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Résumé 

 

La défaillance des réseaux d’eau constitue un problème majeur en Iran, qui nécessite des 

investissements importants et l’élaboration d’une stratégie optimale pour la réhabilition des 

réseaux d’eau. Ce travail constitue une contribution à cet objectif. Il vise le développement 

des outils pour améliorer la gestion et la maintenance des  réseaux d’eau. Il comporte la 

détermination des principaux facteurs affectant la défaillance des réseaux d’eau, l’élaboration 

d’un modèle de prévision fondé sur les Réseaux de Neurones Artificiels (RNAs), et le 

développement d’un modèle de survie. Ces approches ont été appliquées sur le réseau d’eau 

de la ville de Sanandaj en Iran.   

Le travail de thèse a comporté différents parties, notamment : la collecte de données sur le 

réseau de la ville de Sanandaj (Iran), l'analyse spatiale et statistique de ces données, le 

développement d’un modèle basé sur les Réseaux de Neurones Artificiels et l’application de 

l’approche de survie.  

L'analyse des données a permis la détermination de principaux facteurs à l’origine de la 

défaillance des réseaux d’eau. Deux modèles de régression (Multiple et Poisson) ont été 

employés pour la prévision du nombre de défaillances du réseau d’eau. Ces modèles ont été 

comparés à l’approche des Réseaux de Neurones Artificiels. La comparaison a montré tout 

l’intérêt d’utiliser cette dernière approche pour la prévision de la défaillance des réseaux 

d’eau. L’approche de survie a été utilisée pour étudier la durée de vie et étudier l’impact d’une 

intervention sur le réseau d’eau. 

 

Mots clefs: 

 

Réseaux d'eau potable, Défaillance, Modélisation statistique, SIG, Réseaux 

de neurones, Analyse de survie, Prévision, Réhabilitation. 

 



 

 

Abstract 

 

A major challenge to Iranian water industry concerns the minimization of failures in water 

distribution system. This thesis constitutes a contribution for this objective. It includes a) 

assessment of the main indicators through statistical analysis; b) development of Artificial 

Neural Networks (ANNs) models for predicting pipes failure number; c) elaboration of a 

survival models for quantification avoided failure from network based on various rate of 

renewal. The use of theses approaches generates a quantitative picture of the condition and 

performance of mains network towards the optimization of the maintenance and rehabilitation 

programs. All neural networks and survival models were trained and tested on field data in 

Sanandaj city (Iran). 

The methodology followed in this research includes field data collection, descriptive spatial 

and statistical analysis besides predictive modeling which incorporate Regression, ANNs and 

Survival models. Descriptive analysis of historical failure data based on statistical methods 

allowed the determination of factors affecting the evolution of water pipelines failure. Indeed, 

geostatistical analysis and spatial interpolation provide scientific bases for depicting spatial 

relationships and the strength of dependencies between failure incidents and environmental, 

hydraulic and other geographic covariates. Review of univariate statistical inferences, indices 

of bivariate relationship and multivariate data analysis assess the correlation between the 

affecting factors and identify the important variables for the occurrence of failures on the 

water mains. Two regression models (Multiple and Poisson) were used for the prediction of 

the number of failures in water mains. Artificial Neural Networks ( ANNs ) models were also 

developed to predict the number of failures in water mains. Comparison of ANNs and 

regression approaches reveals that the use of ANNs model in pipeline failure studies provides 

better prediction. Finally, four survival models were developed to simulate time to failure in 

water mains, and 3 stratified failure dataset. 

Keyword: 

 

Water network, Pipeline, Failure, Statistical analysis, GIS, Neural Network, 

Survival analysis, Prediction, Rehabilitation. 
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General Introduction 

Introduction and Problem Statement  

Water loss due to leakage is a major challenge for water utilities. It frequently reaches of 30% 

or even 40% from water supply. Since leakage rate increases with mains failure, the water 

system managers are highly concerned by the minimization of water pipelines failure. The 

control of failure in water pipes constitutes a major challenge for the sustainability and the 

environmental protection.  

The urban water supply is based on a large and complex infrastructure that has been expanded 

and developed during the last century. While getting older, water supply assets, primarily 

pipes, are exposed to the deterioration process and consecutive pipe failure. It is common for 

cities to have scores, hundred, and even more than a thousand water pipelines breaks each 

year. Nowadays, most Iranian water utilities observed high rates of failure in water lines. In 

2006, there were 229561 reported breaks along the Country’s 96,788 kilometers of water lines 

(NWWEC 2006). This represents, on average, of more than 230 breaks for every 100 

kilometer. Therefore, the failure rate of the Iranian water pipelines system is nearly four times 

the maximum failure rate that has been reported in the literature (McDonald et al., 1994). In 

study area, the average ratio of pipe breaks per 100 km has been reported as 67 which is 

considered high and indicates the network is in poor condition. This deterioration not only 

manifests itself in increased operating and maintenance costs, water losses, frequent service 

disruptions and a reduction in the quality of water supplied (Kleiner, 1998) but also includes 

enormous hidden costs (AWWA, 2001). Regardless of environmental and social costs, the 

cost of repairing and maintaining Iranian’s existing water network is estimated at over $50 

million each year (NWWEC, 2006). 

To ensure that authorities can manage their water distribution systems to provide an adequate 

supply of safe water in a cost-effective, reliable and sustainable manner, it is essential that 

they develop a clear understanding of water pipelines deterioration processes (Canadian 
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InfraGuide, 2002a). An accurate quantitative picture of the condition and performance of 

system will allow utilities to implement efficient proactive pipe failure management strategies 

to minimize the overall economic, social and environmental costs of water pipelines network 

operation. 

To date, few standardized techniques are available for Iranian water utilities to evaluate 

distribution systems and to develop proactive procedures for determining rehabilitation and 

replacement needs (NWWEC, 2006). Most of Iranian water authorities have adopted some 

from of subjective ranking system such as work crew opinion to prioritize pipeline 

rehabilitation. A smaller number of water utilities have completed statistical analyses to 

predict pipeline failure and incorporate the results within future planning. 

In addition, water utility operators manage and operate distribution systems in a reactive 

mode by responding to emergency breaks and water pipelinesleaks. Experience has shown 

that a significant number of water line repairs are performed on an unscheduled basis. In this 

time of budget cuts and limited resources, the ability to optimize the use of maintenance 

dollars by employing predictive models in the planning stages is rapidly becoming a reality of 

underground infrastructure management (Crane A.I., 1994). Planned maintenance for a 

facility in need of repair can yield significant savings over unscheduled or emergency repairs 

(Mays, W., 2001). The key is to enable planners to predict accurately which components are 

in the most urgent need of repair, and when others will need repair.  

To achieve this aim, methods have been developed to obtain information as to which pipelines 

are most likely to fail, and when these failures are probable to occur. Predictive modeling 

includes a collection of techniques that can be used to determine the likelihood of failure or 

failure rate, for a particular entity. These modeling techniques range from very basic selection 

rules to complex analyses including spatial and statistical methods together with artificial 

neural network and survival analysis.  
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Objectives 

The key objectives of this thesis are: 

I) To establish a reliable prediction model for water pipelines distribution failure, 

II) Elaboration of a preventive maintenance strategy for water pipelines based on 

scenarios for prioritization of future water pipelines replacement and 

rehabilitation. 

Methodology and Plan of Work 

The methodology followed in this research consists of six steps: data collection, descriptive 

spatial analysis, statistical analysis, regression analysis, ANNs and Survival modeling. 

Application on the Sanandaj city - Iran was included:  

• A literature search to obtain published information on the water pipelines failure analysis 

and modeling, 

• Collection of case study water pipelines failure information through a literature survey 

and combination of different database included water distribution failure database, 

customized ArcView/GIS, hydraulic model (Epanet) and deep interview with engineers 

and crew, 

• Elementary analysis of historical failure data based on statistical methods to determine 

factors which affecting progression of water pipelines failure as well as application of 

spatial analysis includes clustering and spatial interpolation methods to provide scientific 

reasons for depicting spatial relationships and the strength of dependencies between 

failure incidents and environmental, hydraulic and the other geographic covariates, 

• Review of univariate statistical inferences, indices of bivariate relationship and 

multivariate data analysis to assess correlation between the affecting factors and identify 

the important variables for the occurrence of failures on the water pipelines as well as 

fitting two regression model namely Multiple and Poisson,  
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• Application of Artificial Neural Networks ( ANNs ) models to predict number of failure in  

water mains, 

• Implement of non-parametric and parametric survival models for ″time to failure″ of 

water pipelines to quantified various rate of renewal over the mains network on the 

percentage of  failures which avoided from this network. 

Layout of Thesis 

Following the objectives and methodology, this dissertation is organized in five chapters. The 

first chapter presents briefly the literature on existing water pipelines failure models as well as 

the deterioration process in mains distribution system. Chapter two provides data 

requirements and issues related to data acquisition through focuses on the description of the 

study region. It provides information about identifying the most influential factors which 

affect the pattern and trend of water pipelines failure. Integrated statistical and spatial 

approaches have been presented to achieve this goal. Chapter three focuses on the univariate, 

bivariate and multivariate statistical analysis. Factor analysis was also conducted to discover 

underlying determinant factors and recognize the relative relationships among variables. 

Indeed, two regression model namely Multiple and Poisson were fitted to predict the number 

of failures. Chapter four presents the use of ANNs model for prediction water pipelines 

failure. Finally, in chapter five, non-parametric and parametric survival models for time to 

failure of water pipelines are implemented. 
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1. Literature Survey on Water Pipeline Failure 

1.1 Introduction 

The distribution systems of public drinking water supplies include the pipes and other 

conveyances that connect treatment plants to consumers’ taps. They constitute a significant 

management challenge from both an operational and public health standpoint. Furthermore, 

they represent the vast majority of physical infrastructure for water supplies, such that their 

repair and replacement represent an enormous financial liability (EPA, 2005).  

There are poor quality water distribution networks all over the world and the situation is 

becoming worse and worse due to inefficient design, poor construction work, improper or 

unqualified material, improper bedding, aged pipelines, poor network management and 

maintenance, surrounding environment and breaks from unexpected elements, for example 

damages from nearby underground constructions (Zhang, 2006). Even when water pipelines 

are properly installed, the pipes will deteriorate over time (Kleiner, 2005). As water pipelines 

deteriorate both structurally and functionally, their breakage rates increase, network hydraulic 

capacity decreases, and the water quality in the distribution system may decline. Kleiner and 

Rajani (2001) classified the deterioration of pipes into two categories. The first is structural 

deterioration, which diminishes the pipes structural resiliency and its ability to withstand the 

various types of stresses imposed upon it. The second is the deterioration inner surface of the 

pipes resulting in diminished hydraulic capacity, degradation of water quality and reduced 

structural resiliency in case of severe internal corrosion. Both categories of deterioration 

contribute to diminish the reliability of the distribution network. 

A number of professional organizations such as ASCE, NRCC, AWWA, WIN and 

AWWARF have studied deterioration process related to drinking water. A summary of the 

extensive reviews are provided in the next sections. 
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1.2 Failure on Water Pipelines 

Water pipelines failures take place in multiple stages, rather than in a single episode, as shown 

in Fig. 1.1 The recent work at the National Research Council Canada (NRCC) has shown that 

the failure process is much more complex than expected (Makar, 2001). 

 

Fig. 1.1 Water main failure development (Misiunas, 2005) 

According to Fig. 1.1, the following steps can be identified: 

• Installation: The new intact pipe is installed, 

• Initiation of corrosion: After the pipe has been operating for some time, the corrosion 

processes start on the interior or exterior (or both) surface of the pipe, 

• Crack before leak: Cracks, corrosion pits and graphitization are typical products of the 

corrosion process. In some cases cracks can be initiated by mechanical stress, 

• Partial failure: Eventually, developing corrosion pits and cracks reduce the residual 

strength of the pipe wall below the internal or external stresses and the pipe wall breaks. 

As a consequence, the leak or burst will be initiated depending on the size of the break. In 

some cases the size of the failure is not big enough to be readily detected, 

• Complete failure: The complete failure of the pipe can be caused by a crack, corrosion pit, 

and already existing leak/burst or a third party interference. Such a failure is usually 
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followed by water appearing on the ground surface or a considerable change in the 

hydraulic balance of the system. 

Not all pipes will have a failure sequence as shown in Fig. 1.1 Makar et al. (2001) have 

explained that stress corrosion cracks are likely to be active cracks, i.e. develop with time. 

The evidence of a multi-event cracking is presented, indicating that there can be a substantial 

time interval between the initial and subsequent cracks (Makar et al. 2001). According to 

Saegrov et al. (1998), the temporal development of the failure is influenced by the material of 

the pipe. Steel and ductile iron pipes are likely to leak before they break. Cast iron and larger 

diameter prestressed concrete pipes typically break before they leak. Plastic and PVC pipes 

can do either, depending on the installation and operational conditions. The deterioration 

mechanisms in plastic pipes are not well known since they are likely to be slower and plastic 

pipes have been in use only for the last 30–40 years. 

1.2.1 Why and when do pipes fail? 

Pipe breakage is likely to occur when the environmental and operational stresses act upon 

pipes whose structural integrity has been compromised by corrosion, degradation, inadequate 

installation or manufacturing defects. 

Buried water pipelines are designed to withstand certain design loads. Generally, these loads 

include earth load, truck/live load, working pressure, and water hammer pressure. The pipe 

material and wall thickness are chosen to withstand these loads. Pipes located in regions prone 

to freezing temperatures sometimes experience an additional load (frost load) caused by frost 

heaving of surrounding soil. Similarly, wide and rapid temperature variations in the soil pipe- 

water environment lead to additional thermal stresses on the pipe. Leakage in pipes and bad 

construction practices around the pipe lead to pipe bed disruption and thereby making it prone 

to breakage due to beam action (Agbenowosi, 2001). 

By considering the structural failure of a main, there are two types of stresses that can cause a 

burst: Longitudinal stresses and transverse stresses. Longitudinal stresses generally cause the 

main to fail through the creation of circumferential cracks. The actions that create these 

longitudinal stresses in mains include thermal expansion or contraction, beam action and 
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internal pressures. Transverse stresses can split into two types, namely hoop stresses and ring 

stresses. Hoop stresses are created from the internal pressure of the water inside the main. 

Ring stresses are associated with external forces including the earth load of soil covering the 

mains traffic load and forest penetration (Savic, 1997). 

In addition to the increased loads on the pipe, the pipe’s structural integrity is jeopardized 

temporally by corrosion at a rate dependent on the pipe material type; characteristics of the 

surrounding soil; and the hydraulic and chemical properties of the water flowing in the pipe. 

Corrosive soils accelerate the development of corrosion pits on the pipe outside surface. 

Corrosive water accelerates the graphitization and the eventual reduction in pipe wall 

thickness from the inside of the pipe (O’Day, 1982). 

1.2.2 Bathtub curve 

The failure function for most pipelines can best be described in terms of the “Bathtub” curve 

(Fig. 1.2). It is commonly assumed that three general classes of pipeline failure may occur. 

Early-life failures, generally attributed to design errors or manufacturing/assembly problems. 

 

Fig. 1.2 Typical "Bathtub" curve for water pipelines deterioration  (Macmillan, 1986) 
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After all components settle, the failure rate is relatively constant and low (random failures). 

Then, after some years of operation and accumulation of damages, the failure rate again 

begins to increase exponentially (so-called wear-out failures), until pipeline will completely 

have failed. The combination of these three influences provides a basis for understanding the 

traditional “Bathtub curve” for the time-dependence of the hazard rate. 

For example, new polyethylene pipelines often suffer several small failures right after they 

were installed (Fig. 2.12). The early life failures are frequently attributed to design errors, 

poor material selection and problems associated with manufacturing or assembly process. 

Then, as the pipeline reaches a particular age, it becomes more prone to breakdowns, until 

finally, the pipe will have failed. 

1.2.3 Individual pipe failure probability 

Pipe break rates in a distribution system can be determined from historical break/repair data. 

Here, the probability of failure of an individual pipe is given by: 

iepi

β−= 1       and    iii Lλβ =                                                                                            (1.1) 

where:  

βi = Expected number of failures per year for pipe i 

λi = Expected number of failures per year per unit length of pipe i 

Li = Length of pipe i 

 

Section 1.7 will explain more probabilistic methods in detail.  

1.2.4 Consequence of failure 

The costs of a water main failure event may be classified into three categories: (a) direct, (b) 

indirect, and (c) social costs. While direct costs are relatively easy to quantify in monetary 

terms, indirect costs may require much more effort, and social costs are often the most 

difficult to describe and assess (Rajani and Kleiner, 2002). One study estimated that these 

indirect costs could equal 20%  to  40%  of the repair costs (AWWSC, 2002). 



Chapter 1. Literature survey on water pipeline failure 

 
 

10 

Strictly speaking the magnitude of failure consequence is a random value because no two 

failures have the same consequences. The failures of small distribution mains are usually 

repaired with little effort and typically collateral damage is relatively small. The failures of 

large transmission mains are relatively rare, and because only a few water utilities attempt to 

assess total failure damage, there are currently insufficient data to assign probability 

distributions to failure costs. More research is required to gain a better understanding of the 

true magnitude of indirect and social consequences of all failure types. 

1.2.5 Water leakage 

It is recognized that leakage of water reticulation pipes is a problem worldwide. Water 

leakage is a costly problem, not only in term of wasting a precious natural resource but also in 

economic terms. The primary economic loss due to leakage is the cost of raw water, its 

treatment and transportation. Leakage inevitably also results in secondary economic loss in 

the form of damage to the pipe network itself, e.g. erosion of pipe bedding and major pipe 

breaks, and in the form of damage to foundations of roads and buildings. Besides the 

environmental and economic losses caused by leakage, leaky pipes create a public health risk, 

as every leak is a potential entry point for contaminants if a pressure drop occurs in the system 

(Stewart et al. 1999). 

1.3 Factors Affecting Pipelines Failure 

The first step in understanding the water pipelines failure process is to analyse the factors 

which contribute to pipelines failure. Water pipelines are exposed to a variety of physical, 

chemical and loading factors in their operating environment (Boxall et al., 2001).  These 

factors affect the breakage and deterioration rate of water mains. Kleiner and Rajani (2001) 

reported that these factors include operational, environmental, and physical characteristics. In 

addition, Best Practices (2003b) classified factors that contribute to water pipelines 

deterioration into 3 groups. Water pipelines breaks are caused when and where the loading on 

pipe exceeds the pipe strength (i.e. ability to resist loading). Many previous studies have 

investigated such causal factors by a number of authors (e.g. Morris, 1967; Shamir and 

Howard, 1979; O’Day and Kelly, 1982; Goulter and Kazemi, 1988). Several factors such as 
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pipe age, material and diameter, soil parameters, climate changes, pressure in the system and 

the type of environment of the pipe  are the main factors that influence the frequency of pipe 

breaks in the supply system. Makar et al. (2001) worked on the cause of failure in gray cast 

iron pipes. They showed that corrosion, manufacturing defects, human error and unexpected 

levels of pipe loading play the role in large number of failure that occur each year. Morris 

(1967) suggested a number of possible causes for water pipelines breaks, but underlined that 

“the cause of water pipelines breaks cannot always be ascertained immediately”. Most of time 

in root cause failure analysis, there are multiple causes of pipe strength deterioration. In 

effect, failure of a main often is the result of interacting forces. For example, corrosion may 

have weakened a pipeline to the point where excessive pressure (internal or external) will 

cause a break. 

Overall, the most important variables describing the structural deterioration of water networks 

can be grouped into four categories (Aslani, 2003): 

* Structural or physical variables, * Internal or hydraulic variables, 

* External or environmental variables, * Operational or maintenance variables, 

Table 1.1 provides a more extensive list of factors that contribute to pipe failure. 

Table 1.1 Pipeline failures factors 

Structural / 
Physical Indicators 

Environmental / 
External Indicators 

Hydraulic/ Internal 
Indicators 

Operational / 
Maintenance Indicators 

Aging water lines Traffic loading 
Higher operating 

pressure 
Poor quality materials 

and fittings 

Number of 
pervious breaks 

External corrosion Transit condition 
Quality of installation 
and workmanship 

---- 
Forest and cold 

weather 
Internal corrosion Third-Party Damage 
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1.3.1 Environmental indicators 

Quite often a pipe failure is caused by a combination of some environmental forces. They can 

be induced by a number of different sources, such as pipe soil interaction, traffic or climate 

(Rajani et al. , 2004). Different environmental conditions lead to pipe deterioration with owns 

rate. The following indicators for the environment have been identified because they represent 

many of the critical environmental issues facing water pipelines failure in literature reviews. 

Indeed, soil type, soil moisture, groundwater presence, trench backfill material, and pipe 

bedding can be falled into this group (Best practices, 2003b). 

Ground conditions 

Stresses leading to pipe failure may be induced in pipes due to ground movement (Lackington 

(1980), Pascal and Revol (1994), Skipworth et al (2002)).  Pascal (1994) cited an estimate that 

a quarter of the UK supply network was laid in highly aggressive and/or shrinkable soil and 

that there was strong evidence that pipe bursts caused by corrosion and fracture correlated 

with soil factors. In a study of cast iron pipes Tsui and Judd (1991) reported that 30% of the 

mains assessed failed due to corrosion, and that the majority of these occurred in highly 

aggressive soils, with prevalent shrink/swell characteristics.  Jarvis and Hedges (1994) 

concluded that soil corrosivity maps provided a sound basis for partitioning pipes into areas of 

equal corrosion risk, and Grau (1991) provided worldwide reports of the use of soil maps for 

highlighting areas of high burst risk.  It is useful to note that all of these studies appear to have 

considered soil properties with respect to burst rate in isolation of any of the other possible 

explanatory variables.  

Francis (1994) suggested that the ground movement causing bursts was associated with traffic 

loading.  However Pascal and Revol (1994) report that there was no association between 

bursts, traffic loading or the position of pipes, and Marshal (1999) reported that the response 

of fill to dynamic traffic loading was elastic with no permanent increase in external pressure 

on the pipe. 
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Traffic loading 

European research has shown that the effects of vibration and high loading caused by heavy 

lorries is thought to be a major factor affecting buried pipelines and leading to pipe failure. In 

the Failnet approach, traffic is taken into account as a qualitative variable according to the 

number of vehicles per hour or the type of road. This analysis showed that failure rates 

increase with traffic load. Davies et al. (2001) considered traffic load as a parameter which 

affect the structural deterioration of rigid sewer pipes. They applied logistic regression for 

sewer condition and used 5 nominal categories for traffic load: (0) Urban road; (1) Main road; 

(2) Light road ; (3) Footpath/verge ; (4) Other. The study suggested that sewer location is an 

important variable in assessing the risk of sewer collapsing. Francis (1994) suggested that the 

ground movement causing bursts was associated with traffic loading. Instead, Pascal and 

Revol (1994) report that there was no association between bursts, traffic loading or the 

position of pipes. Also, Eisenbeis (1994, 1997) used land use over the pipe (i.e. no traffic vs. 

heavy traffic), as a variable in failure models. 

External corrosion 

The probability of failure due to external corrosion is a function of surrounding soil properties 

such as resistivity, pH, the presence of sulphate, microbiological influence as well as 

temperature, coating type and condition (Garry, 2000). However, the real world effects of 

these soi1 factors on the external corrosion rate of water pipelines are not well understood. 

Previous investigations into water pipelines corrosion have had mixed success in correlating 

the rate of external corrosion to specific soi1 properties (Weiss et al. 1982, O'Day 1982). 

Accordingly, several mechanistic approaches have been used to model corrosion (e.g. 

Romanoff, 1957; Rossum, 1969; Kumar et al., 1987). For modeling the change in pit depth 

with time, soil environment and age, Rossum (1969) developed a set of equations.  Rossum’s 

equation for the pit depth had the form: 

p = f (soil parameters) * time *  [(10-pH) / soil resistivity] N                                             (1.2) 

where:              p = pit depth          and        N = parameter 
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His equations are partly based on the extensive data collection effort by the National Bureau 

of Standards (NBS). An analysis by NBS led to an equation of the form: 

p = k (T)
n
                                                                                                                               (1.3) 

where:              p = depth of the deepest pit at time T         and         k, n = parameters 

The values of the parameters k and n were provided for the 47 different soil groups. Later, 

Rossum (1968) took advantage of these results in developing his equations. 

Extreme weather condition 

Main breaks are most likely to occur during extreme weather conditions. Rrigid weather is the 

most common time for main breaks, when both air and water temperatures can contribute to 

breaks. Hot, dry weather is the second most frequent time. Shifting ground and increased 

volume and pressure can stress water mains.  

Kleiner and Rajani (2000) provided many references to reported observations on the influence 

of temperature and soil moisture on the frequency of water pipelines breaks. Rajani et al. 

(1996) showed that differential temperature change between pipe and soil, and also soil 

shrinkage due to dryness result in the development of stresses in the pipe. 

The high breakage frequency of water pipelines during winter has been attributed to increased 

earth loads exerted on the buried pipes, i.e. frost loads. Cold temperatures frequently drive 

frost deeper into the ground, causing more water pipes to break. Since the pipe temperature 

drops in winter, pipes tend to contract. In this process, tensile stresses develop in the pipe 

because the pipe deformation is restrained by surrounding soil. Although compressive stresses 

are included during the warm season, pipes are more likely to break during winter since pipes 

with flaws or defects are much weaker in tension than in compression.   

Utilities with cast iron pipe typically experience an increase in main failures with freezing 

temperatures.  Although plastic pipes also are affected by a change in temperature due to their 

high coefficient of thermal expansion, it is less of an issue due to the flexibility of the pipe, 

and  the phenomena of concern discussed here applies only to iron pipes.   
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Cohen and Fielding (1979) provided a simplified formula for the determination of the frost 

depth in a soil as a function of the freezing index. They further developed a modified 

Boussinesq equation relating the expected frost load with the frost depth. The results obtained 

from the modified Boussinesq equation compared very well with field measurements.  

Rajani and Zhan (1996) described the mechanics and circumstances leading to generation of 

frost loads. They showed that dry soil (excepted after an extreme dry season) has low latent 

heat capacity and will therefore lead to deeper frost penetration. Additionally, Ann et al. 

(2005) reported that the number of pipe breaks dramatically increased due to a cold wave On 

15 January 2001 in Seoul. 

1.3.2 Structural indicators 

The second group of variables and their parameters are the result of structural conditions. In 

fact, the failure of a water main is directly related to its structural/physical condition 

(Stephens et al. , 2003). Therefore, an indication of the physical condition of water pipes is an 

important input to the deterioration models. Unfortunately, due to lack of extensive pipe core 

sampling data, direct information on physical condition of water pipelines is limited. In 

Europe and US, there has been much research on the structural factors that contribute to pipe 

failure. Following is two more relevant indicators which were considered in the literature 

reviews. 

Aging water lines  

In water reticulation pipes the failure levels increase with age (WSAA, 1998). But some 

previous studies, O'Day et al. (1982), and Ciottoni (1983) presented that the rate of pipe 

failure was not as strongly correlated to age of pipe as expected. Boxall et al. (2001) have 

suggested that age alone is a poor indicator of the necessity for pipe replacement or 

rehabilitation. In addition, European research has also shown that pipe age is a fairly good 

indicator of pipe breaks in wastewater collection pipes.  Herbert (1994) noted the usefulness 

of age as a measured, but concluded that it must be combined with knowledge of network 

condition and weak points to allow accurate assessment.  From operational experience, it has 

been reported that certain pipelines that had already worked out their ‘rated useful service 
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life’ were satisfactory. Although these studies and others note that age alone is a poor 

indicator of the likelihood of pipe failure, some studies have reported direct association 

between age and burst rate.  For example, Kettler and Goulter (1985) found a strong 

correlation between the age of an asbestos cement main and its burst rate, and Pascal and 

Revol (1994) found that the number of breaks in cast-iron pipes increased with age.  

Number of pervious breaks 

Initial structural pipe condition can be represented by pervious number of breaks. Many 

researcher (Eisenbeis, 1994 ; Gustafson & Clancy, 1999) have shown that the breakage 

pattern strongly depend on the number of pervious breaks that pipes have experienced. 

Research in the US (Clark et al., 1999) has shown that generally, each time a pipe is repaired, 

the time to the next repair is increasingly shorter. Additionally, they found that after first 

failure, the number of failure events increased exponentially with time by using regression 

analysis.  Similarly in a study restricted to pipes greater than 200mm diameter, Andreou and 

Marks (1986) presented that the time to next break decreased as each break occurred. The 

result of these analysis showed that the rate of deterioration was greater for pipes in the poor 

initial condition. 

Goulter et al. (1988, 1990) showed that the probability of water-main breaks occurring is 

highest within a short time and a short distance from a previous break. That study measured 

the grouping, or clustering, of failures based on distance and time to the next failure. It was 

found that increasing the length of time and the distance that defined the dimensions on which 

the cluster was based did not cause a proportional increase in the number of failures that 

occurred in that cluster. 

1.3.3 Hydraulic indicators 

Higher operating pressures 

A buried pipe has an inherent strength by which it can resist the internal and external forces: 

soil loading and internal pressure. The ability of a pipe to resist the stresses induced by 

internal pressure is a function of the tensile strength of the material and wall thickness 
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(Skipworth et al., 2002). As the pipe deteriorates with age, the strength of the pipe is reduced; 

making it increasingly vulnerable to loads that will eventually exceed the pipe’s remaining 

strength value. It should be noted, however, that when decreasing the limit value of the load at 

which a pipe fails, pressure reduction only increases a pipe’s lifetime for a finite period, and 

this will delay pipe failure but not eliminate its occurrence ( Moglia et al. , 2006). Lambert 

(1998) has reported that high pressure is probably the most important factor in failure of 

pipelines. Especially in older systems, an increase in pressure even by a few metres, can result 

in a large number of bursts.  

Moglia et al. (2006) used the Non-homogeneous Poisson statistical model for forecasting 

pipeline failures with pressure as one of the covariates. This means that the calculated failure 

prediction for a particular pipe will change with a change of pressure. This in turn allows for 

investigating the probable effects of reducing the operating pressure in a certain pipe or a 

region in the pipe network, such as a pressure zone. 

Transit condition  

During operations period, water pipelines rarely operate in steady state conditions. Any 

change of the water flow velocity in a pipeline causes pressure fluctuation (called "water 

hammer" or "surge"). As the velocity change is larger and faster so are the pressure changes. 

However, fast stoppage of high velocity flow may cause dangerous high/low pressure 

oscillating waves, exceeding the safe operating limits of the pipeline. Atmospheric pressure, 

common phenomena in the pressure oscillation, may damage the pipeline by cavitations and 

collapsing of the pipe due to the external pressure. The pressure surges can occur when water 

and air valves open and close during network operations as well as . These surges can be one 

of the factors in failure clustering, as valves are closed and opened during repair activities 

(Røstum, 2000). Additionally, The rapid filling of pipelines creates the potential for problems 

caused by the entrapment of air pockets within the pipes. These include water hammer caused 

by rapid explosion of air pockets (Whily and Streeter, 1993). In the summer time, due to 

increased demand and pressure surge in the mains,  typically mains breaks occur. In 2004, 

Sinske token into account the air-pocket formations as a cause of failure in water network 

based on seven different types of air-pocket formations.  
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Internal corrosion 

Service mains are subject to corrode from the inside as a result of contact with stagnant water. 

