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Directeur de thèse : M. Michel Stanislas, Professeur, Ecole Centrale, Lille
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Résumé détaillé

Une étude à base de PIV Stéréoscopique dans une couche limite turbulente a été
réalisée pour caractériser les structures cohérentes et trouver des relations spatiales entre
elles. Cette étude est présentée en 8 chapitres.

Chapitre 1 et 2 : Problématique et objectifs

L’étude de la couche limite turbulente est importante pour l′industrie. Par exemple en
aéronautique ou dans l′automobile elle intervient lorsque l′on cherche à limiter le coût à
dépenser pour vaincre la trâınée. D’un point de vue plus général, on s′intéresse à l′étude de
la couche limite turbulente de plaque plane et plus particulièrement de la zone proche de la
paroi. La zone tampon est une région qui joue un rôle très important dans le processus de
génération de la couche limite turbulente. Cette région contient des structures cohérentes.
Ceci a déjà été prouvé par de nombreux auteurs. Les structures cohérentes principales
sont les tourbillons, les ′streaks′, les ′ejections′ et les ′sweeps′.

Theodorsen (1952) a montré que la déformation de vorticité transversale peut créer
des tourbillons en fer à cheval ou en épingle à cheveux (nommés ′harpins′). Les ′streaks′

sont des régions étroites d′écoulement lent ou rapide. Elles sont allongées dans le sens de
l′écoulement. Les ′ejections′ sont des régions d′écoulement lent qui s′éloigne de la paroi
alors que les ′sweeps′ sont des régions d′écoulement rapide qui se dirige vers la paroi. Depuis
plus de 50 ans, les structures cohérentes et l′organisation de ces différentes structures
cohérentes ont été étudiées par de nombreux auteurs. Mais il reste de nombreuses questions
en suspens. Par exemple, quel est le mécanisme de formation de chaque structure ? Quelles
relations et interactions existent-ils entre les différentes structures cohérentes ? Dans cette
étude, nous allons essayer de répondre à ces questions essentielles.

Le premier objectif de cette étude est d′utiliser des données de PIV stéréoscopique
pour caractériser les structures cohérentes. Ceci passe par la détection, l′identification et
la quantification de ces structures. Cette étude doit mener à la proposition d′un modèle
d′organisation général.

Chapitre 3 : Installation expérimentale et traitement de la PIV
Stéréoscopique

Installation expérimentale

Le Laboratoire de Mécanique de Lille possède une soufflerie de grande dimension dont
la couche limite peut atteindre une épaisseur de 30 cm pour un nombre de Reynolds Reθ
de 7800. Dans cet écoulement, une base de données a été obtenue expérimentalement à
l′aide de la PIV Stéréoscopique qui donne accès aux trois composantes de la vitesse dans
un plan. La base de données comprend dix plans parallèles à la paroi situés de 14.5 à 48
unités de paroi. La résolution spatiale est de l′ordre de 5 unités de paroi. La vitesse infinie
U est de l′ordre de 3 m/s et la vitesse de frottement uτ est de l′ordre de 0.12 m/s. Ainsi,



une unité de paroi (∆y+ = 1) représente 0,125 mm. Chaque plan contient 500 champs de
vitesse de manière à pouvoir faire des statistiques sur les grandeurs étudiées. La taille des
champs est de 65*40 mm2 (≈ 530+*300+)

Traitement de la PIV Stéréoscopique

Pour obtenir les champs de vitesse instantanée, on doit choisir une méthode d′analyse
des images de SPIV. Dans la littérature, différentes méthodes sont proposées. Parmis ces
méthodes, le ′Vector warping′, l′′Image mapping′ et la méthode de Soloff sont les méthodes
les plus courantes. Les méthodes de ′Vector warping′ et de Soloff consistent à analyser les
images avant de projeter les champs et de reconstruire. La méthode d′′Image mapping′

consiste à analyser entre la projection des images et la reconstruction. La méthode de
soloff combine la reconstruction et la projection. De plus, pour chaque méthode, d′autres
améliorations (méthode de ′shift′, méthode d′interpolation...) pour estimer. le champ de
vitesse 2D3C peuvent être apportées et sont ici explorées afin d′optimiser les critères
suivent :

• Précision
• Influence de shift sub-pixel
• densité spectrale de puissance
• Densité de probabilité
• Temps CPU

...

La méthode de Soloff à 3 plans de calibration avec ′shift′ entier est finalement choisie.
La résolution spatiale est de 12 pixels ce qui fait environ 5 unités de paroi et la fenêtre
d′interrogation finale est de 32*32 pixels2. Ce qui donne un chevauchement de 62.5%.

Chapitre 4 : Analyse statistique des champs de vitesse

Après avoir appliqué la méthode choisie au chapitre précèdent, les champs de vitesse
instantanés sont obtenus. A partir de ces champs on a calculé les caractéristiques statis-
tiques suivantes de l′écoulement qui sont :

• Vitesse longitudinale moyenne,
• Contraintes de Reynolds,
• Densité spectrale de puissance,
• Densité de probabilité,
• Dissymétrie et aplatissement,
• Angle de la vitesse

Les résultats sont en bon accord avec la littérature. Il y a cependant des différences
avec les résultats obtenus par le fil chaud, probablement à cause du gradient de vitesse qui
existe près de la paroi à l′échelle des sondes à fils croisés et de l′obstruction du porte sonde.

2



Chapitre 5 : Corrélation spatiale double des vitesses

Dans ce chapitre, les corrélations spatiales doubles des vitesses à une dimension et à
deux dimensions ont été calculées et analysées en détail. Les corrélations calculées sont :

• Auto corrélation de vitesse longitudinale
• Auto corrélation de vitesse transversale
• Auto corrélation de vitesse normale
• Corrélation croisée de vitesse longitudinale et transversale
• Corrélation croisée de vitesse longitudinale et normale
• Corrélation croisée de vitesse transversale et normale

Cette analyse met en évidence la présence des structures cohérentes, streaks, ejections,
sweeps et tourbillons longitudinaux. De plus, elle permet d′obtenir des informations glo-
bales sur la structuration moyenne de l′écoulement et de disposer d′ordre de grandeur de
leurs échelles.

Chapitre 6 : Détection et caractérisation des structures cohérentes

Afin de quantifier les dimensions des structures cohérentes, celle-ci sont détectées a
partir de champs de vitesse instantanées puis une analyse statistique est réalisée. La
procédure de détection des structures est réalisée en quatre étapes. Dans la première
étape, une fonction de détection est choisie pour chaque type de structure. Cette fonction
est définie à l′aide des propriétés des structures cohérentes. Dans cette étude, cette fonction
dépend des coordonnées x, y, z. Dans une deuxième étape, on applique un seuillage à cette
fonction pour obtenir une image binaire. Puis, dans la troisième étape, un filtrage à base
de morphologie mathématique est appliqué pour améliorer les fonctions indicatrices. Dans
la dernière étape, un nettoyage est utilisé pour rejeter les objets dégénérés. Dans cette
étape, on prend la surface comme critère de validité. Les images finales des structures
cohérentes instantanées seront obtenues après nettoyage. La Fig. 1 montre un exemple de
détection des ′low speed streaks′. Avec cette méthode de détection, on obtient des images
instantanées de structures cohérentes pour les ′streaks′, les ′ejections′ et les ′sweeps′.

Dans cette étude, le plan de mesure comme l′axe des tourbillons longitudinaux sont
parallèles à la paroi. Les tourbillons longitudinaux. Ceci exclu toutes les méthodes de
détection classique basées sur les gradients comme la vorticité. Ainsi la méthode présentée
est une alternative nouvelle de détection de structure dans la cas où l′axe des tournillons
se trouve dans le plan de mesure. Celle-ci est développée pour deux types de tourbillons
longitudinaux : les tourbillons individuels et les tourbillons contrarotatifs (Fig. 2). On
va prendre le tourbillon individuel comme exemple. La Fig. 2 est basée sur le profil de
fluctuation de vitesse normale de ce tourbillon dans la direction transversale. Dans le plan
de coupe ABCD, on peut trouver des régions avec de grandes fluctuations de vitesse (VF)
et des régions avec de grands gradients de vitesse (GO). Ces régions sont dans un ordre
bien précis. La détection d′un tourbillon est basé sur la combinaison de ces différentes
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Fonction de détection
Fonction indicatrice après seuillage

Fonction indicatrice après filtrage Fonction indicatrice après nettoyage

Fig. 1 – Exemple de détection des ′low speed streaks′

régions. D′abord, on détecte les objets ′fluctuation de vitesse′ (VF) et les objets ′gradient′

(GO) comme précédemment. Ensuite on dilate les objets ′gradient′ pour créer des fenêtres
de recherche. Ensuite on examine les positions relatives et les tailles de ces objets pour
détecter les tourbillons. On obtient alors la fonction indicatrice des tourbillons. Pour les
tourbillons contrarotatifs, les principes de détection sont les mêmes que les tourbillons
individuels avec une combinaison un peu plus complexe.

Après avoir obtenu toutes les images instantanées de chaque structure cohérente, une
analyse statistique permet d’obtenir leurs caractéristiques :

• Fréquence d′apparition
• Angle transversal
• Largeur
• Longueur
• Surface
• Distance transversale

...

Ces caractéristiques sont ensuite elles-mêmes analysées à l′aide de statistiques classiques :

• Moyenne
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Fig. 2 – Modèle de détection des tourbillons longitudinaux

• RMS
• Histogramme
• Valeur médiane
• Coefficient de variation
• Dissymétrie et Aplatissement

...

Cette analyse montre qu′il existe des liens forts entre les différentes structures. Ainsi,
de manière remarquable, la distance transversale est comparable quelque soit le type de
structure cohérente. De plus, la loi de variation de densité de probabilité est la même pour
la même caractéristique des différentes structures. Les longueurs des tourbillons longitu-
dinaux, des ′ejections′ et des ′sweeps′ sont également comparables.

Chapitre 7 : Organisation des structures cohérentes

Après avoir obtenu les images indicatrices instantanées pour chaque structure cohérente,
nous avons calculé les corrélations spatiales entre les différents structures :

• Auto corrélation et corrélation croisée des ′low et high speed streaks′

• Auto corrélation et corrélation croisée des ′ejections′ et des ′sweeps′

• Auto corrélation et corrélation croisée des tourbillons négatifs et positifs
• Corrélation croisée des objets de grande vitesse de touillions positifs et négatifs
• Corrélation croisée des ′low et high speed streaks′ avec les ′ejections′ et les ′sweeps′

• Corrélation croisée des ′low et high speed streaks′ avec les tourbillons négatifs et
positifs

• Corrélation croisée des ′ejections′ et des ′sweeps′ avec les tourbillons négatifs et
positifs
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Les résultats de ces corrélations et les analyses statistiques précédentes fournissent des
informations sur l′organisation de ces structures dans l′écoulement.

Chapitre 8 : Conclusions et perspectives

Conclusions

Nous avons montré que la SPIV est une méthode adaptée à l′étude de la turbulence
de paroi. L′approche par reconnaissance de forme, quant à elle, lorsqu′elle est utilisée
avec précaution, peut être une bonne méthode de détection des structures cohérentes.
Dans cette étude, c′est la première fois que les caractéristiques de ces structures ont été
déterminées avec autant de détails. Les résultats de notre étude sont en bon accord avec
la littérature. Cette étude propose un modèle quantitatif d′organisation spatiale de ces
structures dans la région inférieure à 50 unités de la paroi.

Les résultats montrent que la distance transversale moyenne entre les ′low (ou high)
speed streaks′ voisins est environ de 120 unités de paroi. Cette valeur est presque la même
que celle pour les ′ejections′ et les ′sweeps′ ou les tourbillons longitudinaux. Généralement
cette distance augmente avec la distance à la paroi pour toutes les structures cohérentes.
La présente étude mesure également la distance entre les ′low (ou high) speed streaks′ les
plus proches. Elle est d′environ 8-12% plus petite que la distance précédente, ce qui met en
évidence la propriété d′alignement de ces types de structures. La distance entre les deux
jambes des tourbillons contra-rotatifs est environ 45 unités de paroi, ce qui est comparable
à la largeur des ′low speed streaks′. Exceptée pour la fréquence d′apparition, les histo-
grammes de la même statistique suivent la même loi de distribution pour les structures
différentes : Distribution de Laplace pour l′angle transversal, distribution log-normale
pour la largeur et la longueur, distribution exponentielle pour la surface et distribution
de Rayleigh pour la distance dans le sens de l′envergure. Une population significative de
chaque structure possède un angle transversal non nul.

La présente étude montre que les tourbillons longitudinaux sont centrés dans la région
20 < y+ < 30. Dans cette région, on a souvent observé un maximum ou un minimum
des caractéristiques étudiées, particulièrement pour les éjections et les tourbillons longi-
tudinaux. Le diamètre moyen des tourbillons longitudinaux augmente avec la distance de
paroi.

Les ′streaks′ sont les structures les plus grandes dans la présente étude. Les ′low speed
streaks′ ont une largeur d′environ 35 unités de paroi tandis que les ′high speed streaks′ ont
environ 45 unités de paroi. En raison de la taille limitée du champ de vitesse, la longueur
des ′streaks′ ne peut pas être mesurée si elle est plus grande que 500 unités de paroi (la
dimension longitudinale du champ de vitesse). Les ′ejections′ ont une largeur d′environ
20 unités de paroi et une longueur d′environ 110 unités de paroi. Les ′sweeps′ sont plus
larges et plus courts que les ′ejections′. Leur largeur et longueur moyennes sont d′environ
25 et 90 unités de paroi respectivement. Les tourbillons longitudinaux ont une longueur
comparable avec celle des ′ejections′ et des ′sweeps′.

Les corrélations entre les structures montrent que les ′ejections′ et les ′sweeps′ sont
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fortement associés aux tourbillons longitudinaux. Les ′ejections′ et les ′sweeps′ sont liés
respectivement aux ′low et high speed streaks′. Les corrélations indiquent également que
les ′low speed streaks′ et les ′ejections′ sont sur la droite en amont des tourbillons longi-
tudinaux négatifs et sur la gauche en amont des tourbillons positifs tandis que les ′high
speed streaks′ et les ′sweeps′ sont respectivement sur la gauche et droite en aval. Les
′ejections′ et les ′sweeps′ sont plus près des tourbillons longitudinaux que des ′streaks′

dans les directions longitudinale et transversale.
Les corrélations des fluctuations de vitesse et des structures cohérentes prouvent que,

pour un tourbillon longitudinal, la partie avec des fluctuations négatives de vitesse nor-
males, est en amont de la partie avec des fluctuations positives. De plus, cette étude
montre que les ′streaks′ sont associés à un paquet de tourbillons longitudinaux. Ceci
mène à la conclusion que des ′low speed streaks′ sont formés à l′intérieur d′un paquet de
tourbillons longitudinaux alors que les ′high speed streaks′ sont sur l′extérieur. Comme
′ejections′ et ′sweeps′ sont associés aux ′low et high speed streaks′ respectivement, la
conclusion ci-dessus est également vraie pour les ′ejections′ et les ′sweeps′. L′analyse statis-
tique prouve que la différence de l′angle transversal entre les jambes positives et négatives
d′un tourbillon longitudinal a une valeur positive au-dessus de y+ = 30. Ceci indique que
la plupart de ces tourbillons ont une forme en Ω dans cette région. En plus, l′analyse
des corrélations croisées entre les tourbillons longitudinaux négatifs et positifs met en
évidence des phénomènes d′appariement décrit par Tomkins et Adrian (2003), et qui sont
localisés la plupart du temps dans la région 33 < y+ < 44.

Les résultats soutiennent le modèle d′Adrian et collaborateur (2000) exceptée pour la
localisation des ′sweeps′. Il ont suggéré que les ′sweeps′ sont crés dans la couche supérieure
alors qu′ils sont associés aux tourbillons longitudinaux attaché à la paroi dans la présente
étude. Dans cette étude, le modèle d′Adrian et collaborateur (2000) a été amélioré et des
dimensions caractéristiques ont été proposées.

Perspectives

Basé sur cette étude, plusieurs perspectives peuvent être proposées. La première est
de poursuivre l′étude pour la région supérieure a y+=50. La deuxième est de faire varier le
nombre de Reynolds pour voir son influence sur les caractéristiques des structures et sur
leur organisation. Ensuite, on pourrait étudier l′évolution temporelle de ces structures.
Enfin, il serait intéressant de comparer les résultats de PIV avec des résultats de DNS qui
fournit une vrai information 3D.
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Chapitre 1

Introduction

1.1 Background

Most flows in daily life are turbulent. For example, the flows in pumps, compressors,
pipe lines, and the flows around airplanes, automobiles, ships, and submarines, are ge-
nerally turbulent. Two properties of turbulent flows are very important. One is that a
turbulent flow is unsteady both in time and in space. The other is that a turbulent flow
contains eddy structures with characteristic length, velocity and time scales which are
spread over a very wide range. The two properties make the mathematical description
of turbulence complicated and eliminate the use of an exact mathematical theory in the
calculation of practical problems. Although the concept of turbulence is generally accep-
ted and understood, it is difficult to give a precise definition. The first detailed definition
was given by Von Karman (1937) : ′Turbulence is an irregular motion which in general
makes its appearance in fluids, gaseous or liquid, when they flow past solid surfaces or
even when neighbouring streams of the same fluid flow past or over one another′. The
word ′irregularity′ in the definition emphasize the chaotic nature of turbulence. Howe-
ver, distinct average values of turbulence, such as velocity, pressure and temperature, can
also be obtained by the theory of probability. Hinze (1975) gave a more precisely defi-
nition as : ′Turbulent fluid motion is an irregular condition of flow in which the various
quantities show a random variation with time and space coordinates, so that statistically
distinct average values can be discerned′. Even with this definition, it is sometimes tricky
to objectively distinguish turbulence from a complicated laminar flow. Thus far, no fully
satisfactory definition has been found.

According to Hinze (1975), turbulence can be divided into two categories. One is called
′wall turbulence′ which presents the turbulence generated and continuously affected by
fixed walls ; the other is referred to as ′free turbulence′ which presents the turbulence in
the absence of walls. Wall turbulence is very common and known as turbulence which
is directly influenced by a solid boundary. Many possibilities of this turbulence exist
according to the configuration of the boundary. The rigid wall is one of the most important
boundary. Even in this case, two main groups can be identified. One comprises the flows
around rigid bodies, while the other consists of the flows within a space bounded by rigid
walls. The simplest case of these two groups are respectively the two-dimensional boundary

1



1.1. Background Chapitre 1. Introduction

layer flow along a flat plane with zero pressure gradient in the free stream and the fully
developed flow through a round tube with uniform cross-section. Clearly, the substantial
difference between the two groups is that the domain of wall turbulence increases along
the body in the downstream direction in the first group but remains restricted to the
space bounded by the rigid wall in the second group.

The first group of wall turbulence is known as ′boundary layer flows′ as the wall
turbulence remains within a relatively thin layer between the surface of the body and
the outside undisturbed free stream. This layer usually increases in absolute thickness in
the downstream direction. In this layer, the turbulence is directly affected by the wall, at
least in a region close to it. This effect occurs respectively through the action of viscous
stresses for a smooth wall and through the action of forces resulting from the flow around
the roughness elements for a rough wall. In wall turbulence, if the wall is smooth, a region
close to the wall, where the behaviour of the flow is determined by the fluid viscosity,
exists at any Reynolds number. Moreover, the direct effect of fluid viscosity on the gross
structure of the turbulence become smaller and more negligible with the wall distance.
Therefore, two regions are distinguished when a turbulent flow develops along a rigid
boundary. The first one is the region adjacent to the wall where the flow is directly
affected by the condition at the wall. As mentioned above, this condition is represented
respectively by the fluid viscosity in case of a smooth wall and by the wall roughness in
case of a rough wall. This region is referred to as the ′wall region′ or the ′inner region′.
The second region, which is beyond the wall region, is only indirectly affected by the wall
through its wall shear stress and usually referred to as the ′outer region′.

In case that the wall is perfectly smooth, there is an extremely thin layer in the wall
region where the flow is predominantly viscous. This thin layer is named the ′viscous
sublayer′. Beyond this viscous sublayer, there is a region called as ′transition region′ or
′buffer region′ where the inertial effects become more and more important with respect
to the viscous effects. Until some distance from the wall, a fully turbulent region, where
direct viscous effects are negligible and inertial effects dominate the flow, can be found.
It should be noted that the turbulent flow in the wall region is different from that in the
outer region. The turbulence is directly influenced by the wall in the former region but not
in the latter one, though some interaction may exist between the two regions. The viscous
sublayer and the buffer region are both very thin compared with the local thickness of
the boundary layer. Additionally, The total ′wall region′ covers roughly 15% of the whole
boundary layer (Hinze (1975)).

Turbulent boundary layer near a flat wall is a basic flow phenomenon, which is of im-
portance for the development of aviation, shipbuilding and chemical industry, and for the
design of the hydraulic structure, etc. Moreover, investigation of the wall region helps one
to understand the process of the turbulent energy generation and transport. The motion
in the near wall region of a turbulent boundary layer is not entirely random but formed
by organized structures. Many researchers have made great efforts on this subject (e.g.
Theodorsen (1952), Kline and Runstadler (1959), Kline et al. (1967), Schlichting (1979),
Hinze (1975), etc.). In the wall region, three kinds of eddy structures are presently most
documented : low and high speed streaks, Ejections and Sweeps, and various vortices (e.g.
hairpin vortex, horseshoe vortex, streamwise vortex, etc.). The relations and interactions
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between all these coherent structures, which should explain the self-sustaining mecha-
nism of near wall turbulence, have been investigated by many researchers (e.g. Panton
(1997)and Adrian et al. (2000)). However, the mechanisms responsible for their forma-
tion and their contribution to the generation and the preservation of wall turbulence still
remain to be solved.

1.2 Objectives

Taking advantage of the Stereoscopic Particle Image Velocimetry (SPIV) method, 2-
dimensions and 3-components (2D3C) instantaneous velocity fields were obtained from the
datasets recorded by Pérenne et al. (2004). Then, the coherent structures were identified
from the resulting velocity fields, in order to obtain the mean characteristics, spatial
distribution as well as the interactions between these structures. From this analysis, it was
expected to obtain more information about the spatial organization of these structures.

1.3 Outline

In Chapter 2, the previous theories and achievements on the coherent structures in a
boundary layer flow are reviewed and summarised. Chapter 3 firstly describes the details
of the experiment. Then the earlier developments in PIV and SPIV are introduced and
summarised. Following that, an optimal algorithm is selected to process the SPIV dataset
in order to obtain 2D3C instantaneous velocity fields.In Chapter 4, the basic characte-
ristics of the present turbulent flow (e.g. mean streamwise velocity, velocity fluctuations,
Reynolds Shear Stress, spectrum, Probability Density Function (PDF), skewness and flat-
ness) are calculated. In addition, they are compared with those of Hot Wire Anemometry
(HWA) and Direct Numerical Simulation (DNS). In Chapter 5, two point spatial auto-
and cross-correlations are calculated directly from the instantaneous velocity fields. The
results show the existence and spatial distribution of coherent structures (e.g. streaks,
ejections and sweeps, vortices). Pattern recognition method is used to identify these co-
herent structures and to calculate their statistical characteristics in Chapter 6. In Chapter
7, two-point spatial correlations are performed to investigate the detailed spatial distri-
butions between different coherent structures and to explain the organization of them.
Chapter 8 concludes the present study and gives the perspectives for future work.
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Chapitre 2

Literature Review

As mentioned above, three main coherent structures exist in near wall turbulence :
Streaks, Ejections and Sweeps, Vortices.

2.1 Streaks

2.1.1 General introduction

Hama (1954) was the first to evidence the existence of coherent structures near the wall.
He observed the streaky structure in his flow visualization experiments. This structure
reveals that very near to the wall, the instantaneous spanwise velocity distribution consists
of alternating regions of high and low speed fluids. By flushing a turbulent pipe flow of
coloured water with clear fluid, Ferrell et al. (1955) found the dye was swept from the
outer portions of the boundary layer, leaving only streamwise traces of dyed fluid close
to the wall with a fairly periodic transverse spacing. Since then, the streaky structure
has been identified and examined by a number of authors under different experimental
conditions.

Kline et al. (1967) investigated boundary layers subject to different pressure gra-
dients by using hydrogen bubble wire visualization technique. They observed that the
low speed streaks exist in all cases, including those in which relaminarization can occur
(Fig. 2.1). Even being disrupted, the streaks can quickly re-establish themselves. Addi-
tionally, streaks show a remarkable degree of persistence and regularity. Hama and J.
(1963) studied the transition procedure in the laminar boundary layer and found that
the streaky structures can even be found in a transitional boundary. Bippes (1972) in-
vestigates a transitional boundary layer on a concave surface and observed these streaky
structures by using the same hydrogen bubble wire visualization technique as Kline et al.
(1967). The visualization picture he obtained is extraordinarily similar to those obtained
by Kline et al. (1967) in a fully turbulent boundary layer. Therefore, Kline (1978) sug-
gested that streaks constitute a universal feature of bounded shear flows and that the
presence of streaks is a sufficient condition for establishing whether a given boundary
layer flow is turbulent.

Thereafter, many properties of the streaks have been investigated. The streaky struc-
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Fig. 2.1 – Structure of a flat plate turbulent boundary-layer visualised with hydrogen
bubbles at y+ = 9.6 (Kline et al. (1967)). The flow direction is from left to right.

tures are most clearly present close to the wall. Moving away from the wall, fewer and
fewer streaks are found. The low-speed streaks observed from flow visualization studies
show that they are not rigidly directed along the streamwise direction (Talmon et al.
(1986)). They show meanders in the spanwise direction where they merge together or
separate. Moreover, this meandering is time dependent, as can be seen in Fig. 2.2. Mean-
dering property of low speed streaks in the spanwise direction is also known from results
obtained from the numerical simulations and theoretical modelling. The investigation of
a database generated with direct numerical simulation by Johansson et al. (1991) showed
that the development of asymmetry in the spanwise direction is important for the evolu-
tion of near-wall structures. Based on that, they assumed that the inhibition of spanwise
motion of the near wall streaky pattern might be the primary reason for skin friction
reduction. Landahl (1990) has investigated the sublayer streaks by means of a simplified
theoretical model. He found that asymmetry structures will grow in the streamwise direc-
tion and turn into streaks by the small three-dimensional disturbances initially localized
in the spanwise direction while symmetric structures showed little or no such behaviour.

Compared to low speed streaks, high speed streaks were less investigated. Talmon et al.
(1986) found that high speed streaks are related to regions of high value of Reynolds stress.
The studies of Suzuki and Kasagi (1993) and Robinson (1991) associated the high speed
streaks with an exchange of wall-normal velocity to streamwise and spanwise velocity.
Johansson et al. (1991) observed that high speed streaks are surrounded by spanwise
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diverging fluid.

Fig. 2.2 – Time-dependent low speed streaks meanders at y+ = 29 (Talmon et al. (1986)).
The flow direction is from Bottom to top and LDV measurement location is indicated with
a white ′+′ signal.

2.1.2 Origin of streaks

The origin of streaks has always been an interesting topic for research. Many models
have been proposed, among which two are quite popular. One explains the streaks as
a consequence of wall normal motion while the other considers the combined action of
lift-up, shear and diffusion as the origin of streaks.

For the first explanation, two popular models of wall normal motion are available.
Stuart (1965) was the first one to explain the origin of streaks, from streamwise vor-
tices inducing normal motions which cause the streaks. This conclusion was confirmed by
some authors (e.g. Blackwelder and Eckelmann (1979) ; Blackwelder (1983) ; Ersoy and
A. (1985), Aubry et al. (1988), etc.). They suggested that streaks are caused by long
counter-rotating streamwise vortex pairs (Fig. 2.3). Rows of vortices elongated and rota-
ted in the direction of the mean flow, which advects the fluid from the wall and to the
wall in alternating lines. The fluid advected from the wall is moving slower than average
at this distance from the wall, whereas fluid advected to the wall is moving faster. This
creates the wavy streamwise velocity profile at a fixed distance from the wall. This is a
simple model which requires long streamwise vortex pairs embedded within the wall layer
which are not well evidenced in both experiments and numerical simulation studies. The
second model suggested that hairpin vortex is responsible for streaks (Fig. 2.4). When the
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hairpin vortex moves downstream, a trace is left behind in the form of an elongated streak.
Fig. 2.4 shows different possibilities for a symmetric hairpin vortex or for an asymmetric
core vortex. This second model was approved by many researchers (e.g. Acarlar and R.
(1987) ; Smith et al. (1991) ; Haidari and R. (1994) ; Asai et al. (1996). etc). Besides these
two models, other similar patterns of wall normal motions generating streaks were also
proposed by numerous researchers. At present, the idea that the streaks is dictated by
wall-normal motions is generally accepted. One can find detailed explanations from the
work of Panton (1997), Jang et al. (1986), Brooke and Hanratty (1993), Butler and Farrell
(1993), Waleffe et al. (1993), Hamilton et al. (1995), Nikitin and Chernyshenko (1997),
Schoppa and Hussain (1998), Waleffe (2003), etc.). Even after several decades of research,
no general agreement on which pattern of wall-normal motions is responsible for streaks
was made. This can be explained by the fact that streaks are easy to observe in experi-
ments or direct numerical simulations but it is more difficult to find the corresponding
pattern of wall-normal motions.

Fig. 2.3 – Schematic illustating how counter-rotating streamwise vortex pairs generate
streaks (Blackwelder and Eckelmann (1979))

The second model suggests that the combined action of lift-up, shear and diffusion
generates streaks (e.g. Landahl (1990),Butler and Farrell (1993), Chernyshenko and Baig
(2005), etc.). In this model, the wall normal velocity definitely has no pattern and the
velocity streaks are supposed to be created by the same mechanism as streaks of a passive
scalar. Fig. 2.5 shows the process in terms of a passive scalar. In Fig. 2.5, the surface
indicates the boundary of the region of high concentration of a passive scalar released
from the wall. In Fig. 2.5a, the surface is assumed to be flat, but the lift-up by wall-
normal motion will cause some hunches and deform the surface to a shape in Fig. 2.5b.
If a visualization plane, parallel to the wall at some distance from the initial position of
the boundary, was selected at this moment, it will cut through these hunches shown in
Fig. 2.5b. Then this visualization plane only shows several cycle or ellipse shaped contours
plotted according to the concentration level of the scalar instead of a streaky pattern as
expected, due to the fact that the wall-normal motions are assumed to have no pattern.
It reveals that lift-up by isotropic wall normal motions does not create streaks. Now the
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Fig. 2.4 – Schematic illustating how hainpin-liked vortex generates streaks (Smith et al.
(1991))

mean shear starts to work. It first tilts and stretches the lifted volumes as it is shown in
figure Fig. 2.5c, which only causes a downstream shift or a deformation of these contour
in the visualization image obtained from Fig. 2.5b. Still, no streaky pattern appears.
However, tilting and stretching lead to an increase of the wall normal gradient and then
the wall normal diffusion occurs in Fig. 2.5d. Finally, a streaky pattern appears in the
visualization plane.

Since the effect of lift-up, shear and diffusion of a flow are governed by the linearised
Navier-Stokes equations and these effects are sufficient to explain the origin of streaks
in the second theory, the possibility of using the linearised Navier-Stokes equations to
investigate streaks is well accepted. Landahl (1990) studied the linear response of the
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Fig. 2.5 – Combined action of lift-up, shear and diffusion. a :orignal surface ; b : lift-
up by isotropic wall-normal motions ; c : effect of mean shear ; d : effect of diffusion
(Chernyshenko and Baig (2005)

mean shear flow to random forces in the near wall turbulent flow. His results about the
evolution of coherent structures agree well with those obtained by a VITA (Variable
Interval Time Averaging) technique (Blackwelder and Kaplan (1976)). Lee et al. (1990)
compared the predictions of the rapid distortion theory based on linearised equations with
the results of direct numerical simulations. They found that the dominant mechanism in
the production and maintenance of the preferred structures (for example, streaks) in all
turbulent shear flows at high shear rate is a selective amplification of eddies primarily by
the linear interaction with mean shear. Butler and Farrell (1993) investigated streaks by
calculating the optimal perturbations of a channel flow linearised around the turbulent
mean velocity. They found that the optimal perturbations predict streaks, but they had to
limit the lifetime of the perturbation by the eddy turnover time in order to obtain streak
spacing agreeing with experiment. The second model was used and supported by some
researcher, however, it is not as widely accepted as the first one for explaining the origin
of streaks. The reason can be insufficient information about how linearised equations can
give predictions about the essentially non-linear phenomena of turbulence.

Similar to how various alternatives (e.g. streamwise vortices, hairpins, etc.) exist in
the first theory of streak origin, in the second theory, the described mechanism of streak
formation by non-structured wall normal motions is not unique. Various mechanisms can
also be proposed within the second conceptual framework. Moreover, these two theories
are not exclusive. The characteristics of streaks in real turbulent flows are naturally de-
termined by both wall normal motions and the combined action of lift-up, shear and
diffusion. However, the question, which is the dominant one, is still under investigation.
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2.1.3 Statistical characteristics

2.1.3.1 Investigation methods

The first systematic and quantitative investigation of streaks was carried out by Runs-
tadler et al. (1963). Their results showed that the mean spacing between streaks could be
quantified and correlated. Thereafter, the physical characteristics of the low speed streaks
have been examined by a number of researchers with different measurement techniques.
There exist generally two prevailing methods to extract the streak spacing : visual ins-
pection and spectral techniques based on the autocorrelation or its Fourier transform, the
spatial spectrum. Visual inspection may be performed directly on the video screen, as in
Kaftori et al. (1994), or on a sequence of still images, which have been extracted from
a high-speed video, as in Smith and Metzler (1983). A set of rules has been developed
to guide the examiners in localizing the streaks in pictures taken by the visualization
inspection method. An additional threshold may be used to eliminate the weak or under-
developed streaks.

Spectral method can estimate the characteristic streaks spacing directly from the
location of the first peak of the autocorrelation. Alternatively the characteristic spatial
frequency can be determined by the peak frequency of the spatial spectrum, which is
the Fourier transform of the autocorrelation. There are two drawbacks to the spectral
methods. One is that as the amount of data (i.e. the number of data frames) increases,
the averaged autocorrelation tends to get flattened and then make the results irresponsible
(Gupta et al. (1971) and Fortuna and Hanratty (1972)). Therefore, Achia and Thompson
(1977) developed a so-called ′AD-HOC′ method which extracts and averages the lag of the
first peak in each individual autocorrelation function to overcome this problem. Another
drawback is that spectral methods provide only an estimate of the distribution of the
mean streak spacing. Thus, it does not provide other characteristics of the streak spacing
such as the histogram of the spacing which can be obtained by visual inspection methods.
Both methods gained wide use among researchers.

2.1.3.2 Results of statistical characteristics

Schraub and Kline (1965) established the mean spanwise spacing (λ) between low
speed streaks by using primarily flow visualization techniques for low Reynolds number
flows (Re < 1500). They found the mean spanwise spacing is generally about 100±20 wall
units. Many researchers (e.g. Oldaker and Tiederman (1977), Achia and Thompson (1977),
Lee et al. (1974), Blackwelder and Eckelmann (1979), Kreplin and Echelmann (1979),
etc.) have confirmed this value with different visual and probe experiment techniques.
Schraub and Kline (1965) were also the first ones to examine the variation of streak
spacing with wall distance by using both visual inspection and spectral methods. They
found that streak spacing appears to increase for y+ ≥ 7, however, no explanation was
provided for this increase. Nakagawa and Nezu (1981), using both visual techniques and
hot film probe correlation techniques, showed an apparent increase in streak spacing for
y+ >10 and proposed an estimation of this spacing as 2y+ when y+ > 100. They suggested
that the increase in scale may be due to a pairing interaction of the low speed streaks
as they move outward from the wall, resulting in the increase in scale. An extended
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study of the low-speed streaks has been carried out by Smith and Metzler (1983) using
flow visualization experiment at 740 < Re < 5380. They found that the mean spanwise
spacing of low speed streaks is about 100+ based on a detection threshold. For a higher
Reynolds number 4700 < Re, Gupta et al. (1971) investigated the spatial structure in
the viscous sub-layer using an array of hot-wires distributed in the spanwise direction.
They used a VITA correlation technique to determine the spanwise separation between
streaks in the viscous sublayer. Their results show that the mean spacing increase with
Reynolds number (up to 10000), which reveals a dependence of this spacing on Reynolds
number. This conclusion is also confirmed by recent research (Kahler (2004), Lagraa
et al. (2004), Carlier and Stanislas (2005)). In case of low Reynolds numbers, the non-
dimensional mean streak spacing was suggested to be invariant (Kline et al. (1967), Achia
and Thompson (1977), Oldaker and Tiederman (1977), Nakagawa and Nezu (1981), Smith
and Metzler (1983), and Hetsroni and Rozenblit (1994)). This value is generally accepted
as λ = 100 ± 20 wall units for y+ ≤ 10 and increases for y+ > 10. Recent research shows
that streak spacing can provide a new way to investigate turbulence. For instance, Grass
and Mansour-Tehrani (1996) used the mean spacing to investigate the effect of surface
roughness while Oldaker and Tiederman (1977) and Hetsroni et al. (1997) used it to study
the effect of drag-reducing solutions on the streaky structure.

Blackwelder and Eckelmann (1979) used a combination of hot film probes and flush
mounted surface elements to measure the length of the streak structures in a low Reynolds
number oil channel. They found that streamwise length scales can extend beyond ∆x+ >
1000 according to the connected regions of low axial velocity in the region 5 ≤ y+ ≤ 30.
Oldaker and Tiederman (1977) also found that streaks may exceed ∆x+ > 1000 by their
dye visualization experiment. Kreplin and Echelmann (1979), using the same oil-channel
facility as Blackwelder and Eckelmann (1979), confirmed these results by their probe
correlation studies. By using a SPIV experiment, Carlier and Stanislas (2005) confirmed
this result by their own experiments and agreed that the streamwise size of streaks is
generally between 500 and 2000 wall units. Moreover, they also found that the size of
streak is between 20 and 40 wall units in width.
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2.2 Ejections and Sweeps

2.2.1 General introduction

Ejections and sweeps (Fig. 2.6), which are defined as regions of an abrupt outward
motion of fluid with low streamwise velocity or inward motion of fluid with high stream-
wise velocity, play a major role in the process of turbulent generation. Investigation of
ejections, sweeps and interactions between them can provide more insight into the process
of Reynolds stress production. One of earliest studies on these structures was carried out
by Corino and Brodkey (1969). They investigated the wall region of a fully developed tur-
bulent pipe flow by photographing the motions of colloidal-size solid particles suspended
in flows with a high-speed-camera moving with the flow. They observed that a distinct
pattern existed in the wall region and was characterized by a deterministic sequence of
events occurring randomly in space and time. This pattern was a function of the distance
from the wall. The area 0 < y+ < 5 (sublayer region) was found not to be laminar ; it was
characterized by velocity fluctuations of small magnitude and disturbed by fluid coming
from the adjacent region. The area 5 < y+ < 30 was characterized by ejections of fluid
away from the wall. These ejections were found to occur intermittently and randomly in
space and time, and were part of a sequence of events. The first event of this sequence
was a deceleration, in which the axial velocity was characterized by the essential disap-
pearance of the velocity gradient and by a velocity defect as great as 50% of the local
mean velocity. The second event was an acceleration, in which a mass of fluid coming
from upstream and entering at about y+ = 5 was directed towards the wall at angles
of 0-15◦ and interacted with the fluid in the decelerated region. The third event was an
ejection, in which a mass of fluid coming from the decelerated region moved away from
the wall. The fourth event was a sweep, in which a mass of high speed fluid entrying from
upstream moved almost parallel to the wall. This latter high speed fluid was often a part
of the same mass of fluid which gave rise to the acceleration stage. The above cycle was
repeated randomly in space and time.

a b

Fig. 2.6 – Illustration of ejection (a) and sweep (b), Corino and Brodkey (1969)
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2.2.2 Detection algorithms

Different algorithms were employed to investigate these types of coherent structures.
Most of them focused on the burst or ejection events that occur in the near wall region.

Wallace et al. (1972) introduced a quadrant algorithm to investigate the production
of Reynolds stress by using hot-film anemometry techniques. This quadrant algorithm
separates the u′v′ signal into four parts (Fig. 2.7). where u′ and v′ are the time-dependent
streamwise and wall normal velocity fluctuations respectively, quadrant two (u′ < 0, v′ >
0) and quadrant four (u′ >0, v′ <0) were associated with the ejection and sweep events
respectively (called as Q2 and Q4 events respectively). Quadrant one (u′ <0, v′ <0) and
quadrant three (u′ >0, v′ >0) were related to the interactions between them (called as
Q1 and Q3 events respectively).

Fig. 2.7 – Illustration of quadrant algorithm (Wallace et al. (1972))

Blackwelder and Kaplan (1976) introduced a VITA algorithm (Variable Interval Time
Averaging) (Fig. 2.8). The VITA algorithm based on the magnitude of the short-term
RMS of a fluctuation signal compared to the long-term RMS value for the same signal.
The VITA algorithm computes a short-term RMS value for a fluctuation signal (e.g.
velocity, temperature, etc.) within a specified length of time. If the short-term RMS value
is above a specified threshold with respect to the RMS value for the entire time series,
then an ejection (or a burst) event is counted. The unique aspect of the VITA algorithm is
that the characteristic large, positive velocity gradient does not occur when applying the
algorithm to a random noise signal. It suggests that the VITA algorithm detects an event
which is particular to turbulent wall flows, and this event has been generally assumed
to be a burst. With the VITA algorithm, Chen and Blackwelder (1978) and Johansson
and Alfredsson (1982) found that the results show two different events. One has a strong
negative velocity gradient and the other has a strong positive gradient. Therefore, they
added a slope condition to ensure only events with an accelerating streamwise velocity
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component were counted. Without the slope condition, the resulting structure detected
by the VITA algorithm may mix different types of events.

Fig. 2.8 – Illustration of VITA algorithm (Blackwelder and Kaplan (1976))

In addition to the most used algorithms (quadrant and VITA), many other algorithms
exist. Rao et al. (1971) identified ejections as regions of energetic activity by using a
band-pass filter to the streamwise velocity signal. Lu and Willmarth (1973) used a u-level
algorithm. The u-level algorithm counts a burst when a fluctuation of streamwise velocity
falls below a certain threshold with respect to the long-time RMS value. Rajagopalan and
Antonia (1984) used a burst detection algorithm based on strong activity in the high fre-
quency component of velocity. They found that the conditional average of this algorithm
differed significantly from that obtained with the VITA algorithm. Zaric (1975) and Zaric
(1982) focused on the low streamwise velocity region. They attempted to identify the
ejections by searching out in the regions where the streamwise momentum was changing
rapidly. Guezennec (1985) used a shear-stress detection method at the wall to identify
bursts. When the fluctuation of streamwise shear stress (τ

′

x) is greater than a given thre-
shold (+kx) with respect to the long-term RMS (τ

′

x) a sweep motion is detected. Likewise
when (τ

′

x < −kx τ
′

xms) an ejection motion is counted.
Conditional averaging techniques were widely used to process the velocity signal in

the studies mentioned above. Most of conditional average velocity signals always carry
characteristics that can be directly related to the threshold used in the detection algo-
rithm. For instance, the VITA algorithm is generally triggered by either a large positive
or negative velocity gradient while it intends to measure periods of large variance in the
velocity ; the quadrant algorithm has a large negative uv spike in its conditional average
signals ; the high frequency velocity component detection has a high frequency oscillation
in a conditional average signal. Consequently the reliability of these conditional averages
is questionable, especially in the sense of being representative of the characteristics of an

15



2.2. Ejections and Sweeps Chapitre 2. Literature Review

ejection (or burst) event.

Different methods were used to solve this problem. Chen and Blackwelder (1978) and
Subramanian et al. (1982) used temperature contaminated fluid in the wall region to
improve the velocity based detection algorithms. They detected the fluid away from the
wall by temperature difference as the wall was heated very slightly in their experiments.
Conditional averages were calculated by detecting temperature fronts which had a sud-
den decrease in temperature and extended across the entire boundary layer. The resulting
conditional average displayed a strong positive gradient similar to the VITA results. This
algorithm has one disadvantage : no distinction can be made between ejections that are
actively moving away from the wall and those which occurred further upstream. Bogard
and Tiederman (1987b) used another method to overcome the drawback of the original
conditional average method. In their study, discrete ejections from a burst event were
identified using fluorescent-dye flow visualization. Simultaneous velocity measurements
were made with a X-type hot film probe located at y+ = 15. Conditional sampling of
the velocity data was based on the flow visualization data series that were recorded when
an ejection was in contact with the probe. Furthermore, the stage of growth of the ejec-
tion, and its position with respect to the velocity probe, were taken into account when
the conditional-sampling analyses were carried out. Recently, PIV (and SPIV) technique
was introduced to investigate the near wall turbulence (e.g. Adrian (1991), Carlier and
Stanislas (2005), etc.). Similar to the method of Bogard and Tiederman (1987b), one can
identify the coherent structures directly from the instantaneous velocity field obtained by
PIV (or SPIV) experiments and perform the characteristic analysis on them.

Subramanian et al. (1982) have also made a comparison between the VITA and uv
quadrant algorithms. They applied the VITA algorithm to the temperature signal in a
slightly heated boundary layer (as mentioned above). The conditional averages of the
uv-signal has a relatively small amplitude, which may be partly due to the low threshold
used. The conditional averages obtained with the uv-quadrant algorithm and the VITA
algorithm were found to differ considerably. They also made a study similar to that of
Offen and Kline (1974) by using a rake consisting of 10 temperature-sensitive probes as
their reference. When a temperature front was identified across the boundary layer an
event was considered to occur. A X-type hot-film probe was used for the VITA and uv-
quadrant detections, with the parameters modified to obtain the same number of events
per unit time as with rake. The correspondence was generally found to be rather weak.
At y+ = 40, it was 42% for the VITA algorithm and only 15% for the uv-quadreant
algorithm. This may be explained by the large spanwise separation between the rake and
the X-type hot-film probe used to provide data in the experiment.

Alfredsson and Johansson (1984) compared the VITA and uv quadrant algorithms in
a fully developed turbulent channel flow. Different from Subramanian et al. (1982), a close
correspondence was found between VITA events and ejection type of events detected with
the uv-quadrant algorithms. In contrast to the previous finding of double peak (Blackwel-
der and Kaplan (1976), Chen and Blackwelder (1978)), they found that the uv-pattern
obtained with the VITA algorithm has only one peak. In contrast to the VITA results,
conditional average obtained by Alfredsson and Johansson (1984) using the quadrant al-
gorithm did not show an acceleration of the streamwise velocity to a value greater than
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the mean velocity.

Bogard and Tiederman (1987a) performed a comparison of the effectiveness of the
above-mentioned algorithms. They compare the results obtained from different algorithms
based on the same data series recorded by a X-type hot-film probe in their flow visuali-
zation experiment. They found that the effectiveness of each of the detection algorithms
was found to be highly dependent on the operational parameters (e.g. threshold level and
averaging or window time, etc.). The results of their study suggested that the quadrant
algorithm was the most reliable in the sense that it had a high probability of detecting
real ejections and a low probability of detecting false ones.

Tubergen and G. (1993) compared not only all the previous mentioned algorithms
but also their combinations. They suggest that the Zaric algorithm demonstrates better
ejection detection but does not exhibit a region of threshold independence for ejections
grouped into bursts. The best single-component ejection detector with threshold inde-
pendence for bursts is the u-level algorithm. The two-components system combining of
VITA and u-level, is the best overall ejection detector and also has a region of threshold
independence for the bursting period.

2.2.3 Property and statistical characteristics

By using the above-mention algorithms, ejections and sweeps were investigated in
many studies using different experimental methods or numerical simulations.

Grass (1971) using the hydrogen-bubble technique, studied visually and quantitati-
vely the turbulent boundary layer in a free surface channel flow. His research mainly
concentrated on surface roughness effects. Irrespective of wall roughness, he observed
two well-defined flow events. These were ejections of low momentum fluid outwards and
′inrushes′ of high momentum fluid toward the wall (sweep). The measurements indicated
that the process of turbulent energy production is intermittent and that it occurs through
the contributions of both ejections and sweeps. Grass concluded that the contribution
of the sweeps to the turbulent energy production was mainly limited to the wall region.
The role of the ejections events extended to the outer region where very large positive
contributions were measured.

