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Abstract  

 

Spectroscopic techniques are major tools in the chemistry field nowadays, with various 

applications. Among them, Near Infrared Spectroscopy (NIRS) is a booming tool for 

quantitative and qualitative analysis in the pharmaceutical industry.  

The objective of the work that supported this thesis was to use NIRS in order to develop a fast 

analytical method for the assay of an API in a particular finish product. The aim was to have 

an alternative to the reference method currently used for batch release (HPLC).  

This whole strategy includes the calibration model development, the comparison with the 

reference method, and the method validation according to internal and international guidelines 

on analytical methods. 

This thesis presents the feasibility study performed in order to build the calibration model, and 

the method validation. 

A satisfactory analytical method was developed for two different sample forms of the drug 

product, granules and powder forms (resulting from the crushing of the granules). Multi variate 

data analysis was used to build the model and assess its performance. 

The model presents a precision (RMSECV) of 0.6% label claim, and was assessed at least 

equivalent to HPLC if not better in term of precision. The validation according to ICH guidelines 

was successfully performed, with all criteria (precision, linearity etc.) being satisfactory. 
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Résumé  

 

Les méthodes spectroscopiques sont devenues des techniques incontournables dans le milieu 

de la Chimie, avec un immense champ de possibilités. Parmi celles-ci, la Spectroscopie 

Proche Infrarouge (NIRS) est une technique analytique en plein essor dans l’industrie 

pharmaceutique. 

L’objectif du travail qui a supporté cette thèse était de développer une méthode d’analyse par 

spectroscopie proche infrarouge pour le dosage de principe actif dans un produit fini, à des 

fins de libération de lots. Cette nouvelle méthode, plus rapide, et plus économique, présente 

une alternative à la méthode de dosage actuelle par HPLC.  

Ce projet inclut le développement du modèle de calibration, la comparaison du modèle obtenu 

avec la méthode de référence, et la validation de la méthode selon les réglementations 

internes et internationales relatives aux méthodes analytiques. 

Cette thèse présente l’étude de faisabilité menée lors de la construction du modèle de 

calibration, ainsi que la stratégie de validation de la méthode et ses résultats. 

Une méthode analytique satisfaisante a été développée, pour deux formes différentes du 

produit : sous forme granules ou poudres (résultant du broyage des granules). L’analyse de 

données multivariées a été utilisée pour la construction du modèle. 

Le modèle a une précision (RMSECV) de 0.6% de la dose nominale, et a été démontré au 

moins équivalent à la méthode HPLC, si ce n’est meilleur en termes de précision. 

La validation selon les recommandations ICH a été réalisée avec succès, tous les paramètres 

testés (linéarité, précision etc.) ayant rempli les critères. 
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Preliminary 

 

Cette thèse a été écrite sur les bases du travail réalisé au cours de mon stage de fin d’études. 

Ce stage de six mois m’a permis de valider ma 6ème Année de Pharmacie ainsi que mon 

diplôme d’ingénieur en Génie des procédés. 

Toutes les expériences décrites ont été réalisées au sein du Pilot Plant, unité pilote du Ferring 

International Centre SA (Saint Prex, Switzerland), ayant vocation à faire le lien entre la R&D 

et la Production chez Ferring. 
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Innovation Centre – Pilot Plant  

M. Robert Rönnback: robert.roennback@ferring.com 
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Abbreviations and definitions  

API Active Pharmaceutical Ingredient 

CG Coated Granules 

CV  Cross Validation : the entire data set of samples is split into individual 
samples or groups of samples, which are removed individually from the 
rest of the samples and tested as unknowns against a calibration model 
constructed using the rest of the samples. The characteristic statistic 
is the Standard Error of Cross Validation (SECV) 

D1 First Derivative (spectral pretreatment) 

DModX Distance to model in the X-plane 

DoE Design of Experiment 

FICSA Ferring International Center S.A. : refers to the Swiss site 

FTE Full Time Employee 

HPLC High Performance Liquid Chromatography 

IBD Inflammatory Bowel Disease 

ICH International Conference on Harmonization 

IR Infra-Red 

LOOCV Leave One Out Cross Validation  

MD Mahalanobis Distance 

MDI Mahalanobis Distance Index 

MDT Mahalanobis Distance Threshold 

MSC Multiple Scattering Correction (spectral pretreatment) 

MVDA MultiVariate Data Analysis 

NIR Near InfraRed 

NIRS Near InfraRed Spectroscopy 

PCA Principal Component Analysis 

PLS Partial least square projection on latent structure: MVDA used to 

determine a relationship between spectra and a response. 

QA Quality Assurance 

QC Quality Control 
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RMSEE/RMSEC  Root Mean Square Error of Estimation/Calibration : measures the 

variability of     the difference between the predicted and reference 

values for a set of calibration   samples 

 

YC = NIRS predicted value of calibration set 
yc = reference method value of calibration set 
n = number of samples 
p = number of coefficients, e.g. wavelength 
(MLR), principal components (PCR), factors   

(PLS) 
 
 
RSMECV (=SECV)  Root Mean Square Error of Cross-Validation : measuring the difference 

between the NIRS procedure and reference method quantitative 
analyte values of the calibration set using a cross-validation method. 

 
YCV = NIRS predicted value of calibration 
set 
ycv = reference method value of calibration 
set 
n = number of samples 

 

 

RMSEP1 (=SEP) Root Mean Square Error of Prediction : Measures the variability of the 

difference between the predicted and reference values for a set of 

independent validation samples, where: 

Yv = NIRS predicted value 
yv = reference method value 
n = number of samples 

 

RTRT Real Time Release Testing 

SNV Standard Normal Variate (spectral pretreatment) 

SOP Standard Operating Procedure 

% w/w Massic percentage 

  

                                                

1 *RMSEE/C/CV/P describe what is not explained by the model. 
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Introduction 

 

Since the last decades, the demand for product quality improvement has continuously 

increased in the chemical, petrochemical, food, pharmaceutical industries notably. With the 

rise of new technologies, alternatives to time-consuming, conservative and not environmentally 

friendly analytical methods - such as HPLC, GC, NMR – are being developed. Spectroscopic 

techniques are one of these new advantageous technologies, and among them, NIR has 

proved itself an extremely powerful tool for industrial quality control and process monitoring. 

To this respect, a Near Infrared spectrophotometer was acquired by Ferring’s Pilot Plant, in 

2013, to be used for the analytical and process control of one of Ferring’s bestselling product. 

This product is available as a solid form.  

Historically, HPLC and Potentiometry have been the reference methods for API assay in this 

product. However, these methods are time-consuming, and involve the use of a large quantity 

of solvents. The rationale to find an alternative method is therefore to reduce the analytical 

lead time, reduce costs and environmental fingerprint.  

The objective of this work was to develop a fast at-line NIRS method for the assay of API in a 

finished drug product, for which the drug is formulated as granules. 

This thesis presents the basics of Near Infrared Spectroscopy and chemometrics, and its 

application in developing a validated analytical method to determine API content in a 

pharmaceutical product



Part 1: Use of Near Infrared Spectroscopy to build 

analytical methods 

 Near InfraRed Spectroscopy: Principles and Applications 

 Electromagnetic spectrum 

Spectroscopy consists in studying the interaction of light with matter. The light is a radiation of 

electromagnetic type, characterized by a wavelength λ ranging from 100 nm to 1 cm. 

The electromagnetic spectra is divided into several types of radiations: the most energetic ones 

being gamma and X-rays, followed by the ultraviolet, the visible and the infrared radiations. 

Finally, the lowest energetic radiations are the micro and radio waves. These different domains 

are summarized on Figure 1 below [1]. 

 

Figure 1 : Light electromagnetic spectrum 

The Near Infrared domain ranges from 800 to 2500 nm. Near Infrared and Mid infrared (2500 

to 25000 nm) correspond to the vibrational spectroscopy.  

Absorbance spectra are represented versus wavelength λ (nm) or wavenumber k (cm-1, with k 

= 1/λ). Thus, the NIR domain ranges from 800 and 2500 nm, corresponding to 12500-4500 

cm-1. 

 Interaction of radiation and matter 

IR spectroscopy is based on the absorption of light by the substance to be measured. This 

absorption excites molecular vibrations and rotations, which have frequencies that are the 

same as those within the infrared range of the electromagnetic spectrum. 

A molecule is composed of atoms structured together with covalent bonds, and NIR spectra of 

a chemical compound can be observed because of the vibrations of these atomic bonds. 

Each bond vibrates with its own energy (E=hν1), which depends on the atoms involved in this 

bond (harmonic oscillations model). These vibrations are the fundamental vibrations ν1. There 

are other vibrations, called overtones. The frequency of overtone vibrations is a multiple of the 

fundamental vibration frequency. 
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Figure 2: Molecular vibrations [2] 

Each bond can absorb energy. Near Infrared spectroscopy measures different types of inter 

atomic vibrations. These vibrations can be attributed to specific groups (e.g. –O-H, C-H, C=C  

...). The final Infrared spectra will contain absorption due to overtones and combination 

between groups. 

 Measurement modes 

There are two measurement modes in classical NIR spectrometers: Transmittance and 

reflectance.  

When in transmittance (illustrated on Figure 3), the incident light goes through the sample with 

an intensity I0. Then the intensity IT of the out coming light is collected on the other side and 

transformed into absorbance unit using Beer Lambert law: 𝐴 = log⁡(
𝐼0

𝐼𝑇
). 

Transmittance is used for liquid samples, with a concentration for which the Beer Lambert law 

can be valid. 

 

 

Figure 3: Transmittance NIR analysis 

 

For solid forms or turbid liquids, reflectance mode is used. The intensity collected by the probe 

results from the light that was reflected and diffused by the sample. The absorbance is 

computed from the same equation than transmittance.  

The intensity of the reflected light depends on: 



 
23 

- The intensity of the incident light 

- Absorbance phenomena from the atomic bonds i.e. the chemical properties of the 

sample 

- Scattering phenomena within the sample i.e. the physical properties of the sample 

(Figure 4) 

 

Figure 4 : Incident light trajectory 

 Advantages of NIRS 

NIRS has become an analytical technique of great interest for the pharmaceutical industry 

because of the following advantages [3]: 

- Short analysis time (< 5min) 

- Generally non-destructive  

- No (or reduced) sample preparation needed, making possible on/in-line analysis 

- Applicable to liquid and solid forms 

- Both quantitative and qualitative (identification) with possibly only one calibration 

model 

- Includes physical information about the sample 

- Various measurement modes available (reflection, transmission, transflection…) 

- Environmentally friendly 

 Applications in the Pharmaceutical Industry 

NIRS has wide potential uses in Quality Control, such as identification and assay of materials 

(raw materials, intermediates and finished products), as well as verification of their 

physicochemical properties. Conventional manufacturing is based on batch processes. Quality 

attributes of the drug are measured at/off-line, in the Quality Control laboratory, on samples 

selected at the end of the process. These samples are meant to be representative of the whole 

batch, and results within the specifications allow the release of the finished product and its 

access to the market. All these are “at-line” applications, where NIR is useful but disconnected 

from the process. 
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Today, with the development of new technologies, opportunities arise to improve 

pharmaceutical development, manufacturing, and quality assurance through innovation in 

product and process development, process analysis, and process control [4]. 