Interior corrosion is a concern because it weakness the pipe and increases the risk of a rupture, 

and because rust deposits built up and clogged the main. The amount of internal corrosion 

depends not only on the type material used to construct the service pipe but also depends on 

the characteristics of the water (e.g. pH, alkalinity, bacteria and oxygen content) being 

distributed. Overall, the internal corrosion of water pipelines is a better understood 

phenomenon than external corrosion. Tools such as Baylis curves and Langelier's equation 

have been developed which can be used to determine whether water will be corrosive to a 

pipe (Garry, 2000). More studies have been performed in water quality impacts which 

associated with this kind of degradation (Benjamin et al., 1996). But there is not enough study 

about distribution system pipes failure due to internal corrosion. 

1.3.4 Operational indicators  

In addition to Environmental, Hydraulic and Structural variables, Operational aspects such as   

human error, poor pipes manufacturing and inadequate control during production process as 

well as using bad initial material are also important factors in water pipelines failure.  

Poor quality materials and fittings 

The quality of pipe materials and fitting is an important factor which could increase the 

interruptions in the water supply. Poor quality controls during manufacturing of pipes and 

also using the improper initial material have created this problem. The types of defects can 

also occur during the pipe manufacturing process. Makar et al. (2001) after a three year 

investigation by the National Research Council Canada, has presented in addition to 

corrosion, manufacturing defects and human error play a role in the large number of gray cast 

iron pipe failures.  

Bad storage and transport practice 

Failure is also caused by UV degradation weakening the pipe, caused by bad storage practice 

(WHO, 2001). When plastic pipelines are subjected to long-term exposure to ultraviolet (UV) 
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radiation from sunlight, they suffer surface damage. According to the ASTM specification, if 

plastic pipe is stored outdoors, it may require protection from weathering in accordance with 

manufacturers’ recommendations. And in warm climates, the covering should allow air 

circulation in and around the pipe. Ductile Iron pipe is not vulnerable to effects of exposure to 

sunlight or weathering. 

Additionally, if pipes are not loaded and supported properly prior to being transported long 

distances, cracks can occur due to a phenomenon called “transit fatigue”. Transit fatigue 

occurs when pipe flexes in a certain manner repeatedly over long periods of time during 

transport, resulting in cracking of the pipe wall. Fortunately, these defects are typically 

discovered during the hydrostatic pressure testing that occurs prior to the pipeline being 

placed in service; however, some can remain and grow during pipeline pressure cycles until 

failure occurs. 

Quality of installation and workmanship 

Human error plays a role in the large number of pipe failures that occur each year. Starting 

with an inappropriate design, there are several practices during and after the construction that 

can contribute to the failure of the pipe system (Karney, 1992). Poor transportation, 

movement and installation techniques can promote corrosion followed by the failure of the 

pipe. Accidentally removed coating exposes the pipe to extensive corrosion. Another possible 

cause of the failure may sometimes be linked to its installation (Boxall et al., 2001 ). Failure 

due to improper bedding and poorly controlled the fill used around a main and likewise poor 

pipes manufacturing and inadequate control during production process also important factors. 

Third-party activity 

Another possible cause of the failure is a third party damage (or nearby excavation). 

Excavations in the vicinity of pipelines disturb bedding conditions or hit on the line,  resulting 

in pipe failure. For instance, Research in the U.K. (WRc, 2001) shows that work on adjacent 

services (e.g. gas, electricity) can cause pipe failure. The range of excavation damage runs 

from damage to the external coating of the pipe, which can lead to accelerated corrosion and 

the potential for future failure, to cutting directly into the line and causing leaks or, in some 
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cases, catastrophic failure. Mostly, the absence of utility maps increases the rate of failure by 

the excavation of contractors. The third party activity failure model takes into account such 

factors as: pipeline diameter, wall thickness, location, and depth of cover (Mather, 2001). The 

results of past research have demonstrated that the deeper a pipeline was buried, the less 

likely it was to be affected by third party activity. In other work, Greenwood (2002) evaluated 

the relationship between gas pipeline accidents caused by third party interference and wall 

thickness. Less thickness correlated with high frequency of failures.   

1.3.5 Other factors 

In water pipelines failure analysis it should considered another factors which can be affect the 

rate of failure. Most of them have been indicated in the references.  

1.4 Common Water pipelines Failure Modes 

O’Day et al. (1982) classified water pipe breakage types into three categories: (1) 

Circumferential breaks, caused by longitudinal stresses; (2) longitudinal breaks, caused by 

transverse stresses (hoop stress); and (3) split bell, caused by transverse stresses on the pipe 

joint. This classification may be complemented by an additional breakage type i.e., holes due 

to corrosion (Rajani and Kleiner, 2001). 

 

Fig. 1.3 Common failure modes for water pipelines in study area 
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Makar et al. (2001) investigated failure modes and mechanisms in gray cast iron pipe. They 

highlighted a number of modes and causes of pipe failures that have been encountered during 

a three year investigation by the National Research Council Canada . Overall, it is important 

for the type of failure to be identified so that the proper repair procedure can be undertaken. In 

the following several types of water pipelines failure will be explained. 

1.4.1 Circumferential break 

Circumferential or circular cracking (Fig. 1.3.a) is typically caused by bending forces applied 

to the pipe. Bending stress is often the result of soil movement, thermal contraction or third 

party interference (Misiunas, 2005). Circumferential cracking is the most common failure 

mode for smaller diameter cast iron pipes. In 2005,  Hu and Hubble presented the statistics of 

asbestos cement water pipelines breaks from the city of Regina in Canada. Circumferential 

breaks were shown to be the predominant failure mode comprising 90.9% of all pipe failures.  

Circumferential breaks due to longitudinal stress are typically the result of one or more of the 

following occurrences: (1) thermal contraction (due to low temperature of the water in the 

pipe and the pipe surroundings) acting on a restrained pipe, (2) bending stress (beam failure) 

due to soil differential movement (especially clayey soils) or large voids in the bedding near 

the pipe (resulting from leaks), (3) inadequate trench and bedding practices, and (4) third 

party interference. The contribution of internal pressure in the pipe to longitudinal stress, 

although small, may increase the risk of circumferential breaks when occurring 

simultaneously with one or more of the other sources of stress (Rajani and Kleiner, 2001). 

1.4.2 Longitudinal break 

Longitudinal or split cracking (Fig. 1.3.b) is more common in large diameter pipes that runs 

along the length of pipes. Longitudinal breaks due to transverse stresses are typically the 

result of one or more of the following factors: (1) hoop stress due to pressure in the pipe, (2) 

ring stress due to soil cover load, (3) ring stress due to live loads caused by traffic, and (4) 

increase in ring loads when penetrating frost causes the expansion of frozen moisture in the 

ground (Rajani et al. 1996; Kleiner, 2001). Kottmann (1994) reported cases of longitudinal 
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breaks in large-diameter grey cast iron, asbestos cement, and PVC low-pressure pipes as a 

consequence of air pocket formations during warm temperature conditions. 

1.4.3 Spiral break 

This type of failure appears to be common in medium sized pipes (approximately 400-500 

mm diameter). The failure started as a circumferential crack, but then a section of the pipe 

broke and the crack propagated down the pipe barrel in a spiral (Fig. 1.3.g). 

 

Fig. 1.4 Spiral breaks on cast iron in study area (closely inspection) 

Fig. 1.4 shows a section taken out of the pipe, with the right edge of the section showing the 

rusty fracture surface. The spiral fracture appears to take place as a form of transition between 

circumferential cracking of small pipes loaded in bending and the longitudinal cracking seen 

in large diameter pipes. While some spiral fractures have been associated with pressure 

surges, the pipe shown here failed in normal service due to manufacturing defects. In the work 

of Makar et al. (2001) on gray cast iron pipe, some medium (380-500 mm) diameter pipes 

experience a unique failure mode where the crack in the pipe appears to start in a 

circumferential fashion and then propagates down the length of the pipe in a spiral fashion. 

This failure mode has been seen in Des Moines, St. Louis and Ottawa. In the two former cases 

the failures were associated with pressure surges. The appearance of this failure mode also 

suggests that the failure is produced by a combination of bending forces and internal pressure.  
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1.4.4 Hole 

In 2001, Makar reported failure by hole due to corrosion in metal water pipelines (pitting). 

Using incorrect backfilling material around the pipes (include rocks or stones) also fail the 

pipelines as a point (Fig. 1.3.d). 

1.4.5 Displacement at joint 

Displacement at joints or joint failure has been popular defect in water pipelines distribution. 

As reported by a number of authors, pipe joints fails through the combined action of pipe 

corrosion, soil movement, bad joint assembly practice and water pressure (Rajani, 1999; 

Rajani, 2000; Makar et al., 2001; AWWAFR, 2000). Their attempts showed that rigid joints 

in older pipe system are particularly susceptible to damage by soil movement. Long life and 

good performance for pipelines can be achieved by proper handling and installation. 

De silva et al. (2001) reviewed condition of joints in Australian cities water and sewer 

pipeline system over 25 years of service. They classified joint types in typical pipes and their 

typical failure modes and also evaluated quantitatively the joints of AC and cast iron pipes. 

1.4.6 Elliptical deformation 

Because of flexibility of polyethylene pipes, buried PE pipe may deform slightly under earth 

and other loads to assume somewhat of an elliptical shape having a slightly increased lateral 

diameter and a correspondingly reduced vertical diameter (Fig. 1.3.f). Elliptical deformation 

(ovality) increases the pipe’s failure potential. Practically speaking, this phenomenon cannot 

be considered negligible as it relates to pipe failure potential. Due to crews error in 

construction procedures and inadequate control, geometric stability will be lost. 

1.5 Failure Management Cycle 

Since pipe failure has become quite a common event in the urban water supply systems, 

failure management is a part of the everyday operation of pipelines and pipe networks 

(Misiunas, 2005). However, the number of pipe failure management techniques that are 

currently practiced by the water industry is not very large. On the contrary, a whole range of 
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methodologies have been described in the literature, indicating the clear interest in such tools. 

Depending on the timing of failure management activities with respect to the failure itself, 

two types of pipe failure management strategies can be defined: proactive failure 

management, when the pipe repair/replacement decisions are made prior to the failure event 

to prevent the failure, and reactive failure management, when the repair/replacement is 

performed only after the failure has occurred. Kleiner et al. (2000) described the pipe 

management cycle with the focus on the proactive part. A similar pipe failure management 

cycle can be defined including both proactive and reactive parts as shown in Fig. 1.5.  

 

Fig. 1.5 The pipe failure management cycle (Misiunas, 2005) 

1.5.1 Proactive failure management 

In proactive failure management, the sequence starts at point 1 in Fig. 1.5 Condition 

assessment is a proactive technique that is used to evaluate the current state of the pipe 

(Misiunas, 2005). The results obtained from condition assessment are then used to estimate 

the probability of failure or the residual lifetime of the pipe. Depending on the estimated risk 

of failure, the decision is made whether the pipe needs to be repaired/replaced/rehabilitated. 

The rehabilitation time can be scheduled in the short or the long term. Alternatively, the time 

for the next inspection (condition assessment) is set. Proactive failure management is a part of 

an overall asset rehabilitation planning strategy. One of the main challenges in the process of 

the rehabilitation planning is, understanding the process of pipe deterioration. Ideally, if the 
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proactive failure management is efficient, all pipe incidents should be prevented. However, in 

case a failure occurs in a pipe, reactive measures have to be taken. 

1.5.2 Reactive failure management 

If the proactive pipe failure management is not implemented, a reactive management scheme 

has to be executed starting from point 2 in Fig. 1.5. Reactive approaches are quite simple in 

that a manager repairs a pipe only after it fails to meet its performance requirements such as 

hydraulic carrying capacity (i.e., experiences a break, low pressure, or excessive leakage) and 

water quality (e.g., excessive rust in distributed water). As a first step in the reactive 

management sequence, the failure has to be detected. After that, the actual location of the 

failure has to be identified and the damaged section of the pipeline/network has to be isolated. 

The repair of the failure or replacement of the broken pipe is the last step in the reactive 

management sequence. After the repair or replacement, the pipe management routine returns 

to the initial point. The benefit to this approach is that a pipe section realizes its full economic 

life. The disadvantage of this approach is that the cost of fixing a pipe after it fails is 

unplanned and may be more than fixing it prior to failure. In addition to the potential for 

increased and unplanned direct rehabilitation costs, there may be additional indirect costs due 

to customer service interruptions, damages to co-located utilities, damages to property, and 

traffic interruptions. 

1.6 Quantifying Water pipelines Failure  

In the most general sense, measurement is the foundation of scientific analysis, and it lies 

behind any quantitative analytical statement. Effective planning for the renewal of water 

distribution systems requires accurate quantification of the structural deterioration of water 

mains. However, exploration of quantitative model is more meaningful for utility asset 

managers. Direct inspection of all water pipelines in distribution networks is often 

prohibitively laborious and expensive. The application of physical models to assess the 

structural resiliency of each individual pipe is also not realistic in most case because accurate 

data are rarely available and are very costly to obtain. Using statistical methods to identify 

breakage patterns over time is an efficient and inexpensive alternate for measuring the 
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structural deterioration of pipelines. However, in the literature review, failure frequency has 

been expressed in point view of discrete (number of failure) or continuous sense (failure rate).  

1.6.1 Number of failure (NF)  

Using a number of measures such as the numbers of bursts on the mains can be applied to 

monitor the serviceability on mains network. Røstum (2000) in proposed Monte Carlo 

simulation based on the survival function to predict the expected number of failures within a 

given time horizon. In 1998, another research by WSAA has been developed Poisson process 

for the prediction of future numbers of failures of water mains. 

1.6.2 Water pipelines failure rate (FR) 

Statistics of the performance of water pipelines are typically expressed in terms of the annual 

number of breaks per hundred kilometers of pipe (# of breaks/100 km/year). The equation for 

calculating a rate of this type can be written as: 

yeraOne

mainswaterofkilometresperfailuresofNumber
rateFailure

 

    100    
 =                             (1.4) 

The literature review shows that the failure rate is used in many of the proposed models for 

optimization of rehabilitation/replacement of water pipes (Kaara, 1984; Smith, 1994; Kleiner, 

1997). Table 1.2 shows pipe failure rate in some different studies. 

The maximum failure rate reported for a U.S. utility (4.3/100 km/year) was significantly 

lower than those reported for Australian (17.5/100 km/year) and UK (18.8/100 km/year). 

According to a study done at the National Research Council (McDonald et al., 1994) based on 

the reported ratios of pipe breaks per 100 kilometres and the perception of water managers on 

the global state of their water pipe network, ratios of 40 breaks per 100 km and up are 

considered high and indicate a network in poor condition. Networks with ratios between 20 

and 39 are considered as acceptable condition, while the ratio less than 20 indicates that the 

network is in good condition.  
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Table 1.2 Pipe failure rate for different case studies 

Case study Failure rate (per 100 kilometres /year) 

Germany 18 

Australia 35-44 

United State 16.7 

United Kingdom 18.8 

New York 5-6 

Lyon (France) 27.5 

2000 2001 2002 Republic of Azerbaijan 
(Azervodokanal Association) 83 113 85 

2001 2002 2003 Canada  

(city of Kingston) 15 13.6 10.5 

Chicoutimi Gatineau Saint-Georges Calgary Canada 

(in four case study) 46 36 19 20 

CI DI PVC AC Canada 

(in 21 cities) 35.9 9.5 0.7 5.8 

CI DI PVC Steel 
Moscow 

10 1.5 33.4 11.3 

Seoul City 192 

Iran (in average) >200 

Sources: Study by the WSAA 2000 , 2001; CWWA,1997; AWWARF,2000; Rajani et al. , 1994, OECD, 2003 

 

As a common application of failure rate is prediction of it. There are many different 

approaches to predict failure rates and support rehabilitation planning, they typically 

incorporate one or all of the following major modeling techniques (Stone et al., 2000): 

• Probabilistic or statistical methods: that estimate a pipe’s condition, defined as a 

probability of failure, based on a statistical analysis of the historical performance (break 

rate or expected life) of like pipes in similar conditions (operational or environmental). 

Statistical models can also be used to predict future system requirements by assuming that 

past break patterns will continue into the future. 

• Deterministic methods: that identify the best solution (i.e., pipe replacement date, least 

cost analysis, etc.) based, not on probability, but on a function of the initial pipe 
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conditions and an understanding of how it modifies given changes in operational 

conditions, environmental conditions, or time. 

• Heuristic methods: that enable managers to apply expert judgment and weights to 

different decision criteria and to prioritize different rehabilitation. 

1.7 Water pipelines Failure Modelling Approaches 

The ability to predict failure probability (any other performance criteria) is highly desirable 

for activities such as investment planning and scheduling maintenance (Boxall et al., 2001). In 

literature review there are more research about water pipelines failure modeling but Pelletier 

et al. (2003) classified in three main categories: physical modeling, descriptive analysis, and 

predictive modeling. At a glance, Fig. 1.6 classifies the existing approaches in water pipelines 

failure modeling. 

 

Fig. 1.6 Existing approaches in water pipelines failure modeling (Rajani and Kleiner, 2001) 

1.7.1 Physical modeling 

Physical/mechanical models of the degradation process employ engineering-based equations 

to derive structurally based estimates of pipe conditions (Melina, 2000). These models 

attempt to predict pipe failure by analyzing the loads to which the pipe is subject as well as 

the capacity of the pipe to resist these loads (Rajani and Kleiner, 2001). They consist of 
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evaluating of the scope and severity of corrosion on the internal and external pipe walls, and 

the estimation of resulting stresses from the loads applied to the water pipe (e.g. Doleac et al. 

1980; Kumar et al. 1987; Rajani and Makar 2000; Makar et al. 2001). 

Several components have to be considered in modeling this structural behavior. The residual 

structural capacity of water pipelines is affected by material deterioration due to 

environmental and operational conditions as well as quality of manufacturing and installation. 

This residual structural capacity is subjected to external and internal loads exerted by the soil 

pressure, traffic loading, frost loads, operational pressure and third party interference. Some 

models address only one or a few of the numerous components of the physical process that 

lead to breakage, while others attempt to take a more comprehensive approach. Initial efforts 

were aimed mainly towards development of deterministic models, while more recent models 

use a probabilistic approach to deal with uncertainties in defining the deterioration and failure 

processes. The models were classified as either deterministic or probabilistic, depending the 

approach taken to represent deterioration and failure processes (Rajani & Kleiner, 2001). The 

physical mechanisms that lead to pipe failure often require data that are not readily available 

and are costly to obtain. Thus, physical models may currently be justified only for major 

transmission water mains, where the cost of failure is significant, whereas statistical models, 

which can be applied with various levels of input data, are useful for distribution water 

pipelines (Rajani and Kleiner, 2001). In literature review, extensive efforts have been applied 

to model the physical processes of the degradation and failure of buried pipes. Two main 

groups of models have been identified: deterministic and probabilistic.  

Deterministic models aim to predict the corrosion pit growth to estimate the remaining wall 

thickness and, consequentially, the service life of the pipe. Probabilistic models are designed 

to calculate the probability of the survival of the pipe over a certain period of time, predict the 

remaining lifetime or estimate the probability of failure. The main difference between theses 

models is that probabilistic models incorporate an uncertainty component which is ignored in 

the deterministic models. The type of data that is required for different methods is similar and 

includes pipe age, soil parameters, wall thickness and current depth of corrosion pits.  
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Physical deterministic models 

Doleac et al. (1980) used the power function proposed by Rossum (1968) to relate corrosion 

pit depth with the pipe age to predict the remaining wall thickness of pit cast mains: 

annn

an AtpHKKp −−= ρ)10(                                                                                              (1.5) 

where:  

p = average pit depth, 

a, Kn, Ka = empirical constants derived from field or lab tests, 

Aa = pipe surface area exposed to corrosion, 

pH = soil pH, 

ρ = soil resistivity, 

n = soil aeration constant, 

t = time (years). 

Randall-Smith et al. (1992) proposed a linear model based on an assumption that corrosion pit 

depth has a constant growth rate (often referred to as corrosion rate), to estimate remaining 

service or residual life of water mains. 
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where:  

ρ = remaining life, 

t = age of water mains, 

δ = thickness of original pipe wall, 

Pe = external pit depth 

Pi = internal pit depth 

 

Rajani and Makar (1999) described a methodology to estimate the remaining service life of 

grey cast iron mains by considering changes in the structural resistance of a pipe as a result of 

corrosion pits. They defined the “time of death” of an individual pipe segment as the time at 
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which its mechanical factor of safety fell below a minimum acceptable value set by the utility 

owner. They calculated the residual resistance of grey cast iron mains based on corrosion pit 

measurements while explicitly considering anticipated corrosion rates. 

Physical probabilistic models 

The probabilistic approach provides insight into the contribution of each parameter to the 

uncertainty of the results, which is ignored in the deterministic models. Several probabilistic 

physically based models have been proposed (Pandey (1998); Kiefner and Vieth (1989). They 

use the residual strength of pipelines. 

Pandey (1998) presented a general probabilistic framework to estimate reliability by 

incorporating the impact of inspection and repair activities planned over the service life of a 

pipeline vulnerable to corrosion. The intent of this model was to schedule the optimal 

inspection interval and repair strategy while maintaining adequate reliability throughout the 

service life of the pipeline. 

Based upon this method, European Union developed UtilNets application as a decision 

support system for rehabilitation planning and optimization of buried grey iron water mains. 

The system performs reliability-based life predictions of the pipes and determines the 

consequences of maintenance and neglect over time in order to optimize rehabilitation policy. 

The system gives a probabilistic measure of the likelihood of structural, hydraulic, water 

quality and service failure of pipe segments and of the entire distribution system.  

1.7.2. Descriptive analysis 

Descriptive analysis consists of calculating descriptive statistics to provide insight on 

breakage patterns and trends. Descriptive analysis can only be performed in cities that have 

comprehensive databases on the characteristics of their pipes and on pipe breaks. For this 

reason, there are very few case studies reported in the literature. Some cities often cited for 

participating in such studies are New York (O’Day et al., 1982; Male et al., 1988, 1990), 

Cincinnati and New Haven, Conn. (Clark et al., 1988; Goodrich, 1986; Kaara, 1984); 

Winnipeg, Man., Canada (Kettler and Goulter, 1985; Goulter and Kazemi, 1988; Jacobs and 
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Karney, 1994); and suburban Paris and Bordeaux, France (Eisenbeis, 1994). This type of 

analysis is limited by the challenges faced for constructing databases availability of personnel 

and resources, missing and conflicting data, non-computerized information (paper archives), 

and so on. As a matter of fact, building such databases has been a concern for many 

researchers (e.g. O’Day 1982; Clark and Goodrich, 1989; Habibian, 1992). 

Pelletier et al. (2003) performed a basic descriptive analysis of the water pipe and breakage 

data over three case studies. Only the following six characteristics have been collected for all 

pipe segments in three municipalities: (1) pipe diameter; (2) length; (3)material; (4) year of 

installation; (5) type of soil; (6) land use above the pipe. Statistics on breakage rates are 

estimated by taking the ratio of the number of breaks on pipes in a given category and the 

total pipe length in that category in 1996. 

1.7.3 Statistical modelling 

The data required to build physical pipe deterioration models is often not available and its 

collection has a significant cost. As an alternative to physical modeling, statistical models 

have been proposed to explain, quantify and predict pipe breakage or structural pipe failures.  

CSIRO researcher, Davis J. P., depicted that taking physical model across into the field is 

impossible. To overcome this, they developed a model that uses probability distributions to 

estimate the probable defect size along a pipe, and the probable loading conditions the 

pipeline experiences. The model preserves the details of physical degradation and failure 

mechanisms that occur in service, and can account for changes in operating loads and the 

surrounding soil environment. A review of statistical models that can be found in the 

literature is presented in Kleiner and Rajani (2001). Most of the available statistical models 

use the historical data of pipe failure to predict the future trends. These models can be 

classified broadly into deterministic, probabilistic multi-variate and probabilistic single-

variate models that are applied to grouped data. Deterministic models use two or three 

parameter equations to derive breakage patterns, based on pipe age and breakage history. The 

division of pipes into groups with homogeneous properties (operational, environmental and 

pipe type) is often used, which requires efficient grouping schemes to be available. 

Probabilistic models are used to estimate pipe life expectancy or failure probability. 
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Deterministic models 

The deterministic models predict breakage rates using two or three parameters, based on pipe 

age and breakage history. A variety of equations obtained through linear or exponential 

regression analysis factor have been identified ( Shamir and Howards, 1979; Clark, 1982). 

Time-exponential models 

Shamir and Howard (1979) proposed the first attempt to statistically analyze break records. 

They used regression analysis to obtain a break prediction model that relates a pipe’s 

breakage to the exponent of its age: 

)(
0 ).()( gtAetNtN +=                                                                                                               (1.7) 

where t is the time elapsed (from present) in years; N(t) is number of breaks per unit length 

per year (km-1 year-1); N(to) = N(t) at the year of installation of the pipe (i.e., when the pipe is 

new); g is the age of the pipe at time t; and A is coefficient of breakage rate growth (year-1). 

Note that N(to) ≠ 0, which means that on average a pipe is assumed to always have a breakage 

frequency, albeit very small in the beginning of its life. Shamir and Howard (1979) provided 

no details on the location of the study, the quality and quantity of available data or the method 

of analysis. They recommend that the regression analysis could be applied to groups of pipes 

that were homogeneous with respect to the factors influencing their breaks. 

Walski and Pelliccia (1982) proposed to enhance the exponential model (Table 1.3) by 

incorporating two additional factors in the analysis, based on observations made by the US 

Army Corps of Engineers in Binghamton, N.Y. The first factor accounted for known previous 

breaks in the pipe, based on an observation that once a pipe broke it was more likely to break 

again. The second factor accounted for observed differences in breakage rates in larger 

diameter pit cast iron pipes. 

Clark et al. (1982) proposed to further enhance the exponential model and transform it into a 

two-phase model. They observed a lag between the pipe installation year and the first break. 

Consequently, they proposed a model comprising a linear equation to predict the time elapsed 

to the first break and an exponential equation to predict the number of subsequent breaks. 
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Table 1.3 Deterministic time-exponential models (Rajani and Kleiner, 2001) 

Researcher, year Model Notation Data requirements 

Shamir and  Howard, 1979 

 )(
0 ).()( gtAetNtN +=

 

t = time elapsed (from present) in years 

N(t) = N. breaks per unit length per year (km-1 year-1) 

N(t0) = N(t) at the year of installation of the 

g = age of the pipe at the present time 

A = coefficient of breakage rate growth (year-1) 

Pipe length, installation date 
and breakage history; formation 
of homogenous groups essential 
according to criteria like pipe 
type, diameter, soil type, break 
type, overburden characteristics, 
etc. 

Walski and Pelliccia,  1982 
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C1 = ratio between {break frequency for 

(pit/sandspun) cast iron with (no/one or more) 

previous breaks} and {overall break frequency 

for (pit/sandspun) cast iron} 

C2 = ratio between {break frequency for pit cast pipes 

500 mm diameter} and {overall break frequency 

for pit cast pipes} 

 

Same data as for Shamir and 
Howard (1979) plus information 
on the method of pipe casting 
and pipe diameter. 

Clark et al.,  1982 
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xi,yi = regression parameters, 

NY = number of years from installation to first repair, 

D = diameter of pipe, 

P = absolute pressure within a pipe, 

I = % of pipe overlain by industrial development, 

RES = % of pipe overlain by residential development, 

LH = length of pipe in highly corrosive soil, 

T = pipe type (1 = metallic, 0 = reinforced concrete), 

REP = number of repairs, 

PRD = pressure differential, 

t = age of pipe from first break, 

DEV = % of pipe length in low and moderately 

corrosive soil, 

SL = surface area of pipe in low corrosivity soil, 

SH = surface area of pipe in highly corrosive soil 

 

Time of installation, breakage 
history, type and diameter of the 
pipe, as well as  information 
about operating pressures, soil 
corrosivity and zoning 
composition of area overlaying 
pipe. Additional types of data 
such as the type of breaks and 
pipe vintage required to enhance 
model. 

 

Time-linear models 

Kettler and Goulter (1985) suggested a linear relationship between pipe breaks and age (Table 

1.4). Based on a relatively constant sample of pipes installed within a 10-year period in 

Winnipeg, Manitoba, they found a moderate correlation between the annual breakage rate and 

the pipe age (r2 of 0.563 and 0.103 for asbestos cement and cast iron pipes, respectively). The 

application of this model is simple and straight forward, similar to the two parameter 

exponential model of Shamir and Howard (1979). 
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McMullen (1982) reported a regression model that was applied to the water distribution 

system of Des Moines, Iowa. They examined several models and the one that performed the 

best is given in Table 1.4. Their model predicts only the time to the first break of a pipe and 

thus can not be used as a full-fledged pipe break prediction model.  

Jacobs and Karney (1994) applied a linear regression to 390 km of 150 mm cast iron water 

pipelines with about 3,550 breakage events recorded in Winnipeg. They divided the water 

pipelines into three age groups (0-18, 19-30, and >30 years) to obtain relatively homogeneous 

groups of water mains, and applied the equation provided in Table 1.4. Initially they applied 

this regression equation to all the recorded breaks and obtained coefficients of determination 

ranging from  r2 = 0.704  to  0.937  for the three age groups. 

Table 1.4 Deterministic time-linear models (Rajani and Kleiner, 2001). 

Researcher, year Model Notation Data requirements 

Kettler and Goulter, 1985 

 AgekN .0=
 

N = number of breaks per year 

k0 = regression parameter 
Same data as for Shamir and Howard (1979). 

McMullen, 1982 

 
Age=65.78+0.028 SR -
6.33pH- 0.049rd 

Age = age of pipe at first break (years) 
SR = saturated soil resistivity (ohm-cm) 
pH = soil pH   

rd = redox potential (millivolts) 

Data required typically not available;  poradic 
data  collection not expensive, however, 
continuous and extensive data collection 
program is costly;  continuous monitoring of 
soil properties is important where ground water 
conditions have not reached steady state  

Jacobs and Karney, 1994 

 P = a0+a1 Length + a2 Age 
P = reciprocal of the probability of a day 
with no breaks  a0,a1,a2 = regression 
coefficients 

Pipe length, age and breakage history; more 
data enables formation of homogenous groups. 

 

Probabilistic models 

A number of recent studies have been used a probabilistic approach to deal with uncertainties 

in defining the deterioration and failure processes. The probabilistic models were classified 

into two groups: probabilistic Multivariate Models and probabilistic Single-variate Group-

Processing Models. The models that use probabilistic processes on grouped data to derive 

probabilities of pipe life expectancy, probability of breakage and probabilistic analysis of 

break clustering phenomenon fall under the class of the so-called probabilistic single-variate 

group-processing models. 
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Probabilistic single-variate group processing models 

Herz (1996) proposed a lifetime probability distribution density function based on the 

principles that had originally been applied to population age classes or cohorts. The 

probability density f(t), hazard h(t) and survival S(t) functions are given in Table 1.5.  