Talmon et al. (1986) investigated the simultaneous flow visualization and Reynolds
stress (−u′v′) by a hydrogen bubble visualization experiment. They found ′dark spots′

that appear in the visualization of the low-speed streaks as an area where the hydro-
gen bubbles have disappeared. These dark spots appear at the centre line of the streak
and are immediately pushed away by a high-speed region. This study showed that the
contribution of these dark spots to the Reynolds stress is much larger than that of the
instantaneous low or high-speed regions. They assumed that these spots, and therefore
the streaks, are closely related to ejections. Wark and Nagib (1991) suggested a direct
link between the space-time correlations and the quadrant-detected coherent structures.
Specifically, the convection velocities inferred from both the long-time correlations and
the conditional probability density functions were consistent. Jeong et al. (1997) carried
out a numerical simulation in a turbulent channel flow. They concluded that a phase dif-
ference in space between streamwise and normal velocity fluctuations created by coherent
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structure advection caused sweep (Q4) events to dominate ejection (Q2) events and also
created counter-gradient Reynolds stresses (such as Q1 and Q3 events) above and below
these coherent structures. Delo et al. (2004) evidenced that the ejection events are asso-
ciated with the lift up of low speed streaks by using a volumetric imaging technique. They
found that ejections of near-wall fluid appeared to be spatially organized and related to
the passage of the large-scale agglomerations. Stoesser et al. (2005) carried out a large
eddy simulation (LES) in an open channel flow over a layer of spheres. They evidenced
not only the existence of ejections and sweeps but also the amalgamation process that
leads to ejection of fluid into the outer layer associated with vortex growth.

Not only the existence of the ejection (or sweep) was evidenced, their statistical cha-
racteristics were also investigated by many researchers. Raupach (1981) found that sweep
motions accounted for most of the Reynolds stress produced in the viscous sublayer, with
ejections contributing more outside of the viscous sublayer. His results are consistent with
those of Wallace et al. (1972) but inconsistent with the results of Lu and Willmarth (1973)
for the sublayer region. Lu and Willmarth concluded that ejection motions were dominant
for the entire region. As reported by them, 77% of the contribution to Reynolds shear
stress −u′v′ is by ejection motions and 55% from sweep motions. The excess over 100%
explained by the negative Reynolds shear stress generated by the interaction between
outward high speed flow (Q1 events) (u′ >0 and v′ >0) and inward low speed flow (Q3
event) (u′ <0 and v′ <0).

Corino and Brodkey (1969) estimated roughly that 70% of the positive Reynolds stress
(−u′

v
′

) could be attributed to the ejections and 30% by difference to the sweeps. More
experimental findings, such as interactions between the events, frequency of occurrence
and Reynolds number effects, can be found in Corino and Brodkey (1969). Wallace et al.
(1972) found that ejections and sweeps generated approximately equal positive contribu-
tions to the Reynolds stress (70% from ejections 70% from sweeps), while each of wallward
and outward interactions made a negative contribution of about 20% at y+ = 15. Moreo-
ver, they suggested the values being a weak function of wall distance. By using hot-wire
anemometry and conditional sampling techniques, Willmarth and Lu (1972) studied the
structure of the Reynolds stress near the wall. Their results showed that 60% of the posi-
tive contribution to the Reynolds stress (−u′v′ ) occurred when the sublayer velocity was
less than the local mean. Positive contributions to the instantaneous u′v′, 62 times higher
than the local mean average, were measured. According to them, the process of turbu-
lent energy production in the wall region was intermittent and 99% of the contribution to
−u′v′ occurred during 55% of the total time. Carlier and Stanislas (2005) used a threshold
in their quadrant-detection process. They found that ejections and sweeps occupy 25% of
the experiment area and generate 85% of Reynolds shear stress −u′v′.

Praturi and Brodkey (1978) studied a turbulent boundary layer flow by photographing
the motions of small tracer particles using a stereoscopic medium speed camera system
moving with the flow. He found that the ejections originated in a region 5 < y+ < 30 and
travelled up to y+ = 100 or more. In some rare cases, they can travel up to y+ = 300.
These ejections were small scale straight line motions. They moved at angles of 45◦-90◦

to the wall as observed in the convected frame.

18



Chapitre 2. Literature Review 2.3. Vortices

2.3 Vortices

In wall turbulence, vortices participate in the generation and preservation of wall
turbulence by interaction with wall or with neighboring coherent structures. Among them,
horseshoe and hairpin vortices are mostly discussed and studied. Many researchers have
made great efforts on this topic using different experiments and numerical simulations.

2.3.1 Horseshoe and hairpin vortices

2.3.1.1 General introduction

Theodorsen (1952) was the first to suggest the existence of horseshoe vortices (Fig. 2.9)
and the model of them in wall turbulence. He found that the perturbations of the spanwise
vortex lines of the mean flow can be stretched by the shear into intensed hairpin vortices.
His model is probably the simplest structural model but explains most of the features
observed in wall turbulence. He proposed that hairpin (or horseshoe) vortices are the
major momentum-transporting structures in shear turbulence. Theodorsen also proposed
that a hairpin vortex is initiated by the instability of the instantaneous velocity profiles
evolving into transverse vortices. These hairpin vortices were supposed to be tilted at
about 45◦ downstream, mainly due to the stretching of the mean velocity gradient and to
the mechanism of self-induction which lifts them up.

Fig. 2.9 – Illustration of horseshoe vortex (Theodorsen (1952))

Schubauer and Skramstad (1948), and Klebanoff et al. (1962), with the ′vibrating
ribbon′ technique, introduced a two dimensional disturbance in the form of a spanwise
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vortex varying harmonically in intensity with time in a boundary layer. Their results
on the process of deformation of this spanwise vortex into so-called U-shape loop, are
illustrated in Fig. 2.10. In the first stage, a straight vortex-line is assumed that has just
been separated, in stage 2 the slight deformation in the streamwise-spanwise plane of
the vortex causes a normal velocity component v as indicated by arrows. The top-part
of the vortex is transported into a region of high velocity, the valley-part is transported
into a low velocity region. This movement further produces a stretching effect in the
streamwise direction of the U-shape loop as shown in stage 3. We thus see that streamwise
components of the vortex develop, so that farther downstream eddies with axes inclined
in the streamwise direction occur, forming pairs with opposite sign of vorticity. The U-
shape loop is drifted away from the wall, with a velocity that is higher for the parts with
greater curvature. Consequently the tip of the U-shaped loop has the highest velocity
away from the wall (Fig. 2.11a). Arriving in region with increasing streamwise velocity,
due to the accompanying stretching of the U-shape loop, the vorticity increases. Due to
self-induction effect, the downstream tip of the vortex loop lifts away from the wall. Since
it then arrives in a higher mean velocity region, the tip of the loop becomes more peaked
due to a stretching effect. At the same time the local intensity of the streamwise and
normal velocity components around the tip is strongly increased. This is caused primarily
by the spanwise vorticity component of the vortex, which arises when the vortex tip drifts
away from the wall. It induces a dent in the U-loop vortex near its tip, and deform the
U-shape loop to the Ω shape. In both the plane view and the side view (Fig. 2.11b),
the tip of the stretched u-loop takes a typical bottle neck or Ω shape, again due to self
induction effects. Hama (1962) found a similar result by injecting dye at the wall in a
turbulent shear flow.

Fig. 2.10 – Illustration of U-loop vortex generation (Hinze (1975))

The flow visualizations of Nychas et al. (1973) were generally consistent with a hair-
pin vortex picture, although they were interpreted somewhat differently. Nychas et al.
(1973) recorded the trace of solid particles in a water flow, using a moving camera, and
identified transverse vortices in the outer layer which were formed at the top of a shear
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Three-dimension view

Two-dimension view (Plan and Side)

Fig. 2.11 – Illustration of deformation of a U-loop vortex to a Ω-shaped vortex, (Hinze
(1975)

layer extending from the near-wall region to the outer region. They attributed the shear
layer to low-speed fluid interacting with upstream high-speed fluid. They observed that
the transverse vortices were not triggered by low-speed streaks, but as the result of the
shear layer rolling up, instead of a pre-existing hairpin. This experiment also provided a
connection between the transverse vortices and the unsteady events in the near-wall layer
that are associated with the widely recognized bursting process.

Townsend (1976) found that the legs of horseshoe vortices would remain attached to
the wall during their development. The mean spacing between these legs is about 100 wall
units, but the aspect ratio of the horseshoe vortices is Reynolds number dependent (Head
and Bandyopadhyay (1981)). Moreover, these eddy structures appear more elongated at
higher Reynolds number and then are called hairpin vortices.

Smith (1984) extended the above mentioned Theodorsen’s model and reported hy-
drogen bubble visualizations of hairpin loops at low Reynolds number, while a formation
mechanism like Theodorsen’s was evidenced in homogeneous shear flow (Rogers and Moin
(1987) ; Adrian and Moin (1988)). However, Theodorsen’s model must be modified in the
strongly inhomogeneous region near a wall to include long quasi-streamwise vortices which
are about 50 wall units apart and connected to the head of the hairpin by vortex necks
inclined at roughly 45◦ to the wall (Robinson (1991),Robinson (1993)). Adrian (1991) per-
formed a PIV experiment to examine the structure of wall turbulence in the streamwise
wall-normal plane of a fully developed low-Reynolds-number channel flow. According to
their results, shear layers which were inclined at angles of less than 45◦ from the wall
can grow up from the wall. Regions containing high Reynolds stress were associated with
the near-wall shear layers. Typically, these shear layers terminated in regions of rolled-up
spanwise vorticity, which were explained to be the heads of hairpin vortices.

Robinson (1991) detected hairpin vortices using a pressure criteria in the direct nu-
merical simulation result obtained by Spalart (1988) in a flat plate boundary layer. He
noticed that these hairpin vortices generally appear more asymmetric than sketched in
the literature, having more a cane shape (with two legs of different length) than the
usual symmetric hairpin shape put forward by most previous authors. In recent years,
asymmetric hairpins or ‘cane′ vortices have been more commonly observed than symme-
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tric hairpins (e.g. Guezennec et al. (1987), Robinson (1993), Jeong et al. (1997), etc). It
should be noted that available evidence suggests that these structures (symmetric and
asymmetric hairpin and horseshoe vortices) are variations of a common basic structure at
different stages of evolution or in different surrounding flow environments.

Hairpin vortex generally travels in a group. This phenomena was first observed by
Bandyopadhyay (1980) and Head and Bandyopadhyay (1981), in the flow visualization
experiments on a zero-pressure-gradient boundary layer. Recently, more and more studies
support this finding. Smith et al. (1991) showed that a single vortex of sufficient circula-
tion could induced a trailing group of hairpins that are convected at the same speed as
the leading structure. His results are confirmed by Zhou et al. (1999) who studied a low
Reynolds number DNS datasets (Reθ = 180). Adrian et al. (2000), performed PIV expe-
riments in streanwise-wall-normal plane of a zero-pressure-gradient boundary layer over a
Reynolds number range of 930 < Reθ < 6845. They observed that packets of hairpin vor-
tex heads appear regularly in the viscous sublayer and logarithmic layers. Moreover, they
found that 5 to 10 hairpins are united as a group moving at a uniform streamwise velocity.
The length of the group can extend over 2δ. Christensen and Adrian (2001) performed
a series of PIV experiments in streamwise-wall-normal plane of a turbulent channel flow
at Reτ = 547 and 1734. Using linear stochastic estimation for the conditional average of
the two-dimensional velocity field associated with swirling motion, they concluded that
the mean structure consists of a series of swirling motions located along a line inclined at
12◦-13◦ from the wall, which is consistent with the earlier observations of packets of hair-
pin vortices. Marusic (2001) investigated this phenomenon using the attached eddy model
by calculating structure angles, two-point velocity correlations and autocorrelations and
comparing them to experimental measurements across a zero-pressure-gradient turbulent
boundary layer. His results showed that packets of eddies were required in order to match
measured boundary layer turbulence statistics near the wall. Tomkins and Adrian (2003),
using PIV measurements of streamwise-spanwise plane of a turbulent boundary layer in
the logarithmic layer and beyond at Reθ = 2500, showed long low-streamwise-momentum
zones enveloped by positive and negative vortex cores representing packets of hairpin
structures. Delo et al. (2004) investigated zero pressure gradient incompressible turbulent
boundary layer using a volumetric imaging technique in a low Reynolds number (Reθ =
700). They found a large scale behavior that is consistent with the statistical signature
of hairpin vortex packets embedded within the flow. They also found multiple swirling
motions inclined away from the wall and aligned in the streamwise direction.

2.3.1.2 Origin of hairpin vortices

Smith and Walker (1997) proposed a regeneration scenario in which parent hairpin
vortices spawn offspring hairpins, both behind the head (or ‘arch’) (spanwise) and beside
each of the legs (streamwise). In this scenario, vortex formation is driven by unsteady
separation near the wall (Doligalski and Walker (1984)), in which the parent hairpin
produces localized ejections near its head and legs. Then the resulting inflectional shear
flow is rolled up by Kelvin-Helmholtz instability (Helmholtz (1868)) and gives birth to new
hairpins. In contrast, Zhou et al. (1999) revealed that a sufficiently strong single hairpin
can generate a packet of hairpin vortices in both upstream and downstream direction of
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the parent hairpin. In this mechanism, first, the induction of the parent vortex generates
intense local shear layers, composed predominantly of spanwise vorticity. Then, these
shear layers roll up into arch vortices related with the existing streamwise-oriented legs.
Finally, they are stretched by the mean shear into offspring hairpin vortices which is
separated from the parent hairpin vortex. These observations are also consistent with the
conditional-average initial condition studied by Kim et al. (1987), who emphasized the
role of localized vorticity stretching above the parent legs in generating the offspring arch
vortex.

2.3.2 Streamwise vortices

2.3.2.1 General introduction

Besides horseshoe and hairpin vortices, the streamwise vortices (Fig. 2.12) is also
one of the principal elements of the turbulent sequence. The streamwise vortices has
been observed and studied in the near-wall region by numerous researchers with different
experiment and numerical methods.

Fig. 2.12 – Illustation of streamwise vortex (Blackwelder and Kaplan (1976))

Bakewell and Lumley (1967) found pairs of counter rotation vortices which are consi-
dered as the eddy structures. These vortices consist of the largest amount of energy as
observed by their proper orthogonal decomposition technique. Using hydrogen bubbles,
Kim et al. (1971) observed a rotational motion near the wall which they interpreted as
streamwise vortices. Blackwelder and Eckelmann (1979) found that the most probable
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stress pattern on the wall was consistent with counter rotating streamwise vortices. Smith
and Metzler (1983) filmed hydrogen bubbles in the cross plane near the wall and observed
frequent counter rotating motions in the near wall region. Aubry et al. (1988) used a
dynamical systems approach to study the behavior of streamwise vortices in the near-wall
region of turbulent boundary layers. They were able to achieve a great reduction in the
complexity of the observed flow by using a severely truncated modal decomposition and
by considering only the region very near the wall. Most of the earlier results were obtained
by assuming some symmetrical aspects of the flow or detection method, and consequently
observed symmetrical vortices in the resulting average structures. More recently it has
been pointed out that the symmetry was imposed by the observation method. Guezennec
and Choi (1989) found that the streamwise vortices do not necessarily appear in pairs
and rarely have the same amplitude.

2.3.2.2 Origin of streamwise vortices

Numerous theories (e.g. Bernard et al. (1993), Waleffe et al. (1993), Schoppa and
Hussain (2002), etc.) concerning the generation of the streamwise vortices exist. Most
of them can be classified into 5 groups : hairpin vortex related mechanism, streamwise
vorticity (ωx) sheet roll up, instability of curvature and shear stress near the wall, oblique
mode theory and streak instability.

Hairpin vortex related mechanism
Many researchers related the streamwise vortices to the hairpin vortices. They suggest

that streamwise vortices are the legs near the wall of the hairpin vortices or are secondary
vortices in the trailing legs near the wall of these hairpin vortices. Therefore, the origin
of streamwise vortices is the same as that for hairpin vortex which is already discussed
above.

Streamwise vorticity (ωx) sheet roll up
Brooke and Hanratty (1993) studied the spatio temporal velocity field from DNS

data. They found that an opposite-signed offspring vortex forms immediately underneath
a parent streamwise vortex due to the fact that no hairpin type vortices were found in
the studied field. Brooke and Hanratty demonstrated that the production of offspring
ωx is dominated by the vorticity generation term -(∂w/∂x)(∂u/∂y), where ∂w/∂x (wall-
normal vorticity ωy) is generated by the parent vortex inclination to the wall. Bernard
et al. (1993) found similar results by identifying streamwise vortices in instantaneous
velocity vector patterns (v, w) in successive spanwise-wall-normal planes. Moreover they
suggest that new vortices tend to form from strong wall-normal vorticity ωy, typically on
the sweep side of the parent vortex. Both of them proposed a scenario that streamwise
vortices are generated by the roll-up of streamwise vorticity ωx sheet by two-dimensional
self-advection. Two distinct mechanisms of this roll up motion were proposed : dipole-
like head-tail formation due to the wall image vorticity (Jimenez and Orlandi (1993) and
lifting of the wall-generated streamwise vorticity ωx (due to the no-slip condition) by a
parent vortex, as in vortex wall-rebound (Orlandi (1990)). In all studies cited here a parent
vortex is required. Schoppa and Hussain (1997) and Schoppa and Hussain (2002), however,
showed that vortex can occur in the absence of a parent vortex. Unlike other researchers,
they suggest that vortex generation does not involve streamwise vorticity generation at
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the wall (by the no-slip condition) or vorticity layer roll up. Instead, the vortex generation
is inherently three-dimensional, with direct stretching of near-wall streamwise vorticity
ωx sheets leading to streamwise vortex collapse.

Instability of curvature and shear stress near the wall

Streamwise vortices are also considered as a consequence of centrifugal and wave-
shear instabilities near the wall. Brown and Thomas (2002) showed that the condition
for Taylor-Gortler instability (sufficient concave curvature of near-wall streamlines) is
locally satisfied above y+ ≈ 50. Phillips et al. (1996) studied a Craik-Leibovich insta-
bility mechanism with streamwise-dependent perturbation growth on shear flows with
small-amplitude streamwise undulation. They obtained evidence of Craik-Leibovich-based
streamwise vortex formation near a (rigid) wavy wall. They suggested that the vortex is
locally representative of the fluctuating streamwise velocity field in near-wall turbulence.
Even the induction by spanwise vortices can induce streamline curvature or streamwise
waviness in flow field. It is not clear how the instability-generated streamwise vortices
make their contribution to this process. Hence, the necessary feedback mechanism for
successive episodes of instability and vortex generation is not apparent.

Oblique mode theory

Benney (1961) addressed the generation of streamwise-elongated regions of longitu-
dinal vorticity as a mechanism of transition to small-scale turbulence. He increased the
second-order perturbations by the nonlinear interaction of (initially unstable) primary
oblique modes in his theoretical studies in the case of a mixing layer. Benney found that
the generation of a streamwise-mean secondary flow is inherent to the nonlinear interac-
tion of three-dimensional oblique modes. The secondary motion consists of four counter-
rotating cells of longitudinal vorticity per spanwise-wavelength, which implies the genera-
tion of spanwise-alternating streamwise vortices. Different from Benney (1961), Schoppa
and Hussain (2002) found that the linear growth can also produce nonlinear interactions.
Jang et al. (1986) applied the ′Direct resonance′ approach of Benney and Gustavsson
(1981) to the growth of coherent (wave) motion in triple flow decomposition into mean,
coherent, and incoherent parts (Reynolds and Hussain (1981)). The direct resonance me-
chanism produced rapid growth of oblique wall-normal vorticity modes, but applied only
to modes which satisfy a resonance condition, and thus provided a scale selectivity. These
wall-normal vorticity modes can then interact non-linearly to form streamwise vortices
and streaks of the correct spacing. Subsequently, however, Waleffe et al. (1993) examined
direct resonance and noted that some non-resonant modes were amplified more than the
resonant modes, eliminating any scale selection due to the resonance mechanism. Further-
more, they found that the creation of streamwise vortices by the interactions of oblique
modes was dominated by the interactions of the wall-normal velocity modes, rather than
the wall-normal vorticity modes as required for scale selection in the direct resonance
theory.

Streak instability

Kline et al. (1967) studied low-speed fluids using flow visualization method. He ob-
served spatial oscillations of local U(y) shear layers of the Kelvin-Helmholtz type, prior
to a ′breakdown′ into smaller scales. Robinson (1991) investigated the evolution of ins-
tantaneous structures visualized via DNS. He proposed that lifted low-speed streaks, left
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behind by (faster advecting) streamwise vortices, contain a locally unstable U(y) shear on
the streak crest which then gives rise to new spanwise ‘arch′ vortices. One ‘leg′ of the arch
is said to be stretched into a streamwise vortex, which in turn generates a new unstable
streak in its wake to close the cycle. Accounting for the entire streak U(y, z) distribution
instead of U(y), such a streak-crest U(y) instability mechanism conceptually corresponds
to varicose modes, which exhibit a hairpin-type perturbation symmetry. As an alterna-
tive explanation of Robinson’s observations, new spanwise ‘arch′ vortices can form due to
growth of sinuous disturbances, accompanied by generation of new streamwise vortices.
In this scenario, an arch vortex is generated by rollup of an internal shear layer on the top
of a streak, which links up with the downstream end of a nearby streamwise vortex due
to the shear-induced collapse of the connecting vortex lines. Due to circulation pile-up
inherent to vorticity layers of finite extent, vortex rollup commences at the tip of the
internal shear layer, much like a wing-tip vortex. In this scenario, no perturbations are
required for internal shear layer rollup, and hence the arch formation is not actually an
instability process, although vorticity concentration by two-dimensional self-advection is
similar to Kelvin-Helmholtz instability.

Swearingen and Blackwelder (1987) proposed an alternative streak instability mecha-
nism. They analysed the streak ′breakdown′ induced by Gortler vortices and found a
dominant sinuous mode of transition. From flow visualization and measurements revea-
ling correlation of large fluctuation amplitudes with z inflections of U, they also inferred
that turbulence production is caused by local, ′wake-like′ instability of the U(z) shear
layers flanking low-speed streaks. Hall and Horseman (1991) and Yu and Liu (1991),
also investigated streak U(y, z) distributions generated by Gortler vortices (nonlinear).
They found that the growth rates of varicose modes are relatively small compared to
the dominant sinuous modes even with exceedingly strong streak-crest U(y) shear. Fur-
thermore, for streak U(y, z) distributions more representative of near-wall turbulence,
varicose modes are found to be stable. Finally, the dominant varicose instability requires
a formation of two-legged hairpin vortices which are indeed rarely found near the wall.
Yu and Liu (1991) also revealed that Gortler U(y, z) streak distributions, representative
of the Swearingen and Blackwelder experiments, are in fact unstable to (predominant)
sinuous modes. Applying the ‘minimal flow unit′ concept of Jimenez and Moin (1991) to
plane Couette flow, Hamilton et al. (1995) studied vortex regeneration. They observed
an interesting cyclic flow evolution and identified a three-step closed cycle : (i) streak
formation by streamwise vortices, (ii) streak ‘breakdown′ via (normal-mode) sinuous in-
stability, and (iii) ‘regeneration′ of streamwise vortices due to nonlinear interactions in
the post-breakdown flow.

Even with these theory, the origin of the streamwise vortices is still not clear and is
one of the remaining mysteries of near wall flows, and many other questions still remain
(e.g. the evolution of them in different directions, interaction with other structures...).

2.3.3 Statistical characteristics

These streamwise vortices inhabit the near wall region and appear randomly in space
and time. They have diameters ranging from 10 to 40 wall units and are centred at 10 to
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50 wall units from the wall. There has been considerable speculation that they may be
associated with other vortex layer. Based on the conditional analysis of hot-film signals,
Blackwelder and Eckelmann (1979) inferred that streamwise vortices evolve by counter-
rotating pairs near the wall. As shown in Fig. 2.12, their centres are located at about
25 wall units from the wall which agrees well with the result of early researchers (Gupta
et al. (1971), Lee et al. (1974) and Kreplin (1976)). Blackwelder and Eckelmann also found
that these vortices are separated by 50 to 100 wall units in the transverse direction, and
that their radius is about 15 wall units and their length of the order of 200 wall units.
Kim et al. (1987) found nearly the same sizes by the analysis of the vorticity fluctuation
profiles in a DNS of a turbulent channel flow.
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2.4 Organization of coherent structures

The first detailed description of organization and self-sustaining mechanism of coherent
structures was proposed by Theodorsen (1952) (Fig. 2.9). According to his theory, the
instability of the streamwise instantaneous velocity profiles is supposed to be the source
of creation of transverse vortices. Under the action of the mean velocity gradient and
3D character of the flow, these transverse vortices evolve rapidly into deformed vortex
tubes, looking like streamwise or hairpin vortices. Both vortical structures explain the
formation of the low speed streaks close to the wall. These low speed streaks seem to be
at the origin of the above-mentioned instability, through the ejection (or burst) process
which generally consists of several ejections (and vortices) and is responsible for the mass
transfer away from the wall. This outward mass transfer is necessarily compensated by
sweep motions toward the wall. The result of these two events occurring close to the
wall is a strong production of turbulence in this region. This wall generated turbulence
is then diffused away and dissipated slowly in the turbulent bulges. In the concept of a
regeneration cycle of turbulence, the production of new vortical structures is presently
attributed either to the instability of the instantaneous velocity profile due to the streaks
or to an induction mechanism by the already existing vortices. Some authors invoke both
mechanisms. At low Reynolds number, Jimenez and Pinelli (1999) have shown by DNS
that the self-sustaining of wall turbulence appears to be local to the near-wall region and
does not depend strongly on the outer part. Essentially, it involves vortical structures
(which play a central role), low speed streaks and ejections. It is still unclear whether this
is also true with a high Reynolds number.

Hinze (1975) suggested that a ′cyclic′ process with a distinct and recognizable average
spacing in both spanwise and streamwise direction is repeated randomly in turbulent
boundary layer (Fig. 2.13). He found that many features of this process are similar to the
laminar-turbulent transition process. Therefore he suggested that the ′cyclic′ process starts
with a horseshoe-shaped vortex which is beginning to be formed locally at the wall due
to a large-scale disturbance present in the outer region and outer part of the wall region.
This vortex is firstly deformed by the flow into a more and more elongated U-shaped
loop in the streamwise direction. Afterward, due to the self-induction process, the tip of
the loop moves away from the wall and then enters into regions with high streamwise
velocity. Consequently the vorticity increases due to stretching processes. At the same
time, an outward flow which has a strong normal velocity near the tip, appears between
the legs of the U-loop. Between the vortex and the wall, a local deceleration of the fluid is
effected. This outflow transports low-momentum fluid away from the wall, thus producing
a positive and considerable contribution to the shear stress. Moreover, at distances x+ =
5 to 30, an intense horizontal shear-layer is formed, showing up in the instantaneous
velocity profile of the u component as a dent with inflection points. The resulting local
inflectional instability and breakdown of the flow surrounding the original tip of the vortex
produces a turbulence burst. The pressure waves associated with the turbulence burst are
propagated through the whole boundary layer. The fluid with high turbulence intensity
produced during the burst is convected downstream and moves farther away from the wall.
Since at the same time high-momentum fluid is entering from upstream, the above fluid
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is convected in an accelerated flow or swept in downstream direction. The above pressure
waves may add themselves to the movement of fluid toward the wall, resulting in a sweep-
inrush flow. The inrush process has already been proceeded and initiated by a negative
normal velocity downstream of the tip of the U-shaped loop before its breakdown. The
sweep inrush flow makes a very small angle (5◦-10◦) with the wall, which is also observed
as the entry of higher momentum fluid in almost horizontal direction at the wall. Both
the ejection burst process and the sweep inrush flow contribute to the generation of shear
stress, and then are responsible for the turbulence production, mainly in the region y+

= 10 to 15 from the wall. The horizontal movement during the sweep inrush period will
be strongly retarded near the wall. It may eventually, in conjunction with the action of
overtaking faster moving fluid at the greater distance from the wall, develop into another
horseshoe-type vortex.

Fig. 2.13 – Organization model of Hinze (1975) in near wall turbulence

Smith and Walker (1997) (see Panton (1997)), based on the results of the early studies
from their group, found that hairpin vortices in a shear flow are able to interact with
other three-dimensional vortices to yield larger-scale flow structures, and regenerate new
vortices through an interaction with the viscous wall layer. Smith and Walker suggested
that hairpin vortex deformation is the key element and plays a central role. Based on the
summary of their study and also early studies of other researchers, Smith and Walker
summarized the key aspects of coherent structures in the near wall region and proposed
a model of organization and self-sustain of coherent structures. This model show how
vortex interactions sustain the development, evolution, and maintenance of a turbulent
boundary layer (Fig. 2.14)
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Fig. 2.14 – Organization model of Smith and Walker (1997) in near wall turbulence

The model starts from a hairpin vortex in the wall region. The evolution of the hairpin
vortex near the wall can induce low speed streaks. Depending on the strength of the ori-
ginal vortex, an alternative process occurs. If the original vortex is sufficiently strong or
close enough to the wall, a burst may occur as a result of the sustained action of the hair-
pin vortex in the wall layer. The process is reflected as a local viscous-inviscid interaction
that initiates close to the streak, appears to destabilize it, and culminates in the ejection
of a portion of the streak and secondary vorticity into the out region. If original vortex is
relatively weak and close enough to the wall, it can cause a streak to form. In this case,
the vortex action may be insufficient to precipitate a local wall-layer breakdown. Then, a
streak will either diffuse or be overrun by so-called ′subsequent impinging′ hairpin vortices
(generated independently upstream). The ′subsequent impinging′ vortices will create the
appearance of waviness and swaying which is a commonly observed behaviour for visuali-
zed low-speed streaks. Action by subsequent hairpin vortices can either refocus or buffet
the original streak. A refocusing can cause the original streak to grow further (possibly
combination or amalgamation with other adjacent streaks), and then a subsequent break-
down is possible. Therefore, no matter the strength of the original vortex, a breakdown
process will occur. This breakdown can lead to a so-called ′burst′ phenomena with ejection
of wall-layer fluid in proximity to a low-speed streak into the outer region. Moreover, this
breakdown constitutes a localized unsteady separation of the wall layer provoked by the
adverse pressure gradient at the surface associated with an advection wall-region vortex.
The subsequent viscous inviscid interaction can result in the formation of one or more
secondary hairpin vortices (Haidari and R. (1994), Asai et al. (1996)). This regenerative
process is essentially the same as is observed in the latter stages of transition (Haidari and
R. (1994)). When low speed fluid is ejected outward near a streak, an inflow of high speed
fluid (sweep) will occur to recover the mean velocity profile (Lu and Smith (1991)) which
will appear and be detected as a local acceleration of the flow. As shown in Fig. 2.14 , the
processes occurring in the near-wall are cyclical, although not periodic, wall-region vor-
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tices interact with and cause ejections of wall-region fluid, which subsequently roll up to
form new vortices by a viscous-inviscid interaction with the high speed, outer-region fluid.
This process defines a continuing cycle which contains both the elements which sustain
turbulence (three dimensional vortices) and the process for regeneration (viscous-inviscid
interactions).

Adrian et al. (2000) combined their own results and that from Zhou et al. (1999) and
proposed an idealized model of the organization and mechanism of wall turbulence based
on the hairpin packet theory (Fig. 2.15). In this model, hairpin packets originate at the
wall from a disturbance whose character is not specified except that it creates a pool
of low momentum at the wall (e.g. ejection) from another hairpin, a random pressure
fluctuation, or a culmination of flow induced by surrounding events such as wall tangent
flows that converge to a stagnation point and then erupt upwards. First, the primary
hairpin is formed. Then, it is stretched and intensified by the difference between the
streamwise velocity at its legs and its head, and grows continuously in time, changing
from a hairpin-shape to an omega-shape. If its strength is sufficient, it generates a new
upstream hairpin by inducing a strong, three-dimensional ejection event that interacts
with high-speed fluid behind the primary hairpin. The secondary hairpin increases in size
with time. After a certain time, the secondary hairpin begins to create a tertiary hairpin.
Besides the secondary upstream hairpin, the primary hairpin is also capable to generate a
new hairpin downstream, and even this hairpin may generate others (Zhou et al. (1999)).
The model implies that turbulence structures arise at the wall, and grow by continuous
straining of the hairpins, coupled with induction interactions within the hairpin vortex
packet. However, lack of information about interactions of these packet is a weakness of
this model.

Fig. 2.15 – Organization model of Adrian et al. (2000) in near wall turbulence, Uc1, Uc2
and Uc3 are the convection velocities of each hairpin packet respectively
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Chapitre 3

PIV Processing

3.1 PIV and SPIV

3.1.1 Introduction

PIV is a quantitative, non-intrusive method for the measurement of fluid velocity in
large areas. For the last 15 years, due to the strong improvement of laser, video camera and
computer, PIV has undergone major developments and has become a powerful technique
to investigate fluid mechanics (e.g. Adrian (1991), Westerweel (1997), Raffel et al. (1995),
Foucaut et al. (2004a), etc.). The conventional implementation of PIV uses only one
camera to record the motion of small tracer particles in a thin light sheet. By using such
a configuration, only two in-plane components of the fluid velocity can be obtained in
the plane of observation. The two components provide a wealth of information for many
flows, however it is sometimes rather difficult to understand the true physical significance
of the observed flow phenomena without the third component. This is particularly true
in turbulence. Therefore, it is necessary to measure all three components of the velocity
in order to understand the organization of flow. Moreover, the out of plane component
can introduce errors due to the optical projection (Lourenco (1986)). Stereoscopic PIV
have been developed to resolve these problems (Prasad and Adrian (1993)). In SPIV, a
stereoscopic camera system is used, in which the motion of the tracer particles is viewed
from two different directions. Due to the out of plane motion, the two cameras see the
tracer particles travel over slightly different distances. From the differences in the apparent
in-plane motion it is possible to reconstruct all three components of the displacement.
In the past decade, this method has been well developed and applied by a number of
researchers (e.g. Prasad and Adrian (1993), Soloff et al. (1997), Willert (1997), Westerweel
and van Oord (1999), Coudert and Schon (2001), etc.). It has been shown that the SPIV
method can reach as good an accuracy as standard PIV (Pérenne et al. (2004)). However,
the assessment of turbulence statistics with this technique has not been characterized in
detail. In this chapter, the details of different methods for processing SPIV images are
discussed and applied to near wall turbulence.
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3.1.2 Stereoscopic PIV algorithms

Besides the pinhole model (Wieneke (2005)) that was not tested in the present study,
three main algorithms are presently available to process SPIV images : Vector Warping
(Coudert and Schon (2001)), Image Mapping (Coudert and Schon (2001)) and the Soloff
technique (Soloff et al. (1997)). These three methods are detailed in Pérenne et al. (2004)
and are summarized in the flowchart in Fig. 3.1.

 PIV Processing  PIV Processing 

 Empirical Projection and Reconstruction 

 Image projection and interpolation 

 PIV Processing  Vector Projection 

 Geometric Reconstruction 

SoloffVector Warping Image Mapping

 Calibration  Calibration  Calibration 

 

Fig. 3.1 – Flowchart of Vector Warping, Image Mapping and Soloff method

3.1.2.1 Vector Warping and Image Mapping methods

Empirical back projection

To process SPIV measurements, one needs to build an accurate relationship between
the image plane of each camera and the object space. This is referred to as back-projection.
The function for this relationship is usually generated empirically by using a calibration
grid. It allows to map each point of the image plane onto the corresponding point in the ob-
ject space, which corresponds to the measurement point. The perspective back-projection
function was proposed by Raffel et al. (1995) as a ratio of second order polynomial. In
general, a least square fit between a large number of couples (object-image points) is used
to determine the coefficients of this function. Except for the variations in the analytical
form, this procedure is considered as standard. Recently, Fei and Merzkirch (2004) propo-
sed a third order polynomial function in order to increase the accuracy of this projection.
In the present study, a ratio of second order polynomial was chosen (Raffel et al. (1995)).
This polynomial method allows to take into account some optical distortion. In addition
to its higher order (at least equivalent to fourth order), the ratio of polynomial function
is based on an analytical projection function that takes into account the perspective ef-
fect of the Scheimpflug deformations. Both Vector Warping and Image Mapping use the
empirical back projection to project the vectors and images respectively into the object
space. Both methods use the geometric reconstruction to obtain the 2D3C velocity fields
(Willert (1997)). However, the procedures of the two methods are different and described
in detail below.

Vector Warping
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A uniform mesh is firstly generated in the object plane and projected to obtain a
deformed mesh in each camera image plane. This eliminates the need for any vector
interpolation processing during the reconstruction process. On each point of the deformed
mesh, the 2D2C-vector field is then calculated by using a standard PIV processing for
each camera. After this processing the two vector fields are back projected into the object
space. The velocity vectors of each camera are referenced at the same point of the initial
uniform mesh. Finally, a geometrical reconstruction method is applied to obtain a 2D3C-
vector field from the 2D2C-vector fields from each camera (Eq. 3.1-3.2) :

U = U1tanα2−U2tanα1

tanα2−tanα1

V = U2−U1

tanα2−tanα1

W = 1
2
(W1 +W2 + (U2 − U1)

tanβ1−tanβ2

tanα1−tanα2
)

with

tanα1 = X1−x
y−Y1

tanα1 = X2−x
y−Y2

tanβ1 = Z1−x
y−Y1

tanβ1 = Z2−x
y−Y2

(3.1)

(3.2)

The coordinate system for reconstruction is presented in Fig. 3.2. U, V and W are the
resulting three velocity components after reconstruction along the X, Y and Z coordinates
axis respectively. U1 and W1 refer to the two in-plane components obtained by 2D2C
analysis from camera #1 while U2 and W 2 are obtained from camera #2. (X1, Y1, Z1)
and (X2, Y2, Z2) are the positions of the lenses of camera #0 and camera #1 respectively
in the object space while (x, y, z) is the position of the measurement point.
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(X1, Y1, Z1) 
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(X2, Y2, Z2) 
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z 
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αααα2 

ββββ2 

Laser Sheet Plane 

 Fig. 3.2 – Reconstruction in a stereoscopic PIV configuration
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Image Mapping
The recorded PIV images are firstly back-projected, or ’mapped’, to the object space

pixel by pixel and interpolated on a new regular grid. The fields of 2D2C vectors are then
calculated directly from these images by using standard PIV processing on a common
regular grid. Subsequently, the geometric reconstruction method is used to obtain a 2D3C-
vector field from two 2D2C-vector fields as with the vector warping method. The same
reconstruction process is used for both methods. It should be mentioned that for both
image mapping and vector warping, the geometrical reconstruction needs the value of
some geometrical parameters (such as the position of the lens, see Eq. 3.2), which are
difficult to measure accurately on the experimental setup.

3.1.2.2 Soloff method

Optical distortion due to inaccurate optical alignment, lens non-linearity, refraction
by optical windows, fluid interfaces and other optical elements of an experiment can ge-
nerate inaccuracy by introducing spatial variations of magnification. It is important to
compensate for these distortions because fractional changes in the magnification have a
one-to-one effect on the accuracy of the measured velocity. Soloff et al. (1997) introdu-
ced a general empirical calibration procedure, which allows to obtain a specific matrix of
the distorted imaging system, and an algorithm to accurately compute the velocity fields
from measurements of distorted PIV images. From the calibration that is made by recor-
ding several images of a target, Soloff et al. (1997) proposed to optimize a mathematical
formalism that combines the projection and the reconstruction (Eq. 3.3).
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(3.3)

Here, the superscripts 1 and 2 indicate the left and right camera respectively. ∆X is the
displacement in the image plane (two-dimensions) and ∆x is the displacement in the object
plane (three-dimension). F refers to the corresponding mapping function. The subscripts
1 and 2 represent the two in-plane displacements while the subscripts 3 stands for the out-
of-plane displacement. The Soloff method is based on a third order polynomial function
for the in-plane components and a second order one for the out-of-plane component. At
least two target images (with an accurately known spacing) are necessary to calibrate the
Soloff method. In this study, three or five target images were used.

3.1.2.3 Comparison of the three methods

The main difference among the three methods is that the Soloff technique uses em-
pirical optical projection and reconstruction while Vector Warping and Image Mapping
use empirical optical projection but geometrical reconstruction. Considering Vector War-
ping and Image Mapping only, Vector Warping projects the vectors and Image Mapping
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interpolates images. Fig. 3.2 shows the flowchart of the three methods. The drawback of
the Warping or Soloff methods is that the PIV analysis is conducted in the image plane,
which leads to a local magnification that is not the same along the field. The interroga-
tion window, which has a constant size in pixel in the image plane, then varies in size
in the object space. On the contrary, the mapping method projects the images in the
object space, making the magnification constant, but it distorts the particle images and
introduces interpolation errors.

3.1.2.4 Calibration and correction of positions of the image planes

Calibration is a way to determine the relationship between the position in the object
space and that in the image plane. For this purpose, it is necessary to acquire images of a
calibration target whose location in the object space is known. By using these calibration
targets, a generalized function to project the data from the image plane onto the object
space can be found. According to the literature, a second-order polynomial (Westerweel
and van Oord (1999)) and a second-order ration of polynomial (Willert (1997)) were used
for a 2D calibration while a cubic and a quadratic polynomial (Soloff et al. (1997)) and
bicubic splines (Lawson and Wu (1997)) were developed for a 3D calibration. In an expe-
riment, however, it is difficult to make the position of the light sheet and the calibration
plane exactly the same. There are always small offsets and tilts between calibration and
measurement planes. Coudert and Schon (2001) proposed a method to correct the offset
and tilt between them. The method works as follows. A set of single exposure PIV images
from each camera recorded at the same time is firstly back projected as in the mapping
method. A standard PIV processing is then used to calculate the displacement fields of
the particle images illuminated at the same time by the same laser pulse. If the measure-
ment and the calibration planes are perfectly superimposed, the mean displacement is zero
(computed from about 50 vector fields). Normally one can observe a small displacement
from which an offset and tilt between the calibration and measurement planes can be
deduced. Following that, a correction procedure is carried out to improve the projection
function.

3.2 Experiment description

3.2.1 Wind tunnel

The experiment was carried out in a boundary layer wind tunnel (Carlier (2001))
(Fig 3.3). This wind tunnel is 1x2 m2 in cross section and 21.6 m in length. In order to
use optical methods, the last 5 m of the working section are transparent on all sides. An
air-water heat exchanger is located in the plenum chamber to keep the temperature within
±0.2 ◦C. The turbulent boundary layer is studied on the bottom wall of the wind tunnel
test section. This flow presents a tiny longitudinal pressure gradient which is negligible and
has no effect on the near wall turbulence. The Reynolds number based on the momentum
thickness Reθ can reach 20600 with a boundary layer thickness δ of about 0.3 m. The
external velocity in the testing zone of the wind tunnel can vary from 0 to 10 m/s with a

37



3.2. Experiment description Chapitre 3. PIV Processing

stability better than 0.5%.

Fig. 3.3 – Front view of the turbulent boundary layer wind tunnel

3.2.2 SPIV setup

The purpose of the experiment was to obtain 3C velocity fields in planes parallel to
the wall of a boundary layer, as close as possible to the wall. A Nd-YAG pulsed laser, with
2x250 mJ of energy at 15 Hz, was used to generate the light sheet. This light sheet was
shaped using a conventional optical set-up (one sperical and one cylindrical lens) with a
thickness of about 0.75 mm. The light sheet passed through a lateral window located 1
m away from the measurement area. Two PCO SENSICAM cameras (1280*1024 Pixel2)
were positioned under the wind tunnel as shown in Fig. 3.3. The cameras were set with
the Scheimpflug conditions (Willert (1997)). The H and L parameters defined in Fig. 3.4
are : H ∼= 52 cm and L ∼= 50 cm. These distances, which are necessary for the geometrical
reconstruction, are measured with respect to the centre of the field of view. The line joining
the two cameras is parallel to the main flow (camera #1 being upstream). The flow is
from left to right in the images delivered by both cameras. The light sheet propagates in
the test section along z. Both cameras stand on the same ground under the wind tunnel
upstream and downstream of the light sheet in order to obtain symmetric light scattering
conditions. The focal length of the camera lenses was 105 mm. The field of view extends
over 6.5x4.0 cm2 and f# = 5.6 is used for both cameras during the experiments. The
average magnification is approximately 50 µm/pixel in the object space. The depth of
field is 3.5 mm. The focus was set at the middle value of the explored y domain and
kept there for the remainder of the experiment (including the acquisition of calibration
images). The experiments were performed at U = 3 m/s (free stream velocity). With
this velocity, the Reynolds number Reθ , based on the momentum thickness, is 7800. The
friction velocity uτ is of the order of 0.12 m/s. A wall unit (∆y+ = 1) is 0.125 mm. Ten
planes parallel to the wall were characterized. A total of 500 image pairs in each plane
were recorded for each camera. The first plane was placed as near as possible to the wall
while avoiding too much reflections. The spacing between two neighbouring planes was
about 4 wall units.
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Fig. 3.4 – Setup of the experiment and frame of reference for data analysis

In this experiment, the airy disk diameter is about 8.2 µm, which gives a size of the
order of 1.6 pixel according to the theory of Adrian (Adrian (1991)). In order to measure
this size more precisely, the auto-correlation of the particle image was calculated. Fig. 3.5
shows the PDF of the particle image size. In this figure, σsp and σst are the standard
deviations of the particle image size in the streamwise and spanwise direction respectively.
The curves follow nearly a Gaussian distribution. In the present study, two times standard
deviation is used as the particle image size. Therefore, the particle image size is about
1.5 pixels and 1.3 pixels in the streamwise and spanwise direction respectively. This slight
anisotropy is attributed to the stereoscopic distortion. As the particle is considered as a
sphere, the average diameter is about 1.4 pixels.
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Fig. 3.5 – PDF of the particle image size
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3.3 SPIV processing

3.3.1 Method definition

As mentioned above, various methods including Image Mapping, Vector Warping and
Soloff are available to obtain 2D3C results from SPIV. For each method, there are also
several different choices of tools or parameters. Therefore, it is necessary to select one
method with the best set of parameters for computation. In this section, the image number
10 of plane 5 was used in the first step to make a comparison of the instantaneous velocity
fields provided by the different processing choices. Then, a statistical comparison was
conducted using PDFs and spectra computed on the first 100 images of the plane 5.

The following methods were compared : Image Mapping with Surfacial (Ursenbacher
(2000)) or Whittaker (Scarano and Riethmuller (2000)) method to interpolate the image,
Vector Warping and Soloff. For each method, the PIV analysis was performed with Integer
and sub-pixel Whittaker shift. In the case of Soloff, 3 and 5 calibration planes were taken.
Table 3.1 lists the details of the methods and their abbreviations used in this paper. For
all the methods, a three-step multi-grid approach was employed (window sizes : 64*64,
32*32 and 32*32 pixel2).