That is why pharmaceutical companies (but not exclusively) are now starting to see farther 

than “quality by testing”, and adopt “quality by design” approaches. For this latter, quality of 

the finished product is ensured through in-depth process understanding and control and 

monitoring. For these purposes, Process Analytical Technology (PAT) tools are essential. 

Indeed, to understand a process, key sources of process variations have to be identified and 

closely controlled. Otherwise, the probability to deliver a poor quality product increases. PAT 

tools are able to monitor those critical steps, and are particularly useful when considering a 

continuous manufacturing process. They may be used as part of a Real Time Release Testing 

(RTRT) strategy. 

Among them is NIR spectroscopy. One great advantage is the possibility to separate the 

spectrometer from the point of sampling, thanks to small moveable and wireless probes [5], 

which makes it very handy to use at any point of a process. The very short analysis time it 

requires makes NIR a very good option for online analysis as well, along with being non-

destructive and non-invasive.  

Overall, either online moveable probes or classical at-line set-ups have various applications, 

and some examples will now be presented.  

 Chemical and pharmaceutical characterization 

First and now probably most common application of NIR in the pharmaceutical industry is the 

chemical characterization of analysed product, to identify and determine content of an 

ingredient of interest. Most molecules vibrate when submitted to NIR frequencies.  

NIR spectra can be used to identify materials. Spectra of an unknown compound can easily 

be compared with a library of spectra, and techniques to discriminate between similar products 

are very sensitive, for example distinguishing between different polymorphs of a same 

molecule and excipient analogues [6]. Another example will be seen later in this thesis (cf. Part 

2 - 4. Comparison between Uncrushed and Crushed samples). Hence, not only NIR can 

identify a chemical ingredient, but can also give information on its quality. It goes without saying 

that poor quality of raw materials could have a very negative impact on process performance 

(bad flowability, reduced solubility, etc.). 

In order to quantify an ingredient in a sample, the methodology is similar for any method 

development. First, a feasibility study is performed to assess the response of the compound 

when analysed with NIR, and check there is no issue with the physical form of the sample. 

Then, a calibration takes place, for which different concentrations of the compound of interest 
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are measured. Once a correlation is found between spectra and concentration, validation 

samples are prepared to ensure the right predictability of the calibration model [7]. 

 Monitoring and controlling of a crystallisation process 

API quality is critical for drug manufacturing process. The crystallisation of APIs process must 

ensure to deliver the right polymorph, chemical purity and particle size distribution before being 

used onward. These kinds of processes can be very sensitive to small variations of process 

parameters, which is why a tight control is necessary. NIR has been used by Janssen to 

measure the water content of a compound with a precision of +/- 0.02%, corresponding to 

detecting a variation of 200g water in 1000kg of homogeneous crystallisation mixture [8].  

Method development included potential variable parameters in order to be as robust as 

possible: range of water concentration, temperature, assay, different batches of material. 

In a practical way, NIR was used online to measure water content in the crystalliser, and then 

control the flow of water feeding this crystalliser. 

 Monitoring of a continuous granulation process 

Wet granulation is very common in pharmaceutical manufacturing processes, in order to 

improve compactibility and flowability of powder mixtures prior to tabletting. Some parameters 

can have a critical influence on the granulate properties. For example, temperature and 

moisture content of mixes can have an impact on the solid state of particles and lead to 

different types of polymorphs which may not be desirable [9]. Indeed, if a change in chemical 

and/or physical characteristics of a product occurs, their processability (compression etc.), 

solubility, stability and – last but not least – bioavailability may be affected, leading to a 

completely different product. First, NIR coupled with Multivariate Data Analysis can be used to 

better understand the process and determine which parameters have the biggest influence on 

granulate properties (mixer speed, feed rate of the process, temperature, liquid concentration, 

equipment design etc.). Second, these information can be used to monitor and control 

processes, for example adjusting temperature or liquid input during the granulation process. 

 Monitoring of a tableting process 

Tablets account for two thirds of the total pharmaceutical solid forms production, hence 

tabletting processes are very common. NIR has been used to monitor different parameters 

related to process and product quality during a compression operation: content uniformity, 

compression force, tensile strength, moisture and mean particle size [10]. For these 

applications, NIR can be used because physical properties of the product are reflected in the 

spectra. For example, the scattering effect is impacted by the density of the analyte. As was 

illustrated on Figure 4, the light trajectory will be impacted by the configuration of the particles 

in the tablet. This made possible the development of models able to predict the compression 



 
26 

force that was applied on a tablet, or measure the tensile strength (both being correlated) of 

the finished product. Same principle is applied for mean particle size determination. 

As far as chemical properties are concerned, such as API and moisture content, multivariate 

data analysis coupled with NIR becomes particularly interesting to take into account the above 

mentioned physical properties of blends or tablets. It then becomes easier to understand how 

each variable may influence the others, and develop a reliable measurement model.   
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 Spectral data: Acquisition & Analysis 

 Spectral measures 

For this project, the spectral measures were performed on a Fourier transform spectrometer 

MATRIX F Duplex from BRUKER OPTICS. The spectra are obtained by reflectance with an 

at-line probe Q412/A-Ex, BRUKER, connected to the spectrometer by an optic fibre. 

The acquisition of absorbance spectra is achieved with the OPUS 7.0 software, provided with 

the equipment by BRUKER. The following measurement settings have been used for spectral 

acquisition: 

- Spectral range: 12489.2 – 3995.9 cm-1. 

- Resolution: 16 cm-1 

Each sample is measured six times and an average spectrum is calculated using OPUS. This 

average spectrum is used as reference spectrum for each sample.  

The parameters presented above are derived from previous feasibility studies performed in 

Ferring lab, for which a Design of Experiments (DoE) was performed to assess the impact of 

each measurement parameter on the collected spectra. 

 Data preprocessing 

Data preprocessing is an essential step of the calibration. Indeed, the raw spectra are usually 

noisy and combine both physical and chemical information from the sample. For instance, 

random variations - such as offsets or differences in linear baselines - appear between the 

spectra. These variations may be due, for example, to differences in the sample preparation, 

sample thickness, particles size, noise due to the measure, etc. The objective of data 

preprocessing is to increase as much as possible the correlation between the spectral data 

and the parameter of interest to be predicted, here the content in API. 

Data preprocessing includes the choice of spectral filters, also known as pretreatments, and 

spectral range selection. 

Pretreatments are mathematical transformations applied to the spectra in order to eliminate or 

minimize variability unrelated to the property of interest. Thus, they are used to attenuate the 

noise, the influence of physical properties or emphasize some variations for example. The 

following pretreatments were tested during the development [11] : 

- SNV (Standard Normal Variate), which normalizes a spectrum by first calculating the 

average intensity value and subsequent subtraction of this value from the spectrum. 

Then the sum of the squared intensities is calculated and the spectrum is divided by 

the square root of this sum. This method is used to account for different samples 

thickness, or to minimize the influence of particles size for example   
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-  D1 (first derivative), is the slope at each point of the original spectrum. It peaks where 

the original spectrum has maximum slope and it crosses zero where the original has 

peaks. This method emphasizes steep edges of a peak over relatively flat bands. 

Hence it is used to emphasize pronounced, but small features over a broad 

background.  

- D2, has the same purpose than D1, but with a more drastic effect. It emphasizes more 

every small variation of the spectra.  

- MSC (Multiplicative Scatter Correction), performs a linear transformation of each 

spectrum so that it best matches the average spectrum of the whole set [7]. 

Combinations of pretreatments are also possible (e.g. D1+SNV) and frequent for quantitative 

models. Indeed, they correct the scattering effects of the samples, that is to say decrease the 

noise and remove the offsets due to physical properties of the samples [12].  

Spectral range selection involves selecting a subset of spectral regions from which the PLS 

model provides the smallest error in prediction. Adequate selection enhances the robustness 

and performance of the model.  

 Multivariate data analysis 

Given the consequent amount and the complexity of the data to be analysed, statistical tools 

such as MultiVariate Data Analysis (MVDA) have to be used. Indeed, the dataset obtained 

from the spectral measures is as follows:  

N  
Samples 

X  
Variables 

Y 
Responses 
(Content) λ1 λ2 λ… λk 

Spectra 1 x1 x2  xk y1 % 

Spectra 2 
Absorbance values 

y2 % 

Spectra … … 

Spectra n x1 x2  xk yn % 

Table 1 : Spectral dataset 

To the n samples analysed (e.g. Calibration sets, with known Content y1 to yn) correspond as 

many absorbance values as wavenumbers. These wavenumbers and the corresponding 

absorbance values are called Variables and referred to as X.  

Principal Component Analysis (PCA) and Projection on Latent Structures (PLS) are the two 

methods used to analyse the dataset. 

As all analytical methods, X can be defined as: 

X = information + structured noise (instrumental, temperature, humidity, etc.) + random noise 
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PCA allows to get a simple overview of the information present in the dataset, displaying the 

systematic variation within the X matrix. It explores relationships both among the observations 

and within the variables. 

This analysis results in a summary showing how the observations are related, as well as 

possible deviating observations or cluster of observations. To exemplify, PCA could 

differentiate the samples according to their different batch numbers, or excipient types, etc. 

PLS is similar to PCA, but is used to perform a regression modelling between different blocks 

of variables, in this case the wavenumbers X and the response Y (content in API). The aim of 

PLS is to give a model able to predict Y from X for future observations. 

MVDA also has the advantage of providing the user with graphical results, making it really 

visual and easy to manipulate, interpret and present. 

To summarize, using PCA and PLS on a large and complex dataset, one is able to: 

- Obtain an overview of data 

- Classify and discriminate the observations and the variables 

- Perform a regression modelling between variables  : PLS  Quantitative analysis 

 

From a mathematical point of view, MVDA propose projection-based methods. A K-space is 

constructed by attributing to the K X-variables one orthogonal axis in a co-ordinate system. 

Hence, each row of the dataset can now be positioned as a point in this K-dimensional space, 

resulting in swarms of points. Figure 5 below is an example of the K-dimensional space 

construction, where K=3 to make the dimensional space easier to visualize.  

 

Figure 5 : Construction of a K-dimensional space (K=3) [13] 

The concept is to simplify this representation into a lower-dimensional space - usually from 2 

to 5 dimensions - in order to obtain an overview of the spread of the points. Thanks to the 

graphical overview, one will be able to detect clusters of observations, trends or outliers, as 

similar samples will be close to each other. 

Statistically, the method finds lines, planes and hyperplanes in the K-dimensional space that 

approximate the data as best as possible in the least square sense. Each new axis is called 

PCA  Qualitative analysis 
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principal component, and the new co-ordinates in the principal components space are defined 

as scores. The centre point of this new space is the average observation in the dataset. 

 

Principal Components Analysis:  

The construction of the components is sequential and orthogonal. The first component (PC1) 

is the line which best fits the shape of the points swarm, and accounts for the maximum 

variance in the data (Figure 6). Each observation is projected onto this line to get its new co-

ordinate in the PC-dimensional plane: a score. 