Table 1.5 Probabilistic single-variate group models (Rajani and Kleiner, 2001) 

Researcher, year Model Notation Data requirements 

Cohort Survival Model [Herz (1996); Deb et al., (1998)] 

 AgekN .0=
 

f(t) = probability density function 

h(t) = hazard function 

S(t) = survival function 

t = useful lifetime of pipe 

a = ageing factor (year-1) 

b = failure factor (year-1) 

c = resistance time (years), i.e., pipe will not 

be replaced at age < c years 

- pipe installation dates 

- pipe “time of death” 

- valid grouping criteria will enhance 

accuracy 

- alternative to “time of death”: end 
of economic life (optimal time for 

replacement) requires break history 

Bayesian Diagnostic Model [Kulkarni et al. (1986)] 

 
Prob.[failure/specifiedcharacteristics]= 
 

Pf, = system-wide probability of 
failure 

Pc/f, = probability of observing 
specified 

characteristics on a segment that 
failed 

Pc/nf. = probability of observing 
the same 

characteristics on a segment that 
has not failed 

Grouping criteria (“sets of 

characteristics”) such as pipe 
diameter 

length, age and type, soil 
characteristics, 

operating conditions such as 
pressure, etc. 

Semi-Markov chain [Gustafson and Clancy (1999a)] 

 
generalised gamma distribution for t1 
exponential distribution  
( identical for all ti (i>1) 

ti = time between the (i-1)th 
and the ith breaking pipe 

- pipe breakage history 

- pipe type 

- other grouping criteria to enhance 
accuracy 

Break Clustering [Goulter and Kazemi (1988);Goulter et al. (1993)] 

 
 
m = m (s,t) 

m = mean number of subsequent failures 

occurring in the cluster domain 

x = number of subsequent failures occurring in 
the cluster domain 

s = distance from the 1st break in a cluster 

t = time elapsed from the 1st break in a cluster 

 

Pipe breakage history with the exact 
time 

and location of each break. 

Data Filtering [Mavin (1996)]1 

 

4 rules to filter pipe breakage data, 
based on calculating the probability of 
two consecutive breaks (Constantine 
and Darroch 1993), and discarding the 
second break if probability is low. 

 

- pipe diameter 

- pipe material 

- traffic level 

- soil type 
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Gustafson and Clancy (1999) modeled the breakage history of water pipelines as a semi-

Markov process. They developed an elaborate model to predict the inter-break times in water 

mains, based on historical data, but found this model inadequate for predicting future breaks. 

Table 1.6 Probabilistic multi-variate models-proportional hazards and accelerated life  

(Rajani and Kleiner, 2001) 

Researcher, year Model Notation Data requirements 

Proportional hazards ( Marks et al., 1985) 

 

27

54
0

0

102

10102)(
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t

tth
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−

−−

×

+−×=

=

 

T = time to next break 

h(t, Z) = hazard function 

h0(t) = baseline hazard function 

Z = vector of covariates 

b = vector of coefficients to be estimated by 
maximum likelihood 

- natural log of pipe length 

- operating pressure 

- percentage of low land development 

- pipe “vintage” (or period of 
installation) 

- pipe age at second (or higher) break 
rate 

- number of previous breaks in pipe 

- soil corrosivity 

Andreou et al. (1987a, 1987b) ; Marks et al. (1987) 

 

Early stage: same as Marks et 
al. (1985) described above 

Late stage: 
ZbT

eh == λ
 

h = hazard (constant at the late stage) Same as 
above 

Same as above 

Proportional hazards [Brémond (1997)] 

 

1
0

0

)()(

)(),(

−=

=

βλλβ tth

ethZth ZbT

 

t = time to (next) failure 

h(t) = hazard function 

λ, ß, = scale and shape parameters 
(respectively) of the Weibull distribution 

- number of previous breaks 

- pipe diameter 

- ground conditions 

- traffic loading 

Time dependent Poisson model [Constantine and Darroch (1993); Miller (1993); Constantine et al. (1996)] 
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t
tH

0

)(

θθ

θ

β

=








=

 

t = pipe age 

H(t) = mean number of failures per unit length at age t 

θ, ß, = scale and shape parameters, respectively 

θ0 = baseline value 

a = vector of coefficients to be estimated by 
regression; 

Z = a vector of covariates affecting breakage rate. 

- mean static pressure 

- overhead traffic conditions 

- pipe diameter 

- soil type 

Accelerated life (Lei (1997); Eisenbeis et al.(1999)) 

 

βσµ

σβµ

T

T

exZfT

ZxT

),,(

)ln(

=

++=

 ==> 

T = time to (next) failure 

x = vector of explanatory variables 

Z = random variable distributed as Weibull 

σ = parameter to be estimated by maximum 
likelihood 

ß = vector of parameters estimated by max 
likelihood 

Z = random variable distributed as Gumbel 
(extreme distribution for minima) 

- pipe age group and material 

- pipe diameter and  length 

- pipe material was taken as 
stratification 

- traffic loading 

- soil acidity and humidity 

- number of previous breaks was taken 
both as a covariate and as a 
stratification variate 
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Probabilistic multivariate models 

The probabilistic multivariate models can explicitly and quantitatively consider most of the 

covariates in the analysis. This ability makes them potentially more powerful and general for 

predicting the future breakage rates of water mains. It also reduces the need to pre-partition 

the data into groups, although often some level of partitioning may still be required. Kleiner, 

and Rajani (2001) classifies the sub model of this categories (Table 1.6). 

Failure time prediction 

Predictive modeling tool allows authorities to better target their maintenance and act on 

potential problems before being hit with the cost and disruption of a burst water main (Davis , 

2003). The use of statistical analysis to predict failure time has a lot of benefit in the ranking 

or prioritizing process of water pipelines rehabilitation. The purpose of the statistical analysis 

is to determine if any combination of available data (e.g., pipe age, diameter, etc.) could be 

used to predict the time and probability of failures in water pipes. The final output of the 

model is a listing of main segments prioritized on the probability of failure for a given time 

period. 

Failure time analysis models the probability that the pipe will fail before a certain time as 

some function of the independent variables (Lim et al., 1996). These probabilities for the first 

and subsequent failures in water pipes were modeled using various techniques. The Weibull 

regression model was determined to be the most appropriate model, based on the available 

data. The survival function for the Weibull distribution: 

( )[ ]δα )(/exp)( xtXtS −=                                                                                                     (1.8) 

where α (X) = exp(α0 + α1x1 + α2x2 + …+ αkxk). A positive value of αi increases this 

survival function, the probability of surviving beyond time t. 

For the first failure, the estimate for the Weibull scale parameter (α(X)) for each set of 

independent variables is: 

α(X) = exp[(3.987) + (-0.0002) * length + (0.0154) * diameter + (0.0161) * epoch + (-.0035) 

* press + (-0.0738) * steep + (-0.0763) * mat + (-0.1429) * soil ]                                     (1.9) 
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where:  

length = the length of the pipe in feet, 

epoch = the number of years between the installation date and 1996  

press = the pressure in the pipe in psi, 

steep = 1 if the pipe is on a steep slope, 0 otherwise, 

mat = 1 if the pipe is made of galvanized iron, 0 otherwise, 

soil = 1 if the pipe is located in TB or VL soil, 0 otherwise. 

 

Spatial and statistics modeling tools 

Spatial statistical methods incorporate spatial correlation according to the way geographical 

proximity is defined. Proximity further depends on the geographical information, which can 

be available at areal level or at point-location level. Areal unit data are aggregated over 

contiguous units (census zones) which partition the whole study region. Proximity in space is 

defined by their neighboring structure. Point-referenced or geostatistical data are collected at 

fixed locations (failure location) over a continuous study region. Proximity in geostatistical 

data is determined by the distance between sample locations. 

Geographical data are correlated in space. Data in close geographical proximity is more likely 

to be influenced by similar factors and thus affected in a similar way. In the case of water 

pipelines failure, spatial correlation between breakage events and environmental factors and 

also break clustering was observed (Sundahl, 1997). The author compared number of breaks 

that occurred within a radius of 200 m and within a period of 2, 6 and 12 month from a 

previous break. He found that in the old part of the city, the spatial and temporal clustering of 

breaks was higher than in the newer parts. 

Consideration of the clustering phenomenon in pipe breaks in Winnipeg (e.g. Goulter and 

Kazemi 1988; Goulter, Davidson and Jacobs 1993) showed that independent breaks as breaks 

that occur more than 90 days after and/or more that 20 m from a previous break. An 

independent break is often the first in a cluster of breaks. They applied a linear regression to 

390 km of 150 mm cast iron water pipelines with about 3,550 breakage events recorded in 

Winnipeg. Initially they applied this regression equation to all the recorded breaks and 
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obtained coefficients of determination ranging from r2 = 0.704 to 0.937 for the three age 

groups. A high correlation means that pipe breaks were uniformly distributed along the pipe. 

The addition of pipe age into the regression model improved the predictive power of the 

model marginally for relatively new pipes, and significantly for old pipes. The authors 

attributed this correlation with age to different manufacturing, installation and operation 

practices that were typical of different age groups of pipes. The authors further observed that 

these differences could be classified geographically and that the age (or rather the “vintage”) 

of a pipe may be a convenient surrogate measure which may be gathered and managed in a 

Geographic Information System (GIS). 

ANNs-based modeling 

An artificial neural networks (ANNs) is a system composed of simple processing elements 

operating in parallel, whose function is determined by network structure, connection 

strengths, and the processing performed at computing elements or nodes. The development of 

a neural network model requires the specification of a "network topology", a learning 

paradigm and a learning algorithm. Unlike the more commonly used analytical methods, the 

ANNs is not dependent on particular functional relationships, makes no assumptions 

regarding the distributional properties of the data. This independence makes the ANNs a 

potentially powerful modeling tool for exploring nonlinear complex problems (Olden and 

Jackson, 2002; Mas et al., 2004). According to published literature on ANNs various 

applications, its strength lies in its ability to handle non-linear functions, to perform model 

free function estimation, to learn from data relationships that are not otherwise known and, to 

generalize to unseen situations. ANNs have been shown to be universal and highly flexible 

function approximators or any data. Therefore, ANNs make powerful tools for models, 

especially when the underlying data relationships are unknown (Mas et al., 2004). 

The use of neural networks has increased substantially over the last several years because of 

the advances in computing performance and the increased availability of powerful and 

flexible ANNs software. Recent ANNs applications include Rainfall-runoff modeling (Chen 

& Adams, 2006), Optimization for water and wastewater treatment (Legube et al. 2004), 

Demand forecasting (Elkateb et al., 1998), Forecasting chlorine residuals in a water 
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distribution system (Bowdena et al., 2006), Classification of buried pipe defects (Sunil & 

Fieguth, 2006), Spatial interpolation (Rigol et al., 2001), Drought forecasting (Morid et al. 

2006, Mishra & Desai, 2006), Water quality modeling (Chau, 2006). Ahn et al. (2005) used 

an ANNs model to predict pipe breaks in Seoul city mains network. The ANNs model gave a 

good performance on detecting the pattern of pipe breaks basis on seasonal variation.  

The ANNs model has been applied to the water distribution network of subdivision in 

Edmonton, Canada (Rajani and Kleiner, 2001). The model was trained with historical input 

data including temperature, rainfall, operating pressure, and number of breaks. However, 

some main physical and environmental factors were not included in the model, such as pipe 

age type, diameter, and soil properties.  

Sunil and Fieguth (2006) combined  neural networks and concepts of fuzzy logic for the 

classification of defects by extracting features in segmented buried pipe images. Among the 

comparison between back propagation neural networks and neuro-fuzzy projection network 

classifiers, they concluded that the proposed neuro-fuzzy classifier performs the best, with 

classification accuracies around 90% on real concrete pipe images. Moselhi and Shehab-

Eldeen (2000) also developed the ANNs in the analysis and classification of defects in sewer 

pipelines. Their model was trained to classify four different types of defects including cracks, 

spalling, joint displacements, and reduction of cross sectional area.  

Additionally, Al-Barqawi and Zayed (2006) used a supervised ANNs with the back 

propagation algorithm to develop the condition rating model for water mains. They put eight 

input factor to prediction model.  

Bowdena et al. (2006) developed general regression neural networks for forecasting chlorine 

residuals in the Myponga water distribution system up to 72 h in advance. They demonstrated 

that ANNs not only is capable of forecasting chlorine residuals but it also provides better 

predictions for this case study. 

Pijanowskia et al. (2002) and Mas et al., (2004) integrated ANNs and GIS to forecast land-use 

change, where GIS is used to develop the spatial predictor variables. Four phases were 

followed in their researches: (1) design of the network and of inputs from historical data; (2) 
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network training using a subset of inputs; (3) testing the neural network using the full data set 

of the inputs; and (4) using the information from the neural network to forecast changes. They 

concluded that ANNs constitutes a powerful alternative in spatial land-use change processes 

modeling, when more conventional models obtain poor performance. However, it is probably 

impossible to develop models of land-use processes, which present a high power of prediction 

because these processes depend upon very diverse factors from environmental to socio-

economic and cultural that are changing over time. They recommended ANNs model for 

future prediction that helps the environmental planners and managers to develop policies 

aimed at controlling the adverse ecological and social effects of land-use changes.  

1.8 Pipe Rehabilitation Planning 

While water supply systems getting older, pipe rehabilitation planning is being given more 

and more attention both from the water industry and from the research community. The 

emphasis for urban water engineers now and in the future increasingly lies not in new 

installation but in the evaluation and rehabilitation of existing networks. It is estimated that 

while expenditures on new work are dropping rehabilitation work is increasing at an annual 

rate of 25 percent (Thomson J., 2006). 

The literature review identified numerous methodologies for prioritizing water pipelines 

renewal programs, many of which relied to some extent on the availability of water pipelines 

break data (Davis, 2000; Lei and Saegrov, 1998; Kleiner, 2001). The main objective of 

rehabilitation planning is to ensure the required performance of the system and maximise the 

economic efficiency of the operation. There are three major performance indicators that have 

to be considered: 

• Hydraulic performance, 

• Water quality, and 

• Reliability of the service. 

Most of the existing rehabilitation planning methods require an understanding of the pipe 

deterioration process. Pipe deterioration modeling (asset modeling) was classified into two 
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groups: physical and statistical. Indeed, a third group of models was identified that represents 

an integrated approach based on the data mining techniques and hydroinformatics.  

1.8.1 Hydroinformatics 

Hydrinformatics is the discipline that provides a framework for development and application 

of advanced innovative techniques for water distribution network management. Savic et al. 

(1997) indicated that two major tools particularly suitable for water industry applications are 

geographic information systems (GIS) and data mining techniques, such as artificial neural 

networks (ANNs) and genetic algorithms (GAs). The main purpose of GIS is to collect, store 

and manage the accurate and comprehensive network data. Data mining  also referred to as 

knowledge discovery in databases, data harvesting, data archeology, functional dependency 

analysis, knowledge extraction and data pattern analysis, is the automated way to analyse 

large volumes of data to identify trends and patterns that are important for operation, 

maintenance and rehabilitation of water supply system. With advanced SCADA (supervisory 

control and data acquisition) systems and large asset, customer and maintenance databases, 

water utilities are facing the challenge of efficiently extracting useful information from data. 

Data mining techniques can be used for different purposes. ANNs can be used for demand 

forecasting (Bougadis et al., 2005) and for scanning large amounts of data (both operational 

variables and historical records) to identify a failure event or to estimate failure patterns. GAs 

can be utilized for optimization of system design, operational decisions and maintenance 

plans (Savic et al., 1997).  

1.9 Summary and Needs for Additional Research  

In this short chapter, pervious laboratory researches, theoretical studies, and discussions on 

the behavior of deterioration and failure modeling of pipe assets in urban water supply 

systems, during the period  1974 to 2006, are summarized and reviewed. References were 

sought from the UK, Europe, Australia, Canada and the USA. 

The first section describes the sequential process of water pipelines deterioration. This review 

is followed by a discussion of the analysis of factors which affect pipeline’s failure and 

mechanism of breaks. Failure management cycle in the urban water supply systems is 
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explained. Section 1.6 shows how water pipelines failures can be quantified. A brief overview 

of existing water pipelines failures modeling approaches are presented in section 1.7. At the 

end of the chapter, pipe rehabilitation planning in water supply systems is discussed.  

However, A pipe failure in a water distribution network is a complicated event, which usually 

results from a combination of several factors. Water network must be analysed individually to 

determine which variables are responsible for pipe failures. The main obstacles in developing 

a physical model for pipe failures are the lack of knowledge of the strength of the system and 

the external variables which act on each pipe. To overcome this difficulty, a statistical model 

based on analysis of historical failures could be used. 

As noted in the literature review, there has been relatively success in developing models for 

deterioration process and detailed prediction of pipe failure. In the most cases, models have 

been correlated with a number of factors such as pipe material, age, diameter and loading 

conditions. However, the correlation data sets were quite low, bringing into question the 

validity of the overall approach. Therefore, the relationship between water pipelines failure 

and related factors requires more exploration, including whether statistical investigation, 

ANNs predictive model and survival analysis can be performed. Of course, integrated 

modeling between recently techniques to accurately quantifying in order to implement 

effective renewal plans for water distribution systems is still important. 

Given that no universal rules exist for selecting pipes for replacement, this study sought to 

determine influential factors and time of failure relationships for the City of Sanandaj’s water 

distribution system by analyzing  the data available for the City’s system. These results will 

then used to develop an evaluation process that would identify pipe segments with the highest 

priority for replacement. 
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2. Data Collection and Elementary Analysis 

2.1 Introduction  

Based on the research problem and the literature review, deterioration of water pipelines and 

prediction of future failure is an important issue in water network management and crucial 

factor in establishing the water pipelines renewal priorities. The aging of water supply 

infrastructure systems, coupled with the continuous stress placed on these systems by 

operational and environmental conditions, have led to their deterioration which manifests 

itself in the following (Kleiner, 1997):  

• Increased rate of pipe breakage due to deterioration in pipe structural integrity. This in 

turn causes increased operation and maintenance costs, increased loss of (treated) water 

and social costs such as loss of service, disruption of traffic, disruption of business and 

industrial processes and disruption of residential life. 

• Decreased hydraulic capacity of pipes in the systems, which results in increased energy 

consumption and disrupts the quality of service to the public (Adams and Heinke, 1987). 

• Deterioration of water quality in the distribution system due to the condition of inner 

surfaces of pipes which may result in taste, odour and aesthetic problems in the supply 

water and even public health problems in extreme cases. 

It has been reported that the distribution system often involves 80% of the total expenditure in 

drinking water supply systems (Clark et al., 1988). Given the reality of scarce capital 

resources, it is imperative that a comprehensive methodology be developed to assist planners 

and decision makers in finding the best (most cost-effective) rehabilitation policy that 

addresses the issues of safety, reliability, quality and efficiency.  

This chapter is concerned with the comprehensive methodology for advancing research 

besides data collection in study area and elementary analysis of data. In first section research 

methodology is discussed. The proposed methodology is demonstrated through the 
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application to the pilot area in water network of Sanandaj city in Iran. Section 2.3 summarizes 

the approaches used by author to collect data requirements for the modeling. Section 2.4 

describes preliminary statistical analysis to give insight on the impact of different risk factors 

on the structural deterioration of water pipes. In the rest of this chapter spatial overview is 

presented of existing data that were employed during the thesis. This section addresses a 

process for using integrated spatial and statistical analysis to discover not only the distribution 

of water pipelines failure in space but also indicate various spatial trends in failure. The last 

two section will be introduction to modeling approaches in chapters 3, 4 and 5 .  

2.1.1 Methodology for present research 

The following six-step process highlights the selected methodology in this research:  

1. Step one: a literature search to obtain published information on the water pipelines 

failure analysis and modeling,  

2. Step two: Collection of water pipelines failure information in selected area through a 

literature survey and combination of different database included water distribution 

failure database, customized ArcView/GIS and calibrated hydraulic model (Epanet), 

and deep interview with technicians and crew,  

3. Step three: Elementary analysis of historical failure data based on statistical methods to 

determine factors which affecting progression of water pipelines failure as well as 

application of spatial analysis includes clustering and spatial interpolation methods to 

provide scientific reasons for depicting spatial relationships and the strength of 

dependencies between failure incidents, environmental and hydraulic variables, and the 

other geographic factors, 

4. Step four: Review of univariate statistical inferences, indices of bivariate relationship 

and multivariate data analysis to assess correlation between the affecting factors and 

identify the important variables for the occurrence of failures on the water pipelines as 

well as fitting two regression model namely Multiple and Poisson, 

5. Step five: Application of Artificial Neural Networks (ANNs) models to predict number 

of failure in all water pipelines and 3 range of materials, 
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6. Step six: Implement of non-parametric and parametric survival models for time to 

failure of water pipelines to quantified various rate of renewal over the mains network 

on the percentage of failures which avoided from this network. 

2.1.2 Data collection plan 

One of the most critical and expensive parts of any pipeline failure program is the collection 

of reliable data. We tried to have a short, but reliable, record period which is better than a 

longer, but less reliable period. With in the scope of this research, failures data in the central 

part of Sanandaj city (Iran) have been collected. The data collection methods used during the 

course of the study is illustrated in Fig. 2.1 It contains both map data (depicting location of 

failures) and attribute data (describing physical characteristics of each failure). The data gap 

was further reduced based on field notebook, census material, maps and as-built drawing as 

well as interviews with SWWU staff. 
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Fig. 2.1 Data collection process outline 

2.2 Study Area Description 

The area chosen for this study, Sanandaj city in the west of Iran (approximately longitude: 

46.99 and latitude: 35.32), is an extraordinary case due to the unusually high number of mains 

breaks (in average: 67 failures/100 kilometer/year).  
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Fig. 2.2 Location of study area and selected part of water pipelines network 

The city has a young distribution system, 70% of it built since 1960 and 30% since 1995. The 

SWWU operates a water distribution system covering approximately 90 km2 and providing 

retail water service to more than 210,000 people and it maintains 250 kilometers of water 

mains, from 50 to 800 millimeters in diameter. The majority of pipe material in the past was 

cast iron , ductile iron , galvanized iron and asbestos cement. At recent years, since 1997, 

polyethylene pipes have been used quite extensively. Average water use was in the range of 

35,000-45,000 m3/day. Two major sources of drinking water, surface water and groundwater, 

supply the network. Treated water is delivered from the water treatment plant to the ground 

reservoirs by pumping. Water storage in the distribution system is provided by twelve 
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elevated storage facilities to maintain pressure levels in the gravity-pressure system. The 

pressure in the network is between 0.5 and 7.5 bar.  

This work focuses on the pilot area which was found in a high-density residential and 

commercial area in the center of city. The pilot area serves approximately 11000 connections, 

corresponding to 554 mains segments. Its distribution system consists of nearly 56.7 km of 

water pipelines from 63 to 800 mm in diameter made variously of cast iron (13%), ductile 

iron (21%), asbestos cement (36%), and polyethylene (30%).  

2.2.1 History of water pipelines failure in study area  

The term “failure or break” in this study is taken to correspond to an entry on a water main 

section repair report sheet and constitutes a single repair event. A section of water main is 

defined by its “from and to” nodes. A node is a connection between two pipes (e.g., a tee or 

cross), a valve or a change in pipe characteristics (e.g., diameter, material).  

Every year, the SWWU reports approximately 200 water pipelines breaks, most of which are 

minor. Water pipelines breaks may temporarily halt water supply to households and 

businesses in the surrounding areas. Breaks can also result in property damage, street and 

sidewalk closures, and traffic and business disruptions. Within the reference period 1995 to 

2004, the water pipelines failure database contained 395 reported incidents.  

Fig. 2.3 shows the annual number of breaks which presents the pilot area has experienced 

approximately 35 to 45 failures per year. From a material point of view, polyethylene and cast 

iron pipes had a higher number of failures than other materials. In ductile iron (DI), for the 

whole period, there is no overriding tendency and it is nearly horizontal, which indicates little 

deterioration rate. The blue line, asbestos cement, shows softly degradation of pipes. In this 

graph, it is apparent the cast iron deterioration was increasing until 2003 but has stabilized in 

the 2004. The annual variation of failure in polyethylene pipelines will be explained in Fig. 

2.12. Finally, the thicker line which indicates the total annual number of failure, shows from 

one year to the next year there are variations. This graph indicates that the number of breaks 

has, in general, been increasing steadily. 
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Fig. 2.3 Annual number of water pipelines breaks from 1995 to 2004 

2.3 Description of Existing Data Sources 

The results of the literature search and this work describe that difficulty in developing 

mathematical models for this type of problem was the lack of data on both the water pipelines 

network and the pipe breakage history. It constraints not only the type of models used but also 

their predictive capacity and their accuracy. Of course, the acceptance of poor and missing 

information is because the network is widespread and hidden, and because it is underground. 

Therefore, it is hard to measure data.  

In the actual sampling area, data were available from multiple source records over the past 

years (Fig. 2.4). After most installation year in 1965, there was no recording system to 

pipeline’s data and just the technicians who were working keep the data in the mind. Since 

1995, the responsibility of water network in SWWU was changed and a paper based system 

developed for documentation of data in pipelines and failures. The network asset details of 

Sanandaj Utility’s water network had been captured on an Autodesk system (AutoCad) and 

GIS since the early 1998s. After 2 years, the utility maintain computerized records of pipe 

breaks (failure database). These major sources of data considered for the analysis are briefly 

described below. 
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Fig. 2.4 Data availability on water pipelines failure in this research 

2.3.1 Data quality  

The accuracy of any prediction is directly proportional to the quality, accuracy and 

completeness of the supplied data.  Good data, along with the appropriate model choice, 

usually results in good predictions. Consequently, considerable effort was required to perform 

quality assurance on the data. 

Prior to analysis, quality control techniques were used to eliminate bad data, such as those 

pipes with failure dates before the installation date, and those pipes which could not be 

classified into categories of interest for this study. A lot of the data that has been recorded is 

of dubious quality, being recorded or inputted wrongly. Research in European countries has 

identified that a smaller amount of more accurate data can lead to better results than more 

complete, but uncertain data (Gat and Eisenbeis, 2000). The unreliable nature of the data 

creates several problems in modeling the deterioration process of pipes. The most obvious one 

is that with a lack of failure history it becomes very difficult to estimate the failure rates of 

pipes. This has been a major shortcoming in previous research and has resulted in the 

dominance of engineering judgment in the decision making process. Therefore, in this study 

395 case of water pipelines failures were considered to the analysis and modeling. 
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2.3.2 Internally published reports and drawing 

Documents reviewed during the study cited the SWWU’s organization. The first data set 

includes internally published reports in technical and operation bureau. The contents of the 

reports have been reviewed and relevant information was summarized in database. 

Table 2.1 Recommended items for water pipelines failure data collection 

Field Description Purpose/Remarks 

Water mains 

failure ID 

A unique identifier assigned by the utility to track the 
incident and related data 

Provides a common identifier 
for data analyses. 

Water pipelines 
ID 

A unique identifier to track the pipe on which the 
break occurred. 

Provides a common identifier 
for data analyses. 

Installation year The year in which the pipe that failed was installed 
Useful for analyses of main 

break trends. 

Address The nearest address to the location of the break Spatial analysis of main breaks 

Pipe material The material of the pipe 
Trend analyses of main breaks 

by pipe material 

Pipe diameter The nominal diameter of the pipe 
Trend analyses of main breaks 

by pipe diameter 

Length 
The length of the pipe that failed. This length refers 

to the length recorded in a network inventory. 
Needed for developing pipe 
specific replacement program. 

Surface and 
traffic 

Describes the surface under which the pipe is laid in 
order to estimate the traffic load the pipe experiences.  

Helps to determine the cause of 
the main break. It will be used to 
examine trends in main breaks. 

Depth of pipe 
The distance from the ground surface to the top of 

the pipe. 
Helps to determine the cause of 

the main break. 

Type of failure 
The type of water pipelines break, based on visual a 

observation 
Allows for analyses of main 

break trends. 

Probable cause of 
the failure 

The most likely cause of the main break, based on a 
visual observation 

Can be used to examine trends 
in main breaks. 

Pipe wall 
thickness 

Thickness of the pipe wall, typically from a pipe's 
product catalogue 

Helps to determine the cause of 
the main break. 

Maximum  
pressure in area 

of break 

Describes the maximum  pressure in the pipe that 
failed. 

Useful for analyses of main 
break trends.  

Date of 

excavation 

The date on which the water pipelines was exposed 
to repair the main break 

Temporal analyses of main 
break trends 

Employee name 
The name of the utility employee who provided the 

field data 
Follow up of questions 

A description of each data item requested is provided in Table 2.1. 
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For the city of Sanandaj, large amounts of data concerning the pipe inventory and failure 

history are available on the paper records such as repair Kardex cards and large-scale 

drawings, typically 1:2000 scale. These maps show the location of a pipe, diameter, material, 

and depth of burial. In most cases, the date of pipe installation is usually not included in the 

drawings but they collected by interview the old crew and customers. In addition, the Kardex 

cards contains descriptive information includes the failure location, dates of pipe repairs, type 

of repair, and some special notes on repair activities.  

Another paper records was leakage data which are gathered by contractors personnel. There 

was one record for each leakage that has occurred in SWWU since the beginning of 1998. 

Each record contains the leak location, name of the street on which the leak occurred, leakage 

detection date, pipe material, pipe diameter, pipe installation date, and other relevant 

information about the leakage location. The advantage of using these leak records for creating 

an accurate pipe inventory arises from the fact that these records contain the information, 

which observed during the leak investigation. 

2.3.3 Water network failure database 

In urban water utility, a few cities in Iran have started to use computer based records during 

the last 5 years. Most water utilities already have procedure and forms in place for recording 

basic information related to breaks which defined by NWWEC. These records filled out by 

office personnel and field crews in responding to breaks in each component of network. 

Initially, part of this research effort was devoted to preparing the software for collection mains 

failure in study area. It is a user-friendly application and was programmed into Access 97 to 

record data for each failure case. Shortage knowledge of SWWU’s technicians and crews in 

English, all forms and interaction pages in database were converted in native language 

(Persian) which improved the quality and accuracy of data.  

The database contains daily recorded information of contractors who repaired damaged water 

network components. This software was installed in Failure and Repair Division of the 

SWWU dating to 2000. The older breaks since 1995, i.e. those that occurred prior to the 

creation of the database, were entered manually into the database during this research.  
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In MS-Access, the electronic forms provide ways of collecting and documenting main breaks 

and pipe condition information using pick lists and standard input. Therefore, it reduces data 

entry errors, data redundancy and preserves data integrity. 

The application has three basic tables, pre-constructed queries and macros, and customized 

menu items to store the data and report of query result. The pipeline's table includes id, 

material, diameter, wall thickness, depth of burial, category of upper street, age, segment 

length and hydraulic pressure. Failure attributes include information concerning positional 

and temporal data such as X and Y coordinate (address), cause, type , and time of failure. 

Finally, administrative data will include character of operators and repairing equips, security 

and classifying codes , cost data (equipments, material). The three tables have been joined via 

the common id. Fig. 2.5 illustrates the algorithm used for collecting the water lines failure.  

 

Fig. 2.5 Schematic description of water pipelines failure data collection application 

Reporting process on pipe breaks in SWWU 

When a break occurs, or water is appeared seeping from the ground, a local resident places a 

complaint by call. This complaint causes the SWWU water operators and equips go to the site 

and make an observation. Firstly, the result will come in a report paper sheet, which explains 

their investigation toward the leak, or break. SWWU’s major intent for filling out the break 
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report is to keep track of the work SWWU employees and enter in the database. In study area, 

the following basic steps were typical of water utility’s response to a mains break situation: 

Report a Leak or break Customers call to SWWU about breaks or leaks 24 hours a day, 

including weekends and holidays. They give the street address or 

the SWWU costumer reference number. 