Short name Method Specialty Shift method
MSI Image Mapping Surfacial interpolation Integer shift
MSW Image Mapping Surfacial interpolation Whittaker shift
MWI Image Mapping Whittaker interpolation Integer shift

MWW Image mapping Whittaker interpolation Whittaker shift
S3I Soloff 3 calibration planes Integer shift
S3W Soloff 3 calibration planes Whittaker shift
S5I Soloff 5 calibration planes Integer shift
S5W Soloff 5 calibration planes Whittaker shift
WI Vector Warping Integer shift

WW Vector Warping Whittaker shift

Tab. 3.1 – Methods description

As described earlier, calibration and its correction should be carried out before PIV
processing. In the present study, 60 pairs of the first images of camera #1 and camera #2
are sufficient to calculate the average offset and tilt between calibration and measurement
planes with a good convergence. By taking this value into account, the projection functions
were corrected and the real position of the light sheet was determined (see Table 3.2).
Fig. 3.6 shows the misalignment error between calibration plane 7 and laser plane 5 as an
example. The vectors in Fig. 3.6 are quite constant, which means that the calibration and
measurement planes are nearly parallel. The mean displacement in Fig. 3.6 is 0.58 mm,
which implies a separation between calibration plane 7 and laser plane 5 of about 0.29 mm
in depth (as the Scheimpflug conditions was used). This distance is taken into account in
the correction process (Coudert and Schon (2001)). The gain in accuracy provided by the
correction will be discussed further downstream.
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Fig. 3.6 – Offset and tilt between calibration (No.7) and measurement planes (plane 5)

# Calibration position [mm] Laser position [mm] Laser position [Wall units] Dt [µs]
1 0.68 1.81 14.5 600
2 1.15 2.32 18.5 600
3 1.61 2.78 22.2 400
4 2.07 3.29 26.3 400
5 2.53 3.71 29.7 350
6 2.99 4.16 33.3 350
7 3.42 4.63 37 350
8 3.91 5.07 40.6 350
9 4.37 5.5 44 300
10 4.83 5.99 48 300
11 5.29

Tab. 3.2 – Absolute positions of the calibration and measurement levels

In order to select suitable calibration plane(s) for each method, the location of each
calibration and laser plane are listed in Table 3.2. Laser plane 5 is considered as an
example. Based on Table 3.2, calibration plane 7 was used for Image Mapping and Vector
Warping, calibration plane 6, 7, 8 were used for the Soloff method with 3 calibration planes
and calibration plane 5, 6, 7, 8, 9 were used for the Soloff method with 5 calibration planes.
Table 3.2 gives also the PIV time delay for each plane, which was optimized to give a
mean displacement of the order of 10 pixels in each field.
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3.3.2 Comparison between various methods

3.3.2.1 Accuracy

The comparison starts by comparing the accuracy of computation of the different me-
thods. As the exact result is unknown, only relative comparisons between the different
methods are possible. For this purpose, the two following error estimations were compu-
ted :

- Mean value of the modulus :

E1 =

∑N
i=1

√

(ui1 − ui2)
2 + (vi1 − vi2)

2 + (wi1 − wi2)
2

N
(3.4)

- Standard deviation of the modulus :

E2 =

√

∑N
i=1 (

√

(ui1 − ui2)
2 + (vi1 − vi2)

2 + (wi1 − wi2)
2 − E1)2

N − 1
(3.5)

Here, (u1, v1, w1) and (u2, v2, w2) are the three instantaneous velocity components for
respectively the reference and compared method. N is the total number of velocity vectors
in the field. The values of E1 and E2 for the different methods are presented in Table 3.3.

# line Reference Comparing with E1 (pixel) E2 (pixel)
1 WI WW 0.12 0.35
2 S3I S3W 0.11 0.22
3 MSI MSW 0.09 0.58
4 MWI MWW 0.11 0.59
5 MSI MWI 0.15 0.61
6 MSW MWW 0.18 0.6
7 MWI MSW 0.17 0.59
8 S3I S5I 0.04 0.26
9 MSI WI 0.59 0.7
10 WI S3I 0.13 0.63
11 MSI S3I 0.75 0.67

Tab. 3.3 – Accuracy of the different methods

Table 3.3 shows that the differences of the two parameters E1 and E2 between Integer
shift and Whittaker (sub-pixel shift) are quite small for both Vector Warping (line 1)
and Soloff methods (line 2). This can be explained by the fact that the Whittaker shift,
which is expected to reduce the peak locking, does not show any strong improvement
from a statistical point of view (Foucaut et al. (2004b)). The peak-locking effect appears
mainly on the PDF of the velocity. This will be discussed in the next paragraph. As
far as the Image Mapping method is concerned, the comparison between two different
shifts (line 3 and 4) gives a smaller value of E1 than the comparison of two different
interpolation methods (line 5 and 6). The values of E2 of lines 3 and 4 keep the same
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order of magnitude but are generally two times higher than those with Vector Warping or
Soloff methods (line 1 or 2). This suggests that both interpolation and shift methods have
strong influence on Image Mapping. Clearly, several successive interpolations (i.e. MWW
or MSW) can damage the shape of the particle images and thus the correlation peak.
However, it would be possible to couple both interpolations necessary for the projection
and the sub-pixel shifting at the same step. The fact of using only one interpolation
for both operations should improve the accuracy but increase the computational time
(interpolation is necessary at each pass of computation). As shown in line 8 of Table 3.3,
the results of the Soloff method with 3 calibration planes and 5 calibration planes are
similar to each other. This implies that, in the present configuration (light sheet thickness,
low distortion), it is not necessary to use 5 planes to calibrate the Soloff method. The
comparison between MSI and WI in line 9 shows high values of both E1 and E2. These are
introduced by the projection of images and strong differences are evident in the results.
The comparison between Vector Warping and the Soloff methods (line 10) shows a small
value of E1 and a large value of E2. The difference between Soloff and Vector Warping
can only be attributed to the reconstruction that decreases the noise effect in the case of
Soloff. This is confirmed by the comparison between MSI and S3I (line 11), which shows
high values of E2 but also of E1. Besides the influence of the projection of images already
evidenced in line 9, the reconstruction is the other source of this difference.

3.3.2.2 Effect of sub-pixel shift

As shown in Table 3.3, the effect of sub-pixel shift is not evidenced by the comparison
of lines 1 to 4. The reconstruction probably has a filtering effect, which decreases the
peak locking. Therefore, the histogram of the decimal part of the velocity, in pixels, is
calculated to analyse the effect of this peak locking. Fig. 3.7 compares the histogram of
the 2D2C PIV analysis (before reconstruction) for cameras #1 and #2 (C1 and C2) in the
case of Soloff methods : S3I and S3W. Foucaut et al. (2004b) show a strong improvement
when Whittaker interpolation is used for sub-pixel shifting. In the present case, this
improvement is less visible probably due to a particle image diameter smaller than two
pixels (Foucaut et al. (2004b)). Even if the Whittaker interpolation is used, a small peak
locking effect can still be shown for the u component (u2C). This effect is still larger for
the w component (w2C). Fig. 3.8 shows the histogram of the decimal part of the velocity
after reconstruction by the Soloff method for the streamwise component u, the out-of-
plane component v and for the spanwise component w (less affected by the stretching
of the SPIV). Due to the perspective effect of SPIV, a mean magnification was used to
convert physical units to pixels. It is clear that the peak locking is filtered and that S3I
and S3W give essentially the same histogram for both components presented in Fig. 3.8.
Only some small oscillations remain due to a combination of peak locking, projection
(variation of magnification along x ) and reconstruction (between both 2D2C fields). To
analyse the effect of these oscillations, the PDF of the velocity fluctuations can be studied.
Furthermore, to characterize the measurement noise level, it is also interesting to look at
the influence of the processing algorithm on the spectrum (Foucaut et al. (2004a)) of
the velocity fluctuations. For this purpose, the S3I, S3W, MWI and WI methods were
selected from the previous analysis to process 100 images pairs, which were used to obtain
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the spectrum and PDF of the three velocity components.
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Fig. 3.7 – Decimal part histogram of the component u (a) and v (b) of each camera
before projection and reconstruction

3.3.2.3 Spectra

The component u and v are computed from U1 and U2 (Eq. 3.1). As the angle of
view is close to 45◦ in the present experiment, the behaviour of these two components
is similar. The w component is perpendicular to the plane of the cameras and it is thus
less affected by the stereoscopic reconstruction. In Fig. 3.9, E11, E22 and E33 are spectra
of the u, v and w components respectively and k is the wave number. According to the
theory of Foucaut et al. (2004a), kc is the PIV cut-off wave number (kc = 2.8/SIW , where
SIW is the interrogation window size). The PIV results are qualified only in the region
k ≤ kc. Fig. 3.9 shows that the results of the four selected methods are almost the same
in the valid region of PIV. The noise level, that is attained by the spectrum in the high
frequency part, is very close for each method. As in 2D2C PIV (Foucaut et al. (2004b)), a
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Fig. 3.8 – Decimal part histogram of the component u (a), v (b) and w (c) after projection
and reconstruction

sub-pixel shift does not improve the spectrum as compared to the integer shift. It means
that from the spectral point of view, all these methods can be used.
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Fig. 3.9 – Comparison of the velocity spectra of the component u (a), v (b) and w (c)
for different methods

3.3.2.4 PDF

In Fig. 3.10, the PDFs of WI, S3I and S3W are very similar but MWI seems rather dif-
ferent from the others. The differences cannot be attributed to the reconstruction because
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Image Mapping and Vector Warping use the same reconstruction process. They may arise
from the fact that the Image Mapping method interpolates the deformed images before
PIV processing whereas the Vector Warping and Soloff methods are performed directly on
the CCD images. As explained before, the perspective effect generates a difference in phy-
sical window size along the field and thus introduces a kind of smoothing in the statistics.
This effect is clearly visible in Fig. 3.10a and 3.10b as in Fig. 3.7. Moreover, the image
Mapping method makes the magnification constant. As a consequence, particle images
that are slightly affected by the interpolation are now deformed. This probably induces
the modification of the peak locking that appears in Fig. 3.10c. The method S3W using
the Whittaker sub-pixel shift does not efficiently remove the peak locking. Fig. 3.11a-3.11c
show the PDF in pixel of the 3 components at three typical wall distances. y+ = 14.5
(plane 1) and y+ = 48.0 (plane 10) are the closest and furthest to the wall in the range
of wall distances studied, while y+ = 29.7 is in the middle. Some fluctuations similar
to peak-locking are clearly visible in Fig. 3.11a and 3.11c. However, the fluctuations do
not appear in Fig. 3.11b because the out-of-plane component presents a smaller dynamic
range. They are probably smoothed out in this case. In Fig. 3.11a, the result at y+=14.5
shows different behaviour from those at y+ = 29.7 and 48.0. This difference mainly arises
from the fact that the dynamic range and the ratio of this range to the mean velocity of
the u component, is very large in this position, which causes the large range of the os-
cillations. Besides, the large velocity gradient at this position also has some influence. In
Fig. 3.11c, small peaks can be found in the PDF at y+ = 14.5, which results mainly from
the large velocity gradient at this position. The reduced amplitude of the peak locking
benefits from the decrease of the velocity gradient away for the wall. Furthermore, the
periodic distance of the main peaks is equal for all three planes, which implies a nearly
constant dynamic range of the velocity fluctuation w′.

To study the magnitude of the velocity gradient and its variation with the wall dis-
tance, Fig. 3.12 shows the difference of particle displacement normalized by the particle
image size between the top and the bottom of the light sheet which has a thickness of
about 0.75 mm (e.g. Keane and Adrian (1990), Foucaut et al. (2004b)). In 2D2C PIV,
the criterion proposed by these authors to minimize the effect of gradient is Du/di < 0.5.
In the present experiment, this parameter, computed from the mean gradient using the
Van-Driest model (Van Driest (1978)), decreases as the distance to the wall increases and
it seems acceptable when reaching y+ = 26.3 (plane 4). But there are still oscillations
of the PDF in this plane. This is probably due to the fluctuation of the instantaneous
velocity gradient around this mean value and to a residual peak locking due to the particle
image size (about 1.4 pixels).

3.3.2.5 Time consumption

The time needed by the different methods was computed and is listed in Table 3.4.
It is estimated from a computation on a small sample of images (based on a computer
with a PIII 800 processor and 256M RAM). The methods with Whittaker shift take the
longest time for computation, about 4 times longer than the rest. For the Image Mapping
method, Whittaker interpolation needs much more time than Surfacial interpolation when
the computation is carried out with the same shift method.
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Fig. 3.10 – Comparison of the PDF of the normalized fluctuations of the three component
u (a), v (b) and w (c) for different methods

3.3.3 Method selection

Based on the above results, the following arguments can be put forward : Regarding the
Image Mapping method, the procedure of image interpolation can introduce errors that
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Fig. 3.11 – PDF of the fluctuations of the three component u (a), v (b) and w (c) in
pixel at three typical wall distances : y+ = 14.5 (plane1), y+ = 29.7 (plane5) and y+ =
48.0 (plane10)
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Fig. 3.12 – Difference of velocity between the top and the bottom of the light sheet versus
y+

Method MSI MSW MWI MWW S3I S3W S5I S5W WI WW
Time estimated for 500
image pairs (hours)

20 100 50 130 20 110 20 110 25 110

Tab. 3.4 – Time consumption of the different methods

are impossible to avoid. Proper interpolation method such as Whittaker reduces the errors
and thus improves the accuracy of the results. In addition, for window shifting, Whittaker
is a sub-pixel shift that in principle is more accurate than the Integer shift. As discussed
before, the Image Mapping method using Whittaker interpolation and Whittaker shift
cannot be used together because two successive interpolations affect the correlation peak
shape. Therefore, the most accurate method should retain Whittaker interpolation only
once : for the image mapping or for the window shifting. However, it needs much more
computational time in both cases compared to other interpolation techniques. Focusing
on the PDFs in Fig. 3.10, it is clear that the mapping method causes more peak locking
than the methods based on vector projection.

With respect to the Vector Warping method, when Whittaker shift is used, the com-
putation is heavier and the accuracy of the results does not improve much. Therefore,
to save computer time it is recommended to use Integer shift when the Vector Warping
method is selected.

As for the Soloff method, Table 3 shows that the Soloff with 5 calibration planes and
with 3 calibration planes give pretty similar results. Therefore, it is not necessary to use 5
calibration planes. Additionally, the difference between the Whittaker and Integer shifts
is so small that the Whittaker shift is useless in view of the extra computation effort.
Consequently, the Soloff method with 3 calibration planes and Integer shift appears as
the best compromise when the Soloff method is considered.

When using Image Mapping and Vector Warping methods, it is required to measure
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geometric parameters such as the angle of the camera and the distances between the
optical centres of camera lenses and calibration planes. The errors on the measurement
of these parameters will affect the result of both methods. For the Soloff method, these
parameters are not required. In this regard, the Soloff technique avoids these measurement
errors and thus possibly provides more accurate results. Fei and Merzkirch (2004)) found
a method for determining the viewing direction in the ’angular displacement’ stereoscopic
system by means of a digital imaging procedure. The method appears to improve the
accuracy of results by avoiding the direct measurement of geometrical parameters of the
set-up. They found that their results are quite similar to that of the Soloff method, which
supports the reliability of the Soloff approach.

As a conclusion of this synthesis, it appears that the Soloff method with 3 calibration
planes and an Integer shift (S3I) is the best choice in the present state of the art. It
was thus used for the present analysis of all 10 planes. Using this method, the correction
technique proposed by Coudert and Schon (2001) could be studied. Fig. 3.13 and 3.14
show the efficiency of this correction. The SPIV algorithm was applied to plane 5 (y+ =
29.7) using two different sets of calibration planes : (4 to 6) called N◦ 5 expected when
the experiment was done and (6 to 8) called N◦ 7 which was selected according the result
of correction (Table 3.2). As shown in Table 3.2, the calibration plane N◦ 5 is shifted by
about 1.2 mm from the light sheet location N◦ 5 while the calibration plane N◦ 7 is much
closer. The results are computed with correction (noted C) or without correction (noted
NC). Fig. 3.13 illustrates the PDF of the u, v and w components in each case. When the
correction is applied, the PDF is comparable whatever the calibration plane is. Fig. 3.14
leads to the same conclusion from the spectrum. Table 3.5 presents the comparison of the
parameter E1 and E2 (see Eq. 3.2) for the correction. Line 1 shows a small difference
between the results obtained with correction from the two calibration planes N◦ 5 and N◦

7. If calibration plane N◦ 7 is used without correction, the differences with the corrected
results increase a little but stay acceptable (line 2). The small increases of E1 and E2 come
from the distance of 0.3 mm (about 6 pixels) between the calibration plane N◦ 7 and the
measurement plane N◦ 5. In line 3 and 4, when the calibration plane N◦ 5 is used without
correction the results are remarkably different from other combinations. Considering the
fact that the correction of calibration only takes little time but can improve the accuracy
of the results, correction is strongly recommended.

# line Reference Comparing with E1 (pixel) E2 (pixel)
1 CP7 C CP5 C 0.11 0.4
2 CP7 NC CP7 C 0.24 0.5
3 CP5 NC CP5 C 0.66 0.63
4 CP5 NC CP7 C 0.67 0.66

Tab. 3.5 – Accuracy of the correction process
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Fig. 3.13 – Comparison of the PDF of the normalized fluctuations of the component u
(a), v (b) and w (c) effect of correction
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Fig. 3.14 – Comparison of the spectra of the component u (a), v (b) and w (c) effect of
correction
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3.4 Summary

The present experiment of Stereo PIV was carried out to investigate a fully developed
turbulent boundary layer along a flat plate. This experiment recorded 500 image pairs for
each of 10 planes parallel to the wall. The studied wall distance is in the range from y+

= 14.5 to 48 with a spacing about 4+. The Reynolds number based on the momentum
thickness Reθ was 7800. Three methods are available to analyse the database, namely
Image Mapping, Vector Warping and the Soloff technique. They were compared in order
to select the most suitable method of analysis for our database. The comparison took into
consideration different interpolation and shift methods. The whole comparison was based
on the estimation of computation time, the estimation of accuracy, the spatial spectra
and velocity PDFs. The results favoured the Soloff method over all the others. For the
Soloff method, the difference between Whittaker and Integer shift PIV processing and the
difference between using 3 and 5 calibration planes was negligible. As a result, the Soloff
method with 3 calibration planes for projection and reconstruction, using integer shift for
PIV analysis was chosen as the most suitable method for the database. The improvement
provided by the correction process (Coudert and Schon (2001)) was presented. Recently,
Calluaud and David (2004) and Wieneke (2005) proposed a method based on the pinhole
model. This model is based on previous work in the field of computer vision. It can in-
corporate some limited optical distortion and has the advantage of using less parameters
in the least square fit than the Soloff method (24 instead of about 80). Scarano et al.
(2005) compared this method with the image warping method with misalignment correc-
tion. They found that the two methods are practically equivalent for a correctly aligned
system. In the present study, the Soloff method was found to be the best compromise to
analyse turbulent PIV data, but the differences with the other two methods (mapping
and warping) were fairly limited. The main advantage for the moment of the Soloff me-
thod is its generality and overall accuracy and it seems that any reconstruction method,
properly applied leads to errors smaller than the PIV processing errors. In the present
study, when processing the database of SPIV, three passes are used to calculate standard
2D2C vector field. The window sizes are respectively 64*64, 32*32, and 32*32 (pixel2)
with a final spacing of 12 pixel (0.6 mm) corresponding to a mean overlapping of 67.5%.
Here, the 67.5% overlapping is used to obtain better spatial resolution for detection of
coherent structures in future work. The results were saved in a database built using the
Pivnet 2 Netcdf format (Willert (2004)).
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Chapitre 4

Statistical Analysis of the Velocity
Field

Using the selected S3I method with correction, a statistical analysis was performed
to obtain the mean streamwise velocity, the Reynolds stresses, the velocity spectrum and
PDF as well as skewness and flatness in the 10 planes. These statistical results were
then compared with those of Hot Wire Anemometry (Carlier (2001)), numerical models
(Van Driest (1978)) and DNS (Spalart (1988)). Plane 4 (y+ = 26.3) was chosen to look
at the spectra and PDF because it is in the middle of the range of wall distances studied
and it corresponds to the limit of validity for the velocity gradient inside the light sheet
(Fig. 3.12). In addition, the joint PDFs and velocity angles were computed and compared
with the results of Kahler (2004).

In the rest of the thesis, the result which is normalized using the skin friction velocity
uτ (=

√

τw/ρ, where ρ is the density of the fluid) and ν, is donoted with a superscript +.

4.1 Mean streamwise velocity

Fig. 4.1 shows the mean streamwise velocity profile in the near wall region (y+ <
50). In this figure the solid symbols correspond to Hot Wire measurement (Carlier and
Stanislas (2005)) for different Reynolds numbers (Reθ = 11400 (N), 14800 (�) and 20600
(•)). The hollow symbols correspond to the 10 planes measured with PIV. The straight
line represents the viscous sub-layer equation u+ = y+. The dot line represents the Van
Driest model (Van Driest (1978)). This figure shows that the mean velocity obtained by
SPIV is in perfect agreement with that of Hot Wire Anemometry and Van Driest model.

4.2 Velocity fluctuations

Besides the mean streamwise velocity, the fluctuations of all three components are
also basic characteristics of the turbulent boundary layer and thus need to be analysed.
Fig. 4.2 shows a comparison of the profiles of the fluctuations obtained by the two methods
(SPIV and HWA). These results are also compared with the results of the DNS by Spalart
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Fig. 4.1 – Comparison of mean streamwise velocity distributions of SPIV (♦) and Hot
Wire Anemometry 11400 < Reθ < 21000 ( N � •) [Carlier (2001)] ; Viscous sub layer (-) ;
Van Driest model(...)

(1988). The Reynolds number of this simulation is Reθ = 1410. The
√

v′2 profile is very
similar for all the methods down to y+ = 15. Under this value, no PIV measurements is
available and the hot wire starts to show a wall interference due to the probe size. For
√

u′2 and
√

w′2, the results of the hot wire measurement are slightly higher than those of
the DNS. The result obtained with SPIV (Reθ = 7800) is between both, but closer to the
HWA. The differences with DNS are attributed to the low Reynolds number influence.

However, when it is very close to the wall, the difference of
√

v′2 or
√

w′2 between the
results of SPIV and HWA increases. The main reason is that X-wire probes show an
increasing bias when approaching the wall. This is due to wall interference and velocity
gradients at the scale of the probe (0.5 mm). Considering this effect, the results reveal an
excellent behaviour of the SPIV measurement.

4.3 Reynolds shear stress

As is well known, Reynolds shear stress is a critical parameter of the turbulence.
Fig. 4.3 shows the data obtained by the two experimental methods (HWA and SPIV) com-
pared with the results of DNS (Spalart (1988)) and with the Van Driest model (Van Driest
(1978)). This model has been improved taking into account the weak pressure gradient of
the test section ∂p/∂x = 0.057 pa/m (∂p+/∂x+ = 3.65×10−4). The results of SPIV are
similar to those of the Van Driest model and of the DNS. However, the results of HWA
deviate considerably from the others, which once again shows the influences of the near
wall interference and gradients at the scale of the probe. This explains the low values of
the turbulent shear stress of HWA. Small oscillations are visible in the PIV results due
to the lack of convergence on this small term.
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Fig. 4.2 – Comparison of the profiles of fluctuations of SPIV Reθ (♦),Hot Wire Anemo-
metry (�) [Carlier (2001)] and DNS (-) [Spalart (1988)]
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Fig. 4.3 – Comparison of mean Reynolds shear stress of SPIV (♦), Hot Wire Anemometry
11400 < Reθ < 21000 (N�•) [Carlier (2001)], Van Driest model (...) [Van Driest (1978)]
and DNS (-) [Spalart (1988)]
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4.4 Spectra

For the comparison of the spectra, the results at y+ = 14.5 and 26.3 (plane 1 and 4
respectively) were used. The wall distance y+ = 14.5 was selected because it is the closest
to the wall. The wall distance y+ = 26.3 was chosen because it is in the middle of the field
investigated and it corresponds to the limit of validity for the velocity gradient inside the
light sheet (Fig. 3.12).

Fig. 4.4 and 4.5 present the comparison of spectra obtained from SPIV and from HWA
using a local Taylor hypothesis (Hinze (1975)). In Fig. 4.4 and 4.5, kmin is the minimum
wave number accessible with PIV (kmin = 2π/Lf , Lf being the field size) and kc is the
cut-off wave number of PIV due to the windowing effect (Foucaut et al. (2004a)). The
PIV results are qualified to compare with the results of HWA only in the region between
kmin and kc.

Fig. 4.4 and 4.5, E11 and E22, the spectra of the u and v velocity component respec-
tively, are consistent in most parts. The deviation occurs mainly in the high-frequency
regions and it decreases considerably from y+ = 14.5 to y+ = 26.3. The large deviation at
y+ = 14.5 is caused by the strong velocity gradient. In the present study, the laser sheet
has a thickness of the order of 0.3 mm. As explained in Chapter 3, the closer to the wall,
the greater the velocity gradient is. Therefore, the effect of gradient in the laser sheet is
likely to be strong close to the wall thus increases the noise of the SPIV results. Above
y+ = 26.3 (plane 4), the difference between SPIV and HWA in E11 and E22 reaches a
relatively stable stage as the velocity gradient decreases to a neglected level.

Fig. 4.4 and 4.5, E33, the spectra of the w velocity component, shows a great deviation
between the results of SPIV and HWA at y+ = 14.5. This deviation reduces gradually
until y+ = 26.3 where E33 shows a perfect fit with the result of the Hot Wire Anemometry.
This is not only due to the wall interference and strong velocity gradients near the wall
at the scale of the HWA probe (0.5 mm) but also owing to the velocity gradient in the
laser sheet of SPIV. E33 shows that the results of SPIV can reach the same noise level
as HWA. However, for E11 and E22, the results of HWA always show a lower noise level
than SPIV. Besides the effect of the velocity gradient in the laser plane, this is probably
due to the variation in magnification across the field and to the stretching effect in the
x direction linked to the stereoscopic set-up. According to the experimental set-up used,
the w component is always perpendicular to the axis of the lenses and is less affected than
the u component by the reconstruction process. The v component is built from the same
elements as u hence shows a similar behavior.

4.5 PDF

Fig. 4.6 shows the PDF of the u′, v′ and w′ component respectively. The PDF of w′

shows much higher oscillation than that of u′ and v′. As explained before, this is due to a
peak locking effect amplified by the gradient through the light sheet. For v′ (or u′), these
oscillations are smoothed out by the stretching in the reconstruction procedure. Only a
small difference in the height of the peak of v ′ is observable due to the noise caused by the
strong velocity gradient near the wall. This difference disappears above y+ = 26.3 (above
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Fig. 4.4 – Velocity spectrum of the u, v and w component at y+ = 14.5 comparison with
HWA.

this wall distance Fig. 3.12 shows that the gradient effect is negligible).
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Fig. 4.5 – Velocity spectrum of the u, v and w component at y+ = 26.3, comparison with
HWA.

4.6 Skewness and Flatness

As is well known, the third order moment of a random signal (e.g. signal A) SA
describes the asymmetry or skewness of the corresponding probability density function
while the fourth order moment FA (also referred to as flatness) reveals the frequency of
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Fig. 4.6 – PDF of the normalized fluctuations of the u, v and w component at y+ = 26.3,
comparison with HWA.

occurrence of events far from the axis. These parameters are defined as :
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SA = A3

A2
3/2

FA = A4

A2
2

(4.1)

(4.2)

For the skewness factor, SA = 0 is expected if the probability density function of A
is symmetric. In turbulence, the three velocity fluctuations (u´, v´ and w´) often have a
nearly Gaussian distribution. For such a distribution, SA = 0 and FA = 3 are obtained.

Fig. 4.7 to 4.9 show respectively the profiles of skewness factors Su′ , Sv′ and Sw′

for the three velocity fluctuations. In Fig. 4.7, the skewness factor for the streamwise
fluctuations Su′ is in very good agreement with the results of HWA (Carlier and Stanislas
(2005)). For Su′ , both results indicate an increase toward the wall known to be due
to the strong intermittency in the viscous sub-layer. Above y+ = 15, Su′ is more or
less constant and nearly zero, indicating a Gaussian behavior which is confirmed by the
shape of the PDF. These results are in agreement with those of Fernholz and Finley
(1996), who found that this location varies between y+ = 15 and 20 for various Reynolds
numbers. The positive value near the wall indicates that the frequency of occurrence of
high positive streamwise fluctuations (high speed streaks and sweeps) is higher than that
of high negative fluctuations in this region.
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Fig. 4.7 – Skewness factor Su′

In Fig. 4.8, Sv′ agrees also very well with HWA. Again it is nearly zero above y+ =
20. The larger scatter compared to Su′ is attributed to the small value of this component
compared to u´ (Fig. 4.2). The positive value of Sv′ evidences the asymmetry of the PDF
close to the wall, indicating the predominance of ejections on the statistical behaviour of
this component.

The skewness factor Sw′ should be zero in a truly two-dimensional boundary layer due
to the symmetry of the mean flow in the spanwise direction. This is confirmed by the
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Fig. 4.8 – Skewness factor Sv′

present SPIV results in Fig. 4.9, where the factor Sw′ is nearly zero. The HWA results
have a slightly positive value of about 0.25 which is comparable to that found by Fernholz
and Finley (1996). It is attributed to a bias in the HWA measurements due either to a
slight rotation of the probe around its axis or to the local velocity gradient at the scale
of the probe.
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Fig. 4.9 – Skewness factor Sw′

Fig. 4.10 to 4.12 show respectively the profiles of skewness factors Fu′ , Fv′ and Fw′ .
Fig. 4.10 compares the flatness factor Fu′ obtained in the present study with that obtained
by HWA (Carlier and Stanislas (2005)). Again the SPIV results are in very good agreement
with HWA. For y+ ≥15, the present SPIV results show that Fu′ increases slightly from 2.4
at y+ = 15 to 2.8 at y+ = 39.7 and then levels off afterwards. Ueda and Hinze (1975) found
a relationship between the position of the maximum of the streamwise normal Reynolds
stress (u′2), the zero value of Su′ , and the minimum of Fu′ . These characteristic points

are at the same distance from the wall. In the present case, the maximum of (u′2) is at

63



4.6. Skewness and Flatness Chapitre 4. Statistical Analysis of the Velocity Field

about y+ = 14 (Fig. 4.2), the zero crossing of Su′ is at around y+ = 16 in Fig. 4.7, and the
minimum value of Fu′ is near to y+ =12. Considering the experimental errors involved,
the results confirm the relationship obtained by Ueda and Hinze (1975). Similar to Su′ ,
Fu′ is known to increase toward large positive values in the viscous sub-layer (y+ ≤5) due
to intermittency.
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Fig. 4.10 – Flatness factor Fu′

Fig. 4.11 presents the flatness factor Fv′ compared with HWA. In SPIV, this parameter
decreases sharply between y+ = 14.5 and 22.2. When y+ > 22.2, Fv′ decreases slowly with
increasing wall distance and is in good agreement with the results of HWA for various
Reynolds numbers. This result was also obtained by other researchers (e.g. Balint et al.
(1991), Spalart (1988)and Fernholz and Finley (1996)). The large values at y+ = 14.5
and 18.5 can be associated with the intermittent character of near wall flow in the buffer
layer. The differences with the results of HWA at y+ = 14.5 and 18.5 are attributed to
the velocity gradient at the size of the X-wire probe close to the wall.
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Fig. 4.11 – Flatness factor Fv′
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Fig. 4.12 compares Fw′ obtained by SPIV and HWA. There is a very good agreement.
Fw′ is nearly constant. The value of 3.4 is the same as Fernholz and Finley (1996).
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Fig. 4.12 – Flatness factor Fw′

4.7 Joint PDF

To study the spatial distribution of the velocity, the joint PDFs were calculated for the
velocity fluctuation (u′, v′) and (u′, w′) respectively (Fig. 4.13 and 4.14). Three typical
wall distances were selected : y+ = 14.5, 29.3 and 48.0 (plane 1, 5, 10 respectively). As
mentioned above, y+ = 14.5 and 48.0 are the closest and furthest position from the wall
in the range of wall distance studied while y+ = 29.3 is in the middle.

For each plane, the two joint PDFs ((u′, v′) and (u′, w′)) show strong differences in
both size and shape. The PDF (u′, v′) shows a strong asymmetrical behaviour. It indicates
the existence of coherent structures such as ′ejections′ (u′ < 0, v′ > 0) and ′sweeps′ (u′ > 0,
v′ < 0). Clearly, from the shape of the PDF(u′, v′), the counter-sign regions (ejections and
sweeps) dominate over the other two with same signs. The PDF (u′, w′) is symmetrical :
PDF(u, w) = PDF(u, −w). It results from the homogeneity of the flow in the spanwsie
direction. The PDF (u′, w′) also shows an interesting behaviour, that is, large negative
streamwise fluctuations u′ are frequently associated with small spanwise fluctuations w′

and large spanwise fluctuations with positive streamwise fluctuations. In Fig. 4.13 and
4.14, the difference in the range of velocity fluctuations confirms the relation of standard
deviation of the three velocity components urms > wrms > vrms (see Fig. 4.2). Moreover,
these figures show that the amplitude of velocity fluctuations decreases in the streamwise
direction but increases in spanwise and wall-normal direction with wall distance.

4.8 Velocity angle

Fig. 4.15 shows the PDFs of the flow angle α between the instantaneous velocity
component u and v, which allows to study the direction of the transport of the low and
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Fig. 4.13 – Joint PDF of the velocity fluctuations (u′, v′)

high momentum fluids towards and away from the wall. This distribution is asymmetric
with a large range of scales for positive angles but a peak located on the negative side.
The negative part, where the sign of the two velocity components is opposite, has a larger
surface area than the positive part and seems more important to the characteristics of
the flow.

To study this angle in more detail, the distribution of the flow angles for an instanta-
neous streamwise velocity u smaller and larger than the mean U (α|u < U and α|u > U
respectively) were calculated separately. Both results are asymmetric in terms of the scale
range, the location of the peak and the proportion. When u is smaller than U, the result
shows both a peak and a large range (especially for the plane far from the wall) in the
positive domain. The positive part has about two times the surface of the negative one.
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Fig. 4.14 – Joint PDF of the velocity fluctuations (u′, w′)

The asymmetry indicates that the probability of finding a low speed fluid moving away
from the wall is much higher than towards the wall. The former is called a Q2 event or
′ejection′ (Wallace et al. (1972)) and the latter is referred to as a Q3 event. In contrast,
when u is larger than U, the result shows a peak and a large range in the negative domain.
The negative part is about two times of the positive one. It reveals that the chances of
finding high speed fluid moving towards the wall are much higher than moving away from
the wall. The former is called a Q4 event or ′sweep′ and the latter is referred to as a Q1
event. The comparison of the proportion yields that P(Q2) > P(Q4) >> P(Q3) > P(Q1).
This result shows that Q2 and Q4 events (Ejections and Sweeps) dominate over Q1 and
Q3 events. Moreover, the largest angles are always associated with Q2 and Q4 events. In
Fig. 4.15, the distributions have a similar pattern above y+ = 2.2.
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Fig. 4.15 – Flow angle between the u and v component

Fig. 4.16 shows the mean flow angle α between the u and v component. An interesting
feature is that the behaviors at y+ = 14.5 and 18.5 are different from other wall distances
where all the results are similar. This difference can result from the influence of the wall.
The absolute value of α|u < U is larger than that of α|u > U . Moreover, α has always
a positive value. These results can be explained by the fact that instantaneous velocities
were used to calculate the flow angle. The present results were also compared with those
of Kahler (2004). Both results are in good accordance. Fig. 4.17 shows the RMS of flow
angles between the u and v component. Evidently, it is comparable with the results of
Kahler (2004).
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Fig. 4.16 – Mean flow angle between the u and v component, comparison with Kahler
(2004). Present study : α (�), α|u < U (♦), α|u > U (△) ; Kahler (2004) : α (�), α|u < U
(�), α|u > U (N)
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Fig. 4.17 – RMS of flow angles between the u and v component, comparison with Kahler
(2004). Present study : α (�), α|u < U (♦), α|u > U (△) ; Kahler (2004) : α (�), α|u < U
(�), α|u > U (N)

4.9 Summary

Using this processing method, the whole database was analysed. The results were
presented in terms of the mean streamwise velocity, velocity fluctuations, Reynolds shear
stresses, the spectra and PDFs, skewness and flatness. They were compared with those of
Hot Wire Anemometry, DNS and the Van Driest model. The comparisons show that the
results of SPIV are in good accordance with those of other methods. In general, the results
of SPIV are closer to those of the Van Driest model and DNS than to HWA in the very
near wall region. This study concludes that SPIV is a suitable method to study near wall
turbulence. In addition to the above-mentioned characteristics, joint PDFs and velocity
angles are also computed and compared with the results of SPIV of Kahler (2004). The
comparison shows that two studies are in very good agreement, validating the quality of
the present measurement.
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Chapitre 5

Velocity correlations

5.1 Introduction

A first step toward the study of coherent structures is done by computing the two-
point spatial correlation tensor. The interest of this tensor for the study of near wall
turbulence with PIV has been shown by Stanislas et al. (1999), from 2D2C PIV fields
in planes normal to the wall and parallel to the flow. The advantage of SPIV results is
to provide the out-of-plane component. Kahler (2004) did the same analysis and gave
some results concerning coherent structures. The spatial auto-correlations and spatial
cross-correlations are discussed in this section. These correlation tensors were computed
based on the velocity fluctuations (u′, v′ and w′). The mean of u′ as well as v′ and w′,
is equal to zero, which leads to σu′ = σu, σv′ = σv and σw′ = σw. As the database has
only two dimensions (streamwise and spanwise) in the present study, the two-dimensional
two-point correlation function and the one-dimensional two-point correlation function are
defined as follows :

Two-dimensional two-point correlation function :

Ru
′

iu
′

j
(∆x+,∆z+) =

u
′

i(x
+, z+)u

′

j(x
+ + ∆x+, z+ + ∆z+)

σu′i
σu′j

(5.1)

Streamwise one-dimensional two-point correlation function :

Ru
′

iu
′

j
(∆x+,∆z+ = 0) =

u
′

i(x
+, z+)u

′

j(x
+ + ∆x+, z+)

σu′i
σu′j

(5.2)

Spanwise one-dimensional two-point correlation function :

Ru
′

iu
′

j
(∆x+ = 0,∆z+) =

u
′

i(x
+, z+)u

′

j(x
+, z+ + ∆z+)

σu′i
σu′j

(5.3)

Where u
′

i , and u
′

j are the two selected velocity fluctuations (they are the velocities

u
′

, v
′

or w
′

in the present study). The number of PIV samples is 500 for each plane. ∆x+

71



5.2. Spatial auto-correlations Chapitre 5. Velocity correlations

and ∆z+ are respectively the displacements in the streamwise and spanwise directions
respectively.

For all the following two-dimensional correlation figures, if no special statement is
made, the contours are plotted in intervals of 0.05 and the zero contours are illustrated by
a dash-dotted line. The solid lines show the positive correlation regions while the dotted
lines represent the negative ones. For the one-dimensional correlation figures, the results
for 6 selected wall distance are plotted in order to show the variation of the correlations
with wall distance.

It should be noted that for the two-dimensional correlation, for example Fig.5.1, the
plane view is from below to above. The positive and negative ∆z+ are on the top and
bottom half of the correlation image respectively, corresponding the right and left side of
the flow with respect to the streamwise direction.

5.2 Spatial auto-correlations

5.2.1 Streamwise velocity fluctuations

Fig. 5.1 shows an example of two-point spatial auto-correlations of the streamwise
velocity fluctuations Ru

′
u
′ at y+ = 14.5. The correlation contours have a strong elliptical

shape, with the principal axis in the streamwise direction, and the minor axis in the
spanwise direction. It indicates the existence of an organization that has a significant
spatial coherence in both streamwise and spanwise directions. These structures have a long
extension in the streamwise direction and a short one in the spanwise direction. According
to the definition of two-point spatial auto-correlations (Eq. 5.1), these structures are
regions with high velocity fluctuations and are named low or high-speed streaks (Smith
and Metzler (1983)).

Fig. 5.1 – Two-dimensional spatial auto-correlations of the streamwise velocity fluctua-
tions Ru′u′ at y+ = 14.5

To obtain more information on the variation of the streamwise and spanwise dimen-
sions of these structures with wall distance, one-dimensional spatial auto-correlations are
computed at ∆x+ = 0 and ∆z+ = 0 respectively and plotted in Fig. 5.2. In Fig. 5.2a,
the correlation function decreases monotonously with increasing streamwise displacement
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∆x+, but increases with wall distance. At y+ = 14.5, the streamwise extend of the correla-
tion can be estimated of the order of 500+. At y+ = 48, due to the limited field of view, it is
difficult to estimate where the correlation goes down to zero, but probably beyond 1000+.
This is a very large change on a very small range. In Fig. 5.2b, the spanwise correlations
computed at y+ = 14.5 and 18.5 show a distinct minimum, while all the others decrease
monotonously with increasing ∆z+. This can be explained twofold. Firstly, the same as
given by Kahler (2004), there is a decreasing dynamic velocity range with increasing wall
distance, which implies that the coherent regions rapidly lose their identities. The second
reason is that other coherent structures may occur and develop as wall distance increases,
which can hide the signature of streaks.
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Fig. 5.2 – One-dimensional spatial auto-correlation of the streamwise velocity fluctuations
Ru

′
u
′ at selected wall distances

Clearly, the correlations in Fig. 5.2 include the contributions of both low and high
speed regions. It is interesting to subdivide them according to the sign of the stream-
wise velocity fluctuation before computing the correlations. This conditional-correlation
approach allows the identification of low and high speed regions and the study of the
statistical properties of them separately. The results are shown in Fig. 5.3.

In Fig. 5.3,R(u′<0)(u′<0) denotes the correlation in the low speed regions whileR(u′>0)(u′>0)

is for the high speed ones. Fig. 5.3 shows that for both low and high speed regions, an
increase of size with wall distance is visible in both streamwise and spanwise directions.
At the same wall distance, low speed regions are narrower than high speed ones in the
spanwise.

Both Fig. 5.3a and 5.3c show a continuous decrease in the correlations, implying that
the size of both kinds of regions may extend more than 400 wall units in the streamwise
direction. Due to the limited size of the velocity field in the present study, it is not possible
to measure the maximum streamwise extend of the correlation. In Fig. 5.3a, except for
the relatively smaller value of the peak at y+ = 14.5, all curves are nearly the same when
|∆x+| < 100. When |∆x+| > 100, the curves for y+ ≤ 30 are also nearly the same. Only
above y+ = 30 and |∆x+| > 100, an increase of the size is observed. This result indicates
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Fig. 5.3 – Conditional one-dimensional spatial auto-correlation of the streamwise velocity
fluctuations Ru

′
u
′ at selected wall distances

that the streamwise extend of low speed region is nearly the same in the buffer layer (y+ <
30) and it increases with wall distance afterward. In Fig. 5.3c, globally, the streamwise
extend of high speed regions increases with wall distance.

In Fig. 5.3b and 5.3d, the spanwise distance between the first off-centre maximum
and the centre in the spanwise auto-correlation is used to estimate for the mean periodic
spanwise spacing between low or high speed regions. However, the maximum is less clear
than the minimum due to the fact that the correlation function is computed based on a
decreasing number of samples with increasing displacements (∆x+ and ∆z+, in the present
study). Therefore, the distance between the first off-centre minimum and the centre in
this spanwise auto-correlation function is considered as half of the mean spanwise periodic
spacing. When y+ = 14.5, this distance is about 60 wall units for low speed regions and 70
wall units for high speed regions. For high-speed regions, the distance can not be measured
above y+ = 14.5 because the distinct minimum disappears. For low speed regions, this
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distance increases with wall distance up to 90 wall units at y+ = 33.3 (which is not shown
in Fig. 5.3b) and thereafter the distinct minimum disappears. Comparing Fig. 5.3b and
5.3d, low speed regions are more localized than high speed ones.

In Fig. 5.3, at y+ = 14.5 the main positive peak of the correlation has a smaller value
for R(u′<0)(u′<0) (0.495 )than for R(u′>0)(u′>0) (0.505). When y+ ≥ 18.5, this value increases
to a nearly constant (0.525) for low speed regions while it decreases to a nearly constant
(0.475) for high speed ones to hold the positive peak with a value of 1 for each wall
distance in Fig. 5.2. This reveals that low speed regions are more significant than high
speed ones when y+ ≥ 18.5 and the opposite holds true for y+ ≤ 18.5.

5.2.2 Wall-normal velocity fluctuations

Fig. 5.4 shows an example of two-point spatial auto-correlations of the wall-normal
velocity fluctuations Rv′v′ at y+ = 14.5. The correlation shows also elliptical shaped
contours with positive values at the centre. Besides these positive contours, two negative
elliptical-shaped peaks are located symmetrically in the spanwise direction. The principal
axis of these ellipses is in the streamwise direction and the minor axis in the spanwise
direction. The negative contours evidence the existence of coherent structures which are
in fact streamwise vortices. In Fig. 5.4, similar to Ru

′
u
′ , the principal axis is longer than

the minor one, implying that these vortices have a longer extension in the streamwise
direction than in the spanwise, but this extension is obviously much shorter than that for
Ru

′
u
′

Fig. 5.4 – Two-dimensional spatial auto-correlations of the wall-normal velocity fluctua-
tions Rv

′
v
′ at y+ = 14.5

Fig 5.5 shows two one-dimensional spatial auto-correlations : at ∆z+ = 0 and at ∆x+

= 0 respectively. These correlations show the variation of streamwise and spanwise dimen-
sions of the structures with wall distance. In the streamwise direction, the correlations
decrease sharply from the peak at the centre asymptotically to zero with increasing ∆x+.
This implies that the streamwise extension of these structures is less than about 200 wall
units. In the spanwise direction, the positive correlations decrease sharply from the peak
at the centre to the negative minimum then increase slowly to zero. The minimum is
located between 35-60 wall units, depending on wall distance.

75



5.2. Spatial auto-correlations Chapitre 5. Velocity correlations

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

∆∆∆∆x+

R
v
'v
'

y+=14.5 y+=18.5

y+=22.2 y+=29.7

y+=37.0 y+=48.0

 
a : Rv′v′ , with ∆x+ = 0

-0.2

0

0.2

0.4

0.6

0.8

1

-250 -125 0 125 250

∆∆∆∆z+

R
v
'v
'

y+=14.5 y+=18.5

y+=22.2 y+=29.7

y+=37.0 y+=48.0

 
a : Rv

′
v
′ , with ∆z+ = 0

Fig. 5.5 – One-dimensional spatial auto-correlation of the wall normal velocity fluctua-
tions Rv

′
v
′ at selected wall distances

Similar to the streamwise velocity fluctuation, positive and negative fluctuations of
the wall-normal velocity component can be separated before computing the correlations.
The conditional-correlation R(v

′
>0)(v

′
<0) denotes the correlation of positive fluctuations at

the fixed point with negative ones at the moving point, allowing to analyse the statistical
properties of streamwise vortices. The two-dimensional correlation results are shown in
Fig. 5.6 for various wall distances. To show the correlation clearly, colour levels are plotted
instead of line contours. In Fig. 5.6, an angle between the principle axis of low correlation
contours at centre and the principle axis of the high correlation contours is clearly visible
and more pronounced above y+ = 22. This figure also shows that the negative peaks are
located in the negative region of the streamwise displacement ∆x+. It suggests that for a
streamwise vortex, in case of plane top view, the part with positive wall-normal velocity
fluctuations is slightly downstream of the part with negative ones.

In Fig. 5.6, the correlations are computed by correlating regions with negative wall-
normal fluctuations to those with positive ones. To explain how the angle appears in
Fig. 5.6, Fig. 5.7 gives a scheme of the above-mentioned two regions with different relative
positions and the corresponding correlation results. As explained above, the two regions
are related to streamwise vortices. In Fig. 5.7, it is assumed that only ideal streamwise
vortices exist in the flow, in other words, the regions with negative and positive wall-
normal velocity fluctuations related to a streamwise vortex are parallel. Let the variable
in Fig. 5.7 be the wall-normal velocity fluctuation v

′

, in the column of ′Data field′, the
positive wall-normal velocity fluctuations are located in the elliptical region defined by
solid lines while the negative ones are in the regions with dashed lines. For the rest of the
domain, the fluctuations are assumed to be zero. Fourteen particular contrapositions of
negative and positive fluctuation regions are presented. In each case, the column ′Auto-
correlation′ shows the results of Rv

′
v
′ while the column ′Conditional correlation′ shows the

results of R(v
′
>0)(v

′
<0). For Rv

′
v
′ , only negative correlation regions are plotted. The dotted

lines show the zero-contours, and the dash-dotted lines represent the non-zero contours
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a : y+ = 14.5 b : y+ = 18.2

c : y+ = 22.2 d : y+ = 29.7

e : y+ = 37.0 f : y+ = 48.0

Fig. 5.6 – Conditional two-dimensional spatial auto-correlation of the wall-normal velocity
fluctuations R(v

′
>0)(v

′
<0) at selected wall distances

(with negative values). The peak of correlation is expected to be in the centre of the
ellipse.

