473, \beta=90.9^{\circ}$
CaO	Cubic	Fm3m	a=b=c=0.4799
HA	Hexagonal	P63/m	a=0.94, c=0.693

136 cards from a data base of the International Centre for 137 Diffraction Data:

138

- 139 O α -tricalcium phosphate (α -TCP), JCPDS no. 70-0364;
- 140 O tetracalcium phosphate (TTCP), JCPDS no. 70-1379;
- 141 O calcium oxide (CaO), JCPDS no. 75-0264;
- 142 O hydroxyapatite (HA), JCPDS no. 73-1731.
- 143

144 Phase identification was realized by EVA code by 145 superposing experimental X-ray diagrams with those of 146 the data base. The raw data from XRD scans were refined

with PowderCell software. The shapes of the peaks were 147 modelled using a pseudo-Voigt function. For each diagram, 148 eight background parameters, scale factor, zero point 149 correction, and cell parameters were refined. Semiquantita-150tive analysis of crystal phases was performed by a 151 comparison of refined experimental diagrams with those 152generated numerically [13], using the software POWD-153 12++ for the ideal crystals whose cell parameters are shown 154in Table 2. The amorphous phase content was estimated 155using the X-ray diagrams obtained using a mixture of tested 156material with well crystallized Si powder (10 wt.%) as a 157standard. The content of crystalline phase was then 158calculated by taking into account the silicon calibrated 159fraction. The difference to 100% was assumed to be 160 amorphous calcium phosphate. Since the quality of dia-161 grams obtained from sprayed coatings was not high (lines 162broadening and lines shift), only the powders sprayed into 163water could be examined by this method. 164

FTIR spectra were obtained using a Nicolet device, type 165 Impact 400S, working in transmission mode. The spectrometer realizes 32 scans through the wavelength range of 167

Fig. 1. SEM images (secondary electrons) of the surfaces of coating sprayed with different process runs: sample 5 (a) and sample 8 (b).

Fig. 2. SEM images (secondary electrons) of the cross-sections of coatings sprayed with different arc power: sample 13, porosity of about 22% (a), and sample 15, porosity of about 15% (b).

ÐR

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2004) xxx-xxx

168 4000-400 cm⁻¹ (resolution of 4 cm⁻¹). The samples 169 containing a mixture 80% of KBr with 20% of tested 170 powder were compacted under a force of 100 kN.

171 2.2.3. Granulometry

172 Evolutions of particles sizes of powder sprayed into 173 water were tested with a laser sizer of Malvern type 174 (Mastersizer X).

175 3. Results

176 3.1. Morphology of powders, splats, and coatings

177The morphology of HA coatings sprayed with different 178 electric power inputs is shown in Fig. 1. On the surface of 179 coating sprayed with 11 kW, there are some particles that 180 were solid prior to contact with substrate and disintegrated 181 on impact. Their porosity is relatively high (Fig. 2a). On the 182 contrary, a coating sprayed with higher power is homoge-183 nous, with many small particles generated after the impact 184 of liquid droplets (Fig. 1b) is less porous (Fig. 2b). These

Fig. 3. SEM images (secondary electrons) of splats sprayed with different arc power: sample 5 (a) and sample 7 (b).

Fig. 4. SEM images (secondary electrons) of the cross-sections of initial powder particles (a) and particles of powders sprayed into water using different process parameters: sample 1 (b) and sample 4 (c). Arrows show the "twinned" particles.

observations are confirmed by the form of splat which is 185186 close to a "pancake" at low power spray conditions and a "flower" at high power ones (Fig. 3). "Pancake" splat is 187 known to be formed at a relatively low impact velocity of liquid particles and the "flower" splats indicate high velocity at impact [1]. The initial powder particles are the agglo-191 merates of small precursors with high internal porosity (Fig.

Table 4

192 4a). The pores move from the outer shell of particles into 193 their centres after spraying into water and coalesce to 194 become one large void while using high electric power (Fig. 195 4b and c). Some particles have a "twinned" form (arrows in 196 Fig. 4b) that could have resulted from an agglomeration by 197 collisions inside the plasma jet, or from a separation of big 198 liquid particles in two parts. The latter was also considered 199 by McPherson et al. [4].

200 3.2. Phase composition

201The results of quantitative phase calculations are collected 202 in Table 3. An important point was to obtain reproducible X-203 ray analyses results. Hence, all procedures enabling to 204 determine the distribution of crystal phases in plasma-205 sprayed powders were repeated: first with as-sprayed 206 powders and then after crushing and mixing with silicon. A 207 typical example (samples 16 and 16a in Table 3) shows a 208 reasonable similarity of results obtained by the two different 209 X-ray analyses performed on the same powder batch. The 210 data of Table 3 were converted into linear regression 211 equations, based on least squares fit to the data, with the 212 following polynomial form [9]:

$$Y_{u} = b_{0} + \sum b_{i}X_{ui} + \sum b_{ij}X_{ui}X_{uj}$$
$$+ \sum b_{ijk}X_{ui}X_{uj}X_{uk} + \sum b_{ijkl}X_{ui}X_{uj}X_{uk}X_{ul}$$
(1)

213 in which u is a running number, X_i is one of four variables 215 shown in Table 1, and Y is one of the three following responses: 216

- 217 Y_1 : fraction of HA phase;
- Y_2 : fraction of all decomposition phases (TTCP+ α -218 •
- 219TCP+CaO);

Table 3

3.1

220 • Y_3 : fraction of amorphous phase

Coefficients of	Response Y_1	Response Y_2	$\frac{\text{Response } Y_3}{\text{Amorphous}}$ phase	
regression equation	HA	Decomposition phases		
b_0	69.81	30.19	26.0	
Principal effects				
b_1 (Composition of plasma forming gas)	-3.94	3.94	3.75	
b ₂ (Electric arc power)	-5.19	5.19	12.75	
b ₃ (Distance of spraying)	0.81	-0.81	-	
b4 (Carrier gas flow rate)	-0.69	0.69	-6.75	
Interactions effects		. /		
b ₁₂	0,81	-0.81	-3.5	
213	-3.19	3.19		
b ₁₄	-0.19	0.19	0	
b ₂₃	-1.44	1.44	-	
b ₂₄	-1.94	1.94	-3.5	
b ₃₄	-0.19	0.19	_	
b ₁₂₃	[°] 0.81	-0.81	—	
7124	-0.19	0.19	-2.75	
7134	-0.94	0.94	-	
234	0.63	0.69	-	
b1234	-0.19	0.19	-	

221

222The coefficient b_0 is the mean value of responses of all 223experiments; b_i represents the coefficient of the variable X_i ; 224and b_{ii} , b_{iik} , and b_{iikl} represent the coefficients resulting 225from the interactions of variables X_iX_i , $X_iX_iX_k$, and $X_i X_i X_k X_l$, respectively. All calculated coefficients are 226 collected in Table 4. The values of coefficients were 227consequently submitted to a test of significance. This test 228based was on an assumption that the coefficient b_{1234} is not 229

;3.2	Results of quantitative phase analysis									
;3.3 ;3:4	Sample	Sample preparation	Fraction of phases [wt.%]							
	number		Distributio	on of crystalline p	Crystalline	Amorphous				
			НАР	TTCP	α-ΤϹΡ	CaO	phases [wt.%]	phase [wt.%]		
:3.6	1	Coating detached and crushed	73	8	19	0	_	_		
:3.7	2		71	16	13	0	-	-		
3.8	3		69	20	11	0	-	_		
:3.9	4		65	20	15	0	-	-		
3.10	5	Powder crushed and mixed with silicon	83	5	12	0	88	12		
;3.11	6		68	18	14	0	79	21		
3.12	7		72	13	15	0	54	46		
3.13	8		63	19	18	0	48	52		
3.14	9	Coating detached and crushed	74	17	9	0	-	-		
3.15	10		73	17	10	0	-	-		
:3.16	11		63	26	11	0	-	-		
:3.17	12		64	26	8	2	-	-		
3.18	13	Powder crushed and mixed with silicon	89	0	11	0	100	0		
:3.19	14		69	16	15	0	80	20		
3.20	15		67	14	19	0	69	31		
3.21	16		54	29	17	0	74	26		
3.22	16a	Sample without powder crushing	61	23	16	0	-	-		

)

5

+ A 1

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2004) xxx-xxx

230 significant. This coefficient was then used to find the ratios 231 [10]:

$$\frac{b_1}{b_{1234}}, \frac{b_2}{b_{1234}}, \dots, \frac{b_{123}}{b_{1234}}, \frac{b_{234}}{b_{1234}}.$$
 (2)

234 The ratios were subsequently compared to the value 235 generated by the Student's statistical test, assuming that the 236 degree of freedom is equal to 1 and the level of probability 237 is equal to 95% ($t_{1, 95\%}=6.314$). All the coefficients 238 resulting in the ratios being smaller than $t_{1,95\%}$ were then 239 assumed to be nonsignificant and noncontributing in the 240 regression equation. The resulting polynomials, for 241 responses Y_1 and Y_2 , are given by Eqs. (3) and (4). Eq. 242 (5) shows a polynomial regression equation obtained 243 without any significance analysis. This results from the 244 b_{123} coefficient that has a comparable value to others and 245 cannot be assumed to be nonsignificant:

$$Y_1 = 69.81 - 3.94X_1 - 5.19X_2 - 3.19X_1X_3 - 1.44X_2X_3 - 1.94X_2X_4$$
(3)

$$Y_2 = 30.19 + 3.94X_1 + 5.19X_2 + 3.19X_1X_3$$

 $+ 1.44X_2X_3 + 1.94X_2X_4$ 246

 $Y_3 = 26.0 + 3.75X_1 + 12.75X_2 - 6.75X_3 - 3.5X_1X_2$ $-3.5X_2X_4 - 2.75X_1X_2X_3$. 247

all 289 It should be noticed that the change of signs in 251 (excepting b_0) coefficients of Eq. (4) with regard to Eq. (3) results from the fact that the content of amorphous phase in 252253 regression equations regarding phase composition in coat-254ings was not considered. Consequently all variables influencing positive HA phase content influence negatively 255256 the content of its decomposition phases. These equations 257can be represented by a response surface showing the combination of variables resulting in a given response. The 258contours are calculated using regression equations (Eqs. (3) 259 and (4)) inside the coded levels (+1) and (-1) of each 260variable. The equations enabled to calculate the value for 261 another variable, taking a response function as a constant. 262The isopleths of constant HA fraction among all crystalline 263 phases are shown in Fig. 5 and those of constant fraction of 264all decomposition phases among all crystalline phases are 265 shown in Fig. 6. Finally, the isopleths of constant fraction 266 267of amorphous phase in all weight powders sprayed into water, resulting in regression equation (Eq. (5)), are shown 268269in Fig. 7.