Identification of problem A call from a customer of the system or an observation by a 

utility employee are typical examples of how a distribution 

system problem is first noted. Investigation of the problem will 

be initiated immediately or scheduled for the future depending on 

the perceived severity of the event. 

Investigation of problem An experienced utility employee is dispatched to investigate the 

problem. The investigator identifies the nature of the problem 

(i.e., water pipelines break causing property damage, service line 

leak, etc.) where exactly the pipe is broken and initiates remedial 

action based on the severity of the incident. 

Remedial action The solution to the problem may involve a temporary repair, a 

permanent repair or replacement, or notification of third party 

(e.g. for service line repair outside the utility’s responsibility). 

Follow-up Follow-up steps include recording crew times and other 

information related to the costs associated with the event, 

updating maintenance histories, alerting customers to the status,... 

Recording data Each of these steps in the process generates data and they were 

recorded initially on the paper based forms and then transferred 

on the database. 

 

The failure informing and repairing process stages are illustrated schematically in Fig. 2.6 and 

input requirements and the expected output data from the various stages can be seen.  

 



Chapter 2. Data collection and elementary analysis 

 
 

57 

 

Fig. 2.6 Chain of events leading to a repair and data generated at each response step 

2.3.4 GIS for water network and mains failure 

Geographic Information System (GIS) has been defined as a system for capturing, storing, 

checking, integrating, manipulating, analyzing and displaying data which are spatially 

referenced to the earth (Musgrave, 1996). The backbone of both statistical and spatial data 

analysis in this research relies on the GIS-based user interface which was developed in 

ArcView 3.2a (Esri, 1999). Section 2.5 will illustrate the overlay, proximity and point pattern 

analysis of water pipelines failure via GIS.  

In first stage, SWWU completed conversion of the paper version of the pilot water system to a 

geodatabase. The conversion was performed by digitizing the water system grid sheets into a 
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GIS. Further, failure data from related database was imported into GIS. This integration gives 

all statistical and customizing capabilities of Access and all the functionality of ArcView.  

In terms of GIS, water pipelines failure is a phenomenon which can be expressed through 

occurrences identified as points in space. Generally, failure location was reported by a crew 

through measuring the distance from the reference point using a tape measure. The crew 

would estimate the distance of the failure location from a known reference, normally the 

nearest street, alley or intersection. Clearly the estimation was subject to errors but this work 

tried to minimize it. Technological advancement calls for a need to revolutionize this 

approach and there is a strong recommendation that global positioning system (GPS) 

receivers be adopted for capturing failure location in SWWU. Failure mapping starts with 

geocoding process that matches an address of breakage to a physical location (as a dot) along 

a street. Each failure point is converted manually into coordinate locations via street or 

address matching. At a scale of 1: 2000, the reference map provides a suitable level of detail 

to approximately locate property boundaries, streets and distribution mains features. 

Accordingly, the water pipelines network and failures were digitized visually against a 

backdrop of streets, property parcel and buildings. The process of identifying the coordinates 

of a failure point in ArcView 3.2a, is to use “getx” command for the x-coordinate and “gety” 

command for the y-coordinate. For means of the coordinate projection system, this chapter 

considered the UTM system. Both x and y are defined by distances in meters from an arbitrary 

reference point. These projected coordinates are added to the original data record and read 

directly into the spatial and statistical analysis. 

When an address list is transformed into a set of coordinate points, corresponding failure 

attributed data are then imported from Access into ArcView. The platform in ArcView is 

connected with external databases using the SQL connection feature. In order to combine and 

join data to a point shapefile of locations according to each failure, a common field such as 

failure ID should exist in both tables. By joining this field between tables, data can be 

retrieved from each table and combined into another table. The data is then saved as a 

shapefile in GIS. In fact, each failure on the pipeline can be created by a common ID number 

in ArcView and Access databases. Therefore, the related non-spatial data about failure is 

stored in MS Access and graphical information is established in ArcView. Each record in the 
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tabular database is then connected with a failure point in GIS. Location of all of reported 

breaks for the 10-year data period were plotted on the map by small black dots (Fig. 2.2).  

2.3.5 Water pipelines hydraulic model 

To obtain the daily maximum pressure in water pipelines which the failure has been occurred 

on it, a calibrated hydraulic model was developed using the EPANET 2.0 software (Rossman, 

2000). Data utilized for calibration were gathered during UFW study in the area by 

monitoring the actual pressure and demand on the site. In calibration phase, comparison of 

measured and simulated pressure at the specific location showed a mean relative different of 

12.6% with range of differences being 0.6 to 24.6 % ( Sanandaj’s UFW report, 2000).   

 

Fig.  2.7 Calibrated hydraulic model for water pipelines in study area 
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2.3.6 Interviews with technicians and supervisor 

In addition to these data sources, interviews with laborers, supervisor, technicians and crew 

were undertaken for completeness, to ensure that no useful alternative data source was 

overlooked. During the data collection phases, not only in some cases there are a significant 

number of gaps in the failure data but also accessing to data was more difficult or expensive 

to obtain. For instance, pipe attributes like as location, material, diameter, year of installation 

and maintenance and past failures’ data were in the mind of crew and technicians. In the 

absence of such data, an interview technique was used to treat these gaps and capture relevant 

information. The SWWU staff opinion has been also applied in verification of data.  

2.4 Descriptive Statistics on Water pipelines Failure  

Descriptive analysis organizes and summarizes the data and can be used to indicate various 

trends in failures and factors affecting pipe failures. Every effort to model the failure of a pipe 

network should begin with this basic analysis. 

It should be noted that the deterioration processes of water systems are neither uniform nor 

identical. All the aforementioned studies show that water pipelines failure in general, is a 

result of various uncertain factors, some of which are site specific and hence they vary from 

one water distribution network to another. To assess the nature and frequency of failure as 

well as identifying the influential factors on it, the historical failure data of water pipelines in 

the City of Sanandaj (for the years 1995-2004) were collected and analyzed.  

2.4.1 Factors affecting water pipelines breaks  

In Europe, Australia as well as in US and Canada, there has been much research on the factors 

that contribute to pipe failures, with the goal of developing or improving predictive planning 

models. An extensive literature search and consultation with experienced water practitioners 

from SWWU, enable us to make the following categories for describing the deterioration of 

water pipelines in the selected network:  

• Maintenance variables,  

• Structural or physical variables,  
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• Environmental or external variables, and 

• Operational variables 

Therefore, identification of factors contributing to the occurrence of water pipelines failures in 

a given site was the first step to gain a better understanding of the failure mechanisms. In 

study area, the following factors were thought of as having the largest effect on the system of 

water pipelines deterioration and failures. This part addresses these factors which affecting 

pipe failure either time-dependent or static. For instance, pipe diameter or material are 

examples of static (i.e., will not change over time), while age of pipe is an obvious non-static 

factor.  

Time dependent factors 

Firstly, time-dependent factors which influence water pipelines breaks. The dataset from 

Sanandaj, Iran, present two factors depend on the time which deals with age of water 

pipelines and pervious number of failure.  

Age 

Generally, as pipe assets age, they tend to break more frequently. With respect to failure data, 

we found two behavior of failure in the material groups. In the plastic mains, polyethylene, 

the amount of failure was increased dramatically in the first 5 year after installation (Fig. 2.8). 
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Fig. 2.8 Percentage of failures, by water pipelines material 

In the second 5 year , the number of failures in water lines dropped off and then stabilized in 

recent years. In contrast, the non-plastic water pipelines showed a smooth increase in failure 

rates as pipes age. For example, cast iron (CI) material experienced 9% of total failure on the 

age of 35-40 years. Asbestos cement (AC) have experienced a increasing procedure until 20 

years of old and after the number of failure was decreased. Fig. 2.8 looks specifically at the 

percentage of failure according to water pipelines age differentiated by the water pipelines 

material over the period 1995-2004. In database, the age variable is equivalent to the time 

between laying year and failure time. 

Number of pervious failures (NPF) 

For a repairable system, like water network, the time of operation is not continuous. In other 

words, its life cycle can be described by a sequence of up and down states. The system 

operates until it fails, then it is repaired and returned to its original operating state. It will fail 
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again after some random time of operation, get repaired again, and this process of failure and 

repair will repeat. Overall, if the times between failures tend to get shorter with age the item is 

said to be deteriorating. Alternatively, if the times between failures are increasing then the 

item is improving. Conceptually, the time-to-failure is decreased over the year. Figure below 

shows this interpretation.  

 

 

 

The number of pervious failures (NPF) or cumulative number of breaks is a key factor in 

developing the prediction model (Pelletier, 2003 ). Clark et al. (1982) found that after first 

failure, the number of failure events increased exponentially with time. Goulter and Kanzemi 

(1988) observed the temporal and spatial clustering of water-main breaks, indicating that a 

previous break increased the likelihood of future breaks in its immediate vicinity. In Sanandaj 

dataset, we calculated the times between inter-failure. It was seen that the next failure times 

have been decreased (Table 2.2). 

We also evaluated the percentage of failures which occurred after each 500 days from first 

break (Fig. 2.9). This graph shows that about 15.2 % of all subsequent breaks occurred within 

500 days of pervious breaks. Additionally, we calculated the number of breaks in each 

statistical segment of water pipelines as well as their percentage. In study area there are 16 

water pipelines (from 554 total mains) which had 4 failures or more and 332 segment 

registered no break at all within 1995 to 2004. The rest (206 mains) have failure between 1 to 

3 . Fig. 2.10 shows in cast iron there is a water main with 9 failures. It means that this 

segment has priority for replacement. Meanwhile, polyethylene (PE) pipelines has maximum 

6 failures at one segment. Ductile iron (DI) has minimum failure number on mains and 

present acceptable degradation. Most of Asbestos cement water pipelines had failure number 

between 1 to 3 . 
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Table 2.2 Time of subsequent failure in the water pipelines with more than 3 failure  

Time of subsequent  failures (day) 

S
ta
rt
 ti
m
e

 

Water 
pipelines 

ID M
at
er
ia
l

 
Date of 
First 
failure 2 th 

failure 
3 th 

failure 
4 th 

failure 
5 th 

failure 
6 th 

failure 
7 th 

failure 
8 th 

failure 
9 th 

failure 
P03160 PE 11/10/2000 2 76 1087      

P03165 CI 12/08/1997 272 545 1058      

P04015 PE 28/10/1997 108 71 987      

P04175 CI 16/08/1995 1665 1188 389      

P04185 PE 28/07/1997 1206 833 572      

P05009 CI 13/02/1995 1330 795 418      

P07010 CI 13/06/1996 1646 630 437      

P07110 CI 11/04/1999 637 941 110      

P08135 CI 14/05/1996 1500 259 1161      

P06030 PE 23/06/1999 96 97 367 1186     

P14015 PE 28/08/1997 459 194 998 618     

P04165 PE 24/08/1997 114 68 1056 923 233    

P03520 CI 12/08/1995 869 248 257 858 223 389   

P03500 CI 12/08/1995 1180 764 319 163 169 247 227  

01
/0
1/
19
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P03485 CI 14/04/1995 375 424 424 775 287 1 251 313 
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Fig. 2.9 The time between failures during study period 
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Fig. 2.10 shows the percentage of NF in each material of water mains.  
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Fig. 2.10 Number of failure in each mains segment 

From spatial point of view, section 2.5.3 evaluates the spatial pattern of failure in the study 

area. It shows 4 cluster of failure (Fig. 2.35) which report that approximately 16% of failures 

occurred within 10 meter of a previous failure, and 39% within 50 meters of another failure. 

Static factors  

These factors are static over time due to properties of the pipe and installation practice. They 

include pipe material, diameter, wall thickness, and depth of burial.  

Pipe material  

Similar to water pipelines age, the water pipelines material of construction information has 

been previously collected during system inventory updates. In the study area, pipe materials 
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are grouped into two categories: Rigid pipes (cast iron, ductile iron, and cement-based) and 

Flexible pipes (polyethylene). The material of a particular pipe depends on the year of 

installation and diameter. For large pipelines (with diameters over 200 mm) ductile iron (DI) 

and for small diameters polyethylene (PE) pipes were typically used. Cast iron (CI) and 

asbestos cement (AC) are still in service but no longer installed today, while mainly ductile 

iron (DI) and polyethylene (PE) are used for newer mains. Fig. 2.11 plots the number of 

failure in each material. Among the pipe materials used in study area, asbestos cement 

predominate for pipe dimensions of 100 to 200 mm. It represents about 36.1% of the total 

length of installed water mains. The majority of these pipes were laid in the 1970s and 1980s. 

After decades of service, the number of failures in AC pipes were increased greatly. But, most 

asbestos cement pipelines have exhibited a slightly reduced average failure frequency over the 

recently years (Fig. 2.8). Ductile iron pipe constitutes 20.8% of the mains network and the 

break rates for this material in 1995 and 2004 were 11.0 breaks/100 km/year. Cast Iron (CI) is 

the material that is most prone to failure. It accounts for about 13.4 percent of the pipes 

currently in use in the study area. These pipes yielded the highest failure rate of 147.4 breaks 

per 100 km of cast iron pipe in service per year. Lastly, polyethylene pipelines for period 

1997-2004 have experienced 126.5 annually break per 100 kilometers of water mains. Overall 

it has been observed that before 1997 the failure rate for all four materials was very low and 

completely different than in years after 1997. This increasing after 1997 can be justified by 

the setting-up a paper based data collection system in 1997 and then in 2000 a computer data 

base. Table 2.3 summarizes different rate of failure in material categories of water pipelines in 

study area during 1995 and 2004. 

Table 2.3 Water pipelines material in study area and failure rate  

Length of pipe 
Pipe material 

km % 

Number of 
failure 

Failure rate 

(per year in 100 km) 

Cast Iron (CI) 7.6 13.4 112 147.4 

Asbestos Cement (AC) 20.5 36.1 99 48.3 

Ductile Iron (DI) 11.8 20.8 13 11.0 

Polyethylene (PE) 16.9 29.7 171 126.5 
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More detail about failure behaviour of these materials were explained in Fig. 2.11 
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Fig. 2.11 Number of failure on each material by year 

This initially statistical analysis indicates that almost half of all problems with PE pipe occur 

in the first year after installation. Fig. 2.12 represents the breakage pattern for polyethylene 

water pipelines during the last years. Since 1997 polyethylene pipes were laid, initial breaks 

have occurred in the early life of this pipe because of uneven setting and weak material. In 

December 2000 during a particularly cold period, the low temperature constitutes a major 

cause in the damage of polyethylene pipes (see Fig. 2.12). 
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Fig. 2.12 Three phases in Polyethylene water pipelines failures in study area 
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Water main’s diameter 

Water distribution mains of various materials in study area are readily available in sizes 

ranging from 63 to 800 millimeter. Fig. 2.13 examines the data to see how failures were 

distributed among different line sizes.  
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Fig. 2.13 Percentage of breaks in various water main's diameter (1995-2004) 

About two-thirds of all failures occurred on the small diameter 63mm and 100 mm lines, 

which make up about 70.4 per cent of study area’s mains system. Approximately, 26.3 per 

cent of operating failures occurred on 150 or 200 mm (6" and 8" nominal) diameter lines, 

which make up about 29.6 per cent of study area’s water pipelines system. In other word, the 

frequency of breaks increases with a decrease in pipe diameter (Fig. 2.13). This finding agrees 

with that of previous researchers (e.g. Ciottoni 1983; Andreou and Marks 1986; Walski et al. 

1986; Kettler and Goulter 1985). In contrast, for large diameter pipelines (diameter >400), no 

pipeline failures were reported. In the next chapter, the correlation of diameter and other 

variable will be explained.  
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Length 

Currently, Sanandaj has approximately 56.7 kilometres of water pipelines within the pilot 

limits which the average length of a main segment is 149.66 m. As shown in Fig. 2.14, the 

length of a pipe has an effect on the number failures per pipe since we are measuring failures 

per pipe and not per pipe length. Maximum failure were recorded in the water pipelines in 

length category between 100-150 meter.  
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Fig. 2.14 Number and percentage of failure by length of pipelines 

Pipe wall thickness 

The ability of a pipe to resist the stresses induced by internal pressure and earth loads is a 

function of the tensile strength of the material and wall thickness (Skipworth et al, 2002). Fig. 

2.15 plots the number of failures against the pipe thickness of four material. It is apparent that 

there is a general decline in the failure frequency when the thickness of pipelines is increased. 

The greater wall thickness provided an inherently more robust pipe, which was not as likely to 

fail structurally as a result of external and internal loading (Kettler and Goulter 1985). 
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Fig. 2.15 Number of failure according to thickness of pipes by material 

Depth of pipe burial 

Pipelines tend to be buried with an increased depth of cover in locations where there is a 

perceived increased risk of damage caused by cold weather, traffic load and third party 

activity. In Western of Iran and in mountainous areas, such as Sanandaj, severe of winters 

causes 15.6 % of failures on the pipelines (Table 2.4 & Fig. 2.18). Burial depths in this area 

vary from 1 to 2 meter which depends on the diameter, ground condition of trenches and 

proximity to traffic routes. In some part of city the rock make difficulties in trenching and 

laying the pipelines. Usually, one meter is the minimum fill depth over the top of  all water 

pipelines in the pilot area.  

In addition, there is a relationship between depth of cover and causes of failure. In the most 

shorter of cover on the water mains, the traffic loads, excavation by third party and winter 

forest was reported as a probable cause of failure. Table 2.4 give the failure frequency as a 

percentage per depth of cover for cause of failure in terms of external interference (third party 

activity), traffic loads and winter forest.  
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Table 2.4 Percentage of failure frequency per depth of cover according to causes 

Cause of failure (%) 
Depth of  
cover (cm) 

Length of 
water pipelines 

(km) 

Number of 
failure Traffic    

loads 
excavation by 
third party 

winter   
forest 

100-150 20.2 222 7.2 23.5 8.1 

150-200 36.5 173 6.4 14.7 7.5 

  

With respect to material, polyethylene pipelines were laid less than 1.5 meter in the study 

area. The other is located in deeper trenches. The results presented in Table 2.4 clearly 

demonstrate the added benefits of burying pipelines deeper. 

Water pipelines location  

Pervious study have shown that traffic loads is a significant factor affecting pipe failure rates 

(EPA, 2005). Because of pilot location in the central part of city, most buried pipes are subject 

to large cyclic surface loads. In the case study dataset, traffic load was taken into account as a 

qualitative variable according to vehicles circulation or the type of road.  

Table 2.5  Water pipelines length in each traffic load category by material 

Material (%) Traffic 
category 

Length of water 
mains AC PE DI CI 

Low load 29.5 11.3 15.2 1.2 2.8 

High load 27.3 9.2 1.8 10.5 4.7 

 

This classification relied on expert views and has been done by consulting the SWWU 

engineers. Therefore two traffic categories were created: low and high. Water pipelines 

located in the sidewalk, alley, and low traffic street fall into low traffic load and water 

pipelines located along main street were categorized as high loads of traffic.  

Table 2.5 presents length of water pipelines in each category of traffic loads in term of 

pipeline material. As shown in Fig. 2.16, number of failure increase with traffic load in two 

material, cast and ductile iron. Polyethylene and asbestos cement pipelines experienced more 
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failure in the low traffic load. As illustrated in table 2.5, most PE and AC pipelines located in 

the area with low traffic. In contrast, DI and CI mains have been laid in the main street.  

Traffic Load

Material : PE

High Traf f ic ; 15%

Low Traf f ic  ; 85%

Material : CI

Low Traf f ic  ; 46%
High Traf f ic ; 54%

Material : AC

High Traf f ic ; 36%

Low Traf f ic  ; 64%

Material : DI

Low Traf f ic  ; 8%

High Traf f ic ; 92%

 

Fig. 2.16 Percentage of failure according to traffic load in terms of materials 

Pressure 

A variable that can influence the failure of some water pipelines is daily maximum pressure. 

Based upon SWWU's experience, water pipelines in higher-pressure areas are more likely to 

fail. Further, pressure in selected water pipelines varies widely throughout the day and night, 

as people use more or less water. This fluctuation puts a great deal of strain on the mains, 

which means they are more likely to burst. The water pipelines breaks during the period from 

1995 to 2004 were analyzed and a total of 395 breaks were recorded for this period, of which 

11.3 % caused by high pressure (Fig. 2.18). Daily maximum pressure for each water pipelines 

were calculated in hydraulic model and entered in dataset. The fitted graphs in Fig. 2.17 show 

the exponential increases of water pipelines failure in four materials.  
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Fig.  2.17 Number of failure according to maximum pressure by material 

In general, the water pressure is more dependent on the ground elevation. Put in other words, 

the lower the ground elevation causes the higher water pressure in pipelines. Due to 

geographical situation and topographical features, the study region is situated among a group 

of major and minor hills in near the mountains. Most of main distribution bear significant 

grater pressure and tolerate 7.5 bar during low demand condition.  Inadequate pressure 

management in network cause more failures on supply and also increase leakage. An average 

of 11.3 percent of the water pipelines breaks from this problem demonstrates failure is related 

closely to the pressure in the system. In SWWU’s experience, certain pipe material, such as 

polyethylene and cast iron are more susceptible to this than other. Subsequent to this, we 

developed the hydraulic model to estimate the pressure in more detail.  

2.4.2 Summary of explanatory factors 

While a large number of factors can contribute to the failure of water mains, 9 predictor 

variables were used in the statistical model and these summarized in table 2.6. The factors 

were identified in a more objective manner to use in statistical investigation. Many other 

factors can affect the rate of deterioration of water distribution systems and lead to their 

failure. But the problem is access to this data in the study area. 
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Table 2.6 Summary of variable in failure data analysis 

Variables Variable type Symbol Levels  
(for categorical variables) 

Category/ 

Data source 

Date of failure 
Continuous 
quantitative 

X1 Day of failure reporting 

X (coordinate of failure) 
Continuous 
quantitative 

X2 

Y (coordinate of failure) 
Continuous 
quantitative 

X3 

Match failures address along 
street or intersection in GIS 
and find x and y in the UTM 

system 

Number of pervious breaks 
Discrete 

quantitative 
X4 

Experienced number of 
failure before 

Maintenance 

Age of pipe 
Continuous 
quantitative 

X5 
the number of years between 
laying year and failure time 

Pipe material 
Nominal 
categorical 

X6 
1– Cast Iron; 2–Ductile Iron  

3–Asbestos Cement            
4- Polyethylene 

Pipe diameter 
Continuous 
quantitative 

X7 
the diameter of the pipe in 

millimeter 

Length of pipe 
Continuous 
quantitative 

X8 
the length of the pipe in 

meter 

Pipe wall thickness 
Continuous 
quantitative 

X9 
the thickness of the pipe in 

millimeter 

Structural 

or 

Physical 

Pipe location 
Nominal 
categorical 

X10 
0 if the pipe locates under 
pavement or roadway with 
light traffic, 1 otherwise 

Depth of pipe burial 
Continuous 
quantitative 

X11 the depth of cover in meter  

Environmental 

or 

External 

Pressure 
Continuous 
quantitative 

X12 
the pressure in the pipe in 
meter of water column 

Operational 
(Hydraulic Model) 

 

2.4.3 Probable cause of failure 

The causes of water pipelines deterioration are the focal point of this section. Exactly 

identification of causes for each failure is difficult and more expensive. In this research, the 

most probable cause of water pipelines failure was conducted through several individual 

investigations. Table 2.7 compiles data on water pipelines accidents based on their causes and 

mechanisms in each material.  
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Table 2.7 Incorporation of failure mode and causes 

Failure mode Cause of failure Water pipelines material 

Displacement at joint 

Longitudinal  

Traffic load 

Uneven setting 
Asbestos Cement (AC) 

Ovality 

Joint imperfection 

Displacement at joint 

Weak material 

Uneven setting 

Winter forest 

Traffic load 

Overpressure 

Polyethylene (PE) 

Holes 

Displacement at joint 
Uneven setting 

Corrosion Ductile Iron (DI) 

Holes 
Corrosion 

Water hammer 
Cast Iron (CI) 

 

This table and Fig. 2.18 indicates that corrosion is a big problem for the cast iron (CI) pipes, 

as the breaks due to corrosion account for less than 6% of the total breaks for this period. At a 

glance, Fig. 2.18 shows the total number of failures that occurred in the period 1995-2004 

differentiated by reported cause of failure. Uneven setting is the predominant cause of failure 

(21%). Traffic load caused the majority (about 19 %) of failures and weak material accounted 

for 15 %. The next largest cause was water hammer damage (12 % of all failures) and high 

pressure was responsible for about 11 % of total pipeline failures. 

Percentage of water mains failure
by causes of failure

11%

6%
7%15%

21%

8% 1% 19%

12%

High pressure

Corrosion

Excavation by third party

Weak Material

Uneven setting

Cold weather

Root of tree

Traffic load 

Water hammer

 

Fig. 2.18 Percentage of water pipelines failure by causes 
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2.4.4 Failure modes 

Water pipelines in study region break in one of seven modes of failure: circumferential break, 

longitudinal break, explosion, hole, displacement at joint, ovality and spiral cracks (Fig. 1.3). 

Table 2.8 lists the different failure modes and their corresponding percentages which vary 

depending on the pipe’s material. Among the 395 breaks, displacement at joint comprise the 

predominant failure mode (32%). An average of  25% of water pipelines breaks are 

longitudinal and other 44% are either circumferential, explosion, hole and spiral cracking. Just 

7% of failures in polyethylene ovalized under the effects of earth and live loads (Fig 1.3 f.)  

Table 2.8 Failure modes and their percentage 

 Apply to water pipelines material & percentage 

Failure Mode PE AC CI DI 

Circumferential 2 % 3 % 2 % 0 % 

Longitudinal 13 % 7 % 4 % 1% 

Explosion 3 % 1 % 0 % 0 % 

Hole 6 % 1 % 4 % 2 % 

Displacement at Joint 12 % 14 % 5 % 1 % 

Ovality 7 % 0 % 0 % 0 % 

Spiral cracking 0 % 0 % 13% 0 % 

 

Fig. 2.19 indicates the percentage of failures over the period 1995-2004 differentiated by the 

seven failure modes categories. 

7%
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4%
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Spiral cracking

 

Fig.  2.19 Percentage of failure modes in selected water mains 
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Up to this point, we have dealt exclusively with what is commonly referred to as classical 

statistics. In this section, we conducted spatial analysis to determine water pipelines break 

pattern for pilot zone in the urban community of Sanandaj, Iran. 

2.5 Spatial Analysis 

The analysis strategy was established by expression of failures as a random distribution of 

points in space (Fig. 2.20). Spatial analysis involves the analysis of data representing 

geographical features which have a locational attribute such as absolute location (coordinates) 

or relative positioning (distance). Prior to point pattern analysis, a set of descriptive spatial 

statistics e.g. spatial measures of central tendency and dispersion were done. Additionally, 

spatial analysis applied to point data typically involves the analysis of point distributions and 

the relationship between point distributions and other spatial features. The objective of the 

analysis would be to determine if the point pattern is “regular”, “random”, or “clustered”. 

Two basic techniques are used based on (i) counting of cases within small squares (quadrat 

analysis) and (ii) measuring distance to the nearest case (nearest-neighbor analysis). 

 

Fig.  2.20 Schematic description of temporal and spatial trends in water pipelines failures 
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All spatial statistical analysis was performed using the CrimeStat III software. It is a freely 

available package that provides a variety of tools for the spatial analysis of crime incidents or 

other types of applications involving point locations, such as the location of pipeline failures. 

2.5.1 Mapping of failure point locations in GIS 

GIS combines layers of spatially related information. Each layer comprises the pertinent map 

and its conjugate attribute data. This study used the point mapping method to displaying 

geographic patterns of failures. In the spatial database, failure mapping starts with geocoding 

process that matches an address of break to a physical location (as a point) along a street. 

The water pipelines failure database is a GIS-based tool for integrating map and attributes 

data. In term of GIS, water main failure is a phenomenon which can be expressed through 

occurrences identified as points in space. Each failure point is converted manually into 

coordinate locations via address matching. The process of identifying the coordinates of a 

failure point in ArcView 3.2a,  is to use  “getx” command for the x-coordinate and “gety” 

command for the y-coordinate. In a project coordinate system, such as UTM, both x and y are  

defined by distances in meters from an arbitrary reference point. 

 

Fig. 2.21 Observed failure locations on water pipelines network and related GIS layers 
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When an address list is transformed into a set of coordinate points based on street reference 

layer, corresponding failure attributed data are then imported from Access into ArcView. The 

platform in ArcView is connected with external databases using SQL connection feature. In 

order to combine and join data to a point shapefile of locations according to each failure, a 

common field such as failure id should exist in both tables. By joining this field between 

tables, data can be retrieved from each table and combined into another table. The data is then 

saved as a shapefile in GIS. In fact, each failure on pipeline can be created by the common id 

number in ArcView and Access databases. Therefore, the related non-spatial data about 

failure is stored in MS Access and graphical information is established in ArcView. Each 

record in the tabular database is then connected with a failure point in GIS. 

At a scale of 1: 2000, the reference map provides a suitable level of details to approximately 

locate property boundaries, streets and distribution mains features. Water pipelines network 

and failures are mapped against a backdrop of streets, property lines and buildings. It is 

composed of 5 distinct feature layers that contain more than 53.3 km  of distribution mains 

and 4.4 km of transmission mains. Fig. 2.21 displays GIS layers in customized ArcView 

application and the location of failure points in the investigated area. In the map, each failure 

location is represented by a small black dot. 

The analytical process manipulates both map and attributes-related data through the linkages 

that GIS establishes between them. Fig. 2.22 depicts spatial relationships and attributes 

database in the developed GIS database. 
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Fig. 2.22 Combination of layers in GIS for spatial analysis of water pipelines failure 

2.5.2 Spatial statistical methods  

Spatial statistical methods have been developed to facilitate the monitoring of geographic 

pattern in order to provide quick detection of emergent geographic clusters. Additionally, the 

geographical distribution of failure and its relationship to potential risk factors (referred to in 

this work as ‘geographical distribution of traffic or hydraulic pressure’) has been evaluated. 

Several issues of major statistical journals have been devoted to spatial statistical methods in 

health and crime applications (Cressie, 1991). The study was undertaken in two steps: first by 

performing the point pattern analysis and then carrying out the spatial interpolation. This 

process creates a mathematical model which is used to estimate values across the raster 

surface. Various similar methods use location and values at corresponding sampling locations 

to estimate the variable of interest at un-measured locations.  

Central tendency scores  

Since points were used to indicate the spatial occurrence of pipeline failure, to get an idea 

about the overall pattern of failure distribution in the study area, some basic descriptive 
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statistics were generated. The measures of spatial central tendency, or centrographic 

measures, like mean and weighted mean center scores were determined for analysis of the 

failure distribution. The most basic form of statistical analysis for measurement of central 

tendency in geographical data is called Mean Center or balance point. It is concerned with the 

center of a geographic point dataset in which the points in the distribution represent 

occurrences of pipeline failure in different periods of time. By taking the x and y coordinates 

of each point, the bivariate mean center is determined using the expression: 
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where:  

mcy , mcx  = mean center coordinates 

xi  , yi = coordinates of each water pipelines failure location, 
and 

n = Total number of failures. 