As mentioned above, two findings are important in Fig. 5.6. One is the angle between
the region with the high coherence and the streamwise coordinate, and the other is the
streamwise shift of the negative peaks with respect to the centre (∆x+ = 0, ∆z+ = 0).
In the following discussion, the two findings are referred to as Rule #1 and Rule #2
respectively. Comparing the column ′Conditional correlation′ with Fig. 5.6, Case 1, 2, 5,
6, 9, 10, 12 and 13 satisfy neither Rule #1 nor Rule #2. Case 3 and 4 satisfy the Rule #2
but not Rule #1, while Case 7 and 8 satisfy Rule #1 but not Rule #2. Only case 11 and
14 satisfy both of Rule #1 and Rule #2. It indicates that the streamwise vortices have a
spanwise angle as well when they travel downstream. Moreover, the combined action of
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Fig. 5.7 – Illustration of data field and the corresponding correlation result

the auto-correlation of case 11 and 14 in Fig. 5.7, leads to the correlation field similar to
that shown in Fig. 5.4. The combination of case 11 and 14 is known as Ω- or Λ-shaped
vortices. Fig. 5.7 is based on the ideal streamwise vortex. In a real flow, these vortices
may be deformed and the situation is likely to be more complicated. However, the basic
principles remain the same.

Fig. 5.8 shows the one-dimensional spanwise spatial correlations R(v′>0)(v′<0) at ∆x+

= 0 at various wall distances. The distinct minimum in this figure shows again the high
degree of coherence in the spanwise direction. The distance between the first off-centre
minimum and the centre (∆z+ = 0), is widely used to predict the mean diameter of
the streamwise vortices. In the region 14.5 < y+ < 30, this distance increases from 30
to 40 wall units with wall distance. At the same time, the absolute value of negative
peaks increases rapidly in the same region (especially from y+ = 18.5 to y+ = 22). In
the region y+ > 30, this distance increases from 40 to 60 wall units with wall distance
but the absolute value of negative peaks decreases. In addition, Fig. 5.6 shows that the
size of the region with high coherence at y+ = 30 is larger than at other wall distances
studied. It suggests that the centre of the wall-attached streamwise vortices locate around
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this wall distance. This result agrees well with the results of earlier studies (e.g. Gupta
et al. (1971), Blackwelder and Eckelmann (1979) and Carlier and Stanislas (2005)). In
the region of y+ > 30, the decrease of the absolute value of the negative peak, as well
as the size of the region with high coherence (Fig. 5.6), can be explained twofold : one is
the occurrence of other coherent structures with increasing wall distance, and the other is
the decrease of the intensity of the streamwise vortices due to the interaction with other
coherent structures and the lift-up when they travel downstream.
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Fig. 5.8 – Conditional one-dimensional spatial auto-correlation of the wall-normal velocity
fluctuations R(v

′
>0)(v

′
<0) at ∆x+ = 0 at selected wall distances

It should be noted that in the present study the experiment was performed in the
streamwise-spanwise plane. As these vortices always move downstream with a certain
angle to the wall, only parts of the cross-section of streamwise vortices can be recorded.
This implies that the real streamwise extend of streamwise vortices can be larger than
found here.

5.2.3 Spanwise velocity fluctuations

Fig. 5.9 shows examples of the spatial auto-correlation of spanwise velocity fluctua-
tions Rw

′
w

′ at y+ = 14.5 and at y+ = 48 respectively. These correlation contours have a
more circular shape than the previous ones, which indicates that less streamwise or span-
wise coherence can be found. As shown inthis figure, the shape becomes more elliptical
approaching the wall.

5.3 Spatial cross-correlations

5.3.1 Streamwise and wall-normal velocity fluctuations

To investigate how turbulence is produced and transported, the cross-correlation Ru
′
v
′

of streamwise velocity fluctuations with wall-normal ones can be computed. In this corre-
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d : y+ = 14.5 d : y+ = 48.0

Fig. 5.9 – Two-dimensional spatial auto-correlation of the spanwise velocity fluctuations
Rw

′
w

′

lation, the streamwise fluctuation u
′

is fixed while the wall-normal fluctuation v
′

is shifted
in both streamwise and spanwise directions. This correlation was first studied by Tritton
(1967) and then used widely by other researchers (e.g. Kahler (2004), Carlier and Stanis-
las (2005)). It is used to predict the size and shape of the coherent structures which are
responsible for producing and transporting turbulence.

Fig. 5.10 shows an example of the two-dimensional cross-correlation Ru
′
v
′ at y+ =

14.5. Similar to the auto-correlation Rv
′
v
′ , the cross-correlation Ru

′
v
′ shows elliptical-

shape contours with the principal axis of these ellipses in the streamwise direction and
the minor axis in the spanwise direction. In contrast to Rv

′
v
′ , Ru

′
v
′ shows the region of

negative contours in the centre of the field while two regions of positive contours located
nearly symmetrically in the spanwise direction besides it. The negative contours at the
centre imply the existence of coherent structures that are responsible for most of the
production of turbulence. The negative sign indicates that the movement of low speed
fluid away from the wall (u

′

< 0, v
′

> 0) and the movement of high-speed fluid towards
the wall (u

′

> 0, v
′

< 0) are the predominant processes of turbulence generation and
transportation in the near wall region. These results are in good agreement with the
conclusions of other studies (e.g. Wallace et al. (1972), Carlier and Stanislas (2005)).
According to the quadrant analysis proposed by Wallace et al. (1972), events in quadrant
two (u

′

< 0, v
′

> 0) are called Q2 events and events in quadrant four (u
′

> 0, v
′

< 0) Q4
events. Q2 and Q4 events are also referred to as ejections and sweeps respectively. Events
in the other two quadrants, namely Q1 events (u

′

> 0, v
′

> 0) and Q3 events (u
′

< 0, v
′

<
0), are usually considered to be related to the interactions between Q2 and Q4 events.

Streamwise and spanwise one-dimensional cross-correlations are plotted in Fig. 5.11
to show the variation of streamwise and spanwise dimensions of these structures with wall
distance. In Fig. 5.11, the absolute value of the negative peak is the smallest in the region
y+ ≤ 18.5 and is nearly the same above y+ = 22. This indicates that the normalized
Reynolds shear stress u′v′/σuσv is relatively smaller in the region very near to the wall
(y+ = 14.5 to 18.5) than in the region away from the wall (22<y+ <48). It should be
noted that Ru

′
v
′ jumps from -0.3 at y+ = 18.5 to 0.395 at y+ = 22.2, indicating a strong

production of Reynolds shear stress in this region.
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Fig. 5.10 – Two-dimensional spatial cross-correlations of streamwise velocity fluctuations
with wall-normal ones Ru′v′ at y+ = 14.5
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Fig. 5.11 – One-dimensional spatial cross-correlation of streamwise velocity fluctuations
with wall-normal ones Ru′v′ at selected wall distances

As indicated above, the u
′

and v
′

signals can be separated into four quadrants ac-
cording to their signs. It is interesting to compute the conditional cross-correlation to
investigate the property of possible coherent structures in each quadrant. Fig. 5.12 shows
the conditional one-dimensional cross-correlations for each quadrant.

Fig. 5.12a and 5.12b show the results of the correlationR
u′v′ (u′>0andv′>0

). In Fig. 5.12a,

when |∆x+| < 60, all the correlations are nearly the same. However, when |∆x+| > 60, a
clear asymmetry of the correlation appears. The range of the correlations with negative
streamwise displacement is larger than that with positive ones. In this region, the cohe-
rence is still comparable at various wall distances. In Fig. 5.12b, all the correlations are
similar, except for y+ = 48 where the size of the region with high coherence is slightly
larger than that at other wall distances.

Fig. 5.12c and 5.12d show the results of the correlation R
u
′
v
′
(u

′
<0andv′>0)

. Fig. 5.12c

shows that wall distance can be separated into two groups according to the correlations.
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One is in the region y+ ≤ 18.5 and the other is in the region y+ ≥ 18.5. The asymmetry
between upstream and downstream is visible, but fairly low. Q2 events extend more
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Fig. 5.12 – Conditional one-dimensional spatial cross-correlation of streamwise velocity
fluctuations with wall-normal ones Ru

′
v
′ in each quadrant at selected wall distances

downstream than upstream. The relatively large difference between the correlation at y+

= 18.5 and 22.2 indicates that the streamwise extend of Q2 events in the region very
close to the wall are much smaller than further away from the wall. Fig. 5.12d shows the
same trend as in Fig. 5.12c, which is observable but not so clearly marked. The off-center
spanwise distance of the distinct maximum is about 40 wall units at y+ = 14.5 and it
increases with wall distance up to about 60 wall units at y+ = 48. This indicates that the
spanwise dimension of the Q2 events increases with wall distance.

Fig. 5.12e and 5.12f show the results of the correlation R
u
′
v
′
(u

′
<0andv′<0)

. In Fig. 5.12e,

in the region y+ > 22, the size of correlated region and the level of coherence increase
with wall distance. A clear asymmetry of the correlation appears. On the contrary to the
Fig. 5.12a, the range of the correlations with negative streamwise displacement is smaller
than that with positive ones. In Fig. 5.12f, an increase in size and level of coherence with
wall distance is evidenced.

Fig. 5.12g and 5.12h show the results for R
u
′
v
′
(u

′
>0andv′<0)

. Opposite to Fig. 5.12c,

the correlations are very similar at all wall distances. This indicates that the Q4 events
have a size at least of the order of 50 wall units in the spanwise direction and are fairly
long in the streamwise direction. Moreover, a strong asymmetry is visible with a longer
extend in upstream. Fig. 5.12h shows that, on the contrary, the spanwise extend of the
Q4 events increases with wall distance from 50 wall units at y+ = 14.5 to 70 wall units
at y+ = 48 with a clear marked extrema from y+ = 14.5 to 22.

As shown in Fig. 5.12a, when ∆x+ < 0, the wall distance studied can be separated into
two groups according to the coherence : y+ < 18.5 and y+ >22. Examining Fig. 5.12a,
5.12c, 5.12e and 5.12g, it can be concluded that this phenomenon mainly results from
the Q2 events. Additionally, the correlations in Fig. 5.12a, 5.12c, 5.12e and 5.12g show
an asymmetry with respect to ∆x+ = 0, especially for Q3 and Q4 events. With the same
displacement and wall distance, the correlation in the negative part (∆x+ < 0) is higher
than in the positive part (∆x+ > 0) for Fig. 5.12a and 5.12g, while the opposite is true
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for Fig. 5.12c and 5.12e. This indicates that in each quadrant, the high wall-normal and
streamwise velocity fluctuations normally do not appear at the same place. The high wall-
normal velocity fluctuations are located upstream of the streamwise ones in Q1 and Q4
events but downstream in Q2 and Q3 events.

The absolute values of the main peaks Ru
′
v
′
,max of the conditional cross-correlations,

are plotted in Fig. 5.13. Several conclusions can be drawn based on these values. First, the
intensity in Q1 and Q3 events is very similar. Second, the contribution of Q2 and Q4 events
to the generation of Reynold shear stress is respectively about 3.5 times higher in modules
than that of Q1 and Q3 events. This manifests that the former two events dominate the
turbulence generation and transportation. Third, Q4 events are more responsible for the
generation of turbulence than Q2 events when very close to the wall (y+ <18.5), while
the opposite is true for y+ > 18.5. Finally, the distribution of the contribution to the
turbulence production with wall distance is different for Q2 and Q4 events. For Q2 events,
it increases with wall distance in the region y+ < 30 and is nearly constant afterwards.
For Q4 events, it keeps nearly constant in the whole range studied. In the region y+ >
30, the contribution of Q2 events to the generation of turbulence is about 20% higher
than that of Q4 events. These results roughly agree with previous results (e.g. Corino and
Brodkey (1969) and Wallace et al. (1972)).
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Fig. 5.13 – Absolute value of the main peak of Ru
′
v
′
,max in each quadrant at various wall

distances

5.3.2 Streamwise and spanwise velocity fluctuations

In addition to the turbulence generation and its transportation in the streamwise and
wall-normal directions, the flow motions in the streamwise and spanwise directions are
also important to be investigated. Fig. 5.14 shows the two-dimensional cross-correlation of
streamwise velocity fluctuations with spanwise ones Ru

′
w

′ at various wall distances. In this
figure, two nearly elliptic regions with high correlation values, locate almost symmetrically
with respect to ∆z+ = 0 in the spanwise direction. Both regions are with opposite signs
(the positive is above ∆z+ = 0 while the negative is below it) and are shifted with respect
to the center (∆x+ = 0, ∆z+ = 0) in both streamwise and spanwise directions. The
elliptic regions show the existence of a well-organized spanwise motion, especially close to

84



Chapitre 5. Velocity correlations 5.3. Spatial cross-correlations

the wall. It should be noted that two small regions with relatively high coherence appear
clearly on the left side of Fig. 5.14d.

a : y+ = 14.5 b : y+ = 22.2

c : y+ = 37.0 d : y+ = 48.0

Fig. 5.14 – Two-dimensional spatial cross-correlations of streamwise with wall-normal
velocity fluctuations Ru′w′

To investigate separately the contribution of low and high speed regions to this cor-
relation, the u

′

signal is divided into two groups according to its signs and then the
conditional cross-correlations R(u

′
<0)w

′ and R(u
′
>0)w

′ are computed. Fig. 5.15 shows an
example of these correlations at y+ = 22.2. Clearly at the same wall distance, the peaks
are not located at the same position for both correlations and their values are different.

To investigate the above conditional correlations, Fig. 5.16 shows the absolute value of
the peak of the cross-correlations of R(u′<0)w′ and R(u′>0)w′ at various wall distances. The
error bars represent an error of 5% of the absolute value. These values show a tendency of
decrease with wall distance, which implies that the further away from the wall, the weaker
the coherent structures are. As shown in profiles of the RMS of velocity (Chapter 4),
spanwise fluctuations are small near the wall but they increase sharply with increasing wall
distance. On the contrary, the streamwise fluctuations are high near the wall but decrease
sharply with increasing wall distance. In addition, the rate of decrease in streamwise
velocity fluctuations is much higher than the rate of increase in the spanwise velocity
fluctuations (especially very close to the wall : y+ <22). This explains in part the decrease
of Ru

′
w

′
,max as shown in Fig. 5.16. The figure also shows that the peak value of R(u

′
<0)w

′

is slightly smaller than that of R(u′>0)w′ .

85



5.3. Spatial cross-correlations Chapitre 5. Velocity correlations

a : R(u′<0)w′ b : R(u′>0)w′

Fig. 5.15 – Conditional two-point spatial cross-correlations of streamwise velocity fluc-
tuations with wall-normal ones R(u

′
<0)w

′ and R(u
′
>0)w

′ at y+ = 22.2
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Fig. 5.16 – Absolute value of the peak of R(u
′
<0)w

′ and R(u
′
>0)w

′ at selected wall distances

Fig. 5.17 shows the streamwise and spanwise off-centre distances of the peak of the
cross-correlations of R(u

′
<0)w

′ and R(u
′
>0)w

′ at various wall distances. The error bars re-
present an error of 5 wall units which is the grid size of the correlation field. In the region
y+ < 27, the streamwise distance appears more or less constant around 60 and 43 wall
units for R(u

′
<0)w

′ and R(u
′
>0)w

′ respectively. Then, it grows to about 72 and 67 wall units
at y+ = 48.0 and stays constant afterwards. Fig. 5.17 shows that the spanwise off-centre
distance of R(u

′
<0)w

′ increases from about 24 wall units at y+ = 14.5 to about 60 wall
units at y+ = 48. The rate of the increase in the buffer layer y+ ≤ 30 is much lower
than that in the region y+ > 30. For R(u

′
>0)w

′ , this spanwise off-centre distance increases
linearly from 29 wall units at y+ = 14.5 to 77 wall units at y+ = 48.

As Ru
′
w

′ is a correlation of u′ with w′ and u′ is also an indicative parameter of streaks,
there should be a relation between the correlations Ru

′
w

′ and Ru
′
u
′ . Fig. 5.18 shows the

spanwise distance between positive and negative peaks of R(u
′
<0)w

′ (Fig. 5.14a) together
with the half of mean spanwise distance between low speed regions obtained with the help
of auto-correlation results in Fig. 5.3b. The error bars represent an error of 5 wall units.
As shown in Fig. 5.3b, the coherence intensity decreases with wall distance. Therefore,
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Fig. 5.17 – Mean streamwise and spanwise off-centre distance of both positive and nega-
tive peaks of Ru

′
w

′ at selected wall distances

in Fig. 5.18, the half of mean spanwise distances is obtained only for six positions near
the wall where the distinct minimum is visible (some of the results are not shown in
Fig. 5.3b). Fig. 5.18 shows that half of the mean spanwise distance between the low speed
regions is very similar to the spanwise distance between the negative and positive peaks
of correlation, indicating that the spanwise distance between the peaks of correlation is
supposed to be equal to half the mean spanwise distance between the low speed regions.
As shown in Fig. 5.3d, for R(u

′
>0)(u

′
>0), the distinct minimum only appears at y+ = 14.5

and it is located at 70 wall units. This value is comparable to the spanwise distance
between the negative and positive peaks of R(u

′
>0)w

′ (58 wall units).

0

50

100

10 20 30 40

y
+ 

( 
+
 )

Spanwise off-centre distance between negative and positive peaks

Half of the mean spanwise distance between low speed regions

 

Fig. 5.18 – Comparison of the spanwise off-centre distance between negative and positive
peaks with half of the mean spanwise distances between low speed regions

5.3.3 Wall-normal and spanwise velocity fluctuations

The last interesting cross-correlation is between the wall-normal and spanwise velocity
fluctuations Rv′w′ . Fig. 5.19 shows the two-dimensional Rv′w′ at various wall distances.
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Similar to Ru
′
w

′ , two elliptic regions with high correlation are located symmetrically with
respect to the axis ∆z+ = 0. These two regions are of opposite signs and shifted with
respect to the centre (∆x+ = 0, ∆z+ = 0) in both streamwise and spanwise directions.
Different from the correlation Ru

′
w

′ , the positive region is below while the negative one is
above the axis. The elliptic regions show the existence of a well-organized spanwise motion,
in particular close to the wall. Secondary peaks appear on the left side of Fig. 5.19c at
y+ > 37. The further away from the wall, the clearer these peaks are. This phenomenon
will be interpreted in detail in Chapter 7.

a : y+ = 14.5 b : y+ = 22.2

c : y+ = 37.0 d : y+ = 48.0

Fig. 5.19 – Two-dimensional spatial cross-correlations of streamwise with wall-normal
velocity fluctuations Rv

′
w

′

As for Ru′w′ , the v
′

signal is divided into two groups according to its signs in order
to perform the conditional cross-correlations R(v

′
<0)w

′ and R(v
′
>0)w

′ . Fig. 5.20 shows an
example of these correlations at y+ = 22.2. At the same wall distance, the location as well
as the value of the peak is different for both correlations.

Fig. 5.21 shows the absolute value of the peaks of R(v
′
<0)w

′ and R(v
′
>0)w

′ at various
wall distances. The error bars represent an error of 5% of the absolute value. In the region
y+ ≤ 22.2, , this value is nearly the same when y+ ≤ 18.5 and then it jumps to a maximum
at y+ = 22.2 for R(v

′
<0)w

′ while it is nearly a constant for R(v
′
>0)w

′ . In the region y+ >
22, this value is comparable for both R(v

′
<0)w

′ and R(v
′
>0)w

′ and it decreases with wall
distance.

Fig. 5.22 shows the streamwise and spanwise off-centre distances of the peaks of
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a : R(v′<0)w′ b : R(v′>0)w′

Fig. 5.20 – Conditional two-point spatial cross-correlations of streamwise with wall-
normal velocity fluctuations R(v

′
<0)w

′ and R(v
′
>0)w

′ at y+ = 22.2
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Fig. 5.21 – Absolute value of the peak of R(v
′
<0)w

′ and R(v
′
>0)w

′ at selected wall distances

R(v
′
<0)w

′ and R(v
′
>0)w

′ at various wall distances. The error bars represent an error of
5 wall units. Globally, both distances increase with wall distance. The streamwise dis-
tance for R(v

′
<0)w

′ is much larger than that of R(v
′
<0)w

′ while the spanwise distance is
comparable between them. For R(v

′
<0)w

′ , the streamwise distance is nearly the same as
the spanwise one. Moreover, off-centre distances (in both streamwise and spanwise direc-
tions) in Fig. 5.22 are smaller than those in Fig. 5.17 at the same wall distance. These
phenomena will be interpreted in detail in Chapter 7.

As v′ is one of the indicative parameter for streamwise vortices, it is interesting
to compare the spanwise off-centre distance from R(v

′
<0)w

′ and R(v
′
>0)w

′ to those from
R(v

′
>0)(v

′
<0). Fig. 5.23 shows this comparison of the spanwise off-centre distance of the

peaks of R(v
′
<0)w

′ and R(v
′
>0)w

′ with those of R(v
′
>0)(v

′
<0). The latter is usually applied

to estimate the radius of the streamwise vortices. Fig. 5.18 shows that the the distances
of R(v

′
>0)(v

′
<0) are small but comparable to those of R(v

′
<0)w

′ and R(v
′
>0)w

′ . Detailed
explanation of this can be found in Chapter 7.
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Fig. 5.22 – Mean streamwise and spanwise off-centre distance of both positive and nega-
tive peaks of Rv

′
w

′ at selected wall distances
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Fig. 5.23 – Comparison of the spanwise off-centre distance of the peaks of R(v
′
<0)w

′ and
R(v

′
>0)w

′ with those of R(v
′
>0)(v

′
<0)

5.4 Comparison

As shown in Fig. 5.17, the peaks (both negative and positive) are shifted in the stream-
wise and spanwise directions with respect to the centre (∆x+ = 0, ∆z+ = 0). This result
agrees well with that of Lee et al. (1974). They measured the streamwise and spanwise
velocities of a pipe flow (y+ < 5) at various spanwise locations close to the wall as a func-
tion of time. Besides a maximum and a minimum in the correlation between streamwise
and spanwise velocity components, they found a time delay between these velocities as
well. This time delay can be transformed into the spatial shift shown in Fig. 5.14 using a
local Taylor hypothesis. In other words, regions with high positive and negative spanwise
velocities are found both downstream and shifted in the spanwise direction with respect
to a region with high streamwise velocity. Lee et al. also proposed that the spanwise dis-
tance between positive and negative peaks of Ru

′
w

′ should be equal to the half of mean
spanwise distance between low speed regions, which is proved by the present study.
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Kahler (2004) found that the spanwise off-centre distance of the minimum of correla-
tion Rv

′
v
′ is about 44 and 53 wall units at y+ = 20 and 30 respectively. These values are

comparable to the present results. Kahler (2004) suggested that in the region 20 ≤ y+ ≤ 30
the streamwise off-centre distance of the extrema of correlation Ru

′
w

′ is about 57 wall
units, which is also in good agreement with the present results. However, Kahler found
that the spanwise off-centre distance of these extrema is about 38 and 50 wall units at
y+ = 20 and 30 respectively. These values are much larger than the present results shown
in Fig. 5.17. However, in Kahler (2004), the cross-correlation Ru′w′ is slightly asymmetric
with respect to ∆z+ = 0 due to the lack of convergence and this distance was measured
only in the region ∆z+ > 0. If the measurement were taken in the region ∆z+ < 0, the
distance would be about 33 and 40 wall units respectively in the above-mentioned two
wall locations. These distances are nearly the same as the present results.

5.5 Summary

In order to obtain information about the global characteristics of coherent structures,
the size, shape, and intensity of various two points correlations were examined in detail.
The results show that the characteristics of coherent structures depend strongly on wall
distance, especially for the intensity of the correlation and spanwise spacing.

The auto-correlation Ru′u′ evidences the existence of streaks in the near wall turbu-
lent flow. Conditional correlations R(u′<0)(u′<0) and R(u′>0)(u′>0) shows that both low and
high streaks are elongated in the streamwise direction. These correlations shows that the
streamwise extend is around 1000 and 800 wall units for low and high speed streaks res-
pectively. The size of these structures increases with wall distance in both streamwise and
spanwise directions. At the same wall location, low speed streaks are longer but narrower
than high speed ones. At y+ = 14.5, the spanwise distance is about 120 wall units for low
speed streaks and about 140 wall units for high speed ones. It increases with wall distance
for both types of structures. The above results are in good agreement with those obtained
by other researchers.

The auto-correlationRv′v′ and conditional correlationR(v′>0)(v′<0) show that the stream-
wise dimension of streamwise vortices is less than about 200 wall units, and that the dia-
meter of these vortices increases with wall distance from about 40 wall units at y+ = 22.2
to about 60 wall units at y+ = 48. Rv′v′ and R(v′>0)(v′<0) suggests that the wall-attached
streamwise vortices are centred between y+ = 20 and 30. In addition, the conditional
correlation R(v′>0)(v′<0) implies the existence of the Λ- and Ω-shape vortices.

The cross-correlation Ru′v′ in the whole field and the conditional correlations Ru′v′

in each quadrant show that the contribution of Q2 (ejections) and Q4 (sweeps) to the
production of the turbulence is about 3.5 times higher than that of Q1 and Q3, indicating
the former two events dominate this process. Moreover, conditional correlations Ru′v′ of
Q2 and Q4 suggests that very close to the wall (y+ < 18.5), Q4 events have a more
important contribution to the production of turbulence than Q2 events. The opposite
holds true in the region y+ > 18.5.

The cross-correlations Ru′w′ and Rv′w′ indicate that regions with high spanwise ve-
locity fluctuations can be found both downstream and shifted in the spanwise direction
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with respect to regions with high streamwise or wall-normal velocity fluctuations. The
correlation degree of Ru′w′ and Rv′w′ decreases with wall distance. The off-centre distance
of the extrema increases with wall distance in both streamwise and spanwise directions.
Moreover, for Ru′w′ , the off-centre spanwise distance of the extrema is found to be close
to the half of the spanwise spacing of low speed streaks.
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Chapitre 6

Detection and Statistics on Coherent
Structures

6.1 Pattern recognition

The aim of pattern recognition is to classify data (patterns) based on either a priori
knowledge or on statistical information extracted from the patterns. The patterns to
be classified are usually groups of measurements or observations, defining points in an
appropriate multidimensional space. A complete pattern recognition system consists of
an experiment capturing device (e.g. sensor, camera, etc.) that gathers the observations
to be classified or described ; a feature extraction mechanism that computes numeric or
symbolic information from the observations ; and a classification or description scheme
that does the actual job of classifying or describing observations, relying on the extracted
features.

The classification or description scheme is usually based on the availability of a set of
patterns that have already been classified or described. This set of patterns is termed the
training set and the resulting learning strategy is characterised as supervised. Learning
can also be unsupervised, in the sense that the system is not given a priori labelling of
patterns, instead it establishes the classes itself based on the statistical regularities of the
patterns.

The classification or description scheme usually uses one of the following approaches :
statistical, syntactic (or structural), or neural. Statistical pattern recognition is based on
statistical characterisations of patterns, assuming that the patterns are generated by a
probabilistic system. Structural pattern recognition is based on the structural relation-
ships of features. Neural pattern recognition employs the neural computing paradigm that
has emerged with neural networks. The detail theory and main application of pattern re-
cognition can be found in the books of Paulus and Hornegge (1998) and Gonzalez and
Woods (2001).

In the present study, pattern recognition was used to identify and investigate coherent
structures specific of near wall turbulence : streaks, ejections, sweeps and streamwise
vortices.

It is performed in four steps :
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1. Detection function definition : to define the detection function according to the
property of structures.

2. Thresholding : to generate binary indicative images.

3. Mathematical morphology : to remove noise and improve the quality of each binary
image.

4. Cleaning : to remove the mis-detected objects.

Details of these procedures are explained in the following sections.

6.1.1 Detection function definition

To identify the structure objects, a detection function Fd or a group of detection
functions F i

d which describe(s) their basic characteristic(s), has to be defined. The function
is generated according to the property of the structures which are inferred from the
observations in the experiments or numerical simulations. In general, a detection function
can be defined as :

Fd = f(var1, var2, ...varn) (6.1)

Where, var1, var2, ...varn are parameters characterising the structures to be detected.

6.1.2 Thresholding

The thresholding is a standard procedure in the digital image processing. A gray level
digital image a[m,n] defined in a 2D discrete space is derived from an analog image a(x,y)
in a 2D continuous space through a sampling process that is referred to as digitization
(Gonzalez and Woods (2001)). In this process, the 2D continuous image a(x,y) is divided
into N rows and M columns. The intersection of a row and a column is termed a picture
element, an image element, a pel or a pixel. Pixel is the most widely used term.

Using the method of binary segmentation (Gonzalez and Woods (2001)), the digital
image can be transformed to a binary image which has only two possible values : 1 or 0.
Based on a threshold level, the value of a pixel in the digital image is defined as 1 if its
gray-level intensity is larger than the threshold level, and 0 if it is less than or equal to
the threshold. Fig. 6.1 shows an example of a digital binary image.

In the present study, the detection function Fd obtained from SPIV data is a real scalar
field defined on a discrete (M, N) grid in R2, which can easily be thresholded directly,
leading to a binary discrete function analog to a binary image. This binary image is called
here an indicative function Fi, which is defined as :

Fi =

{

1 when Fd ≥ CT
0 otherwise

(6.2)

(6.3)

or

Fi =

{

1 when Fd ≤ CT
0 otherwise

(6.4)

Here, CT refers to the threshold.
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Fig. 6.1 – Example of a digital binary image

6.1.3 Mathematical morphology

The indicative function Fi, is a binary image obtained directly from the thresholding
procedure. To remove the noise and to improve the quality of the image, a mathematical
morphology procedure is employed.

6.1.3.1 Introduction

Mathematical morphology is a methodology for image analysis, which aims at quanti-
tatively describing the geometrical structure of image objects. It was initiated in the late
1970’s to analyse binary images from geological and biomedical data (Matheron (1975),
Meyer (1977)) as well as to formalize and extend earlier or parallel work (Preston and Duff
(1984)) on binary pattern recognition based on cellular automata and Boolean/threshold
logic. In the mean time, it was extended to gray-level images (Serra (1982). In 1990, it
was brought to the mainstream of image/signal processing and related to other nonlinear
filtering approaches (Maragos and Schafer (1990)). Finally, it was generalized to arbitrary
lattices (Serra (1988), Heijmans (1994)). The above evolution of ideas has formed what is
called nowadays the field of morphological image processing, which is a broad and coherent
collection of theoretical concepts, nonlinear filters, design methodologies, and applications
systems. Its rich theoretical framework, algorithmic efficiency, easy implementability on
special hardware, and suitability for many shape-oriented problems have propelled its wi-
despread usage and further advancement by many academic and industry groups working
on various problems in image processing, computer vision, and pattern recognition.

6.1.3.2 Morphology operators for a binary set

Let us consider a set of elements, A = [a1, a2, ...am], of a commutative group in a
n-dimensional (nD) integer space Zn, each ai=1,2,...m is thus an nD integer vector in Zn.
Any digital binary image can be represented as such a set. For example, the digital binary

95



6.1. Pattern recognition Chapitre 6. Detection and Statistics on Coherent Structures 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        1 

   

        1 

  

        1 

 

0 
1 

2 

0 

2 

  

        1 

 

      

        1 

1 

0 0 

0 0 

a

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

        1 

 

        1 

   

        1 

  

        1 

 

0 1 2 

0 

1 

  

        1 

 

   

        1 

b

Fig. 6.2 – Examples of structuring element for a binary set, a : circular structuring element
with a radius of 1 ; b : rectangular structuring element with 3 in length and 2 in width

image in Fig. 6.1 can be presented by A = [(2,1), (2,3), (1,2), (3,3) in Z2. Following
Matheron (1975), the basic morphological transformations that can be applied to such a
discrete binary set are dilation and erosion, which are based on Minkowski algebra.

Dilation and erosion
Let B be also a set of the same commutative group as, B = [b1, b2, ...bl]. The dilation

of A by B, noted δB(A), is the Minkowski addition (⊕) of A and B while the erosion,
noted ǫB(A), is the Minkowski subtraction (⊖) of B from A. They are defined by :

δB(A) = A⊕B =
⋃

({x} +B; {x} ∈ A)
ǫB(A) = A⊖B =

⋃

({x} ; {x +B} ∈ A)
(6.5)

In practice, the set A will be the input binary data set created by the filtering or
thresholding procedure, which has values 1 for the image objects and 0 for the background.
The set B will be referred to as a structuring element. For a binary set, the structuring
element contains two values : 1 and 0. It can be defined as any shape according to the
application. Fig. 6.2 shows examples of a circular structuring element with a radius of 1
and a rectangular structuring element of 2*3.

Erosion generally decreases the sizes of objects and removes small anomalies by eli-
minating objects with a size smaller than the structuring element. With binary images,
erosion completely removes objects smaller than the structuring element and removes
perimeter pixels from larger image objects. Dilation generally increases the sizes of ob-
jects, filling in holes and broken areas, and connecting areas that are separated by spaces
smaller than the size of the structuring element. With binary images, dilation connects
areas that are separated by spaces smaller than the structuring element and adds pixels
to the perimeter of each image object. Fig. 6.3 shows an example of dilation and erosion
on a binary image.

Opening and Closing
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Dilation 
Erosion 

Fig. 6.3 – Example of dilation and erosion

According to the definition, single dilation or erosion expands or reduces the image
objects and thus results in the global geometric distortion of unsuppressed features. To
avoid this effect, dilation and erosion are often combined in pairs to be used, in either
of two ways, to produce other fundamental morphological operations called closing and
opening. Opening breaks narrow isthmuses, eliminate small islands and sharp peaks or
capes. Closing fuses narrow breaks and long thin gulfs, and fills in the thin gulfs and small
holes.

The opening of A by B is simply the erosion of A by B followed by dilation by B and
is defined as :

A∨
B = (A⊖B) ⊕B (6.6)

The closing of A by B is simply the dilation of A by B followed by erosion by B and
is defined as :

A∧
B = (A⊕B) ⊖B (6.7)

An example of opening and closing on a binary image is shown in Fig. 6.4.

6.1.3.3 Application to the present study

To improve the present binary image (indicative function Fi), a closing operation is
used firstly to connect separated objects and to fill in holes by changing the value of Fi
from 0 to 1 in the corresponding position. Then an opening operation is employed to
remove isolated small objects, sharp peaks or capes by changing the value of Fi from 1 to
0 in the corresponding position. As mentioned above, a structuring element needs to be
defined before processing those operations. In the present study, the structuring element
is referred to as parameter Ms and is chosen according to the shape of objects expected.
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Opening 
Closing 

Fig. 6.4 – Example of opening and closing

For example, a rectangular (or square) structuring element is suitable for the elongated
objects. Large structuring elements are not recommended in the present mathematical
morphological procedure due to the following reasons : First, they can connect several
separate coherent structures together. Second, they can cut those structures that have a
large angle with respect to the axis of coordinates into several small pieces. Third, they
can eliminate small and incomplete objects cut by the border of the image during the
erosion operation.

6.1.4 Cleaning procedure

After the mathematical morphology procedure, many small objects, whose surfaces are
larger than that of the structuring element but not enough to be considered as coherent
structures, remain in the images. They should be removed before statistical analysis.
Therefore, a cleaning procedure with two parameters is introduced to remove these objects
by considering their areas. One is for the objects that are cut by borders and the other
is for the small objects totally embedded in the images. They are named ′clean factor
for incomplete objects cut by borders′ (referred to as CB) and ′clean factor for complete
objects′ (referred to as CC) respectively. Let us take As as the object area. The cleaning
procedure is defined as :

For a complete object Fi =

{

0 when As ≤ CC
1 otherwise

(6.8)

For an incomplete object Fi =

{

0 when As ≤ CB
1 otherwise

(6.9)

6.1.5 Various conditions and interesting characteristics

As the pattern recognition method is used in a limited area, the coherent structure
objects may have various locations. Taking this into account, four circumstances are consi-
dered when statistical results are computed. This is illustrated in Fig. 6.5 where 0 and 1
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indicate background (white) and objects (grey) respectively. In the first case (Fig. 6.5a),
objects are embedded totally in the image area without holes inside or branches. The
principal statistical characteristics that can be computed are frequency of appearance
(N) (number of objects per image), spanwise angle (ϕ), width (W ), length (L), spanwise
distance (d) between two nearby objects, streamwise distance (ds) and area (Ac). In the
present study, spanwise distance between two clostest objects can be also obtained and it
is named (dn). For example, in Fig. 6.5a, there are three objects. Take the object at the
bottom as a reference, the middle object can be referred to as a closest object while the
upper one as a nearby object. The spanwise distance between the bottom object and its
closest neighbour is named not only d but also dn. Clearly, d includes all dn.
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Fig. 6.5 – Various conditions for statistical analysis

In the second case (Fig. 6.5b), objects are cut by the spanwise borders. Only the
number of object (N ) can be obtained. The other parameters cannot be calculated since
there is no information on the portion of objects beyond the image.

In the third and fourth cases (Fig. 6.5c-d), objects have more than one branch or have
large holes inside them. The distance between objects can be determined similarly as in
case one. Given that the images are M lines in the streamwise direction x and N columns
in the spanwise direction z, the width can, however, be calculated by two methods. The
first method (referred to as ′total′) : W j

t =
∑b

i=1Wi ; the second method (referred to as
′average′) : W j

a = (
∑b

i=1Wi)/b. Here, j is the index of the column, b is the number of
branches and Wi is the width of each branch. The distance and the width are measured in
the spanwise direction z for each column. The mean distance d is taken as the average of
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all measurements. The width of each object is calculated by averaging the corresponding
samples W j

t or W j
a , giving Wt or Wa respectively. These, of course, can be averaged again

over all the objects, yielding mean width Wt or Wa. In Fig. 6.5a, the length L can not
represent correctly the streamwise extend of the object when it has an angle with respect
to the streamwise direction. Therefore, in the case that the object has a rectangular or
elliptical shape, its mean length is computed based on its mean width and area. This
length is referred to as LA and is defined as LA = Ac/Wt or LA = Ac/Wa.
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6.2 Streaks

6.2.1 Detection functions and parameters

6.2.1.1 Detection function definition

It is well known that low and high speed streaks (LSS and HSS respectively) correspond
to low and high streamwise velocity (u component) distribution relative to the mean u,
in other words, high velocity fluctuations of the streamwise component. According to this
definition, different methods have been proposed to identify low speed streaks. Gupta
et al. (1971) have used a VITA method to detect streaks in their experiment investigation
using hot wires. Smith and Metzler (1983) have performed an experiment with a high-
speed video system and hydrogen bubble-wire flow visualization. They identified low speed
streaks by considering the differential in momentum flux between the adjacent high and
low-speed regions. By applying the auto-correlation method to the streamwise velocity
fluctuation u′, Kahler (2004) has evidenced the existence of streaks. However, most of
these detections were specified to calculate one or several spatial characteristics (mainly
frequency of appearance and spanwise spacing). Benefiting from instantaneous velocity
fields obtained from PIV experiments, Carlier and Stanislas (2005) are one of the early
researchers who have made efforts to obtain the instantaneous streak images. They applied
a threshold directly to the normalized streamwise velocity fluctuation field to generate
the instantaneous binary image of streaks. All above mentioned methods are based on
the streamwise velocity or its fluctuations. As both of them are widely agreed to be
the characteristic variables of streaks, it is reasonable to choose one or the other as the
detection variable. In the present study, the velocity fluctuations are normalized with the
standard deviation. The detection function (Fd) of streaks is defined as :

Fd = f(u′(m,n, y+), σu(y
+)) =

u′(m,n, y+)

σu(y+)
(6.10)

Where u′ is the instantaneous velocity fluctuation of the streamwise component u, σu
is the standard deviation, (m, n) is the position in the (M, N) grid, and y+ is the wall
distance at which the SPIV measurement is performed.

6.2.1.2 Thresholding

The above detection function Fd (Eq. 6.10), obtained from SPIV data, is a real scalar
field defined on a discrete (M,N) grid. Streaks are detected by applying a threshold CT
directly to Fd. The value of CT is taken positive. The corresponding indicative function
Fi of streaks are defined as :

Low speed streaks Fi =

{

1 when Fd < −CT
0 otherwise

(6.11)

High speed streaks Fi =

{

1 when Fd > CT
0 otherwise

(6.12)
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It should be noted that the structures and the background are represented respectively
by white and black in all binary indicative images.

In the present study (see Appendix B.1), CT was selected as 0.6 at y+ = 14.5. As is well
known, σnu decreases with wall distance when y+ > 10-15. Also, beyond a certain distance
from the wall streaks are known to disappear. Considering these facts, the threshold CT
for the other wall distances was chosen as 0.6∗σmaxu /σnu . Here, σnu is the standard deviation
of the streamwise velocity component u at position n, and σmaxu is the maximum standard
deviation of the present flow and is equal to 0.35 according to our previous study (Lin
et al. (2004)). According to this method, there is a streak only when u′ (fluctuation of
the streamwise velocity) is larger than a constant value whatever the wall distance is.
Table 6.1 gives the resulting values of CT at each wall distance.

Plane # 1 2 3 4 5 6 7 8 9 10
y+ 14.5 18.5 22.2 26.3 29.7 33.3 37.0 40.6 44.0 48.0
σnu 0.348 0.344 0.329 0.322 0.316 0.307 0.298 0.293 0.288 0.281
CT = 0.6 ∗
σmaxu /σnu

0.60 0.61 0.63 0.65 0.66 0.68 0.70 0.72 0.72 0.74

Tab. 6.1 – Threshold CT in ten planes of measurement (σmaxu = 0.35 )

6.2.1.3 Mathematical morphology

Since streaks are elongated in the streamwise direction, a rectanglar structuring ele-
ment was chosen : MS(W,L), in which W is the width in the spanwise direction and L
is the length in the streamwise direction. The values of W and L are given in wall units.
The structuring element was selected as MS = (10+, 50+) for both low and high speed
streaks (see Appendix B.1).

6.2.1.4 Cleaning

The two clean factors CB and CC are given in square wall units. The values CB =
1750+2 and CC = 2500+2 were chosen for both low and high speed streaks. It should be
noted that the value of CB is larger than half of the value of CC due to the fact that
streaks are much larger than the average size of complete objects obtained in the present
study. Details about the selection of these parameters are described in Appendix B.1.

Fig. 6.6 shows an example of detection function and the corresponding indicative image
of streaks at the different steps of the detection procedure.

6.2.2 Statistics on streaks

6.2.2.1 Frequency of appearance of streaks

One interesting characteristic of streaks is the frequency of appearance, in other words,
the number of streaks in a certain area. In the present study, the area (field of view) is
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Detection function
After thresholding

After mathematical morphology After cleaning

Fig. 6.6 – Detection image and indicative images

530+*300+ in a streamwise-spanwise plane. Fig. 6.7a shows frequency of appearance (N )
of detected streaks based on this area at various wall distances. In the present study, Low
and High Speed Streaks are represented by LSS and HSS respectively in all the figures
if no other specification is made. In Fig. 6.7a, the error bars represent an error of 5%
of the mean. In the buffer layer (y+ ≤30), low and high speed streaks show a different
behavior. As wall distance increases, the frequency N decreases rapidly for high speed
streaks but is nearly the same or decreases very slowly for low speed ones. In the bottom
region of the logarithm layer (y+ > 30), the frequency of both types of streaks show the
same decreasing rate with wall distance. On average, about 2.9 low speed streaks and 2.8
high speed ones are expected per area of 530+*300+ at y+ = 14.5 while about 2.1 low
speed and 1.6 high speed streaks at y+ = 48.

Many streaks show a bifurcating behaviour. Fig. 6.7b shows the frequency of appea-
rance of bifurcate streaks at various wall distances. This frequency is about 0.6 for both
of low and high speed streaks. For low speed streaks, it shows an increasing trend ap-
proaching the wall. Comparing with Fig. 6.7a, it suggests that about 22-26% of low speed
streaks and about 23-35% of high speed streaks have branches. As explained in Appen-
dix B.1, the dimension of the parts with branches are comparable with the whole size of
streaks.
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Fig. 6.7 – Frequency of appearance of streaks, a : Frequency of appearance of detected
streaky objects N ; b : Frequency of appearance of bifurcate streaks Nb

6.2.2.2 Spanwise angle

The streaks are generally expected to be parallel to the streamwise direction. Benefiting
from the instantaneous indicative images of streaks obtained in the streamwise-spanwise
plane, the angle of streaks with respect to the streamwise direction can be calculated. Due
to the limitation in the size of SPIV images, streaks, which are cut by the spanwise border
of the image, were excluded from calculation of the angle. Fig. 6.8 shows the variation
of the mean spanwise angle ϕ with wall distances. The values of ϕ are nearly zero for
both low and high speed streaks, which suggests that on average streaks move parallel to
the streamwise direction as expected. The near-zero value also confirms the homogeneous
property of the flow in the spanwise direction. The small fluctuations in Fig. 6.8 result
from the lack of convergence. Fig. 6.8 also shows the mean absolute spanwise angle |ϕ|.
For low speed streaks, |ϕ| increases slightly with wall distance from 5.9◦ at y+ = 14.8 to
8.3◦ at y+ = 48.0. Comparing to low speed streaks, |ϕ| of high speed ones shows a more
random distribution. It has an average value about 7.5◦.
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Fig. 6.8 – Mean spanwise angle ϕ and mean absolute spanwise angle |ϕ|. ϕ (LSS) : � ; ϕ
(HSS) : ♦ ; |ϕ| (LSS) : N ; |ϕ| (HSS) : △.
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Fig. 6.9 shows the RMS of ϕ, which is around 10◦ for both low and high speed streaks.
Both types of streaks have a similar behavior : a slight increase with wall distance. Fig. 6.9
also shows the RMS of |ϕ|. Low and high speed streaks have nearly the same mean value
of the RMS : about 7.2◦. Besides this mean value, the distribution of the RMS of |ϕ| is
also similar. Except for the values, the distribution of |ϕ| is nearly the same as that of ϕ.
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Fig. 6.9 – RMS of spanwise angle ϕ and absolute spanwise angle |ϕ|. ϕ (LSS) : � ; ϕ
(HSS) : ♦ ; |ϕ| (LSS) : N ; |ϕ| (HSS) : △.

To investigate the spanwise angle in more detail, the histograms of ϕ for low and
high speed streaks are shown respectively in Fig. 6.10 at selected wall distances. The
histograms are closer to a Laplace distribution than to a Gaussian one. Different from the
average behaviour, many streaks move with a spanwise angle up to about 15◦. Some of
them even travel downstream with an angle of more than 25◦. The high values of spanwise
angle indicate the meandering property of streaks. In Fig. 6.10, with the increase in wall
distance, a plateau begins to appear around 10-12◦. This plateau is more visible in the
histogram of high speed streaks than low speed ones.

The histograms are closer to a Laplace distribution than to a Gaussian one. The
probability density function of a Laplace distribution is defined as :

P (x) =
1

2b
e−|x−µ|/b (6.13)

Where, µ is the mean and b is the parameter of rate of change.
In order to characterize the distribution of ϕ statistically, skewness (S ) and flatness (F )

are calculated and shown in Fig. 6.11. Skewness (S ) is nearly zero for all wall distances,
revealing the symmetry property of the distribution and confirming again the spanwise
homogeneity. The value of flatness (F ) is in the range of 5 to 8, which is comparable to
6, the standard value for a Laplace distribution. The variation of F near the wall should
be attributed to the convergence.

6.2.2.3 Width

In Fig. 6.12, the mean width W+
a of streaks is shown at various wall distances. The

error bars represent an error of 5% of the mean. For low speed streaks, the mean width
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Fig. 6.10 – Histogram of the spanwise angle ϕ of streaks at selected wall distance, a :
LSS ; b : HSS.
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Fig. 6.11 – Skewness (S ) and flatness (F ) of the spanwise angle ϕ of streaks

W+
a is nearly a constant at about 31 wall units in the region 14.5 < y+ < 33. After that,

it increases slowly with the wall distance up to 39 wall units at y+ = 48. For high speed
streaks, the mean width W+

a is fluctuating between 42 and 47 wall units. Fig. 6.12 also
gives the RMS of the width W+

a of streaks. It shows that the RMS is about 16 wall units
for low speed streaks and 23 wall units for the high speed ones in the whole y+ range.