HA contains water in absorbed and lattice (structural) 271form. The latter is lost gradually at increasing temperature, forming oxy-hydroxyapatite (OHAP) with the formula 273 $Ca_{10}(PO_4)_6(OH)_{2-2x}O_xv_x$ (v stands for a vacancy) and 274above 1100°C, oxy-apatite (OAP) with the formula 275Ca10(PO₄)₆O [14]. As the crystal structure of HA is largely 276277 preserved in OHAP and OAP [4], the loss of lattice water 278cannot be observed with XRD but only with FTIR 279 spectroscopy. The spectrum of the starting powder is shown

(4)

(5)

Fig. 5. Isopleths of constant HA fraction with regard to all crystalline phases in powders sprayed into water (upper curves) and coatings (lower curves) as a function of volume fraction of hydrogen in plasma forming gas, electric power, and carrier gas flow rate.

6

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2004) xxx-xxx

Fig. 6. Isopleths of constant fraction of decomposition phases (α-TCP+TTCP+CaO) with regard to all crystalline phases in powders sprayed into water (upper curves) and coatings sprayed onto substrates (lower curves) as a function of volume fraction of hydrogen in plasma forming gas, electric power, and carrier gas flow rate.

280 in Fig. 8. The OH^- ion stretching vibration peak at 3570 281 cm⁻¹ was selected to study the dehydratation. The other 282 peaks are identified with the help of the literature [15,16]. 283 Fig. 9 shows the peaks for powders sprayed into water and

Fig. 7. Isopleths of constant fraction of amorphous phase in weight of powders sprayed into water as a function of volume fraction of hydrogen and electric power for carrier gas flow rate equal 3 slpm (a) and 3.5 slpm (b).

coatings sprayed onto a substrate using a carrier gas flow284rate of 3.5 slpm, after a baseline correction. Similar peaks285for the carrier gas flow rate of 3 slpm are slightly higher,286indicating a less intense dehydratation. This may result from287a better penetration of HA powder particles in the hot zone288of the plasma jet at a higher greater carrier gas flow rate. The289dehydratation of HA follows the reaction:290

$$Ca_{10}(PO_4)_6(OH)_2 \rightarrow Ca_{10}(PO_4)_6(OH)_{2-2x}O_xv_x + xH_2O.$$

(6)

Finally, the powders sprayed into water have more 2 intense OH⁻ stretching peaks. This can be explained by 2 the reversal of the dehydratation reaction in the presence of 2 water.

Fig. 8. FTIR spectrum of the starting HA powder.

293 294 295

7

ARTICLE IN PRESS

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2004) xxx-xxx

Fig. 9. FTIR spectra of powders sprayed into water (a) and coatings sprayed onto substrate (b) using a carrier gas flow rate of 3.5 slpm.

297 3.4. Modification of particle size

8

The particles of powder sprayed into water modify their size, as shown in Fig. 10. Their distribution depends on opwer used to spray and on carrier gas feed rate. It can be observed that the powders sprayed using 24 kW contain

Fig. 10. Size distributions of powders sprayed into water using a carrier gas flow rate of 3 slpm (a) and 3.5 slpm (b).

more small particles that can result from the following 302 effects: 303

30

308

309

31

326

- Evaporation from particle surface is more intensive at high power level, which is produced in a plasma jet, and able to melt numerous HA particles;
 302 306 307
- Large liquid particles cannot be held by surface tension forces and disintegrate in flight into smaller ones.

It is reasonable to assume that molten particles solidify, 311 forming an amorphous phase, which is optically transparent 312 CaO-P₂O₅ glass. In fact, a batch of powder sprayed into 313 water at high power contains many more transparent 314 particles compared to that sprayed at low power level 315(Fig. 11). This is a confirmation that more HA particle is 316 317 molten at high power level. On the other hand, a direct 318 comparison of particles sizes sprayed with carrier gas flow 319 rates of 3 and 3.5 slpm, shown in Fig. 12, indicates that size distribution is shifted towards lower values differently. The 320 difference can be interpreted as a result of a better 321 penetration into the hot zone of the plasma when carrier 322gas flow rate of 3.5 slpm is used. This, in turn, results in 323 increased evaporation or disintegration of molten particles 324as discussed above. 325

4. Discussion

Although the processes of plasma spraying of coatings 327 and plasma treatment of powders are very similar, their final 328 products are totally different. Coatings are used in the 329 production of prostheses and have to fulfill a very precise 330 specification related to their osteointegration. The treatment 331

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2004) xxx-xxx

Fig. 11. Optical micrographs of powders sprayed into water at low power level, sample 5 (a), and high power level, sample 8 (b).

332 of powders is made to improve some of their properties, 333 such as flowability, density, internal or external morphology, 334 etc. This is why coatings and powders are discussed 335 separately. The obtained results are used as experimental 336 validation for the model of plasma particle interaction and 337 coating growth presented elsewhere [17].

338 4.1. Coatings

339 The plasma spraying of HA coatings is now a well 340 established process in industrial practice and most spraying

Fig. 12. Size distributions of powders sprayed into water using low carrier gas flow rates at low (a) and high power level (b).

shops have found the optimum processing parameters for 341 satisfactory deposits. In some situations, it is important to 342 know how large the sensitivity of coating properties is with 343 regard to the operational processing parameter. A typical 344 example is the change of a powder batch or a quality of 345346 plasma forming gases. Adjustment of parameters may prove to be necessary and it is important to know which 347parameters should be adjusted to reestablish the desired 348 349 coating property. The most important coating property is the phase composition that, in industrial coatings, should be 350 351 mainly crystalline HA with a small and controlled quantity of crystalline decomposition phases and of CaO-P₂O₅ glass. 352The electric power appears to have the greatest principal 353effect on the phase composition. The regression equation 354coefficient b_2 is equal to -5.19 for the response Y_1 (see Eq. 355(3)). In other words, an increase of electric power decreases 356the content of crystalline HA in a most efficient way. The 357 analysis of particle morphologies produced on impact, 358shown in Fig. 3, allows concluding that a high level of 359 360 power produces well deformed splats. The coating built up from such splat has low porosity (Fig. 2b). The second 361 largest principal effect ($b_1 = -3.94$ for the response Y_1) is 362 363 composition of the plasma forming gas which influences, by 364modification of thermal conductivity and viscosity, the heat and momentum transfer from the plasma to particle [1]. 365Finally, the interaction effects of electric power with spray 366 distance (coefficient $b_{13}=3.19$ for response Y_1) and with 367 carrier gas flow rate (coefficient $b_{24}=-1.94$ for Y_1) are the 368 most important for the response crystalline HA content. The 369 370 spray variables influence the response Y_2 (content of decomposition phase) in an exactly inverse way compared 371 to the response Y_1 . An interesting point relative to the carrier 372gas flow rate can be observed in the upper parts of Figs. 5 373 374 and 6, namely, the influence of plasma forming gas composition on content of crystalline HA and content of 375decomposition phase is negligible for a carrier flow rate of 376 3.5 slpm. At this value, it is possible to vary the responses 377 Y_1 and Y_2 using only one process variable, namely electric 378power. This optimal carrier gas flow rate enables, thanks to 379the appropriate injection velocities of particles, their 380 penetration into the hot zone of the plasma jet [8]. In 381

ARTICLE IN PRESS

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2004) xxx-xxx

382 practice, such an optimum flow rate renders the phase 383 composition of coatings independent of the variation of 384plasma forming gas quality and human errors in gas delivery 385setting. The second property of coating that was tested in the 386 present study was the structural (lattice) water content. This 387 coating parameter was again influenced mainly by the 388 electric power. Higher electric power results in a coating 389 with less structural water. The influence of carrier gas flow 390 rate on this property was not evidenced by FTIR tests. Also, 391 surprisingly, the variation in plasma forming gas composi-392 tion and, in particular, in (acting as a reducing agent) 393 hydrogen content does not seem to influence the content of 394 structural water. On the other hand, the content of structural 395water is not as important property as phase composition in 396 determining the biointegration of coatings [18].