 

The mean center computed from this formula (2.1), appears right in the middle of the 

geographic area (Fig. 2.23). 
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Fig.  2.23 The scatter plot of failure points, mean center and weighted mean center 

Moreover, the weighted mean center is calculated by weighting each coordinate by another 

variable, as below: 
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where:  

wmcy , wmcx  = weighted mean center coordinates, 

iw  = weight, 

w = total weight. 

Descriptive statistic for failure data showed that high pressure in the pipeline is the common 

cause of failure in the case study (Fig. 2.18). By multiplying pressure in the coordinates of 
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each failure point, the weighted mean center would be mapped. Thus, water pipelines failure 

points affected by high pressure pull the weighted mean towards them. Fig. 2.23 shows that 

the computed weighted center is to the northwest of the mean center. It might show that there 

is more pressure in the northwest portion of the study area. According to the topography and 

general slope of the city, and to local expert opinion, this is correct. 

Dispersion scores  

Dispersion scores provide a unit measure of spread or variability of a failure distribution. This 

analysis addresses questions such as: 

• Do the failures cluster about their central point or do they spread out around it? 

• Where are the high or low concentrations of failure? 

• Is there a pattern to the failure data? 

In spatial statistical analysis, standard deviation is expressed as standard distance. While 

standard deviation indicates how observations deviate from the mean, standard distance 

indicates how points in a distribution deviate from the mean center. Standard deviation is 

expressed in the units of observation values, but standard distance is expressed in distance 

units. In terms of its application, standard distance is usually used as the radius to draw a 

circle around the mean center to give the spatial spread of the point distribution it is based on 

(Saraf et al., 2003). The radius equal to SDx,y : 
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where:  

xi  , yi = coordinates of each water pipelines failure location, 

 , mcmc yx  
= coordinates of mean center, and 

n = total number of failures. 
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The computed radius is equal to 720.28 m (Fig. 2.24). Essentially the average distance of 

points from the center provides a single unit measure of the spread or dispersion of water 

pipelines failure distribution. 

 

Fig. 2.24 The circle represents the Standard Distance Deviation 

While the standard distance deviation (SDD) is a good measure of the dispersion of the 

incidents around the mean center, it does not show the potential skewed nature of the data 

(anisotropy). The standard deviation ellipse gives dispersion in two dimensions and surrounds 

most of points. It can be a tool to explore variables that are affecting failure patterns.  

As seen in Fig.  2.25, Standard Deviational Ellipse (SDE) is defined by three parameters: 

angle of rotation (θ), dispersion along major axis (δx), and dispersion along minor axis (δy). 
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The major axis defines the direction of maximum spread of the distribution and minor axis is 

perpendicular to it and defines the minimum spread 

 

Fig. 2.25 Standard Deviational Ellipse around the mean center of failure locations 

The angle of rotation, θ , which has the definition below: 
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mciimcii yyyxxx −=−= ''          ,                                                                                        (2.5) 

The deviations along the x and y axes are defined as: 
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Thiessen polygons 

Conceptually, Thiessen polygons (TPs) is the simplest vector-based method in the 

interpolation process. It commonly applied in situations where attribute is categorical ( Siska 

et al. , 2001) . This method assigns interpolated values equal to the values found at the nearest 

sample location. In our case, failures of water pipelines have been digitized as point data file. 

In the  vector {( xi , yi ) , zi }, ( xi , yi ) is used to reference the location of point i while zi is the  

measured attribute at point site i . Routinely, the location of failure events displays on map in 

Fig. 2.26 The location has been symbolized according to the cause of failure. Black dots 

designate locations with corrosion and square symbols represent weak material. It associates 

with 395 failures on water pipelines system during 10 years study. 

 

Fig. 2.26 A point data map depicting the 9 failure cause categories 
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TPs converts discrete data into continuous surface through spatial interpolation techniques.  

Sanandaj’s Water and Wastewater Utility has classified the causes of pipeline failures into 9 

major categories. The following map describes the area of influence of a failure point 

regarding the cause of its failure. In other words, by using a mathematical process the 

catchments area for each failure point can been determined. Consequently, they can be 

assigned values that reflect the attributes of the regions they represent. 

 

Fig. 2.27 Neighborhood interpolation by Thiessen Polygons for failure points 

Our analysis indicates that ″traffic load″ is a major contributing factor to a large number of 

noted pipeline failures. As can be observed from Fig. 2.28, uneven setting is found to be the 

2nd contributing factor to pipeline failures.  
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Fig. 2.28 Area size and cause of failure representation 

With regard to this analysis, we can conclude that the irregular polygons show the spaced 

failure points are randomly distributed. 

2.5.3 Point pattern analysis 

Point pattern analysis is concerned with attempting to determine whether the distribution of 

points is random or whether it either clusters or is evenly distributed. This work was carried 

out two ways to assess the distribution of water pipelines failure : nearest neighbor analysis 

and quadratic analysis.   

Nearest neighbor analysis 

The nearest neighbor index (R) provides an approximation about whether points are more 

clustered or dispersed than would be expected on the basis of chance (Diggle, 1983). It 

compares the average distance of the nearest other point (nearest neighbor) with a spatially 

random expected distance. The expected distance is given by:  
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where:  

n = number of failure points in the distribution, 

A = the size of study area, 

R = the ratio of the observed distance to the expected distance, 

NND = distance between each point and its nearest neighbor, 

NND  = the observed mean distance between nearest neighbor. 

RDNN  = the expected value of the nearest neigbor distance in a random pattern 

 

For these data, the mean nearest neighbor distance and expected mean nearest neighbor 

distance are calculated 36.2 and 55.9, respectively. Since the analyzed mean distance is 

shorter than the mean distance for the random pattern, the pattern is clustered. In fact, for this 

purpose, the R ratio is used. R values <1 indicate clustering, since the observed mean distance 

between neighboring points is less than that expected in a random pattern. The minimum 

value of R is zero, which occurs when all points are at a single location. The theoretical 

maximum of R is equal to 2.149, which occurs when points are maximally dispersed. Since 

the nearest neighbor index R is equal to 0.655, the distribution of pipeline failure is more 

clustered than random. 

To help place confidence in the nearest neighbor index result, a test statistic can be calculated 

as follows (Cressie, 1991): 
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where the standard deviation of mean distance between nearest neighbors is:  
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If values of the Zn statistic are in the interval from -1.96 to +1.96, the pattern is random (at a 

confidence level of 95%). If the Zn value exceeds +1.96, the pattern is regular. If the Zn value 
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is lower than -1.96, the pattern is clustered (Rogerson et al., 2001). The value of Zn =  -13.1 

was arrived at by using equation 2.8 which indicates a clustered pattern exists. 

Quadratic analysis 

Quadrat analysis is one of two most commonly used tools for analyzing the dispersion of 

points. At first, the study area was sub-divided into regular grid squares and the number of 

occurrences of water pipelines failure in each square is counted. The formula for determining 

the optimal quadrat size (length of the square side) is:  

                       
n

A
quadrat

×= 2
 size                                                                                 (2.11) 

where A is the size of the study area and n is the number of points. 

The optimal quadrat size was determined to be 200 m. Fig. 2.30 depicts the classification of 

quadrat according to the number of points in each cell. Then, the variance/mean ratio (VMR) 

was used to compare the obtained empirical frequency with the theoretical frequency for the 

random pattern obtained from the Poisson distribution which the mean and variance are equal.  

According to following expression, if the distribution is random the VMR is about 1.0. Larger 

values (VMR >1.0) correspond to existence of "clumps" (spatial clusters). Smaller values 

(VMR < 1.0) correspond to a more-uniform-than-random distribution: 

MEAN

VAR
VMR =                                                                                                                        (2.12) 
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Fig. 2.29 Number of water pipelines failure point in each cell 
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where:  

xi = number of water pipelines failure points in cell i, and 

n = total number of cells. 
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We obtain: VMR = 5.9; since VMR is greater than 1, the point pattern can be considered as 

more clustered than random. Rather than base a conclusion on variance/mean ratio, we can 

compare observed frequencies in the quadrats with random frequencies realized from a 

homogenous Poisson process. Therefore, chi – statistic (χ2) test was calculated as follow: 

                            ∑
−=
x

xxi

2
2 )(χ                                                                                    (2.14) 

where:  

xi = number of points in each quadrat, and 

x  = mean number of points per quadrats. 

  

The significantly large χ2 value, 562.5, indicates that the distribution is not uniform and that 

there may be some underlying process causing the non-uniformity (clustering). 

Convex hull 

The convex hull is the smallest convex polygon containing the set of points in two and three 

dimensions. This polygon represents the minimum possible area that contains all points and 

can be imagined as a failure band stretched around the points. The generation of a minimum-

bounding polygon (convex hull) provides additional insight into the spatial extent of 

identified clusters of failure points (Fig. 2.30). The appropriate number of clusters is 

determined in two partitions. Typically, partition with a large number of events indicates a 

high risk of water pipelines failure. The number of entities in a partition of a convex hull area 

(number of failure /area) is a reflection of the cluster degree of compactness.  
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Fig.  2.30 The convex hull polygon around failure points 

The circular spots in Fig. 2.30 represent the locations of failures that took place during study 

period.  

 
Table 2.9 The mass of failures covering a unit of area 

 Partition 1 Partition 2 

Number of failure 209 186 

Hull area (m2) 1023980 1357693 

Density by area (n/A) 2.04*10-4 1.36*10-4 

 

Referring Fig. 2.30 and table 2.9, cluster partition 1 is associated with the most compact hull. 

Density calculations 

Continuous surface maps use a method to aggregate points within a specified search radius to 

create a smooth surface that represents the density of events across the area. It helps in 

identifying the location, spatial extent and intensity of failure hotspots. Results are visually 

attractive since it helps in  invoking further enquiry and exploring the reasoning behind why 
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water pipelines failures are concentrated in specific areas. This work examines two methods: 

a simple density formula and a weighted “Kernel” procedure.  

Simple density 

The ArcView extension Spatial Analyst (version 2.0) was used to develop the digital density 

layer of the combined data points. A density surface is based on the division of the study area 

into square cells. A density value for each cell is calculated by counting the number of points 

within a defined search radius from the center of each cell (Fig. 2.31-a) and dividing by the 

search area. The density value (features per square km) is assigned to the cell. The search 

circle is then shifted to the next cell and the floating process is repeated until all of cells have 

been assigned a density value (Fig. 2.31-b). Accordingly, this process smoothes the density 

layer over the study area. 

 

Fig. 2.31 Procedure used in density calculation 

When doing density calculations, the recommended number of cells is between 10 and 100 

cells per density unit (Mitchell, 1999). The density unit of features per square kilometer was 
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used herein. Using this recommendation, our study area is approximately equal to 100 cells 

(with dimensions of 100 × 100 meters) per square kilometer. A smaller cell size can typically 

produce smoother surface. The chosen search radius influences the appearance of the density 

surface. The larger the radius, the more generalized the patterns will be. The 60-meter search 

radius was selected in this study and the resulting density map is shown in Fig. 2.32. As 

illustrated in Fig. 2.32, the study area experienced an average density of 80 failures per square 

kilometers during the 10 year study period.  

 

Fig. 2.32 Simple density estimation 

Kernel density 

Kernel estimate density is probably the most commonly used method as well as the most well 

understood statistically form of density estimation (Silverman, 1986). Our idea in water 

pipelines failure applications is to use kernel density estimation to transform distribution of 

discrete points or events representing incidence of failure into a continuous surface of failure 

risk. Essentially, a moving three-dimensional function ( the kernel ) of a given radius or 

bandwidth visits each of the points or events in turn, and weights the area surrounding the 

point proportionately to its distance from  the event (Fig. 2.33). The sum of these individual 

kernels is then calculated for the study region, and a smoothed surface is produced.  
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Fig.  2.33 Kernel Estimation of point patterns (Silverman, 1986) 

There are a variety of different kernels. Fig. 2.33 demonstrates two such kernels, K1 and K2, 

however usually, only one form of kernel is used at any one time. The one used by ArcView 

(ESRI, 1992), and adopted in this study, is a quadratic kernel which has a property of being 

computationally simple, and is hence attractive for implementation within a GIS application 

where large data sets are not uncommon. It can be defined as:  
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Using the above quartic kernel, if s represents a general location in R and s1,…,sn are the point 

locations of the n observed events whose underlying density we are estimating ( Fig. 2.33), 

then the intensity λ(s) at s is estimated by: 
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where hi is the distance between the point s and the observed event location si and the 

summation is only over values of hi which do not exceed τ. The parameter τ is the bandwidth 

and determines the amount of smoothing. 

Fig. 2.34 depicts the density surface of failure locations. It shows failure incidents per square 

km based on kernel density calculation. The result of analysis in Fig. 2.34 indicates four 



Chapter 2. Data collection and elementary analysis 

 
 

97 

failure hot spot locations, signified by the darker pattern on the map. It has been reported in 

the literature (Bottom, S., 2002) that water pipelines failure tend to occur in cluster. This map 

shows also the variation and concentration of failure incidents across the study area. As a 

result, it categorizes hotspot areas into those where bursts have caused service problem (high-

risk areas) and others where no service problems have occurred (low-risk areas). As 

mentioned in the literature review, the probability of failure decreases with time and distance 

following a previous failure (Goulter et. al. 1990).  Due to the fact that densities can be 

converted into probabilities, accordingly, this kind of mapping allows users to evaluate the 

anticipated value of failure likelihood. 

 

Fig. 2.34 Raster prediction map of failure density 

TIN interpolation method 

TIN or Triangulated Irregular Network has the ability to utilize stored GIS data to produce 3D 

surface model. Although water lines failure is not continuously distributed (failure occurs at 

separate points in geographic space), values between known points can be estimated to 

construct a continuous surface representation. In vector GIS, the TIN model represents a 

surface as a set of contiguous, non-overlapping triangles. Within each triangle the surface is 

represented by a plane. The triangles are made from a set of points called mass points, which 
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corresponds to the number of failure points in each cell of quadratic analysis. They are 

represented by a sequence of three nodes. Each cell has an x , y coordinate and a surface, or z-

value that present the density of failure. 

The central part of study the region shown in Fig. 2.35 indicates high density of water 

pipelines failure. Interpolated surface is shown thematically by shading each cell with dark or 

light color depending upon whether that cell is estimated to have a lower failure value ( 

lighter shades ) or higher failure value ( darker shades ). 

 

Fig. 2.35 A TIN-based failure density surface 

Density of failure can also be represented using a 3-dimensional plot as shown in Fig. 2.36.  

Again, x and y are used herein to define a location in the coordinate system, while the z-axis 

denotes the total failure density over the study period (i.e., 1995 to 2004). As noted in Fig. 

2.36, maximum density of failure occurs in the central business district (i.e., along the major 

transportation arteries "Shohada Street"). 
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Fig. 2.36 Three-dimensional representation of water pipelines failure density in study area 

A significant density increase is observed in the southwest part of the city and a small peak is 

also noted in the northwest region. The result of this analysis can be applied by cluster 

replacement scenarios as below.  

2.6 Cluster Replacement Scenarios 

Because of relatively high setup costs, pipeline renewal is often more efficient if it is done in 

clusters rather than on an individual pipe-by-pipe basis (Moglia et al., 2006). Clusters of pipes 

can be chosen for instance on the basis of high density of water pipelines failure leading to 

high risk ( Fig. 2.35 & 2.36). When a high risk area was identified through this spatial 

analysis, the area is analyzed in more detail so that a decision can be made to establish exactly 

which pipes to replace. From point of maintenance view, the decision to replace a cluster of 

pipes is done in a sequential process as described in the work of Moglia et al. (2006).  
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2.7 Concluding Remarks 

This chapter includes two main analyses using data on water pipeline failures in Sanandaj city 

in Iran. Preliminary statistical analysis gives insight on the impact of different risk factors on 

the structural deterioration of water pipes. In the rest, geostatistical analysis were addressed a 

process for using integrated spatial and statistical analysis to discover not only the distribution 

of water pipelines failure in space but also indicate various spatial trends in failure. 

The results of descriptive analysis organize and summarize the data and indicate factors 

affecting pipe failures in study area. It was the first step to gain a better understanding of the 

failure mechanisms. Nine accessible factors were identified in a more objective manner to use 

in statistical investigation. Time dependent factors such as age of pipe and number of pervious 

failure (NPF) and static factors including pipe length, diameter, thickness, depth, material, 

pressure and traffic category were analyzed. Indeed, seven most probable cause and mode of 

water pipelines failure besides their corresponding percentages which vary depending on the 

pipe’s material were identified.  

Through the spatial and proximity analysis of water pipelines failure, spatial distribution of 

historical breaks was established by using appropriate interpolation methods. The failure 

density is calculated using raster and vector format. In this case, the simple kernel function is 

used. Interpolated surface estimates show how the intensity of the failure point pattern varies 

over the study area. It is useful for modeling the likelihood of incidents as well as the 

relationship between incidents and the underlying risk variables. This study indicates that a 

significant number of failures appear in geographic clusters. Notably, it shows a point 

distribution with a strong concentration in the downtown area. These areas are highly 

vulnerable to future failures because of traffic load. 

In conclusion, analyses conducted via the point mapping, cluster identification and spatial 

interpolation techniques constitute powerful tools that can help in understanding the water 

pipelines failure pattern problem. The obtained understanding can provide a reliable method 

of predicting areas of the city that will need water main system replacement in the future. 

Therefore, planners and engineers with rational and objective justifications will  implement an 

effective preventative maintenance strategy. 
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3. Statistical Data Analysis and Regression Modeling 

3.1 Introduction 

Although the analysis in chapter 2 clearly defined certain trends in the past water main breaks 

throughout the pilot area of Sanandaj city, in order to obtain results beneficial to the SWWU it 

would be necessary to conduct a more in-depth analysis. This chapter applies statistical 

approach for a sound analysis of water pipelines failure data in study area. 

The goals of analysis in this chapter are two folds. At the beginning, we explore what factors 

is most probable to affect failure for water mains. This part determines whether a range of 

variables relating to pipeline construction, hydraulic, operational, and environmental 

conditions and other associated characteristics were likely contributors to the deterioration of 

water mains. Then, the relationship between these indicators and failure trends were modeled 

by two regression models: Multiple and Poisson regression. Fig. 3.1 illustrates several steps in 

modeling process. Two main other approaches, ANNs and Survival modeling, which have 

been taken to achieve the objective of thesis will be described in chapter 4 and 5. 

According to diagram in Fig. 3.1, we firstly undertook a series of univariate analysis to 

explore the data for each indicator alone. Non-normal distribution of the data, particularly in 

form of large skewness, can result serious errors in analysis and incorrect conclusions. 

Therefore, normality test has been performed for all indicators, hence, the results of this test 

will be the base for bivariate and multivariate analysis. Secondly, bivariate analysis has been 

employed to investigate the relationship between the number of failure in one hand and the 

selected possible indicators in the other hand. The indicators that have significant relationship 

with water pipelines failure were selected as determinant indicators. These determinant 

indicators were used as an input for the prediction models. The degree of relationship between 

two sets of variables was measured by correlation coefficient (R2). To avoid choosing 

independent variables which are so highly correlated, multicollinearity analysis among 

predictor variables was done. Thirdly, multivariate exploratory techniques mainly factor 
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analyses were applied in this context to discover underlying determinant factors water 

pipelines failure in study area. Factor analysis also provides information on the relative 

relationships among variables. Fourthly, modeling with Multiple-linear regression and 

Poisson regression has been used to examine the relationship between finding influential 

indicators and number of failure (NF) as response variables. 
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3.2 Exploring the failure data  

As noted in the literature review, there has been not only relatively little success in developing 

statistical models for detailed prediction of pipe failure but also most water utilities have 

adopted subjective manner. In this thesis, we developed prediction models for water pipelines 

failure in Sanandaj city-specific conditions. Subsequent to this, the initial part explores data 

through univariate procedure. 

3.2.1 Univariate data analysis 

In any data analysis it is always a great idea to do some univariate analysis before proceeding 

to more complicated models. Univariate analysis explores each variable in failure data set, 

separately. Inspection of the distributions of variables was critically important when using the 

generalization of the linear regression model such that dependent variable whose distribution 

follows several special members of the exponential family of distributions. For example, we 

considered the number of water pipelines failure that occurs in a certain time interval.  

In fact, when the assumption of normality is violated, interpretation and inference may not be 

reliable or valid. Therefore, normality test for each indicator has been performed using fitting 

empirical distribution. The most common of these tests are graphical presentation of variable 

distribution. Results from normality test for all the variables gave evidences that some of the 

indicators have non-normal distribution with mostly a positive skewness. Slight deviation 

from normality typically did not have significant effect on the statistical analysis. As a first 

improvement, data transformations have been performed using log (10) of the indicators 

values in order to minimize the skewness and produce a normally distributed data.  

To determine how well a specific theoretical distribution fits the observed data, we used the 

Probability-Probability (or P-P) plot. In this plot, the observed cumulative distribution 

function was plotted against a theoretical cumulative distribution function in order to assess 

the fit of the theoretical distribution to the observed data. It should be approximately linear if 

the specified distribution is the correct model.  

For instance, the logarithms of water pipelines length fall nearly along a line in this plot, and 

we would infer that they are well modelled as a normal distribution. But water pipelines 
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length do not come closer to a straight line in this plot, at the ends of data there is some 

deviation from line fit, such as an S shape along the diagonal line (Fig. 3.2). Thus, we inferred 

that they are poorly modeled as a normal distribution. Another variable, maximum pressure of 

water mains, follow the normal distribution. As shown in Fig. 3.2, all point fall onto a 

diagonal line (with intercept 0 and slope 1), then we didn't need to transform the data to bring 

them to normal distribution pattern. Age of water pipelines is also variable which follow 

moderate normal distribution. 

Normal Probability plot of Length Probability-Probability plot of LogLength 
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Probability-Probability plot of Maximum Pressure Probability-Probability plot of Age 
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Fig. 3.2 Normality test of water pipelines length, age and maximum pressure through P-P plot 
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3.2.2 Bivariate analysis 

A series of bivariate analysis have been taken to explore the concept of association between 

two indicators. A major consideration in any model is that the independent variables are 

statistically independent.  Non-independence is called multicolinearity which means that there 

is overlap in prediction among two or more independent variables. This can lead to 

uncertainty in interpreting coefficients as well as an unstable model that may not hold in the 

future. Generally, it is a good idea to reduce multicolinearity as much as possible. To evaluate 

this matter, the most widely used type of correlation coefficient (pearson’s R) were measured. 

It presents the values of two variables that are correlated to each other:  
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The correlation is high if it can be approximated by a straight line. However, several authors 

have offered guidelines for the interpretation of a correlation coefficient. Smith (1986), for 

example, suggested the following interpretation for values of 2R between 0.0 and 1.0: 

Table 3.1 Interpretation of the size of a correlation 

Correlation Coefficient Interpretation for correlation 

 8.02 ≥R   strong correlation exists between two sets of variables 

8.02.0 2 << R  correlation exists between the two sets of variables 

2.02 ≤R  weak correlation exists between the two sets of variables 

  

To address this issue, the water main break data were analyzed for correlation between 

independent factors. Graphically, Fig. 3.3 presents the relationship between the thickness of 

water pipelines in one hand and diameter and depth of pipe burial in the other hand. It is 

obvious that there is a moderate correlation between the mains thickness and their diameter 

and depth with R-square equal to 0.26 and 0.31, respectively. It can be just explained the 

bigger and longer mains have more thickness. On the other hand, correlation between respond 

variable (NF) and independent variables has been examined. Graphs in Fig. 3.4 shows 

variation of failure frequencies according to history of failure and water pipelines diameter. 
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These correlations shows that more pervious failure on pipelines accelerates the coming 

failure (R²=0.86). Further, failure tend to occur in small mains. 

Correlation between mains Thickness and Diameter Correlation between mains Thickness and Depth 
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Fig. 3.3 Bivariate correlation among thickness with depth and pipes diameter 
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Fig. 3.4 Bivariate correlation among number of failure with diameter and pervious failures 

Moreover, correlations among pipe breakage and all known physical, environmental and 

operational factors were computed. From the result of this analysis, the predominant factors 

that influence the pipe breaks were identified. Table 3.2 summarize correlations among the 
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nine variables included in the analysis. Abbreviations are as follows: NF = number of failure, 

DR = diameter, LL = log-length, DP = depth, TK = thickness, AG = age, MP = maximum 

pressure, MT = material, TL = traffic load and NPF=number of pervious failure . The item 

Number of failure in water pipelines shows relatively strong correlations with natural 

logarithm of length, diameter, thickness, depth, material and number of pervious failure.  All 

bold values indicate a statistical significance of  p<0.05 values with superscript ns is not 

statistically significant correlated. The length of a pipe has an effect on the number failures 

per pipe since we are measuring failures per pipe and not per pipe length. The highest number 

of failures is found in pipes with small diameters and reduced wall thickness as well as pipes 

laid in less deep. In contrast, correlation coefficient equal to 0.76 show that the previous 

failures of a pipe is a significant factor for the occurring future failures. Additionally, several 

factors such as maximum pressure, age and traffic load haven’t correlated significantly with 

failure. Table 3.2 illustrates the statistical correlation coefficients.  

Table 3.2 Correlations among 10 water pipelines failure indicators 

Correlations 

Variable NF DR LL MP DP TK AG MT TL NPF 

NF 1.00          

DR -0.18 1.00         

LL 0.36 0.18 1.00        

MP 0.03ns 0.26 0.05 1.00       

DP -0.15 0.82 0.20 0.14 1.00      

TK -0.24 0.51 0.14 0.09 0.55 1.00     

AG 0.06 ns 0.64 0.21 0.02 0.83 0.26 1.00    

MT 0.09 ns -0.41 -0.22 0.07 -0.74 -0.65 -0.64 1.00   

TL 0.01 ns 0.53 0.15 0.02 0.59 0.32 0.58 -0.41 1.00  

NPF 0.76 -0.20 0.35 0.03 -0.20 -0.20 0.02 0.03 0.01 1.00 

( Correlations are significant at p < 0.05                     ns: is not statistically significant correlated )  

 

The subsets of predictor variables that best predict a response variable is shown in bold font. 

Therefore these five indicators should be considered as the main driving forces behind failure 

increasing in Sanandaj city. In order to establish a simple and not complicated model, the first 
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5 indicators that have significant correlation with the NF will be the main focus in the further 

analysis. The other 4 indicators have insignificant correlation with NF. It doesn’t mean that 

they have no contribution to the failure frequencies but their contribution is low compared to 

the first 5 indicators and it needs to more examination such as evaluation by pipe material. 

Since each material has own behavior in water pipelines failure (Fig. 2.3), we also measured 

correlation through indicators for each material. Table 3.3 describes the correlation 

coefficients among failure indicators by material. Depends on each material category, the 

factors were varied to correlate with number of failure (NF).   

Table 3.3 Correlations among nine water pipelines failure indicators (by material) 

Correlation 

Material Asbestos Cement Polyethylene Cast Iron Ductile Iron 

Variable NFAC NFPE NFCI NFDI 

NF 1.00 1.00 1.00 1.00 

DR -0.23 -0.07 ns -0.34 -0.32 

LL 0.37 0.53 0.42 0.28 

MP 0.14ns 0.14 0.07 ns -0.10 ns 

DP -0.19 -0.27 -0.37 -0.27 

TK -0.20 -0.08 ns - -0.29 

AG -0.25 -0.10 ns -0.05 ns -0.32 

TL -0.11 ns 0.21 -0.07 ns 0.06 ns 

NPF 0.69 0.87 0.93 0.74 

( Marked correlations are significant at p < 0.05              ns: is not statistically significant correlated ) 

 

It is obvious from the correlation matrix that the correlation of NPF and LL have positive and 

DP and DR have negative correlation with NF in all material categories. Moreover, the 

insignificant indicators in table 3.2 were significant in different material. For instance, MP 

and TL in polyethylene and AG in asbestos cement and ductile iron water pipelines are 

significant. Then, it was concluded that in future modeling, 9 indicators must be considered.  
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3.2.3 Multivariate exploratory techniques- Factor analysis 

Multivariate statistics provide the ability to analyze failure data set where there are many 

independent and dependent variables which are correlated to each other to varying degrees. 

For analysis involving multivariate statistics, factor analysis has been done.  

Exploratory Factor Analysis is a technique which allows us to reduce a large number of 

correlated variables to a smaller number of “super variables” . It does this by attempting to 

account for the pattern of correlations between the variables in terms of a much smaller 

number of latent variables or Factors:  

nnVariableVariableVariableFactor βββ +++= ......22111                                                   (3.2) 

where:     β    =  the weights of a variable on a factor and are called factor loading 

Factor analysis boils down a correlation matrix into a few major factors so that the variables 

within the same factor are more highly correlated with each other than with variables in the 

other factors. It is assumed that the observed variables are correlated or go together because 

they share one or more underlying causes. Factors that emerge in the analysis of change will 

show which variables tend to change together over time, and in which direction change takes 

place. Variables with factor loadings of 0.6 or greater ( β ≥ 0.6  ) are considered in 

interpreting each factor, with particular emphasis given to items with loadings greater than 0.6 

(McDade & Adai, 2001). This analysis was performed for variables shown in table 3.2 by 

using STATISTICA software (Version 7.0) produced by Statsoft Inc., USA. 

Factor analysis involves a two-step process. Initially, the elements are resolved into their 

principal components via principal components analysis. Determining the principal 

components requires transforming the data into orthogonal variables using the eigenvectors of 

the matrices of the original variables (Trost and Oberlender, 2003). Each principal component 

is a linear transformation of the original variables. Because the principal components are 

orthogonal, no interdependence or multi-collinearity exists in the transformed data. Once the 

principal components are determined, a factor rotation is performed. Factor rotation involves 

rotating the principal components about the axes of the original variables. The factor rotation 

preserves the orthogonality of the principal components, but a new transformation matrix is 
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formed with each rotation. Different methods exist for performing factor rotations. A 

preferred method, known as the method of maximum variance (varimax normalized), results 

in a series of rotations wherein each rotation creates a new variable or factor such that the 

maximum remaining variance in the data is explained by that variable (Trost and Oberlender, 

2003). An important consideration during factor analysis concerns the number of factors to 

resolve during the analysis. The number of factors can range from one to the total number of 

original variables, which are 9 factors. Typical rotational method using varimax normalized 

has been employed to obtain a clear pattern of loadings, that is, factors that are somehow 

clearly marked by high loadings for some variables and low loadings for others. Several 

guidelines were followed to assist in determining how many factors to be included in the 

factor analysis. One of the most common guidelines is the minimum eigenvalue criterion. 

Essentially, this method involves ranking the eigenvalues of the principal components of all 

the variables from greatest to least, then counting the number of eigenvalues greater than one. 

Another important consideration in deciding the number of factors relates to the 

interpretability and meaningfulness of the resultant factor groups.  

Applying factor analysis to 9 dominant variables in the water pipelines failure on Sanandaj 

city, it is noticed that only 2 factors were successfully extracted with eigenvalue more than 

1.0. Table 3.4 presents these two factors with their eigenvalues and total variances ( 

accounted for and cumulative) corresponding to the principal components. 