Histograms of the width of streaks are given in Fig. 6.13. These distributions are
far from Gaussian, looking more like a lognormal distribution. Consequently, the most
probable value is rather different from the mean value. For example, they are 20 and 30
wall units respectively for low speed streaks at y+ = 14.5. As shown in Fig. 6.13, the
distribution of high speed streaks is significantly wider than the low speed ones. The most
probable value is between 20 and 30 wall units for low speed streaks and between 25 and
35 wall units for high speed ones. It is interesting to compare the characteristics of the
present distribution to a true lognormal one.

According to Hastings and Peacock (1975), let us consider that the variable A has a
lognormal distribution, and A and σA are the corresponding mean value and standard
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Fig. 6.12 – Mean and RMS of the width W+
a of streaks
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Fig. 6.13 – Histogram of the width W+
a of streaks at selected wall distances, a : LSS ; b :

HSS

deviation respectively. The variation coefficient ψ is defined by :

ψ = A
σA

(6.14)

The form of the probability density function is given by :

P (A) =
e
− 1

2
( 1

ψ0
ln A
M0

)2

Aψ0

√
2π

(6.15)

where

M0 = A(1 + ψ2)−
1

2

(6.16)

ψ0 = (ln(1 + ψ2))
1

2

(6.17)

(6.18)
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Here, M+
0 is the median value of A and ψ0 the variation coefficient of lnψ. Employing

Eq. 6.14, Eq. 6.16 and Eq. 6.17, the coefficient ψ and the median value M+
0 of the width

W+
a of streaks are calculated and shown in Fig. 6.14. The range of ψ of all 10 distribution

is 0.45 < ψ < 0.52 and 0.43 < ψ < 0.56 for low and high speed streaks respectively.
The difference in the range of ψ can be explained by the fact that the distribution of W+

a

for high speed streaks is wider than for low speed ones as shown clearly by Fig. 6.13.
ψ0 is about 4-6% smaller than ψ for both types of streaks at all wall distance studied.
Compared with Fig. 6.12, the value of M+

0 in Fig. 6.14 has nearly the same distribution
as W+

a , except that it is about 9-12% smaller.
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Fig. 6.14 – Coefficient variation ψ and median value M+
0 of the width W+

a of streaks

According to Eq. 6.15, the theoretical skewness and flatness of the lognormal distri-
bution are defined by :

S =

√

eψ
2
0(2 + eψ

2
0
) (6.19)

F = e4ψ
2
0 + 2e3ψ

2
0 + 3e2ψ

2
0 − 3 (6.20)

Using Eq. 6.19-6.20, the theoretical skewness (S) and flatness (F ) of lognormal distri-
butions corresponding to ψ0 and M+

0 in Fig. 6.14, are obtained and compared with the
present results in Fig. 6.15. For both S and F , the present results are comparable with
theoretical ones. In general, for S, the agreement is better for high speed streaks than
for low speed ones. However, for F , the opposite is true. This result indicates that the
distribution of W+

a is more symmetric for high speed streaks than for low speed ones as
shown in Fig. 6.13. According to Hastings and Peacock (1975), for a true lognormal dis-
tribution, the ratio of the most-probable value to the mean value Rmm, can be calculated
by Eq .6.21. Fig. 6.16 shows that the present results are consistent with the theoretical
values. It reveals again that the width of streaks follows nearly a lognormal distribution.

Rmm = (1 + ψ2)−
3

2

(6.21)
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Fig. 6.15 – Comparison of skewness (S ) and flatness (F ) of the width W+
a of streaks of the

present study with the theoretical values obtained according to lognormal distributions
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Fig. 6.16 – Ratio of the most probable value to the mean value Rmm of the width W+

a of
streaks

6.2.2.4 Spanwise distance

The mean spanwise distance d+ between the center of two nearby streaks is widely
referred to as the spanwise periodic spacing λ in literature. Fig. 6.17 shows d+ for low and
high speed streaks at various wall distances. The error bars represent an error of 5% of
the mean. The mean distance d+ is nearly the same for both types of streaks at the same
wall distance. It varies between 114 and 135 wall units. Fig. 6.17 also suggests that the
mean distance d+ is slightly smaller in the buffer layer than in the log layer. Fig. 6.17 also
gives the RMS of d+. The value of this RMS is about 42 wall units for low speed streaks
and 39 wall units for high speed streaks.

The instantaneous indicative images of streaks allow to obtain the histogram of the
distance d+. In Fig. 6.18, the number of samples decrease sharply with wall distance in
the logarithm layer. This can be explained by the following two reasons. One is that the
number of streaks decreases with the wall distance as shown in Fig. 6.7. The other is that
streaks become wider with the wall distance (see Fig. 6.12). The wider streaks are, the
more likely they will be cut by the spanwise border of the field and thus the number of
samples will decrease. Moreover, the streamwise extension of streaks may decrease with
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Fig. 6.17 – Mean and RMS of the spanwise distance between the nearby streaks d+

wall distance as velocity fluctuations decrease. The shorter streaks are, the fewer samples
there are. Unfortunately, due to the relatively small size of the SPIV field used, it is not
possible to measure the length of streaks.
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Fig. 6.18 – Histogram of the spanwise distance between the nearby streaks d+ at selected
wall distance , a : LSS ; b : HSS

Except for oscillations that may arise from the lack of convergence, both histograms
of low and high speed streaks are close to a Rayleigh distribution (Weisstein (1999)). The
probability distribution function of this distribution is defined as :

P (x) =
(x − a)e−(x−a)2/2s2

s2
(6.22)

Where, a is the shift to the origin, s is the parameter of rate of change, and x ∈ [a,∞].
To characterise the histogram from the statistical point of view, skewness (S) and

flatness (F ) are calculated and are given in Fig. 6.19. These parameters are compared
with those obtained from a Rayleigh distribution. For such a distribution, skewness (S )
and flatness (F ) are defined by Eq. 6.23-6.24. For both low and high speed streaks, the
values of the two parameters are nearly the same. Skewness (S) has a value about 0.4
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and flatness (F ) has a value of about 2.8. These values are comparable respectively to S
= 0.63 and F = 3, the standard values for a Rayleigh distribution.
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Fig. 6.19 – Skewness (S ) and flatness (F ) of the spanwise distance d+ between the nearby
streaks

S =
2(π − 3)

√
π

(4 − π)3/2
(6.23)

F =
6π2 − 24π + 16

(4 − π)2
+ 3 (6.24)

Most of the former studies were conducted to measure only the spanwise distance
between two nearby streaks d+. In the present study, however, instantaneous streak indi-
cative images provide the possibility to measure the spanwise distance between the centre
of two closest streaks and its mean value (referred to as d+

n and d+
n respectively) (Fig. 6.5a).

Fig. 6.20 shows the mean distance d+
n at various wall distances. Comparing with Fig. 6.17,

the distance d+
n is about 13 wall units smaller than d+ for low speed streaks and about 9

wall units for high speed streaks. This difference indicates a staggering of the two closest
streaks in the streamwise direction (Fig. 6.5a). Except for the difference in value, d+ and
d+
n have a similar distribution with wall distance, which manifests the reliability of the

measurement. Fig. 6.20 also shows that the RMS is around 39 wall units for both low and
high speed streaks on average.

Fig. 6.21 shows the histograms of the spanwise distance d+
n at selected wall distances

for low and high speed streaks respectively. Similar to d+, d+
n has a nearly Rayleigh distri-

bution. Comparing with Fig. 6.18, it appears that about 60-70% of d+ are d+
n (Fig. 6.5a).

As for d+, skewness (S) and flatness (F ) are given in Fig. 6.22. The values of S and F
are nearly the same as those of d+.

6.2.2.5 Percentage of area

Table 6.2 shows the percentage of the total area of low and high speed streaks in
the whole field with various wall distance. With the selected detection parameters, low
and high speed streaks cover about 59% of the area of the whole field at y+ = 14.5. This
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Fig. 6.20 – Mean and RMS of the spanwise distance between the closest streaks d+
n
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Fig. 6.21 – Histogram of the spanwise distance between the closest streaks d+
n at selected

wall distance, a : LSS ; b : HSS

percentage decreases nearly linearly to about 45% at y+ = 48 with wall distance. Table 6.2
shows that the percentage of total area of high speed streaks is almost equal to that of
the low speed ones.

6.2.2.6 Mean normalized velocity fluctuations

Fig. 6.23 gives mean normalized velocity fluctuations in streaks at various wall dis-
tances. The mean streamwise normalized fluctuations in low speed streaks are comparable
to those in high speed ones. In low speed streaks, remarkably, high positive mean wall-
normal fluctuations are observed. Similarly, high negative mean wall-normal fluctuations
are found in high speed streaks. These findings confirm that ejections are associated with
low speed streaks while sweeps are linked to high speed ones. The absolute value of the
mean wall-normal fluctuation is comparable in both low and high speed streaks very close
to the wall (y+ < 18.5). In the region y+ > 18.5, it is slightly larger in low speed streaks
that high speed ones. The nearly zero value of the mean spanwise fluctuation in both low
and high speed streaks results from the spanwise homogeneity.
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Fig. 6.22 – Skewness (S ) and flatness (F ) of the spanwise distance between the closest
streaks d+

n

y+ 14.5 18.5 22.2 26.3 29.7 33.3 37.0 40.6 44.0 48.0
Total area of LSS/
Area of whole field

0.29 0.28 0.26 0.25 0.25 0.23 0.23 0.23 0.22 0.22

Total area of HSS/
Area of whole field

0.30 0.29 0.27 0.27 0.26 0.26 0.24 0.24 0.23 0.23

Tab. 6.2 – Percentage of the total area of low and high speed streaks with various wall
distance

6.2.3 Comparison

The mean distance d+ between low speed streaks are compared with earlier studies in
Fig. 6.24. Smith and Metzler (1983) obtained their results at Reθ = 2030, using a high
speed video camera and a hydrogen bubble-wire in water. In spite of the differences in
the experimental methods and conditions, the present results are comparable with their
results, except at y+ = 30 where Smith and Metzler (1983) observed a much larger value
(see Fig. 6.24). Both the present study and Smith and Metzler’s show an increase of d+

with wall distance. It should be noted that the increase of d+ is much stronger according to
their study than in the present study. Moreover, Kahler (2004) conducted an analysis using
the spatial correlation method. Fig. 6.24 shows that the result of Kahler’s study is smaller
than the other results. The difference can be explained by the fact that it is obtained
directly from the spatial correlation of negative streamwise velocities fluctuations, while
the present results are obtained from the binary indicative images of streaks. Carlier and
Stanislas (2005) used standard 2D2C PIV on a larger field of view (1250+*800+), at the
same Reynolds number as here, to investigate streaks at y+ = 15. Their results are in
good agreement with the present study.

Table 6.3 shows a comparison of the percentages in our study with those of Carlier
(2001). It shows that our percentage is greater. The reason can be that we used a threshold
of 0.6-0.75 (from wall distance y+ = 14.5 to y+ = 48) while Carlier (2001) used a constant
value of 1.0. With the same threshold, the results become more similar, which indicates
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Fig. 6.23 – Mean normalized velocity fluctuations in streaks. u′
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Fig. 6.24 – Comparison of the mean spanwise distance d+ of low speed streaks

that the choice of the threshold is important for the study.

Carlier (2001), with a threshold CT equal to a value of 1, found that the width W+
a is

about 30 wall units for low speed streaks and 50 wall units for high speed streaks at y+

= 15. These values are similar to the present results.

According to Nakagawa and Nezu (1981) and Smith and Metzler (1983), the distance
between nearby low speed streaks d+ follows a lognormal distribution. To compare with
their results, the variation coefficient ψ, skewness (S) and flatness (F ) are presented.
Fig. 6.25 compares ψ obtained from the present results with those found by Smith and
Metzler (1983). It shows that the present results are smaller than those of Smith and
Metzler (1983) but still comparable. Fig. 6.26 gives skewness (S) and flatness (F ) of d+

obtained from the experiments compared with the theoretical values computed from ψ0

(Eq.6.17, 6.19 and 6.20). The experimental results turn out to be very similar. For both
skewness (S) and flatness (F ), the theoretical values are about two times higher than those
obtained by experiments. This suggest the distribution of d+ does not have a lognormal
distribution. As proposed above, d+ is near to a Rayleigh distribution (see Fig. 6.18). This
proposition can be validated by the values of skewness and flatness in Fig. 6.26.
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Present results Carlier’s results
y+ 14.5 18.5 26.3 26.3 48.0 48.0 15.0 25.0 50.0
Threshold CT 0.60 1.00 0.65 1.00 0.75 1.00 1.00 1.00 1.00
Total area of LSS/Total
area of LSS and HSS

0.50 0.51 0.48 0.50 0.49 0.50 0.48 0.52 0.52

Total area of LSS and
HSS/Area of whole field

0.59 0.34 0.52 0.31 0.45 0.31 0.31 0.29 0.31

Tab. 6.3 – Percentage of the total area of low and high speed streaks, comparison with
the results of Carlier (2001)

0

0.5

1

10 20 30 40 50

y
+

ψ
 

ψ
 

ψ
 

ψ
 

SPIV Smith and Metzler (1983)

 

Fig. 6.25 – Comparison of variation coefficient ψ of the spanwise distance d+ of low speed
streaks obtained in the present study with the results of Smith and Metzler (1983)

6.2.4 Summary

Using a pattern recognition method, both low and high speed streaks were identified
and the corresponding binary streak images were created. From these data, the characte-
ristics of streaks were investigated in detail in the region 14.5 < y+ < 48.

Globally, the frequency of appearance of both low and high speed streaks decreases
with wall distance in the whole range studied. However, both the value and the variation
of this frequency show different behavior for both types of streaks. In the buffer layer
(y+ ≤ 30), with an increasing wall distance, the frequency decreases rapidly for high
speed streaks but is nearly the same or decreases very slowly for low speed ones. In the
bottom region of the logarithm layer (y+ > 30), the frequency of low and high speed
streaks decreases nearly linearly with the same decreasing rate with wall distance. On
average, about 2.9 low speed streaks and 2.8 high speed ones are expected per area of
530+*300+ at y+ = 14.5 while about 2.1 low speed streaks and 1.6 high speed ones at
y+ = 48. In general, about 22-26% of low speed streaks and about 23-35% of high speed
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Fig. 6.26 – Comparison of skewness (S) and flatness (F ) of the spanwise distance d+ of
low speed streaks obtained in the present study with the results of Smith and Metzler
(1983), and theoretical values from lognormal distribution

streaks show a bifurcating behavior.
The mean spanwise angle of both low and high speed streaks is nearly zero, indicating

the homogeneous property in the spanwise direction. For the mean absolute spanwise
angle, the variation with wall distance is different between low and high speed streaks. It
increases slightly with wall distance from 5.9◦ at y+ = 14.5 to 8.3◦ at y+ = 48 for low
speed streaks while it varies around 7.5◦ for high speed streaks. The histogram of the
spanwise angle follows nearly a Laplace distribution. It shows that many streaks have a
spanwise angle larger than 15◦, evidencing the meandering behaviour of these structures.

The mean width of low speed streaks is nearly constant at about 31 wall units in the
region 14.5 < y+ < 33. Above that region, it increases slowly with the wall distance up to
39 wall units. For high speed streaks, the mean width varies between 42 and 47 wall units
in the whole range studied. Clearly, high speed streaks are wider than low speed ones. For
both types of structures, the histogram of the width is close to a lognormal distribution.

The mean spanwise distance between the centre of two nearby low speed streaks is
nearly the same as that of high speed ones at the same wall distance. It varies between 114
and 135 wall units. The present results suggest that this distance is slightly smaller in the
buffer layer than in the bottom of the log layer. Its histogram follows nearly a Rayleigh
distribution. In the present study, it is the first time that the spanwise distance between
the centre of two closest low (or high) streaks and its mean value were investigated. In
comparison with the mean spanwise distance between the centre of two nearby streaks,
this mean distance is about 13 wall units smaller for low speed streaks and about 9 wall
units smaller for high speed streaks. This difference indicates a staggering of two closest
streaks in the streamwise direction. Except for the difference in value, the two distances
(between two nearby streaks and between two closest streaks) have a similar distribution
with wall distance.

Low and high speed streaks cover about 59% of the area of the whole field at y+ = 14.5.
This percentage decreases nearly linearly to about 45% at y+ = 48 with wall distance.
The total area of high speed streaks is almost equal to that of the low speed ones. The
present study shows that the magnitude of the RMS of three velocity components are
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comparable in low and high speed streaks. In low speed streaks, high positive wall-normal
fluctuations are observed together with high negative streamwise ones. The contrary is
true in high speed streaks. Remarkably, the magnitude of these fluctuations is nearly the
same in both type of the structures.
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6.3 Ejections and sweeps

6.3.1 Functions and parameters of detection

6.3.1.1 Detection functions and parameters

Ejections and sweeps, which are important coherent structures related to the turbu-
lence generation process, are defined as regions of an abrupt outward motion with low
streamwise velocity or inward motion with high streamwise velocity respectively. Corino
and Brodkey (1969) are one of the earliest who have observed these structures. Thereafter,
different techniques were employed to detect those structures. Most of them focused only
on the burst or ejections that occur in the near wall region. Among them, the four most
widely used techniques are : Variable -Interval Time-Averaging (VITA), Zaric technique,
quadrant analysis (also called uv -level) and u-level. The VITA technique, firstly used by
Blackwelder and Kaplan (1976), is based on the intermittent character of the short-time
variance of a turbulent signal. The detection criterion is completed by using a threshold
level on the VITA variance signal. Chen and Blackwelder (1978) and Bogard and Tie-
derman (1987a) had modified this technique to detect ejections by adding an additional
criterion on the velocity gradient, du/dt. Only when the gradient is negative, ejections
can be recorded. The Zaric technique (Zaric (1975)) was used to detect ejections by sear-
ching the regions in the flow where the streamwise momentum is changing rapidly. The
quadrant technique was introduced by Wallace et al. (1972) and is based on the detec-
tion of the second-quadrant uv signal above a specified magnitude. The u-level technique
used by Lu and Willmarth (1973), identifies ejections by detecting the region with high
negative streamwise velocity fluctuations. All the four techniques are listed in Table. 6.4
and details can be found in the corresponding articles. In this table, u and v are the
instantaneous streamwise and spanwise velocity components respectively. u′ and v′ are
the corresponding fluctuations while urms and vrms are the standard deviations. H is the
threshold level and takes a positive value.

Many efforts were made to evaluate the above methods. For example, Alfredsson and
Johansson (1984) compared the VITA, the quadrant and the u-level techniques. They
found that the results obtained by the VITA and the quadrant techniques are similar.
They have also observed that some events with large uv -peaks detected by this two tech-
niques do not correspond to any strong activity in the u-component. Bogard and Tie-
derman (1987a) made an evaluation of the effectiveness of the VITA, the quadrant, the
u-level techniques and their combinations with flow visualization. They suggest that the
quadrant technique has the greatest reliability with a high probability of detecting ejec-
tions and a low probability of false detections. Following this, in the present study the
quadrant technique is used to detect ejections and sweeps. As explained in Chapter 6.2.1,
the velocity fluctuations were normalized by the standard deviations. Then the norma-
lized velocity fluctuations were used to define the detection functions. According to the
quadrant technique, three detection functions, F uv

d , F u
d and F v

d are defined as :
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Technique Detection function Detection criteria references
VITA F 1

d =
1
T

∫ t+ 1

2
T

t− 1

2
T
u2(xi, t)dt-

( 1
T

∫ t+ 1

2
T

t− 1

2
T
u(xi, t)dt)

2

F 1
d > Hurms

2 Blackwelder and Kaplan
(1976)

F 2
d = du

dt
|begin F 1

d > Hurms
2 and

F 2
d < 0

Chen and Blackwelder
(1978)

F 3
d = du

dt
|center F 1

d > Hurms
2 and

F 3
d < 0

Bogard and Tiederman
(1987a)

Zaric F 1
d = u′(du

′

dt
) F 1

d > Hurms(
du
dt

)rms
and F 2

d < 0
Zaric (1975)

F 2
d = du

dt
Zaric (1975)

F 3
d = u′ F 1

d > Hurms(
du
dt

)rms
and F 3

d < 0
Tubergen and G. (1993)

Quadrant F 1
d = u′v′ F 1

d < −Hurmsvrms Wallace et al. (1972)
F 2
d = u′ F 2

d < 0 Lu and Willmarth (1973)
F 3
d = v′ F 3

d > 0 Carlier and Stanislas (2005)
u-Level Fd = u′(t) Fd < −Hurms Lu and Willmarth (1973)

Tab. 6.4 – Review of previous methods to detect ejections

F uv
d =

u′(m,n, y+)v′(m,n, y+)

σu(y+)σv(y+)
(6.25)

F u
d =

u′(m,n, y+)

σu(y+)
(6.26)

F v
d =

v′(m,n, y+)

σv(y+)
(6.27)

Where u′ and v′ are the instantaneous velocity fluctuations of the streamwise and
spanwise component u and v respectively, σu and σv are the corresponding standard
deviations, (m, n) is the position in the (M, N) grid, and y+ is the wall distance at which
the SPIV measurement is performed.

6.3.1.2 Thresholding

As for streaks, the detection functions, F uv
d , F u

d and F v
d (Eq. 6.27), are real scalar fields

defined on a discrete (M, N) grid. To obtain the indicative functions Fi of ejections and
sweeps, three thresholds, Cuv

T , Cu
T and Cv

T , are applied to F uv
d , F u

d and F v
d respectively.

The values of thresholds are taken as positive. The indicative function Fi is then defined
as :
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Ejection : Fi =

{

1 when F uv
d < −Cuv

T , F
u
d < 0 and F v

d > Cv
T

0 otherwise
(6.28)

Sweep : Fi =

{

1 when F uv
d < −Cuv

T , F
u
d > 0 and F v

d < −Cv
T

0 otherwise
(6.29)

In the present study (see Appendix B.2), Cu
T was selected as zero as used by other

studies (e.g. Wallace et al. (1972), Carlier and Stanislas (2005)). However, different from
previous studies, Cv

T was taken as 0.6 instead of zero. This non-zero value of Cv
T reduces

the erroneous detection of strong streaks as ejections or sweeps. The suitable value of Cuv
T

was chosen as 1.0. However, to compare with early studies, other values will also be used
when the statistical characteristics are computed.

6.3.1.3 Mathematical morphology

Similar to streaks, ejections and sweeps are also elongated in the streamwise direction
and thus a rectangular (or square) structuring element was chosen : MS(W,L), in which
W is the width in the spanwise direction and L is the length in the streamwise direction.
The values of W and L are given in wall units. The structuring element was selected as
MS = (10+, 10+) for both ejections and sweeps (see Appendix B.2). Since the selected
structuring element is small, it can also be employed in the case that a higher Cuv

T is used.

6.3.1.4 Cleaning

As explained in Appendix B.2, two clean factors CB and CC , which are given in square
wall units, were used to improve the indicative images of ejections and sweeps. The values
CB = 375+2

and CC = 750+2

were chosen for both types of coherent structures. These
two values are based on a threshold Cuv

T = 1.0. Since they are relatively small, they can
be used also for a higher threshold.

Fig. 6.27 shows an example of the detection function and the corresponding indicative
images of ejections at the different steps of the detection procedure.

6.3.2 Statistics on ejections and sweeps

6.3.2.1 Frequency of appearance

As for streaks, the frequency of appearance (N ) in the area of 530+*300+ was com-
puted. Fig. 6.28 shows the profile of (N ) as a function of the wall distance. The error
bars represent an error of 5% of the mean. In the present study, ejections and sweeps are
abbreviated EJ and SW respectively in all the figures if no other specification is made.
For ejections, the maximum (N = 5.2) is located around y+ = 22. In the region y+ < 22,
the frequency of appearance decreases rapidly approaching the wall. In the region y+ >
22, it decreases less rapidly with wall distance. For sweeps, it decreases linearly with wall
distance in the whole range. The maximum is expected to locate very close to the wall.
In the region y+ > 22, the rate of decrease is almost the same for ejections and sweeps.
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Detection function
After thresholding

After mathematical morphology After cleaning

Fig. 6.27 – Detection image and indicative images of ejections

Moreover, in this region, the frequency of appearance of ejections is nearly 50% larger
than that of sweeps.

0

3

6

10 20 30 40 50

y
+

N

EJ SW

 

Fig. 6.28 – Frequency of appearance (N ) of ejections and sweeps
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6.3.2.2 Spanwise angle

To study the direction of motions of ejections and sweeps in the streamwise-spanwise
plane, the spanwise angle (ϕ) is investigated. Fig. 6.29 shows the distribution of its mean
value ϕ as a function of the wall distance for both ejections and sweeps. As expected from
the homogenous property in the spanwise direction, a near-zero value is obtained. The
small variations can be attributed to the lack of convergence. Fig. 6.29 also shows the
mean of the absolute spanwise angle |ϕ|. At y+ = 14.5, |ϕ| is about 10 degrees for both
ejections and sweeps. In the region y+ < 22, it decreases slightly from 10 to 8 degrees
with wall distance for ejections while it has nearly a constant value (about 10 degrees) for
sweeps. Afterward, in the region y+ > 22, it increases nearly linearly with wall distance
to about 11.5 and 14.5 degrees for ejections and sweeps respectively. The value of |ϕ| of
ejections is about 3 degrees larger than that of sweeps in this region. The large value of
|ϕ| (> 8 degrees) indicates that many ejections and sweeps move also in the spanwise
direction when they travel downstream, especially when far away from the wall.

Fig. 6.30 gives the RMS of ϕ and |ϕ| respectively. At y+ = 14.5, for both ejections and
sweeps, the RMS of ϕ has nearly the same value (about 14 degrees) while the RMS of |ϕ|
has also nearly the same value (about 10 degrees). Except for the difference in values, the
distributions of the RMS of ϕ and |ϕ| are similar to those of |ϕ| (Fig. 6.29) for ejections
and sweeps respectively : a) decreasing with wall distance for ejections and being constant
for sweeps in the region y+ < 22 ; b) increasing for both ejections and sweeps afterwards
(in the region y+ > 22). In the latter region, for ejections or sweeps, the RMS of ϕ is
about 5 degrees larger than that of |ϕ|. In the same region, the RMS of ejections is about
3 degrees larger than that of sweeps for both ϕ and |ϕ|. In Fig. 6.29, all the RMS are
fairly large (> 8 degrees).
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Fig. 6.29 – Mean spanwise angle ϕ and mean absolute spanwise angle |ϕ|. ϕ (EJ) : � ; ϕ
(SW) : ♦ ; |ϕ| (EJ) : N ; |ϕ| (SW) : △.

The above discussion is only based on the average behaviour. To investigate the span-
wise angle ϕ in more detail, Fig. 6.31 shows its histograms for both ejections and sweeps.
It shows clearly that many ejections and sweeps travel downstream with large spanwise
angle (up to 30 degrees). When |ϕ| < 15, the histogram is changing with wall distance.
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Fig. 6.30 – RMS of the spanwise angle ϕ and the absolute spanwise angle |ϕ|. ϕ (EJ) :
� ; ϕ (SW) : ♦ ; |ϕ| (EJ) : N ; |ϕ| (SW) : △.

However, when |ϕ| > 15, the histograms are nearly the same in whole range of wall dis-
tance studied. The variation in the value of the central peak partly results from different
frequency of appearance at each wall distance studied (Fig. 6.28).
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Fig. 6.31 – Histogram of the spanwise angle ϕ at selected wall distances. a : ejections ;
b : sweeps.

From these histograms, the spanwise angle of ejections and sweeps was divided into
three groups based on the absolute value : |ϕ| < 6, 6< |ϕ| < 15 and |ϕ| > 15. Fig. 6.32
gives the percentage of each group as a function of wall distance. In the first group,
for ejections, the percentage increases in the range y+ < 22 and then decreases linearly
afterwards. For sweeps it decreases slowly in the whole range. The second group shows
a nearly constant percentage (34%) for both ejections and sweeps in the whole range
of wall distance under study. In the last group, the behaviour is just opposite to that
in the first group. Fig. 6.32 also shows that ejections are relatively more parallel to the
streamwise direction around y+ = 25 while for sweeps, closer to the wall, more parallel
to the streamwise direction. Considering the tendency about y+ = 48, the probability of
small angles should be overwhelmed by that of large ones for both ejections and sweeps.
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Fig. 6.32 – Percentage of the spanwise angle (|ϕ|) in three different ranges

The histograms in Fig. 6.31 are close to a Laplace distribution (Eq. 6.13) except for
small oscillations due to the lack of convergence. To characterize them globally, skewness
(S) and flatness (F) are given in Fig. 6.33. For both ejections and sweeps, the near-
zero value of skewness indicates the good symmetry property of the histogram. It also
suggests the homogeneity in the spanwise direction. The flatness has a value about 5,
which is smaller than the standard value of a Laplace distribution, which is 6.
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Fig. 6.33 – Skewness (S ) and flatness (F ) of the spanwise angle ϕ

6.3.2.3 Width

Except for the frequency of appearance and the spanwise angle, another interesting
characteristic of ejections and sweeps is the size, including width W+

a , length L+
Aand area

A+
c . Fig. 6.34 shows the mean width W+

a of ejections and sweeps respectively at various
wall distances. The error bars represent an error of 5% of the mean. For ejections, the
mean width keeps nearly a constant value (18 wall units) in the region y+ < 22 and
increases linearly to about 24 wall units at y+ = 48. For sweeps, a nearly linear increase
with wall distance is evidenced in the whole range. It starts from about 22 wall units at
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y+ = 14.5 to about 30 wall units at y+ = 48. Sweeps are about 25% wider than ejections
on average. Fig. 6.34 also shows the RMS of the width W+

a at various wall distances. Both
RMS of ejections and sweeps increase linearly with wall distance. The RMS of the width
of sweeps is about 40% larger than that of ejections. It is about 1/5 of the corresponding
W+
a , showing that this parameter is fairly constant in the region near the wall.
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Fig. 6.34 – Mean and RMS of the width W+
a of ejections and sweeps

To study the distribution of W+
a in more detail, Fig. 6.35 shows some histograms at

selected wall distances. As indicated by the RMS in Fig. 6.34, the histograms of ejections
have a much smaller range compared to those of sweeps. For ejections, the maximum
of the histogram locates at about W+

a = 15 up to y+ = 30 and shifts progressively to
W+
a = 20 at y+ = 48. For sweeps, the location of this maximum is always at about W+

a

= 20. In the range W+
a > 25 for ejections and W+

a > 32 for sweeps, the larger the wall
distance, the higher the histogram. In other words, the population of structures with large
width increases with wall distance. This indicates that both ejections and sweeps become
larger with increasing wall distance as shown in Fig. 6.34, but the peak of this histogram
which hardly moves with wall distance is indicative of a strong coherent motion. Similar
to streaks, the histograms of the width of ejections and sweeps follow nearly a lognormal
distribution.

Fig. 6.36 show respectively the variation coefficient ψ and the median value M+
0 (See

Eq. 6.16). For ejections, ψ increases with wall distance in the region y+ < 22, stays nearly
constant in the region 22 < y+ < 30, and then increases again but less rapidly in the
region 22 < y+ < 48. For sweeps, this coefficient increases continuously with wall distance
in the whole range. The distributions of the median value M+

0 are the same as those of
the mean width W+

a in Fig. 6.34 for ejections and sweeps, the median value being about
5% smaller than the corresponding mean value.

Since the histograms are expected to follow a lognormal distribution. The skewness
(S ) and flatness (F ) obtained in the present study are compared to those computed from
the true lognormal distribution in Fig. 6.37. For both ejections and sweeps, the agreement
is good in both parameters. The results confirm that the histograms of the width W+

a of
ejections and sweeps do follow a lognormal distribution.
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Fig. 6.35 – Histogram of the width W+
a of ejections and sweeps at selected wall distances.

a : ejections ; b : sweeps.
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Fig. 6.36 – Variation Coefficient ψ and median value M+
0 of the width W+

a of ejections
and sweeps

6.3.2.4 Length

Fig. 6.38 shows the profiles of the mean length L+
A as a function of wall distance. The

error bars represent an error of 5% of the mean. For ejections, the studied wall distance
range can be split into three regions. In the first region, y+ < 22, the mean length increases
rapidly from 92 wall units at y+ = 14.5 to 117 wall units at y+ = 22.2. Then, for 22 <
y+ < 33, it keeps a nearly constant value of 117 wall units. In the third region, y+ > 33,
it decreases slightly to 107 wall units at y+ = 48. Different from ejections, sweeps have a

nearly constant mean length L+
A of 90 wall units in the whole range. Different from the

width, the length of ejections is generally larger than that of sweeps especially when y+ >
22 (the difference is about 10 wall units). Fig. 6.38 also gives the RMS of the length L+

A

of ejections and sweeps. The RMS of ejections increases rapidly from 49 to 67 wall units
with wall distance up to y+ = 22 and thereafter stays nearly constant around 70 wall
units. For sweeps, the RMS has a slight linear increase, from 52 to 59 wall units in the
whole range.
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Fig. 6.37 – Comparison of skewness (S ) and flatness (F ) of the width W+
a of ejections and

sweeps of the present study with the theoretical values obtained according to lognormal
distributions. a : ejections ; b : sweeps
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Fig. 6.38 – Mean and RMS of the length L+
A of ejections and sweeps

Fig. 6.39 shows the histograms of L+
A for ejections and sweeps at selected wall dis-

tances. Similar to the width W+
a , the histograms of the length follow nearly a lognormal

distribution. Contrary to the result of the width, the histograms of the length have nearly
the same range for ejections and sweeps. For ejections, the location of the peak is 60 at
y+ = 14.5 to 18.5 and 73 at y+ = 22 to 37. Afterward, it goes down to 52 at y+ = 48.
This is more or less in agreement with tendencies observed in Fig. 6.38. It is difficult to
interpret in itself and should be looked at in relation with other coherent structures (e.g.
streaks, vortices). For sweeps, there seems to be a convergence problem near the wall (y+

= 14.5 and 22.2). The logic would call for a constant peak at L+
A = 50.

To study the histograms statistically, Fig. 6.40 shows the profiles of the coefficient ψ
of the length of ejections and sweeps as a function of wall distance. The profiles are nearly
the same for both types of coherent structures. This coefficient increases slightly with wall
distance. The average value is about 0.59. Fig. 6.40 also shows the median value M+

0 of
the lengths of ejections and sweeps. The distributions of the median value are similar to

those of the mean length L+
A for ejections and sweeps respectively. In general, the median
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Fig. 6.39 – Histogram of the length L+
A of ejections and sweeps at selected wall distances.

a : ejections ; b : sweeps

value is about 14% smaller than the mean.
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Fig. 6.40 – Variation Coefficient ψ and median value M+
0 of the length L+

A of ejections
and sweeps

Fig. 6.41 shows skewness (S ) and flatness (F ) obtained in the present study. The
results are compared to those computed from a true lognormal distribution. For both
ejections and sweeps, skewness of the present study is in remarkably good agreement with
that from lognormal distributions. However, for flatness, some difference appears due to
the lack of convergence. In the present study, the length and the width have nearly the
same number of samples. However, the range of the length is about 5 times larger than
that of the width. Consequently, the convergence of length is not as good as that of width.

6.3.2.5 Area

Fig. 6.42 shows the profile of the mean area A+
c of ejections and sweeps as a function of

wall distance. The error bars represent an error of 5% of the mean. For sweeps, the mean
area increases nearly linearly from 2240 square wall units at y+ = 14.5 to 2800 square
wall units at y+ = 48. For ejections, the growth is faster in the region y+ < 22 and is
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Fig. 6.41 – Comparison of skewness (S ) and flatness (F ) of the length L+
A of ejections and

sweeps of the present study with the theoretical values obtained according to lognormal
distributions. a : ejections ; b : sweeps

comparable to that of sweeps afterward. Fig. 6.42 indicates that ejections are smaller than
sweeps. Examining Fig. 6.34 and 6.38, for sweeps, the growth in area is mainly due to the
variation of the mean width W+

a . However, for ejections this growth mainly results from
the variation of W+

a in the region 22 < y+ < 33 and from the combination of variations

of W+
a and L+

A for the rest of wall distances studied. Fig. 6.42 also shows the RMS of A+
c

for ejections and sweeps. The distribution of the RMS is similar to that of A+
c for both

ejections and sweeps : an increase with wall distance in general. The increase starts from
1100 and 1750 square wall units at y+ = 14.5 and ends at 2450 and 3000 square wall units
at y+ = 48.0 for ejections and sweeps respectively. It should be noted that here, the RMS
is comparable to the mean.
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Fig. 6.42 – Mean and RMS of the area A+
c of ejections and sweeps

As for other statistics, the histogram of the area A+
c of ejections and sweeps are plotted

in Fig. 6.43 at selected wall distances. The dash line at A+
c = 820 square wall units is

related to the cleaning factor CC (see chapter 6.3.1). Different from distributions of the
width and the length, the histogram of the area follows nearly an exponential distribution
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with a shift about 820 wall units. The probability distribution function of this distribution
is given in Eq. 6.30. The fluctuations can be attributed to the lack of convergence. The
difference for the two types of coherent structures can be in part explained twofold : firstly
ejections are smaller than sweeps ; secondly the frequency of appearance of ejections is
higher than that of sweeps.

P (x) = λe−λ(x−a) (6.30)

Where λ is the rate of change, a is the shift to the origin and x ∈ [a,∞].

0

200

400

0 1000 2000 3000 4000 5000 6000

a)                                                            A c
+

H
is
to
g
ra
m

y+=14.5 y+=18.5

y+=22.2 y+=29.7

y+=37.0 y+=48.0

 

0

200

400

0 1000 2000 3000 4000 5000 6000

b)                                                             A c
+

H
is
to
g
ra
m

y+=14.5 y+=18.5

y+=22.2 y+=29.7

y+=37.0 y+=48.0

 

Fig. 6.43 – Histogram of the area A+
c of ejections and sweeps at selected wall distances.

a : ejections ; b : sweeps.

Fig. 6.44 shows skewness (S ) and flatness (F ) of the area A+
c of ejections and sweeps.

For skewness, both coherent structures have a similar value of about 2.5, which is close
to the standard value of an exponential distribution that is 2. However, flatness varies
between 8.5 and 16. The standard value of flatness for an exponential distribution is 9.
Comparing Fig. 6.43 with Fig. 6.35 and Fig. 6.39, the range of the distribution of the area
is much larger than those of the width and the length of ejections and sweeps. However
the number of samples used to calculate the area is nearly the same as those for the width
and the length. Consequently, the convergence of the area is much less than those of the
width and length. This explains in part the relatively large difference in flatness between
the present results and the exponential distribution.

6.3.2.6 Spanwise distance

Fig. 6.45 gives the profiles of the mean spanwise distance d+ of ejections and sweeps as a
function of wall distance. The distribution is nearly the same for both coherent structures.
The mean spanwise distance varies between 118 and 128 wall units in the whole range
of wall distance studied. Fig. 6.45 also shows the RMS of the spanwise distance d+ of
ejections and sweeps. Both of them are nearly constant around 50 wall units.

Fig. 6.46 shows the histograms of the spanwise distance d+ of ejections and sweeps at
selected wall distances. The histograms in Fig. 6.46 are close to a Rayleigh distribution
Weisstein (1999), Eq. 6.22). The small oscillations may arise from the lack of convergence.
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Fig. 6.44 – Skewness (S) and flatness (F) of the area A+
c of ejections and sweeps. a :

ejections ; b : sweeps
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Fig. 6.45 – Mean and RMS of the spanwise distance d+ of ejections and sweeps
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Fig. 6.46 – Histogram of the spanwise distance d+ of ejections and sweeps at selected
wall distances. a : ejections ; b : sweeps

To characterise the histograms statistically, skewness (S ) and flatness (F ) are compu-
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ted and presented in Fig. 6.47. Skewness has a constant value of about 0.52 for ejections
and of about 0.60 for sweeps, which indicates the relatively symmetric property of the
histograms (Fig. 6.46). These values are comparable to 0.63 which is the standard value
for a Rayleigh distribution (Eq. 6.23). Likewise, the present results of flatness are nearly
a constant of about 2.6 for ejections and of about 2.8 for sweeps. These values are close
to 3.24, the standard value for a Rayleigh distribution (Eq. 6.24). A comparison with a
lognormal distribution shows that d+ is much further from this type of law than from a
Rayleigh one.
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Fig. 6.47 – Skewness (S ) and flatness (F ) of the spanwise distance d+ of ejections and
sweeps

6.3.3 Conditional statistical analysis

When ejections and sweeps are detected, it is possible to perform various statistical
analysis within those structures, for example, the mean velocities in ejections and sweeps.
As shown in Chapter 6.3.1, the threshold Cuv

T = 1.0 were selected. In the following discus-
sion, for each analysis, the results obtained using Cuv

T = 2.0, 3.0 and 4.0 are also presented
to study the influence of this threshold on the statistics investigated. Moreover, as the
quadrant method is used to distinguish ejections from sweeps, the statistical analysis are
also carried out in each quadrant. In the present study, the four quadrants are named Q1,
Q2, Q3 and Q4 respectively. In all the following figures, in EJ-n and SW-n, n is the value
of the threshold Cuv

T (n=1, 2, 3, 4).

6.3.3.1 Percentage of area

The first interesting conditional characteristic is the proportion of area. Fig. 6.48 shows
the percentages of the area of each quadrant. The percentage of Q1 and Q3 is of the order
of 18% and independent of wall distance. The percentage of Q2 and Q4 is also similar but
of the order of 32%. The percentage of Q2 is slightly smaller than that of Q4.

Fig. 6.49a and 6.49b give profiles of the percentages of area of ejections and sweeps
in Q2 and Q4 respectively obtained with various Cuv

T as a function of wall distance. For
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Fig. 6.48 – Percentage of area in each quadrant

ejections, Fig. 6.49a shows that the profiles have a similar pattern for all the thresholds
studied. It first increases rapidly in the region 14.5 < y+ < 26. Then it remains nearly
constant above that region. For sweeps, in Fig. 6.49b the percentage is nearly constant
for each threshold. Fig. 6.49 indicates that the threshold has a significant influence on the
percentage, indicating that high intensity ejections and sweeps are very localized.
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Fig. 6.49 – Percentage of area of ejections and sweeps with various Cuv
T . a) Percentage of

area of ejections in Q2 ; b) Percentage of area of sweeps in Q4

6.3.3.2 Velocity angle

Fig. 6.50 shows the profile of the mean streamwise velocity angle α (tan(α)=v/u) as a
function of wall distance in each quadrant as well as in the whole field (all 4 quadrants).
The mean angle of the whole field has a very small positive value (about 0.15 degree). The
absolute value of the mean angle increases slightly with wall distance for all quadrants.
Fig. 6.50 also shows that the mean angle of Q2 is about 2 times that of Q1 and 1.5 times
that of Q3 and Q4. This results probably from the fact that the streamwise velocity (u)
in Q2 is much smaller than in Q1. It also explains the small positive value of the mean
angle of the whole field. Moreover, for low speed regions (Q2 and Q3), Fig. 6.50 shows
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that the motions away from the wall are more intense than those moving towards the
wall. The opposite is true for high speed regions (Q1 and Q4).
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Fig. 6.50 – Mean streamwise velocity angle α in each quadrant and in the whole field

Fig. 6.51 gives the mean streamwise velocity angle α in ejections and sweeps with
various threshold Cuv

T as a function of wall distance. Compared to Fig. 6.50, the mean
velocity angles in ejections and sweeps are much larger than those in Q2 and Q4 respec-
tively. In Fig. 6.51, the angle increases significantly with Cuv

T for ejections but less so for
sweeps. Moreover, Fig. 6.51 shows that the angle in ejections is much larger than that in
sweeps, especially for strong ones. These findings can be attributed to the difference in
streamwise velocity as explained earlier.
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Fig. 6.51 – Mean streamwise velocity angle α in ejections and sweeps

6.3.3.3 Reynolds shear stress

The most interesting feature of ejections and sweeps is the contribution to the genera-
tion of Reynolds shear stress −(u′v′)+. Since ejections and sweeps are involved in Q2 and
Q4 respectively, it is also important to study this contribution in each quadrant. Fig. 6.52
shows profiles of the mean Reynolds shear stress −u′v′+ in each quadrant as well as in
the whole field. The modulus of −u′v′+ increases in the region y+ < 30 for Q2, Q4 and
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the whole field. It stays almost constant in the region y+ > 30. For Q1 and Q3, a slow
linear increase is observed in the whole range. Fig. 6.53 shows the ratio of the modulus of
−u′v′+ in Q2 and Q4 to that in Q1 and Q3. This ratio is about 2 all over the field.
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Fig. 6.52 – Mean Reynolds shear stress −u′v′+ in each quadrant and in the whole field
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Fig. 6.53 – Ratio of the modulus of the mean Reynolds shear stress −u′v+

in Q2 and Q4
to that in Q1 and Q3

Fig. 6.54 shows the ratios of the mean Reynolds shear stress −u′v′+ in ejections and
sweeps to those in Q2 and Q4 respectively. For ejections, in the region y+ < 22, the
ratio decreases linearly with wall distance. In the region y+ > 22, it is nearly constant.
For sweeps, the ratio is constant or decreases slightly with wall distance. Fig. 6.54 shows
that the mean value in ejections and sweeps is much larger than those in Q2 and Q4
respectively. For example, even with the small threshold Cuv

T = 1.0, the ratio is larger than
2.4 for ejections and 2.8 for sweeps. It indicates that ejections and sweeps are remarkably
strong structures in Q2 and Q4.

After studying the mean value of −(u′v′)+, a forward step is conducted to investigate

the distribution of the total Reynolds shear stress
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in each quadrant.

Here, M and N are the number of column and line of the grid (M, N), and Nf is the number
of fields recorded by SPIV. Fig. 6.55 shows the ratios of the total Reynolds shear stress
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Fig. 6.54 – Ratios of the mean Reynolds shear stress −u′v′+ in ejections and sweeps to
those in Q2 and Q4 respectively. a) Ratios of −u′v′+ in ejections to that in Q2 ; b) Ratios

of −u′v′+ in sweeps to that in Q4

in each quadrant to that in the whole field. For Q2, the ratio is about 0.72 and hardly
varies with wall distance. For Q4, in the region y+ < 14.5, it decreases with wall distance
from 0.75 at y+ = 14.5 to 0.62 at y+ = 22.2. At y+ = 18.5 the ratios of Q2 and Q4 are
equal (about 0.72). Apart from this point, the ratio of Q4 is larger than that of Q2 in
the region y+ < 18.5 while the opposite is true in the region y+ > 18.5. In the region
18.5 < y+ < 22, the ratio of Q1 and Q3 decreases from 0.22 to 0.17. In the region y+ ≤
18.5, it is nearly a constant value of 0.22 while in the region y+ ≥ 22 it is about 0.17.
Fig. 6.55 shows that the ratios of Q2 and Q4 are about 3.5 times those of Q1 and Q3,
which indicates that Q2 and Q4 dominate the generation of Reynolds shear stress. In the

present study, the ratio of
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in Q2 to that in Q4 increases from 0.9

at y+ = 14.5 to 1.2 at y+ = 48.
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Fig. 6.55 – Ratios of the total Reynolds shear stress
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in each qua-

drant to that in the whole field

To study the contribution of ejections and sweeps to the production of the total Rey-
nolds shear stress, Fig. 6.56 shows ratios of the turbulence production in ejections and
sweeps to that in the whole field. For ejections, the studied wall distance can be divided
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into two regions. For y+ < 26, the ratio increases relatively rapidly from 0.38 at y+ =
14.5 to 0.52 at y+ = 26.3 with wall distance. In the region y+ > 26, it is nearly a constant
of about 0.55. For sweeps, on the contrary, the ratio decreases at the region of y+ < 26 :
from 0.47 at y+ = 14.5 to 0.38 at y+ = 26.3. It is nearly a constant of about 0.38 in the
region y+ > 26. With the same threshold, the ratio of ejections is smaller than that of
sweeps in the region y+ < 18.5, while it is the opposite in the region y+ > 18.5. This
result implies that sweeps are more productive than ejections in the region very near to
the wall (y+ < 18.5), and it is the opposite case in the region y+ > 18.5.
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Fig. 6.56 – Ratios of the total Reynolds shear stress
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in ejections

and sweeps to that in the whole field. a) Ratios of
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in ejections to

that in the whole field ; b) Ratios of
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in sweeps to that in the whole

field.