397 4.2. Powders

398 Plasma treatment of powders is carried out mainly to 399 spheroidize and densify particles. As the HA powder used in present study was prepared by the spray-drying method, its 400 401 particles were initially spherical but very porous (see Fig. 402 4a). At their flight in the plasma jet, the pores inside the 403 liquid particles start to agglomerate and, finally, a big pore 404may be found in its centre (Fig. 4b and c). The theoretical analysis of pore agglomeration is shown elsewhere [19]. 405Such a way of obtaining hollow particles can be useful to 406 407produce powders resulting in coatings of controlled proper-408 ties, such as thermal conductivity or elastic modulus. An important issue is a selective evaporation from liquid 409 surfaces. This phenomenon, observed frequently at spraying 410 of multioxides (e.g., partial evaporation of CuO during 411 spraying of $YBa_2Cu_3O_x$ [1]), could have resulted in a P_2O_5 412 depletion at the particle surface. EMPA observations do not 413 414 reveal any modification. Linear regression analysis using 415 the data of phase analysis of powders related to responses Y_1 (crystalline HA phase) and V_2 (crystalline phases of 416 decomposition) is similar to that discussed for the coatings 417 418 (see Tables 1 and 4). The data for powders enable to find 419 regression equation for the response Y_3 (amorphous phase). 420 The largest principal effect on this response has again the 421 electric power (coefficient $b_2=12.75$), carrier, gas flow rate 422 $(b_4 = -6.75)$, and plasma forming gas composition 423 (b_1 =3.75). The strongest interaction effect is the combined 424 action of power and gas composition $(b_{12}=-3.5)$. This 425 interaction has an effect similar to that of the composition of 426 plasma forming gas. This can be interpreted by the average 427 particle temperature that was calculated to be greater than 428 the HA melting point for all the experiments of spraying 429 into water using 24 kW and using any composition of 430 plasma gas independent on the carrier gas flow rate [17]. 431 Molten material in contact with water transforms into 432 amorphous CaO-P₂O₅ glass. Consequently, the effects of 433interactions including the carrier gas flow rate influence less 434 the response Y_3 . In fact, $b_{14}=0$. On the other hand, the 435 contours of the constant amorphous phase fraction show that

the carrier gas flow rate of 3.5 slpm seems to be slightly 436 more advantageous. At this value, the response Y_3 is less 437 dependent on the variation of plasma gas composition (Fig. 438 7b) and depends mainly on electric power. The dehydrata-439 tion of powders depends, in a similar way to coatings, on 440 electric power (Fig. 9a). However, there is a clear depend-441 ence of this parameter on the chemical composition of gas. 442 In fact, as shown in the comparison of FTIR spectra for 443 samples 13 and 14 presented in Fig. 9a, the plasma forming 444 gas, including more hydrogen, dehydrates at the same power 445 level more intensively. It is also clear that the powder 446 sprayed into water is more hydrated than the coatings. This 447 must have happened by the reabsorption of water by the 448 powder. The observation and characterization of the external 449 morphology of the powder particles visualize three impor-450 tant effects of plasma treatment: 451

Formation of transparent particles at high power level (Fig. 11);

452 453

454

455

456

457

458

459 460

468

469

479

- Formation of "twinned" particles at any power level (Figs. 4 and 11);
- Shifting of size distribution in the direction of small sizes, which is more pronounced for high power level and high flow rate of carrier gas (Figs. 10 and 12).

The presence of transparent particles can be explained by 461 the formation of amorphous CaO- P_2O_5 glass as confirmed 462 by XRD data (Table 3). The number of transparent particles, 463 as the quantity of amorphous phase, increases with 464 increasing electric power. Formation of "twinned" particles 465 may have originated by: 466

- Partial disintegrations of big liquid particles which cannot be kept together by surface energy forces [4];
- Agglomerations of small particles entering in contact
 470

 inside the turbulent plasma jet [20].
 471

 472

Finally, the shifting in particles sizes can be explained by 473 evaporation of material at spraying and, on the other hand, 474 by a total disintegration of large liquid particles. The internal 475 morphology of particles with a central hole formed at 476 plasma treatment can be explained by a coalescence of 477 initial porosity inside liquid particle [19]. 478

5. Conclusions

The present study enabled to establish, with the help of 480the statistical plan of experiments, the sensitivity of the most 481 important properties of HA coatings sprayed onto substrates 482 483 and powders sprayed into water (i.e., phase composition and 484 structural water content) on the variation of processing 485 parameters. Among the parameters, the electric power influences in a most decisive way the crystalline phase 486487 composition of coatings, the content of CaO-P2O2 glass 488 plasma in plasma-treated powders, and the content of

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2004) xxx-xxx

11

523

524

537

538

539

547

548

549

550

551

489 structural water in coatings and powders. The distribution of 490 plasma treated powder sizes is shifted in the direction of 491 smaller sizes in a more pronounced way at high power level. 492The fraction of hydrogen in plasma forming gas has the 493second, most important effect on the content of crystal 494phases in coatings and powders, but it is slightly less 495influencing the content of glass in powder. More hydrogen 496 in plasma forming gas results in powders with less structural 497water. Finally, carrier gas flow rate plays the least important 498role in phase composition of coatings, but is the second most important parameter in the treatment of HA powders. 499 500 However, there is an optimum value of carrier gas flow rate (equal in the present study to 3.5 slpm) that renders coating 501properties less dependent on plasma gas composition which 502503is more practical in the practice of coating production. 504Further studies should de designed to test the influence of 505the type of powder injection (external or internal) on HA coatings and powders properties. A numerical simulation of 506507HA particle behaviour in plasma jet is currently being 508carried out to confirm present experimental findings.

Acknowledgements 509

510The efforts of Professors Jean-Claude Boivin and Francis 511Abraham in finding the funds necessary to buy a plasma spray installation are thankfully acknowledged. Mr. Claude 512Thomas helped in implantation of this installation in 513514ENSCL. Professor Igor Smurov helped in a decisive way 515in financing the stay of Miss Svetlana Dyshlovenko in ENSCL. Mr. Rafal Tomaszek carried out the plasma spray 516experiments. X-ray investigations were carried by Mrs. 517Laurence Burylo and Mrs. Nora Dielal-Buremma, and 518519Professor Rose-Noelle Vannier helped in analyses of the 520diagrams. M. Gilles Courtrand made image analyses of sprayed samples. Dr. Christel Pierlot helped in investiga-521522 tions of granulometry. 564

References

[1]	L. Pa	wlowski,	The	Science	and	Engineering	of	Thermal	Spray	525
	Coatir	ngs, Wiley	, Chic	hester, 1	995 , j	p. 33, 109.				526
[2]	V Dei	mann C M	inichie	ILO R N	Vanr	ier A Te M	amie	r I Paul	oweki	597

- D. Murano, Surf. Coat. Technol, 166 (2002) 153, 528529
- [3] H. Li, K.A. Khor, P. Cheang, Biomaterials 25 (2004) 3463.
- [4] R. McPherson, N. Gane, T.J. Bastow, J. Mater. Sci., Mater. Med. 6 530(1995) 327. 531
- [5] R.B. Heimann, O. Graßmann, T. Zumbrink, H.P. Jennissen, Materi-532alwiss. Werkstofftech 32 (2001) 913 533
- [6] T. Troczynski, M. Plamondon, J. Therm. Spray Technol. 1 (1992) 293. 534535
- [7] R.W. Sun, Y.P. Lu, M.S. Li, S.T. Li, R.F. Zhu, Surf. Coat. Technol., in press, available on-line at www.sciencedirect.com. 536
- [8] S. Dyshlovenko, B. Pateyron, L. Pawlowski, D. Murano, Surf. Coat. Technol. 179 (2004) 110.
- [9] R. Perrin, J.P. Scharff, Chimie Industrielle, Dunod, Paris, 1999, p. 259.
- [10] P. Lyonnet, La Qualité: Outils et Méthodes, Technique and Docu-540 mentation, Paris, 1997, p. 197. 541
- [11] French norm, Determination qualitative et quantitative des phases 542 étrangères présentes dans les poudres, dépôts et céramiques à base de 543phosphate de calcium no. NF S 94-067, AFNOR, Paris, 1993. 544
- [12] French norm, Détermination quantitative du rapport Ca/P de 545phosphates de calcium no. NF S 94-066, AFNOR, Paris, 1998. 546
- W. Kraus, Powder Cell for Windows v2.3, Federal Institute for [13] Materials Research and Testing, Berlin, Germany, 1999.
- [4] H. Nishikawa, Mater. Lett. 50 (2001) 364.
- [15] I. Rehman, W. Bonfield, J. Mater. Sci., Mater. Med. 8 (1997) 1.
- [16] S.W.K. Kweh, K.A. Khor, P. Cheang, Biomaterials 23 (2002) 775.
- [17] S. Dyshlovenko, L. Pawlowski, B. Pateyron, I. Smurov, J.H. Harding, 552Modelling of plasma particle interactions and coating growth for 553plasma spraying of hydroxyapatite, Surf. Coat. Technol. (2004) 554(submitted for publication). 555
- [18] B.C. Wang, E. Chang, C.Y. Yang, D. Tu, C.H. Tsai, Surf. Coat. 556Technol. 58 (1993) 107. 557
- [19] V. Hurevich, I. Smurov, L. Pawlowski, Surf. Coat. Technol. 151-152 558 (2000) 370. 559
- [20] P.H. Dundas, Agglomeration in large scale plasma spheroidization 560 processes, in: C. Bonet (Ed.), International Round Table on Study and 561 Applications of Transport Phenomena in Thermal Plasmas, CNRS, 562Odeillo, France, 1975, paper I.2. 563

Annexe

ANNEXE 3

S. Dyshlovenko, L. Pawlowski, B. Pateyron, I. Smurov, J.-H. Harding

Modelling of plasma particles interaction and coating growth at plasma spraying of hydroxyapatite