 

Figure 6 : Construction of PC1 [13] 

If one component is not enough to explain the systematic variability in the dataset, a second 

principal component is computed. It is another line, orthogonal to PC1, reflecting the second 

largest source of variation in the data (Figure 7).  

 

Figure 7 : Construction of PC2 [13] 

PC1 and PC2 result in a plane within the K-dimensional space. By projecting the observations 

on this plane, a score plot is obtained (Figure 8), allowing to visualize the structure of the 

dataset, if there is any defined pattern for example. 
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Figure 8 : Score plot construction [13] 

Projection on latent squares: 

As in PCA, each observation can be plotted. However, the major difference in PLS is that each 

row in the data table corresponds to two graphical points, one in the X-space and one in the 

Y-space, resulting this time in two swarms of points, as illustrated on Figure 9. 

 

Figure 9 : PLS - X and Y-spaces 

The aim of PLS is to describe the relationship between the positions of the observations in 

both spaces, the predictor one (X) and the response one (Y). To do this, principal components 

are used again. 

The first component is a line in the X-space which best fits the swarm of points and provides 

a good correlation with the y-vector.  

As in PCA, by projecting the observation i on PC1, its new co-ordinate is obtained and called 

score ti1. All the scores ti1 form the first X-score vector t1. This is illustrated on the left-hand part 

of Figure 10. 

The vector t1 is used to estimate y, referred to as 𝑦(1)̂ . As seen on the right-hand part of Figure 

14, one component is not enough in this case to predict the y responses accurately. The 

difference between real and predicted responses is called residuals. 
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Figure 10 : PLS - First component construction 

The residuals can also be represented as a vector f1, equal to 𝑦 − 𝑦(1)̂ . As illustrated on Figure 

11 below, this residual vector obtained after computing the first component t1 is much shorter 

than the vector representing the measured data. This means that PC1 accounts for a large 

part of the variation in y. 

 

Figure 11 : Measured vector y vs. Residual vector f1 

Similarly to PCA, a second component may be calculated, in order to estimate as well as 

possible the residuals f1 from the remaining variation in the X-space (Figure 12). This second 

component still is a line orthogonal to PC1 and passing through the average observation of the 

dataset. The second score vector is called t2. 

 

Figure 12 : Second component construction 



 
33 

The model performance is evaluated thanks to the right-hand part of Figure 12. Once more, 

the tighter the scatter around the diagonal, the stronger the correlation between X and y in the 

second PLS dimension. 

Now, the two components can be combined to assess the predictive ability of the PLS model. 

The combination leads to a better estimation of y than the two components separately (Figure 

13). Indeed, it combines the information of PC1 and PC2 in the X-space. 

 

Figure 13 : Estimation of y with 2 Principal Components 

To summarize this part, in order to create a good predictive model, accurate and robust, the 

following parameters need to be optimized: 

 Pretreatments used, in order to reduce the effect of noise and remove physical 

information that would not be relevant for the purposes of calibration 

 Absorbance bands selected, so that the most relevant bands remain in the 

calibration, typically those which are the most specific of the analyte 

 Number of components used, enough components must be included in the model in 

order to predict the variable of interest, but including too many would lead to 

overfitting and lack of model robustness. 

 

In the scope of this development, the MVDA study was performed as follows. According to the 

optimization tool “Quant 2” in OPUS software, a list of the best pretreatments and spectral 

range is given for the selected data, along with recommendations for the number of 

components to include. 

However, the OPUS proposed models cannot be used as such, because the data are usually 

over fitted with a too high number of components. In OPUS, precision prevails over robustness. 

Therefore, to obtain a robust model it is important not to use the recommendations regarding 

the number of components. Hence to adjust the model, the OPUS recommendations are tested 

and adjusted with the software SIMCA, which allows more flexibility in the data manipulation. 

Therefore MVDA was realized with OPUS software for a general approach, then SIMCA 13 

was used for in-depth analysis and optimization of the model.



Part 2: Development of an at-line analytical method for API 

quantification in granules 

 Objective 

The objective of this work was to develop and validate a fast analytical method to determine 

the API content in one of Ferring main solid product. This product is formulated as granules 

with a slow release coating. It is available on the market at 3 different doses: 1, 2 and 4g. The 

granules are packaged into Sachets, filled to achieve the right dose. 

The analytical method developed is based on Near Infra-Red Spectroscopy (NIRS). Currently, 

the method used for release purposes is HPLC. Hence the objective is to provide a faster and 

at least as reliable method for the at-line assay of API in the finish product, as an alternative 

to HPLC. 

 Model construction 

 Overview of Model Development 

All NIRS method developments follow the same scheme, represented on Figure 14 below. 

 

Figure 14 : NIRS method development steps [7] 

The objective of the project was to develop a model that will allow the measurement of API 

content for Sachets commercial form. To do so, a calibration step has to be performed. The 

range of the calibration was set up in this particular case at 80 to 105% label claim (see 2.3.1 

for further details). 

To analyse the data from the calibration, MVDA was used. Thus, a PLS model was created 

using 15 calibration samples (see 2.3 for details on PLS). Once a satisfying calibration model 
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is obtained, an external validation has to be performed with 12 validation samples, in order to 

assess the model prediction power. 

This external validation delivers two key parameters: 

- RMSEP value, which represents the difference between the real values and the 

predicted values. RMSEP corresponds to a standard deviation and provides an 

estimation of the precision of the model. 

- The regression equation between the reference and the predicted values. This 

equation YPred = a*YRef + b, provides an indication of the accuracy of the model. An 

ideal model has no systematic bias (b=0) nor relative bias (a=1).  

 

In a second step, the 27 samples were pooled together to build the final model. The final model 

precision is assessed using the “Leave-p-out cross validation” method, providing a value of 

RMSECV. RMSECV is also considered as a standard deviation and provides an estimated 

method precision. 

This final model was used to analyse Sachets of 1g and 2g dose. Given that the coated 

granules come from the same manufacturing process, regardless of the quantity to be filled 

during packaging (1g, 2g or 4g), there is no difference related to the sachets dosage. 

These Sachets were also analysed using the reference HPLC method. Results from both 

methods were compared. 

Once a satisfactory model was defined, analytical validation took place. The model was thus 

tested for linearity, specificity, accuracy, precision and robustness. 

 Preliminary studies 

 Comparison of samples physical properties 

2.2.1.1 Objective 

The objective of this study was to assess the feasibility of developing the model based on 

powder mixes, in order to reconstitute finish products with the different contents necessary for 

the calibration model.  

An underlying objective was to assess the feasibility of performing the future content analysis 

on the coated granules directly i.e. without sample preparation. The point was to skip the step 

consisting in crushing the granules, which is currently performed for the HPLC analysis and 

the NIRS methods for suppositories and tablets content dosage. 
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2.2.1.2 Method 

Spectra of non-crushed coated granules were taken. Then the granules were crushed and a 

new measurement was performed. Furthermore, spectra of powders blends corresponding to 

100% label claim were taken. 

All these spectra were analysed with MVDA methods to determine if the three classes could 

be differentiated.  

2.2.1.3 Results and discussion 

Spectra Analysis 

The spectra obtained are presented on Figure 15 below: 

 

Figure 15 : Sample classes spectra 

NIRS Absorbance measurements are influenced by the physical properties of the sample (ex: 

the particle size distribution in the sample, the smoothness of the powder surface …). These 

physical properties induce different light scattering effects leading to different spectra. On the 

figure above (Figure 15), it can be seen that the spectra recorded for uncrushed material are 

very different from the spectra for powder or crushed materials, as far as absorbance is 

concerned. This result was expected since the particle size of uncrushed material is much 

larger than the powder mixes or the crushed material. It can also be seen that powder mix and 

crushed material yield to differentiable spectra, but in this case the difference is much smaller 

given that the particles sizes are closer. 

To reduce the impact of the physical properties effect and to focus the analysis only on the 

chemical information (i.e. the API content in this case), the spectra can be mathematically pre-

treated using filters. Therefore, the different slopes and offset observed on Figure 15 can be 

corrected (Figure 16). 

 



 
37 

 

Figure 16 : Sample classes spectra - Pre-treated spectra (D1 + SNV) 

On this Figure 16, where the original spectra presented on Figure 15 have been processed by 

applying normalization (SNV: Standard Normalization Variate) and first derivative (17 

smoothing points), it can be concluded that the differences between the spectra have been 

reduced. Only the uncrushed material can still be visually differentiated from the powder and 

crushed, these two being overlapping. This indicates that the API content might be determined 

directly on the uncrushed granules. But to confirm this, in depth analysis using MVDA tools 

has to be performed. 

MVDA Analysis 

To analyse the information contained in all the spectra, a Principal Component Analysis was 

performed using SIMCA software.  

The PCA is performed with setting in the software the three different classes, to see how the 

variations into the spectral dataset may explain the differences between these classes. 

The best results are obtained with the combination SNV + D1 pre-treatments. On the first score 

plot below (Figure 17), it appears that the first component, accounting for 99.7% of the dataset 

variability, is able to explain the physical difference between the uncrushed granules on one 

hand, and the crushed granules and reconstituted 100% label claim blends on the other hand. 

The second component is differentiating the crushed granules and the reconstituted 100% 

label claim sets, but accounts for only 0.3% of the dataset variability. 
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Figure 17 : Comparison of sample classes - PCA without pre-treatment 

 

When a SNV+D1 pre-treatment is applied, the different classes are even harder to differentiate, 

and the crushed granules are not distinguished from the reconstituted 100% label claim sets 

anymore (Figure 18). 

 

Figure 18 : Comparison of sample classes – Samples pretreated with SNV+D1 

The first conclusion from these results is that it is feasible to develop the calibration model from 

powder reconstituted mixes, given the similarity between the crushed granules and 

reconstituted 100% label claim sets spectra.  

Second, there is an offset difference between the uncrushed and crushed granules 

absorbance. The difference remains on some wavelength bands despite the pre-treatments 

applied. This will have to be taken into account for the further development, to determine if it 

is possible to reduce the samples physical differences without affecting the content 

measurement. 
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 Raw Materials study 

2.2.2.1 Objective 

The objective of this study was to assess the impact of the excipients on the API content 

analysis of the drug product. 

2.2.2.2 Method 

The spectra of each ingredient was individually taken. Different batches were included for each 

one. The powder is put directly into the plate and the measurement is performed. 

2.2.2.3  Results and discussion 

The graph below (Figure 19) represents the spectra obtained for each ingredient (API, 

Excipient 1, Excipient 2). This way, it becomes clear on which bands the excipients are 

expected to impact on the absorbance of the mixed samples. 

 

Figure 19 : Spectra of raw materials 

 

The Excipient 1 peaks amplitude is slightly different. It appears that the wavelengths impacted 

correspond to the water absorbance bands (7400-6200 and 5800-5500 cm-1). Hence the 

Excipient 1 is known to have a hygroscopic behaviour. This will be taken into account during 

the model development, to ensure the robustness to humidity variation in the samples. 

 

 Calibration 

 Calibration and validation ranges 

The calibration range was set from 80 to 105% label claim, knowing that the maximum 

percentage that may be reached in the Sachets is theoretically 106%. This would mean the 
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Sachet is entirely filled with pure API, which is unrealistic. In terms of mass proportion, the 

granules are actually dosed at 95% API. 