Fig. 6.57 gives ratios of the total Reynolds shear stress in ejections and sweeps to
those in Q2 and Q4 respectively. For ejections, in the region y+ < 30, the ratio increases
relatively rapidly with wall distance. In the region y+ > 30, however, it is nearly constant.
For sweeps, the ratio is nearly a constant in the whole wall distance studied, except for y+

= 18.5 where the ratio is considerably smaller than those of other wall distances. Similar
to Fig. 6.56, this result indicates that sweeps dominate the generation of Reynolds shear
stress in the region very near to the wall (y+ < 18.5). Beyond this region, ejections are
more important than sweeps to the generation of Reynolds shear stress.

In turbulence, the term −u′v′+DU+

Dy+
represents the production of turbulent energy. As

shown in Fig. 4.1, the Van Driest model (Van Driest (1978)) is in good agreement with
the result obtained by SPIV as well as by HWA. Therefore, this model is used to compute
the velocity gradient DU+

Dy+
in the present study. This gradient is defined as :

DU+

Dy+
=

2

1 +
√

1 + 4(κy+(1 − e−y+/A))2
(6.31)

Where, κ is the Van Karman constant, and A is the Van Driest parameter. In the
present study, κ = 0.39 and A=26 were used.

Employing Eq. 6.31, −u′v′+DU+

Dy+ is computed in each quadrant as well as in the whole

field and the results are shown in Fig. 6.58. Globally, the modulus
∣

∣

∣
−u′v′+DU+

Dy+

∣

∣

∣
decreases
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Fig. 6.57 – Ratios of the total Reynolds shear stress
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in ejections

and sweeps to these in Q2 and Q4 respectively. a) Ratio of
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in

ejections to that in Q2 ; b) Ratio of
∑M

1

∑N
1

∑Nf
1 (−u′v′)+ in sweeps to that in Q4.

with wall distance. The further away from the wall, the slower the decrease or the increase
is. Remarkably, the production is very similar in Q2 and Q4 on one side and Q1 and Q3
on the other side.

The same as in Fig. 6.55, at y+ = 18.5, the value of Q2 is equal to that of Q4. When
y+ < 18.5, the production of Q2 is slightly smaller than that of Q4. The opposite is true
in the region y+ > 18.5. These results are in good agreement with those in the literatures

(e.g. Hinze (1975)). Fig. 6.58 shows that
∣

∣

∣
−u′v′+DU+

Dy+

∣

∣

∣
of Q2 and Q4 is about 3.5 times

higher than in Q1 and Q3, indicating again that most of turbulent energy is generated in
Q2 and Q4.
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Fig. 6.58 – Turbulent energy −u′v′+DU+

Dy+

6.3.4 Comparison

Lu and Willmarth (1973) have computed the contributions of Q2 and Q4 to the total
Reynolds shear stress. They found that the contributions are about 77% and 55% for
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Fig. 6.59 – Comparison of ratios of the total Reynolds shear stress
∑M

1

∑N
1

∑Nf
1 (−u′v′)+

in ejections and sweeps to that in the whole field with various threshold Cuv
T of SPIV with

those of Johansson et al. (1991)

Q2 and Q4 respectively in the region y+ > 14. For Q2, this value is comparable to the
present result which is in the range 72% - 76%. However, for Q4, it is much smaller than
the present result (62% - 78%). Wallace et al. (1972) found that at y+ = 15 this ratio
is about 70% for both Q2 and Q4. This is in good agreement with the present results.
The discrepancy between the present result and that in Lu and Willmarth (1973) may
be caused by the flow geometry and the different techniques used to detect Q2 and Q4
events. Lu and Willmarth (1973) also computed the ratio of −u′v′+ in Q2 to that in Q4.
According to their result, this ratio increases from about 1.0 at y+ = 15 to 1.15 at y+ =
50. This is similar to the present result.

Johansson et al. (1991) used the Variable-Interval Time-Averaging (VITA) technique
in a water channel to investigate the Reynolds shear stress distribution. In Fig. 6.59, the
results of Johansson et al. (1991) show a greater contribution to the Reynolds shear stress
of Q2 (as ejections) than the present results. The opposite is true for Q4 (as sweeps).
Nevertheless, the agreement between both results is fairly good and indicates a strong
influence of the threshold.

In Fig. 6.60, the balance point of Reynolds shear stress generated by ejections and
sweeps, usually associated with the maximum production of turbulent energy, was located
around y+ =18 in the present study while it was about y+ =15 according to Wallace et al.
(1972). At y+ =14.5, present results show about 78% and 70% of total Reynolds shear
stress generated in Q2 and Q4 respectively. In addition to this, at the balance point (y+

=18), these values are about 75% for both events while Wallace et al. (1972) found a value
of 70% at their balance point (y+ = 15). The differences between the present results and
those of Wallace et al. (1972) are mainly due to characteristics of experiments (such as
experiment set-up and technique). In agreement with the results of Wallace et al. (1972),
away from the balance point, ejections appear to be more important further away from
the wall while sweeps show opposite behaviours.
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Fig. 6.60 – Comparison of ratios of the total Reynolds shear stress
∑M

1

∑N
1

∑Nf
1 (−u′v′)+

in each quadrant to that in the whole field of SPIV with those of Wallace et al. (1972) at
various wall distance

6.3.5 Summary

In the present study, the characteristics of ejections and sweeps were investigated in
detail for the first time in the region 14.5 < y+ < 48. The main conclusions are as follows :

The frequency of appearance of ejections reaches its maximum around y+ = 22. For
sweeps, it decreases with wall distance in the whole range. When y+ > 22, the rate of
decrease is almost the same for both ejections and sweeps. In a streamwise-spanwise plane,
the spanwise angle of ejections and sweeps is close to a Laplace distribution. In the region
y+ < 22, the mean of the modulus of the spanwise angle decreases slightly from 10 to
8 degrees with wall distance for ejections while it has a nearly constant value (about 10
degrees) for sweeps. In the region y+ > 22, it increases nearly linearly with wall distance
to about 11.5 and 14.5 degrees for ejections and sweeps respectively. These relative larger
values (> 8 degrees), indicates that ejections and sweeps have a spanwise angle when
traveling downstream, especially far away from the wall. For both ejections and sweeps,
the mean spanwise distance varies between 118 and 128 wall units in the whole range.
The histogram of the spanwise distance is close to a Rayleigh distribution.

For ejections, the mean width is a constant (18 wall units) when y+ < 22. In the
region y+ > 22, it increases slightly with wall distance to about 24 wall units at y+ =48
. For sweeps, the mean width increases continuously from about 22 wall units at y+ =
14.5 to about 30 wall units at y+ = 48. The mean length of ejections increases rapidly
from 92 wall units at y+ = 14.5 to 117 wall units at y+ = 22.2. In the region 22 < y+ <
33, it keeps a nearly constant value of 117 wall units. In the region y+ > 33, it decreases
slightly to 107 wall units at y+ = 48. The mean length of sweeps is nearly constant at 90
wall units in the whole range. Both histograms of the width and the length are close to
a lognormal distribution. For both ejections and sweeps, the mean area increases almost
linearly with wall distance. It increases from 1700 and 2240 square wall units at y+ =
14.5 to 2700 and 2800 square wall units at y+ = 48 for ejections and sweeps respectively.
For ejections, the growth is faster in the region y+ < 22 but is similar to that of sweeps
afterwards. Globally, ejections are smaller than sweeps in the whole range. The histogram
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of the area is close to an exponential distribution.
Q2 and Q4 take respectively about 31% and 33% of the area of the field but produce

about 72% and 62% of the total Reynolds shear stress while Q1 and Q3 take about 18%
of the area and produce only 17% of the total Reynolds shear stress. With Cuv

T = 1.0, in
the region 14.5 < y+ < 26, the percentage of the area of ejections in Q2 increases rapidly
from 20% to 30% while its contribution to the production of total Reynolds shear stress
in this quadrant increases from 56% to 75%. Afterwards, in the region y+ > 26, these
values are nearly constant. Sweeps take only 23% of the area in Q4 but contribute to 62%
of the production of total Reynolds shear stress in this quadrant. Very close to the wall
(y+ < 18.5), sweeps are dominating the turbulence production compared to ejections.
The opposite is true when y+ > 18.5, these values decrease with increasing Cuv

T , but their
variations with wall distance are nearly the same.
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6.4 Streamwise vortices

6.4.1 Functions and parameters of detection

6.4.1.1 Detection function definition

The streamwise vortices have been observed and studied in the near-wall region by
numerous researchers with different experimental or numerical methods. The subject, how
to find a reliable mathematical criterion to define such vortices, has been discussed by
many authors (e.g. Jeong and Hussain (1995)). Different detection criteria (e.g. Q, λ)
have been proposed. Among them, most of the methods are used to detect the streamwise
vortices from the three dimensional flow obtained by numerical simulations or in cross-
section at 45◦, 90◦ or 135◦ to the streamwise direction. In the present study, experiments
were conducted in a streamwise-spanwise plane. This excludes the possible use of the
above detection methods.

Fig. 6.61 shows an ideal positive streamwise vortex. In this figure, ABCD is a streamwise-
spanwise cross section and EE′ is a cross line. In the bottom left part of Fig. 6.61, the
profile of the v′ fluctuation along EE′ is plotted according to the property of streamwise
vortices. Based on this profile, the cross-section ABCD of the streamwise vortex is shown
in the right bottom in Fig. 6.61. It can be decomposed into five regions, according to the
strength of wall-normal velocity fluctuation and of its spanwise gradient. In the present
study, the following abbreviations have been used to simplify the discussion. High span-
wise velocity Gradient Objects of the wall-normal component v′ are referred to as GO.
The GO are divided into negative (NGO) and positive (PGO) according to the sign of the
gradient. High Velocity Fluctuation object of the wall-normal component v is referred to
as VF, which can also be classified into NVF and PVF according to the sign of the fluc-
tuation. For the example of the streamwise vortex in Fig. 6.61, the five regions are NGO,
PVF, PGO, NVF and NGO from top to bottom. Similarly, for an ideal counter-rotating
streamwise vortex as shown in Fig. 6.62, seven regions can be identified according to the
profile of fluctuation v′ along EE′. They are PGO, NVF, NGO, PVF, PGO, NVF, NGO
from top to bottom. Fig. 6.61 and 6.62 indicate that the basic elements involved in a
streamwise vortex or one leg of a counter-rotating streamwise vortex are a GO, a PVF
and a NVF. Furthermore, the PVF and NVF need to be located on different sides of the
GO to ensure they belong to the streamwise vortices (eg. PVF #1, NGO #1, NVF #1 in
Fig. 6.61 ; NVF #1, PGO #1, PVF #1, and PVF#1, NGO #2, NVF #2 in Fig. 6.62).
This criterion excludes the GO that result from the gradient inside the VF but do not
represent streamwise vortices (e.g. PGO #1 and PGO #2 in Fig 6.61 ; NGO #1 and
PGO #2 in Fig. 6.62). The GO which are related to Streamwise Vortices, are referred to
as GSV. GSV can be separated into negative (NGSV) and positive (PGSV) according to
the sign of the streamwise vorticity. For example, the NGO #1 in Fig 6.61 is a PGSV.
Among GSV, those related to Counter-rotating Streamwise Vortices (also called stream-
wise vortex pairs) are referred to as GCSV. NGSCV and PGSCV are used for Negative
and Positive legs of a GCSV. For example, PGO #1 and NGO #2 in Fig. 6.62 are res-
pectively NGCSV and PGCSV of one GCSV. It should be noted that the sign of GO
is opposite to that of GSV.
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Fig. 6.61 – Illustration of a positive streamwise vortex and its cross-section in streamwise-
spanwise plane
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Fig. 6.62 – Illustration of a counter-rotating streamwise vortex and its cross-section in
streamwise-spanwise plane

Based on the above discussion, VF and GO need to be identified to detect streamwise
vortices. Two detection criteria are selected. One is the velocity fluctuation used to identify
VF, and the other is the spanwise gradient of this fluctuation used to identify GO. The
corresponding detection functions are referred to as F v

d and F grad
d respectively. As the

velocity fluctuation is normalized by its standard deviation in the present study, this
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normalized velocity fluctuation will be used to define F v
d and F grad

d . As explained before,
the streamwise-spanwise 2D3C velocity fields obtained by SPIV are available on a discrete
(M, N) grid at 10 different wall distances. Therefore, F v

d and F grad
d are defined as :

F v
d = f1(v

′, σv) =
v′(m,n, y+)

σv(y+)
(6.32)

F grad
d = f2(v

′, σv) =
1

σv(y+)

∂(v′(m,n, y+))

∂z
(6.33)

Where v′ is the instantaneous fluctuation of the spanwise velocity component, σv re
the standard deviations. (m,n) is the position in the (M, N) grid and y+ is the wall
distance at which the SPIV measurement is performed.

F v
d can be obtained directly from the 2D3C velocity fields. However, a suitable deriva-

tion filter needs to be selected to calculate F grad
d . In the literature, many derivation filters

exist to compute the velocity gradient in a discrete domain. Among them, five filters have
been compared in the present study. To compute the derivatives, a compromise has to
be made among various parameters such as the order of the filter, the number of points
used for the derivative calculation, the frequency response and the noise amplification.
In general, for classical finite difference schemes, the order increases with the number of
points used for the computation. The frequency response increases when the truncation
error decreases, which is directly linked to the order of the filter. Two standard filters
based on centered difference schemes (Eq. 6.34 and 6.35) are proposed with 2nd and 4th
order accuracy. A compact difference scheme is proposed as well. The last scheme detailed
by Lele (1992) is implicit and requires a matrix inversion. It is given by Eq. 6.38. The
bandwidth increases with the order of the filter. In PIV it is not necessary to use large
bandwidth filters because the highest frequency resolved is limited. An approach which
consists of limiting the order and optimising the noise amplification has been developed
by Foucaut and Stanislas (2002) for the PIV results, which leads to the least square dif-
ference scheme (Eq. 6.36) and the Richardson extrapolation (Eq. 6.37). These two filters
present a limited bandwidth.

1) 2nd order centered difference

∂A

∂x

∣

∣

∣

∣

i

=
(Ai+1 − Ai−1)

2δx
(6.34)

2) 4th order centered difference

∂A

∂x

∣

∣

∣

∣

i

=
(−Ai+2 + 8Ai+1 − 8Ai−1 + Ai−2)

12δx
(6.35)

3) 2nd order least square difference

∂A

∂x

∣

∣

∣

∣

i

=
(2Ai+2 + Ai+1 − Ai−1 − 2Ai−2)

10δx
(6.36)
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4) 2nd order Richardson extrapolation

∂A

∂x

∣

∣

∣

∣

i

=
(−8Ai+8 + Ai+1 − Ai−1 + 8Ai−8)

130δx
(6.37)

5) 6th order compact difference. (This filter uses a tridiagonal matrix resolution.)

1

3

∂A

∂x

∣

∣

∣

∣

i−1

+
∂A

∂x

∣

∣

∣

∣

i

+
1

3

∂A

∂x

∣

∣

∣

∣

i+1

=
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In Eq. 6.34-6.38, A is the signal sample, x is the deviation direction, i is the index
of the signal and δx is the grid size. To find a suitable deviation filter for the present
study, all five filters have been tested on field #3 of plane 5 (y+ = 29.7). This position is
selected due to the fact that the centre of wall-attached streamwise vortices are expected
to locate around this position. Field #3 was used because several typical streamwise
vortices exist in this image. Fig. 6.63 shows the original wall-normal velocity fluctuation
contour of the selected field. Fig. 6.64 shows the corresponding spanwise gradient contour
images computed with various derivation filters. Comparing the gradient image with the
original velocity fluctuation image, the second order Richardson extrapolation scheme
has a strong smoothing effect and thus can not be used. The 2nd and 4th order centered
difference schemes as well as 6th order compact difference scheme have a very similar
pattern, which shows fairly noisy data. Only the second order least square scheme obtains
the gradient image (Fig. 6.64) that is in good agreement with the velocity fluctuation
image (Fig. 6.63).Thus this scheme was used in the present study.

Fig. 6.63 – Normalized wall-normal velocity contour image (Image #3 at y+ = 29.7)

After the detection functions have been defined for both VF and GO, the next step is
to identify these objects from the instantaneous velocity fields. Similar to the detection
of streaks, ejections and sweeps, three procedures including thresholding, mathematical
morphology and cleaning were employed.
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2nd order center 4th order center

2nd order least square Richardson 2nd order

6th order compact

Fig. 6.64 – Normalized wall-normal velocity gradient contour images with various devia-
tion filters (Image #3 at y+ = 29.7)

6.4.1.2 Thresholding

VF can be recognized from the background by thresholding the detection function
F v
d (Eq. 6.33). The corresponding threshold is referred to as Cv

T . To simply the detection
procedure, PVF and NVF are identified separately. The corresponding indicative functions
of PVF and NVF, F v

i , are defined as :

PVF : F v
i =

{

1 when F v
d > Cv

T

0 otherwise
(6.39)

NVF : F v
i =

{

1 when F v
d < −Cv

T

0 otherwise
(6.40)

GO are recognized from the background by thresholding the detection function F grad
d
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( Eq. 6.33). The corresponding threshold is referred to as Cgrad
T . To simply the detec-

tion procedure, PGO and NGO are identified separately. The corresponding indicative
functions of PGO and NGO, F grad

i , are defined as :

PGO : F grad
i =

{

1 when F grad
d > Cgrad

T

0 otherwise
(6.41)

NGO : F grad
i =

{

1 when F grad
d < −Cgrad

T

0 otherwise
(6.42)

The threshold Cv
T was selected as 1.2 while Cgrad

T as 1.0 in the present study. Details
about the selection of these parameters have been included in Appendix B.3.

6.4.1.3 Mathematical morphology

The examination of the shapes of VF and GO from the indicative images reveals that
both of them are elongated in the streamwise direction. Therefore, the structure element is
chosen as rectangle (or square) with two parameters : MS(W,L), in which W is the width
in the spanwise direction and L is the length in the streamwise direction. The values of
W and L are given in wall units. The structure element was selected as MS = (10+, 10+)
for both VF and GO. Details about the selection of these parameters can be found in
Appendix B.3.

6.4.1.4 Cleaning

The clean factors CB = 500+2

and CC = 1000+2

were chosen in the present study to
detect VF. To detect GO, the clean factors CB = 375+2

and CC = 750+2

were chosen.
Details about the selection of these parameters can be found in Appendix B.3.

Fig. 6.65 shows an example of a detection function and the corresponding indicative
images of PVF.

Fig. 6.66 shows an example of a detection function and the corresponding indicative
images of PGO.

6.4.2 Detection of streamwise vortices

After VF and GO are detected, a forward step is to investigate the relations between
them to identify streamwise vortices. This is done by examining GO one by one. Four
steps are employed to achieve this purpose.

In the first step, i.e. examining the indicative images of GO, we found that most
of GO that are located in the core area of streamwise vortices are relatively thin. To
guarantee that the GO can be connected with VF related to the same streamwise vortex,
the investigation began with increasing the size of each GO in the spanwise direction
(Fig. 6.69) to create a so-called ′searching window′. A dilation procedure is used to perform
this enlargement of GO. As it is well known, the streamwise vortices have a radius of about
20-40 wall units. Therefore, the increase of 10 wall units is chosen on each side of GO in
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Detection function After thresholding

After mathematical morphology After cleaning

Fig. 6.65 – Detection image and indicative images of PVF

the spanwise direction. This value can not be larger due to the fact that it may connect
two nearby GO together.

In the second step, the number of points that belong to NVF and PVF in the searching
window are counted respectively. A threshold is applied to the number of points in order
to exclude the VF that are not related to streamwise vortices. If only NVF or only PVF
result from this procedure, we consider that the GO is not related to a streamwise vortex
(see Fig. 6.61 and 6.62). Cases where neither NVF nor PVF is obtained are rare. Only
when both of the number of points belonging to NVF and PVF are larger than the
threshold (10 is used in the present study), they are considered as potential VF related
to a streamwise vortex presented by the GO.

The next step is to examine whether the NVF and PVF involved are on each side
of the GO. NVF and PVF come not only from streamwise vortices but also from other
coherent structures (e.g. ejections and sweeps). Therefore, it is possible that the NVF and
PVF exist on the same side of a GO. Obviously, this GO can not represent a streamwise
vortex. As shown in Fig. 6.61 and 6.62, the streamwise vortex requires that the NVF and
PVF are located on different side of the GO, which represents the core of the vortex.

The last step is to compute the ratio of the area of NVF to PVF involved (RN/P ).
This step ensures that NVF and PVF belonging to the same vortex are comparable in
size. As explained before, VF can come from both streamwise vortices and other coherent
structures. Therefore, VF that come from other coherent structures, can be mis-detected
as those related to the streamwise vortex. To minimize this error, RN/P is required to be
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Detection function After thresholding

After mathematical morphology After Cleaning

Fig. 6.66 – Detection image and indicative images of GO

in the range 0.2 < RN/P < 5 in the present study.
When all the above criteria are satisfied, a streamwise vortex is recorded. The GO is

consequently marked as a GSV. If the GO is a NGO, the GSV is then correspondingly a
PGSV. The opposite is true for PGO. Fig. 6.67 shows the detailed flow chart of the detec-
tion procedure of GSV. Whether NGSV and PGSV have a common VF is the criterion to
examine whether NGSV and PGSV belong to a GCSV (counter-rotating streamwise vor-
tex or streamwise vortex pair). If the GSV is also a GCSV, the NGSV and PGSV involved
are called NGCSV and PGCSV respectively. Fig. 6.68 shows the detection procedure of
GCSV. Fig. 6.69 gives an example of the detection of GSV (NGSV).

6.4.3 Statistics on the streamwise vortices

6.4.3.1 Frequency of appearance

Fig. 6.70 shows the frequency of the appearance of NGO and PGO as a function of
wall distance in the area of 530+*300+. The error bars represent an error of 5% of the
mean. The frequency of appearance of both NGO and PGO are very similar, showing
again the spanwise homogenous property of the flow. A clear maximum appears at y+ =
23. Fig. 6.70 also shows the frequency of appearance of NGSV and PGSV as a function of
wall distance in the same area. It should be noted that NGSV or PGSV include those from
individual streamwise vortices, as well as from streamwise vortex pairs. The distributions
of NGSV and PGSV are very similar to those of NGO and PGO except for the difference
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No 
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No 
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Streamwise vortex is detected. 

The GO is called a GSV. 

Is the GO a NGO? 
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vortex. The GSV is also called a NGSV 

Yes 

GSV presents a positive streamwise 

vortex. The GSV is also called a PGSV 

No 
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PVF in the searching 
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Fig. 6.67 – Flow chart of detection of streamwise vortices or legs of counter-rotating
streamwise vortices

 

Streamwise vortex pair is detected.  

PGSV and NGSV form a GCSV.  

The PGSV is also called a PGCSV. 

The NGSV is also called a NGCSV. 

Does PGSV have a common 

VF with a NGSV? 

Yes 

Loop of PGSVs 

No 

Loop of NGSVs 

Fig. 6.68 – Flow chart of detection of counter-rotating streamwise vortices

in their values. The frequency of appearance of GCSV is also shown in Fig. 6.70. This
figure indicates that the counter-rotating streamwise vortices account for 20% of the total
vortices including both individual and counter-rotating ones. The GCSV have similar
distribution as GSV. The maximum appears also around y+ = 23.

In Fig. 6.70 the ratio of the frequency of appearance of NGO to NGSV and PGO to
PGSV are nearly the same and both are in the range of 2.1 to 2.6. In near wall turbulence,
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PVF NVF

PGO Enlarged PGO

GSV (NGSV)

Fig. 6.69 – Illustration of detection of streamwise vortices
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Fig. 6.70 – Frequency of appearance (N ) of NGO, PGO, NGSV, PGSV and GCSV

most of the streamwise vortices are either individual or counter-rotating streamwise vor-
tex. As explained in the Chapter 6.4.1, it is observed that an ideal individual streamwise
vortex is associated with a series of GO (NGO, PGO, NGO or reverse). Among them,
only the middle one locates the vortex core and is called a NGSV or PGSV according
to the sign of the gradient. Similarly, an ideal counter-rotating streamwise vortex pair
is associated with a series of GO (NGO, PGO, NGO, PGO or reverse). Among them,
only the middle two locate the cores of the counter-rotating streamwise vortices and are
marked respectively as NGSV and PGSV (also NGCSV and PGCSV). Consequently, the
ratio of the frequency of appearance of GO to GSV is 3 in the case of ideal individual
streamwise vortices, and 2 in the case of ideal counter-rotating streamwise vortex pairs.
However, weak vortices generally create only one or two GO. Additionally, other coherent
structures, for example ejections and sweeps, may also generate GO. Moreover, the present
experiment has been carried out only in the x-z plane and thus cannot pass through the
cores of all vortices. In this case, the GO related to a streamwise vortex (pair) may be
relatively weak and thus cannot be detected, which results in a decrease in the frequency
of appearance of GO. As a result, the ratio of the frequency of appearance of GO to
GSV should be around 2 or 3 but closer to 2, which is in good agreement with what was
found in the present study. The results also indicate that the detection procedure has
removed efficiently most of GO that do not represent streamwise vortices. This proves the
reliability of the detection.

The following sections analyze firstly the statistical characteristics of NGSV and
PGSV, followed by the statistical characteristics of NGCSV and PGCSV that were stu-
died. The statistical characteristics investigated were spanwise angle, ϕ ; width, W+

a ;
length, L+

A ; area, A+
c , and spanwise distance, d+.

According to the homogeneity in the spanwise direction, except for the spanwise angle
(which should be opposite), the other statistical characteristics of NGSV and PGSV, and
of NGCSV and PGCSV, are the same. Based on this fact, to increase the convergence, the
statistical characteristics of GSV are computed from both results of NGSV and PGSV.
Similarly, the results of GCSV are obtained from those of NGCSV and PGCSV.

152



Chapitre 6. Detection and Statistics on Coherent Structures 6.4. Streamwise vortices

6.4.3.2 Spanwise angle of PGSV

Fig. 6.71 shows the distributions of the mean spanwise angle ϕ of PGSV at various wall
distances, while Fig. 6.72 shows the RMS (standard deviation) of ϕ. Fig. 6.71 shows that
ϕ is near zero. It varies between -1.3 and 1.3 degrees, which is relatively small compared
to the RMS (about 17 degrees) given in Fig. 6.72. Considering the spanwise homogenous
property of the flow, the small value can be attributed to the lack of convergence. This
is also manifested by the random distribution with wall distances in Fig. 6.71. The mean
absolute spanwise angle |ϕ| is shown in Fig. 6.71. It is nearly a constant in the whole
range of wall distance studied. It varies slightly between 11.5 and 14 degrees. Fig. 6.71
shows that the RMS is nearly a constant for both ϕ and |ϕ| in the whole range of wall
distance studied. This constant is about 17 degrees for ϕ and 11 degrees for |ϕ|.
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Fig. 6.71 – Mean spanwise angle ϕ and mean absolute spanwise angle |ϕ| of PGSV. ϕ :
� ; |ϕ| : ♦.
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Fig. 6.72 – RMS of the spanwise angle ϕ and the absolute spanwise angle |ϕ| of PGSV.
ϕ : � ; |ϕ| : ♦.

Fig. 6.73 shows the histograms of the spanwise angle ϕ of PGSV at selected wall
distances. According to this figure about 50% of the streamwise vortices have an absolute
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spanwise angle between 4 and 16 degrees (corresponding to a threshold of about 30 in the
histogram), while about 14% of vortices have an angle larger than 16 degrees. It suggests
that most of the streamwise vortices do not move straight downstream, which may explain
the meandering property of streaks. In addition to errors from the detection procedure,
above y+ = 30 the distribution of ϕ is slightly asymmetrical with respect to zero. PGSV
have more positive angles than negative ones.
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Fig. 6.73 – Histograms of the spanwise angle ϕ of PGSV at selected wall distances

Fig. 6.74 gives skewness (S ) and flatness (F ) to characterize the distribution sta-
tistically at all 10 wall distances studied. Skewness is nearly zero for all wall distances,
revealing the symmetrical property of the distribution. The value of flatness is in the range
of 4.5 to 5. This value shows that the distribution is clearly not a Gaussian one. Similar to
streaks, ejections and sweeps, the histograms are close to a Laplace distribution (Eq. 6.13)
rather than a Gaussian one. The standard value of S and F for the Laplace distribution
is 0 and 6 respectively which are comparable to the present results. The differences may
be attributed to small oscillations due to the lack of convergence, as shown in Fig. 6.73.
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Fig. 6.74 – Skewness (S ) and flatness (F ) of spanwise angle ϕ
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6.4.3.3 Width of GSV

Fig. 6.75 shows the profile of the mean width W+
a of GSV at various wall distances.

The error bars represent an error of 5% of the mean. W+
a has a remarkably constant

value of about 16 wall units at all wall distances. The fluctuation is about 0.5 wall units
in Fig. 6.75. Fig. 6.75 also presents the RMS of the width W+

a of GSV at various wall
distances. It shows that the RMS is about 2.8 wall units with a variation of 0.2 wall units
at all 10 wall distances studied.
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Fig. 6.75 – Mean and RMS of the width W+
a of GSV

Fig. 6.76 shows the histograms of the width W+
a of GSV. The histograms are close to a

lognormal distribution. To characterize the histograms, their characteristics are computed
and compared to true lognormal distributions. Fig. 6.77 shows the variation coefficient
ψ. This coefficient is nearly a constant (about 0.17) in the whole range of wall distance
studied. Fig. 6.77 also gives the median valueM+

0 . Comparing with Fig. 6.75,M+
0 is almost

the same as W+
a . Fig. 6.78 gives skewness (S ) and flatness (F ) of the histograms at various

wall distances. It shows that skewness obtained from both the present study and lognormal
distributions are nearly the same, which is a constant of about 0.9. However, for flatness,
there are some differences between the present results and the lognormal distribution. It
may result from the lack of convergence. Fig. 6.79 shows the ratio of the most probable
value to the mean value, Rmm. The results from true lognormal distributions are about
5% higher than the present study. Both results are nearly indenpendent of wall distance.

6.4.3.4 Length of GSV

Fig. 6.80 presents the profiles of the mean length L+
A of GSV at various wall distances.

The error bars represent an error of 5% of the mean. The figure shows three interesting

regions : (1) When y+ < 22, L+
A decreases slowly towards the wall. As well known (e.g.

Kreplin (1976), Kim et al. (1987)), the radius of streamwise vortices is normally about 20-
40 wall units. Therefore, in this region, most of GSV detected are not from the core area
of streamwise vortices and thus are relatively weaker and shorter. (2) When 22 < y+ <
33, a plateau appears with a value of about 96 wall units. This plateau indicates that
the well-developed wall-attached streamwise vortices are located in this region. (3) When
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Fig. 6.76 – Histograms of the width W+
a of GSV at selected wall distances
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Fig. 6.77 – Variation Coefficient ψ and median value M+
0 of the width W+

a of GSV

0

3

6

9

10 20 30 40 50

y
+

S (SPIV) S (Lognormal)

F (SPIV) F (Lognormal)

 

Fig. 6.78 – Comparison of skewness (S ) and flatness (F ) of the width W+
a of GSV of the

present study with the theoretical values obtained according to lognormal distributions

y+ > 33, L+
A again decreases slowly but away from the wall. This decrease can be partly
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Fig. 6.79 – Ratio of the most probable value to the mean value Rmm of the width W+
a of

GSV

explained by the lift-up of streamwise vortices when they travel downstream and by the
fact that the streamwise vortices travel downstream with nearly a constant angle of about
45 degrees with respect to the streamwise-spanwise plan after the lift-up. The RMS of
the length L+

A of GSV is also given in Fig. 6.80. The distribution of the RMS is similar

to that of L+
A. The RMS is in the range of 31 to 40 wall units.
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Fig. 6.80 – Mean and RMS of the length L+
A of GSV

Fig. 6.81 shows the histograms of the length L+
A of GSV at selected wall distances.

The peaks are located at nearly the same position (about 75 wall units). Most of GSV
have a length in the range of about 50 to 150 wall units. The same as for the width W+

a ,
the histograms of L+

A in Fig. 6.81 follow nearly a lognormal distribution. Consequently,
the most probable value (75 wall units) is rather different from the mean value (about
90-95 wall units).

To study the histograms statistically, the characteristics of the present distributions
are compared to a true lognormal one. Fig. 6.82 shows the variation coefficient ψ and
the median value M+

0 . Using these values, the ratio Rmm (the most probable value to
the mean value) is compared to the true lognormal distribution in Fig. 6.83. The results
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Fig. 6.81 – Histograms of the length L+
A of GSV at selected wall distances

from true lognormal distributions have a constant value of about 0.8, while those from
the present study vary between 0.68 and 0.81.
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Fig. 6.82 – Variation Coefficient ψ and median value M+
0 of the length L+

A of GSV

Fig. 6.84 gives skewness (S ) and flatness (F ). The same as for W+
a , these parameters

are compared to those of true lognormal distributions. For skewness, both results are in
good agreement, while for flatness they agree well only in the region y+ < 40. As shown
in Fig. 6.70, the frequency of appearance is very low when y+ > 40, which leads to a
decrease of convergence. This can explain the differences observed in Fig. 6.84.

6.4.3.5 Area of GSV

Fig. 6.85 shows the profiles of the mean area A+
c of GSV at various wall distances. The

error bars represent an error of 5% of the mean. The figure shows that the distributions

of A+
c of GSV have the same pattern as those of L+

A. In general, A+
c is about 1400 square

wall units. Fig. 6.85 also shows the RMS of A+
c , which is about 650 square wall units with

a variation of 100 wall units in the whole range of wall distance studied.
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Fig. 6.83 – Ratio of the most probable value to the mean valueRmm of the length L+
A of

GSV at various wall distances
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Fig. 6.84 – Comparison of skewness (S ) and flatness (F ) of the length L+
A of GSV of the

present study with the theoretical values obtained according to lognormal distributions
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Fig. 6.85 – Mean and RMS of the area A+
c of GSV

Fig. 6.86 shows the histograms of the area A+
c of GSV. Similar to ejections and sweeps,
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the histograms of the area follow nearly an exponential distribution with a shift of about
820 wall units which depends on the cleaning factor CC . Figures. 6.87 gives skewness (S )
and flatness (F ) obtained in the present study. Skewness has nearly a constant value of
about 1.8, which is close to 2, the standard value of an exponential distribution. Flatness
varies between 5.5 and 10.5, which is also close to the standard value of flatness for an
exponential distribution, 9. The oscillations of skewness and flatness can be attributed to
the lack of convergence as well.
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Fig. 6.86 – Histograms of the area A+
c of GSV
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Fig. 6.87 – Skewness (S ) and flatness (F ) of the area A+
c of GSV

6.4.3.6 Spanwise distance of GSV

The profile of the mean spanwise distance d+ between GSV is shown in Fig. 6.88.
It should be noted that the spanwise distance is measured only between the GSV with
the same sign (e.g. between NGSV and between PGSV). The error bars represent an
error of 5% of the mean. As shown in Fig. 6.88, the value of d+ varies between 107 and
147 wall units. Three interesting regions can be found from this profile. In the first two
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regions where y+ is between 14.5 and 18.5, and between 22 and 40, repectively, d+ is
nearly constant. The difference between the two regions is that the value of the constant
is about 107 wall units in the first region and about 127 in the second. In the third region
where y+ > 40, the spanwise distance inceases from about 127 wall units at y+ = 40 to
about 147 wall units at y+ = 48. Fig. 6.88 also gives the RMS of the spanwise distance of
GSV. It shows that the RMS increases linearly with the wall distance. The RMS is about
50 wall units at y+ = 14.5 and increases up to 64 wall units at y+ = 48.
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Fig. 6.88 – Mean and RMS of the spanwise distance d+ between GSV (with the same
sign)

Fig. 6.89 shows the histograms of the distance d+ of GSV at selected wall distances. It
indicates that most d+ are in the range of about 50 to 200 wall units. The fluctuations in
this figure result partly from the lack of convergence. To study the histogram statistically,
skewness (S ) and flatness (F ) are given in Fig. 6.90, in which skewness is close to zero
and flatness is about 2.5.
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Fig. 6.89 – Histograms of the spanwise distance d+ between GSV (with the same sign)

6.4.3.7 Spanwise angle of GCSV

Fig. 6.91 shows the distributions of the mean spanwise angle ϕ of NGCSV and of the
mean of the difference of the spanwise angle ϕc between the NGCSV and PGCSV that
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Fig. 6.90 – Skewness (S ) and flatness (F ) of the spanwise distance d+ of GSV (with the
same sign)

belong to the same counter-rotating streamwise vortex at various wall distances. In the
region of y+ < 30, the value of both ϕ and ϕc is nearly zero. However, when y+ > 30,
both ϕ and ϕc become non-zero, with ϕc larger than ϕ. For y+ > 40, the interpretation
is difficult due to the lack of convergence.
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Fig. 6.91 – Mean spanwise spanwise angle ϕ of PGCSV, and mean of the difference of
the spanwise angle ϕc between the PGCSV and NGCSV that belong to the same counter-
rotating streamwise vortex. ϕ : � ; ϕc : ♦.

To study these angles in more detail, Fig. 6.92 gives the histograms of the spanwise
angle ϕ of PGCSV and the difference of spanwise angle ϕc between the PGCSV and
NGCSV which belong to the same counter-rotating streamwise vortex at selected wall
distances. The negative values in the histogram suggest the existence of Λ-shaped vortices
(or at least the existence of two close streamwise vortices, this will be explained in the
next chapter) while the positive ones evidence the Ω-shaped vortices. Except for small
oscillations due to the lack of convergence, the distribution of ϕ and ϕc is more symmetrical
in the region of y+ < 30 than y+ > 30. This suggests that both Λ- or Ω-shaped vortices
are comparable in population in the region y+ < 30. It explains zero value of ϕ and ϕc
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in this region. The asymmetry of the histograms above y+ = 30 shows that Ω-shaped
vortices are dominant. This is also evidenced by the positive ϕc in Fig. 6.91.
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Fig. 6.92 – Histogram of the spanwise angle ϕ of PGCSV and the difference of span-
wise angle ϕc between PGCSV and NGCSV that belong to the same counter-rotating
streamwise vortex at selected wall distances. a : ϕ ; b : ϕc

6.4.3.8 Spanwise distance of GCSV

Fig. 6.93 presents the profile of the mean spanwise distance d+ between NGCSV and
PGCSV related to the same counter-rotating streamwise vortex at various wall distances.
The error bars represent an error of 5% of the mean. In general, d+ tends to increase with
wall distance. It starts with a value of about 39 wall units at y+ = 14.5 and ends with a
value of 53 wall units at y+ = 48. These values are comparable to the width of low speed
streaks (31-39 wall units, see Fig. 6.12).
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Fig. 6.93 – Mean spanwise distance d+ between NGCSV and PGCSV that belong to the
same counter-rotating streamwise vortex

Fig. 6.94 shows the histogram of the spanwise distance d+ between NGCSV and
PGCSV that belong to the same counter-rotating streamwise vortex at selected wall
distances. It shows that most of d+ are in the range of 30 - 60 wall units. All the peaks
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are located at the same position (about 40 wall units), which is comparable to the mean
width of streaks.
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Fig. 6.94 – Histogram of the spanwise distance d+ between NGCSV and PGCSV related
to the same counter-rotating streamwise vortex at selected wall distances

6.4.3.9 Area of GCSV

Fig. 6.95 shows the profile of the mean area A+
c of NGCSV at various wall distances.

At the same wall distance, the value of A+
c is only slightly larger than that in Fig. 6.85.

It implies that individual streamwise vortices are comparable to counter-rotating ones.
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Fig. 6.95 – The mean area A+
c of GCSV

6.4.4 Comparison

Fig. 6.70 shows that the maximum values of the frequency of appearance of NGSV,
PGSV as well as of GCSV are located around y+ = 25. According to the present detection
method, the frequency of appearance of NGSV and PGSV can represent that of nega-
tive and positive streamwise vortices respectively, while GCSV represent counter-rotating
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streamwise vortices. The streamwise vortices might be the legs of hairpins. Therefore,
the maximum may result from the contribution of streamwise legs of the secondary and
tertiary hairpin vortices according to Zhou et al. (1999). In their theory of hairpin packet,
the core of streamwise legs is located between y+ = 12 and 30 for the primary hairpin
vortice in most of their life time, while it is between y+ = 30 and 45 for the secondary and
tertiary hairpins. Hence, the decrease of the frequency of appearance of NGSV and PGSV
towards the wall can be partly attributed to the decease in the numbers of secondary and
tertiary hairpins. Above y+ = 25, the further away from the wall, the more likely the
head segment of hairpin vortex can be found instead of leg segments. In other words, the
streamwise vortices may lose some of their identification. This explains the decrease of
the frequency of appearance away from the wall above y+ = 25.

According to Zhou et al. (1999), the streamwise vortices that are related to hairpins,

are in the range of 140 to 250 wall units long. However the length L+
A is less than 100 wall

units in the present study (Fig. 6.80). The disagreement can be explained by the following

reasons. Firstly the value of L+
A is obtained from the well-developed hairpins in the simu-

lation of channel flow at a low Reynolds number in Zhou et al. (1999). However, the value
obtained in the present study is an average of all kinds of streamwise vortices, including all
individual and counter-rotating ones at various lifetimes. Moreover, as explained above,
the measurement planes cannot cut through all cores of streamwise vortices, which causes
that the lengths of GSV are shorter than the real vortices. Furthermore, the streamwise
vortices may travel downstream with an angle inclined to the wall.

In Fig. 6.93, the present results are different from those of Zhou et al. (1999). Zhou et al.
(1999) concluded that the spanwise separation between two legs of a hairpin decreases
from about 100 wall units at y+ = 12 to about 30 - 40 wall units at y+ = 45. The present
results show a slight increase from 39 wall units at y+ = 14.5 to 53 at y+ = 48.0 Zhou
et al.’s results were obtained from the relatively strong and well-developed hairpins or
hairpin packets. In contrast, the present results are calculated from all possible counter-
rotating streamwise vortices detected from the experiment dataset. Some of them may
not be able to evolve yet into well-developed hairpins.

6.4.5 Summary

Due to the orientation of the PIV planes used, a specific detection method was deve-
loped to evidence the streamwise vortices. Thanks to this method, the characteristics of
these vortices could be extracted.

The frequencies of appearance of positive and negative streamwise vortices are nearly
the same in terms of both the value and the distribution with wall distance, indicating the
good spanwise homogeneity of the flow. The population of the counter-rotating streamwise
vortices is about 20% of the total, including both individual and counter-rotating vortices.
The frequency distribution with wall distance is the same for both populations. The
present results show that the maximum frequency is located around y+ = 23 for both
types of streamwise vortices.

The mean value of the spanwise angle of negative streamwise vortices is close to zero.
The mean of the modulus varies between 11.5 and 14 degrees. The histogram of this angle

165



6.4. Streamwise vortices Chapitre 6. Detection and Statistics on Coherent Structures

shows that about 50% of the streamwise vortices have an absolute spanwise angle between
4 and 16 degrees and about 14% of vortices have an angle larger than 16 degrees. This
implies that only about 36% of the streamwise vortices move almost parallel to the mean
flow. The histogram is close to a Laplace distribution. According to the homegeneous
property of the flow, the spanwise angle of positive streamwise vortices is the same as
that of the negative ones except for the sign.

The mean width of the gradient objects which represent the core of the streamwise
vortices has a remarkably constant value of about 16 wall units with a very small fluctua-
tion of about 0.5 wall units in the whole range studied. Different from the mean width, in
the present study, the distribution of the mean length of those objects can be divided into
three regions. In the region y+ < 22, it decreases slowly toward the wall. In the region
22 < y+ < 33, it is nearly constant about 96 wall units. When y+ > 30, it again de-
creases slowly but away from the wall. This distribution suggests that the well-developed
wall-attached streamwise vortices are located around 25 wall units. Both histograms of
the width and the length follow nearly a lognormal distribution. The distribution of the
mean area of these objects is similar to that of the length. However, different from the
width and the length, the histogram of the area is close to an exponential distribution.

The mean spanwise distance between the positive or negative streamwise vortices is
nearly a constant of about 107 wall units in the region 14.5 < y+ < 18.5 and about 127
wall units in the region 22 < y+ < 40. When y+ > 40, the spanwise distance increases
from about 127 wall units at y+ = 40 to 147 wall units at y+ = 48. The histogram of this
spanwise distance suggests that most of the samples are in the range of about 50 - 200
wall units.

In the region y+ < 30, the mean spanwise angle of the positive legs of the counter-
rotating streamwise vortices, as well as the mean of the difference of the spanwise angle
between positive and negative legs of the same counter-rotating streamwise vortex is nearly
zero. This results from the comparable population of Λ- and Ω- shaped streamwise vortex
in this region. For y+ > 30, both of these angles increase with wall distance. The mean of
the difference is larger than the angle of negative legs. Moreover, the histograms of both
angles are asymmetric with more positive values. These results evidence the dominance
of Ω-shaped counter-rotating streamwise vortices (hairpins) in this region.

The mean spanwise distance between negative and positive legs of the same counter-
rotating streamwise vortex, increases from about 39 wall units at y+ = 14.5 to about 53
wall units at y+ = 48. The histogram of this distance shows that most of the samples are
in the range of 30 - 60 wall units.
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Chapitre 7

Discussion

7.1 Introduction

The results obtained in Chapters 5 and 6 show that some of the characteristics of
different coherent structures are very similar. For example, the closer to the wall, the
more streaks (both low and high speed streaks) and sweeps can be found. However, for the
other coherent structures (e.g. ejections and streamwise vortices), a maximum is located
around y+ = 22. A significant population of each structure show a spanwise angle when
they travel downstream. These results suggest that all coherent structures may evolve
into a regular organization, which is repeating in the flow. Therefore, to investigate the
relative position of one structure with respect to another, two-point correlation analysis is
conducted on the indicative functions. As the indicative functions have only two values : 1
and 0, the standard deviation is taken as 1 and the mean as 0 to simplify the calculation.
Hence, Eq. 5.1-5.3 are rewritten as :

Two-dimensional two-point correlation function :

RCSi−CSj(∆x+,∆z+) = FCSi
i (x+, z+)F

CSj
i (x+ + ∆x+, z+ + ∆z+) (7.1)

Streamwise one-dimensional two-point correlation function :

RCSi−CSj(∆x+,∆z+ = 0) = FCSi
i (x+, z+)F

CSj
l (x+ + ∆x+, z+) (7.2)

Spanwise one-dimensional two-point correlation function :

RCSi−CSj(∆x+ = 0,∆z+) = FCSi
i (x+, z+)F

CSj
i (x+, z+ + ∆z+) (7.3)

Where, CSi and CSj are Coherent Structures (CS ) which can be low or high speed
streaks, ejections, sweeps and streamwise vortices related objects (NGSV, PGSV, NVF

and PVF) in the present study. FCSi
i and F

CSj
i are the indicative functions.