Soumise à Surface and Coating Technology

· · ·

Modelling of plasma particle interactions and coating growth for plasma spraying of hydroxyapatite

S. Dyshlovenko^a, L. Pawlowski^{a,*}, B. Pateyron^b, I. Smurov^c, J.H. Harding^d

^aDepartment of Thermal Spraying at Ecole Nationale Supérieure de Chimie de Lille, BP 90108, Villeneure d'Ascq, F-59652, France

^bUniversity of Limoges, 123, av. A. Thomas, Limoges F-87060, France

^cEcole Nationale d'Ingénieurs de Saint Etienne, 58, rue J. Parot, Saint Etienne F-42023, France ^dDepartment of Engineering Materials, University of Sheffield, Sheffield S10 2TN, United Kingdom

Received 6 September 2004; accepted in revised form 4 April 2005

11 Abstract

 $\mathbf{2}$

3

5 6

7

8

9 10

Numerical simulations of the interaction between hydroxyapatite (HA) particles and an Ar-H2 plasma were carried out. The particles 12were injected into the anode nozzle of a plasma torch. A ballistic model was used to describe the phenomena of exchange of momentum and 13heat transfer, including heating, melting, and evaporation of particle material. The simulations were performed using temperature and velocity 14 fields of the plasma jet obtained from the public GENMIX code. Numerical simulations of different experimental conditions, including 1516 variations of carrier gas flow rate and spraying distance, were carried out. Short distances were used for particles sprayed onto the substrate; 17 long distances for particles injected into water. The data obtained in the simulations at short spraying distances were used subsequently to 18 model HA coating growth. The numerical simulations were validated in two ways. Firstly, the fraction of amorphous phase in the sprayed material was predicted and compared with experimental data from semi-quantitative X-ray analysis. To make the comparison, the crystal 19 20phase composition of a particle in flight was assumed to be frozen on impact with the substrate or on contact with water, and that the liquid 21 material transforms into a $CaO-P_2O_3$ glass. Secondly, the porosity of coatings generated by the numerical simulations was compared to that obtained for the real deposits. Finally, the experimental size distribution of the powder is compared to the calculated one. 22

23 © 2005 Elsevier B.V. All rights reserved.

25 Keywords: Plasma spraying; Hydroxyapatite coating; Numerical modelling; Process control

26 27 1. Introduction

Process control of plasma-sprayed hydroxyapatite (HA)
coatings on titanium prostheses is of vital importance in
improving the quality of implants and their successful
osteointegration. In the modern coating industry, this control
is exercised on two different levels:

- 33
- Plasma spray operational parameters are kept within
 specified values;
- Monitoring of intrinsic process phenomena, including
 heat and momentum transfer in the plasma jet, together
 with coating growth, is performed.

The observation of these processes is carried out using 40experimental tools such as CCD cameras to visualize the 41 trajectory and velocity of droplets, or laser Doppler 42anemometers to determine their size [1]. Pyrometers and 43infrared cameras make it possible to follow the temperature 44of the coating growing on the substrate [2]. Parallel 45 developments have taken place in the numerical simulation 46 of heat and momentum transfer between plasma and 47 particles. The simulations used can be roughly divided into 48 49 two main types: 50

- Ballistic models in which each particle is described 51 individually without affecting the plasma jet [3,4]; 52
- Statistical models in which a change of particles may affect the plasma jet [5].

39

53

 $5\overline{4}$

^{*} Corresponding author. Tel.: +33 320 33 65 65; fax: +33 32 33 61 65. *E-mail address:* lech.pawlowski@ensc-lille.fr (L. Pawlowski).

^{0257-8972/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.surfcoat.2005.04.002

ARTICLE IN PRESS

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

56The numerical models deliver the temperature and 57 velocity of particles on impact with a substrate (or 58previously deposited coating). The data, in turn, are useful to simulate coating growth. This simulation follows the 5960 model developed in previous work [6,7] and makes it 61 possible to predict the temperature and porosity of sprayed 62 coatings. The experimental observations and numerical 63 simulations could become part of the same process control 64 system and some day will be integrated in one unit in which 65 a real coating process will be associated with a virtual one 66 running on a computer. Convergence between the growth of 67 a real coating and that of a virtual one could be checked 68 online, experimentally by the verification of data related to 69 particle flow (temperature, velocity, size) and coating 70growth (temperature). This integrated approach would 71enable us to control fundamental coating features (i.e., 72porosity), which determine mechanical, thermal, and elec-73trical properties of the sprayed material.

74As part of this programme, the present study simulates 75the phenomena of heat and momentum transfer between HA 76 particles and the plasma jet using a ballistic model. The 77 simulated process was also carried out experimentally. The 78data for coating and powders sprayed into water are given 79 elsewhere [8]. The model is validated by comparing, experimental semi-quantitative X-ray data of the phase 80 content of sprayed products and the calculated phase 81 composition. The calculation assumes that on impact with 82 the substrate (or water), the liquid part of a particle becomes 83 amorphous calcium phosphate (ACP) and the crystalline 84 part undergoes no further transformation. The temperatures 85 86 of the phase transitions considered in the present paper are 87 given in Fig. 1. The calculated temperatures and velocities of the particles were used to predict the spreading and 88 89 solidification of individual splats on the substrate, using the functional form suggested originally by Madejski [9], and 90 amended by results both from experiments [10,11] and 91 numerical simulations [12]. Subsequently, these splats stack 92 in a disordered fashion, producing the porous coating. The 93

Table 1				
Geometry of plasma torch and spr	ay parameters ^a			
Parameter	Value			
Geometry of nozzle, injector, and i	hose			
Nozzle ID (mm)	8			
Injector position	Inside the nozzle, 9.5 mm from			
	its outlet			
Injector angle (°)	70 (towards the torch axis)			
Injector ID, D_i (mm)	2			
Injector length, L_i (mm)	11			
Hose ID, D _h (mm)	3			
Hose length, $L_{\rm h}$ (m)	4.38			
Processing				
Spray distance (cm)/spraying	10 cm spraying onto substrate/81 cm			
experiment	spraying into distilled water			
Electric power (kW)	24			
Total flow rate of plasma forming gases (slpm)	50			
Composition of plasma forming gases (Ar+H ₂ , vol.%)	95+5 and 97.5+2.5			
Carrier gas flow rate (Ar) (slpm)	3 and 3.5			
Powder feed rate (g/min)	17			

^a An example of abbreviation of sprayed sample: P2497_3 means powder sprayed into water with a spraying distance of 81 cm, sprayed using 24 kW with 97 vol.% of Ar of plasma forming gas and 3 slpm of carrier gas. The sample sprayed with the same parameters from a distance of 10 cm onto substrate is abbreviated as Sub2497_3.

rules governing growth in the simulation are presented94elsewhere [7,13]. This part of the model can be validated by95comparing the simulated porosity with porosities measured96by image analysis of experimental coatings.97

2. Experimental spray conditions

98

t1.2

Plasma spraying experiments were performed using the99SG100 torch of Praxair, equipped with an anode of type P/N1002083-730 with an internal diameter of 8 mm, a cathode of101type 01083A, and an internal powder injector. The torch is102

Fig. 1. Temperature field inside an HA powder particle on impact with the substrate (water) and possible crystal phase transformation on particle heating. The crystal phases considered are: $Ca_{10}(PO_4)_6(OH)_2$ (HA), which loses water gradually at high temperature to become $Ca_{10}(PO_4)_6(OH)_{2-2x}O_xv_x$ (v stands for vacancy) (OHA), which becomes $Ca_{10}(PO_4)_6(OA)$ above 1100°C, α -Ca₃(PO₄)₂ (α -TCP), and Ca₄P₂O₉ (TP).

103 controlled using a manual console of type 3710 and a 104 powder feeder type 1264. The plasma spray parameters are 105 collected in Table 1. The electric power used to spray 106 coatings was 24 kW. Some coatings were also sprayed at 11 107 kW as described in a previous experimental paper [8]. 108 However, these conditions are outside the range of condi-109tions assumed by the simulations of coating growth. 110 Therefore, the numerical simulations were performed only 111 for the case where the sprayed particles melted (i.e., 24 kW). 112 Stainless steel and aluminium substrates with dimensions 113 $15 \times 15 \times 3$ mm were used to spray coatings. The substrates 114 were sandblasted before processing with an alumina grit of 115 size ranging from 125 to 250 µm. The plasma processed 116 powder was collected in distilled water and dried before use. 117 The powder used for spraying was agglomerated hydroxy-118 apatite (Tomita) with a mean diameter $d_{50\%}$ = 120 µm and 119 internal porosity of about 12% [14].

120 3. Properties of the plasma jet and HA particles

121 The profiles of temperature and velocity of plasma jet 122 were found using the software Jets and Poudres, which 123 was developed with the use of GENMIX computer code 124 [15–18]. The software was similar to that described 125 previously [4]. Some improvements were introduced to 126 deal with present calculations, such as, for example 127

- 128 Closed thermodynamic and transport properties with the
- 129 use of T and TWinner data base [16]

Fig. 2. Calculated profiles of temperatures and velocities of a plasma jet generated by SG-100 torch supplied with 24 kW of electric power and plasma forming gases Ar+2.5 vol.% H_2 with a total flow rate of 50 slpm.

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

٩,

ARTICL

EN

DP

Fig. 4. Thermal conductivity of dense and porous HA vs. temperature [4].

- 130 • Mixing length turbulence adapted to high temperature 131 gradient of the plasma stream [15]
- 132• Profiles inside anode nozzle possible to be calculated
- 133• Jet length extended up to 90 cm.