The 100% label claim for the 1g dose, from which the calibration and validation samples 

composition were calculated, is presented in Table 2 below.  

Ingredient 
Composition 
Sachet 95% 

1g 
% w/w 

API (mg) 1000.00 94.42% 

Excipients (mg) 59.10 5.58% 

Total sachet mass  (mg) 1059.10 100.00% 

Table 2 : Composition of Drug Product Sachet 1g 

 

The target amount of one individual sample is 12g equivalent API – which corresponds to 12 

sticks 1 g, 6 sticks 2g, 3 sticks 4g. This leads to a total sample mass of 12.7092g. 

The following points were chosen for calibration (in red) and validation sets (in green):  

 

Each ingredient was weighed individually, then the powders were homogeneously mixed using 

a laboratory blade crusher. 

The table in Annexe 1 summarizes the real API content of each sample. 

 

 Spectra analysis  

The raw spectra of the calibration and validation sets are presented in  

Figure 20 (at-line measurement of the powder mix). The spectra are coloured according to the 

corresponding theoretical API content (in percentage of label claim) of the samples (from 80% 

in blue to 105% in red).  
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Figure 20 : Full spectra (no-pre-treatment) of the calibration and validation sets 

As seen on this figure, there is no pattern following the content in API, the signal is noisy, which 

is expected as far as raw data are concerned. That is why a preprocessing step of the data is 

mandatory, to be able to focus the information on the chemical properties of the sample. 

During this development phase on SIMCA, the following pre-treatments were also assessed: 

no pre-treatment, SNV, MSC, D1+SNV, D1+MSC and D2. These pre-treatments have given 

worse results compared to D1 + SNV + MSC, so they will not be presented in this report.  

Figure 21 shows the spectra pre-treated by SNV on the whole wavelength range. This 

shortening was performed to specifically exclude the noisy extremes of the spectra. The 

specific absorbance bands corresponding to API, Excipient 1 and Excipient 2 can be easily 

noticed, as the order of colour shades follows the API content. Hence these specific 

absorbance bands are particularly interesting to build the model. 
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Figure 21 : Calibration and validation spectra sets – Cut and pre-treated by SNV  

Figure 22 represents the same spectra as Figure 21 but first pre-treated with a first derivative 

pretreatment. 

 

Figure 22 : Calibration and validation spectra sets  

Cut and pre-treated by D1+SNV  

To conclude this part, it is possible, thanks to the mathematical pretreatments available, to 

organize the spectra according to their API content: The pretreated data are then used with 

the MVDA analysis to build the model. 

 Principal Components Analysis  

For explorative purposes, a PCA was performed to detect any trend in the dataset due to the 

variations of the samples. 

The score plot on Figure 23 shows the PCA of the 27 spectra filtered by D1 + SNV on the 

whole wavelength range in order to observe the chemical information. 
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The dots are coloured according to their content in percentage of label claim (upper graph of 

Figure 23), and API type. 

 

 

Figure 23 : PCA score plots of all spectra filtered by D1+SNV  

On the upper graph of Figure 23, it is observed that the API content follows the PC1 axis, 

meaning that the highest difference between all the spectra is due to the variation of content 

(R2X[1] = 95.3%).  

The PC2, explaining 2.61% of the variation in the variables dataset, does not seem to  be 

correlated to any of the variation that was intentionally included in the model construction, as 

the samples are randomly spread along the axis. 

One outlier is observed outside of the ellipse corresponding to 95% of the confidence interval 

(Validation set – 85% - 1st repetition), but is of no significant impact on the model because its 

leverage on the power is not significantly high (see 2.4.3). 

To conclude this part, the PCA confirmed that it should be feasible to build a model to predict 

the API content based on the NIR spectra.  

 Final preprocessing parameters 

In order to determine the relationship between spectra and the API content, the Partial Least 

Square projection on latent structure (PLS) is now used. 

The research of the best model parameters in terms of pretreatments, spectral range selection, 

etc. follows an iterative process. At first, a satisfactory model was found combining D1+SNV 

pretreatments on a large spectral band. However, when measuring the content of intact 

granules, a systematic underestimation of about 4% was observed, meaning that this model 

still included a significant amount of physical information.  

API Content 
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Moreover, the removing of the spectral bands related to water absorbance was resulting in a 

relative loss of precision of the model. Hence, other optimizations had to be performed in order 

to meet all the project criteria (analysis on Uncrushed granules, robustness, etc) and led to 

more appropriate parameters, which are going to be presented in this part. 

The OPUS optimization tool showed that the combination of D1 + SNV on the whole spectra, 

in combination with MSC (Multiple Scattering Correction) on specific calibration bands 

provided particularly high precision (i.e low RMSEP values) in terms of API content prediction, 

with only one component. Consequently, this combination of pre-treatments were finally 

assessed in SIMCA software. 

Thus, the final preprocessing parameters are as follows: 

The calibration and validation sets were pretreated on the whole wavelength range 

by first derivative (D1) followed by standard normal variate correction (SNV). Following these 

pretreatments, the spectra were pretreated with MSC on the specific calibration bands selected 

for the model development. These bands are selected so that to correspond to API and 

excipients major absorption bands. Furthermore, in this range, the main absorbance bands of 

the water are partially excluded to give a robust model against water content variation. 

The PLS was then performed with the following settings: 

- Spectral calibration range: as defined 

- Variables scaling: centering (standard setting for NIRS model) 

- Number of Cross Validation-groups (cf. 2.3.5 for details): 7 (default setting) 

The final spectra used for the model is represented on Figure 24. 

 

 

Figure 24 : Final Model - Spectra after pre-treatments and bands selection 
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As can be seen on this figure, where the spectra are coloured according to %label claim, the 

information is mainly focused on the API content, as the colour shades follow the API content 

along the whole selected bands. 

 PLS on Calibration sets 

A first calibration model is now constructed with the 15 calibration sets (80, 90, 95, 100, and 

105%) using PLS, then its predictive ability is assessed thanks to the validation samples. 

Figure 25 illustrates the R2Y and Q2 values of the model (cumulated), with one, two and three 

components (Comp[x]).  

R2Y accounts for the fraction of all the Y’s explained by the corresponding component in the 

least square sense, and can be interpreted as the goodness of fit of the model. R2Y can be 

interpreted in the same way as the coefficient of determination R2 for a typical linear regression. 

Q2 is the fraction of the total variation of the Y’s that can be predicted by a component 

according to cross-validation, and can be interpreted as the goodness of prediction of the 

model. Q2 can be interpreted in the same way as a predicted R2 for a typical linear regression. 

Increasing the number of components from one to two does not significantly improve the 

model’s predictive ability (Q2 for components 1 and 2 are almost equal). A decrease in Q2 

means that the analysis has started fitting noise in the model, hence the corresponding 

component is not improving the predictive ability in terms of chemical information. This case is 

not desirable.  

Moreover, the fewer component the model is based on, the more robust it is. Thus, a one-

component model was selected for further development. 

 

 

Figure 25 :  Summary of fit – Calibration Model 

Figure 26 plots the predicted values obtained with NIRS model against the observed values 

determined by weighing. The NIR model used to predict the content has a precision of 0.61 % 

of label claim (RMSECV). The RMSECV statistical test consists in performing a calibration 

leaving a set number of samples out, and predicting these samples with the new submodel 
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developed. The algorithm performs this step by step until all defined set of samples have been 

left out and predicted. In this case, at each iteration, 7 samples are taken out of the calibration 

model for cross-validation. The distance between the real and the predicted value is quantified 

and results in the Root Mean Square Error of Cross Validation (see formula in the 

Abbreviations and Definitions), which is the first indicator of the predictive ability of the model 

[7]. 

 

Figure 26 : Observed vs. Predicted content – calibration set (15 samples) 

The sets at 80% are slightly spread over the calibration line. This may be due to the fact that 

they contain the highest amount of excipients, which some of them are known to be 

hygroscopic. Hence the content prediction may be affected in the region of 80% content. 

However, from a practical point of view, the drug product samples to be assayed with this 

method are centred on 100% and show a relatively low variability around this target (the 

specifications limits are set at +/-5%). Therefore, the accuracy of content determination in the 

region of interest (95-105%) should not be negatively affected. 

To summarize, the calibration model obtained with the previous PLS parameters gave the 

following results: 

- Number of samples: 15 

- Number of principal components chosen: 1  

- R2Y = 0.997 

- Q2Y = 0.995 

- RMSECV = 0.61 %label claim 

 

 Validation sets prediction 

The external validation consists in testing the calibration model using a new set of known 

content samples. These 12 samples are prepared in the same way as the calibration samples 

and their spectra are recorded. Then, based on these new spectra, the calibration model is 
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used to estimate the content of the samples. The estimated API content in the validation 

sample should fall close to the true content. 

 

Figure 27 : Observed vs. Predicted – Validation set (12 samples) 

The external validation (data set not included in the calibration model) produces a RMSEP 

value. This is a more reliable estimate of the method precision compared to the RMSECV 

obtained by cross-validation.  

The final error of prediction is RMSEP = 0.46% which is low and in the same order of magnitude 

than the cross-validation RMSECV.  

As observed on Figure 26, there is a slight spreading of sets 85% over the regression line, for 

the same reasons discussed for the calibration. 

To summarize: 

- Number of samples used to build the model: 15 (calibration set) 

- Number of samples to predict: 12 (validation set) 

- Number of principal components: 1 

- R2Y = 0.991 

- RMSEP = 0.46 

Based on these results, it is concluded that the PLS model used to predict the API content 

from the NIRS spectra (applying the spectral range selection and mathematical pre-treatments 

described in section 2.3.4) is reliable in term of precision and accuracy. 

 Final PLS model  

After the external validation, the 27 samples (calibration and validation sets) are pooled 

together in order to build a more powerful and robust PLS model, and assess the overall 

RMSECV. Figure 28 shows the overall RMSECV of the model which is ≈ 0.58%, very 

satisfactory.  
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Figure 28 : Observed vs. Predicted content – Calibration and Validation sets (27 

samples) 

Several statistical tools are available to assess the relevance of the model, some of them will 

be presented in the next points. 

 Coefficient Plot 

On the loading column plot (Figure 29), the impact of each selected absorbance wavelength 

is observed.  

During the model construction, the absorbance bands were selected in order to have a 

statistical significance to calculate the API content. This means that the error bars at 95% 

confidence level (in red) do not cross the X-axis. 
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Figure 29: Loading column plot 

 DModX for PLS 

The DModX graph (Figure 31) reports the residual distance to the model of each spectra in the 

X-dimensional space. In other words, after processing the spectrum with the PLS method, 

some X-data remain unexplained because it could not be correlated to the Y responses. The 

residual distance between the observation and the model (see Figure 30) can be computed 

and interpreted to determine if the spectrum is an outlier. 

 

Figure 30 : Representation of residual distance 

An observation above the threshold of twice the Dcrit (0.05) could be considered as unusual. 