Table 3.4 Eigenvalues and total variances for new factors  

Factor 
Number 

Eigenvalue 
% of  the Total 

variance 
Cumulative 
Eigenvalue 

Cumulative % 

Factor 1 3.968628 44.09587 3.968628 44.09587 

Factor 2 1.384831 15.38701 5.353459 59.48288 

Extraction Method: Principal components analysis 

 

From the second column of the table above (Eigenvalue), we find the variance on the new 

factors that were successively extracted. In the third column, these values are expressed as a 

percent of the total variance. As we can see, factor 1 accounts for 44.1 % of the total variance 

and comprised of variables like diameter, depth, thickness and ages (Table 3.5). It means that 

factor one explained more than 44.1 % of the actual rate in water pipelines failure of study 
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area, factor 2 accounts around 15.4 %. Although there are four more factors, they are all 

having variances less than 10 %.  Put in other word, the first two eigenvalues cumulated 

around 59.9 percent of the total variance, while the other 4 factors explained less than 40.1 

percent of the rates in the failure. The plot magnitude of eigenvalues versus the number of 

factors (Skree test) was proposed by Cattell (1966). It retains factors which are above the 

inflection point of the slope. Accordingly, the number of factors is chosen where the plot 

levels off to a linear decreasing pattern. The Skree plot is shown in Fig. 3.5, which also 

includes the percentage variances explained by two selected factors. 
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Fig. 3.5 A line graph of the eigenvalues for factor analysis  

Therefore, the approach employed in this analysis is in selecting only these two factors with 

eigenvalues greater than 1 out of 6 factors. Table 3.5 presents the rotated factor-loading 

matrix for two factors. In fact, a factor loading is the degree to which every variable correlates 

with a factor. It identifies the major contributing elements to each of factor groups. Then, 

titles can be given to each factor group based on the perceived relationships among the 

primary indicators in each factor. In factor loading, a positive loading (e.g. 0.95) will indicate 

a positive relationship with the factor, whereas one with a negative sign (e.g. - 0.79)  will 

suggest an inverse relationship. It can be also seen from this table that most of variables 
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associated with each factor are well defined and contribute very little to other factors, which 

help in the interpretation of results. 

Table 3.5 Factor loadings matrix for water pipelines failure parameters 

Variable Factor 1 Factor 2 

Diameter 0.834754 0.099547 

Log Length 0.261178 -0.744284 

Material -0.790907 0.055027 

Depth 0.954680 -0.000303 

Thickness 0.676034 0.204554 

Max pressure 0.130955 -0.039516 

Age 0.827456 -0.165356 

Traffic Load -0.695220 0.091706 

NPF -0.143863 -0.861711 

(Extraction Method: Principal components analysis   ;   Rotation method: Varimax with Kaiser normalization) 

 

Further, it can be inferred that the first factor (F1), which explains % 44.1 of the total 

variance, is related to the variables diameter, depth, thickness and ages of water mains. While 

these parameters are positively loaded with this factor. Factor 2 (F2), on the other hand, 

explains % 15.4 of the total variance and is negatively loaded with logarithm of mains length 

as well as number of pervious failures in water mains. Factor 3 to factor 5 was strongly 

associated with an individual variable (unique factors) and they have a moderate to weak 

influence on the remaining indicators. Thus, they were considered as respective variables. 

Factor 6 (F6), explains 5.6 %  of total variance and is loaded positively with water main’s 

diameter and depth of burial. This factor may be termed as Geometry factors.  

The factor loadings shown in Table 3.5 are represented by two-dimension scatter plot in Fig. 

3.6. Each indicator is represented as a point. 
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Fig. 3.6 Plot of the two-factor rotated solution for Factor 1 against Factor 2 

(Rotation: Varimax normalized ; Extraction: Principal components ) 

Based on the above discussions, it may be concluded that the analysis must be done for each 

material of water mains. Overall, Factor analysis is not a simple procedure and it used 

routinely with many (e.g., 50 or more) variables. In this case study, factor analysis detected 

simple structure in a few number of variables which affect in failure process. 

3.3 Multiple Linear Regression (MLR) 

Multiple regression is a linear transformation of the X variables such that the sum of squared 

deviations of the observed and predicted Y is minimumized. The prediction of Y is 

accomplished by the following equation: 

Yi = b0 + b1X1i + b2X2i + … + bkXki                                                                                   (3.3) 

The "b" values are called regression weights and are computed in a way that minimizes the 

sum of squared deviations: 

∑
=

−
N

i

ii YY
1

2' )(
                                                                                                                        (3.4) 

Factor 1  

Factor 2  
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The most natural use of multiple regression is when all the variables concerned are 

continuous. Since this study include two categorical variables 2 two and more level in a 

multiple regression prediction model, additional steps are needed to insure that the results are 

interpretable. These steps include recoding the categorical variable into a number of separate, 

dichotomous variables. This recoding is called "dummy coding". 

The age , thickness, diameter, depth, maximum pressure of water pipelines and number of 

pervious failure (NPF) in this survey would represent continuous and pipeline’s material and 

location are categorical variables. The analysis uses of multiple regression to predict of a 

continuous Y with several continuous X variables in addition to categorical variables through 

the dummy coding.  

In general form, a regression model where the  j th predictor variable is a classifier with k level 

can be interpreted as follows, provided the  j th  variable in converted to dummy variables: 

∑
−

=

++++=
1

1
110 ....

jk

u

ppjuju xbDbxbbY                                                                                                                      (3.5) 

where Y is the outcome variable, b is a regression coefficient, D is a dummy variable for a 

classifier variable of  k  levels and  x  is a non-classifier predictor variable. 

Since categorical predictor variables cannot be entered directly into a multiple regression 

model, a categorical variable with k levels will be transformed into k-1 variables each with 

two levels. For instance, the material of water pipelines in this study has 4 levels and water 

pipelines location has 2 levels. Then, three dichotomous variables for material and one for 

location and history of failure in water pipelines could be constructed. These variables contain 

the same information as the single categorical variable. They can be directly enter into the 

regression and also neural network model.  

The simplest of dummy coding is for pipe location, it has two level, 1=high traffic street , 0= 

light traffic street. It is converted to one dichotomous variables which called TL . If  water 

pipelines location = 1, then TL would be coded with a 1. If  water pipelines location = 0, then 

TL would be coded with a 0. The dummy coding is represented below. 
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Table 3.6 Dummy coding for traffic category 

Dummy Coded Variables Level of Categorical 
variable TL 

High traffic street 1 

Light traffic street 0 

 

This is a nominal variable with two levels, we needed one dummy code to distinguish pipes 

are located in traffic zone or not. Another categorical variable which has four subgroups is 

water pipelines material. In the same manner, three dummy coded contrasts would be 

necessary to use them in a regression analysis. The following table presents data and dummy 

coded.  

Table 3.7 Dummy coding for material category 

Dummy Coded Variables 
Level of Categorical variable 

M1 M2 M3 
Asbestos Cement (AC) 1 0 0 

Ductile Iron (DI) 0 1 0 

Cast Iron (CI) 0 0 1 

Polyethylene (PE) 0 0 0 

 

Then, the material predictor with three dichotomous variables has been put into a multiple 

linear regression.  

To make a regression model with the whole of sample ( including all the materials), Number 

of Failure (NF) is the dependent variable and the independent variables are DR, LL, DP, TK, 

AG, MP, MT, TL and NPF. The prediction formula has been calculated as below: 

ilurePerviousFaMessureMaxLogLength

MdTrafficLoaMThiknessDiameterquencyFailureFre

643.02262.0Pr041.0126.0

3339.0034.01159.0116.0031.0

+++
++++=

 

To measure the overall goodness-of-fit in this regression model, the so-called coefficient of 

determination, R²=0.63 was calculated, as shown in Fig. 3.7.  
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Fig.  3.7 Predicted values verso observed value with R2=0.63 

Unfortunately, a high R² value does not guarantee that the model fits the data well. There are 

many statistical tools for model validation, but the primary tool for most process modeling 

applications is graphical residual analysis. In the regression analysis, we always assume that 

the error term satisfies: (i) normally distributed with mean 0, (ii) the variance is constant, (iii) 

errors are independent. In the below, we will control these assumptions. 

Estimates for goodness-of-fit 

Model validation is possibly the most important step in the model building sequence 

(Gregory, 2003). Since the model was computed, we tried to evaluate that the model met the 

assumptions of the regression approaches? To response these question, residual plots were 

developed for validation of regression model.  

Residual analysis 

Rather than checking assumptions such as normality on the response variables directly in 

multiple regression, we checked the normality assumption on the random errors. Because 

residual analysis is applied to verify the prediction model in multiple regression. Fig. 3.8 

depicts the histogram and normal distribution of standard residuals which obtained by 

dividing the residuals by their standard errors. Also, the assumption that the errors were 

normally distributed was checked by normal probability plot of the standardized residuals. As 
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shown in Fig. 3.8 , the points in the normal probability plot deviate from a straight line. Thus, 

there is statistical evidence against the assumption that the random errors are an independent 

sample from a normal distribution. Therefore, the non-random structure in the residuals 

suggest that the model fits the data poorly. Hence, we must examine an alternative solution 

for modeling. 
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Normal Probability Plot of Residuals
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Fig.  3.8 Normal distribution and histogram of standardized residuals and probability plot 

 

Recall that another assumption necessary for the validity of regression inferences is that the 

error term have constant variance for all levels of the predictor variables. For do this, we also 

plotted the residuals on the vertical axis against the predicted value on the horizontal axis. 

This plot does not suggest any systematic deviations (nonconstancy of the variance) nor that 

the variance of the error terms significantly varies with the level of the predicted values.  
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Fig.  3.9 Residual plot against predicted value 

As a result, this unequal variances in error terms means that the model fit data inadequately. 

Henceforth, we tried to model failure via an alternative approaches: Poisson Regression.  

3.4 Poisson Regression Model (PRM) 

The Poisson regression model (PRM) is similar to regular multiple regression except that the 

dependent variable Y , number of failure, is a count that follows the Poisson distribution. 

Thus, the possible values of Y are the nonnegative integers: 0, 1, 2, 3, and so on. Further, it is 

assumed that large counts are rare. Accordingly, there were two major reasons why this 

research issue cannot be addressed via straightforward multiple regression techniques (as 

available in Multiple Regression): 

• First, the dependent variable of interest has a non-continuous distribution and was not 

normally distributed. Thus, the predicted values should also follow the respective 

distribution. 

• Second, reason why the multiple regression model might be inadequate to describe a 

particular relationship between a water main's condition is that the effect of the predictors 

on the dependent variable may not be linear in nature. For example, the (average) 

condition status of water main which has 1 failure as compared to the (average) condition 
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status of mains which have 2 failures is not markedly different. However, the difference in 

condition status of pipes with 6 and 8 failures is probably greater. Because of this, some 

kind of a logarithm function should be adequate to describe this non-linear relationship. 

Due to limitations 1 and 2 above, in this part Poisson regression can be used to predict 

failure frequencies with discrete distribution as well as nonlinearity relationship to some 

covariates.  

3.4.1 Fitting a poisson probability distribution 

To start modeling, we evaluated the probability distribution of dependent variable. By 

generating a histogram and fitting a distribution to data, an overall feel for the data were got 

(Fig. 3.10). This histogram shows the following:  

• A "skewed right" (non-symmetric) distribution  

• Non-negative value (failure data was non-negative) 

In consequence, we could not assume that the probability distribution of Number of failure 

was normal. By applying the graphical presentation of data and the Kolmogorov-Smirnov test 

as a goodness-of-fit test it was concluded that the normal distribution is significantly different 

from the observed data. This distribution deviates grossly from a bell-shaped normal 

distribution and therefore, we rejected it as a model for the number of failure. 
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Fig.  3.10 Histogram, fitted Normal and Poisson distribution on failure’s number 
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Fitting distribution was accomplished by the method of maximum likelihood and observed 

and expected frequency. Graphically, the fit between observed values and theoretical Poisson 

distribution defined by mean = 0.72 , as shown in Fig. 3.10. Additionally, failure numbers 

were distributed following the normal distribution with the mean=0.72 and the standard 

deviation= 1.34. Table 3.8 illustrates two distribution for observed frequency.  

Table 3.8 Observed and expected number of failure by fitted Poisson and Normal distribution 

Poisson distribution Normal distribution 

C
ategory

 

Observed 
Frequency Expected 

Frequency 
Observed-
Expected 

Expected 
Frequency 

Observed-
Expected 

0 332 270.5774 61.4226 148.5522 183.4478 

1 119 193.8975 -74.8975 181.9670 -62.9670 

2 63 69.4741 -6.4741 149.2319 -86.2319 

3 24 16.5952 7.4048 60.7389 -36.7389 

4 10 2.9731 7.0269 12.2349 -2.2349 

5 2 0.4261 1.5739 1.2145 0.7855 

6 1 0.0509 0.9491 0.0591 0.9409 

7 1 0.0052 0.9948 0.0014 0.9986 

8 1 0.0005 0.9995 0.0000 1.0000 

9 1 0.0000 1.0000 0.0000 1.0000 

 

The Poisson distribution models the probability of y events (i.e. failure in water mains) with 

the formula (Gregory, 2003):  

!

)(
)Pr(

y

e
yY

ty µµµ
−×==                y = 0, 1, 2, …  , µ > 0)                                           ( 3.6) 

where:  

y = number of failures in time (t) 

µ = the mean incidence rate of a failure per unit of time 

e = is the base of the natural logarithm (2.71828...). 
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The Poisson distribution has the property that its mean and variance are equal. 

Chi-squared goodness-of-fit test 

A chi-squared test was used to test the hypothesis that observed failure data follow a Poisson 

distribution. In this regard, we had two hypothesis:  

• The null hypothesis is H0 : X ~ Poisson 

• The alternative hypothesis is H1 : X does not follow a Poisson distribution. 

Therefore, the basic questions that need to be addressed was: does the assumption of a 

Poisson distribution seem appropriate as a model for these data? To test this hypothesis, we 

used the chi-squared statistic which defines as: 

E

EO 2
2 )( −=∑χ                                                                                                              ( 3.7 ) 

where:  

O = observed frequency 

E = expected frequency 

  

Using the Poisson distribution with µ = 0.72 we can compute pi, the hypothesised 

probabilities associated with each class. From these we calculated the expected frequencies 

(under the null hypothesis) which shown in Table 3.8. The chi-squared statistic was calculated 

63.32 . If we look up 63.32  in tables of the chi-squared distribution with df =2, we obtain a  

p-value < 0.001. By conventional criteria, this difference is considered to be statistically 

significant. Thus, we conclude that there is a little or no real evidence to undermine the 

veracity of Poisson distribution. For this, we also evaluated the fitting of distribution by a 

graphical examination, Probability-Probability plot.   

Probability - Probability (P-P) Plot  

The Probability-Probability (P-P) plot is a graphical technique for assessing whether or not 

the failure data set follows Poisson distribution. The data were plotted against a theoretical 
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distribution in such a way that the points should form approximately a straight line. The 

correlation coefficient associated with the linear fit to the data in the probability plot is a 

measure of the goodness of the fit. According to this data, a straight line to the points on the 

probability plot, the probability plot has a correlation coefficient of 0.9 and 0.53 for Poisson 

and normal distribution, respectively. In consequence, Poisson probability plot indicates that 

the Poisson distribution does in fact fit these data better than normal distribution. 

 Poisson distribution
 Normal distribution

-50 0 50 100 150 200 250 300 350

Observed Frequency

-50

0

50

100

150

200

250

300

 Observed Frequency:Poisson distribution:  r2 = 0,9034
 Observed Frequency:Normal distribution:  r2 = 0,5282

 

Fig.  3.11 The Poisson probability plot for number of failures in water mains 

3.4.2 Estimated poisson regression model 

Since the response variable is in the form of counts data, a Poisson regression model was 

fitted. Further, to model the non-linearity of failure number related to the predictors, based 

upon an assumption of Poisson distribution for the dependent variable values, we used the log 

link function. Hence, a Poisson distribution with a logarithmic link function was used in the 

GLZ . So the logarithm of the response variable is linked to a linear function of explanatory 

variables such that:  

mmXbXbXbXbercept +++++= .....int  (Y)Log 332211e                                                      (3.8) 
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So, the regression equation is given by: 

).....int( exp Y 332211 mmXbXbXbXbercept +++++=                                                       (3.9) 

 

Using this notation, the Poisson regression model for water pipelines failure is written as:  

Predicted 

number 

of failures 

= 

exp [ intercept+b1× Diameter + b2 ×Loglength + b3 ×Depth+ 

b4×Thickness + b5× Maximum pressure + b5 ×Age+ b6× M1+ 

b7×M2+ b8× M3+ b9 ×NPF + b10  × Traffic load ] 

      (3.10) 

 

Where: 

          b1, b2, … , b10 = the regression coefficients (are unknown parameters that are estimated 

from the selected dataset) and "log" means natural logarithm.  

The maximum likelihood method was used to calculate the parameters of Poisson regression 

model. All statistical analysis was based on analytical sub-routines in STATISTICA Ver. 7 

(StatSoft 2004). Thus, the estimated Poisson regression model is:  

Predicted 

number 

of failures 

= 

exp[ -3.73974 - 0.00317 × (Diameter) + 1.21935 × (Loglength) 

+ 2.18492 × ( Depth) -2.09377 × (Thickness) + 0.00662 × 

(Maximum pressure) -0.06569 × (Age)+ 0.82601 × (M1) + 

0.23961 × (M2) +1.53406 × (M3)+ 0.40147 × (NPF) - 0.07057 

× ( Traffic load)] 

      (3.11) 

 

Put in other word:  

Predicted 

number 

of failures 

= 

(e)-3.73974  × (e) 0.00317 Diameter × (e) 1.21935  Loglength  × (e) 2.18492  Depth  

× (e) -2.09377  Thickness  × (e) 0.00662  Maximum pressure × (e) -0.06569 Age  × 

(e) 0.82601 M1 × (e) 0.23961 M2  × (e)1.53406 M3 × (e) 0.40147  NPF ×        

(e) -0.07057  Traffic load 

      (3.12) 
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This equation is useful for estimating the number of failures in water pipelines by the related 

variables. Obviously, the direct interpretation of regression coefficients is difficult because the 

formula for the predicted value involves the exponential function. 

Adequacy of the model 

In order to assess the adequacy of the Poisson regression model, we firstly checked graphical 

representation of predicted value against observed data. As can be seen from Fig. 3.12, the R² 

value is 0.74, indicating that there is a moderate fit of data using the Poisson model. Needless 

to say, by comparing the R² value for two recent models, it can be concluded that the Poisson 

regression model (R²=0.74) works better than multiple regression (R²=0.63). 

-2 0 2 4 6 8 10

Observed data

-1

0

1

2

3

4

5

6

P
re

di
ct

io
n

R2 = 0.7432

 

Fig.  3.12 Predicted number of failure data against observed data 

Secondly, to evaluate the goodness of fit, a common statistic that was computed is the so-

called Deviance statistic. Deviance serves the same purpose as sum of squares in multiple 

linear regression since the full model always has zero deviance. In this analysis the deviance 

explained by the regression is 86.7 at 543 degrees of freedom (df).  Entering the table for 

values of  χ2 at 543 df, we got p-value less than 0.0001. This p-value is quite small and shows 

that the model does not fit very well. Table 3.9 contains information on assessment of fit. 

The next step is to assess the fit of the respective model by carrying out a diagnostic plot of 

deviance against fits. In fact, Fig. 3.13  is a plot of the residuals against the predicted values 
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that showed more or less a horizontal band. The residual plot has several deviance residuals 

larger than 2 in absolute value, which Fig. 3.14 shows some real outliers. The black solid line 

is the lowest fit for the deviance plot and the grey dotted line is for zero. As we can see, the 

black line does not agree with the grey dotted-line for predicted value. This indicates non-

equal variances of residuals and perhaps dependence on the predicted values, thereby, 

confirming the inadequacy of the model. 

 

Fig. 3.13 Plot of residuals against fitted values 

Test for over-dispersion in poisson regression 

Deviance and Pearson Chi-Square divided by the degrees of freedom are used to detect over-

dispersion or under-dispersion in the Poisson regression. For Poisson distribution the mean 

and the variance are equal, which implies that the deviance and the Pearson statistic divided 

by the degrees of freedom should be approximately one. Values greater than 1 indicate over-

dispersion, that is, that the true variance is bigger than the mean, values smaller than 1 

indicate under-dispersion, the true variance is smaller than the mean. For the developed 

Poisson regression model, these values are less than 1, giving evidence of under- dispersion. 

Therefore, the model does not fit the data well which contain in Table 3.9.  
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Table 3.9 Goodness-of-fit statistics (Poisson distribution & Log link function) 

Statistics Degrees of freedom (df) Statistics Statistics/df 

Deviance 543 86.689 0.159 

Scaled deviance 543 480.643 0.885 

Pearson Chi2 543 97.935 0.180 

Scaled P. Chi² 543 613.45 1.130 

Model checking with observational statistics 

Predicted values and residual statistics for each combination of predictors in the model were 

calculated. Figure below plots the Pearson Chi-square values (contributions to Chi-square) for 

each case against the predicted values. In this graph, the Outlier shown on the right side of the 

graph (e.g. the 540th and 551th data point) has a large Chi-square value and thus is the largest 

contributor to the lack of fit for this model. 
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Fig. 3.14 Chi² statistics by predicted values 
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3.5 Concluding Remarks 

This chapter demonstrates mathematically that some factors like diameter, length, depth, 

thickness, age, material and pervious failure are statistically significant which play a role in 

the failure of urban water mains. Such information should support the development of 

predictive programs along water mains. 

Second part of this chapter established two regression models for water pipelines failure on 

the selected area. The water distribution network in Sanandaj city was examined using 

different regression models: Multiple and Poisson regression. Both models have been 

employed to analyze water pipelines failure for 10 years data. Since two models impose some 

special requirements, then it was seriously and deeply assessed. In addition, for evaluate the 

pre-defined underlying relationship between dependent and independent variables in these 

approaches, the initial assumptions have been examined. In spite of good fitting by multiple 

regression (R2
adj = 63%), violation of this model from assumptions leaded to erroneous 

estimation of failure frequency. Thus, multiple regression fits the data inadequately. To 

overcome these challenges, an alternative model, Poisson regression, was used on the data set. 

It fits not only better than Multiple regression model ( with R2
adj = 74.4%) but also consider 

the initial assumption. To assess the adequacy of model, three goodness-of-fit tests were 

given for the overall fit of a model: Pearson, deviance and Graphical representation. The 

significant p-value for deviance statistic in the Poisson model and diagnostic plot of deviance 

against fits confirmed the adequacy of model. But there was also evidence of underdispersion 

for Poisson model which can be interpreted as an adequacy of model. Overall, by comparing 

prediction performance via these statistic indicators, this study demonstrates that Poisson 

regression could not be an alternative method for analyzing water pipelines failure frequency. 

It seems to handle this type of data better than Multiple regression but it is not sufficient. In 

conclusion, applying more accurate model such as ANNs has been justified. Neural networks 

have abilities to adapt data that has been presented to them in the form of input-output 

patterns. This characteristic of neural networks has earned them the title of “dynamic 

regression” when compared to rigid regression methods such as Multiple or Poisson 

regression. 
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4. Artificial Neural Networks (ANNs) Modeling 

4.1 ANNs Modeling of Water pipelines Failure  

In this chapter Artificial Neural Networks (ANNs) were developed to predict number of 

failure (NF) in each water pipelines over the selected area. According to pipe material, 4 

models have been constructed separately for whole of water pipelines and 3 models for the 

failures in metallic, cement and plastic water mains. Based on the characteristics of the 

available failure data, static back propagation neural network was identified as the most 

suitable ANNs for developing their prediction models. These model have been successfully 

used in the past to solve problems that require the computation of a static function (e.g. Najjar 

et al., 1996). Statistical accuracy measures such as coefficient of determination (R²), Sum 

Squared Error (SSE) and the Mean Absolute Relative Error (MARE) on both training and 

testing data sets were used to filter out the most optimal networks. Graphical performance 

comparison of each model against observed data in terms of coefficient of determination were 

also examined.  

4.1.1 ANNs background and theory  

Artificial neural networks mimic the ability of the human brain in predicting patterns based on 

learning and recalling processes (Najjar et al., 1997; Al-Barqawi and Zayed 2006). They are 

considered very powerful predictive modeling technique. ANNs are used here as analysis and 

predictor tool for exploring and modeling the relationship between the input variables       

(e.g. material, diameter, etc.) and the predicted variable (Number of failure in mains network). 

ANNs consist of a number of artificial neurons variously known as “processing elements”, 

“nodes” or “neurons”. Processing elements in ANNs are usually arranged in layers: an input 

layer, an output layer and one or more intermediate layers called hidden layers. Each layer 

consists of individual neurons such as that depicted in Fig. 4.1. 
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Fig.  4.1 A basic artificial neuron 

For a given artificial neuron there is n inputs with signals X1 through Xn and weights W1 

through Wn . The products of multiplying each input and connection weights, are simply 

summed, fed through a transfer function to generate a result, and then outputted. The output 

propagates to the next layer (through a weighted synapse) or finally exits the system as part or 

all of the output.  

In this analysis, all input and output variables were normalized according to the following 

relation:  

) (

)  (

MinimumMaximum

MinimumActual
Normalized

XX

XX
X

−
−=                                  ( 4.1 ) 

Normalization has been found to more effective in achieving faster training by preventing 

larger number from overriding smaller one (Najjar et al., 1997 ). By applying the sigmoid 

function, the data was normalized between 0 and 1 : 
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The output Yj passes as a signal to the output node (k). The net entering signal of an output 

node is:  

∑
=

+×=
n

i

kikiK bwXS
1

                               (4.3) 

The incoming signals of the output node (Sk) is transformed using the sigmoid type function 

to scale the output (Yk):  

kSkk
e

SFY −+
==
1

1
)(                                  (4.4) 

The scaled output is descaled to produce the target output according to the following formula: 

)min()min()max( )( kkkkk YYYYY +−=                                (4.5) 

4.1.2 ANNs application to water pipelines failure  

Since the failure behavior of water pipelines is very complicated, to date a comprehensive 

fundamental theoretical model has not been produced. Therefore, a reliable empirical method 

for predicting failure number based on historical data remains the preferred approach. 

However, the complexity of failure processes means that even traditional methods, such as 

regression analysis, are handicapped in producing sufficiently accurate models. Artificial 

neural networks (ANNs) have the ability to derive highly complex relationships and 

associations from historical data. 

Over the last few years, the use of ANNs has increased in many areas of geotechnical 

engineering. The literature reveals that ANNs have been used successfully in failure 

prediction and classification in water and sewer pipelines. For instance, the ANNs model has 

been applied to the water distribution network of a subdivision in Edmonton, Canada (Rajani 

and Kleiner, 2001). The model was trained with historical input data including temperature, 

rainfall, operating pressure, and number of breaks. Ahn et al. (2005) has been used ANNs 

model for predicting water pipe breaks in service pipes and mains in Seoul city (Korea). They 

observed that the prediction model performed well based on pipe characteristics and water 

and soil temperatures. Jafar et al. (2005) modeled the failure in water network using ANNs 

and compared the results with multiple regression. Based on failure data from the city of 
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Waterloos in France, they found better performance of ANNs modeling. Moselhi and Shehab-

Eldeen (2000) deployed the ANNs in the analysis and classification of defects in sewer 

pipelines. The ANNs was trained to classify four different types of defects including cracks, 

spalling, joint displacements, and reduction of cross sectional area. However, these models 

cannot be applied in other networks such as this case study.  

4.1.3 ANNs modeling steps 

The ANNs modeling process in this research has followed through five steps as diagram 

below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  4.2 ANNs modeling steps 

Build up the database from historical data and break 
it randomly in 3 subsets:   

training, testing and validation sub-databases 

Select the ANNs type based on the characteristics 
of the data and ANNs knowledge 

Determine the basic architecture of the selected ANNs 
type such as inputs, outputs and number of layers. 

Train and test the ANNs to arrive at the optimal 
structure, which involves determination of the 
optimal number of hidden nodes and iterations 

Compare the statistical accuracy measurements 
from training, testing and/or validation sets  

The statistical accuracy 
measurements from training, testing 

and/or validation sets are 
comparable? 

The trained ANNs, with the optimal structure 
is the desired model 

Yes 

No 
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4.1.4 The ANNs software 

The ANNs software used in this work was developed by Professor Najjar from Kansas State 

University (Najjar, Quick Manual, 1999). TR-SEQ1, source coded in C++ language, is a three-

layered ANNs training program (1 input layer; 1 hidden layers; and 1 output layer) that is 

capable for performing simultaneous sequential training and testing. It is a comprehensive, 

powerful and less time consuming package and characterized by intelligent problem solver 

that can guide step by step through the procedure of creating a verity of different networks 

and choosing the network with the best performance. 

The required parameters are specified in two main input files: STP.dat and SPEC.dat. The 

first file includes all failure records which involve both input variables and observed output 

for training and testing cases. The input data was normalized and sigmoid function was used. 

Second file is the specification file which describes the architecture of desired network as well 

as some information about input and output variables. After training, the program produces 

five output variables, namely: result.dat, stp.out, trhist.out, trnet1.out and trnet2.out. One 

supplementary file was used to validation phase.  

In order to produce graphs, all results were imported into the Microsoft Excel and 

STATISTICA spreadsheet. By taking full advantage of both applications, we plotted all kind 

of graphs for the results of this analysis and interpretation of results.  

4.1.5 Determination of model architecture 

Determining the network architecture is one of the most important and difficult tasks in ANNs 

model development (Maier and Dandy 2000). It requires the selection of the optimum number 

of layers and the number of nodes in each of these. There is no unified theory for 

determination of an optimal ANNs structure. It is generally achieved by fixing the number of 

layers and choosing the number of nodes in each layer. There are always two layers 

representing the input and output variables in any neural network. Choosing the number of 

middle layers (hidden) is the most crucial decision in creating the ANN structure. It has been 

shown that one hidden layer is sufficient to approximate any continuous function provided 

that sufficient connection weights are given (Hornik et al. 1989). Hecht-Nielsen (1989) 

provided proof that a single hidden layer of neurons, operating a sigmoidal activation 
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function, is sufficient to model any solution surface of practical interest. In Geotechnical  

modeling, one hidden layer is commonly used by Najjar et al. (1997) and Shahin et al. (2001). 

Increasing the number of parameters of an ANNs by adding hidden neurons or layers, 

complicates network training. Moreover, a large number of parameters increases the chance 

of overtraining occurring.  

Accordingly, in this study, for an adequate description of the underlying relationship between 

number of failure and input variables, a neural network with one hidden layer as well as input 

and output layers has been chosen. Since, our goal is to create a model that correctly maps the 

input to the output using historical data, we selected the Multi-Layer Perceptron (MLP) 

networks. This model will then be used to produce the output (number of failures) when the 

desired output is unknown. The architecture of the statically designed ANNs model for this 

study is shown in Fig. 4.3. 

 

Fig.  4.3 Architecture of designed neural network for prediction of water pipelines failure 

An important step in developing ANNs models is to select the model input variables that has 

the most significant impact on model performance (Faraway and Chatfield 1998; Kaastra and 

Boyd 1995). A good subset of input variables can substantially improve model performance. 