135 The profiles of temperature and velocity of plasma jet 136 generated by SG-100 torch supplied with 24 kW of electric 137 power and with a plasma forming gas of Ar + 2.5 vol.% H₂ 138 with a total flow rate of 50 slpm are shown in Fig. 2. The 139 profiles for the jet formed with plasma forming gas of Ar+5 140 vol.% H₂ are very similar. The viscosity and thermal 141 conductivity of used plasma forming gases, shown for 142 example in Fig. 3, indicate that the transport properties of 143 used compositions are very similar. Thermophysical data of HA have been collected and 144 145 shown elsewhere [4]. Specific mass and thermal conduc-

146 tivity of ceramics in solid and liquid phases were corrected

147 for porosity of powder (see, e.g., Fig. 4).

148 4. Calculations of momentum, heat, and mass transfer 149 from plasma to particles

The particles injected into a plasma jet have a distribution 151152 of diameters which results in a distribution of their initial 153 velocities on contact with the plasma [19]. These velocities 154 depend on the geometry of a pipeline carrying powder from 155 the powder feeder to the plasma and on the carrier gas flow 156 rate (Fig. 5). The pipeline includes two elements: an injector 157 (diameter D_i , length L_i) attached to the plasma torch and a 158 hose (diameter D_h , length L_h) hat connects the first injector 159 pipe to the powder feeder. The velocity of the carrier gas 160 (with flow rate q_{cg}) in the hose is:

$$U_{\rm h-cg} = \frac{4 \cdot q_{\rm cg}}{\pi \cdot D_{\rm h}^2} \tag{1}$$

163 The particle residence time in the hose is:

$$t_{\rm l} = \sqrt{\frac{2 \cdot L_{\rm h}}{k \cdot U_{\rm h-cg}}} \tag{2}$$

where the coefficient k is given by: 164

$$k = \frac{18\eta_{\rm cg}}{\rho_{\rm p} \cdot d_{\rm p}^2} \tag{3}$$

where η_{cg} is the dynamic viscosity of the carrier gas, ρ_{p} is 166 the density of the particle material, and d_p is the diameter of the particle. At the end of the hose, the velocity of the particles is: 170

$$U_{h_{p}} = U_{h_{cg}} (1 - e^{-kt_{1}})$$
(4)

Given this velocity, the residence time of the particle in 173 174 the injector t_2 is:

$$t_{2} = \frac{\sqrt{U_{h_{-p}}^{2} + 2 \cdot (U_{i_{-cg}} - U_{h_{-p}}) L_{i}k} - U_{h_{-p}}}{k(U_{i_{-cg}} - U_{h_{-p}})}$$
(5)

where U_{i_cg} is the carrier gas velocity in the injector given 176 177 by:

$$U_{i_cg} = \frac{4 \cdot q_{cg}}{\pi \cdot D_i^2} \tag{6}$$

Finally, at the end of the second pipe, the velocity of the 189 particles (which is also the initial velocity of the particles in 181 the plasma jet) is: 182

$$\dot{U}_{i_{p}} = U_{i_{cg}} - (U_{i_{cg}} - U_{h_{p}}) \cdot e^{-kt_{2}}$$
 (7)

Eqs. (1)-(7) enable us to find the initial velocity of HA 185 186 particles as a function of their diameters for the two values 187 of carrier gas flow rate used (Fig. 6). The accuracy of 188 present analytical model was tested by a comparison with the results given by a more sophisticated, numerical one 189

Fig. 5. Pipeline that transports powder from feeder to torch.

4

Q

190presented by Vardelle et al. [20]. The latter was developed 191 by taking into account a profile of gas velocity inside 192 injector. The calculation was carried out to find out the 193 velocity of $d_p = 20 \,\mu\text{m}$ zirconia particle ($\rho_p = 5700 \,\text{kg/m}^3$) on 194 the end of a straight injector having a length of $L_i=35$ mm 195 and an internal diameter of $D_i = 1.75$ mm. The hose had 196 length of $L_{\rm h}$ =1.5 m and internal diameter was not given by the authors and supposed to be $D_h=3$ mm in present 197calculations. Taking Ar as carrier gas, having a dynamic 198199viscosity of η_{cg} =22.9 µPa s [21] and a flow rate equal to q_{cg} =4 slpm, the calculated injection velocity was found to 200be equal to $U_{i,p} = 14.7$ m/s. This value can be compared to 201202 $U_{i,p} = 17.3$ m/s found by Vardelle et al. The discrepancy was 203 about 15% and could result, in part at least, by arbitrary taken hose diameter. 204

205 4.2. Momentum transfer

206 The following hypotheses are used in our model:

207208 • The particles are spherical.

There are no interactions or impacts among the particles.

The forces that might act on a particle immersed in the plasma jet include [22]: thermophoresis, buoyancy, drag forces, and gravity. Only gravity and drag forces are considered here. The dynamic equations for the particle are therefore:

$$\frac{dV_{px}}{dt} = \frac{3}{4} \cdot C_{\rm D} \cdot \frac{\rho_{\rm g} (V_{\rm gx} - V_{\rm px}) \cdot |V_{\rm gx} - V_{\rm px}|}{\rho_{\rm p} d_{\rm p}}$$

$$\frac{dV_{\rm py}}{dt} = \frac{3}{4} \cdot C_{\rm D} \cdot \frac{\rho_{\rm g} (V_{\rm gy} - V_{\rm py}) \cdot |V_{\rm gy} - V_{\rm py}|}{\rho_{\rm p} d_{\rm p}} \pm g$$
(8)

218 where V_{py} and V_{px} are the particle velocities in the X and Y 219 directions; V_{gx} and V_{gy} are the plasma gas velocities in the X and Y directions; ρ_p is the particle density; d_p is the particle 220 diameter; and C_D is the drag coefficient. The gravity 221 acceleration g is along the Y-axis. The velocity $V_g(X,Y)$ 222 for an unloaded plasma jet is shown in Fig. 2. The C_D 223 coefficients depend on the Reynolds number (*Re*) for 224 particle motion in a plasma jet, as follows: 225

$$C_{\rm D} = \frac{24}{Re} \qquad Re < 0.2$$

$$C_{\rm D} = \frac{24}{Re} (1 + 0.187) \qquad 0.2 < Re < 2$$
226

$$C_{\rm D} = \frac{24}{Re} \left(1 + 0.11 Re^{0.81} \right) \qquad 2 < Re < 21 \tag{9}$$

The dynamic Eq. (8) is solved numerically by a fourth **239** order Runge-Kutta method. **231**

Only convective heat transfer from the plasma to the 233 particle was considered in the model. The density of thermal 234 power transferred to the particle by convection can be 235 expressed as: 236

$$c = Nu \cdot \lambda_{g} \cdot \frac{T_{g} - T_{ps}}{\pi d_{p}}$$
(13)

where Nu is the Nusselt number, λ_g is the thermal 238 conductivity of the plasma gas, T_{ps} is the particle surface 239 temperature, and $T_g(X,Y)$ is the plasma gas temperature. The 240 phase transformations with temperature are shown Fig. 1. 241 The Nusselt number depends on the Reynolds number in the 242 following way: 243

$$Nu = 2 + 0.6Re^{0.5}Pr^{0.33}; \qquad Re \le 2 \tag{14}$$

$$Nu = 1.05 Re^{0.5} Pr^{0.3}; \qquad 2 < Re < 500 \tag{15}$$

where Pr is the Prandtl number. Eq. (11) is the well-known 246 Ranz-Marshal expression. Eq. (12) is an experimental 247 approximation for turbulent flow conditions. In the present 248 model, it was assumed that radiation losses from a particle 249 are comparable to the radiation from plasma. Consequently, 250 the radiation effect was neglected. However, in a particular 251 252 case of big particles at high temperatures, the radiation may play a role in heat balance [23,24] and the present model is 253 being improved to take this effect into account. 254

4.4. The heat conduction problem

HA is a poor heat conductor (Fig. 4) and therefore the 256 temperature profile within the particle must be considered. 257 The basic equations describing heat conduction have the form [22]: 259

$$C_{\rm p}(T)\rho(T)\frac{\partial T}{\partial t} = \nabla(\lambda(T)\nabla T) + q$$
(13)

5

7

RICL

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

260 in which q is the density of heat sources in the solid. For 262 spherical particles, Eq. (13) becomes:

$$C_{\rm p}(T)\rho(T)\frac{\partial T}{\partial t} = \frac{1}{r^2}\frac{\partial}{\partial r}\left(\lambda(T)r^2\frac{\partial T}{\partial r}\right)$$
(14)

263 where the initial condition is T(r,0)=300 K and symmetry 265 imposes the condition:

$$\frac{\partial T(0,t)}{\partial r} = 0 \tag{15}$$

268 The other assumptions made in the calculation are: 269

- 270• The material of the particle does not sublimate, but has a melting point (T_m) and a boiling point (T_b) . 271
- Evaporation of the particle material is confined to the 272 . 273particle surface.

274

The particles are introduced to the plasma in the solid 275276 state and may transform within the plasma (see Fig. 7) into 277the following phases:

278

- 279• Solid (stages I, IV, VII, and X)
- Solid-liquid (with melting and evaporation interfaces; 280281stages II and V)
- Liquid (evaporation interface; stage VIII) 282
- 283· Solid-liquid-solid (melting and resolidification inter-284 faces; stages III and VI)
- 285 • Liquid-solid (resolidification interface; stage IX 286

Each stage corresponds to a different boundary condition 287 288 as shown in detail elsewhere [20].