Therefore, in this figure one outlier is observed, corresponding to validation set_85%_r1). It is 

kept in the model because its leverage in the model is weak (see Figure 32). Moreover, it is 

important to note that there is no noticeable sequence of samples with a persistent high 

DModX. Such a sequence could lead to a not desirable shift of the model plane. 
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Figure 31 : DModX - Final Model 

 Hotelling’s T2 for PLS 

The Hotelling’s T2 or leverage graph (Figure 32) is an estimation of the sample point’s influence 

on the PLS model. An observation with a high leverage value exerts a large influence on the 

PLS model and could be considered as an outlier. 

It was observed that the boundaries of the model (80 % and 105% of label claim) have a slightly 

higher importance compared to the other points. Indeed, it is usual to have a higher leverage 

on the extreme sides of a quantitative model.  

No outlier was observed, meaning that all the samples are useful and have comparable weight 

on the model to predict the API content. 

 

Figure 32 : Final Model - Hotelling's T2 
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 Conclusion on model development 

The model obtained with the calibration set has an error of prediction (RMSEP) < 0.6 %.  

To assess the robustness of the model, the prediction results of calibration, cross-validation 

and external validation are compared. The value of RMSEE (calibration set), RMSECV (cross-

validation) and RMSEP (external validation set) are all three less than 0.6% of API content and 

the R2 value is higher than 0.99. 

According to these results, the model developed is stable and ready for ICH validation. 

Number of 
principal 

components 
Spectral filters RMSEE RMSECV RMSEP 

1 
D1+SNV 

MSC on bands selected 
for modelling 

0.51 0.58 0.46 

Table 3 : Summary of models settings and precision results 

 

 Final model on OPUS 

In order to be actually used for content determination, the final model had to be implemented 

on OPUS, on which a user program can be created, to perform the analysis. The analysis 

program was built based on the 27 samples (calibration + validation set).  

The samples have been pretreated according to Table 3. 

The PLS was performed on OPUS with the following settings: 

- Number of samples: 27 

- Number of principal components: 1 

- Spectral range: as defined 

- Mean centering (standard setting for NIRS model) 

- Number of samples excluded for cross validation: 7 

The final model obtained with OPUS gave the following results: 

- R2Y = 99.7% 

- RMSECV = 0.43 

- Bias = -0.0137 (has to be as close as possible to zero) 

- The Mahalanobis distance threshold = 0.31 
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Figure 33 : Final Model - OPUS implemented model 

These parameters are similar to what was found during the SIMCA development, hence this 

final model was stored as the reference model for the routine analysis. The resulting program 

allows to display the content result directly when measuring a sample’s spectra. 

The following analysis (2.7 ; 3 ; 4 ; 5) were performed using this model. 

 

 Specificity of the model  

The specificity of the model was evaluated using 2 OPUS statistics tools: the Mahalanobis 

Distance (MD) and the Residuals. New commercial samples were tested using the method 

developed in section 2.6. 

2.7.1.1 Mahalanobis Distance 

To ensure the detection of outliers by NIRS, a Mahalanobis distance (MD) test is included in 

the OPUS analysis software. This test ensures that the spectrum of the analysed sample does 

not diverge from what is expected according to the calibration data [14]. It is similar to the 

Hotelling’s T2 presented in 2.4.3. 

The spectral structures of the complete calibration data set are compared to the structure of 

the analyte spectrum. More precisely, MD is defined as the difference between the measured 

spectrum of the analyte and the mean value of all spectra in the calibration data set. MD 

integrates both the variation between samples at a given wavelength and inter-wavelength 

variations.  

 If the spectrum contains structures which do not fit the calibration range, an increase of the 

Mahalanobis distance is observed. 

API 
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OPUS determines a Mahalanobis Distance Threshold (MDT) by computing the mean value 

and the standard deviation from the calibration set spectra (in this case, the spectra of 27 

samples). Assuming normal distribution, a one-sided limit covering a probability of 99,999% is 

defined. For the 27 samples in the final model, the MDT was calculated to be 0.31.  

To detect outliers, the MDI (Mahalanobis Distance Index) is displayed in analysis reports. The 

MDI is the ratio of the MD (calculated on a given spectrum and using the model developed) to 

the MDT:  

MDI=
MD𝑠𝑎𝑚𝑝𝑙𝑒

MDT
 

Theoretically, a MDI superior to 1 indicates that the sample spectra is an outlier (its distance 

from the model is higher than the threshold). Conversely, a MDI < 1 indicates a spectra that 

can be reliably analysed using the model developed in this study. This value can be increased 

in the method in order to be less restrictive and to account for some variability that could appear 

in the future (e.g. changes in raw materials). 

2.7.1.2 Spectral Residuals 

The model cannot explain the total variance within the spectral dataset. The part of spectral 

information that is not explained is called residuals, and corresponds to the difference between 

the raw data and the data processed with the PLS model. Higher residuals indicate a possibility 

of outliers. The difference is calculated between the measured spectrum xi and the spectrum 

expected from modelisation i.e. from scores [15]. The residual value is interpreted by 

calculating a F-value and a FProb for each sample tested. If the FProb value is larger than 

0.99, then the sample is reported as an outlier (99% confidence threshold). Spectral residuals 

are similar to the DModX calculated with SIMCA (cf. 2.4.2). 

2.7.1.3 Specificity of the model against suppositories and tablets  

To assess the specificity of the method, spectra of suppositories and tablets based on the 

same API at different %label claims were analysed with the Sachets method. API content, 

Mahalanobis distance and spectral residuals are reported in Annexe 2 
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Annexe 2The majority of the spectra have a Mahalanobis distance lower than the threshold. 

This is due to the fact that the Sachet model was built with only one component explaining the 

variation of API content. The variation due to the excipients is very low as the formulation of 

granules is 95% of API w/w, hence it is not taken into account in the model. The only thing the 

model can detect when analysing tablets and suppositories is the variation of API. 

The only spectra seen as outliers in terms of MD are Tablets 120%, for which the spectra are 

distant enough from the sachets calibration model to be distinguished. 

However, when the spectral residuals are analysed, the distance between the Sachets model 

and the other formulations is logically detected. Therefore, the model is specific to sachets and 

can identify the suppository and tablet spectra as outliers thanks to the residuals. 

2.7.1.4 Specificity of the model against raw materials 

The spectra of raw materials previously measured (cf. 2.2.2) were analysed with the 

quantification OPUS method to see if they were detected as outliers. 

Results are reported in Table 4. 

Sample 
Predicted 

API 
Content 

(%) 

MD Limit Residuals F Value F Prob Outlier 
Raw Material Batch Number 

API 

B25213 106.08 0.088 0.31 0.00814 2.7 0.888 - 

B25343 106.06 0.088 0.31 0.00739 2.22 0.852 - 

B30195 105.86 0.085 0.31 0.00748 2.28 0.857 - 

B30384 106.17 0.09 0.31 0.00852 2.96 0.903 - 

B32058 105.67 0.082 0.31 0.00528 1.13 0.704 - 

Excipient 1 

31228 392.58 55 0.31 0.472 9090 1 MD/Res 

79881 395.21 56 0.31 0.482 9460 1 MD/Res 

118185 388.92 54 0.31 0.441 7900 1 MD/Res 

Excipient 2 
55024 263.54 18 0.31 0.679 18800 1 MD/Res 

65605 266.78 19 0.31 0.686 19100 1 MD/Res 

Table 4 : Results of specificity analysis against raw materials 

As expected, the excipients are detected as outliers in terms of MD and spectral residuals. 

Nevertheless, the API is not. This was expected given that pure API is very similar to the 105% 

label claim sets included in the calibration range. Its predicted content as well is consistent 

(around 106%). 

 

 Comparison between NIRS method and HPLC method on 

uncrushed and crushed granules 

In order to validate the NIRS method, the equivalence with the HPLC analysis has to be 

demonstrated.  
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A set of 10 samples composed of commercial Sachets 1g & 2g was used for this test. The 

sticks were picked up in the same way as the reference HPLC sampling method, so that the 

NIR results could be compared with the HPLC ones. 

Six spectra were measured for each sample before and after crushing the granules. The 

average content obtained from the 6 spectra is used as reference value for the sample.  

The API content was predicted using the final PLS model. The specification range is 95 – 105% 

of API label claim. 

The results for each commercial batch with the three different analysis are reported in Table 5 

below. 

Batch Number 

% Label claim 

HPLC 
NIR 

(Uncrushed) 
NIR 

(Crushed) 

L14849A 100.71 100.47 100.39 

L14850A 101.27 100.25 100.21 

L16102A 101.13 100.55 100.41 

L16034B 100.71 100.43 100.48 

L16038D 100.40 100.45 99.97 

L17061B 101.37 100.22 100.13 

M12195A 101.86 99.811 99.85 

M12197A 101.41 100.15 99.83 

M12200A 102.30 100.09 99.84 

M12034A 101.43 100.05 99.72 

Mean 101.26 100.25 100.08 

Distance HPLC vs. NIR - 1.00% 1.17% 

Table 5 : HPLC and NIR methods comparison 

The relative distance between the mean results of the two methods is calculated using the 

following equation:  

𝑅𝐷⁡% =⁡
2⁡ ×⁡ |𝑀𝑒𝑎𝑛𝐻𝑃𝐿𝐶 −𝑀𝑒𝑎𝑛𝑁𝐼𝑅|

𝑀𝑒𝑎𝑛𝐻𝑃𝐿𝐶 +𝑀𝑒𝑎𝑛𝑁𝐼𝑅
× 100 

 

The acceptance criteria is that the RD% should not be greater than 2%, which is the case here 

with a RD% equal to 1.17% and 1.00% between HPLC and NIR (crushed and uncrushed 

respectively). Based on these results, it can be concluded that the three API assay methods 

provide comparable measurements, which makes the NIRS analysis suitable for routine 

analysis.  
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 Comparison between Uncrushed and Crushed samples 

 Method 

One of the objective of the assay method development was to assess the feasibility of 

performing a measure on the granules, without the crushing step. Given that the calibration 

model was built on powder samples, it is therefore necessary to check that the method is valid 

on Uncrushed granules as well as it is on Crushed ones. 

To do so, the previous content results (Table 5) of commercial granules were used. The 

equivalence between Uncrushed and Crushed assays is tested with a paired T-test on the 

means of each class. 

The specificity of the model is tested as well with MD and Residuals to check that the 

Uncrushed granules are not detected as outliers compared to the crushed form. 

 Results and discussion 

The t-test is performed with Minitab software. The results are presented on Figure 34 below. 

 

Figure 34 : Paired T-test analysis of population means (Uncrushed vs. Crushed) 

Considering these results, there is no statistical difference (p-value > 0.05) between the two 

classes mean, which signifies that the method is suitable for both sample forms.  

 Specificity tests on commercial granules 

The specificity test results (MD and Residuals) are presented in Annexe 3. 

Because the model has been built using crushed samples, some uncrushed granules are seen 

as outliers (high residuals) with the current parameters. It is concluded that the model still 

contains some physical information despite the pre-treatments applied. However, the content 

prediction is not statistically affected. 
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 Model Robustness on Uncrushed coated granules 

The previous methods were developed for crushed forms, and their robustness was already 

tested and found satisfying according to ICH guidelines. Before going further to the method 

validation, and given that it is the first time a method is used on granules form, it was decided 

to test the robustness of the method on one critical parameter which is the granules size. 