Based on a priori knowledge of water pipelines failure, data availability in this case study, as 

well as the results of correlation and factor analysis in chapter 3, nine input variables (9 

nodes) and one output node were selected for the current work. The 9 inputs are: 
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• Water pipelines diameter 

• Logarithm of each mains segments 

• Cover of soil upper mains 

• Thickness of pipe 

• Maximum hydraulic pressure 

• Age of water mains 

• Water pipelines material 

• Traffic category and NPF 

 

The network was used to predict the following output: 

• Number of failure in each water pipelines  

 

As more applications, the number of input and output neurons was fixed and then number of 

neurons within hidden layer will be optimized. So, the best configuration will be found by 

trial and error for determining the exact number of neurons in a hidden layer. 

With respect to Fig. 4.3, the neural network model developed for this study can be expressed 

in the following compact form: 

{ }
















= −−

NPFMaterialegoryTrafficCat

essureMaxDepthAge

ThicknessLogLengthDiameter

ANNfailureofNumber NH Pr  19       (4.6) 

 

The 9-NH-1 label stands for the architecture of the selected neural network. Numbers 8 and 1 

denote the number of input and output parameters, respectively. NH is the optimal number of 

hidden nodes which needs to be determined through trial and error in stage two. In the 

training phase, we started the number of hidden node for first trial by formula below: 

1    

 

+−
=

outputofNumberinputofNumber

putber of outase  - Numtraining cNumber of 
HN                (4.7) 

Through this equation, we calculated 24 neurons for a hidden layer in dataset for global model 

in Sec. 4.2.  
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The optimal number of hidden nodes 

Determining the optimal number of hidden nodes has always been a question that is raised in 

neural networks applications and there is no direct and precise way of determining the best 

number of nodes in each hidden layer. Several rules-of-thumb were developed by many 

researchers regarding the approximate determination of required number of hidden nodes in a 

hidden layer from the knowledge of the number of nodes in both the input and output layers 

(Najjar et al., 1997). For single hidden layer networks, there are a number of rules-of-thumb 

to obtain the best number of hidden layer nodes. One approach is to assume the number of 

hidden nodes to be 75% of the number of input units (Salchenberger et al. 1992). Another 

approach suggests that the number of hidden nodes should be between the average and the 

sum of the nodes in the input and output layers (Berke and Hajela 1991). A third approach is 

to fix an upper bound and work back from this bound. Hecht-Nielsen (1989) and Caudill 

(1988) suggested that the upper limit of the number of hidden nodes in a single layer network 

may be taken as (2I+1), where I is the number of inputs. The best approach found by Nawari 

et al. (1999) was to start with a small number of nodes and to slightly increase the number 

until no significant improvement in model performance is achieved. Another way of 

determining the optimal number of hidden nodes that can result in good model generalization 

and avoid over fitting is to relate the number of hidden nodes to the number of available 

training samples (Maier and Dandy, 2000). For instance, Wanas et al. (2001) showed, 

empirically, that the best performance of a neural network occurs when the number of hidden 

nodes is equal to log(T), where T is the number of training samples. 

In this study, we used the iterative method, starting from an initial guess (according to 

equation 4.7), for determining the required number of hidden nodes in a hidden layer and 

online monitoring of accuracy measures on the testing datasets. This was done by varying the 

number of initial hidden nodes until the network was able to best learn the patterns involved 

in the testing datasets. For each set of hidden neurons, the network was trained in batch mode 

to minimize the average square error (ASE) at the output layer. In order to check any over-

fitting during training, a threefold cross-validation was performed by keeping track of the 

efficiency of the fitted model. The training was stopped when there was no significant 

improvement in the model’s efficiency, and the model was then tested for its generalization 

properties. 
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Generalization of neural networks 

To reach the best generalization and overcome the problem of data over fitting through  cross-

validation technique, the dataset should be split into three parts:  

• The training set is used to train a neural net and adjust the connection weights. The error 

of this dataset is minimized during training.  

• The testing set measures the ability of the model to generalize, and the performance of the 

model using this set is checked at many stages of the training process and training is 

stopped when the error of the testing set starts to increase. The testing set is also used to 

determine the optimum number of hidden layer nodes and the optimum values of the 

internal parameters (learning rate, momentum term and initial weights). Finally, a test set 

was applied to checking the overall performance of a neural net.  

 

• The validation set is used to determine the performance of a neural network on patterns 

that are not trained during learning.  

Najjar et al. (1999) recommended that test and training data sets must be selected randomly. 

In this work, we adopted a randomly grouping the data into 3 folds (training, testing and 

validation) by generation random number using the JavaScript Math.random function. 

Accordingly, the entire database (554 datasets) in global model was divided randomly into 

training, testing and validation sub-databases at the ratio of about 51% : 26% : 23%. 

Training the neural network 

The process of optimising the connection weights is known as “training” or “learning”. This 

is equivalent to the parameter estimation phase in conventional statistical models (Maier and 

Dandy, 2000). The MLP neural networks learn using an algorithm called back-propagation 

(Rumelhart and McClelland, 1986) which is the predominant method of supervised training. 

With back-propagation, the input data is repeatedly presented to the neural network. With 

each presentation the output of the neural network is compared to the desired output and an 

error is computed. This error is then fed back (back-propagated) to the neural network and 

used to adjust the weights such that the error decreases with each iteration and the neural 
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model gets closer and closer to producing the desired output. This process is known as 

"training". 

 

Fig. 4.4 Generalization versus training error (Moody, 1992) 

Fig. 4.4 shows a typical error development of a training set (lower curve) and a testing set 

(upper curve).  

The learning should be stopped in the minimum of the testing set error as well as when the 

error of the testing set starts to increase. At this point the net generalizes best. When learning 

is not stopped, overtraining occurs and the performance of the net on the whole data 

decreases, despite the fact that the error on the training data still gets smaller. 

Model validation  

Once the training phase of the model has been successfully accomplished, the performance of 

the trained model should be validated (Shahin et al., 2001a). The purpose of validation phase 

is to ensure that the model has the ability to generalize within the limits set by the training 

data in a robust fashion, rather than simply having memorized the input-output relationships 

that are contained in the training data. The approach that is generally adopted in the literature 

to achieve this is to test the performance of trained ANNs on an independent validation set, 
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which has not been used as part of the model building process. If such performance is 

adequate, the model is deemed to be able to generalize and is considered to be robust. 

Error evaluation and selecting the optimal ANNs model 

The selection process of the desired optimal network model is composed of two consecutive 

stages, which indicate the values of efficiency. In the first stage, statistical accuracy measures 

such as coefficient of correlation (R²), Sum of Squares due to Error (SSE) and the Mean 

Absolute Relative Error (MARE) on both training and testing data sets to filter out the most 

promising optimal networks. The values of both SSE and MARE close to zero indicate a better 

performing model. The values of R2 range from 0 to 1, with higher values close to 1 indicating 

better model performance. These statistical indices can be expressed mathematically as 

illustrated in the following equations:  
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Where yi , iŷ  and y  stand for the observed, predicted, and mean value, respectively. N is the 

total number of data set.  

Statistically, an optimal network is defined as the one with the best overall accuracy 

measures. In the second stage, the predicted and observed data graphical responses for both 

training and testing sets for the selected most promising networks. Based on the overall 

graphical evaluation of each model’s performance, the absolute optimal network can easily 

selected. 



Chapter 4. Artificial neural network modeling 

 
 

140 

4.2 ANNs Model for Total Water Mains 

First model in this domain was related to an ANNs model for all failures on the total water 

pipelines in study area that named Global model. Total case in this dataset contains 554 water 

pipelines which has been divided randomly into three subsets: a training set: 279 cases (50%), 

testing set: 139 cases (25%), validation set: 136 cases (25%).  

To obtain the best model, several neural networks varying with the number of hidden nodes 

(NH) were presented with the training sets to generalize the relationships between the input 

and output parameters. Since the number of hidden nodes is unknown, the trial and error 

process was begun by determining the hidden node by using equation (4.7). We calculated 21 

hidden nodes for the first net configuration. By minimizing the SSENts, the initial number of 

hidden nodes was selected for Itr=2000 and HN=2. Then, the trial-and-error procedure was 

started with one hidden node, and then the number of hidden node was increased to 2 during 

the trials.  

Using the training and then the testing dataset, the least error structure in the testing dataset 

was selected based on the statistical accuracy measures such as SSE, Mean Absolute Relative 

Error (MARE) and Coefficient of determination (R2). Then, to decide which number of hidden 

nodes produces a good prediction network, all networks have been tested on sets that have 

never been used in the training process (validation dataset). The results are summarized in 

table 4.1, which are used to assess the model’s performance.  

Based on statistical accuracy measures such as SSE, R2, MARE and graphical evaluation of 

testing datasets, the optimal network structure was found to be 2 hidden nodes and 2000 

iterations. The corresponding accuracy measures of this network are SSENtr
1
= 0,001221, 

R
2
tr= 0,91229, MAREtr=60.8% (for training datasets) and SSENts

2
= 0,001244, R2

ts= 0,90048, 

MAREts=60.7%  (for testing datasets). 

 

                                                 

 
1 tr= training subset    
2 ts= testing subset 
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Table 4.1 Statistical accuracy measures in each trial of finding optimal hidden nodes (Total mains model) 

 Trial Itr   HN   MAREtr   MAREts   R2
tr   R²ts   SSENtr   SSENts 

1 2000 1 608.11 606.965 0.91204 0.90049 0.001225 0.001244 

2 2000 2 608.099 607.008 0.91229 0.90048 0.001221 0.001244 

 

In other word, the SSENts and SSENtr parameter were used as a criterion for the selection of 

the appropriate neural network architecture. The values of SSE closer to “0” indicate a better 

fit. In Fig. 4.5 both of these parameters were plotted against the number of hidden nodes.  
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Fig.  4.5 Number of nodes in the hidden layer versus SSE for the testing and training stages 

The optimal number of hidden nodes was selected when both of SSENts and SSENtr errors 

have minimum values. Therefore, the network with two hidden nodes was selected as the 

most appropriate network for predicting of failures frequencies in each water mains. 

Additionally, Fig. 4.6 depicts the comparison between observed values and predicted by the 

two different network architectures for testing and training date sets. 
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Fig. 4.6 Predicted versus observed values of failure frequency in the testing and training subsets 

The solid line shown on the plot is a linear trend line fitted to the predicted values. Model 

performance was evaluated in terms of coefficient of determination (R2) which reflect the 

overall error performances of the model. The result of the ANNs with two hidden nodes 

demonstrated a bit higher coefficients of determination (R2
 = 0.91). 
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Fig. 4.7 Predicted against observed failure frequency during optimization process on validation cases 

To validate the proposed ANNs models, randomly selected validation datasets were used to 

evaluate the prediction accuracy. The high value of coefficient of determination (R2
=0.84) 
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during the validation phase confirms that a network with 2 nodes in hidden layer produces the 

most accurate prediction results. Fig. 4.7 shows the scatter plot for predicting failure number 

through two proposed models. It also depicts that the predicted values from the neural 

networks with two hidden nodes matched the observed values better than those obtained from 

another network’s architecture. Then, the network with 2 hidden nodes was selected for 

prediction of failure in the study area. 

In summary and based on Fig. 4.6 and Fig. 4.7, the Global ANNs model for all of failure on 

total water pipelines found that the best network consisted of 2 hidden nodes with correlation 

coefficients equal to 0.91 and 0.84 for the training and testing, and validation sets, 

respectively. 

4.2.1 Prediction with the global ANNs model 

Since the data collection program was installed in SWWU in 2000, we have had access to 

more reliable data. Failure information for the period 2000 through 2004 was then extracted 

for comparing the observed and predicted value. Fig. 4.8 shows the correlation between the 

predicted and observed values of failure frequencies for the period 2000-2004. R²=0.78 and 

the narrow bound of 95% confidence in this graph indicates the ANNs model predicts well. 

Otherwise, a very wide interval for the fitted coefficients could indicate that we should use 

more data when fitting before we can say anything very definite about the coefficients. 
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Fig. 4.8 Comparison of predicted and observed values of NF (during 2000-2004) 

4.2.2 Sensitivity analysis 

Neural Networks offer an interesting ability to test the sensitivity and significance of the 

various input variables to produce the outputs. This can be carried out by manipulating the 

connection weights and biases of the designed network (Hajmeer et al., 1997). This gives 

some information about the relative importance of the variables used in a neural network. It 

often identifies variables that have low significant effect on the accuracy of the network. Key 

variables with high sensitivity can improve model’s performance significantly. 

While the selection of input variables is a critical part of neural network design, we conducted 

Sensitivity Analysis, which rates the importance of input variables with respect to the global 

model. Table 4.2 compares the ranking of the nine most influential variables among input 
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variables for Global model. It also shows the rank order for each input, which puts the input 

variables into order of importance. 

Table 4.2 The influence ranking of input variable on the output in Global model 

Input variable Rank 

NPF 1 

Material  2 

LogLength 3 

Age  4 

Traffic category  5 

Thickness 6 

Diameter 7 

Maximum pressure 8 

Depth 

 

9 

 

Considering to table 4.2, number of pervious failure with rank of “1” identifies the most 

influential variable affecting model output and depth with rank of “9” indicates that it has no 

positive effect on the model.  

In this thesis, we also arranged all water pipelines into small groups based on three existence 

pipe material. For each group we developed the ANNs model as below.  

4.3 ANNs Model for Metallic Water Mains 

In this part we adjusted the model for two cast and ductile iron material which represent the 

metallic water pipelines in study area. The failures in cast iron and ductile iron were 

considered in this model. By trial and error, the optimal network was determined for two 

hidden node. Table 4.3 illustrates the statistic indices for the best network.  

Table 4.3 Error evaluation for finding the hidden neurons 

 Trial Itr   HN   MAREtr   MAREts   R²tr   R²ts   SSENtr   SSENts 

1 5300 3 581.648 557.94 0.94976 0.95207 0.000774 0.001146 

2 5300 3 581.798 557.341 0.94743 0.95474 0.000811 0.001113 

3 5300 3 581.565 557.843 0.94843 0.95208 0.000795 0.00118 
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In Fig. 4.9 both of error evaluation parameters, SSENts and SSENtr, were plotted versus the 

number of hidden nodes. The optimal number of hidden nodes was selected when the error of 

the testing and training set starts to increase. Considering to value of SSE for testing and 

training, 0.001113 and 0.000811 respectively, 2 hidden nodes were identified as the best 

number. Therefore, the network with “8-2-1” architecture best predicts the failures 

frequencies in both cast and ductile iron water mains. 
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Fig. 4.9 Number of nodes in hidden layer versus SSE for the testing and training stages 

The graphs in Fig. 4.10 show predicted values for the number of failures in each mains 

against observed values for the training and testing subset besides validation cases. The poor 

performance of this model during testing and training may be due to over fitting of the model 

as the number of cases in the training data is limited. 

By using trained neural network for metallic pipelines, we made predictions on data over 

2000-2004. This model with R²= 0.86 appears to fit the data well (Fig 4.11). 
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Fig.  4.10 Predicted versus observed values of failure frequency in the testing and training subsets 

4.3.1 Making prediction for 2000-2004 
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Fig.  4.11 Comparison of predicted and observed values of NF (during 2000-2004) 
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4.4 ANNs Model for Cement Water Mains 

Asbestos cement (AC) pipes account for approximately 36.1% (20.5 kms) of the total length 

of mains in the selected area with a corresponding average break rate of 48.3 breaks/100 

km/year. Here ANNs are used to model the number of failure in asbestos cement material. 

The history of failure in 173 segments was randomly separated into three groups of 87 (about 

50% of the total sample), 43 (about 25% of the total sample) and 43 (about 25% of total 

sample) as training, testing and validation samples, respectively.  

A similar approach was repeated for this network to determine the number of hidden layer 

neurons. We carried out trial and error procedure with HN= 9 as an initial guess which was 

determined by equation 6. Consequently, a network configuration of "8-1-1" was selected for 

the prediction in AC water pipelines failure. Table 4.4 reports the error evaluation for this 

optimization process.  

Table 4.4 Statistical accuracy measures in each trial of finding optimal hidden nodes (AC mains model) 

 Trial Itr   HN   MAREtr   MAREts   R2
tr   R²ts   SSENtr   SSENts 

1 3500 2 609,86 620.78 0.83652 0.77906 0.00695 0.008876 

2 3500 2 611.68 622.042 0.80887 0.75706 0.00816 0.009839 

 

Fig. 4.12 shows the comparison between actual values and predicted values in two different 

network structures for the testing and training data sets. The solid line shown on the plot is a 

linear trend line fitted to the predicted values. Model performance was also evaluated in terms 

of coefficient of determination (R2). The result of the ANNs with one hidden node 

demonstrated high coefficients of determination (R2
 = 0.82). 
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Fig. 4.12 The correlation between predicted and observed values during testing and training 

For the validation cases, the coefficient of determination value was established equal to 0.68 

and 0.66. These coefficient also confirm that network with one hidden node fits better.  
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Fig. 4.13 Scatter plot of predicted values versus actual values of failures number on each AC water 

pipelines during optimization process on validation cases 
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To increase predictive performance, the training, testing, and validation sets were randomly 

drawn from the whole data set five times. Then, all networks have been trained and tested. 

The best results were obtained for 90 cases in training (52%), 45 cases for testing (26% ) and 

38 cases (22%) for validation. After training and testing, according to SSE error for the testing 

phase, the finalized network consists of one nodes in the hidden layer [NN(8:1:1)]. 

4.4.1 Making prediction on data over 2000-2004 

The best model [NN(8:1:1)] was considered to predicting the number of failure (NF) for 

Asbestos Cement water pipelines during 2000-2004. Fig. 4.14 compares the prediction value 

by the selected ANNs model and observed value in the period 2000-2004. This graph shows 

R² along with the 95% confidence bounds. Clearly, R²=0.59 shows that the ANNs models are 

able to make reasonably good forecasts in this type of pipelines. 
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Fig. 4.14 Comparison of predicted and observed values of NF (during 2000-2004) 
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4.5 ANNs Model for Plastic Water Mains 

Since the newer material like polyethylene have not been in the ground long enough to have 

collected significant amounts of historical data to support accurate ANNs predictions, but 

approximately 43% of mains failures occurred on polyethylene lines which comprise about 

30% of the study area's total pipeline system. For this type of material, the network was 

developed and evaluated as per the methodology described earlier for models. 

In the first stage, the entire database (253 samples for failure in polyethylene) was divided 

into training, testing and validation sub-databases at the ratio of approximately 50% : 25% : 

25%. The number of hidden layer neurons was evaluated in the range of 1-11. Statistical 

accuracy measures, SSE, MARE and R2 for testing and training dataset were illustrated in 

Table 4.5. Fig. 4.15 provides the plot of errors versus number of hidden nodes. 

Table 4.5 Statistical accuracy measures in each trial of finding optimal hidden nodes (PE mains model) 

 Trial  Itr   HN   MAREtr   MAREts   R²tr   R²ts   SSENtr   SSENts 

1 8200 11 634.328 622.751 0.88521 0.87689 0.002 0.002465 

2 9100 7 633.793 621.698 0.88859 0.89738 0.001939 0.002005 

3 9100 7 633.885 621.742 0.88807 0.89708 0.001948 0.002013 

4 6100 7 633.822 621.588 0.88893 0.89872 0.001932 0.001988 

5 9200 5 634.646 622.786 0.88495 0.88213 0.001997 0.002336 

6 7100 8 633.968 621.749 0.88857 0.89825 0.001936 0.001989 

7 9100 7 634.431 622.166 0.88612 0.89417 0.001976 0.002067 

8 7400 13 633.898 621.868 0.89125 0.89628 0.001884 0.002024 

9 9100 9 634.46 622.225 0.88599 0.89316 0.001978 0.002095 

10 10000 10 634.526 622.27 0.88562 0.89419 0.001984 0.002064 

11 8100 11 634.482 622.286 0.88487 0.89303 0.002 0.002098 

 

According to the statistical accuracy measure for SSENts, as noticed in Table 4.5 and Fig. 

4.15, this model has two possibility for model topology which means that desirable network 

can predict by 4 or 8 hidden nodes. For different number of hidden nodes ( 4 and 8 nodes) the 

network was trained against different training, testing and validation sets. We compared the 

predicted and observed value for testing and training data with HN= 4 and 8. Additionally, 

correlation of observed and the predicted number of failure for the validation dataset were 

examined. According to the statistical accuracy measure for SSEts and Fig. 4.16 and 4.17, the 
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best results were obtained when 8 neurons were employed in hidden layer. Accordingly, this 

model [NN(8:8:1)] can most accurately predict the output variable. 
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Fig. 4.15 Number of nodes in hidden layer versus SSE for testing and training stage 

The graphs in Fig. 4.16 represent the comparison between actual values and predicted by two 

different network structures for testing and training date sets. 
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Fig. 4.16 Predicted versus observed values of failure frequency in the testing and training subsets 
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First trial: HN=4 and Itr=6100 Second trial: HN=8 and Itr=7400 
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Fig. 4.17 Predicted against observed failure frequency during optimization process on validation cases 

It was founded that the value of R² =0.45 and 0.71 for network with 4 and 8 hidden nodes, 

respectively. It confirms that ANNs with 8 hidden nodes have a good agreement with data. 

4.5.1 Making prediction on data over 2000-2004 

Comparisons between the observed and predicted 5th-year data depicts that the predicted 

values were in close agreement with the observed values as shown by the relevant statistical 

parameter (correlation coefficient = 0.75). Fig. 4.18 plots the fitted line based on observed dat 

against predicted value.  
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Fig. 4.18 Comparison of predicted and observed values of NF (during 2000-2004) 

4.6 Regression Models versus Artificial Neural Network 

In chapter 3, Multiple and Poisson regression model has been employed to analyze total water 

pipelines failure data within 1995-2004. This part compared the prediction accuracy of ANNs 

with the Regression models on the global model. Though various measures can be used for 

comparison purposes, for simplicity, only coefficient of correlation (R²) was considered here.  

Table 4.6 Comparison of  alternative models 

Method Coefficient of correlation (R²) 

ANNs 0.78 

Poisson regression 0.74 

Multiple regression 0.63 
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It is evident from table 4.6 that the ANNs performs better than the traditional regression 

models for prediction of water pipelines failure frequency.  

4.7 Concluding Remarks 

The purpose of this chapter is to develop failure frequency prediction model by using ANNs 

approach. The models forecast individual pipes failure number which is one major technical 

indicator for defining annual rehabilitation program and prioritize pipes to be rehabilitated. 

Based on the available failure data in the study area, back propagation neural network with 

one hidden layer was identified for developing prediction model. The ANNs models were 

developed in 3 consecutive stages. In the first stage, the ANNs architecture was determined 

based on problem characteristics and ANNs knowledge, and the input and output categories 

were determined through statistical analysis. In the second stage, the neural network was 

trained and tested on actual data to find the optimal number of hidden nodes and iterations for 

the ANNs architecture determined from stage one. In the third stage, the best performing 

ANNs from the first two stages was re-trained on all observed data to enhance the prediction 

accuracy and to arrive at optimal model. 

In this case study, we trained four ANNs models based on total failure data and 3 separated 

failure data according to pipe materials. Comparison between forecasted and observed failures 

for last 5 years show that the designed neural network for total water pipelines , with R²= 

0.78, give satisfactory prediction. Further, three models for metallic, cement and plastic 

pipelines had correlation coefficient equal to 0.86, 0.59 and 0.75, respectively. In conclusion, 

stratification of material did not improve the results except in metallic pipelines.  

Finally, comparison of the Global ANNs model and the corresponding multiple linear 

regression as well as poisson regression for failure showed that the ANNs models 

outperformed its counterpart in prediction accuracy. Prediction accuracy, flexibility for use, 

and capabilities for investigation associated with the developed ANNs models support the 

conclusion that ANNs provides an attractive and powerful tool for prediction of failure in 

water distribution. 
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5. Survival Analysis of Water Pipelines Failure Time 

5.1 Introduction 

This chapter comprises an application of survival analysis in Sanandaj’s water pipelines 

failure that can be used to assist water managers in identifying efficient pipe maintenance 

strategies. Using parametric and non-parametric survival models, the expected number of 

failures during a given time period is computed. Survival analysis characterizes the 

distribution of the survival time for different groups of pipes, to compare this survival time 

among different type of materials. Then, four models were developed to simulate time to 

failure in all water mains, and 3 stratified failure dataset: metallic, cement and plastic water 

mains. The various models were calibrated on the historical failure data collected over the 

period 1995 - 2001, then they were tested on the more reliable data since 2002. These models 

determine the Benefit Index curves, i.e. “impact of the various rate of renewal over the mains 

network on the percentage of  failures which avoided from this network”. In this chapter, we 

describe the methodology followed for the survival analysis in our research. Then models and 

results will be illustrated. The analysis discussed in the following sections were performed 

using three statistical software: Statistica, SAS and EGRET package. 

5.2 Principal of Survival Analysis  

There are several questions an investigator might wish to ask in relation to survival data. First, 

it may be of interest to estimate the survival time distribution for a group of individuals. 

Among other things, this allows one to calculate the risk that the event will occur within a 

given interval and compute derived quantities such as the median residual lifetime, i.e., the 

time to occurrence of the event for an individual that has survived (i.e., not experienced the 

event) until the beginning of the interval. A second objective might be to compare survival 

time distributions among two or more groups, e.g., individuals subjected to different 

treatments following the diagnosis of a disease. Finally, one might wish to quantify the effects 
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of one or more independent variables (covariates) on survival times in an effort to develop a 

model to describe or predict survival times in a population.  

Here, survival analysis focuses on the lifetime of a pipe which is predominantly used for 

rehabilitation planning. The pipe lifetime is treated as a random variable and a standard 

statistical distribution is then fitted to a collection of similar pipes. In effect, the purpose of 

survival analysis is to model the underlying distribution of the failure time variable and to 

assess the dependence of the failure time variable on the independent variables (Rostum, 

2000). Such analysis has been performed for several European water networks and North 

American networks ( Eisenbies, 1994 ; Le Gat, 2000 ; Lei and Saegrov, 1998 ). In 1972, D. R. 

Cox introduced the Proportional Hazards Model in order to estimate the effects of different 

covariates on the time to failure of a system. Kaara (1984) and Andreou (1986) introduced the 

use of proportional hazards model for analyzing failures in water distribution networks. 

Fig. 5.1 illustrates the failure history in water pipelines with the failure times t1, t2, …, ti. Each 

pipe has a vector of covariates or explanatory variables Z (Z=[z1,z2,z3,..zp]) which incorporate 

in time of failure. We are interested in modeling the relationship between the failure history 

and the covariates Z such as regression models . Two general classes of regression models are 

considered in order to relate the hazard function or intensity function to the covariates. 

As can be seen in Fig. 5.1, failure data are available from a particular starting time (e.g. 1995) 

during the follow-up period, 10 years. The problem in this analysis is that we do not have the 

complete mains failure history in study area. Before 1995, the failure data have not recorded. 

In survival analysis we called this left-censored failure data. Additionally, in the future failure 

data will be recorded but these data not included in the analysis. This means that the data is 

also right censored 

5.2.1 Censored observations  

In general, censored observations arise whenever the dependent variable of interest represents 

the time to a terminal event, and the duration of the study is limited in time. In pipeline failure 

analysis, censored observations occur because by the end of the study period, some pipelines 
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will not be failed and we don’t know how long it will function properly thereafter, and thus, 

that observation is censored. For water pipelines network, we have two types of censoring: 

• Left censoring 

• Right censoring 

By left censoring we mean that there is a period of time after installation when no data is 

recorded. When a case is right censored, the dependent variable is known to be greater than a 

specific value, but its true value is not known (i.e. pipe has not failed by the time the 

maintenance record ends). More accuracy is achieved by including cases in which the event 

has not happened yet (right censored data). If the event has occurred the censoring value, CV 

is set equal to 1, else CV=0 (right censored). 

 

Fig. 5.1 Availability of failure data in water pipelines and times of failure 

The initial goal in survival analysis is to characterize the distribution of the survival time for a 

given population, to compare this survival time among different groups. There are several 

parametric and nonparametric tests to compare two survival distributions. At first step in this 

work, failure data was analyzed by means of a life-table, or Kaplan-Meier curve, which is the 

most common method to describe survival characteristics. 
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5.3 Non-Parametric Survival Model 

The non-parametric approach, Kaplan-Meier (1958), used to estimate the survivor function 

and cumulative hazard function based on water pipelines failure data that were multi 

censored. For our model building, we first needed to get the data into the proper format for 

survival analysis by using the STATISTICA 7.0 commands. Here, the total number of times 

between failures was 949 which conclude 395 uncensored records ( 41.8 %) and 554 censored               

( 58.2%). These number are equal to total number of failure and number of water pipelines in 

study area, respectively. To perform the survival analysis, dataset must be probably prepared 

(table 5.1). In survival modeling, an individual can fail only once: a new statistical individual 

is therefore created after each break. With 395 breaks between 1995 and 2004 and 554 

statistically defined segments, for all water pipelines 949 statistical individuals has been 

created. Survival analysis requires the creation of two variables, time of between failures, and 

the censored variable, “CV” to record the right censorship status. This is a binary variable 

indicating whether the observation is censored. After a break, the newly introduced statistical 

individual has a new date of installation that is the date of the latest break now considered to 

be the date of installation. For instance, records of 4 water pipelines in survival data set are 

shown as below.  

Table 5.1 Preparing dataset for survival analysis 

Pipe ID 
Number of 
failure 

Date of 
failure 

Left time Right time NPF* CV** 

P03060 0 ---- 1995/01/01 2004/12/30 0 0 

P03075 1995/01/01 1997/09/12 0 1 

P03075 
1 1997/09/12 

1997/09/12 2004/12/30 1 0 

P03110 1995/01/01 1997/08/02 0 1 

P03110 1997/08/02 2000/12/19 1 1 

P03110 

2 
1997/08/02 

2000/12/19 
2000/12/19 2004/12/30 2 0 

P03145 1995/01/01 1997/12/04 0 1 

P03145 1997/12/04 2000/11/09 1 1 

P03145 2000/11/09 2003/07/11 2 1 

P03145 

3 

1997/12/04 

2000/11/09 

2003/07/11 
2003/07/11 2004/12/30 3 0 

* NPF= Number of pervious failure 

** CV= Censored variable; CV=1 if the statistical individual experiences a failure 
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We assumed that before the first failure all the pipes are safe, and so the proportion surviving 

is =1. Hence, if we denoted the start time of the study as t0 then we have S(t0) =1.  

To start survival analysis, the Kaplan Meier (KM) survival curves were plotted based on rate 

of failure for the different material (Fig. 5.2). Any jumping point is a failure time point.  

 

Fig. 5.2 Survival curves of failure rats in four material groups 

The red dashed lines, showing the influence of the time factor on the respective breakage 

rates, are nearly horizontal, which indicates little deterioration rate in ductile iron pipelines. It 

can clearly be seen that the ductile water pipelines in study area have been deteriorating in a 

relatively steady rate. In contrast, the cast iron (CI) water pipelines have been deteriorating 

quite fast. The survival function drops off sharper than other curves within the time span 

covered by the study. After ductile iron, Asbestos cement water pipelines had fast survival 

declines with time which is plotted in blue dotted-lines in Fig 5.2 Polyethylene water 
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pipelines had especial behavior. Between 1997-1998, this group has a rapid drop in failure 

rate. This indicates polyethylene water pipelines in the first years of life have more failure. 