289 4.5. The evaporation problem

Particle evaporation influences particle heating. More-290291 over, the decrease of particle diameter due to evaporation 292 influences particle acceleration, hence changing the trajec-293 tory. A model of rapid surface vaporisation with back-294 pressure was implemented [25]. This model is based on 295 conservation of mass, momentum, and energy across a thin Knudsen layer. Knight [26] has shown that, in this case, the 296 jump condition for the Knudsen layer is:

$$\begin{cases} \frac{P}{P_s} = \sqrt{\frac{T}{T_s}} \left[\left(\beta^2 + 0.5\right) \mathrm{e}^{\beta^2} \operatorname{erfc}(\beta) - \frac{\beta}{\sqrt{\pi}} \right] + \frac{1}{2} \left(1 - \sqrt{\pi} \beta \mathrm{e}^{\beta^2} \operatorname{erfc}(\beta) \right) \\ \frac{T}{T_s} = \left[\sqrt{1 + \pi \left(\frac{\chi - 1}{\chi + 1} \frac{\beta}{2}\right)^2} - \sqrt{\pi} \frac{\chi - 1}{\chi + 1} \frac{\beta}{2} \right]^2 \end{cases}$$
(16)

where χ is the ratio of specific heats ($\chi = 5/3$ for 298 monatomic gases), P is the gas pressure, P_s is the 300 saturated vapour pressure (measured or calculated by the 301 Clausius-Clapeyron equation [27]), and β is the dimen-302 sionless velocity of vaporization $M = u/\sqrt{\chi RT} = \beta \sqrt{2/\chi}$ 303 (where M is the Mach number and u is the local flow 304 velocity outside the Knudsen layer). Eq. (16) is valid only 305 if the flow outside the Knudsen layer is subsonic (i.e., 306 $M \leq 1$) For a spherical particle, the radius decreases 307 because of evaporation, hence: 308

$$\begin{cases}
\frac{\mathrm{d}r_{\mathrm{p}}}{\mathrm{d}t} = \sqrt{\frac{2R}{T_{\mathrm{s}}}} \frac{\beta P_{\mathrm{s}}\mu}{\rho_{\mathrm{p}}k}, & M < 1; \\
\frac{\mathrm{d}r_{\mathrm{p}}}{\mathrm{d}t} = \sqrt{\frac{R\chi}{T_{\mathrm{s}}}} \frac{P_{\mathrm{s}}\mu}{\rho_{\mathrm{p}}k}, & M = 1
\end{cases}$$
(17)

where T and β are obtained by solving Eq. (16), ρ_p is the 300 density of particle material, μ is the molecular mass of the 311 particle, and k is Boltzmann's constant. 312

4.6. Numerical methods

314 The set of equations derived above form the basis of the Plasma 2000 code [25], written in Microsoft Visual C++ 315 6.0. Calculations were made with different time steps and 316 number of spatial nodes inside the particle. For timesteps 317 greater than $\Delta t = 10^{-8}$ s, the numerical solution diverges. 318 Stable solutions are found with time steps of this size or 319 smaller. When the number of nodes inside particle is set to 320 321 n = 150 or greater, stable solutions are found.

Fig. 7. Possible phase transformations of HA particles in flight in a plasma jet [15].

6

297

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

322 5. The simulation of coating growth

323The microstructure of hydroxyapatite coatings depends 324on the way in which they are manufactured. Since the 325coating properties depend on their microstructure, this 326 must be simulated in order to predict coating properties. 327 Since the process of coating production involves the chaotic growth of splats formed by the splashing of liquid 328329 (or semi-liquid) particles onto the substrate, no two coating 330 microstructures will be identical. It is therefore necessary to have a simulation that is fast enough that it may be run 331 332 many times, to obtain valid statistical averages of the properties for a given set of process conditions. A crucial 333 334 observation for modelling is that the timescale for a 335 particle to splash and cool (about 10 µs) is about a tenth of 336 the mean time between the arrivals of particles at a given 337 point. This justifies the approximation of treating the splashing process of each particle in isolation, and building 338 339 up the coating through a series of isolated splashing 340 events.

341 5.1. The formation of the splat

342 Studies of splashing have been made experimentally 343 [10,11] and theoretically [12] as a function of droplet speed 344 and temperature. These show that the splat diameter D is 345 related to the particle diameter d, velocity V, the material 346 properties of density (ρ) and viscosity (μ), and (indirectly) 347 the temperature through a function of the form

$$\xi = \frac{D}{d} = A \left(\frac{\rho V d}{\mu}\right)^z \tag{18}$$

349 where the parameters A and z vary somewhat between 350 materials (and indeed between authors). It must be stressed 351 up that Eq. (18) describes maximum spread and, in a case of 352 (discussed later) splat that recoils, the spread factor will be 353 smaller. Values of A=0.925 and z=0.2 were used, which are 354 typical for ceramics. Data on the particle behaviour in the 355 plasma jet from a previous work [4] were used. This enables 356 us to obtain the particle velocities and temperatures 357 (required in Eq. (18)) as a function of the parameters of

Fig. 8. Average temperature of HA particles at the moment of impact with a substrate placed at 10 cm from a plasma torch working with different spray parameters vs. particle diameters.

the plasma torch. The simulation requires information on the358distribution of particle sizes. Recent measurements [4]359suggest that a log normal distribution is appropriate.360

The kinetic energy of the particles is great enough to 362 ensure that the particles adhere to the substrate in the impact 363 region of the particle. The splats interlock together in a 364 complex fashion to form the coating. They first flow across 365 366 the substrate and then solidify, contract, and distort on 367 cooling, producing pores and cracks. These effects are 368 modelled by application of a set of rules, summarised in Table 2 and discussed in detail in Ref. [7]. Since the 369 370 program must calculate the contraction of the splats on cooling, it requires a calculation of the temperature profile 371through the coating during the growth process. The heat flux 372at the surface of the coating during spraying is the sum of 373 four terms: the convective heat flux, the radiation from the 374 375 plasma, the solidification and cooling down of arriving particles, and a cooling air jet (frequently used in plasma 376 spraying equipment). The temperature profile is then 377 calculated using a standard finite difference method as 378 379 discussed in Ref. [28].

The splats form the coating by linking together in a 380 complex fashion. The numerical simulation uses a few 381

Case	Rule
A	Splat is formed on a surface following Eq. (18); the shape of the underlying surface is kept.
В	Porosity detected under splat below the uppermost layer under the impact region is hammered down to the uppermost layer below it. The pore is
	destroyed and the splat follows the surface.
С	If the splat encounters a dead end, it fills the space available and then flows over the outer surface above (interlocking mechanism).
D	A splat can cover roughness created by other splats.
Е	If a splat comes to a vertical drop, it falls straight down until the surface is found again.
F	Splat cools, contracts, and curls unless it is pinned in position by interlocking.
G	If the underlying region contains a large peak, the splat can be pinned by the peak and curling is calculated with respect to the peak.
Н	Unmelted particles form hemispheres on the coating.
I	Unmelted hemisphere lies on the coating. It is assumed that the impact of the particle partially flattens the underlying material.
J	Unmelted particles are assumed not to adhere to the substrate surface or to another one. If they hit either of these, they bounce off.
K	A partially melted particle is divided in two parts: the molten part follows rules $A-G$ and the unmelted part follows rules $I-J$.

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

RTCLEN

PR

Fig. 9. Velocity of HA particles at the moment of impact with a substrate placed at 10 cm from a plasma torch working with different spray parameters vs. particle diameters.

382 simple rules collected in Table 2. Their graphical 383 representation is shown elsewhere [7,13]. The rules 384 attempt to express the point that the particle kinetic energy 385 is high enough to ensure adherence to the underlying layer 386 in the impact region. They represent also the splashing and 387 interlocking mechanism. Liquid ceramic flows along the 388 surface, filling in holes wherever it can be the direction of 389 motion. Reverse flow is not permitted. The ceramic first 390 spreads and then cools. The simulation assumes that the 391 ceramic is sufficiently fluid to fill all small holes. The rules 392 describe also the curling up of the splat. For computational 393 convenience, this is calculated from the edge of the impact 394 region, although presumably the real curling will start at 395 the edge of the splat. The roughness of the underlying 396 layer can pin the splat, inhibiting curling. Finally, the rules 397 express the experimentally observed fact that unmelted 398 particles form hemispheres, together with the assumption 399 that, if they cannot splash, they cannot respond to the 400 details of the underlying surface. Porosity can therefore 401occur through the inability of such a particle to fill cavities 402 underneath it.

The requirement of a fast simulation means that one can 404 consider only the quasi 2-D case. By this, it is meant that a 405 true section of the coating is simulated (allowing effects 406 from all particles falling within a splat diameter of the 2-D 407 plane of the simulation). This strategy links the coating microstructure to the process that produced it. Since a true 408 section of the coating was calculated, standard methods can 409 be used to convert the 2-D distributions obtained from the 410 coating into the 3-D distributions that are required [7]. 411 Extended effective medium theories, of the type pioneered 412 by Clyne and Withers [29], were used to obtain averaged 413 properties of the coating using the statistics of the porosity 414 distribution obtained from the simulation. A second route 415directly simulates the microstructure's evolution under load 416 using finite element methods, hence obtaining a distribution 417 of possible behaviours, such as propensity to fracture [7]. 418 Overall, it is clear that appropriate scales are set by droplet 419size and arrival time. Given these scales, simulations 420 produce microstructures; these microstructures in turn 421 determine the properties. 422

The code builds the coating on a standard mesh (usually 424 reduced to a 512×512 pixel grid when plotting results). 425 The diameter of the arriving particle is chosen from a 426 suitable distribution (Gaussian or log-normal), and the 427 temperature and velocity are obtained from the calculations 428 of Section 3. The impact position of the particle is chosen 429 using a random number generator and the rules discussed 430 above applied. Several (at least 10) simulations are 431 performed for each set of parameters to obtain reliable 432 statistics. This is essential since the formation of a coating 433 is a chaotic process and reliable statistics on microstructure 434properties such as porosity distributions are therefore 435 required. The resulting coating is analysed to produce a 436 porosity distribution (including both size and aspect ratio) 437 and the effective properties of the coating (density, 438 mechanical properties, and thermal conductivity) are 439 calculated. The program is written in Fortran. Further 440 details can be found in Ref. [7]. 441

6. Results of calculations 442

The calculations were made for both short (10 cm) and 443 long (81 cm) spraying distances. Each case corresponds to 444

Fig. 10. Simulated cross sections of HA coatings sprayed using 24 kW of electric power at a spraying distance of 10 cm and different carrier gas flow rates.