Commercial granules are separated according to their sizes using sieves of different mesh 

size: 850 and 1000µm, then analysed with the Sachet method. The corresponding bulk content 

is measured.  

The results obtained are reported in Table 6. 

Batch Number Sample 
Content 

Mean 
(%) 

L14408A 

Bulk 100.55 

850 99.35  

1000 99.61  

L14409A 

Bulk 100.23% 

850 98.88  

1000 99.08  

L16014A 

Bulk 100.52 

850 99.34  

1000 99.27  

L16104A 

Bulk 100.55 

850 99.31  

1000 99.30  

Table 6 : Robustness study on granules size results 

 

The mean content value of the three classes are compared with an ANOVA test (Figure 35). 
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Figure 35 : ANOVA test results 

According to these results, the observed differences in predicted content (approximately 1%) 

is statistically significant (p-value < 0.05). More precisely, the bulk predicted content is 

statistically different from the sieved granules. This difference may be due to the difference of 

light scattering within the samples. The granules size being different, the light does not follow 

the same trajectory within the samples, thus the collected absorbance is different. 

The crushing step allows to reduce the physical differences, mainly in particle size distribution, 

between the tested samples. Hence, for release testing purpose, it is more robust and reliable 

to include a crushing step before the NIR spectra are collected. 

However, the Uncrushed method still showed very satisfactory results in term of content 

prediction. Consequently this method without crushing could have an interesting application in 

on-line process content monitoring, as no sample preparation step would be required. 
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 Conclusion on the model 

The purpose of these tests was to develop a fast analytical assay method for at-line 

measurement of API content in Sachets 1g, 2g and 4g using NIR spectroscopy. The second 

purpose was to compare the developed method to the reference one (HPLC). 

 Model precision: 

The precision of the calibration model determined by external validation is 0.46 % of API label 

claim (RMSEP). 

The final model composed of the calibration and validation set gives a precision (obtained by 

cross validation) of 0.58 % of API label claim (RMSECV). 

This precision of approximately 0.6 in % of API label claim is fully satisfactory compared to the 

specification range (95-105% of label claim). 

 Model accuracy: 

The part-to-part comparison on commercial samples tested with the QC-HPLC method and 

the NIRS method shows that these two methods are not statistically different. 

 Model specificity: 

As far as the crushed granules are concerned, the final model is restrictive enough to identify 

the suppository and tablet spectra as outliers, thanks to MD and spectral residuals. Therefore, 

the sachet model is considered as specific. 

Given the MD obtained when assessing specificity (2.7 and Table 4), the MDI can be reliably 

set at 1.5 in the OPUS method. 

 Model robustness : 

Preliminary robustness study has shown that the content determination is slightly sensitive to 

the granule size if the method is applied on uncrushed granules. Therefore, the method to be 

validated includes a crushing of the granules prior to the NIR spectra measurement. A 

complete robustness study will be included as part of the method validation. 

 Comparison with the reference method (HPLC) : 

The relative distance between both methods was calculated and found satisfactory (< 2%). 

Moreover, the HPLC method has a RSD% ranging from 0.4 to 1.0 [16], which is slightly less 

precise than the NIRS method (RMSECV < 0.6%). Thus the NIR method can be used as an 

alternative to HPLC to determine the API content in the finish product. 

This feasibility study demonstrated that it is possible to use near infrared spectroscopy for API 

content in Sachets 95%.  
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Given the application of the analysis to batch release, it was decided that the validation would 

be performed on crushed granules. However, the NIR assay analysis on Uncrushed granules 

would be a valid approach for process monitoring applications.



Part 3: Analytical method validation 

The validation of NIR method is a mandatory step at the end of development, as it is for any 

analytical method. The aim of validation is to guarantee that each of the future results obtained 

in routine analysis will be close enough to the real content. The validation process is 

documented by regulatory authorities. 

 Method Validation was performed according to the ICH Harmonized tripartite guideline on 

Validation of analytical procedures [17] and European Medicines Agency guidelines on the use 

of Near Infrared Spectroscopy (NIRS) by the pharmaceutical industry and the data 

requirements for new submissions and variations [18]. 

The validation strategy set up covers the requirements for model and method validation: 

 Statistical Spectral quality test and Outlier Handling  

 Risk assessment of variables  

 Specificity 

 Linearity  

 Range  

 Precision 

 Accuracy  

 Method robustness 

 

 External validation set 

In order to validate the method for API assay, an external validation set is used to test the 

predictive ability of the model. The same formulations as for the calibration set (80%, 90%, 

95%, 100%, and 105% of %API label claim) are prepared and analysed with the NIR method. 

The external validation set was prepared according to the composition stated in Table 2. 

  Specificity 

 Acceptance criteria 

Due to the intrinsic properties of NIR PLS models, the prediction of API content is based on 

the API and excipients absorbance bands. Therefore, the specificity of the model has to be 

demonstrated during validation, especially proving that this method is able to discriminate the 

sachets from other forms of products based on the same API and raw materials present on the 

production site. 

Specificity is evaluated using the Mahalanobis distance (MD) to the model, and the spectral 

residuals.  
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Specificity is evaluated using the following samples: 

- 10 x Tablet 1g 

- 10 x 1g Suppository 

- 13g PLACEBO Sachet 95% 

- Raw materials: Excipients (approximately 13.00 g) 

 

Acceptance criteria 

 Mahalanobis distance index for Sachets 95% is below the defined MDI of 1.5 

 Mahalanobis distance for all other samples is above the defined threshold of 0.31. 

These samples are detected as outliers by OPUS software, meaning their Mahalanobis 

distance index is higher than 1.5 

 Sachets are not seen as outliers by the OPUS method i.e. their FProb is lower or equal 

to 0.99 

 All other samples are detected as outliers i.e. FProb > 0.99 

 Results 

In the table below, the MDI is the ratio of the Mahalanobis Distance to the Mahalanobis 

Distance threshold of 0.31. Samples with an MDI superior to 1.5 are systematically rejected.  

Spectral residuals outliers are directly indicated as such on the OPUS report, after calculation 

of the spectrum distance to the calibration spectra. The software computes a value of FProb 

related to the quantification of the spectral residuals. If FProb > 0.99, the sample is reported 

as an outlier. 

 

Sample 
Batch 

number 

Mahalanobis 
Distance 

Index 

Spectral 
Residuals 

FProb 

Sample 
rejected 

Sachet 95% L14409A 0.1 0.88 

Yes 

Yes 

No 

Tablet  L16671 0.2 1 

Yes 

Yes 

Suppositories  L13030 0.01 1 Yes 

Placebo Sachet 95% M12502#1 > 133 1 

Yes 

Yes 

Excipient 2 139400 > 42 1 

Yes 

Yes 

Excipient 1 118185 > 127 1 

Yes 

Yes 

Table 7: Results for Specificity 

The Mahalanobis distance for the Sachets 95% is inferior to the threshold, and they are not 

detected as outliers in terms of spectral residuals either. Concerning the other samples, they 
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all have a MDI superior to 1.5, or/and are detected as outliers by the spectral residuals 

analysis. Therefore, this specificity test demonstrates that the analytical method is specific to 

the Sachets 95%. 

 Linearity 

 Acceptance criteria 

The linearity is evaluated based on the linear regression (by the method of least squares) 

performed for the external validation test (80, 90, 95, 100, 105% label claim). The linear 

regression is performed on the external validation set, in which API content is determined by 

weighing to avoid introducing the uncertainty of the HPLC reference analytical method 

 

Parameter to be reported Specification for Validation 

Correlation Coefficient Reported for information 

Y-Intercept 
Confidence interval at 95% of the intercept of the 

regression includes 0 

Slope of The Regression Line Confidence interval at 95% of the slope includes 1 

Residual Sum of Squares (RSS) Reported for information 

Residual analysis 
Normal distribution of residuals in the full range of 

analysis. 

Coefficient of Determination (R2) R2  > 0.99 [7] 

Table 8: Criteria for Linearity 

Key parameters for linear regressions (slope, y-intercept and coefficient of determination R2) 

are reported in Table 9.   
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 Results 

% of API label claim 80 90 95 100 105 

Weighed % of API 
label claim 

1 78.769 89.730 94.901 99.998 105.000 

2 79.941 90.150 95.220 99.988 104.998 

3 80.363 90.213 95.519 99.996 104.998 

Measured % of API 
label claim 

1 79.999 89.998 94.9973 100.113 105.140 

2 80.000 89.997 95.000 100.210 105.070 

3 79.997 89.994 94.9954 100.357 105.355 

Y-Intercept -1.924 

95% CI for Y-Intercept ( - 4.26, 0.41) 

Regression Line Slope 1.0212 

95% CI for Regression Line 
Slope 

(0.9965, 1.0460) 

R2 99.84% 

Table 9: Results for Linearity 

These results were obtained by performing a regression between the real and predicted 

content, as plotted on Figure 36 below. 

 

Figure 36 : Theoretical vs. Predicted for external validation set (15 samples) 
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As can be seen in Table 9 and Figure 36 above, R2 is superior to the acceptance criteria of 

0.99. Moreover, the CI at 95% of Y-intercept includes 0 and the CI at 95% of the slope includes 

1. Hence the method is considered linear on the range 80-105% label claim. 

 

 Accuracy 

 Acceptance criteria 

The accuracy is evaluated by computing the difference between the predicted value and the 

theoretical true value for the external validation test set (as described in 1). For each sample, 

the recovery percentage is calculated:  

%Recovery = Predicted content / theoretical content * 100 

Acceptance criteria 

 Individual %Recovery: 98-102%  (According to “Accuracy” in internal SOP) 

 Bias not statistically different from zero 

 Results 

% of API label claim 80 90 95 100 105 

%Recovery  

1 98.463 99.702 99.898 100.114 100.133 

2 99.926 100.170 100.231 100.223 100.068 

3 100.457 100.243 100.551 100.361 100.340 

Mean for Recovery (%) 99.615 100.039 100.227 100.233 100.181 

%Recovery Stdev   1.033 0.294 0.326 0.124 0.142 

%RSD for Recovery  1.037% 0.294% 0.326% 0.123% 0.142% 

Table 10: API Recovery 

The graph below (Figure 37) plots the individual %Recovery values (grey dots) as well as the 

mean %Recovery (blue dots) for each %Label claim set. The corresponding confidence 

intervals (CI) at 95% are also represented. The red dotted lines represent the limits for 

individual %Recovery (98-102%) as defined in the protocol. 
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Figure 37: 95% CI for Recovery Mean (Confidence intervals based on pooled 

repetition error) 

Mean %Recovery 100.059 

95% CI for the %Recovery Mean 99.786 - 100.332 

Table 11: Recovery Percentage 

Conclusion:  

Acceptance criteria 

 Individual %Recovery 98-102% Complies 

Bias not statistically different from 0 Complies 

 

All individual %Recovery were found within the target values (98-102%). The 80% sets are 

more spread in terms of %Recovery, although still in the specification range. This phenomenon 

had already been noticed during the feasibility study and is attributed to the variability of the 

excipients (hygroscopicity, etc.). However, the sets within the specification range for content 

determination (95-105% Label Claim) are much more tightened around the average 

%Recovery, which is fully satisfactory for the application of this analytical method. 