Most of them were caused by two main reasons: weak material and poor installation practices. 

Overall, as can be seen in this figure, the KM curve for ductile iron pipeline group lies above 

that for other material group and there is a big gap between these curves. Also they have 

slowly drop-off as compared to the other materials. Therefore, we could conclude that, 

somehow, ductile iron pipeline have a greater chance of survival.  

With Chi2=110.6  and  df=3, p-value was calculated less than 0.0001. By conventional 

criteria, this difference is considered to be statistically significant. 

Whereas the Kaplan-Meier method is useful for comparing survival curves in four material 

groups, parametric survival model allows analyzing the effect of several risk factors on 

survival. In the next step, we derived two parametric survival models ( Cox proportional-

hazards regression and Weibull ) from the failure data in selected area.  

5.4 Parametric Survival Model  

Since the data were used in a study to predict failure times, this case study is a form of 

reliability analysis. Data in reliability analysis do not typically follow a normal distribution 

(Gregory et al., 2003); non-parametric methods (techniques that do not rely on a specific 

distribution) are frequently recommended for developing confidence intervals for failure data. 

One problem with this approach is that sample sizes are often small due to the expense 

involved in collecting the data, and non-parametric methods do not work well for small 

sample sizes. For this reason, a parametric method based on a specific distributional model of 

the data is preferred if the data can be shown to follow a specific distribution. Parametric 

models typically have greater efficiency at the cost of more specific assumptions about the 

data, but, it is important to verify that the distributional assumption is indeed valid. If the 

distributional assumption is not justified, then the conclusions drawn from the model may not 

be valid. 
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There is a large number of distributions that would be distributional model candidates for the 

data. However, we restricted ourselves to consideration of the following distributional models 

because these have proven to be useful in reliability (Gregory et al., 2003):  

• Exponential distribution  • Weibull distribution 

 

Here, the distribution of random variable of duration were expressed in 3 closely related way: 
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5.4.1 Fitting a theoretical survival distribution 

As a first step in survival analysis, we determined a good distributional model for survival 

time of the water mains. Two mathematical functions, the survivor function S(t) and the 

hazard function h(t) establish the survival analysis. In this part, we specified the lifetime 

distribution through either the exponential or weibull survival time distributions: 

Function Exponential distribution Weibull distribution 
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λ is referred to as the scale parameter, while γ is referred to as the shape parameter.  

To choose the best fitting distribution using chi² base test statistics, the parameters for that 

distribution and the goodness-of-fit chi² were calculated. Table 5.2 displays the parameter 

estimated for two distributions. 
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Table 5.2  Goodness-of-fit Chi-square for fitted theoretical survival distributions 

Survival 
Distribution 

Lambada 
Variance 
Lambada 

Sed. Err.   
Lambada 

Log 
likelihood 

Chi² df p-value 

0.000188 0.000000 0.000010 -1475.46 27.59037 10 0.002105 

0.000183 0.000000 0.000010 -1476.00 28.66654 10 0.001416 Exponential 

0.000196 0.000000 0.000010 -1475.14 26.93558 10 0.002674 

0.000494 0.000000 0.000238 -1476.25 29.15970 9 0.000611 

0.000294 0.000000 0.000130 -1474.91 26.48197 9 0.001708 Weibull 

0.000333 0.000000 0.000149 -1474.94 12.55033 9 0.184 

 

The Chi² test is based on the comparison of the likelihood of the respective model with the 

null model. If this test is significant, we can conclude that the fitted distribution is 

significantly different from the observed data, and therefore, we reject it as a model for the 

survival times. From table 5.2 it can be seen that none of the different parameter estimates for 

the exponential distribution seems to fit the observed survival distribution. Additionally, the 

exponential distribution is used to model data with a constant failure rate (indicated by the 

hazard plot which is simply equal to a constant (Fig. 5.5). Since, in this study the failure rate 

is not constant and dependant on time, then the exponential function has been rejected.    

Just we found that the only one yielding a non-significant fit is the Weibull distribution with 

weighted least squares parameter estimates. It appears that the third set of parameters provides 

a reasonable fit to the data; the Chi² test for that model is not significant (p-value = 0.184). 

Therefore, we concluded that the Weibull distribution with third set of parameters (weight 3 ) 

provides a good theoretical model for the data. Additionally, to check the adequacy of fit, 

survival functions were plotted in Fig. 5.3.  
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Estimates of Survival Function (Model: Exponential)
Note: Weights: 1=1., 2=1./V, 3=N(I)*H(I)
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LS Estimates of Survival Function(Model: Weibull)
Note: Weights: 1=1., 2=1./V, 3=N(I)*H(I)
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Fig. 5.3 Plot of Exponential and Weibull survival function 

The probability density of two chosen distribution show decreasing over time (Fig. 5.4). It  

reflects the fact that probability of failure is greater in the earlier time intervals. 

Probability Density(Model: Exponential )
Note: Weights: 1=1., 2=1./V, 3=N(I)*H(I)
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Fig. 5.4 Probability density of Exponential and Weibull survival function 

Hazard function 

The other important concept in survival analysis is the hazard rate. From looking at graphs 

with discrete time in Fig. 5.4 (time measured in large intervals such as 231 days) the hazard 

rate is the probability that a pipe will experience an event at time t while that individual is at 
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risk for having an event. For example, if a pipe had a hazard rate of 1.2 at time t and a second 

pipe had a hazard rate of 2.4 at time t then it would be correct to say that the second pipe's risk 

of an event would be two times greater at time t.  

Hazard Function (Model: Exponential)
Note: Weights: 1=1., 2=1./V, 3=N(I)*H(I)
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Hazard Function(Model: Weibull)
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Fig. 5.5 Plot of hazard function for Exponential and Weibull distribution 

Fig. 5.5 plots the hazard function in two exponential and Weibull model. Throughout Fig. 5.3 

to Fig. 5.5, we concluded that the Weibull proportional hazard model is an appropriate for 

model of times to failure in water mains. 

5.5 Proportional Hazards Models (PHM) 

A common question in medical or engineering (failure time) research is to determine whether 

or not certain variables are correlated with the survival or failure times. There are two major 

reasons why this research issue cannot be addressed via straightforward multiple regression 

techniques: First, the dependent variable of interest (survival/failure time) is most likely not 

normally distributed - a serious violation of an assumption for ordinary least squares multiple 

regression. In this data set, survival times follow a Weibull distribution. Second, there is the 

problem of censoring, that is, some observations will be incomplete.  

The proportional hazards models, proposed by Cox (1984), were used in this section. Non-

parametric and parametric model formulation were examined. The hazard rate function was 

modeled with two known distributions: Cox PHM and Weibull PHM . The hazard rate 
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function of a PHM is the product of a baseline function, h0, function of time, and of a 

parametric portion that takes the risk factors into account in a multiplicative manner. Given a 

set of k covariates xi , the hazard function at time t is modeled by: 

kkxx
ethxth

ββ ++∗= ...
0

11)()(                                                                                                        (5.1) 

where  xi = risk factor; and βi  = regression parameter of xi. 

One feature of a PHM is that even if the baseline function is not formulated, the relative 

importance of the risk factors (hazard ratio) can still be evaluated (Vanrenterghem A., 2007). 

One condition of PHM applicability is that risks remain proportional over time. For example, 

we suppose the hazard rate function of pipe A is as follows : 

AkkA xx

A ethxth
ββ ++∗= ...

0
11)()(                                                                                                 (5.2) 

The hazard rate function of the reference pipe R (xRi=0 for all i ) is: 
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The ratio of the risks is: 
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This represents pipe A’s risk of breaking compared to pipe R’s, the reference pipe. It is 

entirely dependent on the risk factors associated with pipe A. Then, if the baseline function is 

not specified, we will have the Cox proportional hazards models (CPHM).  When the baseline 

function, h0, is to be formulated, the Weibull model is one option. The function is then called 

a WPHM which is defined as: 

kk xx
etxth

ββγλλγ ++− ∗= ...1 11)()(                                                                                             (5.5) 

where λ and γ are scale and shape parameter, respectively.  

5.5.1 Non-parametric Cox's hazard model 

To determine the relationship between most influential independent variables and survival 

time, we used Cox's proportional regression model (CPHM). It does not make any 



Chapter 5. Survival analysis of water pipelines failure time 

 
 

168 

assumptions about the nature or shape of the underlying survival function. We estimated the 

regression coefficient for the independent variables in the prediction of survival times using 

the proportional hazard model. According to Eq. (5.1), we obtain the hazard ration : 

kk xxx
th
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Ln βββ +++=
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)(
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2211

0

                                                                                  (5.6) 

We selected most 9 influential variables for the analysis and censored variable. By the 

estimation procedure, the log-likelihood of the regression model via Newton-Raphson 

iterations were maximized. The regression coefficient were obtained as: 
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 (5.7)   

 

The overall Chi² value for the model is significant (Chi² =385.625 ; df = 10; p = 0.00001). 

Then, we concluded that at least some of the independent variables are significantly related to 

pipelines survival. In table 5.3 significant risk factors appear in bold ( p-value < 0.05).  
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Table 5.3 Statistical significant of each variable in CPAM for total pipelines 

 Standard error t-value Wald Statistics p-value 

NPF 0.042314 4.96420 24.6433 0.000001 

Age 0.018034 -2.44663 5.9860 0.014425 

Diameter 0.002683 -2.01738 4.0698 0.043664 

LogLength 0.180141 11.21926 125.8717 0.000000 

M1 (AC) 0.388662 2.54962 6.5006 0.010789 

M2 (DI) 0.705977 1.60898 2.5888 0.107632 

M3 (CI) 0.616552 3.57835 12.8046 0.000346 

Depth 0.677492 -0.25332 0.0642 0.800020 

Thickness 0.776531 -1.52750 2.3333 0.126646 

Traffic Load 0.13338 1.34192 1.8007 0.179633 

MaxPressure 0.004175 2.65635 7.0562 0.007903 

Note: Highlighted variables are statistically significant (p-value < 0.05) 

 

Therefore, we concluded from table 5.3 that NPF , age, diameter, logLength, material (AC 

and CI) and maximum pressure are the most important predictors of hazard. In fact, through 

the use of a Cox proportional hazards model, six factors significantly entered the equation 

predicting survival time in the sample. 

5.5.2 Parametric Weibull hazard model 

In the second regression model of survival analysis, we considered accelerated failure time 

models which obtained by modeling the logarithm of failure time instead of the failure time 

itself (see table 1.5). This model specifies that the natural logarithm of the time to failure T is 

related to independent variable (risk factors) via a linear model. The model for the whole set 

of pipes is:  

∑
=

+=
n

i

ii WXtLn
1

)( σβ                                                                                                           (5.8) 

Where: 

  t =  Time to failure 

Xi =  Risk factors 

σ =  Scale on errors           n =  Number of influential factors 

W =  Error vector 

 



Chapter 5. Survival analysis of water pipelines failure time 

 
 

170 

For a given failure on a specific pipe with related covariate values for this pipe, Eq. (5.8) can 

be rewritten as: 

σ

β∑
=

−
=

n

i

ii Xt

tw 1

)ln(
)(                                                                                                          (5.9) 

Using the extreme value distribution with survival function (Klein et al., 1997):  

S(w)=exp [-exp(w)]                                                                                                   (5.10)  

By entering w(t) into Eq. (5.10) , the survival function for each water pipelines is: 
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As in logistic regression, parameter estimates in weibull survival models are obtained using 

maximum likelihood estimation. This analysis was performed with the statistical software 

SAS (SAS Institute, 1994). All four WPHM models loaded with 7 years of breaks is then used 

to validate the number of projected breaks for the next 3 years.  

5.6 WPHM Model for All Water Mains 

As illustrated before, all pipeline dataset was prepared for WPHM model. We used the 

Sanandaj failure data in the period 1995-2001 for determining the model parameters and next 

three years ( between 2002-2004 ) for model validation. The results of validation are given in 

Fig. 5.6 which gives a comparison between the forecasts of the model and the observations. 

Visually we can say that the model gives good results. 

The overall Chi-square value for the model is highly significant, then we concluded that at 

least some of the independent variables are significantly related to survival. Table 5.4 shows 

that four covariates logLength, diameter and material were entered in the model which 

significantly contribute to the prediction of time (p-value<0.05). These are mainly risk factors 

inherent to pipes ( Length, diameter, material). Other variables were found not to significantly 

contribute to the prediction of time, and were not included in the model.  
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Table 5.4 Significant variables according to WPHM modeling (total water mains) 

Risk Factors p-value 

Log Length < 0.0001 

Diameter  < 0.0001 

 M1 (AC)    0.0097 

M3 (CI)    0.0207 

 

The values of parameters β , σ and p-value for total water pipelines is illustrated in Table 5.5. 

Table 5.5 Estimated model parameters for all water mains 

Parameter Value p-value 

β0 9.9677 < 0.0001 

β1 -0.6282 < 0.0001 

β2 0.0093 < 0.0001 

β3 -0.5048     0.0207 

β4 0.5350     0.0097 

σ 0.8855  

5.6.1 Benefit Index  

One important issue in WPHM is the plot of the cumulative density function (CDF) obtained 

from the water pipelines dataset against the theoretical or predicted cumulative density 

function of the Weibull distribution. Findings of researches in number of European utilities 

indicated that this plot can be interpreted as an indicator for rehabilitation. In effect, this index 

aims at assessing number of failures avoided, if a defined percentage of pipes with the highest 

breaks probabilities were rehabilitated (Eisenbeis et al., 2002 ; Le Gauffre et al., 2000). The 

percentage of pipes that would have been replaced is plotted against the percentage of actual 

breaks avoided. It is assumed that the pipes chosen first for replacement would be the ones 

with the highest expected number of breaks for the next 3 years. Fig. 5.6 shows the benefit 

index curve for all water pipelines with WPHM modeling. It is apparent from graph that  20 

% of breaks (for the next 3 years) are avoided if  7 % of the pipes are replaced. We assume 

the water pipelines most at risk are replaced first.  
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Fig. 5.6 Global model testing on data 2002-2004 (Benefit Index) 

Note that a replacement rate of 1% means that a pipe is replaced every 100 years. Indeed, 

29% of the highest failure risk pipes can avoid almost 60 % failure and 48 % allow to avoid 

almost 80%. Different values of avoided failure can be estimated by this graph. 

Since the material predictor is not a function of time, then it may be too complicated to model 

the hazard ratio for that predictor as a function of time. Meanwhile, the pattern of failure in 

material categories are different. Therefore, we stratified the dataset by material instead of 

including it as a predictor in the model. So, three groups were created, metallic, cement and 

plastic water mains. Following are three WPHM models. 

5.7 WPHM Model for Metalic Water Mains 

This model was developed for metallic water pipelines which include both cast and ductile 

iron in study area. The model was tested on the data of metallic water pipelines in study area 
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over of the period 2002-2004. The results of test are given in Fig. 5.7 which presents a 

comparison between the forecasts of the model and the observations. Visually we can say that 

the model gives good results. The overall Chi-square value for the model is significant, then 

some of the independent variables are significantly related to survival. The analyses yielded 

significant results for loglength, diameter. In contrast, the NPF and traffic load were not 

statistically significant. Table 5.6 gives the list of significant indicators and their p-values. 

Table 5.6 Significant variables according to WPHM modeling (metallic water mains) 

Risk Factors p-value 

Log Length 0.0034 

NPF 0.2083 

Diameter 0.0002 

Traffic category 0.1880 
 

Table 5.7 illustrates the values of β and σ in WHPM model.  

Table 5.7 Estimated model parameters for Metallic water mains 

 

Parameter Value p-value 

β0 8.0245 < 0.0001 

β1 0.1003    0.0034  

β2 0.1975    0.2083 

β3 0.0023    0.0002 

β4 0.2024    0.1880 

σ 0.0750  

 

Fig 5.7 is presenting Benefit Indices for WPHM using metallic water pipelines data since 

1995 to 2001. Based on this graph,  20 % of breaks (for the next 3 years) are avoided if  5 % 

of the pipes are replaced. Some more forecasting are shown in table 5.8. These can be used to 

estimate the impact (benefit) of an action on the network. Indeed, the model makes it possible 

to calculate the number of the failures which could have been avoided if a certain number of 

sections (having the risk more high) had been rehabilitated. 
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Fig. 5.7 Test of Metallic model on data 2002-2004 (Benefit Index) 

Table 5.8 presents different percent of failure avoided according to pipe replacement.  

Table 5.8 Results of benefit indices: comparison of failures observation against the forecasts 

WPHM Model 

Period of Model 1995-2001 

Compared to 2002-2004 

% of pipes with highest 
predicted failure rate 

% of avoided failures 

40 % 11.2 % 

60 % 21.7 % 

80 % 36.2 % 
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As noted in table 5.8, the replacement of 40%, 60% and 80 % of cast and ductile iron which 

have the highest risk in failure, would have made it possible to avoid 11.2%, 21.7 and  36.2% 

of the failures, respectively. 

5.8 WPHM Model for Cement Water Mains 

This model relates to the network of asbestos cement which include 272 statistical individual. 

They account for 99 failure within 10 years. The chi² test made it possible to determine the 

influential factors of the model. Table 5.9 gives the list of these factors and the corresponding 

p-value. We found that loglength, diameter and age are statistically significant(p-value<0.05).  

Table 5.9 Significant variables according to WPHM modeling (cement water mains) 

Risk Factors p-value 

Log length 0.0001 

NPF 0.3463 

Diameter 0.0115 

Age 0.0099 

 

Table 5.10 presents the parameters of the model which were given on the data 1995 - 2001. 

This table also illustrates the values of the model parameters and p-value which makes it 

possible to measure the significantly of each parameter in the relation of survival. It is noted 

that the p-value lower than 0.05 are significant in the relation of survival. 

Table 5.10 Estimated model parameters for Cement water mains 

Parameter Value p-value 

β0 7.6763 < 0.0001 

β1 -0.4944    0.0001 

β3 0.0059    0.0115 

β4 0.8868    0.0099 

σ 0.6201  

 

The model was tested on data within the period of 2002-2004. The graph in Fig. 5.8 

demonstrates that the model gives good results. The benefit index graph also shows that 
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choosing 9% of the pipes with higher failure risk could allow to avoid 20%  of the failure. 

Additionally, if the top of 20 % pipes (classified by predicted failure rate, highest first) had 

been rehabilitated, this should have resulted in a decrease in observed failures of 43%.  

 

Fig. 5.8 Test of Cement model on data 2002-2004 (Benefit Index) 

5.9 WPHM Model for Plastic Water Mains 

The final model relates to plastic water pipelines in the selected network. Dataset for survival 

analysis of plastic water pipelines includes 426 total number of statistical individuals. 172 

(40%) statistical individual have experienced breaks (uncensored) and the rest 254 (60%) are 

censored which means that they will be failed in the coming future.  

Chi-squared test determines the influential factors of the model. Table 5.11 gives the list of 

these factors and the corresponding p-value. Accordingly, we can keep the logLength, 
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diameter and age of water pipelines in the fitted model. Table 5.12 gives the parameters of the 

model which were given on the data 1995 - 2001. The values of the parameter σ and β,  as 

well as p-value are also given. It is noted that this value is lower than 0.05, which shows that 

these parameters are influential in the relation of survival. 

Table 5.11 Significant variables according to WPHM modeling (plastic water mains) 

Risk Factors p-value 

LogLength < 0.0001 

NPF     0.1904 

Diameter    0.0022 

Age    0.0579 

 

As noted in table 5.11 and 5.12, the number of pervious failure in the survival model of 

plastic water mains, is not significant ( p-value = 0.1904 ). 

Table 5.12 Estimated model parameters for plastic water mains 

Parameter Value p-value 

β0 13.5915 < 0.0001 

β1 -2.3065 < 0.0001 

β2 -1.0962 0.1904 

β3 0.0721 0.0022 

β4 2.9938 0.0579 

σ 1.2833  

 

For plastic pipelines, the Benefit Index curve was developed in Fig. 5.9 through validation of 

model with failure data in the period of 2002-2004. This shows the percentage of failure 

avoided in polyethylene for various rate of replacement. By reading of the Benefit Index 

curve, it is indicated that 20% of failures (the next 3 year) are avoided if only 4 % of pipes 

with highest failure risks are replaced. If lower replacement ratios are targeted, for instance, 1 

or 2 % , 4.2% and 8.5% of the breaks can be avoided, respectively.  
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Fig. 5.9 Test of plastic model on data 2002-2004 (Benefit Index) 

5.10 Model Comparison 

To establish a priority list for water pipelines rehabilitation project according to pipe material, 

we compared four WPHM models discussed above in table 5.13.  

Table 5.13 Percent of pipes that will be rehabilitated 

% of avoided failure 
Model 

20  40  60  80  

Total water mains 7 14 29 48 

Metallic water mains 5 11 22 36 

Cement water mains 9 17 31 50 

Plastic water mains 4 12 24 43 
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Since the cost of pipeline rehabilitation is large but the budget is limited, then this priority list 

is necessary, and SWWU can formulate strategies for repair, replacement, and rehabilitation. 

Table 5.13 demonstrates that the priority for rehabilitation project is firstly metallic water 

mains, then plastic and finally cement pipelines. Because with less percent of pipe 

rehabilitation in metallic and plastic water mains, we can avoided more failures in study area. 

As a result, the authorities can set up the strategy for the water pipelines rehabilitation by 

considering to the rehabilitation priority. 

5.11 Concluding Remarks 

In this chapter, time to failure analysis was conducted for water pipelines failure in Sanandaj 

city using parametric and non-parametric survival approaches. Firstly, the most commonly 

used technique, Kaplan-Meier (KM), were introduced. Different KM curves for material 

groups indicated that metallic, cement and plastic water pipelines have different pattern of 

degradation. The slope of the KM survival curve is an important statistic telling if failures are 

occurring rapidly or the failure rate is slow. The findings of this study show that the survival 

function in the ductile iron pipelines has a slower drop-off as compared to the other pipes. 

Therefore, we concluded that ductile iron water pipelines have a greater chance of survival. 

Also, as a result of KM graph, cast iron pipes are expected to be more prone to bursting than 

others. Based on result of KM survival function, it is highly recommended to look at the KM 

curves as an option for evaluation of failure rate in different pipes material.  

Fitting a theoretical survival distribution in time to water pipelines failure and varying the 

failure probability over time in the other hand, demonstrated that Weibull distribution 

provides a better fit to historical failure data. The exponential distribution of life time, 

survival and hazard function was compared in this study to weibull model. The results of 

comparing the model with null hypothesis using Chi² based test statistics, concluded that the 

fitted weibull distribution is statistically significant.  

This chapter also examines the impacts of potential risk factors on the survival rate of water 

pipelines by two proportional hazard model namely, Cox’s (CPHM) and Weibull (WPHM) 

model. 10 years survival was evaluated using Cox proportional hazards model. Among nine 

covariates in developing Cox’s model, number of pervious failure (NPF), age, diameter, 
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loglength, material and maximum pressure were statistically significant ( p-value < 0.05 ). In 

contrast there were no statistically significant relationship between traffic load categories, 

depth and pipe thickness in Cox’s model.  

Secondly, Weibull model was chosen for prediction through Benefit Index curves. Thus 

models of survival were developed for the total water mains, metallic, asbestos cement and 

plastic mains. These four models were calibrated on the data over the period 1995 - 2001 and 

tested on the failures observed within the period 2002 - 2004. The tests of validation gave 

good results, which shows the relevance of this approach for the forecast of the failures in the 

water pipelines networks. All 4 WPHM models assessed the relative importance of the risk 

factors by chi-square test. The results showed that loglength and water pipelines diameter are 

significant in all models ( p-value<0.05 ). The age risk factor was significant in non-metallic 

water pipelines such as asbestos cement and polyethylene. In contrast, traffic load categories, 

thickness, depth pressure and number of pervious failure have a weak influence on the risk in 

the models. Finally, Benefit Index curves were plotted for total water mains, metallic, 

asbestos cement and plastic mains. It assessed the percentage of failures avoided, if a defined 

percentage of pipes with the highest breaks probabilities were rehabilitated. Further, a priority 

list for water pipelines rehabilitation project according to pipe material has been established. 

This allows for implementation of pipeline rehabilitation project firstly on metallic water 

mains, then plastic and finally cement pipelines. 
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General Conclusion 

This work included the use of Statistical, Artificial Neural Networks and Survival approaches 

for the prediction of water pipelines failure.  It provides planners and engineers with tools for 

an effective preventative maintenance and rehabilitation program. The performances of these 

approaches were studied on 10 years collected data in city of Sanandaj (Iran).  

Firstly, preliminary statistical analysis allowed a better understanding of the failure 

mechanisms. It gave insight on the impact of various risk factors on the structural 

deterioration of water pipes. Nine indicators were identified to be used as input parameters in 

the prediction of water main failure. They include age of pipe, number of pervious failures, 

pipe length, diameter, thickness, depth, material, pressure and traffic. Geostatistical analyses 

were used for the determination of both the distribution of water pipelines failure in space the 

spatial trends of failures considering risk factors.  

Univariate statistical inferences, indices of bivariate relationship and multivariate data 

analysis were conducted for the determination of the correlation between the affecting factors 

and identify the significant indicators of water pipelines failure. Factor analysis was also 

conducted to identify determinant factors and recognize the relative relationships among input 

indicators. It was concluded that the analysis must be carried out for each material of water 

mains. Further, two regression models, namely Multiple and Poisson were fitted to predict the 

number of failures. Since the multiple regressions could not fit the data adequately, an 

alternative model, Poisson regression, was used. It allowed a better fitting of data togother 

with respect of the initial assumption. 

Neural network approach was used to model the water pipelines failure. Four model were 

developed: a global model and a model for each material. Each model was trained and tested 

to find the optimal number of hidden nodes. Comparison between forecasted and observed 

failures for the last 5 years showed that the designed neural network for total water mains, 

with R²= 0.78, gave satisfactory prediction. Further, three models for metallic, cement and 
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plastic pipelines gave R²=0.86, 0.59 and 0.75, respectively. Stratification of material did not 

improve the results except in metallic pipelines. Moreover, comparison of the ANNs model 

and the Poisson regression showed that the ANNs provides an attractive and powerful tool for 

predicting water main failure. 

In third part, the survival approach was used in order to shed additional light on the pipeline 

failure process as well as to extract useful information in future planning. These analysis 

focuse on time to failure of water pipelines by using parametric and non-parametric survival 

models. Kaplan-Meier (KM) curves for material groups showed that survival function in the 

ductile iron pipelines has a slower drop-off as compared to the other pipes. Therefore, they 

have a greater chance of survival. In contrast, cast iron pipes were more prone to bursting than 

others. Asbestos cement water pipelines showed fast survival declines with time. 

Polyethylene water pipelines have a particular behavior : in the first years, they have more 

failures. Results from parametric modeling demonstrated that Weibull distribution provides a 

better fit of the evolution of water pipelines failure. Two proportional hazard model namely, 

Cox’s (CPHM) and Weibull (WPHM) model were used to examine the impact of potential 

risk factors on the survival rate of water mains. Based on p-value, the significant factors were 

determined. Finally, Benefit Index curves were plotted for total water mains, metallic, 

asbestos cement and plastic mains. It assessed the percentage of failures avoided, if a defined 

percentage of pipes with the highest breaks probabilities were rehabilitated. In a nutshell, the 

use of this approach made it possible to establish a priority list for future water pipelines 

rehabilitation project in accordance with their material. Accordingly, it is suggested that 

implementation of pipeline rehabilitation project firstly on metallic water mains, then cement 

and finally plastic pipelines. 

This work constitutes a starting point for future research for more comprehensive assessment 

of the state of Iranian water distribution systems. It also provides tools for improving 

rehabilitation strategies based on quantitative and predictive models. 
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Résumé  

La défaillance des réseaux d’eau constitue un problème majeur en Iran, qui nécessite des 
investissements importants et l’élaboration d’une stratégie optimale pour la réhabilition des réseaux 
d’eau. Ce travail constitue une contribution à cet objectif. Il vise le développement des outils pour 
améliorer la gestion et la maintenance des  réseaux d’eau. Il comporte la détermination des principaux 
facteurs affectant la défaillance des réseaux d’eau, l’élaboration d’un modèle de prévision fondé sur 
les Réseaux de Neurones Artificiels (RNAs), et le développement d’un modèle de survie. Ces 
approches ont été appliquées sur le réseau d’eau de la ville de Sanandaj en Iran.   
Le travail de thèse a comporté différents parties, notamment : la collecte de données sur le réseau de la 
ville de Sanandaj (Iran), l'analyse spatiale et statistique de ces données, le développement d’un modèle 
basé sur les Réseaux de Neurones Artificiels et l’application de l’approche de survie.  
L'analyse des données a permis la détermination de principaux facteurs à l’origine de la défaillance 
des réseaux d’eau. Deux modèles de régression (Multiple et Poisson) ont été employés pour la 
prévision du nombre de défaillances du réseau d’eau. Ces modèles ont été comparés à l’approche des 
Réseaux de Neurones Artificiels. La comparaison a montré tout l’intérêt d’utiliser cette dernière 
approche pour la prévision de la défaillance des réseaux d’eau. L’approche de survie a été utilisée pour 
étudier la durée de vie et étudier l’impact d’une intervention sur le réseau d’eau. 
 
Mots clefs: Réseaux d'eau potable, Défaillance, Modélisation statistique, SIG, Réseaux de 
neurones, Analyse de survie, Prévision, Réhabilitation. 
 

 

Abstract 

A major challenge to Iranian water industry concerns the minimization of failures in water distribution 
system. This thesis constitutes a contribution for this objective. It includes a) assessment of the main 
indicators through statistical analysis; b) development of Artificial Neural Networks (ANNs) models 
for predicting pipes failure number; c) elaboration of a survival models for quantification avoided 
failure from network based on various rate of renewal. The use of theses approaches generates a 
quantitative picture of the condition and performance of mains network towards the optimization of 
the maintenance and rehabilitation programs. All neural networks and survival models were trained 
and tested on field data in Sanandaj city (Iran). 
The methodology followed in this research includes field data collection, descriptive spatial and 
statistical analysis besides predictive modeling which incorporate Regression, ANNs and Survival 
models. Descriptive analysis of historical failure data based on statistical methods allowed the 
determination of factors affecting the evolution of water pipelines failure. Indeed, geostatistical 
analysis and spatial interpolation provide scientific bases for depicting spatial relationships and the 
strength of dependencies between failure incidents and environmental, hydraulic and other geographic 
covariates. Review of univariate statistical inferences, indices of bivariate relationship and 
multivariate data analysis assess the correlation between the affecting factors and identify the 
important variables for the occurrence of failures on the water mains. Two regression models 
(Multiple and Poisson) were used for the prediction of the number of failures in water mains. Artificial 
Neural Networks ( ANNs ) models were also developed to predict the number of failures in water 
mains. Comparison of ANNs and regression approaches reveals that the use of ANNs model in 
pipeline failure studies provides better prediction. Finally, four survival models were developed to 
simulate time to failure in water mains, and 3 stratified failure dataset. 
 
Keyword: Water network, Pipeline, Failure, Statistical analysis, GIS, Neural Network, Survival 
analysis, Prediction, Rehabilitation. 
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