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

REENPR

different processes and to different experimental validations 445 446 of the simulations:

447

448• At the short spraying distance, the HA powder was 449spraved onto a substrate and the process simulated using 450the code discussed in Section 3. The calculations of this 451section enabled us to obtain the average temperatures and 452velocities of HA particles, which were used as input data 453for the code simulating the coating growth described in 454Section 4. The simulations were validated by comparing 455porosities obtained from the code with those obtained from an image analysis of sprayed deposits. 456

• At the long spraying distance, the HA powder is sprayed 457into water. The calculations of Section 3 enable us to find 458459the temperature distribution inside a particle of given 460 diameter on contact with water. The temperatures 461 correspond to the crystal phases depicted in Fig. 1. 462Thus, the temperature field inside the particles could be 463 transformed in a distribution of crystal phases, assuming 464that on contact with water, the liquid transforms into 465amorphous calcium phosphates (ACP) and the composi-466 tion of high temperature phases is frozen.

467Again at the long spraying distance, the powder sprayed 468 into water was dried and its size distribution tested using 469a laser-based technique. The calculations enabled us to 470 find the reduction of particle sizes by evaporation, 471 making possible a comparison with experiment. 472

The average temperature of HA particles on impact 473with a substrate placed at a distance of 10 cm from the 474 plasma torch for different operational parameters is shown 475in Fig. 8. Fig. 9 shows the velocities of the particles. 476These data were used in the program simulating the 477 coating growth. The results of the simulations are shown 478 in Fig. 10. The comparison of porosities of simulated and 479real coatings is shown in Table 3. The comparison is 480 perfect for coating Sub2497_3 and quite acceptable for 481 the coating Sub2495_35, but the porosity data diverge a 482 bit more for coatings Sub2495_3 and Sub2497_35. These 483 discrepancies are not very significant and may be related 484 485to the incertitude of metallographical preparation of the 486 specimen before mage analysis. The number of polished sections should be much greater to get closer to giving a 487 488 statistically significant porosity value. On the other hand, the metallographic preparation is known to be a delicate 489 procedure that is sometimes accompanied by so-called 490 491 pull outs (which are lamellas detached off polished

1.1 Table 3

.2	Comparison	of	porosities	of	sprayed	and	simulated	HA	coatings
----	------------	----	------------	----	---------	-----	-----------	----	----------

Coating description	Experimental coating porosity (%)	Simulated coating porosity (%)
Sub2497_3	12.9	12.94
Sub2497_35	7.7	13.27
Sub2495_3	6.7	13.00
Sub2495_35	8.0	12.53

Average temperature at contact with water

Fig. 11. Calculated average temperature of HA particles at the moment of impact with the surface of water placed 81 cm from a plasma torch working with different spray parameters vs. particle diameters.

surface at preparation), which may artificially increase 492493tested porosity [30].

The average temperatures of HA particles on impact 494 with water are shown in Fig. 11 and their velocities in Fig. 49512. The average temperatures of large particles $(d_p > 100)$ 496 µm) do not exceed 1700 K at the moment of impact with 497 water. As expected, smaller particles have much lower 498 temperatures. These particles have their surface tempera-499 ture closer to the surrounding gas and the gas at these 500 spraying distances has a comparatively low temperature. 501502The distribution of velocities of the HA particles has a similar character to the distribution of their temperatures. 503The distribution of temperatures enabled the estimation of 504

Fig. 12. Calculated velocity of HA particles at the moment of impact with the surface of water placed 81 cm from a plasma torch working with different spray parameters vs. particle diameters.

ARTICLE IN PRESS

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

Fig. 13. Calculated volume content of crystal phases in HA powder sprayed using 24 kW into water placed 81 cm from a plasma torch working with different spray parameters vs. particle diameters: HAP, hydroxyapatite; C4P, tetracalcium phosphate; C3P, tricalcium phosphate.

505 the volume content of the crystal phases. The results 506 calculations of crystal phases as a function of HA particle 507 size are shown in Fig. 13. Table 4 shows the same results 508 integrated over all the particle sizes together with the 509 results of experiment from a previous paper 8 for 510 comparison. Although the experiments give the phase 511 content in weight percent and the calculations in volume 512 percent, to a first approximation, one may assume that the 513 densities of all phases are close to that of HA (ρ_p =3.156 514 g/cm³) and compare the results. The most important 515 element of this comparison is the fact that the experiments 516 show a considerable amount of ACP and the theoretical 517 predictions do not show any trace of this phase. The most 518 probable explanation is the undercooling effect. Many of 519 the HA particles melt in the plasma core and then start to 520 solidify during the long flight from plasma torch to the 521 water collector. The liquid particle or liquid part of the 522 particle is in contact with surrounding gas. The solidifica-523 tion starts with a nucleation event that is probably 524 homogenous. The transformation temperatures can be 525 much lower than on heating and a supercooled liquid 526 can exist well below the melting point. This effect would

result in a much larger percentage of ACP than found in 527 the calculations. This effect is discussed in detail in 528 Section 7. 529

The temperatures of particles in the hot core of the 530 plasma jet may be greater than the boiling point of their 531 material. Although, in our model, it was assumed that this 532point is equal to $T_{\rm b}$ =3500 K, the evaporation is 533 presumably non-congruent with P2O5 evaporating from a 534 melt at its lowest temperatures and CaO at the highest. 535 The calculation of the particle size distribution is shown 536 in Fig. 14. The results indicate that the distribution is 537shifted towards lower diameters (i.e., the evaporation took 538 place). The comparison between experimental and calcu-539 lated particle size distributions, shown in Fig. 15, enables 540 us to observe that the model gives a better prediction for 541the size distribution of powders sprayed with a carrier gas 542 flow of $q_{cg}=3$ slpm (Fig. 15c and d) than for powders 543 sprayed with q_{cg} =3.5 slpm. The experimental distribu-544tions for powders sprayed into water with 3.5 slpm show 545a greater size shift (i.e., a more pronounced evaporation 546 effect for particles having sizes greater than 100 µm; Fig. 54715a and b). This effect is not predicted by the model. 548

t4.1 Table 4

t4.2 Volume content of crystal phases in sprayed HA powder obtained for different spray conditions by theoretical predictions and by experiments

t4.3	Coating description	Theoretical predictions			Experimental results					
t4.4		HA (vol.%)	α-TCP+TTCP (vol.%)	ACP (vol.%)	HA (wt.%)	A-TCP (wt.%)	TTCP (wt.%)	Total crystalline phases (wt.%)	ACP (wt.%)	
t4.5	P2497_3	49.75	50.25	0	72	15	13	54	46	
t4.6	P2497_35	63.19	36.81	0	67	19	14	69	31	
t4.7	P2495_3	67.58	32.42	0	63	18	19	48	52	
t4.8	P2495_35	61.56	38.44	0	54	17	29	74	26	

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx–xxx

Fig. 14. Calculated size distribution of HA powder sprayed into water using 24 kW into water placed 81 cm from a plasma torch working with different spray parameters vs. particle diameters.

549 Finally, the model does not enable us to predict the 550 coalescence of liquid particles in the plasma jet, discussed 551 in a previous paper [8] and visible in Fig. 15 for particle 552 sizes above 350 μ m.

553 7. Discussion

The state of the art in control of thermal spraying 554555processes is approaching the stage of simultaneous experimental observation of sprayed particles and on-line 556557modelling of coating growth. This control should enable industry to produce desirable coating properties. In the 558 particular case of plasma-sprayed HA coatings, these 559 properties include crystal phase composition and porosity. 560 The present paper focuses on the simulation of particle 561562 behaviour of the real spraying processes associated with simulation of coating growth and, on the other hand, à 563posteriori validation by semi-quantitative X-ray determina-564565 tion of the crystal phase composition of sprayed coatings 566 and the determination of their porosity by image analysis. 567 The experiments indicate the presence of significant amounts of ACP, varying from 31 to 52 wt.% (see Table 568569 4), whereas numerical simulations do not predict any ACP 570 phase. This is a major discrepancy that needs to be discussed. The model used assumed that the crystal phase 571572 transformation takes place at temperatures given by the 573 CaO- P_2O_5 phase diagram at a low partial pressure of H_2O 574 [31], as shown in Fig. 1. On the other hand, heating and 575 cooling of particles in plasma occur in a very short time due 576 to the high temperature and velocity of the plasma, and deviation from the phase diagram seems to be possible. The 577 578 deviation is especially important at the cooling stage of the 579 particle including its solidification. Supporting this picture 580 of solidification is the fact that the pores in the liquid 581 coalesce and form a large hole in the centre of a particle [8]. 582 Thus, there are fewer small pores in a liquid particle (or 583 liquid shell) that might form when heterogeneous solidifi-584 cation is likely to occur [32]. Supposing a case of

homogenous solidification, the relative lowering of solidus 585temperature $\Delta T/T_m$, caused by an undercooling effect, can 586 be expected to be in the range between 0.15 and 0.25 [33]. 587 In other words, the effective temperature at which super-588cooled liquid would transform into solid was lower 589 $(\Delta T = 276 - 460 \text{ K})$ than the solidus temperature (assumed 590to be 1843 K). The consequence of such lowering for 591theoretical predictions of crystal phase composition would 592be an increase of the amount of amorphous phase. 593Therefore, by taking increasing values of ΔT , the calcula-594tions were carried out to find an amount of amorphous phase 595

Fig. 15. Comparison between experimental and calculated size distribution of HA powder sprayed into water using 24 kW into water placed 81 cm from a plasma torch working with different spray parameters vs. particles diameters: (a) P2497_35, (b) P2495_35, (c) P2495_3, (d) P2497_3.