As explained in Chapter 4, for the two-dimensional correlations (e.g Fig.7.1), the
positive and negative ∆z+ are located respectively on the right and left sides of the flow
with respect to the streamwise direction (view from below).
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7.2 Two-point correlation analysis of coherent struc-

tures

7.2.1 Streaks

Fig. 7.1 shows examples of two-dimensional auto-correlation of low speed streaks
RLSS−LSS and high speed streaks RHSS−HSS at y+ = 14.5. The elliptical regions with high
correlation located at the centre (∆x+ = 0, ∆z+ = 0) reveal that streaks are elongated in
the streamwise direction. To obtain more information on the variation of the correlation in
the streamwise and spanwise directions, two one-dimensional auto-correlations : at ∆x+

= 0 and at ∆z+ = 0 are calculated and shown in Fig. 7.2. The value of the peak at the
center decreases with wall distance, indicating that the area occupied by both low and
high speed streaks decreases when moving away from the wall. As in Fig. 5.3b, for the
one-dimensional correlation at ∆z+ = 0, a continuous decrease is observed, implying that
both low and high speed streaks are longer than 400 wall units. Due to the limited size of
the velocity field, it is not possible to measure the length of streaks. However, according
to the shape and the tendency of the curves in Fig. 7.2a and 7.2c, several conclusions can
be drawn. First, with the same streamwise displacement ∆x+, the coherence decreases
with wall distance, which indicates a decrease in the length of streaks. Second, according
to the coherence, the wall distance under study can be categorised into two groups : y+ ≤
18.5 and y+ > 18.5. In each group, the curves are comparable. The coherence in the first
group is much higher than that in the second one, revealing that the length of streaks is
larger in the region very near the wall than far from the wall. It should be noted that
there is a large difference in coherence between the correlation at y+ = 18.5 and at y+ =
22.2.

In Fig. 7.2b and 7.2d (∆x+ = 0), all the curves have a transition position where
a minimum or a plateau is visible. Generally, the off-centre distance of this position
increases from about 55 wall units at y+ = 14.5 to 65 wall units at y+ = 48. As explained
in Chapter 5, this off-centre distance is equal to half the spanwise distance between low
or high streaks, in agreement with the results in Fig. 6.17. According to these results,
the secondary peak should be found around ∆z+ = 165 and 195 for both low and high
speed streaks. However, as shown in Fig. 7.1 and Fig. 7.2 (for other wall distances, two-
dimensional auto-correlations of RLSS−LSS and RHSS−HSS can be found in Appendix C.1
- C.2), no clear secondary peak appears. This may result from the strong variability in size
and position of the two types of structures as shown by the large range of the histograms
in Fig. 6.13 and 6.18.

Fig. 7.3 shows an example of two-dimensional spatial cross-correlation of low speed
streaks with high speed ones RLSS−HSS at y+ = 14.5. Two regions with high correlation
are located symmetrically with respect to ∆z+ = 0, indicating the existence of high speed
streaks. Fig. 7.4 shows the one-dimensional correlation at ∆x+ = 0. At y+ = 14.5, the
first off-centre maximum indicates the location of the nearby high speed streak. This
distance is about 75 wall units. At other wall distances, a plateau is observed which is
again indicative of a strong variability in size and position of the two types of structures.
The figures of RLSS−HSS at other wall distances (Appendix C.1) clearly shows that in

168



Chapitre 7. Discussion 7.2. Two-point correlation analysis of coherent structures

a : RLSS−LSS b : RHSS−HSS

Fig. 7.1 – Two-point spatial auto-correlations of streaks at y+ = 14.5
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a : RLSS−LSS, with ∆z+ = 0
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b : RLSS−LSS, with ∆x+ = 0
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c : RHSS−HSS, with ∆z+ = 0
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d : RHSS−HSS, with ∆x+ = 0

Fig. 7.2 – One-dimensional spatial auto-correlation of streaks at selected wall distances

the streamwise-spanwise planes the link between LSS and HSS is much stronger near the
wall.
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Fig. 7.3 – Two-point spatial cross-correlation of low speed streaks with high speed ones
RLSS−HSS at y+ = 14.5
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Fig. 7.4 – One-dimensional spatial cross-correlations of low speed streaks with high speed
ones at selected wall distances with ∆x+ = 0

7.2.2 Ejections and sweeps

Fig. 7.5 shows examples of two-dimensional spatial auto-correlation of ejectionsREJ−EJ

and sweeps RSW−SW at y+ = 14.5. To analyse those correlations in detail, Fig. 7.6 gives
two one-dimensional auto-correlations : at ∆x+ = 0 and ∆z+ = 0 respectively. Opposite
to Fig. 7.2a and 7.2c, Fig. 7.6a and 7.6c shows that the value of the central peak increases
with wall distance, indicating an increase in the size of both ejections and sweeps. This
is in good agreement with Fig. 6.42. No distinct minimum appears in both Fig. 7.6a and
7.6c. However, a rapid transition is visible around 120 wall units for ejections and 100
wall units for sweeps, giving an estimate of the length of ejections and sweeps, which is
in good agreement with Fig. 6.38. For ejections, similar to streaks (Fig. 7.2a and 7.2c),
the wall distance can be separated into two groups : y+ ≤ 18.5 and y+ > 18.5. In each
group, the curves are comparable. However, contrary to streaks, the length of ejections is
smaller very near the wall than far from it. A large difference is evidenced between the
correlations at y+ = 18.5 and y+ = 22.2. It is also revealed by the rapid increase of the
mean length in this region shown in Fig. 6.38.
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In Fig. 7.6b and 7.6d, a minimum is evidenced only at y+ = 14.5. The off-centre
distance of this minimum is equal to about 45 wall units for ejections and 50 wall units
for sweeps. These values are somewhat smaller than half of those in Fig. 6.45.

a : REJ−EJ b : RSW−SW

Fig. 7.5 – Two-dimensional spatial auto-correlations of ejections and sweeps at y+ = 14.5

Fig. 7.7 shows an example of two-dimensional spatial cross-correlation of ejections with
sweeps REJ−SW at y+ = 14.5. Two regions with high correlation are located symmetrically
with respect to ∆z+ = 0 in the spanwise direction. These regions have a small angle (about
5 degrees) with the streamwise direction. Fig. 7.8 shows the one-dimensional correlation
at ∆x+ = 0. As for RLSS−HSS, the off-centre distance of this maximum can be used to
measure the spanwise distance between neighbouring ejections and sweeps. In Fig. 7.8, it
increases from about 50 wall units at y+ = 14.5 to 90 at y+ = 48.

7.2.3 NGSV and PGSV

Fig. 7.9 shows an example of two-dimensional spatial auto-correlation of PGSVRPGSV−PGSV

at y+ = 22.2 where the frequency of appearance of those structures is the highest. The
secondary peak is not evidenced, revealing a strong variability in size and position of these
structures. Additionally, the peaks at the center are clearer at y+ = 22.2 and 26 than at
other wall distances, indicating that the cores of wall-attached streamwise vortices are
located around y+ = 25.

Fig. 7.10 shows an example of two-dimensional spatial cross-correlation of NGSV with
PGSV RNGSV−PGSV at y+ = 22.2. Two regions with high correlation are located sym-
metrically in the spanwise direction with respect to ∆z+ = 0, indicating the existence
of PGSV beside NGSV. To study the variation of correlation in the spanwise direction
in detail, the one-dimensional correlation ∆x+ = 0 is calculated and shown in Fig. 7.11.
The off-centre distance of the peak can be used to measure the spanwise distance between
neighbouring PGSV and NGSV. It increases slightly with wall distance from 30 wall units
at y+ = 14.5 to 35 wall units at y+ = 48. These small values indicate that the peaks of
RNGSV−PGSV are mainly resulting from counter-rotating streamwise vortices. Moreover,
the values of these peaks are much smaller than those corresponding to RPGSV−PGSV , indi-
cating that the phenomenon of counter-rotating streamwise vortices is much less frequent
than individual ones.
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a : REJ−EJ , with ∆z+ = 0
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b : REJ−EJ , with ∆x+ = 0
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c : RSW−SW , with ∆z+ = 0
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d : RSW−SW , with ∆x+ = 0

Fig. 7.6 – One-dimensional spatial auto-correlation of ejections and sweeps at selected
wall distances

Fig. 7.7 – Two-dimensional spatial cross-correlation of ejections with sweeps REJ−SW at
y+ = 14.5

7.2.4 Streaks with ejections and sweeps

Fig. 7.12a shows an example of two-dimensional spatial cross-correlation of low speed
streaks with ejections RLSS−EJ at y+ = 14.5. The region with high correlation at the centre
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Fig. 7.8 – One-dimensional spatial cross-correlations of ejections with sweeps REJ−SW at
selected wall distances with ∆x+ = 0

Fig. 7.9 – Two-dimensional spatial auto-correlation of NGSV RPGSV−PGSV at y+ = 22.2

Fig. 7.10 – Two-dimensional spatial cross-correlation of NGSV with PGSV RNGSV−PGSV

at y+ = 22.2

(∆x+ = 0, ∆z+ = 0) and the minimum on both sides along ∆z+, indicates that ejections
are strongly linked to low speed streaks ; in other words, they are part of streaks. Fig. 7.12b
shows an example of two-dimensional spatial cross-correlation of low speed streaks with
sweeps RLSS−SW at y+ = 14.5. Two peaks are located symmetrically with respect to ∆z+

= 0. This indicates that sweeps can be found on both sides of low speed streaks in the
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Fig. 7.11 – One-dimensional spatial cross-correlations of PGSV with NGSV RNGSV−PGSV

at selected wall distances with ∆x+ = 0

spanwise direction.

a : RLSS−EJ b : RLSS−SW

Fig. 7.12 – Two-dimensional spatial cross-correlations of low speed streaks with ejections
and sweeps at y+ = 14.5

Fig. 7.13b shows the spanwise one-dimensional correlation RLSS−SW at ∆x+ = 0. For
each correlation, a transition position, where a maximum or plateau appears, is visible.
The off-centre distance of this position increases from 65 wall units at y+ = 14.5 to about
95 at y+ = 48. As shown in Fig. 7.13, the intensity of the peaks decreases rapidly with
wall distance in the region y+ > 22, which results mainly from the fact that the frequency
of appearance of both low speed streaks and sweeps decrease with wall distance in this
region (see Fig. 6.7a and 6.28).

Fig. 7.14a shows an example of two-dimensional spatial cross-correlation of high speed
streaks with ejections RHSS−EJ at y+ = 14.5. Similar to Fig. 7.12b, two peaks located
symmetrically with respect to ∆z+ = 0 are visible. This indicates that ejections can be
found on both sides of high speed streaks. Fig. 7.14b shows an example of the cross-
correlation of high speed streaks with sweeps RHSS−SW at y+ = 14.5. Similar to RLSS−EJ

(Fig. 7.12a), a region with high correlation is located around the centre (∆x+ = 0, ∆z+

= 0), indicating that sweeps are strongly linked to high speed streaks.
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Fig. 7.13 – One-dimensional spatial cross-correlation of low speed streaks with sweeps
RLSS−SW at selected wall distances with ∆x+ = 0

a : RHSS−EJ b : RHSS−SW

Fig. 7.14 – Two-dimensional spatial cross-correlations of high speed streaks with ejections
and sweeps at y+ = 14.5

Fig. 7.15 shows the one-dimensional correlation RHSS−EJ at ∆x+ = 0. For each correla-
tion, a transition position, where a maximum or plateau appears, is visible. The off-centre
distance of this transition increases from 65 at y+ = 14.5 to about 95 wall unit at y+ =
48. The maximum disappears in the region y+ > 37, which results mainly from the fact
that the frequency of appearance of both high speed streaks and ejections decrease with
wall distance (see Fig. 6.7a and 6.28)

7.2.5 Streaks with NGSV and PGSV

Fig. 7.16 shows examples of cross-correlation of low speed streaks with NGSV (RLSS−NGSV )
and low speed streaks with PGSV (RLSS−PGSV ) at y+ = 14.5. For RLSS−NGSV (Fig. 7.16a),
an elongated region with high correlation appears with a spanwise angle of about 7 degrees.
A maximum is evidenced in this region with a negative streamwise ∆x+ and a positive
spanwise displacements ∆z+. For RLSS−PGSV (Fig. 7.16b), the angle is also about -7 de-
grees and both ∆x+ and ∆z+ are positive. This shows that negative streamwise vortices
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Fig. 7.15 – One-dimensional spatial cross-correlation of high speed streaks with ejections
RHSS−EJ at selected wall distances with ∆x+ = 0

are located on the downstream left of low speed steaks while the positive ones are on the
downstream right. For each correlation, the off-centre distance of the maximum is about
24 wall units in the spanwise direction. The same value is observed in the streamwise
direction.

Fig. 7.17 gives the spanwise one-dimensional correlation RLSS−NGSV and RLSS−PGSV

at ∆x+ = 0. In coherence with the results on vortices in Chapter 6.4, the maximum of
correlation is obtained for y+ at the range between 20 and 30.

a : RLSS−NGSV b : RLSS−PGSV

Fig. 7.16 – Two-dimensional spatial cross-correlations of low speed streaks with NGSV
and PGSV at y+ = 14.5

Fig. 7.18 shows examples of cross-correlation of high speed streaks with NGSV (RHSS−NGSV )
and high speed streaks with PGSV (RHSS−PGSV ) at y+ = 14.5. For RHSS−NGSV , like in
Fig. 7.16a, a region of high correlation appears with a spanwise angle of about 7 degrees.
Opposite to Fig. 7.16a, the maximum is at the upstream right. For RHSS−PGSV , it is at
the upstream left with a spanwise angle of about -7 degrees. For both correlations, the
off-centre streamwise distance of the maximum increases from 20 at y+ = 14.5 to about
50 at y+ = 48, while the off-centre spanwise distance is from 24 to 60 wall units. Fig. 7.19
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b : RLSS−PGSV

Fig. 7.17 – One-dimensional spatial cross-correlations of low speed streaks with NGSV
and PGSV at selected wall distances with ∆x+ = 0

shows the spanwise one-dimensional correlation RHSS−NGSV and RHSS−PGSV at ∆x+ =
0.

a : RHSS−NGSV b : RHSS−PGSV

Fig. 7.18 – Two-dimensional spatial cross-correlations of high speed streaks with NGSV
and PGSV at y+ = 14.5

7.2.6 Ejections and sweeps with NGSV and PGSV

Two-dimensional spatial cross-correlation of ejections with NGSV (REJ−NGSV ) and
of ejections with PGSV (REJ−PGSV ) at y+ = 14.5 are shown in Fig. 7.20. Similar to
RLSS−NGSV and RLSS−NGSV , an elongated region with high correlation appears with a
spanwise angle of about 4 and -4 degrees for REJ−NGSV and REJ−PGSV respectively.
However, these regions are much smaller than those for RLSS−NGSV and RLSS−NGSV .
The location of the maximum of REJ−NGSV is evidenced at the downstream left as for
RLSS−NGSV but the distance to the centre (∆x+ = 0, ∆z+ = 0) is much smaller. The same
kind of relation can be found for REJ−PGSV and RLSS−NGSV . The off-centre distance of
the maximum is about 5 wall units in the streamwise direction and 19 wall units in
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b : RHSS−PGSV

Fig. 7.19 – One-dimensional spatial cross-correlations of high speed streaks with NGSV
and PGSV at selected wall distances with ∆x+ = 0

the spanwise direction. Fig. 7.21 shows the one-dimensional correlation REJ−NGSV and
REJ−PGSV at ∆x+ = 0.

a : REJ−NGSV b : REJ−PGSV

Fig. 7.20 – Two-dimensional spatial cross-correlations of ejections with NGSV and PGSV
at y+ = 14.5

Fig. 7.22 shows the respective examples of two-dimensional spatial cross-correlation of
sweeps with NGSV (RSW−NGSV ) and of sweeps with PGSV (RSW−PGSV ) at y+ = 14.5.
An elongated region with high correlation appears with a spanwise angle of about 4 and
-4 degrees for RSW−NGSV and RSW−PGSV respectively. The same as for RHSS−PGSV and
RHSS−PGSV , the maximum is located upstream right for RSW−NGSV and upstream left for
RSW−PGSV . In the streamwise direction, the off-centre distance is about 10 wall units. In
the spanwise direction, it is about 19 wall units in the region y+ < 33 and about 24 in the
region y+ > 33. These values are much smaller than those of RHSS−PGSV and RHSS−PGSV .
Fig. 7.23 shows the spanwise one-dimensional correlation RSW−NGSV and RSW−PGSV at
∆x+ = 0.
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a : REJ−NGSV
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b : REJ−PGSV

Fig. 7.21 – One-dimensional spatial cross-correlations of ejections with NGSV and PGSV
at selected wall distances with ∆x+ = 0

a : RSW−NGSV b : RSW−PGSV

Fig. 7.22 – Two-dimensional spatial cross-correlations of ejections with NGSV and PGSV
at y+ = 14.5

7.2.7 PVF and NVF

Fig. 7.24 shows an example of two-dimensional spatial cross-correlation of PVF with
NVF (RPV F−NV F ) at y+ = 22.2. Similar to Fig. 5.6, two regions with high correlation
appear symmetrically with respect to ∆z+ = 0. They also show a small angle with the
streamwise direction. The maximum is located slightly upstream. The spanwise off-centre
distance is a constant (about 34 wall units) in the region y+ ≤ 22. Above y+ = 22, it
increases up to about 50 wall units at y+ = 48, indicating an increase in diameters of the
streamwise vortices. Fig. 7.25 shows the spanwise one-dimensional correlation RPV F−NV F

at ∆x+ = 0.
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b : RSW−PGSV

Fig. 7.23 – One-dimensional spatial cross-correlations of sweeps with NGSV and PGSV
at selected wall distances with ∆x+ = 0

Fig. 7.24 – Two-dimensional spatial cross-correlation of PVF with NVF RPV F−NV F at
y+ = 22.2
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Fig. 7.25 – One-dimensional spatial cross-correlations of PVF with NVF RPV F−NV F at
selected wall distances with ∆x+ = 0
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7.3 Conceptual model

As can be seen from the above paragraph, evident links appear between the different
coherent structures involved in the near-wall turbulence process. Among those structures,
the streamwise vortices appear to play a significant role and are known to be a link with
the log layer (Carlier and Stanislas (2005)). It is thus proposed to first insist on the
evidence and the characteristics of these structures, as inferred from the present data and
then to investigate the links of the other coherent objects (streaks, ejections and sweeps)
with these vortices. Finally, the consequences of these results in terms of a structural
model of the turbulence near the wall will be investigated. To facilitate the comparison,
the principal results are summarized and listed in Table. 7.1. The symbols are defined in
Chapter 6. As concluded above, the core of the wall-attached streamwise vortex is located
between 20-30 wall units. Moreover, many results show a transition point around y+ =
22.2. Following that, in Table. 7.1, the studied wall region is divided into two parts to
simplify the discussion : 14.5 < y+ < 22 and 22 < y+ < 48.

7.3.1 Evidence and characteristics of streamwise vortices

In the present study, the existence of streamwise vortices was firstly evidenced from
the auto-correlation of wall-normal velocity fluctuations Rv′v′ (Fig. 5.4), which shows a
clear elongated correlation zone between fluctuations of opposite signs. In Chapter 6.4,
these vortices were put in evidence and characterized by a specific pattern recognition
method. Finally, in the earlier section, the RNV F−PV F correlations also clearly evidence
these vortices and can even be used to estimate their diameters.

From the above different tools, which allow to detect the streamwise vortices, a certain
number of characteristics of these structures were put in evidence :

• In the field of investigation, the streamwise vortices are, on average, centred around
y+ = 20 to 30. This is shown by critical points in most of the results and particularly
by the maximum frequency of appearance.

• The diameter of the vortices is about 40 wall units at y+ = 22.2, which means that
these vortices are wall-attached. It increases with wall distance up to 60 wall units
at y+ = 48, which suggests a lift up. The streamwise vortices do not originate at
the wall but in the buffer layer, above the peak of turbulent kinetic energy (around
y+ = 15).

• The population of counter-rotating streamwise vortices is about 20% of the total
(including both individual and counter-rotating vortices). Above y+ > 30, most of
them have a Ω-shaped.

• The mean spanwise distance between the same sign streamwise vortices is nearly a
constant of about 107 wall units in the region 14.5 < y+ < 18.5 and about 127 wall
units in the region 22 < y+ < 40. When y+ > 40, the spanwise distance increases
from about 127 wall units at y+ = 40 to about 147 wall units at y+ = 48. The mean
spanwise distance between negative and positive legs of the same counter-rotating
streamwise vortex, increases from about 39 wall units at y+ = 14.5 to about 53
wall units at y+ = 48. These spacings will be further interpreted in the following
discussion.
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Streamwise Ejections Sweeps Low speed High speed
vortices (GSV) streaks streaks

y+ < 22 > 22 < 22 > 22 < 22 > 22 < 22 > 22 < 22 > 22
N 1.5-

2.7
2.7-
1.1

4.5-
5.2

5.2-
4.5

4.2-
4.0

4.0-
3.1

2.9-
2.75

2.75-
2.1

2.8-
2.4

2.4-
1.6

ϕ Mean 0 0 0 0 0 0 0 0 0 0
PDF Laplace Laplace Laplace Laplace Laplace

|ϕ| Mean 13±1.5 13±1.5 10-8 8-
11.5

10 10-
14.5

5.9-
6.5

6.5-
8.3

7.5±1 7.5±1

W+
a Mean 16±1 16±1 18 18-24 22-24 24-30 31 31-39 45±2 45±2

PDF Lognormal Lognormal Lognormal Lognormal Lognormal
L+
A Mean 89-99 99-85 92-

117
117-
107

90 90 ≈1000-
1200

≈1000-
1200

≈900-
1100

≈900-
1100

PDF Lognormal Lognormal Lognormal / /
A+
c Mean 1400-

1500
1500-
1400

1600-
2100

2100-
2640

2240-
2400

2400-
2800

/ / / /

PDF Exponential Exponential Exponential / /
d+ Mean 107-

127
127-
147

123±5 123±5 123±5 123±5 125±10 125±10 125±10 125±10

PDF Rayleigh Rayleigh Rayleigh Rayleigh Rayleigh
Other GCSV
y+ < 22 > 22
N 0.3-

0.5
0.5-
0.2

ϕ Mean 0 0-4
ϕc Mean 0 0-5
d+
c Mean 39-43 43-53

Tab. 7.1 – Summary of the principal results on coherent structures

• Apparently these ′streamwise′ vortices are not really streamwise. Their mean span-
wise angle is zero due to the homogeneous property of the flow, but the histograms
show that many streamwise vortices have a relatively large spanwise angle. The mean
of the absolute value is nearly a constant of about 13 degrees with a fluctuation of
about 1.5 degrees.

• The histogram of the spanwise angle is close to a Laplace distribution. The histogram
of the spanwise distance between two nearby streamwise vortices with the same sign,
follows nearly a Rayleigh distribution. This distribution also applies to the spanwise
distance between negative and positive legs of the same counter-rotating streamwise
vortex.
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7.3.2 Strong link between ejections and streamwise vortices

Fig. 7.20 shows that there is a strong link between ejections and streamwise vortices.
It is of interest to compare their characteristics in order to support this statement. The
following characteristics of these structures are put into evidence from the present results :

• As for streamwise vortices, the results show that the wall distance y+ =22.2 is a
critical position for ejections. Their characteristics and their variation with wall
distance are different below and above this point.

• The distribution of the frequency of appearance of ejections with wall distance is
nearly the same as that of streamwise vortices. The maximum of both structures
are located around y+ = 22. The frequency of appearance of ejections is larger than
two times that for streamwise vortices. This can be interpreted by the fact that
ejections are outward motions and have a wider wall-normal development than the
corresponding streamwise vortices.

• The mean width of ejections increases with wall distance. This results partly from
the above-mentioned increasing diameter of streamwise vortices in this region. In
addition, the width of ejections is slightly smaller than half the diameter of the
vortices at the same wall distance.

• The mean spanwise distance between ejections is in the range of 118-128 wall units,
which is comparable to that of streamwise vortices.

• The mean of the absolute spanwise angle decreases from 10 degrees at y+ = 14.5 to
8 degrees at y+ =22.2 and then increases up to 11.5 degrees at y+ =48. It is slightly
smaller than that of streamwise vortices which has a constant value of about 13
degrees.

• The histograms of the spanwise angle and the spanwise distance of ejections follow
the same distribution pattern as those of streamwise vortices.

• The mean length of ejections is comparable to that of streamwise vortices. For both
structures, the variation with wall distance is the same.

7.3.3 Strong link between sweeps and streamwise vortices

Fig. 7.22 shows that there is a strong link between sweeps and streamwise vortices as
well. The following observations are made :

• Above y+ =22.2, the frequencies of appearance of both sweeps and streamwise
vortices decrease with wall distance. However, for sweeps, the maximum of this
frequency is not located around y+ =22.2 as that for the vortices but in fact below
y+ =15. This may be attributed to the fact that sweeps are inward motions in
the flow and thus can develop themselves until very near the wall. This interprets
also the fact that the frequencies of appearance of sweeps are higher than that of
streamwise vortices.

• Similar to the diameter of streamwise vortices, the mean width of sweeps increases
with wall distance. However, different from ejections, it is somewhat larger than half
of the diameter at the same wall distance.

• The same as ejections, the mean spanwise distance is in the range of 118-128 wall
units and is comparable to those of streamwise vortices.
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• The mean of the absolute spanwise angle is a constant of about 10 degrees un-
til y+ =22.2 and then increases up to 14.5 degrees at y+ =48. These values are
comparable to those of streamwise vortices.

• The histograms of the spanwise angle and the spanwise distance of sweeps, follow a
Laplace distribution and a Rayleigh distribution respectively, which is the same as
for streamwise vortices.

• The mean length of sweeps is nearly the same as that of streamwise vortices in both
the value and the variation with wall distance.

The above discussion confirms that ejections and sweeps are both strongly linked to
streamwise vortices. However, there exist some differences between the results of ejections
and sweeps. This will be discussed in detail later on.

7.3.4 Links between low speed streaks and streamwise vortices
and between low speed streaks and ejections

Fig. 7.16 suggests that low speed streaks and streamwise vortices are related. Fig. 7.12
shows that most of ejections are associated with a low speed streak. It is thus of our
interest to compare the characteristics of low speed streaks with those of streamwise
vortices as well as of ejections. The following observations are made :

• The frequency of appearance of low speed streaks decreases with wall distance as
that of streamwise vortices. At the same wall distance, the frequency of low speed
streaks is comparable or even larger than that of streamwise vortices. For example,
about 2.8 low speed streaks are detected per area of 530+*300+ at y+ = 22.2 while
only 2.7 are found for streamwise vortices. This seems to be conflicting to the general
agreement that a low speed streak should be related to a packet of streamwise
vortices (or hairpins) (Adrian et al. (2000)). As mentioned in Chapter 6.2, low
speed streaks are much longer than the field of the investigation and thus many of
them are incomplete (cut by borders of the field). According to the literature, the
mean length of streaks is between 1000 - 2000 wall units, which is about 2 - 5 times
the size of the present field. This may explain the above result.

• The mean width of low speed streaks is nearly a constant of about 31 wall units in
the region y+ < 33. Above that, it increases slowly with the wall distance up to 39
wall units. The value is somewhat smaller than the mean spanwise distance between
negative and positive legs of the same counter-rotating streamwise vortex but still
comparable. It is about two times that of ejections. The increase in the region y+ >
33 is due probably to the merging of hairpins and the development of the Ω-shaped
vortices.

• The mean spanwise distance varies between 115 and 125 wall units. This is compa-
rable to streamwise vortices as well as ejections.

• The mean of the absolute spanwise angle increases from 5.9 degrees at y+ = 14.5 to
8.3 degrees at y+ = 48.0. It is smaller than that of streamwise vortices as well as of
ejections. This may be attributed to the above-mentioned vortex packet theory that
low speed streaks are induced by several streamwise vortices (or hairpin) (Adrian
et al. (2000)).
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• Compared to streamwise vortices and ejections, the histograms of the spanwise angle
and the spanwise distance of low speed streaks have the same distribution pattern.
This is also true for the spanwise distance of these structures.

7.3.5 Links between high speed streaks and streamwise vortices
and between high speed streaks and sweeps

Fig. 7.18 and Fig. 7.14 show the links between high speed streaks and streamwise
vortices as well as between high speed streaks and sweeps. The following observations can
be drawn :

• Similar to streamwise vortices, the frequency of appearance of high speed streaks
decreases with wall distance. The same argument used for low speed streaks justifies
the fact that the frequency of high speed streaks is slightly larger than that of
streamwise vortices at the same wall distance.

• The mean width of high speed streaks is nearly a constant of about 45 wall units
with a fluctuation of 2 wall units. It is comparable to the mean spanwise distance
between negative and positive legs of the same counter-rotating streamwise vortex.
This value is about two times that of sweeps.

• The same as low speed streaks, the mean spanwise distance of high speed ones is
between 115 and 125 wall units. It is comparable to those of other structures.

• The mean of the absolute spanwise angle is nearly a constant of 7.5. It is comparable
to that of low speed streaks but smaller than those of streamwise vortices and sweeps.

• The histograms of the spanwise angle and the spanwise distance of high speed streaks
follow the same distribution pattern as those of streamwise vortices and sweeps.

Globally, the characteristics of low and high speed streaks are comparable to those of
streamwise vortices, ejections and sweeps, especially in terms of the variation with wall
distance and the distribution pattern of histograms. It should be noted that there are also
some differences in those characteristics. This will be explained in detail later.
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7.3.6 Organization

Thus far, the most popular organization model of near wall turbulence is the one
proposed by Adrian et al. (2000) (Fig. 7.26), which was presented in Chapter 2. According
to this model, four main characteristics can be inferred :

1) Low speed streaks are surrounded by not only symmetrical hairpins but also asym-
metrical ones. The legs of hairpins or Ω-shaped vortices are considered as streamwise
vortices in the region close to the wall (e.g. y+ < 48 in the present study).

2) The width of low speed streaks is comparable to the distance between the two legs
of a hairpin.

3) The hairpins are lifted up except for the region very near to the wall.
4) The spanwise distance between low speed streaks is nearly equal to that of the

streamwise vortices (or legs of hairpins) of the same sign.

Fig. 7.26 – Organization model of Adrian et al. (2000) in near wall turbulence, Uc1, Uc2
and Uc3 are the convection velocities of each hairpin packet respectively

These characteristics are in complete agreement with the present results as shown
above. Besides, Adrian et al. (2000) have also given a model concerning ejections and
sweeps (Fig .7.27), which suggests that sweeps exist upstream and above the hairpin. In
the present study sweeps are found to be associated with mainly streamwise vortices (legs
of hairpin). Reconsideration of Fig. 7.26 indicates that the sweeps mentioned in Adrian
et al. (2000) could be those created by the upstream vortices in the same packet or even
those from an upstream upper packet.

In Adrian’s model, very few quantitative characteristic parameters are given. In the
present study, it is possible to assess some of them, such as size, intensity, direction of the
vorticity of the hairpins and relative positions of low speed streaks and hairpins.
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Fig. 7.27 – Organization model of Adrian et al. (2000) in near wall turbulence

As shown in Fig. 5.6 and 7.24, regions with positive wall-normal velocity fluctuations
are slightly downstream of those with negative ones. This phenomenon can be explained
based on the theory proposed by Hinze (1975), which is called ′U-loop deformation of
a vortex line′. Fig. 7.28 illustrates the formation of a hairpin or an Ω-shaped vortex. A
local disturbance of the spanwise vorticity component ωz can result in a symmetric or an
asymmetric hairpin which can take a Ω- (case #1) or demi-Ω-shape (case #2 and #3)
(to simplify the discussion, both of them are called ′Ω-shaped vortex′ in the following
sections). As shown in the third stage in Fig. 7.28, in the region from A to B, the vortex
line is supposed to remain nearly unchanged. From B to C a transition region exists,
where the spanwise vorticity component ωz goes near to zero. The region from C to D is
where the streamwise vortex (i.e. the legs of hairpin or cone vortex) can be found. This
part should be nearly parallel to the streamwise-spanwise plane where ωx is dominating.
From D to E, another transition region where ωy grows, appears due to self-induction
and lift-up of vortices. In the region around the head of the hairpin (or Ω-shaped) vortex
(from E to F), the spanwise vorticity component ωz grows while the two other go back to
zero. When the vortices are lifted up, the region from C to D can extend to point A and
the vortices will have the shape shown in the fourth stage of Fig. 7.28, which is similar to
the hairpins in Fig. 7.26.

In this development model, in the region from C to D, the vortex-induced streamwise
velocity above the axis of the vortex is negative. This and the lift up of the low speed fluid
reduce the local streamwise velocity of the main flow and thus generate a low speed region
indicated in Fig. 7.29. This can cause a flow in rush to the wall on the downstream external
side of the vortex, resulting in a lift-up of the vortex and of the related low speed regions
(low speed streaks). In the region from E to F, the phenomenon is different. As shown
in the Fig. 7.29, the low speed regions are generated below the head of the vortex. This
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Fig. 7.28 – Conceptual model of the formation of a hairpin or Ω-shaped vortex

result suggests that the low speed regions are within the legs of hairpin vortex (streamwise
vortices) but below the head of the hairpin.
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Fig. 7.29 – Organization model of a hairpin vortex and the induced low speed streak

Furthermore, in the region from C to D in Fig. 7.28, the vortex-induced streamwise
velocity below the vortex axis and outside the hairpin is positive. This and the above-
mentioned rush in of the flow to the wall increase the local streamwise velocity and thus
induce high speed streaks. In the region from E to F, high speed regions are generated
above the hairpin. These regions are usually much shorter than those in the region CD
and not considered as high speed streaks. Fig. 7.30 shows the relative position of the
hairpin and its induced high speed streak.

Similar to the generation of low and high speed streaks, ejections and sweeps can also
be induced by a hairpin. Fig. 7.31 and 7.32 show respectively the relative position of the
hairpin and the induced ejections and sweeps. In the region DE, the sizes of ejections
and sweeps are smaller. As shown in Fig. 7.28, in this region, the wall-normal vorticity
component ωy is much stronger than the other two components ωx and ωz. Therefore,
the vortex induced wall normal velocity is rather small. This leads to a smaller size of
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Fig. 7.30 – Organization model of a hairpin vortex and the induced high speed streak

ejections and sweeps.
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Fig. 7.31 – Organization model of a hairpin vortex and the induced ejection
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Fig. 7.32 – Organization model of a hairpin vortex and the induced sweep

Fig. 7.33 shows a combination of the above proposed models including the hairpins, low
and high speed streaks and the corresponding ejections and sweeps. Fig. 7.33 also shows
the projection of the above mentioned model on the streamwise-spanwise and wall-normal-
spanwise planes. This model is plotted based on a nearly symmetric hairpin (Ω-shape). It
is also valid for asymmetric hairpins. The above discussed model is an ideal average model.
In a real flow, due to the effect of interaction and combination, symmetric or asymmetric
hairpins and the coherent structures associated with them can form a more complicated
structure organization (e.g. Fig. 7.26).
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Fig. 7.33 – Organization model in near wall turbulence

In the present study, according to Fig. 7.12, Fig. 7.14, 7.16, 7.18, 7.20 and 7.22 in the
streamwise-spanwise plane, three main conclusions are made :

• Ejections and sweeps are associated with low and high speed streaks respectively.
• Low speed steaks and ejections are located on the upstream right of negative stream-

wise vortices and upstream left of positive ones. Ejections are closer to streamwise
vortices than low speed streaks.

• High speed steaks and sweeps are located on the downstream left of negative stream-
wise vortices and downstream right of positive ones. Sweeps are closer to streamwise
vortices than high speed streaks.

• Low and high speed steaks are much larger than ejections, sweeps and streamwise
vortices.

Based on these conclusions, in the streamwise-spanwise plane, two basic conceptual
models of the organization of streaks, ejections, sweeps and streamwise vortices are pro-
posed in Fig. 7.34. The reference structures are low and high speed streaks respectively.
The streaks in Fig. 7.34 are much larger than ejections, sweeps and streamwise vortices.
However in Fig. 7.33, these structures have comparable dimensions. The difference can
be interpreted by the hairpin packet theory (Adrian et al. (2000)). As shown in Fig. 7.26,
the large low speed streak is surrounded by several hairpins (symmetric or asymmetric)
thus can be considered as a result of a combination of several small streaks induced by
each hairpin in the packet. For ejections and sweeps, this combination does not exist.
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Fig. 7.34 – Basic conceptual models of organization

7.3.7 Interpretation of Rv
′
w

′ correlations based on the modified
model

Based on the models in Fig. 7.33 and 7.34, Fig. 7.35 to 7.37 show an explanation
of some specific results of the correlation Rv′w′ (Fig. 5.19). To simplify this explanation,
the vortex is assumed to be formed by a set of individual rings which are named by the
location of the center (O1 - O5) and have the same diameter. The dash line which is the
core of the vortex passes through the centers of all the rings. The rectangle CDEF is a
streamwise-spanwise cross section. A1 and A2 are the most right and most left intersect
positions of the vortex in cross-section CDEF. B1 and B2 are the intersect points of ring
O1 with cross-section CDEF. BO is the center point of line B1B2. v

′

max and w
′

max are
the maximum wall-normal and spanwise velocity fluctuations of the vortex. v

′

1 and v
′

2 are
the wall-normal fluctuation at B1 and B2 respectively while w

′

1 and w
′

2 are the spanwise
fluctuations at A1 and A2. Dsv is the diameter of the vortices. OC represents the distance
to the wall. According to this distance, three particular regions are defined : OC < 0.5Dsv

(case #1), 0.5Dsv < OC< Dsv (case #2) and OC > Dsv (case #3).

In Case #1 (Fig. 7.35), the streamwise-spanwise cross-section can cut only the bottom
half of a vortex. The correlation Rv′w′ is mainly from correlating the high spanwise velocity
fluctuation w

′

1 at A1 and w
′

2 at A2 with high wall-normal fluctuation v
′

1 at B1 and v
′

2 at
B2. As B1 and B2 are lower than the center of the vortex (line O1O2), three conclusions
can be drawn : 1) v

′

1 and v
′

2 are smaller than v
′

max ; 2) w
′

1 is smaller than w
′

max and w
′

2 is
equal to it ; 3) B1B2 is smaller than the diameter. When OC increases, v

′

1, v
′

2 and B1B2

increase but w
′

1 decreases. In Case #2 (Fig. 7.36), the streamwise-spanwise cross-section
cut through the core of the vortex. Different from case #1, v

′

1 and v
′

2 are equal to v
′

max

and B1B2 is equal to the diameter Dsv. When OC increases, v
′

1, v
′

2, w
′

2 and B1B2 keep
constant but w

′

1 increases. In Case #3 (Fig. 7.37), the streamwise-spanwise cross-section
cuts the rising vortex. Unlike Case #2, w

′

1 is now equal to w
′

max. And v
′

1, v
′

2, w
′

1 , w
′

2 and
B1B2 are independent from OC .

As mentioned above, when OC > Dsv, w
′

1 increases with wall distance and levels off
at w

′

max. This offers an explanation to the fact that the weak peaks appear and become
more and more intense in the left of Fig. 5.19 when the wall distance increases.

The present study shows that the center of wall-attached streamwise vortex is located
between y+ = 20 and 30 wall units. As shown in Fig. 7.35, below this position the wall-
normal fluctuations (v

′

1, v
′

2) are smaller than the maximum (v
′

max) but the streamwise-
spanwise cross-section passes through more rings. Beyond this position (Fig. 7.36 and
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7.37), with increasing wall distance, the wall-normal fluctuations increase but the number
of rings being cut decreases. This explains the result in Fig. 5.21 that the peak value is
nearly constant in the region y+ < 22.2 and decreases above it.

As shown in Fig. 5.22, the spanwise off-center distance increases with wall distance.
Fig. 7.35 to 7.37 suggest that it results mainly from the increase in wall distance in the
region y+ < 22. In the region y+ > 22, it may be caused by the increase in the diameter
of the vortices (Fig. 7.24). 
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Fig. 7.35 – Conceptual model for cross-correlation Rv′w′ (case #1)

7.3.8 Vortex merging

In Fig. 7.10, the correlation RNGSV−PGSV shows two positive peaks at more or less
symetric position with respect to ∆z+=0. The peak with a negative spanwise displacement
∆z+ is comparable to that with positive ∆z+. This seems to be in contradiction with the
above hairpin model, which leads to the expectation of a peak only for positive ∆z+ as
shown in Fig. 7.38. In order to explain this contradiction, one has to look at the possible
′merging′ of vortices.

This phenomenon has been reported and interpreted by previous authors. Perry and
Chong (1982) assumed that the merging is a pure leg cancellation of the Λ-shape vor-
tices, leaving only the merged portions contributing to the flow field. Wark and Nagib
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Fig. 7.36 – Conceptual model for cross-correlation Rv′w′ (case #2)

(1982) proposed an eddy-by-eddy basis via a vortex re-connection mechanism and sug-
gested that it is complete annihilation of the legs of hairpin. Based on this eddy-by-eddy
basis, Tomkins and Adrian (2003) concluded that the merging of vortex packets, and of
associated low-momentum regions is a mechanism of spanwise scale growth. They have
given three idealized potential spanwise merging scenarios based on hairpin vortices as
shown in Fig. 7.39. The view is from above down to the wall with flow direction from left
to right. Each merging scenario contains structures at three stages : before (t0), during
(t1), and after (t3) merging.

In Fig. 7.39a, two vortices with a comparable size are overlapped in the spanwise di-
rection and move with slightly different convection velocities. When the vortices intersect,
viscous re-connection occurs between the larger and smaller segments of the respective
structures, resulting in two vortices (one with larger spanwise scale and one smaller) with
rotation in the same direction as original ones. If the merging vortices happens to be
aligned spanwise, such a streamwise interaction would result in only one stronger vortex
of comparable scale. In Fig. 7.39b, the initial vortices interact in the spanwise direction,
either growing or convecting into one another, resulting in a hairpin similar in shape as
the original ones but larger in the spanwise scale. In Fig. 7.39c, initial hairpins interact
in the spanwise direction, but the inner legs cross without annihilating. The same as the
previous two cases, the dominant resulting structure is a hairpin vortex of larger spanwise
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Fig. 7.37 – Conceptual model for cross-correlation Rv′w′ (case #3)
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Fig. 7.38 – Theoretical correlation RNGSV−PGSV of hairpins

scale. The remaining fragments of the merged structures are also assumed to reconnect
to form a smaller hairpin (black) which is rotating in the reverse direction.

As shown in Fig. 7.39, between t0 and t1, the interacting legs of two vortices are close
to each other and have a relative position with the positive one on the left side of the
negative one. This can correspond to the peak with negative ∆z+ in Fig. 7.9. Fig. 7.39
also shows that some pairs of interacting legs can take a Λ-shape. This is supported by
the negative ϕc observed in Fig. 6.92b. The existence of this Λ-shape can explain in part
the angle between regions with high correlations and the streamwise direction in Fig. 5.6
and 7.24.
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a : Overlap and pairing of outer structure, leaving a residual vortex with rotation in the
same direction

b : merging of outer structures with inner-leg annihilation

c : merging of outer structures without overlap, leaving a residual vortex with rotation
in the opposite direction (black)

Fig. 7.39 – Idealized schematic of vortex merging scenarios (Tomkins and Adrian (2003))

Based on the scenarios in Fig. 7.39, Tomkins and Adrian (2003) have also given an
idealized schematic of scale growth through vortex re-connection and packet merging
(Fig. 7.40). Two packets are shown, each with 4 or 5 vortices. Upstream, at the time
of observation, vortices in each packet induce an elongated low-speed region between
their legs and underneath their heads. The downstream vortices in each packet have
merged, or are in the process of merging, to create new structures with roughly double
the spanwise scale. These larger vortices also induce a weaker low-speed region. Based on
this scenario, Tomkins and Adrian (2003) evidenced the coalescence of low speed streaks.
This is supported by the appearance of bifurcate streaks as shown in Fig. 6.7b.

Fig. 7.41 shows the ratio of the value of the peak with negative ∆z+ to that with the
positive one of RNGSV−PGSV (Fig. 7.10) as a function of y+. In the region y+ < 33, the
ratio is comparable. When y+ > 33 this ratio decreases nearly linearly with wall distance
and then levels off around y+ = 44. This reveals that the merging occurs mainly between
y+ = 33 and 44. Below y+ = 33, the large ratio suggests that the vortices involved in a
merging, approach each other and prepare for this process. This is partly supported by
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Fig. 7.40 – Idealized schematic of scale growth through vortex re-connection and packet
merging (Tomkins and Adrian (2003))

the distribution of the frequency of appearance of low speed streaks with wall distance
(Fig. 6.7) as well as the width of these streaks (Fig. 6.12). According to Tomkins and
Adrian (2003), for low speed streaks, the main consequence of the merging is a decrease in
the number but an increase in the width. In the present study, the frequency of appearance
of low speed streaks is nearly constant at y+ < 33 and decreases above y+ = 33 .
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Fig. 7.41 – Ratio of the value of the negative peak to that of the positive one of the
correlation RNGSV−PGSV

As a conclusion, the present results support the idea of merging of individual hairpin
vortices which is in the region 33 < y+ < 44.
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Chapitre 8

Conclusions and Perspectives

8.1 Conclusions

The wall region of a turbulent boundary layer contains different coherent structures,
which plays an important role in the turbulent energy generation and transport. Among
them, three typical structures, namely low and high speed streaks, ejections and sweeps,
and streamwise vortices, are the most documented. The objective of the present work
was to study the characteristics of the turbulent flow in this region, to observe and quan-
tify these structures and to investigate the spatial relations between them to provide an
organization model near the wall.

To achieve this purpose, an experiment of stereo PIV was carried out on a fully deve-
loped turbulent boundary layer flow along a flat plate. This experiment was performed in
a streamwise-spanwise plane parallel to the wall. 500 image pairs were recorded in each
of 10 planes distributed between y+ = 14.5 to 48. The Reynolds number based on the
momentum thickness Reθ was 7800.

In a first step, three methods, namely Image Mapping, Vector Warping and the Soloff
technique, were compared in order to select the most suitable method of analysis for
the present database. The comparison also took into consideration different interpolation
and shift methods. The key parameters for the comparison were the computer time, the
estimation of accuracy, the spatial spectra and velocity PDFs. It was concluded that the
Soloff method with 3 calibration planes for projection and reconstruction, using integer
shift for PIV analysis was the most suitable method to obtain the instantaneous 2D3C
velocity fields.

Following that, using the obtained instantaneous 2D3C velocity fields, the basic statis-
tical characteristics of the flow were studied. They include the mean streamwise velocity,
velocity fluctuations, Reynolds shear stresses, spectra, PDFs, skewness and flatness. These
results were validated by comparing them with those of Hot Wire Anemometry, DNS and
the Van Driest model. The comparison shows that the results of SPIV are in good ac-
cordance with other results in the literature. This concludes that Stereoscopic PIV is a
suitable method to study near wall turbulence.

In the next step, a detailed analysis of the spatial correlation was performed on the
instantaneous velocity fields. The auto-correlations Ru′u′ and Rv′v′ evidence the existence
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of streaks and streamwise vortices while the cross-correlation Ru′v′ reveals the existence of
ejections and sweeps. Then, a detection of these coherent structures was set up based on a
pattern recognition method. This method allows to create binary images of each structure.
For streaks, ejections and sweeps, this detection procedure consists of four steps : Detection
function definition thresholding, mathematical morphology and cleaning. The first one is
to define the detection function according to the property of structures and the second
one is to identify objects from the background. The third and the forth steps are to
improve the quality of the detection. For streamwise vortices, it is the first time that a
special method was applied to detect them in the streamwise-spanwise plane, based on
the wall-normal velocity fluctuation and its spanwise gradient. This method first detects
the objects with high fluctuation and gradient as for streaks, ejections and sweeps. Then,
by considering the characteristics of the streamwise vortices, the relations between these
objects were examined to detect the vortices.

Most of early research emphasizes on the mean statistics of these structures by means of
conditional average and spatial or spatio-temporal correlations, etc. They can only provide
an average behaviour. Benefiting from the binary image built here, not only the mean
statistical characteristics but also the histograms and the variations with wall distance
were analyzed for the first time in such a detail in the present study. The characteristics
studied include mainly : frequency of appearance, spanwise angle, width, length, area,
spanwise distance between the same structures.