Percentage Recovery meets the acceptance criterion. The method is accurate. 
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 Precision 

As indicated in the ICH guidelines [17], precision of an analytical procedure is the degree of 

scatter between series of measurements on a homogeneous sample under prescribed 

conditions. Precision is evaluated through repeatability and intermediate precision. 

 Repeatability 

Repeatability is observed when the same operator measures the same sample repeatedly with 

the same method and equipment. Repeatability is assessed using the results of the external 

validation set for the following percentages of API label claim: 80, 100 and 105%.  

Acceptance criteria 

 RSD ≤ 2.0 % 

 

% of API label claim 80 100 105 

Predicted content Mean  79.691 100.227 105.188 

Mean Recovery 99.615 100.233 100.181 

CI 95% for Mean Recovery 97.050 – 102.181 99.925 – 100.540 99.828 – 100.533 

%RSD on recovery 1.037 0.294 0.326 

Acceptance Criteria RSD < 2% RSD < 2% RSD < 2% 

Criteria fulfilled Yes Yes Yes 

Table 12 : Method Repeatability and acceptance criteria 

 

 Intermediate precision 

Intermediate precision shows the precision of the analytical method carried out in the same 

laboratory but by different technicians, using different equipment (if possible), at different days.  

Intermediate precision is carried as follows: 

- Two different operators analyse samples independently 

- Each operator performs the analysis on a different day 

- Six samples at 100% of API label claim are measured by each operator 
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Acceptance criteria 

 
(MeanOperator 1 - MeanOperator 2)

MeanTotal
 ≤ 2% 

 
 RSD (n=12)⁡≤ 2% 

 

 Real content 
(% Label Claim) 

NIR Predicted 
content 

(% Label Claim) 
%Recovery 

%Recovery 
Mean 

%Recovery 
RSD (%) 

O
p

e
ra

to
r 

A
 

99.999 99.584 99.585 

99.695 0.142 

99.999 99.870 99.871 

99.999 99.554 99.554 

100.001 99.597 99.596 

99.996 99.697 99.701 

99.997 99.859 99.862 

O
p

e
ra

to
r 

B
 

99.996 99.889 99.893 

99.947 0.114 

99.997 100.033 100.036 

99.995 99.808 99.814 

100.001 100.043 100.042 

99.998 100.063 100.065 

99.999 99.828 99.830 

Table 13: Results for Intermediate Precision 

 

Acceptance 

criteria 

%RSD (n=12) for API < 2% 0.128 Complies 

(MeanOperator 1 - MeanOperator 2)

MeanTotal
 < 2% 0.251% Complies 

Table 14: Acceptance criteria for Intermediate precision 

All the criteria complies with the requirements, thus the precision of the method is validated. 

 

 Range 

Range is established by confirming that the analytical procedure provides an acceptable 

degree of linearity, accuracy and precision for the samples of the external validation set 

(covering the range of the analytical procedure). 

Acceptance criteria 

Linearity, Accuracy and Precision are demonstrated on the range of 80 – 105 % of the tested 

concentration.  
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Conclusion: 

The range of this analytical method was demonstrated through the tests for linearity, 

accuracy and precision. As can be seen in the previous paragraphs, the method was 

demonstrated to be linear, accurate and precise. Thus the range for API assay is 

validated between 80 and 105% of API label claim. 

 

 Method robustness and Risk Assessment of variables  

A DoE was executed to test the method’s robustness. The aim of this study was to document 

the influence of expected analytical method parameters variation on the quality of the results 

(change in accuracy was chosen as a response in this DoE).  



 

 

Potential causes of 
variation (based on FMEA 

score) 
Action already done Recommended action 

Sample chemical and physical properties 

Variation in raw material 
properties 

 Considered in method development: different batches and suppliers of raw materials 
(API, Excipient 1, Excipient 2) have been used to develop and optimize the model  

No recommended actions 

Sample water content 
 This has been considered in model development: the wavelength ranges used exclude 

mainly the absorbance bands of the water. 
 Sample preparation and measurement are performed in a monitored room. 

No recommended actions 

Sample particle size 
 All samples used for method development and used during this validation are crushed 

into fine powder. 
Test in DoE the impact of incomplete 

crushing leading to bigger particle size  

Sample preparation method 

Sample size 
 Mix corresponding to 12 Sachets 1g and 6 Sachets 2g have been used for model 

development 
Test in DoE the impact of a different sample 

size 

Crushing step 
 Crushing method has been optimized during previous developments to get an easy 

and fast method to prepare sample. 

Test in DoE the impact of variation in this 
method (number of crush and time of each 

crush, crusher position, time separating crush 
and NIRS analysis) 

Sample surface layering 
and smoothing 

 Sample surface is quickly layered and smoothed with a spatula between each 
measurement. 

No action recommended 

Sample homogeneity 
 Based on previous experiments, each result is based on six measurements, with a 

manual shuffling step between each measurement. 
Test in DoE the impact of measurement 

without manual shuffling. 

Sample dish  All measures for method development were made using a dish of 7cm diameter 
Test in DoE the impact of using a dish of 9.5 
cm diameter to be similar to the other NIR 

analytical methods  

Sample positioning 
 Sample is positioned under the probe onto a rotating sample holder. This increases 

the surface scanned.  
Test in DoE the impact of the rotating sample 

holder speed and position. 

Measurement method 

Software parameters 
 All measurement settings are fixed in OPUS LAB software. Operator has restricted 

access only. 
No recommended actions. 

Equipment drift  Lifecycle management  No recommended actions. 

 

Table 15: Overview of potential causes of variation in the model 
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   DoE Variables Low level High level 

 

Standard 
Settings 

Sample size  

80% of the sample 
size 

(equivalent to  
8g API) 

120% of the 
sample size 

(equivalent to 
16g API) 

 
100% of the 
sample size 

(equivalent to 12g 
API) 

Number of crushes 2 6  4 

Crusher angle (Yes/No) No Yes  Yes 

Manual shuffling step between 
each reading 

No Yes 
 

Yes 

Analytical dish diameter (cm) 7 9.5  9.5 

Rotating sample holder speed No rotation Speed 1  Speed 1 

Rotating sample holder position Off  centred Centred 
 

Centred 

Time separating crush and 
analysis 

None >2h 
 

None 

Table 16: DoE parameters for robustness testing 

The sachet batches were produced at FICSA. For these batches, the mean API content is 

determined by averaging the value obtained of four samples measured using standard 

settings. 

The impact of each parameter on model accuracy (output of DoE) is assessed by computing 

the ratio of predicted content over the mean content of the batch. 

Acceptance criteria 

No acceptance criteria, the DoE results have to be analysed, discussed and corrective action 

taken if necessary.  

DoE Results  

The results of the DoE are represented in Figure 38 (Half-Normal Probability Plot). 

The half-normal probability plot is a graphical tool that helps assess which factors affect the 

response the most. This plot thus enables the selection of effects that “stand out” to include 

them in a model. Large effects (absolute values) appear in the upper-right section of the plot. 

The lower-left portion of the plot contains effects caused by noise rather than a true effect of 

the factors under investigation.  
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Figure 38: Half-Normal Plot 

 

As can be seen on Figure 38, three effects could be included in the model: Sample size, 

Manual shuffling step between each reading and Time separating crush and analysis. The 

statistical significance of the selected effects in the model is assessed in an ANOVA (Table 

17). 

Design-Expert® Software
Ratio Predicted/Mean

Shapiro-Wilk test
W-value = 0.941
p-value = 0.536
A: Sample size
B: Number of crushes
C: Crusher angle 
D: Manual shuffling step between each reading
E: Analytical dish diameter
F: Rotating sample holder speed
G: Rotating sample holder position
H: Time separating crush and analysis

Positive Effects 
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ANOVA for selected factorial model 

Analysis of variance table [Partial sum of squares - Type III] 

Source 
Sum of 

Squares 
Mean 

Square 
F 

Value 
p-value Prob > 

F 
 

Model 8.137E-004 2.034E-004 36.55 < 0.0001 significant 

A-Sample size 3.387E-005 3.387E-005 6.08 0.0313  

D-Manual shuffling step between 
each reading 

4.398E-005 4.398E-005 7.90 0.0169  

E-Analytical dish diameter 2.769E-006 2.769E-006 0.50 0.4952  

H-Time separating crush and 
analysis 

7.331E-004 7.331E-004 131.71 < 0.0001  

Residual 6.123E-005 5.566E-006    

Cor Total 8.749E-004     

Table 17: ANOVA table for selected factorial model 

Values of "Prob > F" less than 0.05 indicate that model terms are significant. In this case, the 

three selected effects (A, D and H) have a statistical significant impact on accuracy. However, 

when studying the individual influence of the three factors on the response, it appears that A 

and D’s impact on the content prediction is in the same magnitude than the noise of the 

method. Hence, from a practical stand point, no significant impact is asserted for these two 

factors. As far as the H factor is concerned (Time between crush and analysis), the impact is 

larger (Figure 39) and calls for limiting the time between crushing and NIR measurements to 

maximum 45 min, according to Figure 39. This time limit was thus included in the SOP. 
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Figure 39: Influence of Factor H on response 

 

Regarding the Factor E impact (Analytical dish diameter), the p-value is above 0.05, which 

means the impact on the measure is not significant. This is confirmed when looking at its 

influence on the response (Figure 40), which is of about 0.1%. Hence it can be neglected.  

 

Figure 40 : Influence of Factor E on response 
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Conclusion on DoE results: 

DoE results demonstrated that variation in only one parameter may affect measurement 

accuracy, this parameter being the time between the sample crush and the analysis with NIR. 

To ensure a correct analysis, it was specified in the analytical method procedure to perform 

the NIR analysis within 45 minutes after the crushing step, according to the results presented 

on Figure 39. 

Therefore, the method can be considered robust as long as the agreed period between crush 

and analysis is respected. 

Moreover, as there is no significant influence of the dish diameter on the response, the 9.5cm 

diameter dish was validated for further analytical uses, so that the analysis procedure is similar 

for the three forms (suppository, tablet, and sachet). 

 Conclusion on Validation 

Analytical method validation on Sachets 95% was successfully performed. The parameters of 

the method are reported in Table 18 below. 

Parameter Procedure scope 

Instrument Bruker : FT-NIR Spectrometer Matrix-F Duplex (no 961.00) 

Software OPUS version 7.0 

Mode Reflectance 

Number of spectra/sample 6 

Sample presentation At-line mix of crushed sachets 

Concentration range Concentration range 80-105 % of API label claim 

Spectral pre-processing 
D1  combined with Standard normal variate (SNV) on full 

spectrum, then MSC on specific quantification bands 

Table 18: Procedure scope 

 

All generated data for specificity, accuracy, precision (repeatability and intermediate 

precision), linearity, range and robustness experiments gave satisfactory results.  

These results meet the specifications laid out by the ICH guidelines on validation procedures 

[17] and EMEA guidelines on the use of NIRS [18].
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Conclusion 

 

The main objective of this work was achieved, as API assay method by NIRS in Sachet 95% 

was successfully developed. 