ARTICLE IN PRES

12

Table 5

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

t5.1

Calculation of the lowering of solidus temperature ΔT due to undercooling effect carried out in a way to match the ACP content in the coating equal to t5.2 experimental one shown in the last column of Table 4

Coating description	ΔT (K)
P2497_3	232.34
P2497_35	246.83
P2495_3	212.47
P2495_35	220.77

596 which corresponds to that found experimentally and shown 597 in the last column of Table 4. The results, shown in Table 5, 598 indicate that the relative undercooling temperature required 599 is in the range 0.12-0.14. As the calculated data for 600 different spray parameters are close to each other, it supports 601 the hypothesis of the undercooling effect and its influence 602 on calculated amorphous phase content. Moreover, the 603 transformation temperatures in the solid state, such as 604 TCP+TTCP \rightarrow HA, are most probably very different from 605 those given by an equilibrium phase diagram. The problem 606 with the phase diagram at high temperature in non-607 equilibrium conditions has also influenced the calculation 608 of the reduction of particle size by evaporation (Figs. 14 and 609 15). In fact, the CaO-P₂O₅ phase diagram for the 610 temperatures above the liquidus could not be found in the 611 literature. The assumption related to boiling point explains 612 why results of calculations do not agree well with 613 experimental data.

614 8. Conclusions

The numerical modelling of the entire process of HA 615 616 coating deposition using plasma spraying was carried out 617 and the results were compared with properties of deposits 618 obtained experimentally such as porosity, crystal phase 619 composition, and size distribution of particles sprayed into 620 water. The comparison shows important divergences be-621 tween theory and experiment that may be attributed to the 622 following problems:

623

· Crystal phase transformation of a material submitted to 624 625 rapid heating and cooling in the plasma jet is most 626 probably associated with an undercooling effect. The 627 relative lowering of the solidification temperature was 628 estimated in the present paper to be in the range 0.12-629 0.14 with respect to the equilibrium solidification 630 temperature. More systematic studies are needed to 631 consider this effect in plasma-treated materials in a 632 quantitative way.

- · More generally, studies of the high temperature phase 633 634 transformations of frequently used engineering ceramics, especially multi-oxides such as HA, would be useful for 635 modelling. Establishing T - T - T diagrams for this type of 636 637 materials is difficult but would be very useful to model
- 638 high temperature phenomena.

• Numerical model of heating can be improved by taking 639 into account, for a case of large particles, radiation effects 640 (i.e., radiation heat transfer toward particle and radiation 641 losses from particle). 642 64

All these problems need to be addressed in future works. 644 The validation of the model used in the present paper can be 645 carried out with an experimental setup that enables a 646 simultaneous determination of temperatures and velocities 647 of sprayed particles. Such devices are, at present, available 648 commercially and will be applied in further studies of our 649 research group. Finally, the modelling of coating growth 650 must include the disintegration on impact of unmelted 651 powder particles prepared by spray drying (agglomeration) 652 techniques. 653

Acknowledgment

M. Donato Murano made available HA powder and 655 discussed the results of the study. M. Rafal Tomaszek 656 carried out plasma spraying experiments. Dr. Christel 657 Pierlot helped in carrying out granulometric measurements. 658 The X-ray investigations were carried out by Mrs. 659 Laurence Burylo and Mrs. Nora Djelal-Buremma. Prof. 660 Rose-Noëlle Vannier helped in XRD analyses. Mr. Gilles Courtand made image analyses of longitudinal cross-663 sections of sprayed coatings.

References

- [1] J. Tikkanen, K.A. Gross, C.C. Berndt, V. Pitkänen, J. Keskinen, S. 666 Raghu, M. Rajala, J. Karthikeyan, Surf. Coat. Technol. 90 (1997) 210.
- [2] L. Pawlowski, C. Martin, P. Fauchais, 10th International thermal spray conference, Essen, Germany, May 2-6DVS, Düsseldorf, 670 Germany, p. 31.
- [3] V. Hurevich, I. Smurov, L. Pawłowski, Surf. Coat. Technol. 151-152 671 (2002) 370. 672
- [4] S. Dyshlovenko, B. Pateyron, L. Pawlowski, D. Murano, Surf. Coat. Technol. 179 (2004) 110.
- [5] D.T. Gawne, B. Liu, Y. Bao, T. Zhang, Surf. Coat. Technol. 191 (2-3) 675 (2005) 242. 676
- [6] J.H. Harding, P.A. Mulheran, S. Cirolini, G. Jaccuci, J. Therm. Spray 677 Technol. 4 (1) (1995) 34. 678
- [7] I.S. Doltsinis, J.H. Harding, M. Marchese, Arch. Comput. Methods 679 680 Eng. 5 (2) (1998) 59.
- [8] S. Dyshlovenko, L. Pawlowski, P. Roussel, D. Murano, A. Le Maguer, Surf. Coat. Technol. (in press), available on Internet site: http:// www.sciencedirect.com.
- [9] J. Madejski, Int. J. Heat Mass Transfer 19 (1976) 1009.
- [10] L. Bianchi, A.C. Leger, M. Vardelle, A. Vardelle, P. Fauchais, Thin 685 Solid Films 305 (1997) 35. 686
- [11] P. Fauchais, A. Vardelle, B. Dussoubs, J. Therm. Spray Technol. 10 687 (2001) 44. 688
- [12] C. Bertagnolli, M. Marchese, G. Jaccuci, I.S. Doltsinis, S. Nölting, 689 J. Comp. Physiol. 133 (1997) 205. 690
- [13] S. Cirolini, J.H. Harding, G. Jacucci, Surf. Coat. Technol. 48 691 (1991) 137. 692
- [14] V. Deram, C. Minichiello, R.-N. Vannier, A. Le Maguer, L. 693 Pawlowski, D. Murano, Surf. Coat. Technol. 166 (2003) 153. 694

664 66

667 668 669

673

674

681

682

683

684

661 662

S. Dyshlovenko et al. / Surface & Coatings Technology xx (2005) xxx-xxx

- 695 [15] G. Delluc, G. Mariaux, A. Vardelle, P. Fauchais, B. Pateyron, in: R. 696 d'Agostino, P. Favia, F. Fracassi, F. Palumbo (Eds.), Abstracts and
- 697 Full Paper CD of the 16th ISPC, Taormina, Italy, June 22-27, 698 University of Bari, 2003, 6 pp.
- 699 [16] Available on internet site: http://jets.poudres.free.fr.
- 700 [17] Available on internet site: http://www.cham.co.uk/website/new/ 701 genmix/genmix.htm.
- 702 [18] Available on internet site: http://ttwinner.free.fr.
- 703 [19] L. Pawlowski, Surf. J. 11 (3) (1980) 8.
- 704 [20] M. Vardelle, A. Vardelle, P. Fauchais, K.-I. Li, B. Dussoubs, N.J. 705Themelis, Therm. Spray Technol. 10 (2) (2001) 267.
- 706 [21] D.R. Lide, (Ed.), Handbook of Chemistry and Physics, 78th ed., CRC 707Press, Boca Raton, USA, 1997.
- 708[22] L. Pawlowski, The Science and Engineering of Thermal Spray 709 Coatings, Wiley, Chichester, 1995.
- 710[23] I.G. Sayce, Pure Appl. Chem. 48 (2) (1976) 215.
- [24] X. Chen, E. Pfender, Plasma Chem. Plasma Process. 2 (3) (1982) 293. 711

Constructure

- 712 [25] V. Hurevich, A. Gusarov, I. Smurov, in: E. Lugscheider, C.C. Berndt (Eds.), International Thermal Spray Conference, 2002, Essen, DVS 713 Verlag, Düsseldorf, 2001, p. 318. 714715
- [26] C.J. Knight, AIAA J. 17 (5) (1979) 519.
- [27] A. Gusarov, I. Smurov, J. Appl. Phys. 34 (2001) 1147. [28] L. Pawlowski, M. Vardelle, P. Fauchais, Thin Solid Films 94
- (1982) 307 [29] T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Compo-
- 719 sites, Cambridge University Press, Cambridge, 1993. 720 721
- [30] L. Pawlowski, Structure 33 (1998) 11.
- [31] C. Santos, A. Pazo, F. Guitian, in: P. Vincenzini (Ed.), Materials in 722Clinical Applications, Techna, Faenza, Italy, 1995, p. 11. 723
- [32] W. Kurz, D.J. Fisher, Fundamental of Solidification, 4th edition, 724725
- Trans. Tech. Publ., Zürich, Switzerland, 1998. [33] W. Kingery, H.K Bowen, D.R. Uhlmann, Introduction to Ceramics, 726 Wiley, New York, 1976. 727

728

716

717