The results show that the mean spanwise distance between low (or high) speed streaks
is about 120 wall units. This value is nearly the same as those for ejections and sweeps as
well as for negative (or positive) streamwise vortices. In general, it increases slowly with
wall distance for all coherent structures under study. The present study also measures the
distance between the closest low (or high) speed streaks. It is about 8-12% smaller than
the distance between nearby streaks, indicating the misalignment property of this kind of
structures. The distance between the two legs of counter-rotating vortices is about 45 wall
units, which is comparable to the width of low speed streaks. Except for the frequency of
appearance, histograms of the same characteristic of different structures follow the same
distribution law : Laplace distribution for the spanwise angle, Lognormal distribution for
the width and the length, Exponential distribution for the area and Rayleigh distribution
for the spanwise distance. A significant number of the population of each structure have
a spanwise angle when they travel downstream.

The present study shows that the wall attached streamwise vortices are centred in the
region 20 < y+ < 30. In this region, the maximum or minimum of the characteristics
studied was often observed, especially for ejections and streamwise vortices. The mean
diameter of the steamwise vortices increases with wall distance.

Streaks are the largest structures in the present study. Low speed streaks have a width
of about 35 wall units while high speed ones have about 45 wall units. Due to the limited
size of the velocity field, the length of streaks cannot be measured directly if it is larger
than 500 wall units (the streamwise dimension of the velocity field). In the present study,
according to the two-point correlations, the length of streaks is estimated to be about
1000 wall units. Ejections have a width of about 20 wall units and a length of about 110
wall units. Sweeps are wider and shorter than ejections. Their mean width and length
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are about 25 and 90 wall units respectively. The streamwise vortices have a comparable
length with ejections and sweeps.

The correlations between structures show that ejections and sweeps are strongly linked
to streamwise vortices. Ejections and sweeps are associated with low and high speed
streaks respectively. The correlations also reveal that low speed steaks and ejections are
on the upstream right of negative streamwise vortices and on the upstream left of positive
ones while high speed steaks and sweeps are on the downstream left of negative streamwise
vortices and downstream right of positive ones. Ejections and sweeps are closer to the
streamwise vortices than streaks in both streamwise and spanwise directions.

The correlations of both velocity fluctuations and coherent structures show that for
a streamwise vortex the part with negative wall normal fluctuations is on the upstream
of the positive one. Moreover, the present results show that streaks are associated with
a packet of streamwise vortices. This leads to the conclusion that low speed streaks are
formed within a packet of streamwise vortices and high speed streaks are on the outside
of them. As ejections and sweeps are associated with low and high speed streaks respec-
tively, the above conclusion is also true for ejections and sweeps. The statistical analysis
shows that the difference of the spanwise angle between positive and negative legs of a
counter-rotating streamwise vortex has a positive value above y+ = 30. This indicates that
most of these vortices have a Ω-shape in this region. Besides, the analysis of correlation
RNGSV−PGSV allows to evidence the merging phenomenon as described by Tomkins and
Adrian (2003), mostly in the region 33 < y+ < 44.

The present results support the model of Adrian et al. (2000) except for the location
of sweeps. Adrian et al. (2000) suggest that the sweeps are from out-layer while they
are associated with the wall attached streamwise vortices in the present study. In this
study, the model of Adrian et al. (2000) was improved and some characteristic dimensions
were given. This modified model explains the fact that the peaks of conditional cross-
correlations R(v′>0)w′ and R(v′<0)w′ have different off-centre distances in the spanwise as
well as the streamwise directions. In addition, it interprets the appearance of the secondary
peaks of these correlations.

8.2 Perspectives

In contrast to the rest of this thesis, in which we looked back and described what has
been done, we look in this final section into the future. Here, the topics that are interesting
for further investigation are listed.

As well known, the Reynolds number is important to the near wall turbulence. The
characteristics of a turbulent flow can be very different between low and high Reynolds
numbers. As the present study used only one Reynolds number, it would be interesting
to investigate the effect of the Reynolds number on the statistics of coherent structures.

The present results as well as the literature show that the streamwise vortices are lifted
up with an angle about 45 degrees with respect to the streamwise-spanwise plane when
travelling downstream. This suggests several interesting extensions for the investigation
of near wall turbulence. A plane inclined to the wall at about 45 degrees upstream can
be used to measure the diameter of the vortices more precisely. A plane inclined to the
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wall at about 45 degrees downstream can be used to show the evolution of the hairpin or
Ω-shape vortices. In addition, the experiment on the streamwise-wall-normal plane is able
to evidence the theory of hairpin packets and to study their characteristics (e.g. angle
inclined to the wall, streamwise distance, secondary vortices, etc.).

The present experiment was performed with a low sampling rate, which makes it
impossible to investigate the evolution of the structures with time. Taking advantage of
the rapid development of high speed cameras, it is now possible to study the interactions
between different structures as well as their consequences on the variation of characteristics
with time. It could also be interesting to conduct the time dependent experiments for the
different Reynolds numbers and different plane orientations.

Nearly no experimental techniques can measure the 3D3C velocity field. Therefore, it
is difficult to visualize directly the spatial organization of the coherent structures in three
dimension fields. Benefiting from the development of DNS, the turbulent flows can be
simulated completely at low Reynolds numbers. It would be of interest to use the results
of numerical simulations to examine and improve the findings of the experiments.

In the present study, above y+ = 40, the variations of some characteristics with wall
distance change their tendencies. In this region, the behaviours are different from those
very near the wall and should be investigated in more detail.

The present study was done on a smooth wall, however, in practice, many surfaces
are rough (e.g. the water flow over a barnacled ship’s hull, oil flow through industrial
pipework). Therefore, the characteristics of the flow near the wall can differ from those
over smooth surfaces. This requires additional investigation. For example, the research
can be done by comparing the characteristics of the structures and by determining the
roughness beyond which the structure pattern becomes very different from the smooth
wall.
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Fig. A.2 – Comparison on PDF of the normalized wall-normal velocity fluctuation v′/σv
of SPIV and HWA

215



A.1. PDF Annexe A. Comparison of SPIV and HWA

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 14.5)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 18.5)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 22.2)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 26.3)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 29.7)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 33.3)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 37.0)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 40.6)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 44.0)

P
D
F

SPIV

HWA

 

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

w' /σσσσw (y+ = 48.0)

P
D
F

SPIV

HWA

 

Fig. A.3 – Comparison on PDF of the normalized spanwise velocity fluctuation w′/σw of
SPIV and HWA
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Fig. A.4 – Comparison on spectra of the streamwise velocity u of SPIV and HWA
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Fig. A.5 – Comparison on spectra of the wall-normal velocity v of SPIV and HWA
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Fig. A.6 – Comparison on spectra of the spanwise velocity w of SPIV and HWA

219



A.2. Spectra Annexe A. Comparison of SPIV and HWA

220



Annexe B

Detection of Coherent Structures

B.1 Streaks

B.1.1 Detection function

A detection function F u
d has been selected in Chapter 6.2.1 to detect low and high

speed streaks respectively. This function is defined on a discrete (M, N) grid at 10 different
wall distances :

Fd = f(u′(m,n, y+), σu(y
+)) =

u′(m,n, y+)

σu(y+)
(B.1)

Where u′ is the instantaneous velocity fluctuation of the streamwise component u and
σu is the standard deviation. This detection function is obtained from SPIV data and is
also a scalar field defined on a discrete grid in real space R. This function will be used
to identify streaky structures and to generate the corresponding binary indicative image
that contains white objects (1) corresponding to streaks on a black background (0). With
this binary image, streaks can be localized and measured. As explained in Chapter 6.1,
three more steps are necessary to achieve this quantification : thresholding, mathematical
morphology and cleaning. Four parameters are involved, namely the threshold (CT ) for the
thresholding procedure, the structuring element (MS) for the mathematical morphology
procedure and the clean factors (CB and CC) for the cleaning procedure. Details of those
parameters are described in this section. In order to obtain suitable parameters for each
step, plane 1 (at 14.5+ from the wall) was used to adjust all the parameters as it is close to
the wall and streaks in this position are easy to recognize. Several statistical results (e.g.
mean width, number of streaks), which have been studied by many researchers (e.g. Gupta
et al. (1971), Smith and Metzler (1983), Carlier and Stanislas (2005)), are calculated in
the present study to help choose the suitable value for these parameters. The reference
parameters were set as : CT = 0.6, MS = (10, 50), CB = 1750 and CC = 2500. The unit
of MS is wall unit and the unit of CB and CC is square wall unit. Each time when the
statistics is calculated, only one parameter is varied.
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B.1.2 Thresholding

Streaks are detected by applying a threshold CT to the detection function Fd defined
by Eq. (1). In the present study, the value of CT is always positive. Using this threshold,
the streaks are defined by :

Low speed streaks Fi =

{

1 when Fd ≤ −CT
0 when Fd > −CT (B.2)

High speed streaks Fi =

{

1 when Fd > CT
0 when Fd ≤ CT

(B.3)

Fi is called an indicative function. By applying this procedure to the whole field, a
binary indicative image of streaks is generated. As this thresholding procedure is the
initial step to identify streaks, it can have a significant impact on the results and thus the
value of CT should be chosen carefully. To obtain the suitable value of CT for the present
SPIV database, six values from 0.5 to 1.0 were tested to detect low speed streaks.

In general, low value of CT leads to identifying large objects that are strongly connec-
ted. In contrast, high value of CT detects more small and isolated objects. Fig. B.1 gives a
representative sample of the detection image for low speed streaks and the corresponding
indicative images obtained by thresholding with various values of CT . In the detection
image, there are two objects. One is quite large which is considered as a streak, and the
other is relatively small which can be related to other coherent structures (e.g. ejections
and vortices). Comparing the detection image to the indicative images for the different
values of CT , we see that the large object is clearly separated into several small ones for
large values of CT (0.8, 0.9 and 1.0). The objects found by using CT = 0.5, 0.6 and 0.7
are very similar to those in the detection image, thus a threshold between 0.5 and 0.7
seems to be the better choice. Examining a certain number of image samples, we found
that this result is valid for most of the images.

Fig. B.2 shows the histograms of the width of low speed streaks for the different

values of CT . The two measurement methods (W+
a and W+

t , defined in Chapter 6.1) give
comparable results which are not very sensitive to CT for 0.6 ≤ CT ≤ 1.0. Most of streaks
are between 15 and 40 wall units in width. Table B.1 gives some statistical results that are
computed with various values of CT . As expected, the smaller the threshold, the smaller

the width is. Table B.1 shows that the difference between W+
a and W+

t decreases from 3.5
wall units (about 11% of W+

a ) with a CT = 0.5 to 1.4 wall units (about 5% of W+
a ) with

a CT = 1.0. At the same time, the number of streaks that have more than one branch
decreases from 488 (about 34% of the total number of streaks) with a CT = 0.5 to 252
(about 19% of the total number of streaks) with a CT = 1.0. These two results indicate
that the length of the branch part of a bifurcated streak is not small compared to its
total length. However, as the branches of a bifurcated streak are apart, it is reasonable
to consider the branches as a group of ′single streak′ and thus the width of the bifurcate
streak should be computed as the average of all the branches. Therefore, only the mean
width W+

a will be discussed hereafter. Table B.1 suggests that the mean width W+
a of low

speed streaks decreases nearly linearly with CT . When CT is varied from 0.5 to 1.0, the
differenece in W+

a is 5.5+ (about 17% of W+
a with a CT = 0.5). This differenece results
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Detection image

CT = 0.5 CT = 0.6 CT = 0.7

CT = 0.8 CT = 0.9 CT = 1.0

Fig. B.1 – Detection image and the corresponding indicative images with various CT for
low speed streaks

from the fact that a large threshold narrows the objects and separates them into several
parts while a small one connects several parts of objects together. In Table B.1, the mean
distance d+ between the streaks keeps nearly a constant value when varing the threshold.
This can be explained by the fact that the distance is measured between the centers of
nearby streaks, which is not affected by the threshold. Based on the above comparison,
a threshold of CT = 0.6 or 0.7 appears to be suitable for the detection. To detect all
the potential streaks, CT = 0.6 was finally chosen. Since the characteristics of high speed
streaks are similar to those of low speed ones, this threshold was used to detect high speed
streaks as well.

B.1.3 Mathematical morphology

The indicative image obtained by the thresholding procedure, for example the one
with CT = 0.6 in Fig. B.1, contains many small holes, sharp capes and isolated objects.
To improve the indicative image, a mathematical morphology procedure is employed as
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Fig. B.2 – Histogram of the width of low speed streaks with various CT

Threshold CT 0.5 0.6 0.7 0.8 0.9 1.0
Number of streaks 1437 1447 1445 1406 1405 1317
Number of bifurcate streaks 488 459 396 353 308 252

W+
a 31.6 30.6 29.4 28.3 27.1 26.1

W+
t 35.1 33.6 31.9 30.4 28.7 27.5

d+ 103.9 104.4 103.7 104.4 103.5 106.2

Tab. B.1 – Threshold influence on the detection of low speed streaks

explained in Chapter 6.1. It requires a structuring elementMS. Since streaks are elongated
in the streamwise direction, the structuring element was chosen as a rectangle or a square
with two parameters : MS(W,L), in which W is the dimension in the spanwise direction
and L in the streamwise direction. The values of W and L are presented in wall units.
Large structuring element cannot be used in the detection of streaks due to the following
reasons. First, they can connect several separated streaks. Second, structuring element
with large values of L can cut streaks that have a large angle with the streamwise direction
into several small pieces and eliminate short streaks and incomplete streaks cut by the
streamwise border of the image. Also, large values of W can eliminate narrow streaks and
incomplete streaks that are cut by the spanwise border of the image. In the present study,
six different structuring elements were tested to detect low speed streaks.

Fig. B.3 gives an example to illustrate the effects of the mathematical morphology
procedure on the indicative image (the one with CT = 0.6 in Fig. B.1) with various struc-
turing elements. This example shows clearly that mathematical morphology does improve
the quality of the original indicative image by filling holes, removing small objects and
capes, and reconnecting separated objects. In order to choose the appropriate parameter
L, comparisons among indicative images have been done. When L is equal to 70 wall units,
larger objects are cut into pieces. L = 30+ and 50+ seems usable. However, considering
the fact that the length of streaks is generally larger than 500 wall units, in order to
remove effectively the holes and to reconnect the separated objects, L = 50+ was chosen
to be used in the present study.
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MS = (10+, 30+) MS = (15+, 30+) MS = (10+, 50+)

MS = (15+, 50+) MS = (10+, 70+) MS = (15+, 70+)

Fig. B.3 – Indicative images with various MS for low speed streaks

Shape ope-
rator MS

(10+, 30+) (15+, 30+) (10+, 50+) (15+, 50+) (10+, 70+) (15+, 70+)

Number of
streaks

1459 1439 1447 1403 1431 1380

W+
a 30.1 32.8 30.6 33.5 30.9 33.7

d+ 104.7 107.0 104.4 107.9 103.7 108.1

Tab. B.2 – Structuring element MS influence on the detection of low speed streaks

For various structuring elements, Fig. B.4 shows the histograms of the width of low
speed streaks and Table B.2 gives some statistical results computed from the indicative
images. Fig. B.4 and Table B.2 indicate that when MS increases the total number of
streaks decreases. This is due to the fact that larger MS removes more small streaks and
connects more separated streaks. In Fig. B.4, the peak is located at 25 wall units with
W = 15+ and situated at 20 wall units with W = 10+. The difference in the position of
peaks can be explained by the fact that W = 15+ removes more edgy parts of streaks
than W = 10+. Since most of the streaks have a width between 20 - 40 wall units in the
literature, W = 10+ keeps more objects with a width of 20 wall units than W = 15+ does
and thus seem to be more suitable in the present study. Fig. B.4 shows that the peaks
seem to be almost at the same position for the results with the same W but different L.
Moreover, Table B.2 shows that statistical results with same L but different W are very
different, while those with same W but different L are nearly the same. These results
suggest that parameter W is more sensitive than L as the length of streaks is much
greater than its width. Based on the above discussions, in the present study, the suitable
parameters of the structuring element MS were finally selected as (10+, 50+) for both
low and high speed streaks.
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Fig. B.4 – Histogram of the width W+
a of low speed streaks with various MS

B.1.4 Cleaning

Since the selected structuring element MS is relatively small, many small objects
remain in the indicative image. These small objects, which have an area larger than that
of the structuring element, may result from mis-detection of the local disturbance of the
flow or the small parts cut from the big objects. Therefore, they can not be considered as
streaks and need to be removed before statistical analysis. Two parameters CB and CC
are introduced to remove these objects on the basis of their area. For the small objects
cut by image borders, the parameter CB is used. Three values : CB = 1250+2

, 1750+2

and
2250+2

were tested. The histograms of the width of the low speed streaks are presented
in Fig. B.5a and statistical results are in the left part of Table B.3. The results show that
CB in general performs well in removing small objects. Fig. B.5a shows CB = 2250+2

and CB = 1750+2

remove more objects with a width of 10+ - 15+ than CB = 1250+2

does. To avoid removing too many objects that are likely to be streaks, CB = 1750+2

was
selected in this study for both low and high speed streaks. For the small objects totally
embedded in the images, the parameter CC is used. Three values : CC = 1250+2

, 2500+2

and 3750+2

were tested. The histograms of the width W+
a for low speed streaks are shown

in Fig. B.5b. The right part of Table B.3 shows the statistical results for the three values
of CC . All results show that this clean factor removes a considerable amount of small
objects. Fig. B.5b shows that CC = 2500+2

and 3750+2

removes more objects with a
width of 10 - 15 wall units than CC = 1250+2

. In addition, CC = 3750+2

removes more
objects with an average width of 20 wall units than CC = 2500 and CC = 1250+2

. As the
width of low speed streaks is expected to be 20 - 40 wall units, the objects with an average
width of 20+ are more likely to be real streaks than the objects with an average width
of 10 - 15 wall units. Taking this into account, an intermediate level CC = 2500+2

was
chosen for low speed streaks as well as for high speed ones in the present study. Fig. B.6
shows an example of the effect of the cleaning procedure on the indicative images (the
one with MS = (10+, 50+) in Fig. B.3). This example illustrates that the selected clean
factors remove some small objects and improve the indicative image.
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Fig. B.5 – Histogram of the width W+
a of low speed streaks with various CB and CC . a :

CB ; b : CC

After the morphology procedure
(MS = (10+, 50+))

After the cleaning procedure (CB = 1750+2

and CC = 2500+2

)

Fig. B.6 – Example of the effect of the cleaning procedure for low speed streaks

Clean factor CB(CC = 2500) CC(CB = 1250)

1250+2

1750+2

2250+2

1250+2

2500+2

3750+2

Number of streaks before cleaning 2155
Number of streaks after cleaning 1548 1447 1366 1589 1447 1379
Number of incomplete streaks be-
fore cleaning

1609

Number of incomplete streaks after
cleaning

1382 1281 1200 1281

Number of complete streaks before
cleaning

546

Number of complete streaks after
cleaning

166 308 166 98

W+
a 29.6 30.6 31.2 28.5 30.6 31.6

d+ 103.9 104.4 104.2 103.0 104.4 104.7

Tab. B.3 – Clean factor influence on the detection of low speed streaks
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y+ 14.5 18.5 22.2 26.3 29.7 33.3 37.0 40.6 44.0 48.0
Plane # 1 2 3 4 5 6 7 8 9 10
σnu 0.348 0.344 0.329 0.322 0.316 0.307 0.298 0.293 0.288 0.281
CT=0.6 ∗
σmaxu /σnu

0.60 0.61 0.63 0.65 0.66 0.68 0.70 0.72 0.72 0.74

Tab. B.4 – Threshold CT in ten planes of measurement (σmaxu = 0.35 )

B.1.5 Parameters for all ten planes

Based on the above discussion for plane 1 (y+ = 14.5), CT = 0.6, MS = (10+, 50+),
CB = 1750+2

and CC = 2500+2

were chosen for both low and high speed streaks. For the
other planes, the same parameters were used except for the threshold CT which depends on
the distance to the wall. In fact, σnu decreases with wall distance when y+ > 10−15. Also,
beyond a certain distance from the wall streaks are known to disappear. Considering these
facts, in the present study, the threshold CT was chosen as 0.6 ∗ σmaxu /σnu . Here, the value
of ′0.6′ is the one used for plane 1, σnu is the standard deviation of the streamwise velocity
component u of plane n, and σmaxu is the maximum standard deviation of the present flow
and is equal to 0.35 according to our previous study (Lin et al., 2004). According to this
method, there is a streak only when u′ (velocity fluctuation of the streamwise component)
is larger than a constant value whatever the wall distance is. Table B.4 gives the resulting
values of CT in each plane.

228



Annexe B. Detection of Coherent Structures B.2. Ejections and Sweeps

B.2 Ejections and Sweeps

B.2.1 Detection functions

As concluded in Chapter 6.3.1, three detection functions F uv
d , F u

d and F v
d are employed

to detect ejections and sweeps respectively on a discrete (M, N) grid at 10 different wall
distances. They are defined as :

F uv
d =

u′v′(m,n, y+)

σv(y+)
(B.4)

F u
d =

u′(m,n, y+)

σu(y+)
(B.5)

F v
d =

v′(m,n, y+)

σv(y+)
(B.6)

Where u′ and v′ are the instantaneous velocity fluctuations of the streamwise and
spanwise components u and v. σu and σv are the corresponding standard deviations. (m,
n) is the position in the (M, N) grid and y+ is the wall distance. Similar to streaks, these
detection functions are also scalar fields defined on a discrete grid in the real space R. As
explained in Chapter 6.1, after definition of the detection functions, three successive steps
are used to identify ejections and sweeps : thresholding, mathematical morphology and
cleaning. The parameters involved are : three thresholds, one structuring element, two
clean factors. In order to obtain suitable parameters for each step, detection functions at
y+ = 48 (plane #10) were used to adjust all the parameters, in respect that ejections
and sweeps are well-developed and easy to recognize in this position. Since ejections and
sweeps are similar in both dimension and shape, the parameters that are selected for
ejections are used to detect sweeps as well.

B.2.2 Thresholding procedure

By thresholding three detection functions (F uv
d , F u

d and F v
d ), ejections and sweeps are

identified. The corresponding thresholds are Cuv
T , Cu

T and Cv
T . The values of Cuv

T and Cv
T

are always positive in the present study while Cu
T = 0 is used referring to Wallace et al.

(1972). Indicative function (Fi) of ejections and sweeps are defined as :

Ejection : Fi =

{

1 when F uv
d < −Cuv

T , F
u
d < 0 and F v

d > Cv
T

0 otherwise
(B.7)

Sweep : Fi =

{

1 when F uv
d < −Cuv

T , F
u
d > 0 and F v

d < −Cv
T

0 otherwise
(B.8)

By applying this procedure to the whole field, a binary image of ejections (or sweeps)
is generated. Thresholding is the initial step to identify ejections and sweeps and thus has
a significant impact on the results. Therefore the value of Cuv

T and Cv
T should be analyzed

thoroughly. Six values from 0.5 to 2.0 for Cuv
T and six values from 0.3 to 1.8 for Cv

T were
tested in the present study.
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Fig. B.7 shows an example of detection functions. The vector field refers to the detec-
tion functions F u

d and F v
d , and the contour is the detection function F uv

d . Fig. B.8 shows
the corresponding indicative image with various Cuv

T at Cv
T = 0, while Fig. B.9 shows

indicative images of various Cv
T at Cuv

T = 1.0.

In Fig. B.8, the main differences appear in regions B, D, E, F and H (Fig. B.7). F uv
d

in regions B and F is slightly larger than that in regions D, E and H. In regions D and
E, F u

d is very small while F v
d is large. Examining Fig. B.7, regions A and A1 are with

high negative and positive wall-normal velocity fluctuations respectively. As explained
in Chapter 6.4.1, regions A and A1 can be considered as parts of a streamwise vortex
whose core is represented by the black line. Similarly, regions G and G1 are parts of a
streamwise vortex represented by the black line. The vortices mentioned above are two
separated ones. Therefore, it is logical to have a break between the ejections in regions A
and G and thus regions D and E are not considered as parts of ejections. In region H, F u

d

is large but F v
d is very small. This region is more likely to be a part of a streak than that

of ejections. Therefore, it is not considered as part of ejections in the present study. To
avoid detecting those regions, the threshold Cuv

T needs to be larger than 0.75. The region
F can be taken as a part of the ejection in region C and thus need to be detected. F uv

d in
region B is comparable to that in region F and thus can also be detected. Since the region
B and F cannot be detected when Cuv

T ≥ 1.25, the value of Cuv
T should be less than 1.25

in order to detect all the possible ejections. Based on these discussions, an intermediate
value Cuv

T = 1.0 was chosen in the present study.

Fig. B.7 – Normalized velocity vector field (F u
d and F v

d ) and contour of the function F uv
d

In Fig. B.9, the images show clearly that Cv
T has an important influence on the detec-

tion of ejections. Since the threshold Cuv
T has already been applied, threshold Cv

T is mainly
used to reject the objects with strong streamwise but weak normal fluctuations. Exami-
ning the indicative images in Fig. B.7, a large part of the region F is eliminated when
Cv
T > 0.9 while there is not any improvement in the image when Cv

T = 0.3. Therefore, an
intermediate value Cv

T = 0.6 was chosen for the present study.
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Cuv
T = 0.75 Cuv

T = 1.0 Cuv
T = 1.25

Cuv
T = 1.5 Cuv

T = 1.75 Cuv
T = 2.0

Fig. B.8 – Indicative images with various Cuv
T (Cv

T = 0)

Cv
T = 0.3 Cv

T = 0.6 Cv
T = 0.9

Cv
T = 1.2 Cv

T = 1.5 Cv
T = 1.8

Fig. B.9 – Indicative images with various Cv
T (Cuv

T = 1.0) for ejections

B.2.3 Mathematical morphology

The same as for streaks, a mathematical morphology procedure is employed to remove
the noise from the indicative images obtained by the thresholding described above. This
procedure requires a suitable structuring element MS. Examining the indicative images,
most of the objects appear elongated in the streamwise direction. Therefore, a rectangular
or a square structuring element was chosen with two parameters : MS(W,L), in which W
is the dimension in the spanwise direction and L in the streamwise direction. Both W and
L are presented in wall units. In the present study, six structuring elements were tested
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to detect ejections.

Fig. B.10 shows an example about the effects of the mathematical morphology pro-
cedure on the indicative image obtained by thresholding with Cuv

T = 1.0 and Cv
T = 0.6

(see Fig. B.9). These images provide a direct visualization of the influence of this pro-
cedure. In Fig. B.10, large structuring elements, MS = (10+, 20+), MS = (10+, 25+)
and MS = (10+, 30+), separate or even eliminate the region F (see Fig. B.7), which is
considered as a part of an ejection. Moreover, applying MS = (10+, 30+), the regions A
and G, which are two separated ejections, are connected. Therefore, large structuring ele-
ments are not suitable to use. For small structuring elements, such as MS = (10+, 10+),
MS = (15+, 10+) and MS = (10+, 15+), the main difference appears in the region B.
However, no matter which structuring element is used, this region will be cut into seve-
ral small parts. Therefore, the three small structuring elements are usable in the present
study.

After thresholding Ms = (10+, 10+) Ms = (10+, 15+)

Ms = (15+, 10+) Ms = (10+, 20+) Ms = (10+, 25+)

Ms = (10+, 30+)

Fig. B.10 – Indicative images with various Ms for ejections (Cuv
T = 1.0 and Cv

T = 0.6)

To help choose the most suitable structuring element, Fig. B.11 gives the histograms
of the area A+

c of the detected objects. Fig. B.11a is calculated directly by applying the
mathematical morphology procedure to the indicative images obtained by thresholding.
To obtain Fig. B.11b, a cleaning procedure was performed on the indicative images, before
the mathematical morphology procedure, to remove the objects whose areas are equal to
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or smaller than 300+2

(the area of the largest structuring element tested in the present
comparison (MS = (10+, 30+)). Examining the indicative images obtained after threshol-
ding, it appears that only few objects have holes. Consequently, the effect of holes filling
by the mathematical morphology procedure is limited in this case. The main effects of
this procedure in Fig. B.11a are : 1) removing small objects (smaller than the structuring
element) ; 2) separating objects into several pieces ; 3) connecting close objects together.
The main effects in Fig. B.11b are : 1) separating objects larger than 300+2

into pieces,
2) connecting close objects which are larger than 300+2

.

As can be seen from Fig. B.11, the main effect of both cleaning and mathematical
morphology appears on the left part of the histogram (small scale). Fig. B.12 provides a
detailed view of the histograms of Fig. B.11 in the range of 100+2 ≤ A+

c ≤ 300+2

.

In Fig. B.12a, the histogram results from three sources : small objects which are
larger than structuring elements but smaller than 300+2

, combinations of small objects,
and objects cut from larger ones. In Fig. B.12b, the histogram only shows the objects cut
from larger ones (> 300+2

). Comparing Fig. B.12a and B.12b, both results are very similar
with large structuring elements : MS = (15+, 10+), MS = (10+, 20+), MS = (10+, 25+)
and MS = (10+, 30+). This indicates that the histograms in both Fig. B.12a and B.12b
contain mainly objects which are cut from large objects if those structuring elements are
used. Moreover the histograms obtained with those structuring elements are fairly high,
indicating a strong effect on the detected objects. Therefore, those structuring elements
can not be used in the present study. Using smaller structuring elements MS = (10+, 10+)
and MS = (10+, 15+), the histograms in Fig. B.12a are much higher than those in
Fig. B.12b, indicating that the histograms are mainly from small objects that are larger
than the structuring element but smaller than 300+2

, or combinations of small objects.
Thus, small structuring elements MS = (10+, 10+) and MS = (10+, 15+) can be used.
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b : With cleaning

Fig. B.11 – Histogram of area A+
c of complete objects detected after the mathematical

morphology procedure

Examining the indicative images, we find that many objects are thin and have angles
with the streamwise direction. Therefore, to avoid separating too many objects into pieces,
the structuring element MS = (10+, 10+) was finally chosen in the present study.
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b : With cleaning

Fig. B.12 – Detailed histogram of the area A+
c of complete objects detected after the

mathematical morphology procedure in the range 100+2 ≤ A+
c ≤ 300+2

B.2.4 Cleaning

After the mathematical morphology procedure, many small objects, which have area
larger than that of the structuring element but not enough to be considered as ejections
or sweeps, remain in the images (see Fig. B.10). They should be removed before statistical
analysis. Two parameters CB and CC are employed to remove these kinds of objects on
the basis of their area. The parameter CB is for the small objects cut by image borders
while the parameter CC is for the small objects totally embedded in the images. In the
present study, CB was taken as half of CC due to the fact that ejections and sweeps are
much smaller than the image field (530+*300+). These two parameters are given in square
wall unit. Three combination of CB and CC were tested : (250+2

, 500+2

), (375+2

, 750+2

)
and (500+2

, 1000+2

).
Fig. B.13 gives an example of an indicative image after the mathematical morphology

procedure and the corresponding images after cleaning procedure. The chosen sample is
exceptional due to existence of many small objects, thus the effect of cleaning can be
observed clearly. In Fig. B.13, small clean factors CB = 250+2

and CC = 500+2

can not
remove effectively the small objects in the middle left of the image which are considered as
noise. Large clean factors CB = 500+2

and CC = 1000+2

remove too many objects which
are potential ejections (e.g. the one in the middle right and the one in the bottom of the
image). In order to detect all the possible ejections and sweeps, clean factors CB=375+2

and CC=750+2

were chosen.

B.2.5 Parameters for all ten planes

Based on the above discussion, Cuv
T = 1.0, Cv

T = 0.6, MS = (10+, 10+), CB = 375+2

and CC = 750+2

were chosen to detect both ejections and sweeps at all the wall distances
studied.
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After mathematical morphology CB = 250+2

, CC = 500+2

CB = 375+2

, CC = 750+2

CB = 500+2

, CC = 1000+2

Fig. B.13 – Indicative images with various CB and CC for ejections (Cuv
T = 1.0, Cv

T = 0.6,
Ms = (10+, 10+))

235



B.3. VF and GO Annexe B. Detection of Coherent Structures

B.3 VF and GO

B.3.1 Detection functions

As defined in Chapter 6.4, objects with high velocity fluctuation are referred to as
VF while objects with high velocity gradient are named GO. According to the sign of
the fluctuations, VF can be divided into NVF (negative) and PVF (positive). Similarly,
according to the sign of gradient, GO are classified into NGO (negative) and PGO (posi-
tive). As concluded in Chapter 6.1, two detection functions F grad

d and F v
d , are employed

to detect VF and GO respectively. They are defined as :

F v
d = f1(v

′, σv) =
v′(m,n, y+)

σv(y+)
(B.9)

F grad
d = f2(v

′, σv) =
1

σv(y+)

∂(v′(m,n, y+))

∂z
(B.10)

Similar to the detection procedure of streaks, ejections and sweeps, three procedures :
thresholding, mathematical morphology and cleaning, are used to identify VF and GO and
to create the corresponding indicative images. For both objects, the parameters involved
in these procedures are one threshold for the thresholding procedure, one structuring
element for the mathematical morphology procedure and two clean factors for the cleaning
procedure. In order to find the suitable value for each parameter, field #3 of Plane #5
(y+ = 29.7) was selected as the reference image to test different values for each parameter.
The corresponding detection functions F v

d and F grad
d were shown in Fig. B.14. The second

order least square difference scheme was used to calculate F grad
d .

VF can be divided into NVF and PVF according to the sign of fluctuation, while GO
can be separated into NGO and PGO according to the sign of gradient. According to the
spanwise homogeneity of the flow, the shape and size of NGO are the same as PGO. This
is also true for NVF and PVF. Therefore, in the present study, only PGO and PVF were
examined to select the suitable parameters if no other specification is made. The selected
parameters are applied to NGO and NVF as well. The following discussion includes two
parts. The first part concerns the detection of VF and the second one focuses on GO.

Detection function F v
d Detection function F grad

d

Fig. B.14 – Detection functions
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B.3.2 VF

B.3.2.1 Thresholding

VF can be recognized from the background by thresholding the detection function F v
d

(Eq. B.10). The corresponding threshold is referred to as Cv
T . The corresponding indicative

function of NVF and PVF F v
i are defined respectively as :

PVF : F v
i =

{

1 when F v
d > Cv

T

0 otherwise
(B.11)

NVF : F v
i =

{

1 when F v
d < −Cv

T

0 otherwise
(B.12)

Binary images of PVF (or NVF) are generated by applying this procedure to the
whole field. Since this procedure is the initial step to identify these objects that are used
to detect the streamwise vortices. This procedure can have a significant effect on the
quality of the detection of these vortices. Therefore, the value of threshold Cv

T should be
examined thoroughly. In the present study, six different values of Cv

T from 0.6 to 1.6 with
an interval of 0.2 were tested to detect PVF.

Fig. B.15 shows indicative images for PVF obtained by thresholding the detection
function F v

d (Fig. B.14) with various threshold Cv
T on the reference image. Comparing this

figure with the original normalized wall-normal velocity fluctuation image in Fig. B.14,
when Cv

T < 1.0, the indicative function is fairly noisy and many separate objects are
connected. However, high value of Cv

T (Cv
T > 1.4) results in reduction or even removal of

many objects that have strong velocity fluctuations. Therefore, the most suitable value
is between 1.0 to 1.4. To make a further choice, indicative images for NVF after the
thresholding procedure with various thresholds Cv

T , is presented in Fig. B.16. When Cv
T

= 1.0, the two big objects in the middle of the image that belong to different vortices
are connected together. When Cv

T = 1.4, the NVF in the upper-left that is potentially
related to streamwise vortices is eliminated. Following this, an intermediate value of the
threshold of Cv

T = 1.2 is chosen in the present study.

B.3.2.2 Mathematical morphology

Similar to the detection procedure of other coherent structures, a mathematical mor-
phology filter is employed to remove the small objects, to fill the holes inside the objects,
and to reconnect the separated parts that belong to the same object. This procedure re-
quires a suitable structuring element (MS). Examining the indicative images after threhol-
ding, we found that the VF are generally elongated in the streamwise direction. According
to the shape of VF, a rectangular or a square structuring element MS(W,L) is chosen,
where W is the width in the spanwise direction and L is the length in the streamwise
direction. W and L are given in wall unit. To select a suitable structuring element, six
MS are tested in the present study.

Fig. B.17 shows the indicative images of PVF with various structuring elements after
the mathematical morphology procedure. With these images, the influence of the structu-
ring element is clearly evidenced. The images show that structuring elements with large
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0.6 0.8 1.0

1.2 1.4 1.6

Fig. B.15 – Indicative images after the thresholding procedure with various Cv
d for PVF

1.0 1.2 1.4

Fig. B.16 – Indicative images after the thresholding procedure with various Cv
T for NVF

parameter W (Ms = (15+, 10+), (15+, 15+) and (20+, 10+)) can cut objects into pieces
and reduce considerably the size of them, thus are not suitable in the present study. Fur-
thermore, examining all 500 indicative images after thresholding, VF has a similar size
as ejections and sweeps. Similar to the detection of ejections and sweeps, large structu-
ring elements cannot be used in the detection of VF. Moreover, the examination of all
500 indicative images shows that some of VF are thin and have relatively large angles
with the streamwise direction. Considering this effect, the square structuring element
Ms = (10+, 10+) was chosen to be used in the present study.

B.3.2.3 Cleaning

As shown in Fig. B.17, many small objects, whose areas are larger than that of the
structuring element but not enough to be used to detect the streamwise vortices, remain
in the images after the mathematical morphology procedure. The same as the detection
of other coherent structures, a cleaning procedure with two parameters CB and CC , is
introduced to remove these objects based on their area. The first one is for the objects
that are cut by borders and the other is for the objects entirely embedded in the image.
CB and CC are given in square wall units.

Fig. B.18 shows the effect of the cleaning procedure on the reference image. Small
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Ms = (10+, 10+) Ms = (10+, 15+) Ms = (15+, 10+)

Ms = (15+, 15+) Ms = (10+, 20+) Ms = (20+, 10+)

Fig. B.17 – Indicative images with various Ms after the mathematical morphology pro-
cedure for PVF

values of CB < 500+ and CC < 1000+2

can not remove small objects as effectively as
CB = 500+2

, 625+2

and CC = 1000+2

, 1250+2

. In addition, the average surface of complete
objects before the cleaning procedure is about 1000 square wall units. Therefore, the clean
factors CB = 500+2

and CC = 1000+2

were chosen in the present study to detect VF.

After mathematical
morphology

CB = 125+2

, CC = 250+2

CB = 250+2

, CC = 500+2

CB = 375+2

, CC = 750+2

CB = 500+2

, CC = 1000+2

CB = 625+2

, CC = 1250+2

Fig. B.18 – Indicative images with various CB and CC after the cleaning procedure for
PVF

239



B.3. VF and GO Annexe B. Detection of Coherent Structures

B.3.2.4 Parameters for all ten planes

Based on the above discussion, Cv
T = 1.2, MS = (10+, 10+), CB = 500+2

and CC =
1000+2

were chosen to detect VF at all the wall distances studied.

B.3.3 GO

B.3.3.1 Thresholding

PGO and NGO are identified from the background by thresholding the detection
function F grad

d (Eq. B.10). The corresponding threshold is referred to as Cgrad
T . The cor-

responding indicative function F grad
i of PGO and NGO are defined respectively as :

PGO : F grad
i =

{

1 when F grad
d > Cgrad

T

0 otherwise
(B.13)

NGO : F grad
i =

{

1 when F grad
d < −Cgrad

T

0 otherwise
(B.14)

Applying this procedure to the whole field, binary images of PGO (or NGO) are
generated. As explained in the detection of VF, It is mandatory of GO to reveal the
existence of streamwise vortices. Their detection can thus have a significant impact on the
quality of the detection of these vortices. Therefore the value of threshold Cgrad

T should be
selected carefully. In the present study, six different values from 0.6 to 1.6 with an interval
of 0.2 were tested to detect PGO.

Fig. B.19 shows indicative images of PGO obtained by thresholding the detection
function with various threshold Cgrad

T in the reference field (field #3 of Plane 5). Com-
paring this figure with the detection functions F grad

d in Fig. B.14, the indicative images

are fairly noisy when Cgrad
T < 0.8. However, high value of Cgrad

T (i.e. Cgrad
T > 1.2) leads

to reduction or even removal of many objects that are potentially related to streamwise
vortices. Examining Fig. B.14, regions A and B are considered as noise rather than parts
of streamwise vortices thus the related PGO should be eliminated by thresholding. For
regions C, D and E, according to Fig. B.14, they are parts of a streamwise vortex. Howe-
ver, in region D, this vortex seems to be disturbed. Therefore, it is logical to have a break
on the related high gradient object. Based on the above discussions, the best choice of
the threshold Cgrad

T is 1.0 in the present study.

B.3.3.2 Mathematical morphology

As can be seen in Fig. B.19, the indicative image is still noisy even after thresholding.
To improve the quality of the image, a mathematical morphology procedure is employed.
This procedure is expected to remove the small objects, to fill the holes inside the objects
and to reconnect the separated parts that belong to the same structure. It requires a
suitable structuring element (MS). Examining the indicative images after thresholding,
we found that GO are elongated in the streamwise direction. Therefore, a rectangular or
a square structuring element MS(W,L) is chosen, where W is the width in the spanwise
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Cgrad
T = 0.6 Cgrad

T = 0.8 Cgrad
T = 1.0

Cgrad
T = 1.2 Cgrad

T = 1.4 Cgrad
T = 1.6

Fig. B.19 – Indicative images after the thresholding procedure with various Cgrad
T for

PGO

direction and L is the length in the streamwise direction. The values of W and L are given
in wall unit. In the present study, six structuring elements are tested.

Fig. B.20 shows the indicative images with different structuring elements after the
mathematical morphology procedure. These images provide a direct visualization of the
influence of the structuring element. They show that large structuring elements (Ms =
(20+, 10+), (15+, 15+) and (10+, 20+)) can cut objects into pieces and reduce conside-
rably the size of them, thus are not suitable to be used in the present study. In addition,
structuring elements Ms = (15+, 10+) and (10+, 15+) may cause the same problem due
to the fact that the high gradient objects are thin and may have angles with the stream-
wise direction. Therefore, only the square structuring element Ms = (10+, 10+) can be
used in the present study.

B.3.3.3 Cleaning

After the mathematical morphology procedure, many small objects, whose areas are
larger than that of the structuring element but not enough to represent the streamwise
vortices, remain in the images. A cleaning procedure with two parameters CB and CC , is
employed to remove these objects based on their area. The first one is for the objects cut by
borders and the second is for the small objects entirely embedded in the images. The unit
of CB and CC is square wall unit. Fig. B.21 and Fig. B.22 shows the effect of the cleaning
procedure on the reference image. In Fig. B.21, the indicative image after mathematical
morphology procedure contains not only four large objects which are potentially related
to the streamwise vortices but also several small ones. Large values (CB = 500+2

and
CC = 1000+2

) remove the object in the upper-right corner that represents a streamwise
vortex. All the other clean factors remove efficiently the noise and keep the four large
objects. To select the suitable clean factors, Fig. B.22 shows another example of cleaning
procedure. In Fig. B.22, some small objects that are unlikely to be streamwise vortices,
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Ms = (10+, 10+) Ms = (10+, 15+) Ms = (15+, 10+)

Ms = (15+, 15+) Ms = (10+, 20+) Ms = (20+, 10+)

Fig. B.20 – Indicative images with various Ms after the mathematical morphology pro-
cedure for PGO

still remain in the indicative images with the small values (CB = 125+2

, CC = 250+2

)
and (CB = 250+2

, CC = 500+2

)). In addition, the average surface of complete objects
before the cleaning procedure is about 750+. Based on the above discussion, the clean
factor CC = 750+2

was selected to detect PGO in the present study. The clean factor CB
was chosen as 375+2

which is half of the value of CC .

After mathematical morphology CB = 125+2

, CC = 250+2

CB = 250+2

, CC = 500+2

CB = 375+2

, CC = 750+2

CB = 500+2

, CC = 1000+2

Fig. B.21 – Indicative images with various CB and CC after the cleaning procedure for
PGO
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After mathematical morphology Cb = 125+2

, Cc = 250+2

Cb = 250+2

, Cc = 500+2

Cb = 375+2

, Cc = 750+2

Cb = 500+2

, Cc = 1000+2

Fig. B.22 – Indicative images with various CB and CC after the cleaning procedure for
PGO

B.3.3.4 Parameters for all ten planes

Based on the above discussion, Cgrad
T = 1.0, MS = (10+, 10+), CB = 375+2

and
CC = 750+2

were chosen to detect GO at all the wall distances studied.
All the parameters selected in Appendix A. 2.1 to A. 2.3 were used to detect the all

possible structures including weak ones. If one needs to detect strong structures, these
parameters can be changed to adapt the requirements according to the above mentioned
selection criteria. Details will not be discussed here.
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Annexe C

Correlation of coherent structures
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C.1. Streaks Annexe C. Correlation of coherent structures

C.1 Streaks

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.1 – Correlations of low speed streaks with low speed streaks RLSS−LSS
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Annexe C. Correlation of coherent structures C.1. Streaks

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.2 – Correlations of high speed streaks with high speed streaks RHSS−HSS
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C.1. Streaks Annexe C. Correlation of coherent structures

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.3 – Correlations of low speed streaks with high speed streaks RLSS−HSS
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C.2 Ejections and sweeps

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.4 – Correlations of ejections with ejections REJ−EJ
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C.2. Ejections and sweeps Annexe C. Correlation of coherent structures

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.5 – Correlations of sweeps with sweeps RSW−SW
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Annexe C. Correlation of coherent structures C.2. Ejections and sweeps

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.6 – Correlations of ejections with sweeps REJ−SW
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C.3. NGSV and PGSV Annexe C. Correlation of coherent structures

C.3 NGSV and PGSV

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.7 – Correlations of PGSV with PGSV RPGSV−PGSV
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Annexe C. Correlation of coherent structures C.3. NGSV and PGSV

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.8 – Correlations of NGSV with PGSV RNGSV−PGSV
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C.4 NVF and PVF

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.9 – Correlations of PVF with NVF RPV F−NV F
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Annexe C. Correlation of coherent structures C.5. Streaks with ejections and sweeps

C.5 Streaks with ejections and sweeps

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.10 – Correlations of low speed streaks with ejections RLSS−EJ
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C.5. Streaks with ejections and sweeps Annexe C. Correlation of coherent structures

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.11 – Correlations of low speed streaks with sweeps RLSS−SW
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Annexe C. Correlation of coherent structures C.5. Streaks with ejections and sweeps

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.12 – Correlations of high speed streaks with ejections RHSS−EJ
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C.5. Streaks with ejections and sweeps Annexe C. Correlation of coherent structures

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.13 – Correlations of high speed streaks with sweeps RHSS−SW
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Annexe C. Correlation of coherent structures C.6. Streaks with NGSV and PGSV

C.6 Streaks with NGSV and PGSV

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.14 – Correlations of low speed streaks with NGSV RLSS−NGSV
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C.6. Streaks with NGSV and PGSV Annexe C. Correlation of coherent structures

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.15 – Correlations of low speed streaks with PGSV RLSS−PGSV
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Annexe C. Correlation of coherent structures C.6. Streaks with NGSV and PGSV

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.16 – Correlations of high speed streaks with NGSV RHSS−NGSV
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C.6. Streaks with NGSV and PGSV Annexe C. Correlation of coherent structures

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.17 – Correlations of high speed streaks with PGSV RHSS−PGSV
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Annexe C. Correlation of coherent structuresC.7. Ejections and sweeps with NGSV and PGSV

C.7 Ejections and sweeps with NGSV and PGSV

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.18 – Correlations of ejections with NGSV REJ−NGSV
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C.7. Ejections and sweeps with NGSV and PGSVAnnexe C. Correlation of coherent structures

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.19 – Correlations of ejections with PGSV REJ−PGSV

264



Annexe C. Correlation of coherent structuresC.7. Ejections and sweeps with NGSV and PGSV

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.20 – Correlations of sweeps with NGSV RSW−NGSV
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C.7. Ejections and sweeps with NGSV and PGSVAnnexe C. Correlation of coherent structures

y+ = 14.5 y+ = 18.5

y+ = 22.2 y+ = 26.3

y+ = 29.7 y+ = 33.3

y+ = 37.0 y+ = 40.6

y+ = 44.0 y+ = 48.0

Fig. C.21 – Correlations of sweeps with PGSV RSW−PGSV
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