This development is an iterative process where the model has to be adjusted in order to find 

the best parameters for the given purposes. The developer has to modify the pretreatments, 

the spectral bands to include or not in the calibration, the number of principal components to 

be used, etc. In the end, a balance between precision and robustness has to be found. 

Now that the method is validated, this method for API assay in the finished product is being 

transferred to the Quality Control Laboratory to be used in routine. Prior to be used for batch 

release, the methods also have to be filed and approved by the regulatory authorities as 

alternative analytical methods to HPLC.  

The implementation of NIRS methods will allow important savings for the company in terms of 

time and resources, hence it will help to reduce costs. Moreover, the methods are as reliable 

as HPLC and even seem to improve the precision of the result.  

Furthermore, NIRS could have many other innovative applications for the company in the 

future. For example, it could be used for in-process control applications, allowing to monitor 

some steps of the process such as the coating. If the concept is further developed, NIRS would 

be really interesting as part of a real time release strategy as well. 

Finally, NIRS has the potential to be used on different product types such as liquid or semi-

liquids forms, hence could be of a great interest for other Ferring products. 

NIRS is taking more and more importance in the pharmaceutical industry. This is evidenced 

by the regulatory authorities starting to publish specific guidelines about how to develop and 

validate NIRS methods (EMA, 2014 [19] ; FDA 2015 [20]). Hence it will be the responsibility 

of pharmaceutical companies such as Ferring to keep a watchful eye on the current trends in 

order to be in the race with the last innovative technologies in pharmaceutics. 
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Annexes 

Annexe 1 : Real content of calibration and validation sets 

NIR average spectra name 
API 

(mg) 

Excipients 1 and 2 

 (QS 12709 mg) 

Real content (% of 

label claim) 

Calibration set_80%_r1 9600.2 3109.2 80.0% 

Calibration set_90%_r1 10800.4 1909.9 90.0% 

Calibration set_95%_r1 11400.7 1309.5 95.0% 

Calibration set_100%_r1 12000.0 709.3 100.0% 

Calibration set_105%_r1 12600.0 109.2 105.0% 

Calibration set_80%_r2 9600.0 3109.2 80.0% 

Calibration set_90%_r2 10800.0 1909.3 90.0% 

Calibration set_95%_r2 11400.3 1309.3 95.0% 

Calibration set_100%_r2 12000.0 709.2 100.0% 

Calibration set_105%_r2 12600.0 109.2 105.0% 

Calibration set_80%_r3 9600.2 3109.6 80.0% 

Calibration set_90%_r3 10800.1 1909.6 90.0% 

Calibration set_95%_r3 11400.1 1309.3 95.0% 

Calibration set_100%_r3 12000.3 709.6 100.0% 

Calibration set_105%_r3 12600.1 109.2 105.0% 

Validation set_85%_r1 10200.1 2509.2 85.0% 

Validation set_92.5%_r1 11100.0 1609.2 92.5% 

Validation set_97.5%_r1 11700.2 1009.4 97.5% 

Validation set_102.5%_r1 12300.4 409.2 102.5% 

Validation set_85%_r2 10200.0 2509.3 85.0% 

Validation set_92.5%_r2 11100.0 1609.2 92.5% 

Validation set_97.5%_r2 11700.0 1009.2 97.5% 

Validation set_102.5%_r2 12300.0 409.2 102.5% 

Validation set_85%_r3 10200.0 2509.2 85.0% 

Validation set_92.5%_r3 11100.0 1609.2 92.5% 

Validation set_97.5%_r3 11700.0 1009.2 97.5% 

Validation set_102.5%_r3 12300.2 409.2 102.5% 
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Annexe 2 : Results of specificity analysis against tablets and suppositories with 

Sachets method 

 Sample 
Predicted 

Content (%) 
MD Mah.Limit Residuals F Value FProb Outliers 

Tablets 
spectra 

80% - repetition 1 97.15 0.0055 0.31 0.1120 510 1 Res 

80% - repetition 2 96.91 0.0047 0.31 0.1120 515 1 Res 

80% - repetition 3 96.72 0.0041 0.31 0.1040 441 1 Res 

90% - repetition 1 99.70 0.019 0.31 0.1010 413 1 Res 

90% - repetition 2 99.41 0.017 0.31 0.1070 464 1 Res 

90% - repetition 3 99.07 0.015 0.31 0.0995 403 1 Res 

100% - repetition 1 102.40 0.042 0.31 0.1140 527 1 Res 

100% - repetition 2 102.09 0.039 0.31 0.1120 507 1 Res 

100% - repetition 3 101.98 0.038 0.31 0.1000 407 1 Res 

110% - repetition 1 106.92 0.1 0.31 0.1490 901 1 Res 

110% - repetition 2 106.51 0.095 0.31 0.1430 831 1 Res 

110% - repetition 3 105.14 0.075 0.31 0.1240 628 1 Res 

120% - repetition 1 201.46 7.2 0.31 1.3600 75000 1 MD/Res 

120% - repetition 2 146.00 1.7 0.31 0.6480 17100 1 MD/Res 

120% - repetition 3 133.40 0.96 0.31 0.4790 9350 1 MD/Res 

85% - repetition 1 98.38 0.011 0.31 0.1050 450 1 Res 

85% - repetition 2 97.71 0.0078 0.31 0.1000 410 1 Res 

85% - repetition 3 98.59 0.012 0.31 0.1080 475 1 Res 

85% - repetition 4 98.54 0.012 0.31 0.1060 460 1 Res 

95% - repetition 1 100.65 0.026 0.31 0.1050 449 1 Res 

95% - repetition 2 100.01 0.021 0.31 0.0938 358 1 Res 

95% - repetition 3 101.21 0.031 0.31 0.1090 488 1 Res 

95% - repetition 4 101.04 0.029 0.31 0.1050 451 1 Res 

105% - repetition 1 104.21 0.063 0.31 0.1170 560 1 Res 

105% - repetition 2 102.61 0.044 0.31 0.1020 420 1 Res 

105% - repetition 3 104.52 0.067 0.31 0.1290 678 1 Res 

105% - repetition 4 103.94 0.059 0.31 0.1190 575 1 Res 

115% - repetition 1 112.23 0.2 0.31 0.2080 1760 1 Res 

115% - repetition 2 107.69 0.11 0.31 0.1490 906 1 Res 

115% - repetition 3 114.94 0.27 0.31 0.2430 2410 1 Res 

115% - repetition 4 111.95 0.2 0.31 0.2050 1700 1 Res 

         

 Sample 
Predicted 

Content (%) 
MD Mah.Limit Residuals F Value FProb Outliers 

 
 
 
 
 

Suppository 
spectra 

80% - repetition 1 87.04 0.032 0.31 0.3130 4000 1 Res 

80% - repetition 2 87.29 0.029 0.31 0.3100 3910 1 Res 

80% - repetition 3 86.96 0.032 0.31 0.3140 4030 1 Res 

90% - repetition 1 91.24 0.0053 0.31 0.2410 2370 1 Res 

90% - repetition 2 90.97 0.0064 0.31 0.2410 2370 1 Res 

90% - repetition 3 90.87 0.0068 0.31 0.2450 2440 1 Res 

100% - repetition 1 92.91 0.00099 0.31 0.1860 1410 1 Res 

100% - repetition 2 93.99 1.9E-005 0.31 0.1830 1360 1 Res 

100% - repetition 3 93.69 0.00014 0.31 0.1850 1390 1 Res 

 

110% - repetition 1 95.83 0.0017 0.31 0.1400 801 1 Res 

110% - repetition 2 95.80 0.0017 0.31 0.1390 782 1 Res 

110% - repetition 3 95.77 0.0016 0.31 0.1380 778 1 Res 

120% - repetition 1 97.41 0.0065 0.31 0.0997 405 1 Res 

120% - repetition 2 96.80 0.0043 0.31 0.0995 403 1 Res 

120% - repetition 3 97.41 0.0065 0.31 0.0993 401 1 Res 

85% - repetition 1 89.53 0.013 0.31 0.2730 3040 1 Res 
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 Sample 
Predicted 

Content (%) 
MD Mah.Limit Residuals F Value FProb Outliers 

85% - repetition 2 89.47 0.014 0.31 0.2730 3040 1 Res 

85% - repetition 3 89.20 0.015 0.31 0.2670 2890 1 Res 

95% - repetition 1 92.66 0.0014 0.31 0.2160 1890 1 Res 

95% - repetition 2 92.63 0.0015 0.31 0.2090 1790 1 Res 

95% - repetition 3 92.92 0.00096 0.31 0.2050 1720 1 Res 

105% - repetition 1 95.04 0.00048 0.31 0.1630 1090 1 Res 

105% - repetition 2 95.25 0.00073 0.31 0.1590 1030 1 Res 

105% - repetition 3 95.21 0.00068 0.31 0.1580 1010 1 Res 

115% - repetition 1 96.77 0.0042 0.31 0.1180 570 1 Res 

115% - repetition 2 96.89 0.0046 0.31 0.1190 574 1 Res 

115% - repetition 3 96.81 0.0043 0.31 0.1170 555 1 Res 
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Annexe 3 : Results of specificity analysis on commercial granules 

Sample 

Predicted 

API Content 

(%) 

MD Limit Residuals F Value F Prob Outlier 

L16038D 
Crushed 99.97 0.021 0.310 0.0021 0.180 0.325 - 

Uncrushed 100.45 0.025 0.310 0.0127 6.560 0.984 - 

L16102A 
Crushed 100.41 0.024 0.310 0.0053 1.160 0.710 - 

Uncrushed 100.55 0.025 0.310 0.0129 6.800 0.985 - 

L17061B 
Crushed 100.13 0.022 0.310 0.0055 1.240 0.725 - 

Uncrushed 100.22 0.023 0.310 0.0161 10.600 0.997 Res 

M12034A 
Crushed 99.72 0.019 0.310 0.0102 4.270 0.951 - 

Uncrushed 100.05 0.022 0.310 0.0132 7.100 0.987 - 

M12195A 
Crushed 99.85 0.020 0.310 0.0024 0.237 0.370 - 

Uncrushed 99.81 0.020 0.310 0.0146 8.710 0.994 Res 

M12197A 
Crushed 99.83 0.020 0.310 0.0083 2.800 0.894 - 

Uncrushed 100.15 0.022 0.310 0.0135 7.400 0.989 - 

M12200A 
Crushed 99.84 0.020 0.310 0.0044 0.785 0.617 - 

Uncrushed 100.09 0.022 0.310 0.0137 7.680 0.990 - 

L14849A 
Crushed 100.39 0.024 0.310 0.0038 0.574 0.545 - 

Uncrushed 100.47 0.025 0.310 0.0153 9.490 0.995 Res 

L14850A 
Crushed 100.21 0.023 0.310 0.0027 0.286 0.403 - 

Uncrushed 100.25 0.023 0.310 0.0141 8.090 0.992 Res 

L16034B 
Crushed 100.48 0.025 0.310 0.0079 2.550 0.878 - 

Uncrushed 100.43 0.024 0.310 0.0131 7.030 0.987 - 
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